FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Badosa, J Calbo, J Mckenzie, R Liley, B Gonzalez, JA Forgan, B Long, CN AF Badosa, Jordi Calbo, Josep Mckenzie, Richard Liley, Ben Gonzalez, Josep-Abel Forgan, Bruce Long, Charles N. TI Two Methods for Retrieving UV Index for All Cloud Conditions from Sky Imager Products or Total SW Radiation Measurements SO PHOTOCHEMISTRY AND PHOTOBIOLOGY LA English DT Article ID CLEAR SKIES; IRRADIANCE; OZONE; MIDLATITUDES; VARIABILITY; ULTRAVIOLET; ATMOSPHERE; NORTHERN; TRENDS; SITES AB Cloud effects on UV Index (UVI) and total solar radiation (TR) as a function of cloud cover and sunny conditions (from sky images) as well as of solar zenith angle (SZA) are assessed. These analyses are undertaken for a southern-hemisphere mid-latitude site where a 10-years dataset is available. It is confirmed that clouds reduce TR more than UV, in particular for obscured Sun conditions, low cloud fraction (<60%) and large SZA (>60 degrees). Similarly, local short-time enhancement effects are stronger for TR than for UV, mainly for visible Sun conditions, large cloud fraction and large SZA. Two methods to estimate UVI are developed: (1) from sky imaging cloud cover and sunny conditions, and (2) from TR measurements. Both methods may be used in practical applications, although Method 2 shows overall the best performance, as TR allows considering cloud optical properties. The mean absolute (relative) differences of Method 2 estimations with respect to measured values are 0.17 UVI units (6.7%, for 1 min data) and 0.79 Standard Erythemal Dose (SED) units (3.9%, for daily integrations). Method 1 shows less accurate results but it is still suitable to estimate UVI: mean absolute differences are 0.37 UVI units (15%) and 1.6 SED (8.0%). C1 [Badosa, Jordi] Ecole Polytech, LMD, Palaiseau, France. [Calbo, Josep; Gonzalez, Josep-Abel] UdG, Dept Fis, Girona, Spain. [Mckenzie, Richard; Liley, Ben] Natl Inst Water & Atmospher Res NIWA, Lauder, New Zealand. [Forgan, Bruce] BoM, Melbourne, Vic, Australia. [Long, Charles N.] PNNL, Richland, WA USA. RP Calbo, J (reprint author), UdG, Dept Fis, Girona, Spain. EM josep.calbo@udg.edu RI Calbo, Josep/K-2462-2014; OI Calbo, Josep/0000-0002-9374-0790; Liley, Ben/0000-0002-8844-7928 FU Ministry of Economy and Competitiveness project NUCLIEREX [CGL 2007-62664/CLI]; Ministry of Economy and Competitiveness project NUCLIERSOL [CGL 2010-18546]; Spanish Complementary Action [PCI2006-A7-0604]; Office of Science of the U.S. Department of Energy as part of the Atmospheric Systems Research Program FX We acknowledge the support in the data analyses from Michael Kotkamp (NIWA, Lauder, New Zealand). This study has been partly financed by the Spanish Ministry of Science and Innovation (currently Ministry of Economy and Competitiveness) projects NUCLIEREX (CGL 2007-62664/CLI) and NUCLIERSOL (CGL 2010-18546). Also, the Spanish Complementary Action PCI2006-A7-0604 allowed travelling Dr. J. Calbo and Dr. R. L. McKenzie to compile the data and to initiate the study. Dr. Long acknowledges support from the Office of Science of the U.S. Department of Energy as part of the Atmospheric Systems Research Program. NR 37 TC 2 Z9 2 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0031-8655 EI 1751-1097 J9 PHOTOCHEM PHOTOBIOL JI Photochem. Photobiol. PD JUL-AUG PY 2014 VL 90 IS 4 BP 941 EP 951 DI 10.1111/php.12272 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AL4IM UT WOS:000339096400027 PM 24645969 ER PT J AU Matmon, A Fink, D Davis, M Niedermann, S Rood, D Frumkin, A AF Matmon, A. Fink, D. Davis, M. Niedermann, S. Rood, D. Frumkin, A. TI Unraveling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages SO QUATERNARY RESEARCH LA English DT Article DE Sedom Lagoon; Amora Lake; Cosmogenic burial dating; Dead Sea fault ID BE-10 HALF-LIFE; RED-SEA; LANDSCAPE EVOLUTION; SEDOM DIAPIR; HISTORIC EARTHQUAKES; TERRESTRIAL ROCKS; PLATE KINEMATICS; NORTHERN ISRAEL; YAMMOUNEH FAULT; DRAINAGE-BASIN AB The Dead Sea fault (DSF) is one of the most active plate boundaries in the world. Understanding the Quaternary history and sediments of the DSF requires investigation into the Neogene development of this plate boundary. DSF lateral motion preceded significant extension and rift morphology by -10 Ma. Sediments of the Sedom Formation, dated here between 5.0 0.5 Ma and 6.2 +/- 451 Ma, yielded extremely lowl Be concentrations and 26A1 is absent. These reflect the antiquity of the sediments, deposited in the Sedom Lagoon, which evolved in a subdued landscape and was connected to the Mediterranean Sea. The base of the overlying Amora Formation, deposited in the terminal Amora Lake which developed under increasing relief that promoted escarpment incision, was dated at 3.311 Ma. Burial ages of fluvial sediments within caves (3.4 +/- 0.2 Ma and 3.6 +/- 0.4 Ma) represent the timing of initial incision. Initial DSF topography coincides with the earliest Red Sea MORB's and the East Anatolian fault initiation. These suggest a change in the relative Arabian-African plate motion. This change introduced the rifting component to the DSF followed by a significant subsidence, margin uplift, and a reorganization of relief and drainage pattern in the region resulting in the topographic framework observed today. (C) 2014 University of Washington. Published by Elsevier Inc. All rights reserved. C1 [Matmon, A.; Davis, M.] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. [Fink, D.] Australian Nucl Sci & Technol Org, Menai, NSW 2234, Australia. [Niedermann, S.] Helmholtz Zentrum Potsdam, Deutsch GeoForschungsZentrum, D-14473 Potsdam, Germany. [Rood, D.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Frumkin, A.] Hebrew Univ Jerusalem, Dept Geog, IL-91905 Jerusalem, Israel. RP Matmon, A (reprint author), Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. EM arimatmon@mail.huji.ac.il RI fink, David/A-9518-2012; OI Niedermann, Samuel/0000-0003-1626-5284 FU ISF-Bikura [362/06]; Hebrew University Ring internal grant FX This study was supported by the ISF-Bikura grant 362/06 and Hebrew University Ring internal grant. We thank Roi Porat and Uri Davidovich who noted to us the potential significance of the Masada cave sediments to the rift margin evolution. NR 117 TC 8 Z9 8 U1 0 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 EI 1096-0287 J9 QUATERNARY RES JI Quat. Res. PD JUL PY 2014 VL 82 IS 1 BP 281 EP 295 DI 10.1016/j.ygres.2014.04.008 PG 15 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AL4XP UT WOS:000339138400027 ER PT J AU Kim, YJ Karaulanov, T Matlashov, AN Newman, S Urbaitis, A Volegov, P Yoder, J Espy, MA AF Kim, Y. J. Karaulanov, T. Matlashov, A. N. Newman, S. Urbaitis, A. Volegov, P. Yoder, J. Espy, M. A. TI Polarization enhancement technique for nuclear quadrupole resonance detection SO SOLID STATE NUCLEAR MAGNETIC RESONANCE LA English DT Article DE Nuclear quadrupole resonance (NQR); Nitrogen-14; Polarization enhancement NQR; Ammonium nitrate ID N-14 NQR SIGNAL; RELAXATION MEASUREMENTS; SODIUM-NITRITE; EXPLOSIVES; DRUGS; T1 AB We demonstrate a dramatic increase in the signal-to-noise ratio (SNR) of a nuclear quadrupole resonance (NQR) signal by using a polarization enhancement technique. By first applying a static magnetic field to pre-polarize one spin subsystem of a material, and then allowing that net polarization to be transferred to the quadrupole subsystem, we increased the SNR of a sample of ammonium nitrate by one-order of magnitude. Published by Elsevier Inc. C1 [Kim, Y. J.; Karaulanov, T.; Matlashov, A. N.; Newman, S.; Urbaitis, A.; Volegov, P.; Yoder, J.; Espy, M. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kim, YJ (reprint author), Los Alamos Natl Lab, POB 1663,MS-D454, Los Alamos, NM 87545 USA. EM youngjin@lanl.gov OI Urbaitis, Algis/0000-0002-8626-5987 FU Los Alamos National Laboratory LDRD office [201202187ER] FX The authors are grateful for helpful discussions with Dr. Michael Malone. This work was supported by the Los Alamos National Laboratory LDRD office through Grant 201202187ER. NR 26 TC 1 Z9 1 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0926-2040 EI 1527-3326 J9 SOLID STATE NUCL MAG JI Solid State Nucl. Magn. Reson. PD JUL-SEP PY 2014 VL 61-62 BP 35 EP 38 DI 10.1016/j.ssnmr.2014.05.002 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Spectroscopy SC Chemistry; Physics; Spectroscopy GA AL7HT UT WOS:000339305500006 PM 24882748 ER PT J AU Luo, ZP Dauter, M Dauter, Z AF Luo, Zhipu Dauter, Miroslawa Dauter, Zbigniew TI Phosphates in the Z-DNA dodecamer are flexible, but their P-SAD signal is sufficient for structure solution SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID HANDED Z-DNA; X-RAY-DIFFRACTION; SINGLE-CRYSTAL STRUCTURE; 1.0-A ATOMIC RESOLUTION; PURE-SPERMINE FORM; DOUBLE-HELICAL DNA; BASE-PAIRS; MOLECULAR-STRUCTURE; ANGSTROM RESOLUTION; MINOR-GROOVE AB A large number of Z-DNA hexamer duplex structures and a few oligomers of different lengths are available, but here the first crystal structure of the d(CGCGCGCGCGCG)(2) dodecameric duplex is presented. Two synchrotron data sets were collected; one was used to solve the structure by the single-wavelength anomalous dispersion (SAD) approach based on the anomalous signal of P atoms, the other set, extending to an ultrahigh resolution of 0.75 angstrom, served to refine the atomic model to an R factor of 12.2% and an R-free of 13.4%. The structure consists of parallel duplexes arranged into practically infinitely long helices packed in a hexagonal fashion, analogous to all other known structures of Z-DNA oligomers. However, the dodecamer molecule shows a high level of flexibility, especially of the backbone phosphate groups, with six out of 11 phosphates modeled in double orientations corresponding to the two previously observed Z-DNA conformations: Z(I), with the phosphate groups inclined towards the inside of the helix, and Z(II), with the phosphate groups rotated towards the outside of the helix. C1 [Luo, Zhipu; Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL 60439 USA. [Dauter, Miroslawa] Argonne Natl Lab, Leidos Biomed Res Inc, Basic Res Program, Argonne, IL 60439 USA. RP Dauter, Z (reprint author), NCI, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL 60439 USA. EM dauter@anl.gov RI Luo, Zhipu/P-9168-2014 FU NIH, National Cancer Institute, Center for Cancer Research; National Cancer Institute, National Institutes of Health [NO1-CO-12400]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX This project was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research and with Federal funds from the National Cancer Institute, National Institutes of Health (Contract No. NO1-CO-12400). Diffraction data were collected at the NE-CAT beamline 24-ID and SER-CAT beamline 22-ID at the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. W-31-109-Eng-38. NR 83 TC 9 Z9 9 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD JUL PY 2014 VL 70 BP 1790 EP 1800 DI 10.1107/S1399004714004684 PN 7 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AL1WM UT WOS:000338917000001 PM 25004957 ER PT J AU Dufek, EJ Lister, TE Stone, SG AF Dufek, Eric J. Lister, Tedd E. Stone, Simon G. TI Sampling dynamics for pressurized electrochemical cells SO JOURNAL OF APPLIED ELECTROCHEMISTRY LA English DT Article DE CO2; Electroreduction; Pressurized electrolysis; Syngas ID CARBON-DIOXIDE; CO2 REDUCTION; METAL-ELECTRODES; ELECTROLYTES; TEMPERATURE; PERFORMANCE; SELECTIVITY; OPERATION; DESIGN; II. AB A model describing the gas distribution within a constant pressure electrolysis system and how the distribution impacts electrochemical efficiencies is presented. The primary system of interest is the generation of syngas (CO and H-2) associated with the co-electrolysis of H2O and CO2. The model developed for this system takes into account the primary process variables of operation including total system pressure, applied current, and the in-flow of reactant gases. From these, and the chemical equilibria within the system, the impact on electrochemically generated gases is presented. Comparison of predicted and measured faradaic efficiency of an electrode's processes reveals significant disagreement under certain conditions. Methods to minimize and account for the discrepancy are presented with the goal of being able to discern, in a real-time manner, degradation of electrode performance. Comparison of the model to experimental data shows a strong correlation between the two with slight variation in experimental data, which is attributed to reversible system dynamics such as wetting of the gas diffusion electrode used as the cell cathode. C1 [Dufek, Eric J.; Lister, Tedd E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Stone, Simon G.] Giner Inc, Newton, MA 02466 USA. RP Dufek, EJ (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM eric.dufek@inl.gov RI Dufek, Eric/B-8847-2017 OI Dufek, Eric/0000-0003-4802-1997 FU INL Laboratory Directed Research and Development (LDRD) Program under DOE Idaho Operations Office; U.S. Department of Energy [DE-AC07-05ID14517] FX Work supported through the INL Laboratory Directed Research and Development (LDRD) Program under DOE Idaho Operations Office. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 23 TC 0 Z9 0 U1 0 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0021-891X EI 1572-8838 J9 J APPL ELECTROCHEM JI J. Appl. Electrochem. PD JUL PY 2014 VL 44 IS 7 BP 849 EP 855 DI 10.1007/s10800-014-0693-z PG 7 WC Electrochemistry SC Electrochemistry GA AK9QM UT WOS:000338761700010 ER PT J AU Philippov, A Tchekhovskoy, A Li, JG AF Philippov, Alexander Tchekhovskoy, Alexander Li, Jason G. TI Time evolution of pulsar obliquity angle from 3D simulations of magnetospheres SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: magnetic field; stars: neutron; pulsars: general; stars: rotation ID FORCE-FREE MAGNETOSPHERE; MAGNETIC-FIELD; NEUTRON-STAR; MAGNETOHYDRODYNAMIC SIMULATIONS; NUMERICAL SCHEME; RADIO PULSARS; BLACK-HOLES; ALIGNMENT; POPULATION; PRECESSION AB The rotational period of isolated pulsars increases over time due to the extraction of angular momentum by electromagnetic torques. These torques also change the obliquity angle alpha between the magnetic and rotational axes. Although actual pulsar magnetospheres are plasma filled, the time evolution of alpha has mostly been studied for vacuum pulsar magnetospheres. In this work, we self-consistently account for the plasma effects for the first time by analysing the results of time-dependent 3D force-free and magnetohydrodynamic simulations of pulsar magnetospheres. We show that if a neutron star is spherically symmetric and is embedded with a dipolar magnetic moment, the pulsar evolves so as to minimize its spin-down luminosity: both vacuum and plasma-filled pulsars evolve towards the aligned configuration (alpha = 0). However, they approach the alignment in qualitatively different ways. Vacuum pulsars come into alignment exponentially fast, with alpha proportional to exp (-t/tau) and tau similar to spin-down time-scale. In contrast, we find that plasma-filled pulsars align much more slowly, with alpha proportional to (t/tau)(-1/2). We argue that the slow time evolution of obliquity of plasma-filled pulsars can potentially resolve several observational puzzles, including the origin of normal pulsars with periods of similar to 1 s, the evidence that oblique pulsars come into alignment over a time-scale of similar to 10(7) yr, and the observed deficit, relative to an isotropic obliquity distribution, of pulsars showing interpulse emission. C1 [Philippov, Alexander; Li, Jason G.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Tchekhovskoy, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tchekhovskoy, Alexander] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Philippov, A (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. EM philippo@astro.princeton.edu FU Princeton Center for Theoretical Science; NASA [PF3-140115] FX We thank J. Arons, L. Arzamasskiy, V.S. Beskin, R. Blandford, C.-A. Faucher-Giguere, P. Goldreich, A. Jessner, R. Narayan, A. Spitkovsky, T. Tauris, D. Uzdensky and J. Zrake for insightful discussions. AT was supported by a Princeton Center for Theoretical Science Fellowship and by NASA through the Einstein Fellowship Program, grant PF3-140115. The simulations presented in this article used computational resources supported by the PICSciE-OIT High Performance Computing Center and Visualization Laboratory, and by XSEDE allocation TG-AST100040 on NICS Kraken and Nautilus and TACC Lonestar, Longhorn and Ranch. NR 41 TC 21 Z9 22 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2014 VL 441 IS 3 BP 1879 EP 1887 DI 10.1093/mnras/stu591 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK9RE UT WOS:000338763600003 ER PT J AU Chen, XH Chatterjee, R Zhang, HC Pohl, M Fossati, G Bottcher, M Bailyn, CD Bonning, EW Buxton, M Coppi, P Isler, J Maraschi, L Urry, M AF Chen, Xuhui Chatterjee, Ritaban Zhang, Haocheng Pohl, Martin Fossati, Giovanni Boettcher, Markus Bailyn, Charles D. Bonning, Erin W. Buxton, Michelle Coppi, Paolo Isler, Jedidah Maraschi, Laura Urry, Meg TI Magnetic field amplification and flat spectrum radio quasars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiation mechanisms: non-thermal; galaxies: active; galaxies: jets; quasars: individual: PKS 0208-512 ID ACTIVE GALACTIC NUCLEI; TIME-DEPENDENT SIMULATIONS; RAPID NONTHERMAL FLARES; SELF-COMPTON MODEL; ENERGY-DISTRIBUTIONS; EXTERNAL COMPTON; PKS 1510-089; MULTIWAVELENGTH VARIABILITY; TURBULENT AMPLIFICATION; RELATIVISTIC SHOCK AB We perform time-dependent, spatially resolved simulations of blazar emission to evaluate several flaring scenarios related to magnetic-field amplification and enhanced particle acceleration. The code explicitly accounts for light-travel-time effects and is applied to flares observed in the flat spectrum radio quasar (FSRQ) PKS 0208-512, which show optical/gamma-ray correlation at some times, but orphan optical flares at other times. Changes in both the magnetic field and the particle acceleration efficiency are explored as causes of flares. Generally, external Compton (EC) emission appears to describe the available data better than a synchrotron self-Compton (SSC) scenario, and in particular orphan optical flares are difficult to produce in the SSC framework. X-ray soft-excesses, gamma-ray spectral hardening, and the detections at very high energies of certain FSRQs during flares find natural explanations in the EC scenario with particle acceleration change. Likewise, optical flares with/without gamma-ray counterparts can be explained by different allocations of energy between the magnetization and particle acceleration, which may be related to the orientation of the magnetic field relative to the jet flow. We also calculate the degree of linear polarization and polarization angle as a function of time for a jet with helical magnetic field. Tightening of the magnetic helix immediately downstream of the jet perturbations, where flares occur, can be sufficient to explain the increases in the degree of polarization and a rotation by a parts per thousand yen180A degrees of the observed polarization angle, if light-travel-time effects are properly considered. C1 [Chen, Xuhui; Pohl, Martin] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Chen, Xuhui; Pohl, Martin] DESY, D-15738 Zeuthen, Germany. [Chatterjee, Ritaban] Presidency Univ, Dept Phys, Kolkata 700073, W Bengal, India. [Zhang, Haocheng; Boettcher, Markus] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. [Zhang, Haocheng] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Fossati, Giovanni] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Boettcher, Markus] North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa. [Bailyn, Charles D.; Buxton, Michelle; Coppi, Paolo; Isler, Jedidah] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Bonning, Erin W.] Emory Univ, Dept Phys, Atlanta, GA 30322 USA. [Maraschi, Laura] INAFOsservatorio Astron Brera, I-20100 Milan, Italy. [Urry, Meg] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Urry, Meg] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. RP Chen, XH (reprint author), Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. EM chenxuhui.phys@gmail.com OI Urry, Meg/0000-0002-0745-9792 FU Helmholtz Alliance for Astroparticle Physics HAP - Initiative and Networking Fund of the Helmholtz Association; NASA [NNX12AP20G, NNX12AE43G]; LANL/LDRD programme; DoE/Office of Fusion Energy Science through CMSO; Department of Science and Technology of South Africa; South African Research Chair Initiative of the National Research Foundation FX The authors thank A. Barnacka for useful discussions. XC and MP acknowledge support by the Helmholtz Alliance for Astroparticle Physics HAP funded by the Initiative and Networking Fund of the Helmholtz Association. HZ acknowledges supports by NASA through Fermi Guest Investigator Grant no. NNX12AP20G, and by the LANL/LDRD programme and by DoE/Office of Fusion Energy Science through CMSO. GF acknowledges support by NASA grant NNX12AE43G. MB acknowledges support through the South African Research Chair Initiative of the National Research Foundation and the Department of Science and Technology of South Africa. NR 51 TC 10 Z9 10 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2014 VL 441 IS 3 BP 2188 EP 2199 DI 10.1093/mnras/stu713 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK9RE UT WOS:000338763600028 ER PT J AU Pasqualini, D Bassi, AM AF Pasqualini, D. Bassi, A. M. TI Oil shale and climate policy in the shift to a low carbon and more resilient economy SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Climate policy; Oil shale; Integrated modeling; Energy development impacts; Unconventional fossil fuels ID ENERGY; GAS AB Policy makers worldwide are recently debating options to implement an effective climate policy that would put a cap on green house gas emissions. At the same time, investors are carefully evaluating the profitability of unconventional fossil fuels such as shale oil. To enhance the understanding of the impacts of a climate policy such as the American Clean Energy and Security Act of 2009, on oil shale production - and vice versa - we have customized an integrated assessment model, the Climate and Energy Assessment for Resiliency model for Unconventional Fossil Fuels to the U.S. Western Energy Corridor. Our analysis indicates that while the bill would increase the production cost of oil shale, the industry remains highly profitable in the longer-term, generating a potential profit of about $10 to $16 billion per year by 2040 at 2.5 million barrels per day. These results suggest that the oil shale industry may comfortably face the enactment of a carbon policy, albeit with some caveats. Furthermore, while its potential economic impact on non-compliant industries may be severe, it would generate mounting profits for those achieving energy efficiency gains, thereby increasing the profitability of energy efficiency investments. Published by Elsevier Inc. C1 [Pasqualini, D.] Los Alamos Natl Lab, Div Los Alamos D, Los Alamos, NM 87545 USA. [Bassi, A. M.] Millennium Inst, Arlington, VA 22201 USA. RP Pasqualini, D (reprint author), Los Alamos Natl Lab, Div Los Alamos D, Los Alamos, NM 87545 USA. EM dmp@lanl.gov NR 22 TC 0 Z9 0 U1 3 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD JUL PY 2014 VL 86 BP 168 EP 176 DI 10.1016/j.techfore.2013.08.018 PG 9 WC Business; Planning & Development SC Business & Economics; Public Administration GA AL0JO UT WOS:000338813400015 ER PT J AU Zhi, MJ Yang, F Meng, FK Li, MQ Manivannan, A Wu, NQ AF Zhi, Mingjia Yang, Feng Meng, Fanke Li, Minqi Manivannan, Ayyakkannu Wu, Nianqiang TI Effects of Pore Structure on Performance of An Activated-Carbon Supercapacitor Electrode Recycled from Scrap Waste Tires SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Activated carbon; Waste tire; Supercapacitor; Electrode; Porous material ID DOUBLE-LAYER CAPACITANCE; COAL-TAR PITCH; ENERGY-STORAGE; KOH ACTIVATION; POROUS CARBONS; TEMPLATE; BLACK AB It is important to address the challenges posed with the ever-increasing demand for energy supply and environmental sustainability. Activated carbon, which is the common material for commercial supercapadtor electrodes, is currently derived from petroleum-based precursors. This paper presents an effective synthetic method that utilizes waste tires as the precursor to prepare the activated carbon electrodes by the pyrolysis and chemical activation processes. Adjusting the activation parameters can tailor multiple physical properties of the resulting activated carbon, which in turns tunes the performance of the activated carbon electrode. Statistical multiple linear regression and stepwise regression methods are employed to investigate the dependence of the specific capacitance and the rate capability upon the physical properties (such as porosity) of the activated carbon electrode. The specific capacitance of activated carbon electrode is controlled by the micropore volume but independent of the mesopores volume. The rate capability is dominated by the mesopore/micropore volume ratio instead of the absolute value of mesopore volume. C1 [Zhi, Mingjia] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Zhi, Mingjia; Meng, Fanke; Manivannan, Ayyakkannu; Wu, Nianqiang] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Yang, Feng; Li, Minqi] W Virginia Univ, Ind & Management Syst Engn Dept, Morgantown, WV 26506 USA. [Manivannan, Ayyakkannu] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Wu, NQ (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. EM nick.wu@mail.wvu.edu RI Meng, Fanke /F-3978-2010; Zhi, Mingjia/A-6866-2010; Wu, Nianqiang/B-9798-2015; Meng, Fanke/D-7395-2017 OI Zhi, Mingjia/0000-0002-4291-0809; Wu, Nianqiang/0000-0002-8888-2444; Meng, Fanke/0000-0001-7961-4248 FU NSF [CMMI-1068131] FX F.Y. is grateful for partial support by NSF grant (CMMI-1068131). The use of the WVU Shared Facility is appreciated. The authors thank Mr. J. Bright, S. Hao, and P. Zheng for their assistance with XPS, Raman, and FTIR analysis. NR 32 TC 45 Z9 47 U1 18 U2 119 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD JUL PY 2014 VL 2 IS 7 BP 1592 EP 1598 DI 10.1021/sc500336h PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA AK9LK UT WOS:000338748400008 ER PT J AU Danalis, A Luszczek, P Marin, G Vetter, JS Dongarra, J AF Danalis, Anthony Luszczek, Piotr Marin, Gabriel Vetter, Jeffrey S. Dongarra, Jack TI BlackjackBench: Portable Hardware Characterization with Automated Results' Analysis SO COMPUTER JOURNAL LA English DT Article DE micro-benchmarks; hardware characterization; statistical analysis ID PERFORMANCE; CACHE; ACCURATE; SOFTWARE AB DARPA's AACE project aimed to develop Architecture Aware Compiler Environments. Such a compiler automatically characterizes the targeted hardware and optimizes the application codes accordingly. We present the BlackjackBench suite, a collection of portable micro-benchmarks that automate system characterization, plus statistical analysis techniques for interpreting the results. The BlackjackBench benchmarks discover the effective sizes and speeds of the hardware environment rather than the often unattainable peak values. We aim at hardware characteristics that can be observed by running executables generated by existing compilers from standard C codes. We characterize the memory hierarchy, including cache sharing and non-uniform memory access characteristics of the system, properties of the processing cores affecting the instruction execution speed and the length of the operating system scheduler time slot. We show how these features of modern multicores can be discovered programmatically. We also show how the features could potentially interfere with each other resulting in incorrect interpretation of the results, and how established classification and statistical analysis techniques can reduce experimental noise and aid automatic interpretation of results. We show how effective hardware metrics from our probes allow guided tuning of computational kernels that outperform an autotuning library further tuned by the hardware vendor. C1 [Danalis, Anthony; Luszczek, Piotr; Dongarra, Jack] Univ Tennessee, Knoxville, TN 37996 USA. [Marin, Gabriel; Vetter, Jeffrey S.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Luszczek, P (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM luszczek@eecs.utk.edu NR 23 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0010-4620 EI 1460-2067 J9 COMPUT J JI Comput. J. PD JUL PY 2014 VL 57 IS 7 BP 1002 EP 1016 DI 10.1093/comjnl/bxt057 PG 15 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA AK8AG UT WOS:000338648900005 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Atkinson, M Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglionia, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Balek, P Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, AK Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, CW Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Bloch, I Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buescher, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocca, C Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cogneras, E Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Munio, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F de Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, W Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dressnandt, N Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duehrssen, M Duerdoth, IP Duflot, L Dufour, MA Duguid, L Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dueren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Goepfert, T Goeringer, C Goessling, C Goldfarb, S Golling, T Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guicheney, C Guido, E Guindon, S Gul, U Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Hajduk, Z Hakobyan, H Hall, D Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellmanab, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM Van Huysduynen, LH Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jen-La Plante, I Jennens, D Jenni, P Loevschall-Jensen, AE Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazama, S Kazanin, VA Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koeneke, K Koenig, AC Koenig, S Koepke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kreiss, S Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Krueger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, MK Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundberg, O Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Maddocks, HJ Mader, WF Maenner, R Maeno, T Maettig, P Maettig, S Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mayne, A Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, S McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjoernmark, JU Moa, T Moeller, V Moenig, K Moeser, N Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Mueller, TA Mueller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pinto, B Pizio, C Plamondon, M Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruehr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Castillo, IS Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarriab, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaefer, U Schaelicke, A Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Stroehmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urquijo, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valentinetti, S Valero, A Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van Der Deijl, P van der Geer, R van der Graaf, H Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJ Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zinonos, Z Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zibell, A Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Alvarez Gonzalez, B. Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorim, A. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M. -L. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J. -F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Atkinson, M. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglionia, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Balek, P. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Barreiro Guimares da Costa, J. Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, A. K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez Garcia, J. A. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, C. W. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. Brown, H. Bruckman de Renstrom, P. A. Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda Hernandez, A. M. Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Chavez Barajas, C. A. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocca, C. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Munio, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crepe-Renaudin, S. Cuciuc, C. -M. Cuenca Almenar, C. Cuhadar Donszelmann, T. Cummings, J. Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. de Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Vivie De Regie, J. B. De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dressnandt, N. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M. -A. Duguid, L. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferreira de Lima, D. E. Ferrer, A. Ferrere, D. Ferretti, C. Ferretto Parodi, A. Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Flores Castillo, L. R. Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goldfarb, S. Golling, T. Gomes, A. Gomez Fajardo, L. S. Goncalo, R. Goncalves Pinto Firmino Da Costa, J. Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Gough Eschrich, I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstrom, P. Grahn, K. -J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guicheney, C. Guido, E. Guindon, S. Gul, U. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Hajduk, Z. Hakobyan, H. Hall, D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellmanab, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Henriques Correia, A. M. Henrot-Versille, S. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. Van Huysduynen, L. Hooft Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jen-La Plante, I. Jennens, D. Jenni, P. Loevschall-Jensen, A. E. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Jimenez Belenguer, M. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Rozas, A. Juste Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazama, S. Kazanin, V. A. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kreiss, S. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, M. K. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Lopez Mateos, D. Lorenz, J. Lorenzo Martinez, N. Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundberg, O. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Manjarres Ramos, J. A. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Martinez Outschoorn, V. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mayne, A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Moya, M. Minano Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Garzon, G. Otero Y. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panduro Vazquez, J. G. Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Pedraza Lopez, S. Pedraza Morales, M. I. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pinto, B. Pizio, C. Plamondon, M. Pleier, M. -A. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Rocha de Lima, J. G. Roda, C. Roda Dos Santos, D. Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarriab, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, U. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, DJ. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valentinetti, S. Valero, A. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Berg, R. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zinonos, Z. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI The differential production cross section of the phi(1020) meson in root s=7 TeV pp collisions measured with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID FRAGMENTATION AB A measurement is presented of the phi x BR(phi -> K+ K-) production cross section at root s = 7 TeV using pp collision data corresponding to an integrated luminosity of 383 mu b(-1), collected with the ATLAS experiment at the LHC. Selection of phi(1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section is measured as a function of the transverse momentum, pT, phi, and rapidity, y(phi), of the phi(1020) meson in the fiducial region 500 < pT,phi < 1200MeV, vertical bar y phi| < 0.8, kaon p(T), (K) > 230 MeV and kaon momentum p(K) < 800 MeV. The integrated phi(1020)-meson production cross section in this fiducial range is measured to be sigma(phi) x BR(phi -> K+ K-) = 570 +/- 8 (stat) +/- 66 (syst) +/- 20 (lumi) mu b. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Alam, M. S.; Edson, W.; Ernst, J.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Bahinipati, S.; Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Giorgi, F. M.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, DJ.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Grafstrom, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Garzon, G. Otero Y.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Lacey, J.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Chavez Barajas, C. A.; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Henriques Correia, A. M.; Hervas, L.; Hoecker, A.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Roda Dos Santos, D.; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Sfyrla, A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Pino, S. A. Olivares; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, B.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wu, Y.; Xu, C.; Xu, L.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Brooijmans, G.; Chen, Y.; Dodd, J.; Grau, N.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Perez Reale, V.; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Loevschall-Jensen, A. E.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; Bruckman de Renstrom, P. A.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Goncalves Pinto Firmino Da Costa, J.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Jimenez Belenguer, M.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Goncalves Pinto Firmino Da Costa, J.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Jimenez Belenguer, M.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Cerutti, F.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Ferretto Parodi, A.; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Ferretto Parodi, A.; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Ferreira de Lima, D. E.; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M. -L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M. -L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M. -L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Barreiro Guimares da Costa, J.; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Lopez Mateos, D.; Martinez Outschoorn, V.; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Panduro Vazquez, J. G.; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Robertson, S. H.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Klemetti, M.; Mc Donald, J.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Alvarez Gonzalez, B.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J. -F.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Giunta, M.; Leroy, C.; Martin, J. P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Baranov, S. P.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; Rocha de Lima, J. G.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; Van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lorenzo Martinez, N.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lorenzo Martinez, N.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Di Donato, C.; Dressnandt, N.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarriab, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarriab, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Munio, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Manjarres Ramos, J. A.; Mansoulie, B.; Meyer, J-P.; Mijovic, L.; Morange, N.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.] Commissariat Energie Atom, CEA Saclay, Inst Rech Lois Fondamentales Univers, DSM IRFU, Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Cuhadar Donszelmann, T.; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Carrillo-Montoya, G. D.; Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellmanab, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellmanab, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Astron & Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Abramowicz, H.; Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Perez Codina, E.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Benitez Garcia, J. A.; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Farrell, S.; Gough Eschrich, I.; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Milan, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Bansal, V.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Ouellette, E. A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.; Wicke, D.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Chen, X.; Di Mattia, A.; Dos Anjos, A.; Fang, Y.; Flores Castillo, L. R.; Gutzwiller, O.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Pedraza Morales, M. I.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, A. K.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Meyer, J.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Siragusa, G.; Sturm, P.; Voss, T. T.; Wagner, W.; Wahlen, H.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cuenca Almenar, C.; Cummings, J.; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. Univ Lisbon, Fac Ciencias, Lisbon, Portugal. Univ Lisbon, CFNUL, Lisbon, Portugal. [Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Castaneda Hernandez, A. M.] UASLP, Dept Phys, San Luis Potosi, Mexico. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Do Valle Wemans, A.] Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Dobson, E.] UCL, Dept Phys & Astron, London, England. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, S.] Aix Marseille Univ, CPPM, Marseille, France. [Li, S.] CNRS IN2P3, Marseille, France. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Meng, Z.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Mountricha, E.; Xu, C.] Commissariat Energie Atom, CEA Saclay, Inst Rech Lois Fondamentales Univers, DSM IRFU, Gif Sur Yvette, France. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Ruan, X.] Univ Paris 11, LAL, Orsay, France. [Ruan, X.] CNRS IN2P3, Orsay, France. [Spousta, M.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Tsionou, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wu, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Zhang, D.] Acad Sinica, Inst Phys, Taipei, Taiwan. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Moorhead, Gareth/B-6634-2009; Bosman, Martine/J-9917-2014; Fazio, Salvatore /G-5156-2010; Brooks, William/C-8636-2013; Villa, Mauro/C-9883-2009; Warburton, Andreas/N-8028-2013; Kuday, Sinan/C-8528-2014; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Peleganchuk, Sergey/J-6722-2014; Ferrando, James/A-9192-2012; Santamarina Rios, Cibran/K-4686-2014; Alexa, Calin/F-6345-2010; Kuleshov, Sergey/D-9940-2013; Lokajicek, Milos/G-7800-2014; Castro, Nuno/D-5260-2011; Staroba, Pavel/G-8850-2014; Doyle, Anthony/C-5889-2009; de Groot, Nicolo/A-2675-2009; Wemans, Andre/A-6738-2012; Nemecek, Stanislav/G-5931-2014; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Samset, Bjorn H./B-9248-2012; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Canelli, Florencia/O-9693-2016; Gauzzi, Paolo/D-2615-2009; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015 OI Moorhead, Gareth/0000-0002-9299-9549; Bosman, Martine/0000-0002-7290-643X; Brooks, William/0000-0001-6161-3570; Villa, Mauro/0000-0002-9181-8048; Warburton, Andreas/0000-0002-2298-7315; Kuday, Sinan/0000-0002-0116-5494; Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662; Peleganchuk, Sergey/0000-0003-0907-7592; Ferrando, James/0000-0002-1007-7816; Santamarina Rios, Cibran/0000-0002-9810-1816; Kuleshov, Sergey/0000-0002-3065-326X; Castro, Nuno/0000-0001-8491-4376; Doyle, Anthony/0000-0001-6322-6195; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Samset, Bjorn H./0000-0001-8013-1833; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Canelli, Florencia/0000-0001-6361-2117; Gauzzi, Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT; NSRF, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, The Netherlands; BRF; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 24 TC 4 Z9 4 U1 9 U2 111 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL 1 PY 2014 VL 74 IS 7 AR 2895 DI 10.1140/epjc/s10052-014-2895-2 PG 21 WC Physics, Particles & Fields SC Physics GA AK9AG UT WOS:000338719300001 ER PT J AU Parks, DA Tittmann, BR AF Parks, David A. Tittmann, Bernhard R. TI Radiation Tolerance of Piezoelectric Bulk Single-Crystal Aluminum Nitride SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Article ID NEUTRON-IRRADIATION; AMORPHIZATION; CERAMICS; REACTOR; DAMAGE AB For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for non-destructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminum-nitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 x 10(18) neutron/cm(2) and 5.8 x 10(18) neutron/cm(2), respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d(33), which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers. C1 [Parks, David A.] Idaho Natl Lab, NDE Phys Dept, Idaho Falls, ID 83402 USA. [Tittmann, Bernhard R.] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA. RP Parks, DA (reprint author), Idaho Natl Lab, NDE Phys Dept, Idaho Falls, ID 83402 USA. EM brt4@psu.edu NR 23 TC 10 Z9 10 U1 3 U2 28 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 EI 1525-8955 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD JUL PY 2014 VL 61 IS 7 BP 1216 EP 1222 DI 10.1109/TUFFC.2014.3020 PG 7 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA AK8GM UT WOS:000338665500014 PM 24960710 ER PT J AU Eberhart, CJ Lineberry, DM Frederick, RA Kastengren, AL AF Eberhart, Chad J. Lineberry, David M. Frederick, Robert A., Jr. Kastengren, Alan L. TI Mechanistic Assessment of Swirl Coaxial Injection by Quantitative X-Ray Radiography SO JOURNAL OF PROPULSION AND POWER LA English DT Article ID DYNAMICS; SPRAYS AB Detailed x-ray radiographic experiments were conducted to evaluate the time-averaged spray characteristics of a liquid rocket swirl injector. Sprays issued from a single liquid-centered swirl coaxial element - with and without coannular gas flow - were exposed to focused, monochromatic x rays produced by a synchrotron light source. Two-dimensional attenuation data are presented at various axial stations and reveal both projected mass distribution of liquid in the injector near field and mass-weighted axial velocity integrated over time. Measurements describing spray morphology are also inferred from the x-ray data and compared with those measured through objective image processing of visible light imagery. The gas flow is observed to reduce spray cone angle up to 50% and increase liquid film thickness up to 20% in the near field. Measurements compare well with those extracted from imagery of the pressure-swirl spray; however, the x-ray technique is more robust in resolving liquid film thickness for the optically dense swirl coaxial spray. C1 [Eberhart, Chad J.; Frederick, Robert A., Jr.] Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA. [Lineberry, David M.] Univ Alabama, Prop Res Ctr, Huntsville, AL 35899 USA. [Kastengren, Alan L.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Eberhart, CJ (reprint author), Univ Alabama, Dept Mech & Aerosp Engn, S225 Technol Hall, Huntsville, AL 35899 USA. FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-O6CH11375] FX The authors would like to thank Alex Schumaker, Malissa Lightfoot, and Steve Danczyk of the U.S. Air Force Research Laboratory for facilitating the opportunity to conduct the x-ray radiographic portion of this work, for productive discussion, and for guidance with data processing. The authors would also like to thank Chris Powell of Argonne National Laboratory, Daniel Duke of Monash University, and William Miller of Kettering University for assistance with collection of the x-ray radiography data. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-O6CH11375. This research was conducted under the University of Alabama in Huntsville's Wernher von Braun Propulsion Fellowship. NR 29 TC 2 Z9 2 U1 0 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 EI 1533-3876 J9 J PROPUL POWER JI J. Propul. Power PD JUL-AUG PY 2014 VL 30 IS 4 BP 1070 EP 1079 DI 10.2514/1.B35007 PG 10 WC Engineering, Aerospace SC Engineering GA AK9DD UT WOS:000338726800020 ER PT J AU Liu, XW Dekker, LJM Wu, S Vanduijn, MM Luider, TM Tolic, N Kou, Q Dvorkin, M Alexandrova, S Vyatkina, K Pasa-Tolic, L Pevzner, PA AF Liu, Xiaowen Dekker, Lennard J. M. Wu, Si Vanduijn, Martijn M. Luider, Theo M. Tolic, Nikola Kou, Qiang Dvorkin, Mikhail Alexandrova, Sonya Vyatkina, Kira Pasa-Tolic, Ljiljana Pevzner, Pavel A. TI De Novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra SO JOURNAL OF PROTEOME RESEARCH LA English DT Article ID MONOCLONAL-ANTIBODIES; SPECTROMETRY; IDENTIFICATION; PEPTIDES; PROTEOMICS; DATABASE; MIXTURES; MS/MS AB There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy. C1 [Liu, Xiaowen; Kou, Qiang] Indiana Univ Purdue Univ, Dept BioHlth Informat, Indianapolis, IN 46202 USA. [Liu, Xiaowen] Indiana Univ Sch Med, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46202 USA. [Dekker, Lennard J. M.; Vanduijn, Martijn M.; Luider, Theo M.] Erasmus MC, Dept Neurol, NL-3000 CA Rotterdam, Netherlands. [Wu, Si; Tolic, Nikola; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira] St Petersburg Acad Univ, Algorithm Biol Lab, St Petersburg 194021, Russia. [Pevzner, Pavel A.] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA 92093 USA. RP Liu, XW (reprint author), Indiana Univ Purdue Univ, Dept BioHlth Informat, 535 West Michigan St,IT 475, Indianapolis, IN 46202 USA. EM xwliu@iupui.edu; ppevzner@cs.ucsd.edu OI van Duijn, Martijn/0000-0002-6654-994X FU Indiana University-Purdue University Indianapolis; Netherlands Organization for Scientific Research (NWO), Zenith grant [93511034]; DOE [DE-AC05-76RLO1830]; Government of the Russian Federation [11.G34.31.0018] FX This work was supported by a startup fund provided by Indiana University-Purdue University Indianapolis. L.J.M.D. and M.M.V. are financially supported by The Netherlands Organization for Scientific Research (NWO), Zenith grant no. 93511034. Portions of this work were performed in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a Department of Energy, Biological and Environmental Research (DOE BER) national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. M.D., S.A, K.V., and P.A.P. were partially supported by the Government of the Russian Federation (grant 11.G34.31.0018). NR 33 TC 17 Z9 17 U1 4 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD JUL PY 2014 VL 13 IS 7 BP 3241 EP 3248 DI 10.1021/pr401300m PG 8 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AK8QP UT WOS:000338693400011 PM 24874765 ER PT J AU Aryal, UK Callister, SJ McMahon, BH McCue, LA Brown, J Stockel, J Liberton, M Mishra, S Zhang, XH Nicora, CD Angel, TE Koppenaal, DW Smith, RD Pakrasi, HB Sherman, LA AF Aryal, Uma K. Callister, Stephen J. McMahon, Benjamin H. McCue, Lee-Ann Brown, Joseph Stoeckel, Jana Liberton, Michelle Mishra, Sujata Zhang, Xiaohui Nicora, Carrie D. Angel, Thomas E. Koppenaal, David W. Smith, Richard D. Pakrasi, Himadri B. Sherman, Louis A. TI Proteomic Profiles of Five Strains of Oxygenic Photosynthetic Cyanobacteria of the Genus Cyanothece SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Cyanobacteria; Cyanothece; orthologues; photosynthesis; N-2 fixation; H-2 production; proteome ID MULTIPLE SEQUENCE ALIGNMENT; LIGHT-DARK; ATCC 51142; PHOTOSYSTEM-I; GENOME; MASS; ATCC-51142; STRATEGY; CULTURES; SPECTRA AB Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the potential to provide insights on differences among Cyanothece strains. By applying Sequedex, an annotation-independent method for ascribing gene functions, we confirmed significant species-specific differences of functional genes in different Cyanothece strains, particularly in Cyanothece PCC7425. Using a shotgun proteomics approach based on prefractionation and tandem mass spectrometry, we detected similar to 28-48% of the theoretical Cyanothece proteome, depending on the strain. The expression of a total of 642 orthologous proteins was observed in all five Cyanothece strains. These shared orthologous proteins showed considerable correlations in their abundances across different Cyanothece strains. Functional classification indicated that the majority of proteins involved in central metabolic functions such as amino acid, carbohydrate, protein, and RNA metabolism, photosynthesis, respiration, and stress responses were observed to a greater extent in the core proteome, whereas proteins involved in membrane transport, iron acquisition, regulatory functions, flagellar motility, and chemotaxis were observed to a greater extent in the unique proteome. Considerable differences were evident across different Cyanothece strains. Notably, the analysis of Cyanothece PCC7425, which showed the highest number of unique proteins (682), provided direct evidence of evolutionary differences in this strain. We conclude that Cyanothece PCC7425 diverged significantly from the other Cyanothece strains or evolved from a different lineage. C1 [Aryal, Uma K.; Callister, Stephen J.; McCue, Lee-Ann; Brown, Joseph; Nicora, Carrie D.; Angel, Thomas E.; Koppenaal, David W.; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [McMahon, Benjamin H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Stoeckel, Jana; Liberton, Michelle; Pakrasi, Himadri B.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Mishra, Sujata; Zhang, Xiaohui; Sherman, Louis A.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Angel, Thomas E.] Kinemed Inc, Emeryville, CA 94608 USA. [Stoeckel, Jana] MOgene Green Chem LC, St Louis, MO 63132 USA. RP Sherman, LA (reprint author), Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. EM lsherman@purdue.edu RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; McCue, Lee Ann/0000-0003-4456-517X FU DOE [DE-AC05-76RL01830]; Pan-omics program; DOE Genomics GTL program [DE 09-19 PO 2905402N]; Office of Science (BER), U.S. Department of Energy FX This work was part of a Membrane Biology Scientific Grand Challenge (MBGC) project at the W.R. Wiley Environmental Molecular Science Laboratory (EMSL). The Environmental Molecular Sciences Laboratory is a U.S. Department of Energy (DOE) Office of Biological and Environmental Research national scientific user facility on the Pacific Northwest National Laboratory (PNNL) campus. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under contract DE-AC05-76RL01830. This work was supported in part by the Pan-omics program and a grant from the DOE Genomics GTL program (DE 09-19 PO 2905402N) and by funding from the Office of Science (BER), U.S. Department of Energy to Drs. Pakrasi and Sherman. NR 45 TC 4 Z9 5 U1 3 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD JUL PY 2014 VL 13 IS 7 BP 3262 EP 3276 DI 10.1021/pr5000889 PG 15 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AK8QP UT WOS:000338693400013 PM 24846609 ER PT J AU Wu, GA Prochnik, S Jenkins, J Salse, J Hellsten, U Murat, F Perrier, X Ruiz, M Scalabrin, S Terol, J Takita, MA Labadie, K Poulain, J Couloux, A Jabbari, K Cattonaro, F Del Fabbro, C Pinosio, S Zuccolo, A Chapman, J Grimwood, J Tadeo, FR Estornell, LH Munoz-Sanz, JV Ibanez, V Herrero-Ortega, A Aleza, P Perez-Perez, J Ramon, D Brunel, D Luro, F Chen, CX Farmerie, WG Desany, B Kodira, C Mohiuddin, M Harkins, T Fredrikson, K Burns, P Lomsadze, A Borodovsky, M Reforgiato, G Freitas-Astua, J Quetier, F Navarro, L Roose, M Wincker, P Schmutz, J Morgante, M Machado, MA Talon, M Jaillon, O Ollitrault, P Gmitter, F Rokhsar, D AF Wu, G. Albert Prochnik, Simon Jenkins, Jerry Salse, Jerome Hellsten, Uffe Murat, Florent Perrier, Xavier Ruiz, Manuel Scalabrin, Simone Terol, Javier Takita, Marco Aurelio Labadie, Karine Poulain, Julie Couloux, Arnaud Jabbari, Kamel Cattonaro, Federica Del Fabbro, Cristian Pinosio, Sara Zuccolo, Andrea Chapman, Jarrod Grimwood, Jane Tadeo, Francisco R. Estornell, Leandro H. Munoz-Sanz, Juan V. Ibanez, Victoria Herrero-Ortega, Amparo Aleza, Pablo Perez-Perez, Julian Ramon, Daniel Brunel, Dominique Luro, Francois Chen, Chunxian Farmerie, William G. Desany, Brian Kodira, Chinnappa Mohiuddin, Mohammed Harkins, Tim Fredrikson, Karin Burns, Paul Lomsadze, Alexandre Borodovsky, Mark Reforgiato, Giuseppe Freitas-Astua, Juliana Quetier, Francis Navarro, Luis Roose, Mikeal Wincker, Patrick Schmutz, Jeremy Morgante, Michele Machado, Marcos Antonio Talon, Manuel Jaillon, Olivier Ollitrault, Patrick Gmitter, Frederick Rokhsar, Daniel TI Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication SO NATURE BIOTECHNOLOGY LA English DT Article ID SINENSIS L. OSBECK; HORT. EX TAN.; MOLECULAR MARKERS; ORIGIN; CLEMENTINA; RUTACEAE; ORGANIZATION; EVOLUTION; SSRS; MAP AB Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes-a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes- and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement. C1 [Wu, G. Albert; Prochnik, Simon; Hellsten, Uffe; Chapman, Jarrod; Rokhsar, Daniel] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Jenkins, Jerry; Grimwood, Jane; Schmutz, Jeremy] HudsonAlpha Biotechnol Inst, Huntsville, AL USA. [Salse, Jerome; Murat, Florent] UBA, INRA, UMR Genet Diversite Ecophysiol Cereales GDEC 1095, Clermont Ferrand, France. [Perrier, Xavier; Ruiz, Manuel; Ollitrault, Patrick] Ctr Cooperat Int Rech Agronom Dev CIRAD, UMR Arneliorat Genet & Adaptat Plantes Mediterran, Montpellier, France. [Scalabrin, Simone; Cattonaro, Federica; Del Fabbro, Cristian; Pinosio, Sara; Zuccolo, Andrea; Morgante, Michele] Ist Genom Applicata, Udine, Italy. [Terol, Javier; Tadeo, Francisco R.; Estornell, Leandro H.; Munoz-Sanz, Juan V.; Ibanez, Victoria; Herrero-Ortega, Amparo; Talon, Manuel] IVIA, Ctr Genom, Valencia, Spain. [Takita, Marco Aurelio; Freitas-Astua, Juliana; Machado, Marcos Antonio] Inst Agron IAC, Ctr Citricultura Sylvio Moreira, Cordeiropolis, Brazil. [Labadie, Karine; Poulain, Julie; Couloux, Arnaud; Jabbari, Kamel; Brunel, Dominique; Quetier, Francis; Wincker, Patrick; Jaillon, Olivier] Genoscope, CEA, IG, Evry, France. [Zuccolo, Andrea] Scuola Super Sant Anna, Inst Life Sci, Pisa, Italy. [Aleza, Pablo; Navarro, Luis] Inst Valenciano Invest Agr, Ctr Protecc Vegetal & Biotecnol, E-46113 Moncada, Spain. [Perez-Perez, Julian; Ramon, Daniel] Lifesequencing, Valencia, Spain. [Perez-Perez, Julian] Secugen, Madrid, Spain. [Brunel, Dominique] INRA, US Etude Polymorphisme Genomes Vegetaux EPGV 1279, Evry, France. [Luro, Francois] INRA Genete & Ecophysiol Qualite Agrumes GEQA, San Giuliano, France. [Chen, Chunxian; Gmitter, Frederick] Univ Florida, CREC, IFAS, Lake Alfred, FL USA. [Farmerie, William G.] Univ Florida, Interdisciplinary Ctr Biotechnol Res, Gainesville, FL USA. [Desany, Brian; Kodira, Chinnappa; Mohiuddin, Mohammed; Harkins, Tim; Fredrikson, Karin] Roche, Life Sci 454, Branford, CT USA. [Burns, Paul; Lomsadze, Alexandre; Borodovsky, Mark] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. [Burns, Paul; Lomsadze, Alexandre; Borodovsky, Mark] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA. [Borodovsky, Mark] Moscow Inst Phys & Technol, Dept Biol & Med Phys, Dolgoprudnyi, Russia. [Reforgiato, Giuseppe] Consiglio Ric & Sperimentaz Agr CRA ACM, Acireale, Italy. [Freitas-Astua, Juliana] Embrapa Cassava & Fruits, Cruz Das Almas, Brazil. [Quetier, Francis; Wincker, Patrick; Jaillon, Olivier] Univ Evry, Dept Biol, Evry, France. [Roose, Mikeal] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA. [Wincker, Patrick; Jaillon, Olivier] CNRS, Evry, France. [Morgante, Michele] Univ Udine, Dept Agr & Environm Sci, I-33100 Udine, Italy. [Rokhsar, Daniel] Univ Calif Berkeley, Div Genet Genom & Dev, Berkeley, CA 94720 USA. RP Rokhsar, D (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. EM fgmitter@ufl.edu; dsrokhsar@gmail.com RI Del Fabbro, Cristian/C-5523-2014; Navarro, Luis/D-1001-2012; Aleza, Pablo/M-3710-2014; Tadeo, Francisco/C-8977-2014; Terol, Javier/H-6401-2013; Talon, Manuel/C-8540-2014; Freitas-Astua, Juliana/C-5833-2013 OI Del Fabbro, Cristian/0000-0001-8189-6192; Navarro, Luis/0000-0001-5163-5960; MUNOZ-SANZ, JUAN VICENTE/0000-0002-6752-7398; Aleza, Pablo/0000-0002-8936-1448; Tadeo, Francisco/0000-0002-5839-4255; Terol, Javier/0000-0003-3345-0078; Talon, Manuel/0000-0003-4291-9333; Freitas-Astua, Juliana/0000-0002-0506-6880 FU National Science and Technology Institute of Genomics for Citrus Breeding, Brazil [FAPESP 08/57909-2, CNPq 573848/08-4]; Brazilian Agricultural Research Corporation (Embrapa); Embrapa-Monsanto Agreement; Agence Nationale de la Recherche (ANR) [CITRUSSEQ PCS-08-GENO]; program ANR Blanc-PAGE [ANR-2011-BSV6-00801]; US National Institutes of Health [HG00783]; Generalitat Valenciana, Spain [PrometeoII/2013/008]; Ministry of Economy and Innovation-Fondo Europeo de Desarrollo Regional (FEDER), Spain [AGL2011-26490]; Conselleria de Agricultura, Pesca, Alimentacion y Agua from the Generalitat Valenciana; Ministerio de Economia e Innovacion [PSE-060000-2009-8, IPT-010000-2010-43]; Citruseq-Citrusgenn consortium company (Anecoop S. Coop., Eurosemillas S.A.); Citruseq-Citrusgenn consortium company (Fundacion Ruralcaja Valencia); Citruseq-Citrusgenn consortium company (GCM Variedades Vegetales A.I.E.); Citruseq-Citrusgenn consortium company ( Investigacion Citricola Castellon S.A.); Citruseq-Citrusgenn consortium company (Source Citrus Genesis-Special New Fruit Licensing, Ltd.); Florida Citrus Production Research Advisory Council (FCPRAC); Florida Department of Agriculture and Consumer Services [013646]; Florida Department of Citrus (FDOC); Citrus Research and Development Foundation [71]; Ministero delle Politiche Agricole Alimentari e Forestali, Project Citrustart; Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Programma Operativo Nazionale 'Ricerca e Competitivita', Project IT-Citrus Genomics [PON_01623]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge the following support: National Science and Technology Institute of Genomics for Citrus Breeding, Brazil, grants FAPESP 08/57909-2 and CNPq 573848/08-4, and Brazilian Agricultural Research Corporation (Embrapa) (M. A. T. and M. A. M.) and Embrapa-Monsanto Agreement (J.F.-A.); Agence Nationale de la Recherche (ANR) grant CITRUSSEQ PCS-08-GENO (O.J., X. P., M. Ruiz, P.O., F. L., D. B. and K.J.) and program ANR Blanc-PAGE, ref. ANR-2011-BSV6-00801 (J. Salse and F. M.); US National Institutes of Health grant HG00783 (M. B., P. B. and A. L.); Generalitat Valenciana, Spain grant PrometeoII/2013/008 and Ministry of Economy and Innovation-Fondo Europeo de Desarrollo Regional (FEDER), Spain, grant AGL2011-26490 (P. A. and L.N.); Conselleria de Agricultura, Pesca, Alimentacion y Agua from the Generalitat Valenciana (J. P.-P. and D. Ramon); Ministerio de Economia e Innovacion grants PSE-060000-2009-8 and IPT-010000-2010-43 and Citruseq-Citrusgenn consortium companies (Anecoop S. Coop., Eurosemillas S.A., Fundacion Ruralcaja Valencia, GCM Variedades Vegetales A.I.E., Investigacion Citricola Castellon S.A. and Source Citrus Genesis-Special New Fruit Licensing, Ltd.) (J. T., F. R. T., L. H. E., J.V.M.-S., V. I., A.H.-O. and M. T.); Florida Citrus Production Research Advisory Council (FCPRAC), Florida Department of Agriculture and Consumer Services grant no. 013646, Florida Department of Citrus (FDOC) and Citrus Research and Development Foundation grant no. 71, on behalf of the Florida citrus growers (F. G., C. C. and W. G. F.); Ministero delle Politiche Agricole Alimentari e Forestali, Project Citrustart and Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Programma Operativo Nazionale 'Ricerca e Competitivita' 2007-2013, Project IT-Citrus Genomics PON_01623 (M. Morgante, S. S., F. C., C. D. F., S. Pinozio and A.Z.). Pineapple Ridge sweet-orange sequencing was performed by 454 Life Sciences, a Roche company. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 37 TC 97 Z9 99 U1 10 U2 96 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 EI 1546-1696 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD JUL PY 2014 VL 32 IS 7 BP 656 EP + DI 10.1038/nbt.2906 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AK8VE UT WOS:000338705900031 PM 24908277 ER PT J AU Meinecke, J Doyle, HW Miniati, F Bell, AR Bingham, R Crowston, R Drake, RP Fatenejad, M Koenig, M Kuramitsu, Y Kuranz, CC Lamb, DQ Lee, D MacDonald, MJ Murphy, CD Park, HS Pelka, A Ravasio, A Sakawa, Y Schekochihin, AA Scopatz, A Tzeferacos, P Wan, WC Woolsey, NC Yurchak, R Reville, B Gregori, G AF Meinecke, J. Doyle, H. W. Miniati, F. Bell, A. R. Bingham, R. Crowston, R. Drake, R. P. Fatenejad, M. Koenig, M. Kuramitsu, Y. Kuranz, C. C. Lamb, D. Q. Lee, D. MacDonald, M. J. Murphy, C. D. Park, H-S. Pelka, A. Ravasio, A. Sakawa, Y. Schekochihin, A. A. Scopatz, A. Tzeferacos, P. Wan, W. C. Woolsey, N. C. Yurchak, R. Reville, B. Gregori, G. TI Turbulent amplification of magnetic fields in laboratory laser-produced shock waves SO NATURE PHYSICS LA English DT Article ID REMNANT CASSIOPEIA-A; SUPERNOVA REMNANT; PROPER MOTIONS; X-RAY; EMISSION; HYDRODYNAMICS; ACCELERATION; SIMULATION; EJECTA; SHELL AB X-ray(1-3) and radio(4-6) observations of the supernova remnant Cassiopeia A reveal the presence of magnetic fields about 100 times stronger than those in the surrounding interstellar medium. Field coincident with the outer shock probably arises through a nonlinear feedback process involving cosmic rays(2,7,8). The origin of the large magnetic field in the interior of the remnant is less clear but it is presumably stretched and amplified by turbulent motions. Turbulence may be generated by hydrodynamic instability at the contact discontinuity between the supernova ejecta and the circumstellar gas(9). However, optical observations of Cassiopeia A indicate that the ejecta are interacting with a highly inhomogeneous, dense circumstellar cloud bank formed before the supernova explosion(10-12). Herewe investigate the possibility that turbulent amplification is induced when the outer shock overtakes dense clumps in the ambient medium(13-15). We report laboratory experiments that indicate the magnetic field is amplified when the shock interacts with a plastic grid. We show that our experimental results can explain the observed synchrotron emission in the interior of the remnant. The experiment also provides a laboratory example of magnetic field amplification by turbulence in plasmas, a physical process thought to occur in many astrophysical phenomena. C1 [Meinecke, J.; Doyle, H. W.; Bell, A. R.; Fatenejad, M.; Schekochihin, A. A.; Tzeferacos, P.; Reville, B.; Gregori, G.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Miniati, F.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Bingham, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bingham, R.] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland. [Crowston, R.; Woolsey, N. C.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Drake, R. P.; Kuranz, C. C.; MacDonald, M. J.; Wan, W. C.] Univ Michigan, Ann Arbor, MI 48103 USA. [Fatenejad, M.; Lamb, D. Q.; Lee, D.; Scopatz, A.; Tzeferacos, P.; Gregori, G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Koenig, M.; Pelka, A.; Ravasio, A.; Yurchak, R.] Univ Paris 06, Ecole Polytech, CNRS CEA, Lab Utilisat Lasers Intenses,UMR7605, F-91128 Palaiseau, France. [Kuramitsu, Y.; Sakawa, Y.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Murphy, C. D.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH8 9YL, Midlothian, Scotland. [Park, H-S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Reville, B.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. RP Meinecke, J (reprint author), Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, England. EM jena.meinecke@physics.ox.ac.uk; g.gregori1@physics.ox.ac.uk RI Sakawa, Youichi/J-5707-2016; Drake, R Paul/I-9218-2012; OI Sakawa, Youichi/0000-0003-4165-1048; Drake, R Paul/0000-0002-5450-9844; MacDonald, Michael/0000-0002-6295-6978 FU European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC [256973, 247039]; LASERLAB-EUROPE [284464]; US Department of Energy [B591485]; USDOE [DE-NA0001840] FX We thank the Vulcan technical team at the Central Laser Facility of the Rutherford Appleton Laboratory for their support during the experiments; in particular, R. Clarke, M. Notley and R. Heathcote. A. R. B. acknowledges valuable discussions with H. Li (Los Alamos National Laboratory). The research leading to these results has received financial support from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreements no. 256973 and 247039, LASERLAB-EUROPE grant agreement No. 284464, the US Department of Energy under Contract No. B591485 to Lawrence Livermore National Laboratory, and FieldWork Proposal No. 57789 to Argonne National Laboratory. Partial support from the Science and Technology Facilities Council and the Engineering and Physical Sciences Research Council of the United Kingdom (Grant No. EP/G007187/1) is also acknowledged. The work of R. P. D., C. C. K., M. J. M. andW. C. W. was supported by the USDOE under grant DE-NA0001840. NR 30 TC 18 Z9 18 U1 1 U2 49 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD JUL PY 2014 VL 10 IS 7 BP 520 EP 524 DI 10.1038/NPHYS2978 PG 5 WC Physics, Multidisciplinary SC Physics GA AL0UT UT WOS:000338843100020 ER PT J AU Childs, KL Nandety, A Hirsch, CN Gongora-Castillo, E Schmutz, J Kaeppler, SM Casler, MD Buell, CR AF Childs, Kevin L. Nandety, Aruna Hirsch, Candice N. Gongora-Castillo, Elsa Schmutz, Jeremy Kaeppler, Shawn M. Casler, Michael D. Buell, C. Robin TI Generation of Transcript Assemblies and Identification of Single Nucleotide Polymorphisms from Seven Lowland and Upland Cultivars of Switchgrass SO PLANT GENOME LA English DT Article ID GENOME-WIDE ASSOCIATION; PANICUM-VIRGATUM L.; EXPRESSED SEQUENCE TAGS; NUCLEAR-DNA CONTENT; INFERRING PHYLOGENY; GENETIC DIVERSITY; RNA-SEQ; MAIZE; MARKERS; POPULATIONS AB Switchgrass is a North American perennial prairie species that has been used as a rangeland and forage crop and has recently been targeted as a potential biofuel feedstock species. Switchgrass, which occurs as tetraploid and octoploid forms, is classified into lowland or upland ecotypes that differ in growth phenotypes and adaptation to distinct habitats. Using RNA-sequencing (RNA-seq) reads derived from crown, young shoot, and leaf tissues, we generated sequence data from seven switchgrass cultivars, three lowland and four upland, to enable comparative analyses between switchgrass cultivars and to identify single nucleotide polymorphisms (SNPs) for use in breeding and genetic analysis. We also generated individual transcript assemblies for each of the cultivars. Transcript data indicate that subgenomes of octoploid switchgrass are not substantially different from subgenomes of tetraploids as expected for an autopolyploid origin of switchgrass octoploids. Using RNA-seq reads aligned to the switchgrass Release 0 AP13 reference genome, we identified 1,305,976 high-confidence SNPs. Of these SNPs, 438,464 were unique to lowland cultivars, but only 12,002 were found in all lowlands. Conversely, 723,678 SNPs were unique to upland cultivars, with only 34,665 observed in all uplands. Comparison of our high-confidence transcriptome-derived SNPs with SNPs previously identified in a genotyping-by-sequencing (GBS) study of an association panel revealed limited overlap between the two methods, highlighting the utility of transcriptome-based SNP discovery in augmenting genome diversity polymorphism datasets. The transcript and SNP data described here provide a useful resource for switchgrass gene annotation and marker-based analyses of the switchgrass genome. C1 [Childs, Kevin L.; Hirsch, Candice N.; Buell, C. Robin] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Childs, Kevin L.; Hirsch, Candice N.; Gongora-Castillo, Elsa; Buell, C. Robin] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Nandety, Aruna; Kaeppler, Shawn M.; Casler, Michael D.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Nandety, Aruna; Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Schmutz, Jeremy] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Casler, Michael D.] USDA ARS, US Dairy Forage Res Ctr, Madison, WI 53706 USA. RP Childs, KL (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM kchilds@plantbiology.msu.edu RI Childs, Kevin/C-9513-2014; Gongora, Elsa/R-8854-2016; OI Childs, Kevin/0000-0002-3680-062X; Gongora, Elsa/0000-0001-6327-6993; Kaeppler, Shawn/0000-0002-5964-1668 FU Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was funded by the Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 81 TC 1 Z9 1 U1 1 U2 30 PU CROP SCIENCE SOC AMER PI MADISON PA 677 S SEGOE ROAD, MADISON, WI 53711 USA SN 1940-3372 J9 PLANT GENOME-US JI Plant Genome PD JUL PY 2014 VL 7 IS 2 DI 10.3835/plantgenome2013.12.0041 PG 13 WC Plant Sciences; Genetics & Heredity SC Plant Sciences; Genetics & Heredity GA AL0RP UT WOS:000338834700006 ER PT J AU Cloet, IC Roberts, CD AF Cloet, Ian C. Roberts, Craig D. TI Explanation and prediction of observables using continuum strong QCD SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS LA English DT Review DE Confinement; Dynamical chiral symmetry breaking; Dyson-Schwinger equations; Hadron physics; In-hadron condensates; Parton distributions ID DYSON-SCHWINGER EQUATIONS; ELECTROMAGNETIC FORM-FACTORS; DEEP-INELASTIC-SCATTERING; CHIRAL-SYMMETRY-BREAKING; QUARK-DIQUARK MODEL; VIRTUAL COMPTON-SCATTERING; JONA-LASINIO MODEL; ANOMALOUS MAGNETIC-MOMENT; MONTE-CARLO CALCULATIONS; PION LOOP CONTRIBUTION AB The last five years have brought considerable progress in the study of the bound-state problem in continuum quantum field theory. We highlight a subset of that progress; viz., that made within the context of Dyson-Schwinger equation analyses of cold, sparse hadrons. Our focus is primarily on advances in the reliable computation, explanation and prediction of quantities that are truly measurable; but we also review aspects of a new paradigm that has condensates contained within hadrons, and explain that the asymptotic form of parton distribution amplitudes and functions are practically unreachable with terrestrial facilities. Given the pace of expansion in experiment and improvement in theory, it appears possible that the next five years will bring profound growth in our store of knowledge about hadrons and nuclei. (C) 2014 Elsevier B.V. All rights reserved. C1 [Cloet, Ian C.; Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Roberts, CD (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM cdroberts@anl.gov FU Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We acknowledge valuable input from A. Bashir, W. Bentz, S.J. Brodsky, L. Chang, C. Chen, B. El-Bennich, R. Gothe, R.J. Holt, Y.-x. Liu, V. Mokeev, M. Pitschmann, S.-x. Qin, H.L.L. Roberts, J. Segovia, S.M. Schmidt, R. Shrock, P.C. Tandy, A.W. Thomas, K.-I. Wang and D.J. Wilson. This work was supported by Department of Energy, Office of Nuclear Physics, contract no. DE-AC02-06CH11357. NR 499 TC 94 Z9 94 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0146-6410 EI 1873-2224 J9 PROG PART NUCL PHYS JI Prog. Part. Nucl. Phys. PD JUL PY 2014 VL 77 BP 1 EP 69 DI 10.1016/j.ppnp.2014.02.001 PG 69 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AK7KW UT WOS:000338608200001 ER PT J AU Roland, G Safarik, K Steinberg, P AF Roland, G. Safarik, K. Steinberg, P. TI Heavy-ion collisions at the LHC SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS LA English DT Review DE Heavy-ion collisions; Quark-gluon plasma; Quantum chromo-dynamics; LHC ID PB-PB COLLISIONS; QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; TRANSVERSE-MOMENTUM DEPENDENCE; CHARGED-PARTICLE PRODUCTION; COLOR GLASS CONDENSATE; LEAD-LEAD COLLISIONS; LEE-YANG ZEROS; ROOT-S(NN)=2.76 TEV; ANISOTROPIC FLOW AB A new era in the study of high-energy nuclear collisions began when the CERN Large Hadron Collider (LHC) provided the first collisions of lead nuclei in late 2010. In the first three years of operation the ALICE, ATLAS and CMS experiments each collected Pb-Pb data samples of more than 50 mu b(-1) at 3 root S-NN = 2.76 TeV, exceeding the previously studied collision energies by more than an order of magnitude. These data have provided new insights into the properties of QCD matter under extreme conditions, with extensive measurements of soft particle production and newly accessible hard probes of the hot and dense medium. In this review, we provide a comprehensive overview of the results obtained in heavy-ion collisions at the LHC so far, with particular emphasis on the complementary nature of the observations by the three experiments. In particular, the combination of ALICE's strengths at hadron identification, the strengths of ATLAS and CMS to make precise measurements of high pr probes, and the resourceful measurements of collective flow by all of the experiments have provided a rich and diverse dataset in only a few years. While the basic paradigm established at RHIC - that of a hot, dense medium that flows with a viscosity to shear-entropy ratio near the predicted lower bound, and which degrades the energy of probes, such as jets, heavy-flavours and J/psi - is confirmed at the LHC, the new data suggest many new avenues for extracting its properties in detail. (C) 2014 Elsevier B.V. All rights reserved. C1 [Roland, G.] MIT, Cambridge, MA 02139 USA. [Safarik, K.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Steinberg, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Safarik, K (reprint author), CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. EM Karel.Safarik@cern.ch NR 277 TC 8 Z9 8 U1 1 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0146-6410 EI 1873-2224 J9 PROG PART NUCL PHYS JI Prog. Part. Nucl. Phys. PD JUL PY 2014 VL 77 BP 70 EP 127 DI 10.1016/j.ppnp.2014.05.001 PG 58 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AK7KW UT WOS:000338608200002 ER PT J AU Rodney, SA Riess, AG Strolger, LG Dahlen, T Graur, O Casertano, S Dickinson, ME Ferguson, HC Garnavich, P Hayden, B Jha, SW Jones, DO Kirshner, RP Koekemoer, AM McCully, C Mobasher, B Patel, B Weiner, BJ Cenko, SB Clubb, KI Cooper, M Filippenko, AV Frederiksen, TF Hjorth, J Leibundgut, B Matheson, T Nayyeri, H Penner, K Trump, J Silverman, JM Vivian, U Bostroem, KA Challis, P Rajan, A Wolff, S Faber, SM Grogin, NA Kocevski, D AF Rodney, Steven A. Riess, Adam G. Strolger, Louis-Gregory Dahlen, Tomas Graur, Or Casertano, Stefano Dickinson, Mark E. Ferguson, Henry C. Garnavich, Peter Hayden, Brian Jha, Saurabh W. Jones, David O. Kirshner, Robert P. Koekemoer, Anton M. McCully, Curtis Mobasher, Bahram Patel, Brandon Weiner, Benjamin J. Cenko, S. Bradley Clubb, Kelsey I. Cooper, Michael Filippenko, Alexei V. Frederiksen, Teddy F. Hjorth, Jens Leibundgut, Bruno Matheson, Thomas Nayyeri, Hooshang Penner, Kyle Trump, Jonathan Silverman, Jeffrey M. Vivian, U. Bostroem, K. Azalee Challis, Peter Rajan, Abhijith Wolff, Schuyler Faber, S. M. Grogin, Norman A. Kocevski, Dale TI TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE SO ASTRONOMICAL JOURNAL LA English DT Article DE infrared: general; supernovae: general; surveys ID CORE-COLLAPSE SUPERNOVAE; DELAY-TIME DISTRIBUTION; ORIGINS DEEP SURVEY; DIGITAL SKY SURVEY; EXTRAGALACTIC LEGACY SURVEY; TELESCOPE ADVANCED CAMERA; GOODS-SOUTH FIELD; GAMMA-RAY BURSTS; II-P SUPERNOVAE; STAR-FORMATION AB dThe Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of -0.25 deg2 with -900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z 2.5. We classify -24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z =- 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only -3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is fp = 0.53st=sg.Zc6', consistent with a delay time distribution that follows a simple t-1 power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions-though further analysis and larger samples will be needed to examine that suggestion. Key words: infrared: general - supernovae: C1 [Rodney, Steven A.; Riess, Adam G.; Graur, Or; Jones, David O.; Wolff, Schuyler] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Riess, Adam G.; Strolger, Louis-Gregory; Dahlen, Tomas; Casertano, Stefano; Ferguson, Henry C.; Koekemoer, Anton M.; Bostroem, K. Azalee; Grogin, Norman A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Graur, Or] Tel Aviv Univ, Dept Astrophys, IL-69978 Tel Aviv, Israel. [Graur, Or] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Dickinson, Mark E.; Matheson, Thomas] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Garnavich, Peter] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Hayden, Brian] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Jha, Saurabh W.; McCully, Curtis; Patel, Brandon] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kirshner, Robert P.; Challis, Peter] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Mobasher, Bahram; Nayyeri, Hooshang; Vivian, U.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Weiner, Benjamin J.; Penner, Kyle] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Cenko, S. Bradley] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Clubb, Kelsey I.; Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Cooper, Michael] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Frederiksen, Teddy F.; Hjorth, Jens] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Leibundgut, Bruno] European So Observ, Garching, Germany. [Leibundgut, Bruno] Tech Univ Munich, D-80290 Munich, Germany. [Trump, Jonathan] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Silverman, Jeffrey M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Rajan, Abhijith] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Faber, S. M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 92064 USA. [Kocevski, Dale] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Rodney, SA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RI Hjorth, Jens/M-5787-2014; OI Hjorth, Jens/0000-0002-4571-2306; Graur, Or/0000-0002-4391-6137; Koekemoer, Anton/0000-0002-6610-2048 NR 117 TC 28 Z9 28 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUL PY 2014 VL 148 IS 1 AR 13 DI 10.1088/0004-6256/148/1/13 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK4PF UT WOS:000338405900013 ER PT J AU Schenck, DE Datta, A Burns, JO Skillman, S AF Schenck, David E. Datta, Abhirup Burns, Jack O. Skillman, Sam TI X-RAY OBSERVATIONS OF COMPLEX TEMPERATURE STRUCTURE IN THE COOL-CORE CLUSTER A85 SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (Abell 85); shock waves; X-rays: galaxies: clusters ID GALAXY CLUSTERS; XMM-NEWTON; RADIO RELICS; SHOCK-WAVES; CHANDRA OBSERVATIONS; RICH CLUSTER; COSMIC-RAYS; SIMULATIONS; ABELL-85; VIEW AB X-ray observations were used to examine the complex temperature structure of A85, a cool-core galaxy cluster. Temperature features can provide evidence of merging events which shock heat the intracluster gas. Temperature maps were made from both Chandra and XMM-Newton observations. The combination of a new, long-exposure XMM observation and an improved temperature map binning technique produced the highest fidelity temperature maps of A85 to date. Hot regions were detected near the subclusters to the south and southwest in both the Chandra and XMM temperature maps. The presence of these structures implies A85 is not relaxed. The hot regions may indicate the presence of shocks. The Mach numbers were estimated to be similar to 1.9 at the locations of the hot spots. Observational effects will tend to systematically reduce temperature jumps, so the measured Mach numbers are likely underestimated. Neither temperature map showed evidence for a shock in the vicinity of the presumed radio relic near the southwest subcluster. However, the presence of a weak shock cannot be ruled out. There was tension between the temperatures measured by the two instruments. C1 [Schenck, David E.; Datta, Abhirup; Burns, Jack O.] Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Skillman, Sam] SLAC, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. RP Schenck, DE (reprint author), Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. FU NSF [AST-1106437]; DOE Computational Science Graduate Fellowship [DE-FG02-97ER25308] FX The authors thank Eric Hallman, Maxim Markevitch, Alexey Vikhlinin, Scott Randall, Steve Allen, and Norbert Werner for taking the time to discuss data reduction and for general advice on interpretation. We also thank the referee for valuable input. This work was funded by NSF grant AST-1106437 to J.B. S.W.S. was partially supported by a DOE Computational Science Graduate Fellowship under grant No. DE-FG02-97ER25308. NR 39 TC 7 Z9 7 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUL PY 2014 VL 148 IS 1 AR 23 DI 10.1088/0004-6256/148/1/23 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK4PF UT WOS:000338405900023 ER PT J AU Li, YL Li, SY Zhang, TJ Li, TP AF Li, Yun-Long Li, Shi-Yu Zhang, Tong-Jie Li, Ti-Pei TI MODEL-INDEPENDENT DETERMINATION OF CURVATURE PARAMETER USING H(z) AND D-A (z) DATA PAIRS FROM BAO MEASUREMENTS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmological parameters; cosmology: observations ID EXPANSION RATE; GALAXIES; GROWTH; Z=0.57; SAMPLE AB We present a model-independent determination of the curvature parameter Omega(k) using the Hubble parameter H(z) and the angular diameter distance D-A(z) from recent baryon acoustic oscillation (BAO) measurements. Each H(z) and D-A(z) pair from a BAO measurement can constrain a curvature parameter. The accuracy of the curvature measurement improves with increased redshift of H(z) and D-A(z) data. By using the H(z) and D-A(z) pair derived from a BAO Lyman a forest measurement at z = 2.36, the Omega(k) is confined to be -0.05 +/- 0.06, which is consistent with the curvature of -0.037(-0.042) (+0.044) constrained by the nine year Wilkinson Microwave Anisotropy Probe data only. Considering future BAOmeasurements, at least one order of magnitude improvement of this curvature measurement can be expected. C1 [Li, Yun-Long; Li, Ti-Pei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Li, Shi-Yu; Zhang, Tong-Jie] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. [Zhang, Tong-Jie] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhang, Tong-Jie] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Zhang, Tong-Jie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Li, Ti-Pei] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Astrophys, Beijing 100049, Peoples R China. RP Li, YL (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM tjzhang@bnu.edu.cn OI Li, Yun-Long/0000-0003-3931-0084 FU National Science Foundation of China [11033003, 11173006]; Ministry of Science and Technology National Basic Science program (project 973) [2012CB821804] FX This work is supported by the National Science Foundation of China (grant No. 11033003), the National Science Foundation of China (grant No. 11173006), and the Ministry of Science and Technology National Basic Science program (project 973) under grant No. 2012CB821804. NR 22 TC 9 Z9 9 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 1 PY 2014 VL 789 IS 1 AR L15 DI 10.1088/2041-8205/789/1/L15 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK6UR UT WOS:000338563300015 ER PT J AU Zhang, XJ Li, H Li, ST Lin, DNC AF Zhang, Xiaojia Li, Hui Li, Shengtai Lin, Douglas N. C. TI RESONANCES OF MULTIPLE EXOPLANETS AND IMPLICATIONS FOR THEIR FORMATION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planet-disk interactions; planetary systems; protoplanetary disks ID MEAN MOTION RESONANCES; I PLANETARY MIGRATION; ORBITAL RESONANCES; TORQUE FORMULA; SUPER-EARTHS; SYSTEMS; DISK; PROTOPLANETS; DYNAMICS; CANDIDATES AB Among similar to 160 of the multiple exoplanetary systems confirmed, about 30% of them have neighboring pairs with a period ratio <= 2. A significant fraction of these pairs are around mean motion resonance (MMR), and, more interestingly, peak around 2:1 and 3:2, with a clear absence of more closely packed MMRs with period ratios less than 4: 3, regardless of planet masses. Here, we report numerical simulations demonstrating that such MMR behavior places important constraints on the disk evolution stage out of which the observed planets formed. Multiple massive planets (with mass >= 0.8 M-Jup) tend to end up with a 2:1 MMR mostly independent of the disk masses, but low-mass planets (with mass <= 30 M-circle plus) can have MMRs larger than 4:3 only when the disk mass is quite small, suggesting that the observed dynamical architecture of most low-mass-planet pairs was established late in the disk evolution stage, just before it was dispersed completely. C1 [Zhang, Xiaojia; Lin, Douglas N. C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Li, Hui; Li, Shengtai] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lin, Douglas N. C.] Tsinghua Univ, Inst Adv Studies, Beijing 100084, Peoples R China. RP Zhang, XJ (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM xzhang47@ucsc.edu OI Zhang, Xiaojia/0000-0002-6612-5127; Li, Shengtai/0000-0002-4142-3080 FU LDRD program; IGPP of Los Alamos National Laboratory; UC-fee program of University of California FX We thank the referee, Frederic Rasio, for helpful comments that improved the manuscript. We acknowledge support from the LDRD program and IGPP of Los Alamos National Laboratory. H.L. and D.N.C.L. also acknowledge support from the UC-fee program of University of California. Simulations were carried out using the Institutional Computing resources at LANL. NR 40 TC 8 Z9 8 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 1 PY 2014 VL 789 IS 1 AR L23 DI 10.1088/2041-8205/789/1/L23 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK6UR UT WOS:000338563300023 ER PT J AU Hoover, AN Tumuluru, JS Teymouri, F Moore, J Gresham, G AF Hoover, Amber N. Tumuluru, Jaya Shankar Teymouri, Farzaneh Moore, Janette Gresham, Garold TI Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover SO BIORESOURCE TECHNOLOGY LA English DT Article DE Pelletization; Densification; Ammonia fiber expansion (AFEX); Corn stover; Enzymatic hydrolysis ID ENZYMATIC-HYDROLYSIS; BIOMASS DENSIFICATION; RICE STRAW; BIOFUELS; QUALITY; AFEX AB Pelletization process variables, including grind size (4, 6 mm), die speed (40, 50, 60 Hz), and preheating (none, 70 degrees C), were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also, the durability of the pelletized AFEX corn stover was >97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating or a larger grind size (6 mm) had similar or lower sugar yields. Pellets generated with 4 mm AFEX-treated corn stover, a 60 Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions. (C) 2014 Battelle Energy Alliance, LLC, contract manager for Idaho National Laboratory. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). C1 [Hoover, Amber N.; Tumuluru, Jaya Shankar; Gresham, Garold] Idaho Natl Lab, Biofuels & Renewable Energy Technol, Idaho Falls, ID 83415 USA. [Teymouri, Farzaneh; Moore, Janette] MBI Int, Lansing, MI 48910 USA. RP Hoover, AN (reprint author), Idaho Natl Lab, ESL IF 685,MS 3570,1765 N Yellowstone Hwy, Idaho Falls, ID 83401 USA. EM amber.hoover@inl.gov; jayashankar.tumuluru@inl.gov; teymouri@mbi.org; moore@mbi.org; garold.gresham@inl.gov RI Hoover, Amber/B-8373-2017 OI Hoover, Amber/0000-0001-8584-3995 FU US Department of Energy under Department of Energy Idaho Operations Office [DE-AC07-05ID14517] FX The authors would like to thank Chandra Nielson and Josh Videto from MBI for performing the AFEX pretreatment and the following INL colleagues for their assistance: Ian Bonner, Cynthia Breckenridge, Debra Bruhn, Karen Delezene-Briggs, Craig Conner, Rachel Emerson, Jeffrey Lacey, Sabrina Morgan, Manunya Phanphanich, Allison Ray, Tammy Trowbridge, and Neal Yancey. This research was supported by the US Department of Energy under Department of Energy Idaho Operations Office Contract No. DE-AC07-05ID14517. NR 35 TC 22 Z9 23 U1 2 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2014 VL 164 BP 128 EP 135 DI 10.1016/j.biortech.2014.02.005 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA AK8WX UT WOS:000338710500019 PM 24844167 ER PT J AU Sapi, A Thompson, C Wang, HL Michalak, WD Ralston, WT Alayoglu, S Somorjai, GA AF Sapi, Andras Thompson, Chris Wang, Hailiang Michalak, William D. Ralston, Walter T. Alayoglu, Selim Somorjai, Gabor A. TI Recovery of Pt Surfaces for Ethylene Hydrogenation-Based Active Site Determination SO CATALYSIS LETTERS LA English DT Article DE Heterogeneous catalysis; Ethylene hydrogenation; Platinum; Catalyst pretreatment ID SUM-FREQUENCY GENERATION; OXYGEN REDUCTION REACTION; SINGLE-CRYSTAL SURFACES; PLATINUM NANOPARTICLES; VIBRATIONAL SPECTROSCOPY; METHANOL OXIDATION; CATALYTIC-REACTIONS; IN-SITU; 7 NM; PT(111) AB The effect of pretreatment (O-2 or H-2) and catalyst history was investigated through room temperature ethylene hydrogenation reaction over several types of platinum based nanoparticle systems: 1.6 nm Pt/TTAB, 4.1 nm Pt/PVP (with and without UV treatment), 4.1 nm Pt with a silica shell, and e-beam evaporated Pt thin films were tested. The H-2 pretreatment resulted in the absence of activity. However, Pt active sites for the ethylene hydrogenation reaction were recovered after an O-2 pretreatment irrespective of the catalyst history, regardless of the particle size nor the presence, absence or type of capping agent. The calculation of the average TOF resulted in 10.13 +/- A 3.27. This value correlates well with data from the literature. Thus, the ethylene hydrogenation reaction can be used to determine available sites of Pt catalysts if the reaction is following an O-2 pretreatment. . C1 [Sapi, Andras; Thompson, Chris; Wang, Hailiang; Michalak, William D.; Ralston, Walter T.; Alayoglu, Selim; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Sapi, Andras; Thompson, Chris; Wang, Hailiang; Michalak, William D.; Ralston, Walter T.; Alayoglu, Selim; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Sapi, Andras; Thompson, Chris; Wang, Hailiang; Michalak, William D.; Ralston, Walter T.; Alayoglu, Selim; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Sapi, Andras/G-3527-2015 OI Sapi, Andras/0000-0001-6557-0731 FU Office of Basic Energy Sciences, Material Sciences and Engineering Division U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported the Director, Office of Basic Energy Sciences, Material Sciences and Engineering Division U.S. Department of Energy, under Contract DE-AC02-05CH11231. NR 31 TC 4 Z9 4 U1 2 U2 41 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD JUL PY 2014 VL 144 IS 7 BP 1151 EP 1158 DI 10.1007/s10562-014-1272-y PG 8 WC Chemistry, Physical SC Chemistry GA AK8CA UT WOS:000338653600007 ER PT J AU Moeller, SL Parvaz, MA Shumay, E Wu, SLN Beebe-Wang, N Konova, AB Misyrlis, M Alia-Klein, N Goldstein, RZ AF Moeller, Scott. L. Parvaz, Muhammad A. Shumay, Elena Wu, Salina Beebe-Wang, Nicasia Konova, Anna B. Misyrlis, Michail Alia-Klein, Nelly Goldstein, Rita Z. TI Monoamine polygenic liability in health and cocaine dependence: Imaging genetics study of aversive processing and associations with depression symptomatology SO DRUG AND ALCOHOL DEPENDENCE LA English DT Article DE Cocaine addiction; Imaging genetics; Depression; comorbidity; 5-HTTLPR; MAOA; Event-related potentials ID SEROTONIN TRANSPORTER GENE; TRYPTOPHAN DEPLETION; NEURAL RESPONSES; BIASED ATTENTION; PROMOTER REGION; POPULATION STRATIFICATION; 5-HTTLPR POLYMORPHISM; MOTIVATED ATTENTION; EMOTION REGULATION; PREFRONTAL CORTEX AB Background: Gene polymorphisms that affect serotonin signaling modulate reactivity to salient stimuli and risk for emotional disturbances. Here, we hypothesized that these serotonin genes, which have been primarily explored in depressive disorders, could also have important implications for drug addiction, with the potential to reveal important insights into drug symptomatology, severity, and/or possible sequelae such as dysphoria. Methods: Using an imaging genetics approach, the current study tested in 62 cocaine abusers and 57 healthy controls the separate and combined effects of variations in the serotonin transporter (5-HTTLPR) and monoamine oxidase A (MAOA) genes on processing of aversive information. Reactivity to standardized unpleasant images was indexed by a psychophysiological marker of stimulus salience (i.e., the late positive potential (LPP) component of the event-related potential) during passive picture viewing. Depressive symptomatology was assessed with the Beck Depression Inventory (BDI). Results: Results showed that, independent of diagnosis, the highest unpleasant LPPs emerged in individuals with MAOA-Low and at least one 'Short' allele of 5-HTTLPR. Uniquely in the cocaine participants with these two risk variants, higher unpleasant LPPs correlated with higher BDI scores. Conclusions: Taken together, these results suggest that a multilocus genetic composite of monoamine signaling relates to depression symptomatology through brain function associated with the experience of negative emotions. This research lays the groundwork for future studies that can investigate clinical outcomes and/or pharmacogenetic therapies in drug addiction and potentially other psychopathologies of emotion dysregulation. (C) 2014 Elsevier Ireland Ltd. All rights reserved. C1 [Moeller, Scott. L.; Parvaz, Muhammad A.; Konova, Anna B.; Misyrlis, Michail; Alia-Klein, Nelly; Goldstein, Rita Z.] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY 10029 USA. [Moeller, Scott. L.; Parvaz, Muhammad A.; Konova, Anna B.; Misyrlis, Michail; Alia-Klein, Nelly; Goldstein, Rita Z.] Icahn Sch Med Mt Sinai, Dept Neurosci, New York, NY 10029 USA. [Shumay, Elena; Wu, Salina; Beebe-Wang, Nicasia] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Konova, Anna B.] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA. [Misyrlis, Michail] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA. RP Goldstein, RZ (reprint author), One Gustave L Levy Pl,Box 1230, New York, NY 10029 USA. EM rita.goldstein@mssm.edu RI Moeller, Scott/L-5549-2016; OI Moeller, Scott/0000-0002-4449-0844; Parvaz, Muhammad/0000-0002-2671-2327 FU National Institute on Drug Abuse [1R01DA023579, 1F32DA030017-01, 1F32DA033088-01] FX This study was supported by grants from the National Institute on Drug Abuse: 1R01DA023579 (RZG), 1F32DA030017-01 (SJM), and 1F32DA033088-01 (MAP). NIDA had no further role in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication. NR 75 TC 2 Z9 2 U1 0 U2 8 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0376-8716 EI 1879-0046 J9 DRUG ALCOHOL DEPEN JI Drug Alcohol Depend. PD JUL 1 PY 2014 VL 140 BP 17 EP 24 DI 10.1016/j.drugalcdep.2014.04.019 PG 8 WC Substance Abuse; Psychiatry SC Substance Abuse; Psychiatry GA AK7PD UT WOS:000338619300003 PM 24837582 ER PT J AU Dale, BE Anderson, JE Brown, RC Csonka, S Dale, VH Herwick, G Jackson, RD Jordan, N Kaffka, S Kline, KL Lynd, LR Malmstrom, C Ong, RG Richard, TL Taylor, C Wang, MQ AF Dale, Bruce E. Anderson, James E. Brown, Robert C. Csonka, Steven Dale, Virginia H. Herwick, Gary Jackson, Randall D. Jordan, Nicholas Kaffka, Stephen Kline, Keith L. Lynd, Lee R. Malmstrom, Carolyn Ong, Rebecca G. Richard, Tom L. Taylor, Caroline Wang, Michael Q. TI Take a Closer Look: Biofuels Can Support Environmental, Economic and Social Goals SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Editorial Material ID ENERGY C1 [Dale, Bruce E.; Malmstrom, Carolyn; Ong, Rebecca G.] Michigan State Univ, E Lansing, MI 48824 USA. [Dale, Bruce E.; Jackson, Randall D.; Ong, Rebecca G.] Great Lakes Bioenergy Res Ctr, Madison, WI 53703 USA. [Anderson, James E.] Ford Motor Co, Dearborn, MI 48126 USA. [Brown, Robert C.] Iowa State Univ, Ames, IA 50011 USA. [Csonka, Steven] Commercial Aviat Alternat Fuels Initiat, Lebanon, OH 45036 USA. [Dale, Virginia H.; Kline, Keith L.] Oak Ridge Natl Lab, Oak Ridge, TN 37849 USA. [Herwick, Gary] Transportat Fuels Consulting, Milford, MI 48380 USA. [Jackson, Randall D.] Univ Wisconsin, Madison, WI 53706 USA. [Jordan, Nicholas] Univ Minnesota, Minneapolis, MN 55455 USA. [Kaffka, Stephen] Univ Calif Davis, Davis, CA 95616 USA. [Lynd, Lee R.] Dartmouth Coll, Hanover, NH 03755 USA. [Richard, Tom L.] Penn State Univ, State Coll, PA 16801 USA. [Taylor, Caroline] Energy Biosci Inst, Berkeley, CA 94704 USA. [Wang, Michael Q.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Dale, BE (reprint author), Michigan State Univ, E Lansing, MI 48824 USA. EM bdale@egr.msu.edu OI Kline, Keith/0000-0003-2294-1170; Ong, Rebecca/0000-0001-5020-646X NR 11 TC 22 Z9 23 U1 5 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2014 VL 48 IS 13 BP 7200 EP 7203 DI 10.1021/es5025433 PG 4 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AK5TG UT WOS:000338488700002 PM 24934084 ER PT J AU Molins, S Trebotich, D Yang, L Ajo-Franklin, JB Ligocki, TJ Shen, CP Steefel, CI AF Molins, Sergi Trebotich, David Yang, Li Ajo-Franklin, Jonathan B. Ligocki, Terry J. Shen, Chaopeng Steefel, Carl I. TI Pore-Scale Controls on Calcite Dissolution Rates from Flow-through Laboratory and Numerical Experiments SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CARBONATE PRECIPITATION; REACTIVE TRANSPORT; KINETICS; CO2 AB A combination of experimental, imaging, and modeling techniques were applied to investigate the pore-scale transport and surface reaction controls on calcite dissolution under elevated pCO(2) conditions. The laboratory experiment consisted of the injection of a solution at 4 bar pCO(2) into a capillary tube packed with crushed calcite. A high resolution pore-scale numerical model was used to simulate the experiment based on a computational domain consisting of reactive calcite, pore space, and the capillary wall constructed from volumetric X-ray microtomography images. Simulated pore-scale effluent concentrations were higher than those measured by a factor of 1.8, with the largest component of the discrepancy related to uncertainties in the reaction rate model and its parameters. However, part of the discrepancy was apparently due to mass transport limitations to reactive surfaces, which were most pronounced near the inlet where larger diffusive boundary layers formed around grains and in slow-flowing pore spaces that exchanged mass by diffusion with fast flow paths. Although minor, the difference between pore- and continuum-scale results due to transport controls was discernible with the highly accurate methods employed and is expected to be more significant where heterogeneity is greater, as in natural subsurface materials. C1 [Molins, Sergi; Yang, Li; Ajo-Franklin, Jonathan B.; Steefel, Carl I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Trebotich, David; Ligocki, Terry J.; Shen, Chaopeng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Molins, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM smolins@lbl.gov RI Molins, Sergi/A-9097-2012; Steefel, Carl/B-7758-2010; YANG, LI/F-9392-2010; Ajo-Franklin, Jonathan/G-7169-2015; OI Molins, Sergi/0000-0001-7675-3218; Ajo-Franklin, Jonathan/0000-0002-6666-4702; Shen, Chaopeng/0000-0002-0685-1901 FU Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and the Office of Advanced Scientific Computing Research [DE-AC02-05CH11231]; U.S. DOE Office of Science [DE-AC02-05CH11231]; U.S. DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231] FX This material is based upon work supported as part of the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and the Office of Advanced Scientific Computing Research (D.T., T.L., and C.S.), under contract number DE-AC02-05CH11231. This research also used resources of the National Energy Research Scientific Computing Center, supported by the U.S. DOE Office of Science (DE-AC02-05CH11231). XCMT imaging was performed with the assistance of Alastair MacDowell and Dula Parkinson at the Advanced Light Source, Beamline 8.3.2, supported by the U.S. DOE Office of Science, Office of Basic Energy Sciences (DE-AC02-05CH11231). The work presented in this manuscript has greatly benefitted from discussion of the results with members of the Center. NR 36 TC 24 Z9 25 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2014 VL 48 IS 13 BP 7453 EP 7460 DI 10.1021/es5013438 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AK5TG UT WOS:000338488700033 PM 24865463 ER PT J AU Gaspar, FW Castorina, R Maddalena, RL Nishioka, MG McKone, TE Bradman, A AF Gaspar, Fraser W. Castorina, Rosemary Maddalena, Randy L. Nishioka, Marcia G. McKone, Thomas E. Bradman, Asa TI Phthalate Exposure and Risk Assessment in California Child Care Facilities SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID EXPERT PANEL REPORT; ENDOCRINE-DISRUPTING COMPOUNDS; IN-HOUSE DUST; DI(2-ETHYLHEXYL) PHTHALATE; DEVELOPMENTAL TOXICITY; HUMAN-REPRODUCTION; INDOOR AIR; NTP CENTER; PRESCHOOL-CHILDREN; DANISH CHILDREN AB Approximately 13 million U.S. children less than 6 years old spend some time in early childhood education (ECE) facilities where they may be exposed to potentially harmful chemicals during critical periods of development. We measured five phthalate esters in indoor dust (n = 39) and indoor and outdoor air (n = 40 and 14, respectively) at ECE facilities in Northern California. Dust and airborne concentrations were used to perform a probabilistic health risk assessment to compare estimated exposures with risk levels established for chemicals causing reproductive toxicity and cancer under California's Proposition 65. Di(2-ethylhexyl) phthalate (DEHP) and butyl benzyl phthalate (BBzP) were the dominant phthalates present in floor dust (medians = 172.2 and 46.8 mu g/g, respectively), and dibutyl phthalate (DBP), diethyl phthalate (DEP), and diisobutyl phthalate (DIBP) were the dominant phthalates in indoor air (medians = 0.52, 0.21, and 0.10 mu g/m(3), respectively). The risk assessment results indicate that 82-89% of children in California ECE had DBP exposure estimates exceeding reproductive health benchmarks. Further, 8-11% of children less than 2 years old had DEHP exposure estimates exceeding cancer benchmarks. This is the largest study to measure phthalate exposure in U.S. ECE facilities and findings indicate wide phthalate contamination and potential risk to developing children. C1 [Gaspar, Fraser W.; Castorina, Rosemary; McKone, Thomas E.; Bradman, Asa] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [Maddalena, Randy L.; McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nishioka, Marcia G.] Battelle Mem Inst, Columbus, OH 43201 USA. RP Bradman, A (reprint author), 1995 Univ Ave,Suite 265, Berkeley, CA 94704 USA. EM ABradman@berkeley.edu OI Gaspar, Fraser/0000-0002-0782-5721 FU California Air Resource Board [08305] FX We thank the ECE programs that participated in this study. We thank Dr. Martha Sandy of the Office of Environmental Health Hazard Assessment (OEHHA) for reviewing risk evaluation methods and approaches to incorporate age-specific sensitivity factors when evaluating OEHHA NSRLs and MADLs. We also thank Dr. William Nazaroff for advice on strategies to measure air exchange rates. We thank individuals at the Community Child Care Council of Alameda County and Monterey County Child Care Resource and Referral for help with participant recruitment. Finally, we thank the anonymous reviewers of this manuscript for their insightful comments. This research was supported by the California Air Resource Board, Agreement 08305. NR 74 TC 23 Z9 24 U1 5 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2014 VL 48 IS 13 BP 7593 EP 7601 DI 10.1021/es501189t PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AK5TG UT WOS:000338488700050 PM 24870214 ER PT J AU Elgowainy, A Han, J Cai, H Wang, M Forman, GS DiVita, VB AF Elgowainy, Amgad Han, Jeongwoo Cai, Hao Wang, Michael Forman, Grant S. DiVita, Vincent B. TI Energy Efficiency and Greenhouse Gas Emission Intensity of Petroleum Products at US Refineries SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article AB This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming. C1 [Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael] Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, Argonne, IL 60439 USA. [Forman, Grant S.] Sasol Synfuels Int, Houston, TX 77079 USA. [DiVita, Vincent B.] Jacobs Consultancy Inc, Houston, TX 77072 USA. RP Forman, GS (reprint author), Sasol Synfuels Int, 900 Threadneedle,Suite 100, Houston, TX 77079 USA. EM aelgowainy@anl.gov RI Cai, Hao/A-1975-2016 FU Bioenergy Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]; Vehicle Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX This research effort by Argonne National Laboratory was supported by the Bioenergy Technologies Office and the Vehicle Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy under Contract DE-AC02-06CH11357. NR 19 TC 22 Z9 22 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2014 VL 48 IS 13 BP 7612 EP 7624 DI 10.1021/es5010347 PG 13 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AK5TG UT WOS:000338488700052 PM 24869918 ER PT J AU Forman, GS Divita, VB Han, J Cai, H Elgowainy, A Wang, M AF Forman, Grant S. Divita, Vincent B. Han, Jeongwoo Cai, Hao Elgowainy, Amgad Wang, Michael TI US Refinery Efficiency: Impacts Analysis and Implications for Fuel Carbon Policy Implementation SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ENERGY AB In the next two decades, the U.S. refining industry will face significant changes resulting from a rapidly evolving domestic petroleum energy landscape. The rapid influx of domestically sourced tight light oil and relative demand shifts for gasoline and diesel will impose challenges on the ability of the U.S. refining industry to satisfy both demand and quality requirements. This study uses results from Linear Programming (LP) modeling data to examine the potential impacts of these changes on refinery, process unit, and product-specific efficiencies, focusing on current baseline efficiency values across 43 existing large U.S. refineries that are operating today. These results suggest that refinery and product-specific efficiency values are sensitive to crude quality, seasonal and regional factors, and refinery configuration and complexity, which are determined by final fuel specification requirements. Additional processing of domestically sourced tight light oil could marginally increase refinery efficiency, but these benefits could be offset by crude rebalancing. The dynamic relationship between efficiency and key parameters such as crude API gravity, sulfur content, heavy products, residual upgrading, and complexity are key to understanding possible future changes in refinery efficiency. Relative to gasoline, the efficiency of diesel production is highly variable, and is influenced by the number and severity of units required to produce diesel. To respond to future demand requirements, refiners will need to reduce the gasoline/diesel (G/D) production ratio, which will likely result in greater volumes of diesel being produced through less efficient pathways resulting in reduced efficiency, particularly on the marginal barrel of diesel. This decline in diesel efficiency could be offset by blending of Gas to Liquids (GTL) diesel, which could allow refiners to uplift intermediate fuel streams into more efficient diesel production pathways, thereby allowing for the efficient production of incremental barrels of diesel without added capital investment for the refiner. Given the current wide range of refinery carbon intensity values of baseline transportation fuels in LCA models, this study has shown that the determination of refinery, unit, and product efficiency values requires careful consideration in the context of specific transportation fuel GHG policy objectives. C1 [Forman, Grant S.] Sasol Synfuels Int, Houston, TX 77079 USA. [Divita, Vincent B.] Jacobs Consultancy Inc, Houston, TX 77072 USA. [Han, Jeongwoo; Cai, Hao; Elgowainy, Amgad; Wang, Michael] Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, Argonne, IL 60439 USA. RP Forman, GS (reprint author), Sasol Synfuels Int, 900 Threadneedle,Suite 100, Houston, TX 77079 USA. EM grant.forman@us.sasol.com RI Cai, Hao/A-1975-2016 FU Biomass Energy Technology Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]; Vehicle Technology Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX We gratefully acknowledge the support of Sasol Synfuels International and Jacobs Consultancy by providing data and giving permission to publish this manuscript. This research effort by Argonne National Laboratory was supported by the Biomass Energy Technology Office and the Vehicle Technology Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy under Contract DE-AC02-06CH11357. NR 34 TC 7 Z9 7 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2014 VL 48 IS 13 BP 7625 EP 7633 DI 10.1021/es501035a PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AK5TG UT WOS:000338488700053 PM 24870020 ER PT J AU Sun, RY Sonke, JE Heimburger, LE Belkin, HE Liu, GJ Shome, D Cukrowska, E Liousse, C Pokrovsky, OS Streets, DG AF Sun, Ruoyu Sonke, Jeroen E. Heimbuerger, Lars-Eric Belkin, Harvey E. Liu, Guijian Shome, Debasish Cukrowska, Ewa Liousse, Catherine Pokrovsky, Oleg S. Streets, David G. TI Mercury Stable Isotope Signatures of World Coal Deposits and Historical Coal Combustion Emissions SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MASS-INDEPENDENT FRACTIONATION; FIRED POWER-PLANTS; ATMOSPHERE; CHINA; HG AB Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7 parts per thousand range in delta Hg-202 (-3.9 to 0.8 parts per thousand) and a 1 parts per thousand range in Delta Hg-199 (-0.6 to 0.4 parts per thousand) are observed. Fourteen (p < 0.05) to 17 (p < 0.1) of the 28 pairwise comparisons between eight global regions are statistically distinguishable on the basis of delta Hg-202, Delta Hg-199 or both, highlighting the potential application of Hg isotope signatures to coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published delta Hg-202 observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean delta Hg-202 and Delta Hg-199 values for bulk coal emissions of -1.2 +/- 0.5 parts per thousand (1SD) and 0.05 +/- 0.06 parts per thousand (1SD). C1 [Sun, Ruoyu; Sonke, Jeroen E.; Heimbuerger, Lars-Eric; Pokrovsky, Oleg S.] Univ Toulouse, Observ Midi Pyrenees, Lab Geosci Environm Toulouse, CNRS,IRD, F-31400 Toulouse, France. [Sun, Ruoyu; Liu, Guijian] Univ Sci & Technol China, Sch Earth & Space Sci, CAS Key Lab Crust Mantle Mat & Environm, Hefei 230026, Anhui, Peoples R China. [Belkin, Harvey E.] US Geol Survey, Natl Ctr 956, Reston, VA 20192 USA. [Shome, Debasish] Jadavpur Univ, Dept Geol, Kolkata 700032, India. [Cukrowska, Ewa] Univ Witwatersrand, Sch Chem, Inst Mol Sci, ZA-2050 Johannesburg, South Africa. [Liousse, Catherine] Univ Toulouse, Observ Midi Pyrenees, Lab Aerol Toulouse, CNRS, F-31400 Toulouse, France. [Pokrovsky, Oleg S.] Tomsk State Univ, BIOGEOCLIM Lab, Tomsk 634050, Russia. [Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Sun, RY (reprint author), Univ Toulouse, Observ Midi Pyrenees, Lab Geosci Environm Toulouse, CNRS,IRD, 14 Ave Edouard Belin, F-31400 Toulouse, France. EM roysun1986@gmail.com; sonke@get.obs-mip.fr RI Liu, Guijian/M-9597-2014; 若愚, 孙/F-3823-2010; OI 若愚, 孙/0000-0001-7261-8377; Heimburger, Lars-Eric/0000-0003-0632-5183; Belkin, Harvey/0000-0001-7879-6529 FU French Agence Nationale de Recherche [ANR-09-JCJC-0035-01]; European Research Council [ERC-2010-StG_20091028]; Midi-Pyrenees Observatory BQR grant; Chinese Scholarship Council; Fundamental Research Funds for the Central Universities [WK2080000062]; National Basic Research Program of China (973 Program) [2014CB238903]; National Natural Science Foundation of China [41173032, 41373110]; Tomsk State University [14.B25.31.0001] FX This work is supported by research grants ANR-09-JCJC-0035-01 from the French Agence Nationale de Recherche and ERC-2010-StG_20091028 from the European Research Council to JES, and a Midi-Pyrenees Observatory BQR grant to CL and JES. RS thank Chinese Scholarship Council for his PhD scholarship and support by the Fundamental Research Funds for the Central Universities (WK2080000062). GL acknowledges support from the National Basic Research Program of China (973 Program, 2014CB238903) and the National Natural Science Foundation of China (No. 41173032 and 41373110). Partial support from grant No. 14.B25.31.0001 of Tomsk State University is also acknowledged. We thank Reshmi Das for help with coal from India, Andrey Bychkov and Boris Pokrovsky for some coal samples from the USSR, Clinton Scott for help with USGS coal samples and Jerome Chmeleff for maintaining the OMP Neptune. We thank Nicholas Geboy and three anonymous reviewers for thoughtful comments. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the United States government. NR 39 TC 26 Z9 31 U1 9 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2014 VL 48 IS 13 BP 7660 EP 7668 DI 10.1021/es501208a PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AK5TG UT WOS:000338488700057 PM 24905585 ER PT J AU Clausen, H Nudelman, E Hakomori, SI AF Clausen, Henrik Nudelman, Edward Hakomori, Sen-itiroh TI Obituary: Steven Bruce Levery (1949-2014) SO GLYCOCONJUGATE JOURNAL LA English DT Biographical-Item C1 [Clausen, Henrik; Nudelman, Edward] Univ Copenhagen, Dept Cellular & Mol Med, Copenhagen, Denmark. [Hakomori, Sen-itiroh] Univ Washington, Pacific Northwest Res Inst, Div Biomembrane Res, Seattle, WA 98195 USA. [Hakomori, Sen-itiroh] Univ Washington, Dept Pathobiol, Seattle, WA 98195 USA. [Hakomori, Sen-itiroh] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. RP Clausen, H (reprint author), Univ Copenhagen, Dept Cellular & Mol Med, Copenhagen, Denmark. EM hclau@sund.ku.dk; edward.nudelman@yahoo.com; hakomori@u.washington.edu NR 1 TC 0 Z9 0 U1 1 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0282-0080 EI 1573-4986 J9 GLYCOCONJUGATE J JI Glycoconjugate J. PD JUL PY 2014 VL 31 IS 5 BP 339 EP 340 DI 10.1007/s10719-014-9531-0 PG 2 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AK7XO UT WOS:000338641200002 PM 25105190 ER PT J AU Liu, ZK Jiang, J Zhou, B Wang, ZJ Zhang, Y Weng, HM Prabhakaran, D Mo, SK Peng, H Dudin, P Kim, T Hoesch, M Fang, Z Dai, X Shen, ZX Feng, DL Hussain, Z Chen, YL AF Liu, Z. K. Jiang, J. Zhou, B. Wang, Z. J. Zhang, Y. Weng, H. M. Prabhakaran, D. Mo, S-K. Peng, H. Dudin, P. Kim, T. Hoesch, M. Fang, Z. Dai, X. Shen, Z. X. Feng, D. L. Hussain, Z. Chen, Y. L. TI A stable three-dimensional topological Dirac semimetal Cd3As2 SO NATURE MATERIALS LA English DT Article ID INSULATORS; SUPERCONDUCTORS; PHASE AB Three-dimensional (3D) topological Dirac semimetals (TDSs) are a recently proposed state of quantum matter(1-6) that have attracted increasing attention in physics and materials science. A 3D TDS is not only a bulk analogue of graphene; it also exhibits non-trivial topology in its electronic structure that shares similarities with topological insulators. Moreover, a TDS can potentially be driven into other exotic phases (such as Weyl semimetals(1,7), axion insulators(1,4) and topological superconductors(8,9)), making it a unique parent compound for the study of these states and the phase transitions between them. Here, by performing angle-resolved photoemission spectroscopy, we directly observe a pair of 3D Dirac fermions in Cd3As2, proving that it is a model 3D TDS. Compared with other 3D TDSs, for example, beta-cristobalite BiO2 (ref. 3) and Na3Bi (refs 4,5), Cd3As2 is stable and has much higher Fermi velocities. Furthermore, by in situ doping we have been able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena. C1 [Liu, Z. K.; Zhang, Y.; Shen, Z. X.; Chen, Y. L.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Jiang, J.; Zhou, B.; Prabhakaran, D.; Peng, H.; Chen, Y. L.] Univ Oxford, Clarendon Lab, Phys Dept, Oxford OX1 3PU, England. [Jiang, J.; Feng, D. L.] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Jiang, J.; Feng, D. L.] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China. [Zhou, B.; Zhang, Y.; Mo, S-K.; Hussain, Z.; Chen, Y. L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wang, Z. J.; Weng, H. M.; Fang, Z.; Dai, X.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Wang, Z. J.; Weng, H. M.; Fang, Z.; Dai, X.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Dudin, P.; Kim, T.; Hoesch, M.; Chen, Y. L.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. RP Chen, YL (reprint author), Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM Yulin.Chen@physics.ox.ac.uk RI Zhang, Yi/J-9025-2013; Peng, Han/I-4944-2013; Weng, Hongming/F-2948-2011; Dai, Xi/C-4236-2008; Mo, Sung-Kwan/F-3489-2013; Wang, Zhijun/O-8015-2014; Fang, Zhong/D-4132-2009 OI Zhang, Yi/0000-0003-1204-8717; Weng, Hongming/0000-0001-8021-9413; Dai, Xi/0000-0003-0538-1829; Mo, Sung-Kwan/0000-0003-0711-8514; Wang, Zhijun/0000-0003-2169-8068; FU EPSRC (UK) [EP/K04074X/1]; DARPA (US) MESO project [N66001-11-1-4105]; Department of Energy, Office of Basic Energy Science [DE-AC02-76SF00515, DE-AC02-05CH11231]; NSF of China; National Basic Research Program of China; International Science and Technology Cooperation Program of China; National Basic Research Program of China [2012CB921402]; China Scholarship Council FX Y.L.C. and B.Z. acknowledge the support from the EPSRC (UK) grant EP/K04074X/1 and a DARPA (US) MESO project (no. N66001-11-1-4105). Z.K.L. and Z.X.S. acknowledge support from the Department of Energy, Office of Basic Energy Science (contract DE-AC02-76SF00515). The Advanced Light Source is operated by the Department of Energy, Office of Basic Energy Science (contract DE-AC02-05CH11231). Z.F., X.D. and H.M.W. acknowledge the support by the NSF of China, the National Basic Research Program of China, and the International Science and Technology Cooperation Program of China. J.J. and D.L.F. acknowledge the support by the NSF of China, the National Basic Research Program of China under grant no. 2012CB921402. J.J. acknowledges the support from the China Scholarship Council. NR 30 TC 266 Z9 268 U1 53 U2 370 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD JUL PY 2014 VL 13 IS 7 BP 677 EP 681 DI 10.1038/NMAT3990 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA AK5QY UT WOS:000338482300013 PM 24859642 ER PT J AU Mefford, JT Hardin, WG Dai, S Johnston, KP Stevenson, KJ AF Mefford, J. Tyler Hardin, William G. Dai, Sheng Johnston, Keith P. Stevenson, Keith J. TI Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes SO NATURE MATERIALS LA English DT Article ID ELECTROCHEMICAL ENERGY-STORAGE; REDUCTION ACTIVITY; ELECTROCATALYSTS; SUPERCAPACITORS; NANOPARTICLES; PRINCIPLES; BATTERIES; EVOLUTION; SURFACES; BEHAVIOR AB Perovskite oxides have attracted significant attention as energy conversion materials for metal-air battery and solid-oxide fuel-cell electrodes owing to their unique physical and electronic properties. Amongst these unique properties is the structural stability of the cation array in perovskites that can accommodate mobile oxygen ions under electrical polarization. Despite oxygen ion mobility and vacancies having been shown to play an important role in catalysis, their role in charge storage has yet to be explored. Herein we investigate the mechanism of oxygen-vacancy-mediated redox pseudocapacitance for a nanostructured lanthanum-based perovskite, LaMnO3. This is the first example of anion-based intercalation pseudocapacitance as well as the first time oxygen intercalation has been exploited for fast energy storage. Whereas previous pseudocapacitor and rechargeable battery charge storage studies have focused on cation intercalation, the anion-based mechanism presented here offers a new paradigm for electrochemical energy storage. C1 [Mefford, J. Tyler; Stevenson, Keith J.] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA. [Hardin, William G.; Johnston, Keith P.; Stevenson, Keith J.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Dai, Sheng] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. [Johnston, Keith P.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Johnston, Keith P.; Stevenson, Keith J.] Univ Texas Austin, Ctr Electrochem, Austin, TX 78712 USA. RP Johnston, KP (reprint author), Univ Texas Austin, Texas Mat Inst, 1 Univ Stn, Austin, TX 78712 USA. EM kpj@che.utexas.edu; stevenson@cm.utexas.edu RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU R. A. Welch Foundation [F-1529, F-1319]; Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - US Department of Energy, Office of Science; Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - US Department of Energy, Office of Basic Energy Sciences FX Financial support for this work was provided by the R. A. Welch Foundation (grants F-1529 and F-1319). S.D. was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences. NR 37 TC 72 Z9 73 U1 38 U2 313 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD JUL PY 2014 VL 13 IS 7 BP 726 EP 732 DI 10.1038/NMAT4000 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA AK5QY UT WOS:000338482300021 PM 24880729 ER PT J AU McAndrews, HJ Thomsen, MF Arridge, CS Jackman, CM Wilson, RJ Henderson, MG Tokar, RL Khurana, KK Sittler, EC Coates, AJ Dougherty, MK AF McAndrews, H. J. Thomsen, M. F. Arridge, C. S. Jackman, C. M. Wilson, R. J. Henderson, M. G. Tokar, R. L. Khurana, K. K. Sittler, E. C. Coates, A. J. Dougherty, M. K. TI Plasma in Saturn's nightside magnetosphere and the implications for global circulation (vol 57, pg 1714, 2009) SO PLANETARY AND SPACE SCIENCE LA English DT Correction C1 [Thomsen, M. F.; Tokar, R. L.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Arridge, C. S.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Arridge, C. S.; Coates, A. J.] UCL Birkbeck, Ctr Planetary Sci, London WC1E 6BT, England. [Jackman, C. M.] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Wilson, R. J.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Henderson, M. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Khurana, K. K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Sittler, E. C.] NASA, Heliophys Sci Div, Geospace Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, London SW7 2BW, England. RP Thomsen, MF (reprint author), Planetary Sci Inst, Tucson, AZ 85719 USA. EM mthomsen@psi.edu RI Wilson, Rob/C-2689-2009; Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; Henderson, Michael/A-3948-2011 OI Wilson, Rob/0000-0001-9276-2368; Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Henderson, Michael/0000-0003-4975-9029 NR 1 TC 4 Z9 4 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUL PY 2014 VL 97 BP 86 EP 87 DI 10.1016/j.pss.2014.05.011 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK7OS UT WOS:000338618200009 ER PT J AU Lin, F Montano, M Tian, CX Ji, YZ Nordlund, D Weng, TC Moore, RG Gillaspie, DT Jones, KM Dillon, AC Richards, RM Engtrakul, C AF Lin, Feng Montano, Manuel Tian, Chixia Ji, Yazhou Nordlund, Dennis Weng, Tsu-Chien Moore, Rob G. Gillaspie, Dane T. Jones, Kim M. Dillon, Anne C. Richards, Ryan M. Engtrakul, Chaiwat TI Electrochromic performance of nanocomposite nickel oxide counter electrodes containing lithium and zirconium SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article; Proceedings Paper CT 10th International Meeting on Electrochromism (IME) CY AUG 12-16, 2012 CL Holland, MI SP Sage Electrochrom, Pleotint LLC, Gentex Corp DE Nickel oxide; Nanocomposite; Oxidation state; Electrochromic; Li stoichiometry ID ULTRASONIC SPRAY DEPOSITION; RAY ABSORPTION-SPECTROSCOPY; THIN-FILMS; DEVICES; NI; WINDOWS; AL AB Nickel oxide materials are suitable for counter electrodes in complementary electrochromic devices. The state-of-the-art nickel oxide counter electrode materials are typically prepared with multiple additives to enhance peformance. Herein, nanocomposite nickel oxide counter electrodes were fabricated via RF magnetron co-sputtering from Ni-Zr alloy and Li2O ceramic targets. The as-deposited nanocomposite counter electrodes were characterized with inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). It was found that the stoichiometry, crystal structure and electronic structure of the nickel oxide-based materials could be readily tuned by varying the Li2O sputter deposition power level. Comprehensive electrochromic evaluation demonstrated that the performance of the nickel oxide-based materials was dependent on the overall Li stoichiometry. Overall, the nanocomposite nickel oxide counter electrode containing lithium and zirconium synthesized with a Li2O deposition power of 45 W exhibited the optimal performance with an optical modulation of 71% and coloration efficiency of 30 cm(2)/C at 670 nm in Li-ion electrolyte. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lin, Feng; Gillaspie, Dane T.; Jones, Kim M.; Dillon, Anne C.; Engtrakul, Chaiwat] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Lin, Feng; Ji, Yazhou; Richards, Ryan M.] Colorado Sch Mines, Mat Sci Program, Golden, CO 80401 USA. [Montano, Manuel; Tian, Chixia; Richards, Ryan M.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Nordlund, Dennis; Weng, Tsu-Chien] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Moore, Rob G.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. RP Engtrakul, C (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM chaiwat.engtrakul@nrel.gov RI Nordlund, Dennis/A-8902-2008; Richards, Ryan/B-3513-2008 OI Nordlund, Dennis/0000-0001-9524-6908; NR 26 TC 4 Z9 4 U1 2 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD JUL PY 2014 VL 126 SI SI BP 206 EP 212 DI 10.1016/j.solmat.2013.11.023 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AK4LB UT WOS:000338395100030 ER PT J AU Pehlivan, IB Marsal, R Pehlivan, E Runnerstrom, EL Milliron, DJ Granqvist, CG Niklasson, GA AF Pehlivan, Ilknur Bayrak Marsal, Roser Pehlivan, Esat Runnerstrom, Evan L. Milliron, Delia J. Granqvist, Claes G. Niklasson, Gunnar A. TI Electrochromic devices with polymer electrolytes functionalized by SiO2 and In2O3:Sn nanoparticles: Rapid coloring/bleaching dynamics and strong near-infrared absorption SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article; Proceedings Paper CT 10th International Meeting on Electrochromism (IME) CY AUG 12-16, 2012 CL Holland, MI SP Sage Electrochrom, Pleotint LLC, Gentex Corp DE Smart windows; Polymer electrolytes; Nanoparticles; Coloring/bleaching dynamics; Near-infrared absorption ID TUNGSTEN-OXIDE; OPTICAL-PROPERTIES; ION CONDUCTION; SMART WINDOWS; NICKEL-OXIDE; THIN-FILMS AB We studied the optical properties and coloring/bleaching dynamics of electrochromic devices based on tungsten oxide and nickel oxide and incorporating polymer electrolytes functionalized by adding about one percent of nanoparticles of SiO2 (fumed silica) or In2O3:Sn. SiO2 improved the coloring/bleaching dynamics and In2O3:Sn quenched the near-infrared transmittance. Both of these effects can be important in electrochromic smart windows, and our results point at the advantage of a polymer laminated construction over a monolithic one. (C) 2013 Elsevier B.V. All rights reserved. C1 [Pehlivan, Ilknur Bayrak; Granqvist, Claes G.; Niklasson, Gunnar A.] Uppsala Univ, Angstrom Lab, Dept Engn Sci, SE-75121 Uppsala, Sweden. [Marsal, Roser; Pehlivan, Esat] ChromoGenics AB, SE-75323 Uppsala, Sweden. [Runnerstrom, Evan L.; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Runnerstrom, Evan L.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Pehlivan, IB (reprint author), Uppsala Univ, Angstrom Lab, Dept Engn Sci, POB 534, SE-75121 Uppsala, Sweden. EM ilknur.pehlivan@angstrom.uu.se RI Foundry, Molecular/G-9968-2014; Milliron, Delia/D-6002-2012; OI Niklasson, Gunnar/0000-0002-8279-5163 NR 28 TC 10 Z9 10 U1 5 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD JUL PY 2014 VL 126 SI SI BP 241 EP 247 DI 10.1016/j.solmat.2013.06.010 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AK4LB UT WOS:000338395100035 ER PT J AU Kronewitter, SR Slysz, GW Marginean, I Hagler, CD LaMarche, BL Zhao, R Harris, MY Monroe, ME Polyukh, CA Crowell, KL Fillmore, TL Carlson, TS Camp, DG Moore, RJ Payne, SH Anderson, GA Smith, RD AF Kronewitter, Scott R. Slysz, Gordon W. Marginean, Ioan Hagler, Clay D. LaMarche, Brian L. Zhao, Rui Harris, Myanna Y. Monroe, Matthew E. Polyukh, Christina A. Crowell, Kevin L. Fillmore, Thomas L. Carlson, Timothy S. Camp, David G., II Moore, Ronald J. Payne, Samuel H. Anderson, Gordon A. Smith, Richard D. TI GlyQ-IQ: Glycomics Quintavariate-Informed Quantification with High-Performance Computing and GlycoGrid 4D Visualization SO ANALYTICAL CHEMISTRY LA English DT Article ID MASS-SPECTROMETRY DATA; ELECTROSPRAY-IONIZATION; ANNOTATION; MS; SOFTWARE; SPECTRA; FRAGMENTATION; GLYCOSYLATION; HETEROGENEITY; GLYCANS AB Glycomics quintavariate-informed quantification (GlyQIQ) is a biologically guided glycomics analysis tool for identifying N-glycans in liquid chromatography-mass spectrometry (LC-MS) data. Glycomics LC-MS data sets have convoluted extracted ion chromatograms that are challenging to deconvolve with existing software tools. LC deconvolution into constituent pieces is critical in glycomics data sets because chromatographic peaks correspond to different intact glycan structural isomers. The biological targeted analysis approach offers several key advantages to traditional LC-MS data processing. A priori glycan information about the individual target's elemental composition allows for improved sensitivity by utilizing the exact isotope profile information to focus chromatogram generation and LC peak fitting on the isotopic species having the highest intensity. Glycan target annotation utilizes glycan family relationships and in source fragmentation in addition to high specificity feature LC-MS detection to improve the specificity of the analysis. The GlyQ-IQ software was developed in this work and evaluated in the context of profiling the N-glycan compositions from human serum LC-MS data sets. A case study is presented to demonstrate how GlyQ-IQ identifies and removes confounding chromatographic peaks from high mannose glycan isomers from human blood serum. In addition, GlyQ-IQ was used to generate a broad human serum N-glycan profile from a high resolution nanoelectrospray-liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS) data set. A total of 156 glycan compositions and 640 glycan isomers were detected from a single sample. Over 99% of the GlyQ-IQ glycan-feature assignments passed manual validation and are backed with high-resolution mass spectra. C1 [Kronewitter, Scott R.; Slysz, Gordon W.; Marginean, Ioan; Hagler, Clay D.; LaMarche, Brian L.; Zhao, Rui; Harris, Myanna Y.; Monroe, Matthew E.; Polyukh, Christina A.; Crowell, Kevin L.; Fillmore, Thomas L.; Carlson, Timothy S.; Camp, David G., II; Moore, Ronald J.; Payne, Samuel H.; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnnl.gov RI Marginean, Ioan/A-4183-2008; Smith, Richard/J-3664-2012; OI Marginean, Ioan/0000-0002-6693-0361; Smith, Richard/0000-0002-2381-2349; Payne, Samuel/0000-0002-8351-1994 FU U.S. DOE office of Biological and Environmental Research Pan-omics project of the Genome Sciences Program; NIH GMS [P41 GM103493-11]; Microsoft Windows Azure Cloud Deployment; DOE [DE-AC05-76RLO 1830] FX Portions of this work were supported by the U.S. DOE office of Biological and Environmental Research Pan-omics project of the Genome Sciences Program, as well as by the NIH GMS Grant P41 GM103493-11. Work was performed in the EMSL, a DOE-BER national scientific user facility PNNL. High-performance computing research was performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. The Microsoft Azure Research was made possible by a Windows Azure Research Pass Grant. We also acknowledge Daniel Fay and Wen-ming Ye from Microsoft Research (http://azure4research.com, Redmond, WA), Magnus Martensson from Martensson Consulting (Malmo, Sweden), and Alan Smith from Active Solutions (Stockholm, Sweden) for their expertise and support with the Microsoft Windows Azure Cloud Deployment. PNNL is a multiprogram national laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RLO 1830. NR 26 TC 4 Z9 4 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD JUL 1 PY 2014 VL 86 IS 13 BP 6268 EP 6276 DI 10.1021/ac501492f PG 9 WC Chemistry, Analytical SC Chemistry GA AK5TH UT WOS:000338488800017 PM 24881670 ER PT J AU Kelly, RT Wang, CC Rausch, SJ Lee, CS Tang, KQ AF Kelly, Ryan T. Wang, Chenchen Rausch, Sarah J. Lee, Cheng S. Tang, Keqi TI Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Quantitative Zone Electrophoresis in Capillaries SO ANALYTICAL CHEMISTRY LA English DT Article ID SINGLE-CELL ANALYSIS; MICROCHIP ELECTROPHORESIS; MASS-SPECTROMETRY; MICROFLUIDIC DEVICES; FLOW; SENSITIVITY; INTERFACE; DESIGN; CHIP AB A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused-silica capillary separation column. Analytes are rapidly separated in the fused-silica capillary, and following separation, high-sensitivity MS detection is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high-throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates, and CE separation voltages. C1 [Kelly, Ryan T.; Rausch, Sarah J.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Tang, Keqi] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Wang, Chenchen; Lee, Cheng S.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Kelly, RT (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM ryan.kelly@pnnl.gov RI wang, chenchen/B-5838-2015; Kelly, Ryan/B-2999-2008 OI Kelly, Ryan/0000-0002-3339-4443 FU NIH National Cancer Institute [1R33CA155252, R21 CA143177]; Department of Energy's Office of Biological and Environmental Research FX We thank Brandon Kelly for assistance with microfluidic device fabrication. The research described in this paper was conducted under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy, and grants from the NIH National Cancer Institute (1R33CA155252 and R21 CA143177). The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 34 TC 8 Z9 8 U1 3 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD JUL 1 PY 2014 VL 86 IS 13 BP 6723 EP 6729 DI 10.1021/ac501910p PG 7 WC Chemistry, Analytical SC Chemistry GA AK5TH UT WOS:000338488800077 PM 24865952 ER PT J AU Xu, ZJ AF Xu, Zhijie TI A stochastic analysis of steady and transient heat conduction in random media using a homogenization approach SO APPLIED MATHEMATICAL MODELLING LA English DT Article DE Stochastic; Heat conduction; Homogenization; Random field; Uncertainty ID FINITE-ELEMENT-ANALYSIS; HETEROGENEOUS MATERIALS AB We present a new stochastic analysis for steady and transient one-dimensional heat conduction problem based on the homogenization approach. Thermal conductivity is assumed to be a random field K consisting of random variables of a total number N. Both steady and transient solutions Tare expressed in terms of the homogenized solution (T) over tilde and its spatial derivatives T(x,t) = (T) over tilde + Sigma L-infinity(n=1)n(x)partial derivative(n)(T) over tilde/partial derivative x(n), where homogenized solution (T) over tilde is obtained by solving the homogenized equation with effective thermal conductivity. Both mean and variance of stochastic solutions can be obtained analytically for K field consisting of independent identically distributed (i.i.d) random variables. The mean and variance of T are shown to be dependent only on the mean and variance of these i.i.d variables, not the particular form of probability distribution function of i.i.d variables. Variance of temperature field T can be separated into two contributions: the ensemble contribution (through the homogenized temperature (T) over tilde); and the configurational contribution (through the random variable L-n(x)). The configurational contribution is shown to be proportional to the local gradient of (T) over tilde. Large uncertainty of T field was found at locations with large gradient of (T) over tilde due to the significant configurational contributions at these locations. Numerical simulations were implemented based on a direct Monte Carlo method and good agreement is obtained between numerical Monte Carlo results and the proposed stochastic analysis. (C) 2013 Elsevier Inc. All rights reserved. C1 [Xu, Zhijie] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Xu, ZJ (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Computat Math Grp, Richland, WA 99352 USA. EM zhijiexu@hotmail.com RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 NR 16 TC 1 Z9 1 U1 2 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0307-904X EI 1872-8480 J9 APPL MATH MODEL JI Appl. Math. Model. PD JUL 1 PY 2014 VL 38 IS 13 BP 3233 EP 3243 DI 10.1016/j.apm.2013.11.044 PG 11 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA AK1MT UT WOS:000338179900014 ER PT J AU Riquelme, F Northrup, P Ruvalcaba-Sil, JL Stojanoff, V Siddons, DP Alvarado-Ortega, J AF Riquelme, Francisco Northrup, Paul Luis Ruvalcaba-Sil, Jose Stojanoff, Vivian Siddons, D. Peter Alvarado-Ortega, Jesus TI Insights into molecular chemistry of Chiapas amber using infrared-light microscopy, PIXE/RBS, and sulfur K-edge XANES spectroscopy SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID HUMIC SUBSTANCES; ORGANIC-MATTER; SPECIATION; MEXICO; CLASSIFICATION; SOIL; SAMPLES; ORIGIN AB Chiapas amber is a natural occurring fossil resin structurally composed of long macromolecule chains with semicrystalline phases associated with both fossil and polymerization process. The most conspicuous characteristic of this fossil polymer is that it preserves ancient organic inclusions. In the present work, PIXE/RBS spectrometry (particle-induced X-ray emission/Rutherford backscattering) were combined with complementary K-edge XANES spectroscopy (X-ray absorption near-edge structure) to identify the amount of sulfur in Chiapas amber. Initially, the amber samples were examined using infrared reflected photomicrography. Amber is transparent to infrared light and so embedded plants and animals are easily visible, showing them in extraordinary detail, as if they were immersed in a water-like solution. The PIXE/RBS data show that the proportion of sulfur in amber is significantly higher than that found in recently formed resins, consistent with the biogeochemical process that transforms the resin into amber during long-term burial in geological deposits. The sulfur K-edge XANES spectra from amber confirm the sulfur abundance and reveal sulfur species in the reduced and intermediate oxidation states in amber. Almost no oxidized sulfur was found, whereas the recent resins show mostly oxidized sulfur fractions. This indicates that labile oxidized sulfur decays during fossilization and resin maturation must occur under conditions of oxygen depletion. The implications of the presence of sulfur in amber for organic preservation is also discussed here. Sulfur compounds work as a polymer additive that promotes intense resin solidification. This restricts the early oxidant-specific biodegradation of the embedded biomatter and, over geological time, provides greater stability against chemical changes. C1 [Riquelme, Francisco; Luis Ruvalcaba-Sil, Jose] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 20364, DF, Mexico. [Northrup, Paul] SUNY Stony Brook, Dept Geosci, Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY USA. [Stojanoff, Vivian; Siddons, D. Peter] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Alvarado-Ortega, Jesus] Univ Nacl Autonoma Mexico, Inst Geol, Mexico City 04510, DF, Mexico. RP Riquelme, F (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 20364, DF, Mexico. EM riquelme.fc@gmail.com OI Ruvalcaba-Sil, Jose Luis/0000-0003-1431-3019 FU CONACYT [131944 MOVIL II]; UNAM-PAPIIT [IN106011, IN403210] FX We thank Karim Lopez, Francisco Jaimes, and Mauricio Escobar, for their technical support during the experimental runs at the Pelletron Accelerator Laboratory, IF-UNAM. We also thank Dr. Lauro Bucio from IF-UNAM, for the valuable comments that enriched the manuscript discussion. We thank Biol. Gerardo Carbot and Biol. Marco A. Coutino, from the Museo de Paleontologia 'Eliseo Palacios Aguilera', Chiapas, they facilitated the holotype of H. allendis and sample T2. The editor and referees provided useful suggestions that improved the manuscript. This research is part of the PhD-granting program in Biological Sciences at the UNAM, financially supported by CONACYT, also partially supported by UNAM-PAPIIT IN106011 and IN403210 grants, as well as CONACYT 131944 MOVIL II endowment. NR 47 TC 9 Z9 9 U1 2 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD JUL PY 2014 VL 116 IS 1 BP 97 EP 109 DI 10.1007/s00339-013-8185-2 PG 13 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA AK1YC UT WOS:000338214300014 ER PT J AU Webster, KD Ng, WP Fletcher, DA AF Webster, Kevin D. Ng, Win Pin Fletcher, Daniel A. TI Tensional Homeostasis in Single Fibroblasts SO BIOPHYSICAL JOURNAL LA English DT Article ID ACTIN-FILAMENTS; CELLULAR STIFFNESS; MECHANICAL FORCE; ALPHA-ACTININ; LIVING CELLS; DYNAMICS; STRESS; MECHANOTRANSDUCTION; MECHANOBIOLOGY; CONTRACTILITY AB Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micro-patterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This' response is influenced by overexpression of the actin crosslinker alpha-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury. C1 [Webster, Kevin D.; Fletcher, Daniel A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Webster, Kevin D.; Ng, Win Pin; Fletcher, Daniel A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Ng, Win Pin; Fletcher, Daniel A.] Univ Calif Berkeley Univ Calif San Francisco Grad, Berkeley, CA USA. [Fletcher, Daniel A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fletcher, DA (reprint author), Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. EM fletch@berkeley.edu FU National Science Foundation Biomechanics & Mechanobiology program [1235569]; National Institutes of Health Bay Area Physical Sciences Oncology Center FX This work was supported by the National Science Foundation Biomechanics & Mechanobiology program (grant No. 1235569) and the National Institutes of Health Bay Area Physical Sciences Oncology Center. NR 53 TC 14 Z9 14 U1 1 U2 14 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD JUL 1 PY 2014 VL 107 IS 1 BP 146 EP 155 DI 10.1016/j.bpj.2014.04.051 PG 10 WC Biophysics SC Biophysics GA AK4RK UT WOS:000338411600018 PM 24988349 ER PT J AU Alam, TM Liao, ZL Zakharov, LN Nyman, M AF Alam, Todd M. Liao, Zuolei Zakharov, Lev N. Nyman, May TI Solid-State Dynamics of Uranyl Polyoxometalates SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE ion-exchange; polyoxometalate; proton MAS NMR; solid-state NMR; uranyl ID DIAMAGNETIC URANIUM-COMPOUNDS; SHIELDING CALCULATIONS; PEROXIDE NANOCAPSULES; PERIODIC-TABLE; METAL; NMR; NANOPARTICLES; NANOCLUSTERS; MONOLAYER; CATIONS AB Understanding fundamental uranyl polyoxometalate (POM) chemistry in solution and the solid state is the first step to defining its future role in the development of new actinide materials and separation processes that are vital to every step of the nuclear fuel cycle. Many solid-state geometries of uranyl POMs have been described, but we are only beginning to understand their chemical behavior, which thus far includes the role of templates in their self-assembly, and the dynamics of encapsulated species in solution. This study provides unprecedented detail into the exchange dynamics of the encapsulated species in the solid state through Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy. Although it was previously recognized that capsule-like molybdate and uranyl POMs exchange encapsulated species when dissolved in water, analogous exchange in the solid state has not been documented, or even considered. Here, we observe the extremely high rate of transport of Li+ and aqua species across the uranyl shell in the solid state, a process that is affected by both temperature and pore blocking by larger species. These results highlight the untapped potential of emergent f-block element materials and vesicle-like POMs. C1 [Alam, Todd M.] Sandia Natl Labs, Dept Elect Opt & Nanostruct Mat, Albuquerque, NM 87185 USA. [Liao, Zuolei; Zakharov, Lev N.; Nyman, May] Oregon State Univ, Frontier Res Ctr, Dept Chem & Mat Sci Actinides, Corvallis, OR 97331 USA. RP Alam, TM (reprint author), Sandia Natl Labs, Dept Elect Opt & Nanostruct Mat, POB 5800, Albuquerque, NM 87185 USA. EM tmalam@sandia.gov; May.Nyman@oregonstate.edu FU Materials Science of Actinides, an Energy Frontier Research Center - Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001089]; U. S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001089. The NMR component of the work (T.M.A.) was performed at Sandia National Laboratories, which is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 8 Z9 8 U1 6 U2 46 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD JUL 1 PY 2014 VL 20 IS 27 BP 8302 EP 8307 DI 10.1002/chem.201402351 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA AJ9HO UT WOS:000338019300011 PM 24889825 ER PT J AU Chylek, P Dubey, MK Lesins, G Li, JN Hengartner, N AF Chylek, Petr Dubey, Manvendra K. Lesins, Glen Li, Jiangnan Hengartner, Nicolas TI Imprint of the Atlantic multi-decadal oscillation and Pacific decadal oscillation on southwestern US climate: past, present, and future SO CLIMATE DYNAMICS LA English DT Article ID SURFACE AIR-TEMPERATURE; NORTH-ATLANTIC; MULTIDECADAL OSCILLATION; THERMOHALINE CIRCULATION; 21ST-CENTURY DROUGHT; VARIABILITY; MODEL; HOLOCENE; AMERICA; SYSTEM AB The surface air temperature increase in the southwestern United States was much larger during the last few decades than the increase in the global mean. While the global temperature increased by about 0.5 A degrees C from 1975 to 2000, the southwestern US temperature increased by about 2 A degrees C. If such an enhanced warming persisted for the next few decades, the southwestern US would suffer devastating consequences. To identify major drivers of southwestern climate change we perform a multiple-linear regression of the past 100 years of the southwestern US temperature and precipitation. We find that in the early twentieth century the warming was dominated by a positive phase of the Atlantic multi-decadal oscillation (AMO) with minor contributions from increasing solar irradiance and concentration of greenhouse gases. The late twentieth century warming was about equally influenced by increasing concentration of atmospheric greenhouse gases (GHGs) and a positive phase of the AMO. The current southwestern US drought is associated with a near maximum AMO index occurring nearly simultaneously with a minimum in the Pacific decadal oscillation (PDO) index. A similar situation occurred in mid-1950s when precipitation reached its minimum within the instrumental records. If future atmospheric concentrations of GHGs increase according to the IPCC scenarios (Solomon et al. in Climate change 2007: working group I. The Physical Science Basis, Cambridge, 996 pp, 2007), climate models project a fast rate of southwestern warming accompanied by devastating droughts (Seager et al. in Science 316:1181-1184, 2007; Williams et al. in Nat Clim Chang, 2012). However, the current climate models have not been able to predict the behavior of the AMO and PDO indices. The regression model does support the climate models (CMIP3 and CMIP5 AOGCMs) projections of a much warmer and drier southwestern US only if the AMO changes its 1,000 years cyclic behavior and instead continues to rise close to its 1975-2000 rate. If the AMO continues its quasi-cyclic behavior the US SW temperature should remain stable and the precipitation should significantly increase during the next few decades. C1 [Chylek, Petr; Dubey, Manvendra K.; Hengartner, Nicolas] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lesins, Glen] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. [Li, Jiangnan] Environm Canada, Canadian Ctr Climate Modeling & Anal, Victoria, BC, Canada. RP Chylek, P (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM chylek@lanl.gov RI Dubey, Manvendra/E-3949-2010; Li, Jiangnan/J-6262-2016 OI Dubey, Manvendra/0000-0002-3492-790X; FU Los Alamos National Laboratory Institute of Geophysics, Planetary Physics, and Signatures [LA-UR-12-25073] FX Reported research (LA-UR-12-25073) was supported in part by the Los Alamos National Laboratory Institute of Geophysics, Planetary Physics, and Signatures. NR 59 TC 14 Z9 14 U1 6 U2 56 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JUL PY 2014 VL 43 IS 1-2 BP 119 EP 129 DI 10.1007/s00382-013-1933-3 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AK3PS UT WOS:000338337700008 ER PT J AU MacMartin, DG Kravitz, B Keith, DW Jarvis, A AF MacMartin, Douglas G. Kravitz, Ben Keith, David W. Jarvis, Andrew TI Dynamics of the coupled human-climate system resulting from closed-loop control of solar geoengineering SO CLIMATE DYNAMICS LA English DT Article DE Geoengineering; Solar radiation management; Dynamics; Feedback; Control ID CONTROL PERSPECTIVE; MODEL; OCEAN AB If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM in order to compensate for uncertainty in either the forcing or the climate response. Feedback might also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. However, in addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a box-diffusion dynamic model of the climate system to understand how changing the properties of the feedback control affect the emergent dynamics of this coupled human-climate system, and evaluate these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain). This is a challenge for policy as a delayed response is needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification of natural variability, results in a limit on how rapidly SRM could respond to changes in the observed state of the climate system. C1 [MacMartin, Douglas G.] CALTECH, Pasadena, CA 91125 USA. [Kravitz, Ben] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Keith, David W.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Keith, David W.] Harvard Univ, Kennedy Sch Govt, Cambridge, MA 02138 USA. [Jarvis, Andrew] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England. RP MacMartin, DG (reprint author), CALTECH, 1200 E Calif Blvd,M-C 107-81, Pasadena, CA 91125 USA. EM macmardg@cds.caltech.edu RI Kravitz, Ben/P-7925-2014; MacMartin, Douglas/A-6333-2016 OI Kravitz, Ben/0000-0001-6318-1150; MacMartin, Douglas/0000-0003-1987-9417 FU Fund for Innovative Climate and Energy Research; U S. Department of Energy by Battelle Memorial Institute [DE-AC05-76RLO1830] FX Ben Kravitz is supported by the Fund for Innovative Climate and Energy Research. The Pacific Northwest National Laboratory is operated for the U S. Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RLO1830. Peter Thompson of Systems Technology Inc. provided assistance with the content of Appendix 2. NR 33 TC 17 Z9 17 U1 2 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JUL PY 2014 VL 43 IS 1-2 BP 243 EP 258 DI 10.1007/s00382-013-1822-9 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AK3PS UT WOS:000338337700016 ER PT J AU He, L Cornelius, CJ Perahia, D AF He, Lliin Cornelius, Chris J. Perahia, Dvora TI Water dynamics within a highly rigid sulfonated polyphenylene SO EUROPEAN POLYMER JOURNAL LA English DT Article DE Water molecules; Polyphenylene ionomers; Pulse field gradient (PFG) NMR; FFIR ID STUDYING TRANSLATIONAL DIFFUSION; POLYMER-ELECTROLYTE MEMBRANES; NUCLEAR-MAGNETIC-RESONANCE; FUEL-CELLS; FIELD GRADIENT; IONOMER MEMBRANES; TRANSPORT; NAFION; ION; MECHANISMS AB Complex water molecule interactions within the confined environments of a sulfonated polyphenylene (sPP) ionomer were studied using H-1 nuclear magnetic resonance (NMR), and Fourier transform infrared (FTIR) spectroscopy. Multiple water environments were observed due to variations in hydrophilicity created by its structure, and chemical composition. Confined water properties are strongly dependent upon water content, degree of ionization, and temperature. Increasing the degree of sulfonation (DS) results in the creation of more water states and sites. The chemical shifts of water depend upon its environment with a smaller dependence on temperature. Confined water relaxation time T-1 is than significantly lower bulk water and increases with temperature. Pulse field gradient (PFG) NMR studies reveals that water self-diffusion coefficients increase with. Water molecules diffuse faster in sPP than Nafion, which implies that diffusion is facilitated by bundled hydrophilic pathways. Time-dependent FTIR reveals that bound water evaporates slower than unbound water during drying, which illustrates the difference of bulk and confined water within sPP ionomers. Hindered water evaporation is due to a reduction in the degrees of freedom for ion containing domains and mass transfer limitations at interfacial boundaries between hydrophobic and hydrophilic domains. (C) 2014 Elsevier Ltd. All rights reserved. C1 [He, Lliin] Oak Ridge Natl Lab, Neutron Scattering Directorate, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Cornelius, Chris J.] Univ Nebraska, Dept Chem & Biomol Engn, Lincoln, NE 68588 USA. [He, Lliin; Perahia, Dvora] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. RP Perahia, D (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA. EM ccornelius2@unl.edu; dperahi@clemson.edu OI He, Lilin/0000-0002-9560-8101 FU DOE [DE-FG02-12ER46843]; Sharp Corporation FX The authors gratefully acknowledge financial support from DOE Grant No. DE-FG02-12ER46843, and support from Sharp Corporation. NR 34 TC 1 Z9 1 U1 4 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0014-3057 EI 1873-1945 J9 EUR POLYM J JI Eur. Polym. J. PD JUL PY 2014 VL 56 BP 168 EP 173 DI 10.1016/j.eurpolymj.2014.03.035 PG 6 WC Polymer Science SC Polymer Science GA AK4JW UT WOS:000338392000016 ER PT J AU Arthur, RK Ma, LJ Slattery, M Spokony, RF Ostapenko, A Negre, N White, KP AF Arthur, Robert K. Ma, Lijia Slattery, Matthew Spokony, Rebecca F. Ostapenko, Alexander Negre, Nicolas White, Kevin P. TI Evolution of H3K27me3-marked chromatin is linked to gene expression evolution and to patterns of gene duplication and diversification SO GENOME RESEARCH LA English DT Article ID TRANSCRIPTION FACTOR-BINDING; FUNCTIONAL-ORGANIZATION; HISTONE MODIFICATIONS; DROSOPHILA GENOME; DIVERGENCE; CONSERVATION; POLYCOMB; SEQUENCES; PROTEINS; INSIGHTS AB Histone modifications are critical for the regulation of gene expression, cell type specification, and differentiation. However, evolutionary patterns of key modifications that regulate gene expression in differentiating organisms have not been examined. Here we mapped the genomic locations of the repressive mark histone 3 lysine 27 trimethylation (H3K27me3) in four species of Drosophila, and compared these patterns to those in C. elegans. We found that patterns of H3K27me3 are highly conserved across species, but conservation is substantially weaker among duplicated genes. We further discovered that retropositions are associated with greater evolutionary changes in H3K27me3 and gene expression than tandem duplications, indicating that local chromatin constraints influence duplicated gene evolution. These changes are also associated with concomitant evolution of gene expression. Our findings reveal the strong conservation of genomic architecture governed by an epigenetic mark across distantly related species and the importance of gene duplication in generating novel H3K27me3 profiles. C1 [Arthur, Robert K.; White, Kevin P.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Arthur, Robert K.; Ma, Lijia; Slattery, Matthew; Spokony, Rebecca F.; Ostapenko, Alexander; Negre, Nicolas; White, Kevin P.] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA. [Arthur, Robert K.; Ma, Lijia; Slattery, Matthew; Spokony, Rebecca F.; Ostapenko, Alexander; Negre, Nicolas; White, Kevin P.] Argonne Natl Lab, Chicago, IL 60637 USA. [Ma, Lijia; Slattery, Matthew; Spokony, Rebecca F.; Ostapenko, Alexander; Negre, Nicolas; White, Kevin P.] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA. [Slattery, Matthew] Univ Minnesota, Sch Med, Dept Biomed Sci, Duluth, MN 55455 USA. [Spokony, Rebecca F.] CUNY, Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Negre, Nicolas] Univ Montpellier 2, F-34095 Montpellier, France. [Negre, Nicolas] INRA, DGIMI, UMR1333, F-34095 Montpellier, France. RP White, KP (reprint author), Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. EM kpwhite@uchicago.edu OI Negre, Nicolas/0000-0001-9727-3416 FU NIH [U01HG004264, T32GM007197]; NSF FX The modENCODE Project was supported by NIH grant U01HG004264 awarded to K. P. W. R. K. A. was supported by an NSF Graduate Research Fellowship and an NIH training grant (T32GM007197). We thank Jason Lieb and his laboratory for use of the C. elegans H3K27me3 ChIP-seq data. We are grateful to Benjamin Krinsky and Manyuan Long for interesting discussions on gene duplication. We thank Kacy Gordon, Aashish Jha, and Xiaochun Ni for helpful comments and critical review of our manuscript. We are indebted to many members of the White and Ruvinsky laboratories for useful criticism, wonderful discussions, and technical help. Finally, we appreciate the comments of three anonymous reviewers whose feedback greatly improved the paper. NR 54 TC 5 Z9 5 U1 0 U2 13 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD JUL PY 2014 VL 24 IS 7 BP 1115 EP 1124 DI 10.1101/gr.162008.113 PG 10 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA AK1OS UT WOS:000338185000006 PM 24985914 ER PT J AU Chen, ZX Sturgill, D Qu, JX Jiang, HY Park, S Boley, N Suzuki, AM Fletcher, AR Plachetzki, DC FitzGerald, PC Artieri, CG Atallah, J Barmina, O Brown, JB Blankenburg, KP Clough, E Dasgupta, A Gubbala, S Han, Y Jayaseelan, JC Kalra, D Kim, YA Kovar, CL Lee, SL Li, MM Malley, JD Malone, JH Mathew, T Mattiuzzo, NR Munidasa, M Muzny, DM Ongeri, F Perales, L Przytycka, TM Pu, LL Robinson, G Thornton, RL Saada, N Scherer, SE Smith, HE Vinson, C Warner, CB Worley, KC Wu, YQ Zou, XY Cherbas, P Kellis, M Eisen, MB Piano, F Kionte, K Fitch, DH Sternberg, PW Cutter, AD Duff, MO Hoskins, RA Graveley, BR Gibbs, RA Bickel, PJ Kopp, A Carninci, P Celniker, SE Oliver, B Richards, S AF Chen, Zhen-Xia Sturgill, David Qu, Jiaxin Jiang, Huaiyang Park, Soo Boley, Nathan Suzuki, Ana Maria Fletcher, Anthony R. Plachetzki, David C. FitzGerald, Peter C. Artieri, Carlo G. Atallah, Joel Barmina, Olga Brown, James B. Blankenburg, Kerstin P. Clough, Emily Dasgupta, Abhijit Gubbala, Sai Han, Yi Jayaseelan, Joy C. Kalra, Divya Kim, Yoo-Ah Kovar, Christie L. Lee, Sandra L. Li, Mingmei Malley, James D. Malone, John H. Mathew, Tittu Mattiuzzo, Nicolas R. Munidasa, Mala Muzny, Donna M. Ongeri, Fiona Perales, Lora Przytycka, Teresa M. Pu, Ling-Ling Robinson, Garrett Thornton, Rebecca L. Saada, Nehad Scherer, Steven E. Smith, Harold E. Vinson, Charles Warner, Crystal B. Worley, Kim C. Wu, Yuan-Qing Zou, Xiaoyan Cherbas, Peter Kellis, Manolis Eisen, Michael B. Piano, Fabio Kionte, Karin Fitch, David H. Sternberg, Paul W. Cutter, Asher D. Duff, Michael O. Hoskins, Roger A. Graveley, Brenton R. Gibbs, Richard A. Bickel, Peter J. Kopp, Artyom Carninci, Piero Celniker, Susan E. Oliver, Brian Richards, Stephen TI Comparative validation of the D. melanogaster modENCODE transcriptome annotation SO GENOME RESEARCH LA English DT Article ID DROSOPHILA-MELANOGASTER; GENE-EXPRESSION; HUMAN GENOME; JUNK DNA; EVOLUTIONARY DYNAMICS; RNA-POLYMERASE; CAP-ANALYSIS; START SITE; ENCODE; SEQUENCE AB Accurate gene model annotation of reference genomes is critical for making them useful. The modENCODE project has improved the D. melanogaster genome annotation by using deep and diverse high-throughput data. Since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function, we have performed large-scale interspecific comparisons to increase confidence in predicted annotations. To support comparative genomics, we filled in divergence gaps in the Drosophila phylogeny by generating draft genomes for eight new species. For comparative transcriptome analysis, we generated mRNA expression profiles on 81 samples from multiple tissues and developmental stages of 15 Drosophila species, and we performed cap analysis of gene expression in D. melanogaster and D. pseudoobscura. We also describe conservation of four distinct core promoter structures composed of combinations of elements at three positions. Overall, each type of genomic feature shows a characteristic divergence rate relative to neutral models, highlighting the value of multispecies alignment in annotating a target genome that should prove useful in the annotation of other high priority genomes, especially human and other mammalian genomes that are rich in noncoding sequences. We report that the vast majority of elements in the annotation are evolutionarily conserved, indicating that the annotation will be an important springboard for functional genetic testing by the Drosophila community. C1 [Chen, Zhen-Xia; Sturgill, David; Artieri, Carlo G.; Clough, Emily; Malone, John H.; Mattiuzzo, Nicolas R.; Smith, Harold E.; Oliver, Brian] NIDDK, NIH, Bethesda, MD 20892 USA. [Qu, Jiaxin; Jiang, Huaiyang; Blankenburg, Kerstin P.; Gubbala, Sai; Han, Yi; Jayaseelan, Joy C.; Kalra, Divya; Kovar, Christie L.; Lee, Sandra L.; Li, Mingmei; Mathew, Tittu; Munidasa, Mala; Muzny, Donna M.; Ongeri, Fiona; Perales, Lora; Pu, Ling-Ling; Thornton, Rebecca L.; Saada, Nehad; Scherer, Steven E.; Warner, Crystal B.; Worley, Kim C.; Wu, Yuan-Qing; Zou, Xiaoyan; Gibbs, Richard A.; Richards, Stephen] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA. [Park, Soo; Hoskins, Roger A.; Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Genome Dynam, Div Life Sci, Berkeley, CA 94720 USA. [Boley, Nathan; Brown, James B.; Robinson, Garrett; Bickel, Peter J.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Suzuki, Ana Maria; Carninci, Piero] RIKEN Omics Sci Ctr, Technol Dev Grp, Yokohama, Kanagawa 2300045, Japan. [Suzuki, Ana Maria; Carninci, Piero] RIKEN Ctr Life Sci Technol, Div Genom Technol, Yokohama, Kanagawa 2300045, Japan. [Fletcher, Anthony R.; Malley, James D.] NIH, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20814 USA. [Plachetzki, David C.; Atallah, Joel; Barmina, Olga; Kopp, Artyom] Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA. [FitzGerald, Peter C.; Vinson, Charles] NCI, NIH, Bethesda, MD 20892 USA. [Dasgupta, Abhijit] NIAMSD, Clin Trials & Outcomes Branch, NIH, Bethesda, MD 20892 USA. [Kim, Yoo-Ah; Przytycka, Teresa M.] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA. [Cherbas, Peter] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. [Kellis, Manolis] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA. [Eisen, Michael B.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Piano, Fabio; Kionte, Karin; Fitch, David H.] New York Univ, Dept Biol, New York, NY 10003 USA. [Sternberg, Paul W.] CALTECH, HHMI, Pasadena, CA 91125 USA. [Sternberg, Paul W.] CALTECH, Div Biol, Pasadena, CA 91125 USA. [Cutter, Asher D.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada. [Duff, Michael O.; Graveley, Brenton R.] Univ Connecticut, Inst Syst Genom, Dept Genet & Dev Biol, Ctr Hlth, Farmington, CT 06030 USA. RP Oliver, B (reprint author), NIDDK, NIH, Bethesda, MD 20892 USA. EM briano@helix.nih.gov RI Cutter, Asher/A-5647-2009; Carninci, Piero/K-1568-2014; Kalra, Divya/N-5453-2014; JAYASEELAN, JOY CHRISTINA/F-9824-2015; Brown, James/H-2971-2015; OI Carninci, Piero/0000-0001-7202-7243; JAYASEELAN, JOY CHRISTINA/0000-0002-7759-0139; Graveley, Brenton/0000-0001-5777-5892 FU Intramural Research Programs of the National Institutes of Health, NIDDK [DK015600-18]; extramural National Institutes of Health program [1ROIGM082843, U01HB004271] FX We thank modENCODE and laboratory members for discussion. This research was supported by the Intramural Research Programs of the National Institutes of Health, NIDDK (DK015600-18 to B.O.) and by the extramural National Institutes of Health program (1ROIGM082843 to A. K.; U01HB004271 to S. E. C.). This study utilized the high-performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, Maryland (http://biowulf.nih.gov). NR 65 TC 33 Z9 33 U1 1 U2 18 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD JUL PY 2014 VL 24 IS 7 BP 1209 EP 1223 DI 10.1101/gr.159384.113 PG 15 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA AK1OS UT WOS:000338185000014 PM 24985915 ER PT J AU Lin, F Fardad, M Jovanovic, MR AF Lin, Fu Fardad, Makan Jovanovic, Mihailo R. TI Algorithms for Leader Selection in Stochastically Forced Consensus Networks SO IEEE TRANSACTIONS ON AUTOMATIC CONTROL LA English DT Article DE Alternating direction method of multipliers (ADMMs); consensus networks; convex optimization; convex relaxations; greedy algorithm; leader selection; performance bounds; semidefinite programming (SDP); sensor selection; variance amplification ID SEMIDEFINITE RELAXATION; RELATIVE MEASUREMENTS; MULTIAGENT SYSTEMS; AVERAGE CONSENSUS; GRAPH; CONTROLLABILITY; OPTIMIZATION; PERFORMANCE; COHERENCE AB We are interested in assigning a pre-specified number of nodes as leaders in order to minimize the mean-square deviation from consensus in stochastically forced networks. This problem arises in several applications including control of vehicular formations and localization in sensor networks. For networks with leaders subject to noise, we show that the Boolean constraints (which indicate whether a node is a leader) are the only source of nonconvexity. By relaxing these constraints to their convex hull we obtain a lower bound on the global optimal value. We also use a simple but efficient greedy algorithm to identify leaders and to compute an upper bound. For networks with leaders that perfectly follow their desired trajectories, we identify an additional source of nonconvexity in the form of a rank constraint. Removal of the rank constraint and relaxation of the Boolean constraints yields a semidefinite program for which we develop a customized algorithm well-suited for large networks. Several examples ranging from regular lattices to random graphs are provided to illustrate the effectiveness of the developed algorithms. C1 [Lin, Fu] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Fardad, Makan] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA. [Jovanovic, Mihailo R.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. RP Lin, F (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fulin@mcs.anl.gov; makan@syr.edu; mihailo@umn.edu FU National Science Foundation under CAREER [CMMI-06-44793, CMMI-09-27720, CMMI-0927509] FX This work was supported by the National Science Foundation under CAREER Award CMMI-06-44793 and under awards CMMI-09-27720 and CMMI-0927509. Recommended by Associate Editor D. Bauso. NR 53 TC 32 Z9 32 U1 3 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9286 EI 1558-2523 J9 IEEE T AUTOMAT CONTR JI IEEE Trans. Autom. Control PD JUL PY 2014 VL 59 IS 7 BP 1789 EP 1802 DI 10.1109/TAC.2014.2314223 PG 14 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA AK3VO UT WOS:000338353300008 ER PT J AU Schneider, KP Weaver, TF AF Schneider, K. P. Weaver, T. F. TI A Method for Evaluating Volt-VAR Optimization Field Demonstrations SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Distribution system analysis; power system control; voltage control; voltage optimization ID REDUCTION CVR AB In a regulated business environment, a utility must be able to validate that deployed technologies provide quantifiable benefits to the end-use customers. While there are well established procedures for determining the benefits derived from the deployment of traditional technologies, the same procedures do not exist for many emerging technologies. Volt-VAR Optimization is an example of an emerging technology that is being deployed across the nation without a standardized method for determining system performance and benefits. This paper will present a method for the evaluation, and quantification of benefits, for field deployments of Volt-VAR Optimization technologies. In addition to presenting the methodology, the paper will present a summary of results, and observations, from two separate Volt-VAR Optimization field evaluations using the presented method. C1 [Schneider, K. P.] Pacific NW Natl Lab, Battelle Seattle Res Ctr, Seattle, WA 98109 USA. [Weaver, T. F.] Amer Elect Power Co, Columbus, OH 43201 USA. RP Schneider, KP (reprint author), Pacific NW Natl Lab, Battelle Seattle Res Ctr, Seattle, WA 98109 USA. EM kevin.schneider@pnnl.gov; tfweaver@aep.com FU U.S. Department of Energy [DE-AC06-76RL01830] FX This work was supported by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RL01830. NR 18 TC 11 Z9 11 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD JUL PY 2014 VL 5 IS 4 BP 1696 EP 1703 DI 10.1109/TSG.2014.2308872 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA AK1QS UT WOS:000338191200016 ER PT J AU Su, WC Wang, JH Roh, J AF Su, Wencong Wang, Jianhui Roh, Jaehyung TI Stochastic Energy Scheduling in Microgrids With Intermittent Renewable Energy Resources SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Microgrid; plug-in electric vehicle (PEV); renewable energy; smart grid; stochastic programming ID WIND POWER; DEMAND RESPONSE; UNIT COMMITMENT; MANAGEMENT; SYSTEMS AB Renewable energy resources such as wind and solar are an important component of a microgrid. However, the inherent intermittency and variability of such resources complicates microgrid operations. Meanwhile, more controllable loads (e.g., plug-in electric vehicles), distributed generators (e.g., micro gas turbines and diesel generators), and distributed energy storage devices (e.g., battery banks) are being integrated into the microgrid operation. To address the operational challenges associated with these technologies and energy resources, this paper formulates a stochastic problem for microgrid energy scheduling. The proposed problem formulation minimizes the expected operational cost of the microgrid and power losses while accommodating the intermittent nature of renewable energy resources. Case studies are performed on a modified IEEE 37-bus test feeder. The simulation results demonstrate the effectiveness and accuracy of the proposed stochastic microgrid energy scheduling model. C1 [Su, Wencong] Univ Michigan, Dept Elect & Comp Engn, Dearborn, MI 48128 USA. [Wang, Jianhui] Argonne Natl Lab, Argonne, IL 60439 USA. [Roh, Jaehyung] Konkuk Univ, Dept Elect Engn, Seoul, South Korea. RP Su, WC (reprint author), Univ Michigan, Dept Elect & Comp Engn, Dearborn, MI 48128 USA. EM wencong@umich.edu; jianhui.wang@anl.gov; jhroh@konkuk.ac.kr FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; KETEP [2001T100100424] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U. S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; Jaehyung Roh's work is sponsored by KETEP(2001T100100424). NR 31 TC 64 Z9 67 U1 9 U2 49 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD JUL PY 2014 VL 5 IS 4 BP 1876 EP 1883 DI 10.1109/TSG.2013.2280645 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA AK1QS UT WOS:000338191200034 ER PT J AU Goddard, G Klose, J Backhaus, S AF Goddard, Gary Klose, Joseph Backhaus, Scott TI Model Development and Identification for Fast Demand Response in Commercial HVAC Systems SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Demand response (DR) ID LOADS AB Large commercial HVAC systems are attractive targets for fast demand response (DR) applications, e.g., integrating time-intermittent renewable generation. By leveraging the communications in the building automation system (BAS) already present in most buildings, large commercial HVAC systems provide easier access to a large controllable resource than aggregating a large number of small residential loads. However, large commercial HVAC systems are complex with many variables, many end point controllers, and several internal control loops that interact with each other. In addition, the existing fleet of large commercial buildings is diverse with many different HVAC configurations and BAS architectures. Capturing these buildings as DR resources requires a method to greatly reduce the complexity of the HVAC DR control and is general and flexible enough that it can be easily deployed across the diverse fleet of existing buildings. We create such a DR control by developing a system model that uses a single state variable instead of the several hundred variables in a commercial HVAC system. The model includes a small number of system parameters, and we demonstrate how their values can be determined via system identification measurements. Finally, we test our model on a large commercial HVAC system to investigate its control performance. C1 [Goddard, Gary; Klose, Joseph] Los Alamos Natl Los Alamos, Util & Infrastruct Div, Los Alamos, NM 87544 USA. [Backhaus, Scott] Los Alamos Natl Lab, MPA Div, Los Alamos, NM 87545 USA. RP Goddard, G (reprint author), Los Alamos Natl Los Alamos, Util & Infrastruct Div, Los Alamos, NM 87544 USA. EM goddard@lanl.gov; klose@lanl.gov; backhaus@lanl.gov OI Backhaus, Scott/0000-0002-0344-6791 FU Microgrid Program of the Office of Electricity within the U.S. Department of Energy FX This work was supported by the Microgrid Program of the Office of Electricity within the U.S. Department of Energy. NR 14 TC 13 Z9 13 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD JUL PY 2014 VL 5 IS 4 BP 2084 EP 2092 DI 10.1109/TSG.2014.2312430 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA AK1QS UT WOS:000338191200056 ER PT J AU Thrash, JC Temperton, B Swan, BK Landry, ZC Woyke, T DeLong, EF Stepanauskas, R Giovannoni, SJ AF Thrash, J. Cameron Temperton, Ben Swan, Brandon K. Landry, Zachary C. Woyke, Tanja DeLong, Edward F. Stepanauskas, Ramunas Giovannoni, Stephan J. TI Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype SO ISME JOURNAL LA English DT Article DE bathytype; ecotype; metagenomics; SAR11; single-cell genomics; deep ocean ID MULTIPLE SEQUENCE ALIGNMENT; RIBOSOMAL-RNA GENES; MICROBIAL ASSEMBLAGES; METAGENOMIC ANALYSIS; PROTEIN EVOLUTION; MESOPELAGIC ZONE; SARGASSO SEA; LIFE-STYLES; ATLANTIC; BACTERIA AB Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%-86%, were isolated from 770m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size. C1 [Thrash, J. Cameron; Temperton, Ben; Landry, Zachary C.; Giovannoni, Stephan J.] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. [Thrash, J. Cameron] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. [Swan, Brandon K.; Stepanauskas, Ramunas] Bigelow Lab Ocean Sci, East Boothbay, ME USA. [Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA USA. [DeLong, Edward F.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [DeLong, Edward F.] Ctr Microbial Ecol Res & Educ, Honolulu, HI USA. RP Thrash, JC (reprint author), Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. EM thrashc@lsu.edu OI Thrash, Cameron/0000-0003-0896-9986; Stepanauskas, Ramunas/0000-0003-4458-3108 FU Gordon and Betty Moore Foundation; US Department of Energy Joint Genome Institute (JGI) Community Supported Program [2011-387]; National Science Foundation (NSF) Science and Technology Center [EF0424599]; NSF [EF-826924, OCE-821374, OCE-1232982, DBI-1003269]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Gordon and Betty Moore Foundation (SJG and EFD), the US Department of Energy Joint Genome Institute (JGI) Community Supported Program grant 2011-387 (RS, BKS, EFD, SJG), National Science Foundation (NSF) Science and Technology Center Award EF0424599 (EFD), NSF awards EF-826924 (RS), OCE-821374 (RS) and OCE-1232982 (RS and BKS), and is based on work supported by the NSF under Award no. DBI-1003269 (JCT). Sequencing was conducted by JGI and supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. We thank Christopher M Sullivan and the Oregon State University Center for Genome Research and Biocomputing, as well as the Louisiana State University Center for Computation and Technology for vital computational resources. We also thank Kelly C Wrighton and Laura A Hug for critical discussions about single-cell genomics, metagenomics and metabolic reconstruction. NR 79 TC 17 Z9 18 U1 5 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD JUL PY 2014 VL 8 IS 7 BP 1440 EP 1451 DI 10.1038/ismej.2013.243 PG 12 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA AK1XZ UT WOS:000338213900009 PM 24451205 ER PT J AU Wrighton, KC Castelle, CJ Wilkins, MJ Hug, LA Sharon, I Thomas, BC Handley, KM Mullin, SW Nicora, CD Singh, A Lipton, MS Long, PE Williams, KH Banfield, JF AF Wrighton, Kelly C. Castelle, Cindy J. Wilkins, Michael J. Hug, Laura A. Sharon, Itai Thomas, Brian C. Handley, Kim M. Mullin, Sean W. Nicora, Carrie D. Singh, Andrea Lipton, Mary S. Long, Philip E. Williams, Kenneth H. Banfield, Jillian F. TI Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer SO ISME JOURNAL LA English DT Article DE metagenomics; proteomics; candidate phylum; hydrogenase; fermentation; sulfate reduction; microbial diversity ID GENOME SEQUENCE; SP-NOV; DESULFOTALEA-PSYCHROPHILA; MICROBIAL COMMUNITIES; REDUCING BACTERIA; ELEMENTAL SULFUR; GENE DIVERSITY; OXIDATION; REDUCTION; SEDIMENT AB Fermentation-based metabolism is an important ecosystem function often associated with environments rich in organic carbon, such as wetlands, sewage sludge and the mammalian gut. The diversity of microorganisms and pathways involved in carbon and hydrogen cycling in sediments and aquifers and the impacts of these processes on other biogeochemical cycles remain poorly understood. Here we used metagenomics and proteomics to characterize microbial communities sampled from an aquifer adjacent to the Colorado River at Rifle, CO, USA, and document interlinked microbial roles in geochemical cycling. The organic carbon content in the aquifer was elevated via acetate amendment of the groundwater occurring over 2 successive years. Samples were collected at three time points, with the objective of extensive genome recovery to enable metabolic reconstruction of the community. Fermentative community members include organisms from a new phylum, Melainabacteria, most closely related to Cyanobacteria, phylogenetically novel members of the Chloroflexi and Bacteroidales, as well as candidate phyla genomes (OD1, BD1-5, SR1, WWE3, ACD58, TM6, PER and OP11). These organisms have the capacity to produce hydrogen, acetate, formate, ethanol, butyrate and lactate, activities supported by proteomic data. The diversity and expression of hydrogenases suggests the importance of hydrogen metabolism in the subsurface. Our proteogenomic data further indicate the consumption of fermentation intermediates by Proteobacteria can be coupled to nitrate, sulfate and iron reduction. Thus, fermentation carried out by previously unknown members of sediment microbial communities may be an important driver of nitrogen, hydrogen, sulfur, carbon and iron cycling. C1 [Wrighton, Kelly C.; Wilkins, Michael J.] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA. [Castelle, Cindy J.; Hug, Laura A.; Sharon, Itai; Thomas, Brian C.; Mullin, Sean W.; Singh, Andrea; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Wilkins, Michael J.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Handley, Kim M.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Nicora, Carrie D.; Lipton, Mary S.; Banfield, Jillian F.] Pacific NW Natl Lab, Dept Energy, Dept Biol Sci, Richland, WA 99352 USA. [Long, Philip E.; Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Energy, Berkeley, CA 94720 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Dept Environm Sci Policy & Management, 369 McCone Hall, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Williams, Kenneth/O-5181-2014; Wilkins, Michael/A-9358-2013; Long, Philip/F-5728-2013; Lipton, Mary/H-3913-2012; OI Williams, Kenneth/0000-0002-3568-1155; Long, Philip/0000-0003-4152-5682; Sharon, Itai/0000-0003-0705-2316; Handley, Kim/0000-0003-0531-3009 FU Integrated Field Research Challenge Site (IFRC) at Rifle, Colorado; US Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This material is based upon work supported through the Integrated Field Research Challenge Site (IFRC) at Rifle, Colorado, the US Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research funded the work under contract DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory; operated by the University of California). NR 56 TC 47 Z9 47 U1 10 U2 75 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD JUL PY 2014 VL 8 IS 7 BP 1452 EP 1463 DI 10.1038/ismej.2013.249 PG 12 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA AK1XZ UT WOS:000338213900010 PM 24621521 ER PT J AU Mason, OU Scott, NM Gonzalez, A Robbins-Pianka, A Baelum, J Kimbrel, J Bouskill, NJ Prestat, E Borglin, S Joyner, DC Fortney, JL Jurelevicius, D Stringfellow, WT Alvarez-Cohen, L Hazen, TC Knight, R Gilbert, JA Jansson, JK AF Mason, Olivia U. Scott, Nicole M. Gonzalez, Antonio Robbins-Pianka, Adam Baelum, Jacob Kimbrel, Jeffrey Bouskill, Nicholas J. Prestat, Emmanuel Borglin, Sharon Joyner, Dominique C. Fortney, Julian L. Jurelevicius, Diogo Stringfellow, William T. Alvarez-Cohen, Lisa Hazen, Terry C. Knight, Rob Gilbert, Jack A. Jansson, Janet K. TI Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill SO ISME JOURNAL LA English DT Article DE DWH oil spill; hydrocarbons; iTag/Metagenomics; microbial community structure; sediments ID GULF-OF-MEXICO; DEGRADING BACTERIA; SEQUENCES; DIVERSITY; TAXONOMY; METHANE; GROWTH AB The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of similar to 4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities in surface sediments collected at 64 sites by targeted sequencing of 16S rRNA genes, shotgun metagenomic sequencing of 14 of these samples and mineralization experiments using C-14-labeled model substrates. The 16S rRNA gene data indicated that the most heavily oil-impacted sediments were enriched in an uncultured Gammaproteobacterium and a Colwellia species, both of which were highly similar to sequences in the DWH deep-sea hydrocarbon plume. The primary drivers in structuring the microbial community were nitrogen and hydrocarbons. Annotation of unassembled metagenomic data revealed the most abundant hydrocarbon degradation pathway encoded genes involved in degrading aliphatic and simple aromatics via butane monooxygenase. The activity of key hydrocarbon degradation pathways by sediment microbes was confirmed by determining the mineralization of C-14-labeled model substrates in the following order: propylene glycol, dodecane, toluene and phenanthrene. Further, analysis of metagenomic sequence data revealed an increase in abundance of genes involved in denitrification pathways in samples that exceeded the Environmental Protection Agency (EPA)'s benchmarks for polycyclic aromatic hydrocarbons (PAHs) compared with those that did not. Importantly, these data demonstrate that the indigenous sediment microbiota contributed an important ecosystem service for remediation of oil in the Gulf. However, PAHs were more recalcitrant to degradation, and their persistence could have deleterious impacts on the sediment ecosystem. C1 [Mason, Olivia U.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Mason, Olivia U.; Baelum, Jacob; Kimbrel, Jeffrey; Bouskill, Nicholas J.; Prestat, Emmanuel; Borglin, Sharon; Joyner, Dominique C.; Fortney, Julian L.; Jurelevicius, Diogo; Stringfellow, William T.; Alvarez-Cohen, Lisa; Hazen, Terry C.; Jansson, Janet K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Scott, Nicole M.; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Lemont, IL USA. [Scott, Nicole M.; Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Gonzalez, Antonio] Univ Colorado, Biofrontiers Inst, Boulder, CO 80309 USA. [Robbins-Pianka, Adam] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA. [Baelum, Jacob] Tech Univ Denmark, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark. [Kimbrel, Jeffrey; Jansson, Janet K.] Joint Bioenergy Inst JBEI, Deconstruct Div, Emeryville, CA USA. [Joyner, Dominique C.; Fortney, Julian L.; Hazen, Terry C.] Univ Tennessee, Civil & Environm Engn Dept, Knoxville, TN USA. [Jurelevicius, Diogo] Univ Fed Rio de Janeiro, Lab Genet Microbiana, Inst Microbiol Paulo de Goes, Rio De Janeiro, Brazil. [Stringfellow, William T.] Univ Pacific, Sch Engn & Comp Sci, Ecol Engn Res Program, Stockton, CA 95211 USA. [Alvarez-Cohen, Lisa] Univ Calif Berkeley, Civil & Environm Engn Dept, Berkeley, CA 94720 USA. [Hazen, Terry C.] Oak Ridge Natl Lab, Div Biol Sci, Oak Ridge, TN USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Jansson, Janet K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Mason, OU (reprint author), Florida State Univ, Dept Earth Ocean & Atmospher Sci, Room 307 OSB,117 North Woodward Ave, Tallahassee, FL 32306 USA. EM omason@fsu.edu; jrjansson@lbl.gov RI Balum, Jacob/I-2353-2013; Stringfellow, William/O-4389-2015; Bouskill, Nick/G-2390-2015; Borglin, Sharon/I-1013-2016; Knight, Rob/D-1299-2010; Hazen, Terry/C-1076-2012 OI Balum, Jacob/0000-0002-1022-6586; Stringfellow, William/0000-0003-3189-5604; Hazen, Terry/0000-0002-2536-9993 FU University of California at Berkeley, Energy Biosciences Institute (EBI) [DE-AC02-05CH11231]; Interdisciplinary Quantitative (IQ Biology) program at the Biofrontiers Institute, University of Colorado, Boulder; NSF IGERT [1144807]; National Institutes of Health; Howard Hughes Medical Institute FX This work was supported by a subcontract from the University of California at Berkeley, Energy Biosciences Institute (EBI) to Lawrence Berkeley National Laboratory under its U.S. Department of Energy contract DE-AC02-05CH11231. In addition, we acknowledge support from the Interdisciplinary Quantitative (IQ Biology) program at the Biofrontiers Institute, University of Colorado, Boulder, NSF IGERT grant number 1144807, by the National Institutes of Health, and by the Howard Hughes Medical Institute. We are thankful for the help of Yvette Piceno and Francine Reid with sampling and sample sectioning. We thank Theresa Pollard for handling shipping, ordering and transportation of supplies and people to and from the field. We also thank the captain and crew of the R/V Gyre. NR 39 TC 52 Z9 53 U1 21 U2 201 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD JUL PY 2014 VL 8 IS 7 BP 1464 EP 1475 DI 10.1038/ismej.2013.254 PG 12 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA AK1XZ UT WOS:000338213900011 PM 24451203 ER PT J AU Shilova, IN Robidart, JC Tripp, HJ Turk-Kubo, K Wawrik, B Post, AF Thompson, AW Ward, B Hollibaugh, JT Millard, A Ostrowski, M Scanlan, DJ Paerl, RW Stuart, R Zehr, JP AF Shilova, Irina N. Robidart, Julie C. Tripp, H. James Turk-Kubo, Kendra Wawrik, Boris Post, Anton F. Thompson, Anne W. Ward, Bess Hollibaugh, James T. Millard, Andy Ostrowski, Martin Scanlan, David J. Paerl, Ryan W. Stuart, Rhona Zehr, Jonathan P. TI A microarray for assessing transcription from pelagic marine microbial taxa SO ISME JOURNAL LA English DT Article DE marine; microbial; microarray; transcription; molecular ID FUNCTIONAL GENE MICROARRAY; PACIFIC SUBTROPICAL GYRE; HIGH-THROUGHPUT TOOL; NITROGEN-FIXATION; OPEN-OCEAN; OLIGONUCLEOTIDE MICROARRAY; COMMUNITY COMPOSITION; RED-SEA; PROCHLOROCOCCUS ECOTYPES; TEMPORAL VARIABILITY AB Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world's oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions. C1 [Shilova, Irina N.; Robidart, Julie C.; Turk-Kubo, Kendra; Zehr, Jonathan P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Tripp, H. James] DOE Joint Genome Inst, Walnut Creek, CA USA. [Wawrik, Boris] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Post, Anton F.] Marine Biol Lab, Woods Hole, MA 02543 USA. [Thompson, Anne W.] BD Biosci, Adv Cytometry Grp, Seattle, WA USA. [Ward, Bess] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Hollibaugh, James T.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. [Millard, Andy; Ostrowski, Martin; Scanlan, David J.] Univ Warwick, Dept Marine Microbiol, Coventry CV4 7AL, W Midlands, England. [Paerl, Ryan W.] Univ Calif San Diego, Marine Biol Res Div, San Diego, CA 92103 USA. [Stuart, Rhona] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Shilova, IN (reprint author), Univ Calif Santa Cruz, Dept Ocean Sci, 1156 High St, Santa Cruz, CA 95064 USA. EM iirina@ucsc.edu RI Zehr, Jonathan/B-3513-2014; Paerl, Ryan/E-7380-2015; Scanlan, David/G-4080-2016 OI Zehr, Jonathan/0000-0002-5691-5408; Paerl, Ryan/0000-0003-1237-9882; Scanlan, David/0000-0003-3093-4245 FU Gordon and Betty Moore Foundation (the MEGAMER facility); Gordon and Betty Moore Foundation Marine Investigator grant; NSF Center for Microbial Oceanography (C-MORE) [NSF EF0424599]; Moore foundation FX This work resulted from two workshops, and the design of the microarray was partially supported by the Gordon and Betty Moore Foundation (the MEGAMER facility), by a Gordon and Betty Moore Foundation Marine Investigator grant (JPZ) and by the NSF Center for Microbial Oceanography (C-MORE, NSF EF0424599). We thank all the participants of the October 2010 MicroTOOLs workshop sponsored by the Moore foundation. Particularly, we thank those who provided sequences for the design of microarray: Mahdi Belcaid, Dreux Chappell, Jackie Collier, Chris Francis, Scott Gifford, Jana Grote, Bethany Jenkins, Julie LaRoche, Pia Moisander, Annika Mosier, Micaela Parker, Holly Simon, Mariya Smit, Jody Wright, and Louie Wurch. We thank Shulei Sun and the team at CAMERA for support during microarray design. We also thank the Hawaii Ocean Time-series (HOT) program and C-MORE, specifically the captain and crew of R/V Kilo Moana and chief scientist of KM1016 cruise, Matt Church, for their expertise and for providing the opportunity and support for conducting experiments at sea. We thank Philip Heller and Jonathan Magasin for developing Java scripts for the microarray design and for computational support during the MicroTOOLs workshop in October 2010. Finally, we thank Nicole Pereira for help in running the incubation experiment, Sasha Tozzi for FRRF measurements, Rob Tibshirani for a consultation on microarray data normalization and analysis and the JPZ laboratory members for constructive discussions. NR 116 TC 8 Z9 8 U1 4 U2 36 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD JUL PY 2014 VL 8 IS 7 BP 1476 EP 1491 DI 10.1038/ismej.2014.1 PG 16 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA AK1XZ UT WOS:000338213900012 PM 24477198 ER PT J AU Mueller, RC Paula, FS Mirza, BS Rodrigues, JLM Nusslein, K Bohannan, BJM AF Mueller, Rebecca C. Paula, Fabiana S. Mirza, Babur S. Rodrigues, Jorge L. M. Nuesslein, Klaus Bohannan, Brendan J. M. TI Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest SO ISME JOURNAL LA English DT Article DE beta diversity; land-use change; tropical biodiversity ID LAND-USE; SOIL; DIVERSITY; BIODIVERSITY; BACTERIAL; DNA AB Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests. C1 [Mueller, Rebecca C.; Bohannan, Brendan J. M.] Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 USA. [Paula, Fabiana S.] Univ Sao Paulo, Inst Oceanog, Sao Paulo, Brazil. [Mirza, Babur S.; Rodrigues, Jorge L. M.] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA. [Nuesslein, Klaus] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. RP Mueller, RC (reprint author), Los Alamos Natl Lab, Biosci Div M888, POB 1663, Los Alamos, NM 87545 USA. EM beckymueller@gmail.com FU USDA Agriculture and Food Research Initiative Competitive Grant [2009-35319-05186]; APS Lewis and Clark Fund for Exploration and Research grant FX We thank the owners of the Fazenda Nova Vida for providing field site access, Vivian Pellizari for logistical support, Wagner Piccinini for field sampling, Jonas Frankel-Bricker and Roo Vandegrift for root amplification, and the helpful suggestions of two anonymous reviewers. Funding was provided by USDA Agriculture and Food Research Initiative Competitive Grant 2009-35319-05186 and by an APS Lewis and Clark Fund for Exploration and Research grant. NR 19 TC 17 Z9 19 U1 11 U2 93 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD JUL PY 2014 VL 8 IS 7 BP 1548 EP 1550 DI 10.1038/ismej.2013.253 PG 3 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA AK1XZ UT WOS:000338213900019 PM 24451208 ER PT J AU Skomski, R Manchanda, P Takeuchi, I Cui, J AF Skomski, Ralph Manchanda, Priyanka Takeuchi, Ichiro Cui, Jun TI Geometry Dependence of Magnetization Reversal in Nanocomposite Alloys SO JOM LA English DT Article ID PERMANENT-MAGNETS; INTERACTION DOMAINS; NUCLEATION FIELDS; ENERGY PRODUCT; HIGH-REMANENCE; MODEL; MULTILAYERS; HYSTERESIS AB The geometrical optimization of aligned hard-soft permanent-magnet nanocomposites is investigated by model calculations. Considered criteria are the shapes of the soft and c-axis-aligned hard phases, the packing fraction of the soft phase, and magnetostatic interactions. Taking into account that the energy product is enhanced via the volume fraction of the soft phase, subject to maintaining coercivity, we find that the best structures are soft-magnetic cubes as well as long rods with a square cross section. Comparing embedded soft cubes with embedded soft spheres of the same size, our nucleation-field analysis shows that the volume fraction of the soft phase is enhanced by 91%, with a coercivity reduction of only 25%. Magnetostatic interactions often but not always deteriorate the permanent-magnet performance, as exemplified by the example of MnBi:FeCo bilayers and multilayers. C1 [Skomski, Ralph; Manchanda, Priyanka] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Skomski, Ralph; Manchanda, Priyanka] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Takeuchi, Ichiro] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Cui, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Skomski, R (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. EM rskomski@neb.rr.com FU PNNL ARPA-E; NSF MRSEC [DMR-0820521]; ARO [W911NF-10-2-0099] FX The research is supported primarily by PNNL ARPA-E (to J.C., I. T., P. M., and R. S.) and partially by NSF MRSEC DMR-0820521 and ARO W911NF-10-2-0099 (to R.S. and P.M.). NR 44 TC 2 Z9 2 U1 4 U2 41 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD JUL PY 2014 VL 66 IS 7 BP 1144 EP 1150 DI 10.1007/s11837-014-1005-0 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA AK6KI UT WOS:000338536100010 ER PT J AU Cardani, L Gironi, L Iachellini, NF Pattavina, L Beeman, JW Bellini, F Casali, N Cremonesi, O Dafinei, I Di Domizio, S Ferroni, F Galashov, E Gotti, C Nagorny, S Orio, F Pessina, G Piperno, G Pirro, S Previtali, E Rusconi, C Tomei, C Vignati, M AF Cardani, L. Gironi, L. Iachellini, N. Ferreiro Pattavina, L. Beeman, J. W. Bellini, F. Casali, N. Cremonesi, O. Dafinei, I. Di Domizio, S. Ferroni, F. Galashov, E. Gotti, C. Nagorny, S. Orio, F. Pessina, G. Piperno, G. Pirro, S. Previtali, E. Rusconi, C. Tomei, C. Vignati, M. TI First bolometric measurement of the two neutrino double beta decay of Mo-100 with a ZnMoO4 crystals array SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE two neutrino double beta decay; cryogenic detectors; Monte Carlo simulation ID NUCLEAR-MATRIX ELEMENTS; SCINTILLATING BOLOMETER; CONTAMINATION; DETECTORS; PHYSICS; TABLES AB The large statistics collected during the operation of a ZnMoO4 array, for a total exposure of 1.3 kg day of Mo-100, allowed the first bolometric observation of the two neutrino double beta decay of Mo-100. The observed spectrum of each crystal was reconstructed taking into account the different background contributions due to environmental radioactivity and internal contamination. The analysis of coincidences between the crystals allowed the assignment of constraints to the intensity of the different background sources, resulting in a reconstruction of the measured spectrum down to an energy of similar to 300 keV. The half-life extracted from the data is T-1/2(2 nu) = [7.15 +/- 0.37 (stat) +/- 0.66 (syst)] x 10(18) y. C1 [Cardani, L.; Bellini, F.; Ferroni, F.; Piperno, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Cardani, L.; Bellini, F.; Dafinei, I.; Ferroni, F.; Orio, F.; Piperno, G.; Tomei, C.; Vignati, M.] INFN, Sez Roma, I-00185 Rome, Italy. [Gironi, L.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Gironi, L.; Iachellini, N. Ferreiro; Cremonesi, O.; Gotti, C.; Pessina, G.; Pirro, S.; Previtali, E.; Rusconi, C.] INFN, Sez Milano Bicocca, I-20126 Milan, Italy. [Pattavina, L.; Casali, N.; Nagorny, S.] INFN, Lab Nazl Gran Sasso, I-67010 Laquila, Italy. [Beeman, J. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Di Domizio, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Di Domizio, S.] INFN, Sez Genova, I-16146 Genoa, Italy. [Galashov, E.] Novosibirsk State Univ, Dept Appl Phys, Novosibirsk 630090, Russia. RP Cardani, L (reprint author), Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. EM luca.gironi@mib.infn.it RI Bellini, Fabio/D-1055-2009; Di Domizio, Sergio/L-6378-2014; Pattavina, Luca/I-7498-2015; Vignati, Marco/H-1684-2013; Gironi, Luca/P-2860-2016; Casali, Nicola/C-9475-2017; OI Gotti, Claudio/0000-0003-2501-9608; Pessina, Gianluigi Ezio/0000-0003-3700-9757; Bellini, Fabio/0000-0002-2936-660X; Di Domizio, Sergio/0000-0003-2863-5895; Pattavina, Luca/0000-0003-4192-849X; Cardani, Laura/0000-0001-5410-118X; Vignati, Marco/0000-0002-8945-1128; Gironi, Luca/0000-0003-2019-0967; Casali, Nicola/0000-0003-3669-8247; Nahornyi, Serhii/0000-0002-8679-3747 FU European Research Council [247115]; ISOTTA project; ASPERA 2nd Common Call for RD Activities FX Part of the work was carried out thanks to LUCIFER Project, funded by the European Research Council (FP7/2007-2013) grant agreement no 247115. This work was also supported by the ISOTTA project, funded within the ASPERA 2nd Common Call for R&D Activities. Thanks are due to F Iachello and J Kotila for fruitful discussions and for providing us precise numerical calculation of the electron distributions for the 2 nu DBD of 100Mo. We wish to express our gratitude to the LNGS mechanical workshop and in particular to E Tatananni, A Rotilio, A Corsi, and B Romualdi for continuous and constructive help in the overall set-up construction. Finally, we are especially grateful to M Perego and M Guetti for their invaluable help. NR 24 TC 6 Z9 6 U1 2 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2014 VL 41 IS 7 AR 075204 DI 10.1088/0954-3899/41/7/075204 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AK4WS UT WOS:000338425600025 ER PT J AU Casali, N Nagorny, SS Orio, F Pattavina, L Beeman, JW Bellini, F Cardani, L Dafinei, I Di Domizio, S Di Vacri, ML Gironi, L Kosmyna, MB Nazarenko, BP Nisi, S Pessina, G Piperno, G Pirro, S Rusconi, C Shekhovtsov, AN Tomei, C Vignati, M AF Casali, N. Nagorny, S. S. Orio, F. Pattavina, L. Beeman, J. W. Bellini, F. Cardani, L. Dafinei, I. Di Domizio, S. Di Vacri, M. L. Gironi, L. Kosmyna, M. B. Nazarenko, B. P. Nisi, S. Pessina, G. Piperno, G. Pirro, S. Rusconi, C. Shekhovtsov, A. N. Tomei, C. Vignati, M. TI Discovery of the Eu-151 alpha decay SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE alpha decay; scintillation detectors; bolometers AB We report on the first compelling observation of a decay of Eu-151 to the ground state of Pm-147. The measurement was performed using a 6.15 g Li6Eu(BO3)(3) crystal operated as a scintillating bolometer. The Q-value and half-life measured are: Q = 1948.9 +/- 6.9(stat.) +/- 5.1(syst.) keV, and T-1/2 = (4.62 +/- 0.95(stat.) +/- 0.68(syst.)) x 10(18) y. The half-life prediction of nuclear theory using the Coulomb and proximity potentialmodel are in good agreement with this experimental result. C1 [Casali, N.; Nagorny, S. S.; Pattavina, L.; Di Vacri, M. L.; Nisi, S.] INFN, Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy. [Casali, N.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Coppito, AQ, Italy. [Nagorny, S. S.] Natl Acad Sci Ukraine, Inst Nucl Res, UA-03680 Kiev, Ukraine. [Orio, F.; Bellini, F.; Cardani, L.; Dafinei, I.; Piperno, G.; Tomei, C.; Vignati, M.] INFN, Sez Roma, I-00185 Rome, Italy. [Beeman, J. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bellini, F.; Cardani, L.; Piperno, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Di Domizio, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Di Domizio, S.] INFN, Sez Genova, I-16146 Genoa, Italy. [Gironi, L.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Gironi, L.; Pessina, G.; Pirro, S.; Rusconi, C.] INFN, Sez Milano Bicocca, I-20126 Milan, Italy. [Kosmyna, M. B.; Nazarenko, B. P.; Shekhovtsov, A. N.] Natl Acad Sci Ukraine, Inst Single Crystals, UA-61001 Kharkov, Ukraine. RP Casali, N (reprint author), INFN, Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy. EM luca.pattavina@lngs.infn.it RI Bellini, Fabio/D-1055-2009; Di Domizio, Sergio/L-6378-2014; Pattavina, Luca/I-7498-2015; Vignati, Marco/H-1684-2013; Gironi, Luca/P-2860-2016; Casali, Nicola/C-9475-2017; OI Bellini, Fabio/0000-0002-2936-660X; Di Domizio, Sergio/0000-0003-2863-5895; Pattavina, Luca/0000-0003-4192-849X; Vignati, Marco/0000-0002-8945-1128; Gironi, Luca/0000-0003-2019-0967; Casali, Nicola/0000-0003-3669-8247; Nahornyi, Serhii/0000-0002-8679-3747 FU Italian Ministry of Research [PRIN 2010ZXAZK9 2010-2011]; ISOTTA project; ASPERA 2nd Common Call for RD Activities; European Research Council [247115] FX This project was supported by the Italian Ministry of Research under the PRIN 2010ZXAZK9 2010-2011 grant. This work was also supported by the ISOTTA project, funded within the ASPERA 2nd Common Call for R&D Activities. Part of the work was carried out thanks to LUCIFER Project, funded by the European Research Council (FP7/2007-2013) grant agreement no 247115. NR 25 TC 4 Z9 4 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2014 VL 41 IS 7 AR 075101 DI 10.1088/0954-3899/41/7/075101 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AK4WS UT WOS:000338425600013 ER PT J AU Dobaczewski, J Nazarewicz, W Reinhard, PG AF Dobaczewski, J. Nazarewicz, W. Reinhard, P-G TI Error estimates of theoretical models: a guide SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE nuclear models; error estimates; error propagation; uncertainty quantification; systematic and statistical errors; correlation analysis; model-based extrapolations; regression analysis ID EQUATION-OF-STATE; MASSES AB This guide offers suggestions/insights on uncertainty quantification of nuclear structure models. We discuss a simple approach to statistical-error estimates, strategies to assess systematic errors, and show how to uncover inter-dependences by correlation analysis. The basic concepts are illustrated through simple examples. By providing theoretical error bars on predicted quantities and using statistical methods to study correlations between observables, theory can significantly enhance the feedback between experiment and nuclear modeling. C1 [Dobaczewski, J.; Nazarewicz, W.] Univ Warsaw, Fac Phys, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Reinhard, P-G] Univ Erlangen Nurnberg, Inst Theoret Phys 2, D-91058 Erlangen, Germany. RP Dobaczewski, J (reprint author), Univ Warsaw, Fac Phys, Inst Theoret Phys, Ul Hoza 69, PL-00681 Warsaw, Poland. EM Jacek.Dobaczewski@fuw.edu.pl; witek@utk.edu; Paul-Gerhard.Reinhard@physik.uni-erlangen.de FU US Department of Energy (University of Tennessee) [DE-FG02-96ER40963]; Stewardship Science Academic Alliances program [DE-FG52-09NA29461]; NUCLEI SciDAC Collaboration [DE-SC0008499]; Academy of Finland and University of Jyvaskyla within the FIDIPRO programme; Polish National Science Center [2012/07/B/ST2/03907]; Bundesministerium fur Bildung und Forschung (BMBF) [05P09RFFTB] FX This work was finalized during the Program INT-13-3 'Quantitative Large Amplitude Shape Dynamics: fission and heavy ion fusion' at the National Institute for Nuclear Theory in Seattle; it was supported by the US Department of Energy under Contract no. DE-FG02-96ER40963 (University of Tennessee), no. DE-FG52-09NA29461 (the Stewardship Science Academic Alliances program), no. DE-SC0008499 (NUCLEI SciDAC Collaboration); by the Academy of Finland and University of Jyvaskyla within the FIDIPRO programme; by the Polish National Science Center under Contract no. 2012/07/B/ST2/03907; and by the Bundesministerium fur Bildung und Forschung (BMBF) under contract number 05P09RFFTB. NR 49 TC 75 Z9 76 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2014 VL 41 IS 7 AR 074001 DI 10.1088/0954-3899/41/7/074001 PG 20 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AK4WS UT WOS:000338425600001 ER PT J AU Kujala, N Marathe, S Shu, DM Shi, B Qian, J Maxey, E Finney, L Macrander, A Assoufid, L AF Kujala, Naresh Marathe, Shashidhara Shu, Deming Shi, Bing Qian, Jun Maxey, Evan Finney, Lydia Macrander, Albert Assoufid, Lahsen TI Kirkpatrick-Baez mirrors to focus hard X-rays in two dimensions as fabricated, tested and installed at the Advanced Photon Source SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE hard X-ray micro-focusing optics; fixed elliptical geometry K-B mirrors; optics and detector beamline ID SUBMICROMETER-RESOLUTION; REFRACTIVE LENS; OPTICS; MICROSCOPY AB The micro-focusing performance for hard X-rays of a fixed-geometry elliptical Kirkpatrick-Baez (K-B) mirrors assembly fabricated, tested and finally implemented at the micro-probe beamline 8-BM of the Advanced Photon Source is reported. Testing of the K-B mirror system was performed at the optics and detector test beamline 1-BM. K-B mirrors of length 80 mm and 60 mm were fabricated by profile coating with Pt metal to produce focal lengths of 250 mm and 155 mm for 3 mrad incident angle. For the critical angle of Pt, a broad bandwidth of energies up to 20 keV applies. The classical K-B sequential mirror geometry was used, and mirrors were mounted on micro-translation stages. The beam intensity profiles were measured by differentiating the curves of intensity data measured using a wire-scanning method. A beam size of 1.3 mu m (V) and 1.2 mu m (H) was measured with monochromatic X-rays of 18 keV at 1-BM. After installation at 8-BM the measured focus met the design requirements. In this paper the fabrication and metrology of the K-B mirrors are reported, as well as the focusing performances of the full mirrors-plus-mount set-up at both beamlines. C1 [Kujala, Naresh; Marathe, Shashidhara; Shu, Deming; Shi, Bing; Qian, Jun; Maxey, Evan; Finney, Lydia; Macrander, Albert; Assoufid, Lahsen] Argonne Natl Lab, Lemont, IL 60439 USA. RP Kujala, N (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. EM kujala@aps.anl.gov RI ID, MRCAT/G-7586-2011 FU US DOE [DE-AC02-06CH11357] FX The authors would like to thank Kurtz Goetze from the BCDA group for helping with the software motor controls and Chris Jacobsen for his support. Scientists at beamline 10-ID (MR-CAT) at the APS provided the tungsten wire sample. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 29 TC 2 Z9 2 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2014 VL 21 BP 662 EP 668 DI 10.1107/S1600577514006493 PN 4 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AK0SD UT WOS:000338124300003 PM 24971959 ER PT J AU Shi, XB Reininger, R del Rio, MS Assoufid, L AF Shi, Xianbo Reininger, Ruben del Rio, Manuel Sanchez Assoufid, Lahsen TI A hybrid method for X-ray optics simulation: combining geometric ray-tracing and wavefront propagation SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE hybrid method; beamline design; X-ray optics simulation; ray-tracing; wavefront propagation; partial coherence ID SYNCHROTRON-RADIATION; BESSY-II; GRATING MONOCHROMATOR; UNDULATOR BEAMLINE; ELLIPTIC MIRRORS; DESIGN; PERFORMANCE; SYSTEM; SHADOW; OPTIMIZATION AB A new method for beamline simulation combining ray-tracing and wavefront propagation is described. The 'Hybrid Method' computes diffraction effects when the beam is clipped by an aperture or mirror length and can also simulate the effect of figure errors in the optical elements when diffraction is present. The effect of different spatial frequencies of figure errors on the image is compared with SHADOW results pointing to the limitations of the latter. The code has been benchmarked against the multi-electron version of SRW in one dimension to show its validity in the case of fully, partially and non-coherent beams. The results demonstrate that the code is considerably faster than the multi-electron version of SRW and is therefore a useful tool for beamline design and optimization. C1 [Shi, Xianbo; Reininger, Ruben; Assoufid, Lahsen] Argonne Natl Lab, Argonne, IL 60439 USA. [del Rio, Manuel Sanchez] European Synchrotron Radiat Facil, F-38000 Grenoble, France. RP Shi, XB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xshi@aps.anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors would like to thank Dr Oleg Chubar and Mr Niccolo Canestrari (Brookhaven National Laboratory) for the SRW support and helpful discussions about this work. NR 71 TC 11 Z9 11 U1 3 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2014 VL 21 BP 669 EP 678 DI 10.1107/S160057751400650X PN 4 PG 10 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AK0SD UT WOS:000338124300004 PM 24971960 ER PT J AU Gupta, S Celestre, R Petzold, CJ Chance, MR Ralston, C AF Gupta, Sayan Celestre, Richard Petzold, Christopher J. Chance, Mark R. Ralston, Corie TI Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE microsecond irradiation; radiolytic labeling; mass spectrometry; protein structure ID STRUCTURAL MASS-SPECTROMETRY; RADICAL PROBE; IN-VIVO; PHOTOCHEMICAL OXIDATION; ELECTROSPRAY-IONIZATION; HYDROGEN-PEROXIDE; DNA-BINDING; ACTIVATION; DYNAMICS; SURFACE AB X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale. C1 [Gupta, Sayan; Ralston, Corie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Celestre, Richard] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Petzold, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Chance, Mark R.] Case Western Reserve Univ, Sch Med, Ctr Prote & Bioinformat, Ctr Synchrotron Biosci, Cleveland, OH 44106 USA. RP Ralston, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley Ctr Struct Biol, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cyralston@lbl.gov FU LBNL Laboratory Directed Research and Development (LDRD); Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; NIBIB [P30-EB0966] FX The authors would like to thank Jun Hamamoto for assistance on beamline 3.2.1, Kurt Krueger for technical advice and fabrication of the microfluidic capillary cell, Simon Morton for advice and design of a focusing mirror for build-out of beamline 3.3.1, and Rhijuta D'Mello for assisting in beamline experiments at X28C at the NSLS. Funding for this research was provided by an LBNL Laboratory Directed Research and Development (LDRD) grant awarded to CR. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-98CH10886. The Center for Synchrotron Biosciences at the National Synchrotron Light Sources is supported by NIBIB under P30-EB0966. NR 57 TC 6 Z9 6 U1 1 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2014 VL 21 BP 690 EP 699 DI 10.1107/S1600577514007000 PN 4 PG 10 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AK0SD UT WOS:000338124300006 PM 24971962 ER PT J AU Warwick, T Chuang, YD Voronov, DL Padmore, HA AF Warwick, Tony Chuang, Yi-De Voronov, Dmitriy L. Padmore, Howard A. TI A multiplexed high-resolution imaging spectrometer for resonant inelastic soft X-ray scattering spectroscopy SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE soft X-ray; scattering; spectrometer ID MONOCHROMATOR; MICROSCOPE AB The optical design of a two-dimensional imaging soft X-ray spectrometer is described. A monochromator will produce a dispersed spectrum in a narrow vertical illuminated stripe (similar to 2 mu m wide by similar to 2 mm tall) on a sample. The spectrometer will use inelastically scattered X-rays to image the extended field on the sample in the incident photon energy direction (vertical), resolving the incident photon energy. At the same time it will image and disperse the scattered photons in the orthogonal (horizontal) direction, resolving the scattered photon energy. The principal challenge is to design a system that images from the flat-field illumination of the sample to the flat field of the detector and to achieve sufficiently high spectral resolution. This spectrometer provides a completely parallel resonant inelastic X-ray scattering measurement at high spectral resolution (similar to 30000) over the energy bandwidth (similar to 5 eV) of a soft X-ray absorption resonance. C1 [Warwick, Tony; Chuang, Yi-De; Voronov, Dmitriy L.; Padmore, Howard A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Warwick, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM warwick@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract No. DE-AC02-05CH11231. NR 20 TC 12 Z9 12 U1 0 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2014 VL 21 BP 736 EP 743 DI 10.1107/S1600577514009692 PN 4 PG 8 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AK0SD UT WOS:000338124300012 PM 24971968 ER PT J AU Bogdanov, B Zhao, XN Robinson, DB Ren, JH AF Bogdanov, Bogdan Zhao, Xiaoning Robinson, David B. Ren, Jianhua TI Electron Capture Dissociation Studies of the Fragmentation Patterns of Doubly Protonated and Mixed Protonated-Sodiated Peptoids SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE ECD; Radical assisted fragmentation; Odd-electron negative ion; Peptide-mimicking oligomer; Poly(N-substituted glycine) ID MASS-SPECTROMETRIC CHARACTERISTICS; PEPTIDE CATION-RADICALS; AROMATIC SIDE-CHAINS; GAS-PHASE; NONBIOLOGICAL POLYMER; CASCADE DISSOCIATIONS; SECONDARY STRUCTURE; PROTEIN-STRUCTURE; BOND-CLEAVAGE; AMINO-ACID AB The fragmentation patterns of a group of doubly protonated ([P + 2H](2+)) and mixed protonated-sodiated ([P + H + Na](2+)) peptide-mimicking oligomers, known as peptoids, have been studied using electron capturing dissociation (ECD) tandem mass spectrometry techniques. For all the peptoids studied, the primary backbone fragmentation occurred at the N-C-alpha bonds. The N-terminal fragment ions, the C-ions (protonated) and the C'-ions (sodiated) were observed universally for all the peptoids regardless of the types of charge carrier. The C-terminal ions varied depending on the type of charge carrier. The doubly protonated peptoids with at least one basic residue located at a position other than the N-terminus fragmented by producing the Z(aEuro cent)-series of ions. In addition, most doubly protonated peptoids also produced the Y-series of ions with notable abundances. The mixed protonated-sodiated peptoids fragmented by yielding the Z(aEuro cent)'-series of ions in addition to the C'-series. Chelation between the sodium cation and the amide groups of the peptoid chain might be an important factor that could stabilize both the N-terminal and the C-terminal fragment ions. Regardless of the types of the charge carrier, one notable fragmentation for all the peptoids was the elimination of a benzylic radical from the odd-electron positive ions of the protonated peptoids ([P + 2H](aEuro cent+)) and the sodiated peptoids ([P + H + Na](aEuro cent+)). The study showed potential utility of using the ECD technique for sequencing of peptoid libraries generated by combinatorial chemistry. C1 [Bogdanov, Bogdan; Zhao, Xiaoning; Ren, Jianhua] Univ Pacific, Dept Chem, Stockton, CA 95211 USA. [Robinson, David B.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Ren, JH (reprint author), Univ Pacific, Dept Chem, Stockton, CA 95211 USA. EM jren@pacific.edu RI Foundry, Molecular/G-9968-2014 FU National Science Foundation [CHE-0749737, CHE-1301505]; Laboratory-Directed Research and Development program at Sandia National Laboratories [DE-AC04-94AL85000]; Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231] FX The authors thank Dr. Kiran Morishetti (University of the Pacific, currently at Abon Pharmaceuticals LLC) for helping to interpret some of the spectra data, and Dr. Ronald Zuckermann (The Molecular Foundry, Lawrence Berkeley National Laboratory) for providing peptoid-10. J.R. acknowledges the support from the National Science Foundation [CHE-0749737 (prior) and CHE-1301505 (current)]. D. R. acknowledges the support from the Laboratory-Directed Research and Development program at Sandia National Laboratories (DE-AC04-94AL85000). Peptoid synthesis at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, US Department of Energy (DE-AC02-05CH11231). All ECD experiments were conducted at the Center for Regulatory and Environmental Analytical Metabolomics (CREAM) of the University of Louisville. The authors thank Dr. Shenheng Guan for assisting with the ETD experiments at the mass spectrometry facility of the University of California at San Francisco. They are also thankful for performing some of the ETD experiments in Dr. Joseph Loo's laboratory at the University of California at Los Angeles. NR 72 TC 5 Z9 5 U1 0 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD JUL PY 2014 VL 25 IS 7 BP 1202 EP 1216 DI 10.1007/s13361-014-0869-0 PG 15 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA AK1RG UT WOS:000338192700012 PM 24845348 ER PT J AU Li, YZ Kessler, MR AF Li, Yuzhan Kessler, Michael R. TI Cure kinetics of liquid crystalline epoxy resins based on biphenyl mesogen SO JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY LA English DT Article DE Liquid crystalline epoxy resins (LCERs); Cure kinetics; Activation energy; Thermosets ID MAGNETIC-FIELD ORIENTATION; CURING KINETICS; RIGID-ROD; FRACTURE-TOUGHNESS; THERMOSETS; POLYDOMAIN; MECHANISM; POLYMERS; BEHAVIOR AB The cure kinetics of a biphenyl-based liquid crystalline (LC) epoxy resin (LCER) was studied using differential scanning calorimetry (DSC) and polarized optical microscopy. The effects of LC phase formation on the cure kinetics were investigated. Both a model-free isoconversional method and a model-fitting method were used to analyze the DSC data. Results from the isoconversional analysis were applied to develop tentative multi-step kinetic models describing the curing reaction. Kinetic analysis showed that compared to the resins cured in amorphous phase, LCERs exhibited higher values of reaction enthalpy and a complex dependence of activation energy on the degree of cure. The formation of the LC phase resulted in a decrease in activation energy, leading to higher degree of reaction. C1 [Li, Yuzhan; Kessler, Michael R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA USA. [Li, Yuzhan; Kessler, Michael R.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Kessler, Michael R.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Kessler, MR (reprint author), Washington State Univ, Sch Mech & Mat Engn, POB 642920, Pullman, WA 99164 USA. EM MichaelR.Kessler@wsu.edu RI Kessler, Michael/C-3153-2008 OI Kessler, Michael/0000-0001-8436-3447 FU Air Force Office of Scientific Research (AFOSR) [FA9550-12-1-0108] FX The authors would like to thank Dr. Elena Moukhina for her technical support and helpful discussion. Support under Air Force Office of Scientific Research (AFOSR) Award No. FA9550-12-1-0108 is gratefully acknowledged. NR 29 TC 2 Z9 3 U1 1 U2 22 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-6150 EI 1572-8943 J9 J THERM ANAL CALORIM JI J. Therm. Anal. Calorim. PD JUL PY 2014 VL 117 IS 1 BP 481 EP 488 DI 10.1007/s10973-014-3647-0 PG 8 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA AK0QS UT WOS:000338120100056 ER PT J AU Yeddu, HK Lookman, T Borgenstam, A Agren, J Saxena, A AF Yeddu, Hemantha Kumar Lookman, Turab Borgenstam, Annika Agren, John Saxena, Avadh TI Martensite formation in stainless steels under transient loading SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Martensite; Phase-field model; Microstructure; Transient loading; Steels ID 3-DIMENSIONAL PHASE-FIELD; MICROSTRUCTURE EVOLUTION; PLASTIC-ACCOMMODATION; LATH MARTENSITE; TRANSFORMATIONS; MODEL; CRYSTALLOGRAPHY; MORPHOLOGY; SIMULATION; AUSTENITE AB We present a 3D elastoplastic phase-field model to study the martensite formation in stainless steels under transient loading. Linear isotropic strain hardening is considered. Our results show that various combinations of martensite variants, which minimize the mechanical energy and maximize the net available driving force, are favored under different transient loading directions. The mechanical properties of steels under transient loading depend on the direction of loading. The areas where the load is applied, i.e. the grain boundaries, become favorable martensite nucleation sites. (C) 2014 Elsevier B.V. All rights reserved. C1 [Yeddu, Hemantha Kumar; Lookman, Turab; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Borgenstam, Annika; Agren, John] KTH Royal Inst Technol, Dept Mat Sci & Engn, S-10044 Stockholm, Sweden. RP Yeddu, HK (reprint author), Los Alamos Natl Lab, Div Theoret, MS-B262, Los Alamos, NM 87545 USA. EM hemu23@gmail.com FU US Department of Energy FX This work was supported by the US Department of Energy. Computer resources were provided by the National Supercomputer Center (NSC), Linkoping, Sweden. NR 25 TC 2 Z9 2 U1 0 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 1 PY 2014 VL 608 BP 101 EP 105 DI 10.1016/j.msea.2014.04.063 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA AK4OU UT WOS:000338404800014 ER PT J AU Galan, J Verleysen, P Lebensohn, RA AF Galan, J. Verleysen, P. Lebensohn, R. A. TI An improved algorithm for the polycrystal viscoplastic self-consistent model and its integration with implicit finite element schemes SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE vpsc; polycrystal; fem; viscoplastic; elasto-viscoplastic; finite-element ID TEXTURE DEVELOPMENT; MECHANICAL ANISOTROPY; CRYSTAL PLASTICITY; FIELD FLUCTUATIONS; GRAIN-INTERACTION; ZIRCONIUM ALLOYS; DEFORMATION; PREDICTION; SIMULATION; BEHAVIOR AB A new algorithm for the solution of the deformation of a polycrystalline material using a self-consistent scheme, and its integration as part of the finite element software Abaqus/Standard are presented. The method is based on the original VPSC formulation by Lebensohn and Tome and its integration with Abaqus/Standard by Segurado et al. The new algorithm has been implemented as a set of Fortran 90 modules, to be used either from a standalone program or from Abaqus subroutines. The new implementation yields the same results as VPSC7, but with a significantly better performance, especially when used in multicore computers. C1 [Galan, J.; Verleysen, P.] Univ Ghent, Dept Mat Sci & Engn, Fac Engn & Architecture, B-9052 Ghent, Belgium. [Lebensohn, R. A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Mat Sci Radiat & Dynam Extremes MST 8, Los Alamos, NM 87845 USA. RP Galan, J (reprint author), Univ Ghent, Dept Mat Sci & Engn, Fac Engn & Architecture, Technol Pk 903, B-9052 Ghent, Belgium. EM Jesus.GalanLopez@UGent.be RI Lebensohn, Ricardo/A-2494-2008 OI Lebensohn, Ricardo/0000-0002-3152-9105 NR 39 TC 2 Z9 2 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD JUL PY 2014 VL 22 IS 5 AR 055023 DI 10.1088/0965-0393/22/5/055023 PG 18 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA AK5CL UT WOS:000338441700024 ER PT J AU Xiao, DJ Bloch, ED Mason, JA Queen, WL Hudson, MR Planas, N Borycz, J Dzubak, AL Verma, P Lee, K Bonino, F Crocella, V Yano, J Bordiga, S Truhlar, DG Gagliardi, L Brown, CM Long, JR AF Xiao, Dianne J. Bloch, Eric D. Mason, Jarad A. Queen, Wendy L. Hudson, Matthew R. Planas, Nora Borycz, Joshua Dzubak, Allison L. Verma, Pragya Lee, Kyuho Bonino, Francesca Crocella, Valentina Yano, Junko Bordiga, Silvia Truhlar, Donald G. Gagliardi, Laura Brown, Craig M. Long, Jeffrey R. TI Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites SO NATURE CHEMISTRY LA English DT Article ID 2ND-ORDER PERTURBATION-THEORY; SPIN OXOIRON(IV) COMPLEX; NITROUS-OXIDE; DIOXYGEN ACTIVATION; DINITROGEN OXIDE; ACTIVE-SITES; ENZYMES; OXO; REACTIVITY; BINDING AB Enzymatic haem and non-haem high-valent iron-oxo species are known to activate strong C-H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron-oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, although nature's non-haem iron(IV)-oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal-organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal-organic framework Fe-2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C-H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)-oxo species. C1 [Xiao, Dianne J.; Bloch, Eric D.; Mason, Jarad A.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Queen, Wendy L.; Lee, Kyuho] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Hudson, Matthew R.; Brown, Craig M.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Planas, Nora; Borycz, Joshua; Dzubak, Allison L.; Verma, Pragya; Truhlar, Donald G.; Gagliardi, Laura] Univ Minnesota, Dept Chem, Chem Theory Ctr, Minneapolis, MN 55455 USA. [Planas, Nora; Borycz, Joshua; Dzubak, Allison L.; Verma, Pragya; Truhlar, Donald G.; Gagliardi, Laura] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Bonino, Francesca; Crocella, Valentina; Bordiga, Silvia] Univ Turin, Dept Chem, NIS Ctr, I-10135 Turin, Italy. [Bonino, Francesca; Crocella, Valentina; Bordiga, Silvia] Univ Turin, INSTM Reference Ctr, I-10135 Turin, Italy. [Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Brown, Craig M.] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Xiao, DJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jrlong@berkeley.edu RI Bordiga, Silvia/M-3875-2014; Brown, Craig/B-5430-2009; Truhlar, Donald/G-7076-2015; Foundry, Molecular/G-9968-2014; Crocella, Valentina/E-5203-2016; Bonino, Francesca/G-8234-2016 OI Bordiga, Silvia/0000-0003-2371-4156; Queen, Wendy/0000-0002-8375-2341; Brown, Craig/0000-0002-9637-9355; Truhlar, Donald/0000-0002-7742-7294; Crocella, Valentina/0000-0002-3606-8424; Bonino, Francesca/0000-0002-6822-6685 FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-FG02-12ER16362]; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy (DOE) Office of Science by Argonne National Laboratory; US DOE [DE-AC02-06CH11357]; Ateneo Project [2011 ORTO11RRT5] FX Synthesis, basic characterization experiments and all of the theoretical work were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under award DE-FG02-12ER16362. Reactivity studies were supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy Contract No. DE-AC02-05CH11231. Work at the Molecular Foundry, and XAS experiments performed at the Advanced Light Source (BL 10.3.2), Berkeley, were supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. X-ray diffraction experiments were performed at the Advanced Photon Source at Argonne National Laboratory (17-BM-B). Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. S. B., F. B. and V. C. acknowledge financial support from the Ateneo Project 2011 ORTO11RRT5. We also thank the National Science Foundation for providing graduate fellowship support (D. J. X. and J. A. M.). In addition, we are grateful for the support of E. D. B. through a Gerald K. Branch fellowship in chemistry, P. V. through a Phillips 66 Excellence Fellowship and M. R. H. through the National Institute of Standards and Technology/National Research Council Fellowship Program. We thank S. Chavan for help with the infrared spectroscopy experiments and fruitful discussion. NR 50 TC 83 Z9 84 U1 20 U2 168 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD JUL PY 2014 VL 6 IS 7 BP 590 EP 595 DI 10.1038/NCHEM.1956 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA AK5DM UT WOS:000338444600010 PM 24950328 ER PT J AU Shapiro, MG Ramirez, RM Sperling, LJ Sun, G Sun, J Pines, A Schaffer, DV Bajaj, VS AF Shapiro, Mikhail G. Ramirez, R. Matthew Sperling, Lindsay J. Sun, George Sun, Jinny Pines, Alexander Schaffer, David V. Bajaj, Vikram S. TI Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging SO NATURE CHEMISTRY LA English DT Article ID LASER-POLARIZED XE-129; GAS VESICLES; CONTRAST AGENTS; PICOMOLAR SENSITIVITY; FUNCTIONALIZED XENON; FLUORESCENT PROTEIN; MRI; NMR; EXCHANGE; BIOSENSOR AB Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional H-1 MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized Xe-129 MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for H-1 MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells. C1 [Shapiro, Mikhail G.] Univ Calif Berkeley, Miller Res Inst, Berkeley, CA 94720 USA. [Shapiro, Mikhail G.; Sun, Jinny; Schaffer, David V.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Shapiro, Mikhail G.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Shapiro, Mikhail G.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Ramirez, R. Matthew; Sun, Jinny; Pines, Alexander; Bajaj, Vikram S.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Ramirez, R. Matthew; Sperling, Lindsay J.; Pines, Alexander; Bajaj, Vikram S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Schaffer, David V.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Shapiro, MG (reprint author), Univ Calif Berkeley, Miller Res Inst, Berkeley, CA 94720 USA. EM mikhail@caltech.edu; vikbajaj@gmail.com FU Miller Research Fellowship; Burroughs Wellcome Career Award at the Scientific Interface (M.G.S.); California Institute For Regenerative Medicine [RT2-02022]; Department of Energy [DE-AC02-05CH11231] FX We thank P. Dao for assistance with NMR measurements, M. Cannon for providing the pNL29 plasmid and R. Zalpuri and K. McDonald for assistance with electron microscopy. This work was supported by the Miller Research Fellowship and Burroughs Wellcome Career Award at the Scientific Interface (M.G.S.), California Institute For Regenerative Medicine grant RT2-02022 (D.V.S.) and Department of Energy contract DE-AC02-05CH11231 (A.P., V.S.B). NR 50 TC 42 Z9 43 U1 11 U2 60 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD JUL PY 2014 VL 6 IS 7 BP 630 EP 635 DI 10.1038/NCHEM.1934 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA AK5DM UT WOS:000338444600016 PM 24950334 ER PT J AU Mortimer, SA Kidwell, MA Doudna, JA AF Mortimer, Stefanie A. Kidwell, Mary Anne Doudna, Jennifer A. TI Insights into RNA structure and function from genome-wide studies SO NATURE REVIEWS GENETICS LA English DT Review ID SELECTIVE 2'-HYDROXYL ACYLATION; LONG NONCODING RNAS; MESSENGER-RNA; SECONDARY STRUCTURE; IN-VIVO; GLOBAL ANALYSIS; SACCHAROMYCES-CEREVISIAE; NUCLEOTIDE RESOLUTION; TARGET RECOGNITION; PROTEIN EXPRESSION AB A comprehensive understanding of RNA structure will provide fundamental insights into the cellular function of both coding and non-coding RNAs. Although many RNA structures have been analysed by traditional biophysical and biochemical methods, the low-throughput nature of these approaches has prevented investigation of the vast majority of cellular transcripts. Triggered by advances in sequencing technology, genome-wide approaches for probing the transcriptome are beginning to reveal how RNA structure affects each step of protein expression and RNA stability. In this Review, we discuss the emerging relationships between RNA structure and the regulation of gene expression. C1 [Mortimer, Stefanie A.; Kidwell, Mary Anne; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Guardant Hlth Inc, 2686 Middlefield Rd, Redwood City, CA 94063 USA. EM doudna@berkeley.edu FU US National Institutes of Health FX The authors apologize to colleagues whose work was not cited owing to space limitation. They thank Y. Bai, R. Wilson, S. Floor, M. Hammond and members of J.A.D.'s laboratory for discussions; K Weeks for sharing HIV-1 SHAPE data; and J. Ji for reading the manuscript. This work was supported in part by a grant from the US National Institutes of Health (to J.A.D.). J.A.D. is a Howard Hughes Medical Institute Investigator. NR 103 TC 89 Z9 90 U1 6 U2 71 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-0056 EI 1471-0064 J9 NAT REV GENET JI Nat. Rev. Genet. PD JUL PY 2014 VL 15 IS 7 BP 469 EP 479 DI 10.1038/nrg3681 PG 11 WC Genetics & Heredity SC Genetics & Heredity GA AK4KT UT WOS:000338394300010 PM 24821474 ER PT J AU Balden, M Endstrasser, N Humrickhouse, PW Rohde, V Rasinski, M von Toussaint, U Elgeti, S Neu, R AF Balden, M. Endstrasser, N. Humrickhouse, P. W. Rohde, V. Rasinski, M. von Toussaint, U. Elgeti, S. Neu, R. CA ASDEX Upgrade Team TI Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade SO NUCLEAR FUSION LA English DT Article DE dust; particles size distribution; tungsten; tokamak; SEM ID FUSION DEVICES; PLASMA PERFORMANCE; TUNGSTEN LAYERS; CARBON DUST; VACUUM ARCS; DIII-D; TOKAMAK; DEPOSITION; DISCHARGE; DIVERTOR AB The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007-2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e. g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the similar to 50 000 analysed particles on the Si collectors of campaign 2009 contain tungsten-the plasma-facing material in AUG-and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B-C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 mu m only for the W-dominated spheroids, at around 1 mu m. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG. C1 [Balden, M.; Endstrasser, N.; Rohde, V.; Rasinski, M.; von Toussaint, U.; Elgeti, S.; Neu, R.; ASDEX Upgrade Team] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. [Humrickhouse, P. W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Rasinski, M.] Warsaw Univ Technol, Fac Mat Sci & Engn, PL-02507 Warsaw, Poland. RP Balden, M (reprint author), Max Planck Inst Plasma Phys, EURATOM Assoc, Boltzmannstr 2, D-85748 Garching, Germany. EM Martin.Balden@ipp.mpg.de RI Neu, Rudolf /B-4438-2010; OI Neu, Rudolf /0000-0002-6062-1955; Rasinski, Marcin/0000-0001-6277-4421 FU European Community FX This work, supported by the European Community under the contract of the EURATOM Association, was partly carried out within the framework of the EFDA Task Force on Plasma Wall Interactions. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 77 TC 14 Z9 14 U1 1 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2014 VL 54 IS 7 AR 073010 DI 10.1088/0029-5515/54/7/073010 PG 16 WC Physics, Fluids & Plasmas SC Physics GA AK3SE UT WOS:000338344200016 ER PT J AU Futatani, S Huijsmans, G Loarte, A Baylor, LR Commaux, N Jernigan, TC Fenstermacher, ME Lasnier, C Osborne, TH Pegourie, B AF Futatani, S. Huijsmans, G. Loarte, A. Baylor, L. R. Commaux, N. Jernigan, T. C. Fenstermacher, M. E. Lasnier, C. Osborne, T. H. Pegourie, B. TI Non-linear MHD modelling of ELM triggering by pellet injection in DIII-D and implications for ITER SO NUCLEAR FUSION LA English DT Article DE ELM; ITER; ELM control; pellet pacing; ELM triggering; non-linear MHD AB Edge localized mode (ELM) triggering by pellet injection in the DIII-D tokamak has been simulated with the non-linear MHD code JOREK with a view to validating its physics models. JOREK has been subsequently applied to evaluate the requirements for ELM control by pellet injection in ITER. JOREK modelling results for DIII-D show that the key parameter for the triggering of ELMs by pellets is the value of the localized pressure perturbation caused by pellet injection which leads to a threshold minimum pellet size for a given injection velocity, injection geometry and H-mode plasma characteristics. The minimum pellet size for ELM triggering is found to depend on injection geometry with the largest value being required for injection at the outer midplane, intermediate for injection near the X-point and the smallest one for injection at the high-field side. The first results of studies for ELM triggering by pellet injection in ITER 15 MA Q = 10 plasmas with the foreseen injection geometry in ITER are presented. C1 [Futatani, S.; Huijsmans, G.; Loarte, A.] ITER Org, F-13115 St Paul Les Durance, France. [Baylor, L. R.; Commaux, N.; Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Fenstermacher, M. E.; Lasnier, C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Fenstermacher, M. E.; Lasnier, C.; Osborne, T. H.] Gen Atom Co, San Diego, CA 92186 USA. [Pegourie, B.] CEA IRFM, F-13108 St Paul Les Durance, France. RP Futatani, S (reprint author), ITER Org, F-13115 St Paul Les Durance, France. EM alberto.loarte@iter.org OI Futatani, Shimpei/0000-0001-5742-5454 FU US DOE [DE-AC05-00OR22725, DE-AC52-07NA27344, DE-FC02-04ER54698] FX This work was supported in part by the US DOE under DE-AC05-00OR22725, DE-AC52-07NA27344, and DE-FC02-04ER54698. Part of this work was carried out using the HELIOS supercomputer system at Computational Situational Centre of International Fusion Energy Research Centre (IFERC-CSC), Aomori, Japan, under the Broader Approach collaboration between Euratom and Japan, implemented by Fusion for Energy and JAEA. NR 19 TC 12 Z9 12 U1 2 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2014 VL 54 IS 7 AR 073008 DI 10.1088/0029-5515/54/7/073008 PG 20 WC Physics, Fluids & Plasmas SC Physics GA AK3SE UT WOS:000338344200014 ER PT J AU Garofalo, AM Chan, VS Canik, JM Sawan, ME Choi, M Humphreys, DA Lao, LL Prater, R Stangeby, PC St John, HE Taylor, TS Turnbull, AD Wong, CPC AF Garofalo, A. M. Chan, V. S. Canik, J. M. Sawan, M. E. Choi, M. Humphreys, D. A. Lao, L. L. Prater, R. Stangeby, P. C. St John, H. E. Taylor, T. S. Turnbull, A. D. Wong, C. P. C. TI Progress in the physics basis of a Fusion Nuclear Science Facility based on the Advanced Tokamak concept SO NUCLEAR FUSION LA English DT Article DE fusion reactor design; steady-state scenario simulation; divertor analysis ID DIII-D; PLASMAS; PERFORMANCE; GEOMETRY; DIVERTOR AB Physics based integrated modelling of the baseline scenario for a Fusion Nuclear Science Facility based on the Advanced Tokamak concept (FNSF-AT) (Chan et al 2010 Fusion Sci. Technol. 57 66) has found steady-state equilibria with good stability and controllability properties at the fusion performance required to accomplish FNSF's nuclear science mission with margin. 2D divertor analysis for this baseline scenario predicts that peak heat flux <10 MW m(-2) can be obtained even with scrape-off layer power width similar to 1 mm. Using this baseline fusion performance, high fidelity and high-resolution 3D neutronics calculations show acceptable cumulative end-of-life organic insulator dose levels in all the device coils, and TBR > 1. Two current drive scenarios, two divertor configurations, and two blanket concepts have been analysed. FNSF-AT would complement ITER in addressing science and technology gaps to a commercially attractive DEMO, and could enable a DEMO construction decision triggered by the achievement of Q = 10 in ITER. C1 [Garofalo, A. M.; Chan, V. S.; Choi, M.; Humphreys, D. A.; Lao, L. L.; Prater, R.; St John, H. E.; Taylor, T. S.; Turnbull, A. D.; Wong, C. P. C.] Gen Atom Co, San Diego, CA 92186 USA. [Canik, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Sawan, M. E.] Univ Wisconsin, Fus Technol Inst, Madison, WI 53706 USA. [Stangeby, P. C.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada. RP Garofalo, AM (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM garofalo@fusion.gat.com OI Canik, John/0000-0001-6934-6681 FU General Atomics IRD; US Department of Energy [DE-FC02-04ER54698, DE-FG02-95ER54309, DE AC05 00OR22725, DE-FG02-09ER54513] FX This work was supported in part by General Atomics IR&D funding, and the US Department of Energy under DE-FC02-04ER54698, DE-FG02-95ER54309, DE AC05 00OR22725 and DE-FG02-09ER54513. NR 37 TC 4 Z9 4 U1 2 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2014 VL 54 IS 7 AR 073015 DI 10.1088/0029-5515/54/7/073015 PG 13 WC Physics, Fluids & Plasmas SC Physics GA AK3SE UT WOS:000338344200021 ER PT J AU Gerasimov, SN Hender, TC Morris, J Riccardo, V Zakharov, LE AF Gerasimov, S. N. Hender, T. C. Morris, J. Riccardo, V. Zakharov, L. E. CA JET EFDA Contributors TI Plasma current asymmetries during disruptions in JET SO NUCLEAR FUSION LA English DT Article DE tokamak; disruption; VDE; kink instability; plasma current asymmetries ID ALCATOR C-MOD; MITIGATION; STABILITY AB A key feature of disruptions during vertical displacement events, discovered in JET in 1996, is the toroidal variation in the measured plasma current I-p, i.e. the plasma current asymmetries, lasting for almost the entire current quench. The unique magnetic diagnostics at JET (full set of poloidal coils and saddle loops recorded either from two toroidally opposite or from four toroidally orthogonal locations) allow for a comprehensive analysis of asymmetrical disruptions with a large scale database. This paper presents an analysis of 4854 disruptions over an 18 year period that includes both the JET carbon (C) wall and the ITER-like (IL) wall (a mixed beryllium/tungsten first wall). In spite of the I-p quench time significantly increasing for the IL-wall compared to C-wall disruptions, the observed toroidal asymmetry time integral (similar to sideways force impulse), did not increase for IL-wall disruptions. The I-p asymmetry has a dominantly n = 1 structure. Its motion in the toroidal direction has a sporadic behaviour, in general. The distributions of the number of rotation periods are found to be very similar for both C-and IL-wall disruptions, and multi-turn rotation was sometimes observed. The I-p asymmetry amplitude has no degradation with rotation frequency for either the C-or IL-wall disruption. Therefore dynamic amplification remains a potentially serious issue for ITER due to possible mechanical resonance of the machine components with the rotating asymmetry. C1 JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Gerasimov, S. N.; Hender, T. C.; Morris, J.; Riccardo, V.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Zakharov, L. E.] Princeton Univ, PPPL, Princeton, NJ 08543 USA. RP Gerasimov, SN (reprint author), Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM Sengei.Gerasimov@ccfe.ac.uk RI Gerasimov, Sergei/O-4881-2015; OI Gerasimov, Sergei/0000-0002-6249-2931; riccardo, valeria/0000-0003-2535-5257 FU European Communities; RCUK Energy Programme [EP/I501045]; US DoE [DE-AC02-09-CH11466] FX The authors would like to acknowledge M. F. Johnson for initial development of the JET disruption database and P. Noll for helpful discussions. This work, part-funded by the European Communities under the contract of Association between EURATOM/CCFE was carried out within the framework of the European Fusion Development Agreement. For further information on the contents of this paper please contact publications-officer@jet.efda.org. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also partially funded by the RCUK Energy Programme (grant number EP/I501045) and by the US DoE contract No DE-AC02-09-CH11466. NR 37 TC 17 Z9 17 U1 2 U2 33 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2014 VL 54 IS 7 AR 073009 DI 10.1088/0029-5515/54/7/073009 PG 14 WC Physics, Fluids & Plasmas SC Physics GA AK3SE UT WOS:000338344200015 ER PT J AU Kim, K Park, JK Boozer, AH Menard, JE Gerhardt, SP Logan, NC Wang, ZR Kramer, GJ Burrell, KH Garofalo, AM AF Kim, K. Park, J. -K. Boozer, A. H. Menard, J. E. Gerhardt, S. P. Logan, N. C. Wang, Z. R. Kramer, G. J. Burrell, K. H. Garofalo, A. M. TI Calculation of neoclassical toroidal viscosity with a particle simulation in the tokamak magnetic braking experiments SO NUCLEAR FUSION LA English DT Article DE tokamak; NTV; magnetic breaking; 3D field; drift-kinetic particle simulation ID BANANA-DRIFT TRANSPORT; MOMENTUM DISSIPATION; PLASMAS; RIPPLE AB Accurate calculation of perturbed distribution function delta f and perturbed magnetic field delta B is essential to achieve prediction of non-ambipolar transport and neoclassical toroidal viscosity (NTV) in perturbed tokamaks. This paper reports a study of the NTV with a delta f particle code (POCA) and improved understanding of magnetic braking in tokamak experiments. POCA calculates the NTV by computing delta f with guiding-centre orbit motion and using delta B from the ideal perturbed equilibrium code (IPEC). Theories of NTV for magnetic field resonance, collisionality dependency, and toroidal mode coupling are tested in the simple configurations using the particle simulations. The POCA simulations are also compared with experimental estimations for NTV, which are measured from angular momentum balance (DIII-D) and toroidal rotational damping rate (NSTX). The calculation shows reasonable agreement in total NTV torque for the DIII-D discharge with weak rotational resonances in the nu(-) root nu. regime. In NSTX discharges where the bounce-harmonic resonances dominantly appear, the POCA simulation gives total NTV torques comparable to the measurements, however large discrepancies are found in the detailed damping and NTV profiles. It is discussed that a self-consistent calculation of delta B using general perturbed equilibria is eventually necessary since a non-ideal plasma response can change the perturbed field and thereby the NTV torque. C1 [Kim, K.; Park, J. -K.; Menard, J. E.; Gerhardt, S. P.; Logan, N. C.; Wang, Z. R.; Kramer, G. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, A. H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Burrell, K. H.; Garofalo, A. M.] Gen Atom Co, San Diego, CA 92186 USA. RP Kim, K (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM kkim@pppl.gov OI Menard, Jonathan/0000-0003-1292-3286 FU DOE [DE-AC02-09CH11466, DE-FC02-04ER54698] FX This work was supported by DOE Contract No DE-AC02-09CH11466 (PPPL) and No DE-FC02-04ER54698 (GA). NR 39 TC 7 Z9 7 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2014 VL 54 IS 7 AR 073014 DI 10.1088/0029-5515/54/7/073014 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AK3SE UT WOS:000338344200020 ER PT J AU Kolemen, E Welander, AS La Haye, RJ Eidietis, NW Humphreys, DA Lohr, J Noraky, V Penaflor, BG Prater, R Turco, F AF Kolemen, E. Welander, A. S. La Haye, R. J. Eidietis, N. W. Humphreys, D. A. Lohr, J. Noraky, V. Penaflor, B. G. Prater, R. Turco, F. TI State-of-the-art neoclassical tearing mode control in DIII-D using real-time steerable electron cyclotron current drive launchers SO NUCLEAR FUSION LA English DT Article DE spherical tokamaks; macroinstabilities; plasma diagnostic techniques; current drive; helicity injection ID D TOKAMAK; STABILIZATION; SYSTEM; JT-60U AB Real-time steerable electron cyclotron current drive (ECCD) has been demonstrated to reduce the power requirements and time needed to remove 3/2 and 2/1 neoclassical tearing modes (NTMs) in the DIII-D tokamak. In a world first demonstration of the techniques required in ITER, the island formation onset is detected automatically, gyrotrons are turned on and the real-time steerable ECCD launcher mirrors are moved promptly to drive current at the location of the islands. This shrinks and suppresses the modes well before saturation using real-time motional Stark effect constrained equilibria reconstruction with advanced feedback and search algorithms to target the deposition. In ITER, this method will reduce the ECCD energy requirement and so raise Q by keeping the EC system off when the NTM is not present. Further, in the experiments with accurate tracking of pre-emptive ECCD to resonant surfaces, both 3/2 and 2/1 modes are prevented from appearing with much lower ECCD peak power than required for removal of a saturated mode. C1 [Kolemen, E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Welander, A. S.; La Haye, R. J.; Eidietis, N. W.; Humphreys, D. A.; Lohr, J.; Noraky, V.; Penaflor, B. G.; Prater, R.] Gen Atom Co, San Diego, CA 92186 USA. [Turco, F.] Columbia Univ, New York, NY 10027 USA. RP Kolemen, E (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU US Department of Energy [DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG0204ER54761] FX This work is supported by the US Department of Energy under DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-FG0204ER54761. NR 16 TC 12 Z9 12 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2014 VL 54 IS 7 AR 073020 DI 10.1088/0029-5515/54/7/073020 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AK3SE UT WOS:000338344200026 ER PT J AU Paz-Soldan, C Buttery, RJ Garofalo, AM Hanson, JM La Haye, RJ Lanctot, MJ Park, JK Solomon, WM Strait, EJ AF Paz-Soldan, C. Buttery, R. J. Garofalo, A. M. Hanson, J. M. La Haye, R. J. Lanctot, M. J. Park, J. K. Solomon, W. M. Strait, E. J. TI The spectral basis of optimal error field correction on DIII-D SO NUCLEAR FUSION LA English DT Article DE error field correction; plasma response; resistive wall mode; kink mode; tokamak ID D TOKAMAK; MODES; PLASMAS AB Experimental optimum error field correction (EFC) currents found in a wide breadth of dedicated experiments on DIII-D are shown to be consistent with the currents required to null the poloidal harmonics of the vacuum field which drive the kink mode near the plasma edge. This allows the identification of empirical metrics which predict optimal EFC currents with accuracy comparable to that of first-principles modelling which includes the ideal plasma response. While further metric refinements are desirable, this work suggests optimal EFC currents can be effectively fed-forward based purely on knowledge of the vacuum error field and basic equilibrium properties which are routinely calculated in real-time. C1 [Paz-Soldan, C.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Buttery, R. J.; Garofalo, A. M.; La Haye, R. J.; Lanctot, M. J.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Hanson, J. M.] Columbia Univ, New York, NY 10027 USA. [Park, J. K.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Paz-Soldan, C (reprint author), Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. EM paz-soldan@fusion.gat.com RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-AC05-06OR23100, DE-FC02-04ER54698, DE-FG02-04ER54761, DE-AC02-09CH11466] FX This work is supported by the US Department of Energy under DE-AC05-06OR23100, DE-FC02-04ER54698, DE-FG02-04ER54761, and DE-AC02-09CH11466. The authors would like to acknowledge all individuals involved with the execution of the dedicated experiments presented herein. Individuals such as D. Shiraki, Y. In, M. Okabayashi, J.T. Scoville, M.J. Schaffer, and H. Reimerdes, have contributed to the measurement of the experimental Iopt here presented. The authors also thank M.J. Schaffer, T. E. Evans, and D. M. Orlov for developing and maintaining the SURFMN code which was used extensively for this study. NR 38 TC 18 Z9 18 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2014 VL 54 IS 7 AR 073013 DI 10.1088/0029-5515/54/7/073013 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AK3SE UT WOS:000338344200019 ER PT J AU Poli, FM Kessel, CE Bonoli, PT Batchelor, DB Harvey, RW Snyder, PB AF Poli, F. M. Kessel, C. E. Bonoli, P. T. Batchelor, D. B. Harvey, R. W. Snyder, P. B. TI External heating and current drive source requirements towards steady-state operation in ITER SO NUCLEAR FUSION LA English DT Article DE steady-state; heating; internal barriers; tokamak; reactor; current drive ID INTERNAL TRANSPORT BARRIERS; H-MODE PLASMAS; JET; TOKAMAKS; SIMULATION; ISSUES AB Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E x B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H-98 = 1.6 and fusion gain Q = 5. C1 [Poli, F. M.; Kessel, C. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bonoli, P. T.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Batchelor, D. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. [Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA. RP Poli, FM (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI poli, francesca/C-2226-2008 OI poli, francesca/0000-0003-3959-4371 FU TRANSP; IPS; US Department of Energy [DE-AC02-CH0911466, DE-AC05-00OR22725]; Scientific Discovery through Advanced Computing (SciDAC) program - US Department of Energy, Office of Science, Fusion Energy Sciences; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge R. Andre, M. Gorelenkova, X. Xuan and T. Ludescher-Furth for support with TRANSP, W. Elwasiv for support with the IPS, N. Bertelli for helpful discussion. This work was supported by the US Department of Energy under contract DE-AC02-CH0911466. ORNL is managed by UT-Battelle, LLC for the US Department of Energy under Contract DE-AC05-00OR22725. Partial support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program, funded by US Department of Energy, Office of Science, Fusion Energy Sciences. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No DE-AC02-05CH11231. NR 47 TC 7 Z9 7 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2014 VL 54 IS 7 AR 073007 DI 10.1088/0029-5515/54/7/073007 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AK3SE UT WOS:000338344200013 ER PT J AU Rack, M Sieglin, B Eich, T Pearson, J Liang, Y Balboa, I Jachmich, S Wingen, A Pamela, SJP AF Rack, M. Sieglin, B. Eich, T. Pearson, J. Liang, Y. Balboa, I. Jachmich, S. Wingen, A. Pamela, S. J. P. CA JET EFDA Contributors TI Findings of pre-ELM structures through the observation of divertor heat load patterns at JET with applied n=2 perturbation fields SO NUCLEAR FUSION LA English DT Article DE edge-localized modes; resonant magnetic perturbations; divertor heat loads ID CONFINEMENT; DISCHARGES; TOKAMAK AB Resonant magnetic perturbation experiments at JET with the ITER-like wall have shown the formation of radially propagating pre-ELM structures in the heat flux profile on the outer divertor. These appear a few milliseconds before the major divertor heat load, caused by type-I edge-localized modes (ELMs). The formation of the pre-ELM structures is accompanied by an increase in the D-alpha emission. For some pronounced examples, the propagation appears to end at the positions where an increased heat load is seen during the ELM crash a few milliseconds later. These observations are presented and discussed along with a comparison of a thermoelectric edge currents model. C1 JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Rack, M.; Pearson, J.; Liang, Y.] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, EURATOM Assoc, D-52425 Julich, Germany. [Sieglin, B.; Eich, T.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Balboa, I.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Jachmich, S.] Ecole Royale Mil, Partner Trilateral Euregio Cluster, Assoc Euratom Belgian State, Plasma Phys Lab, B-1000 Brussels, Belgium. [Wingen, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Pamela, S. J. P.] Aix Marseille Univ, CNRS, IIFS PIIM, F-13397 Marseille 20, France. RP Rack, M (reprint author), Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, EURATOM Assoc, D-52425 Julich, Germany. EM m.rack@fz-juelich.de OI Wingen, Andreas/0000-0001-8855-1349 FU European Communities; Helmholtz Association in frame of the Helmholtz-University [VH-NG-410] FX Valuable discussions with Peter de Vries and Sebastijan Brezinsek are gratefully acknowledged. M R is thankful for the support of Evgenij Bleile and Gotz Lehmann. This work, supported by the European Communities under the contract of Association between EURATOM and FZJ, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Additional support from the Helmholtz Association in frame of the Helmholtz-University Young Investigators Group VH-NG-410 is gratefully acknowledged. NR 33 TC 1 Z9 1 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2014 VL 54 IS 7 AR 072004 DI 10.1088/0029-5515/54/7/072004 PG 6 WC Physics, Fluids & Plasmas SC Physics GA AK3SE UT WOS:000338344200004 ER PT J AU Schmitz, L Zeng, L Rhodes, TL Hillesheim, JC Peebles, WA Groebner, RJ Burrell, KH McKee, GR Yan, Z Tynan, GR Diamond, PH Boedo, JA Doyle, EJ Grierson, BA Chrystal, C Austin, ME Solomon, WM Wang, G AF Schmitz, L. Zeng, L. Rhodes, T. L. Hillesheim, J. C. Peebles, W. A. Groebner, R. J. Burrell, K. H. McKee, G. R. Yan, Z. Tynan, G. R. Diamond, P. H. Boedo, J. A. Doyle, E. J. Grierson, B. A. Chrystal, C. Austin, M. E. Solomon, W. M. Wang, G. TI The role of zonal flows and predator-prey oscillations in triggering the formation of edge and core transport barriers SO NUCLEAR FUSION LA English DT Article DE tokamak; DIII-D; L-H transition; zonal flows; internal transport barriers; predator-prey oscillations ID DIII-D TOKAMAK; TURBULENCE; PLASMAS; SHEAR AB We present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator-prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E x B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E x B shearing rate, omega(ExB), in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90 degrees, transitioning to anti-correlation (180 degrees) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180 degrees out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H-L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field) beta(theta) = 2 mu(0)n(T-e + T-i)/B-theta(2) in ITER. C1 [Schmitz, L.; Zeng, L.; Rhodes, T. L.; Peebles, W. A.; Doyle, E. J.; Wang, G.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Hillesheim, J. C.] EURATOM CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Groebner, R. J.; Burrell, K. H.] Gen Atom Co, San Diego, CA 92186 USA. [McKee, G. R.; Yan, Z.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Tynan, G. R.; Diamond, P. H.; Boedo, J. A.] Univ Calif San Diego, Ctr Momentum Transport & Flow Org, La Jolla, CA 92093 USA. [Diamond, P. H.] NFRI, WCI Ctr Fus Theory, Taejon 305333, South Korea. [Grierson, B. A.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Chrystal, C.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Austin, M. E.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. RP Schmitz, L (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM lschmitz@ucla.edu OI Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-FG03-01ER54615, DE-FG02-08ER54984, DE-FC02-04ER54698, DE-FG02-89ER53296, DE-FG02-08ER54999, DE-FG02-07ER54917, DE-AC02-09CH11466, DE-FG03-97ER54415] FX This work was supported in part by the US Department of Energy under DE-FG03-01ER54615, DE-FG02-08ER54984, DE-FC02-04ER54698, DE-FG02-89ER53296, DE-FG02-08ER54999, DE-FG02-07ER54917, DE-AC02-09CH11466 and DE-FG03-97ER54415. NR 35 TC 14 Z9 14 U1 2 U2 33 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2014 VL 54 IS 7 AR 073012 DI 10.1088/0029-5515/54/7/073012 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AK3SE UT WOS:000338344200018 ER PT J AU Stacey, WM Grierson, BA AF Stacey, Weston M. Grierson, Brian A. TI Interpretation of rotation and momentum transport in the DIII-D edge plasma and comparison with neoclassical theory SO NUCLEAR FUSION LA English DT Article DE rotation; intrinsic rotation; momentum transport ID TOKAMAK PLASMA; TOROIDAL ROTATION; ELECTRIC-FIELD AB A low-confinement mode discharge which optimizes the capability of the new main-ion charge-exchange-recombination spectroscopy system on DIII-D (Luxon 2002 Nucl. Fusion 42 614) to measure deuterium toroidal velocity is interpretted in comparison with the predictions of neoclassical theory, with an emphasis on the plasma edge region. The observed peaking in the deuterium toroidal velocity near the separatrix is shown to be consistent with intrinsic co-rotation due to ion orbit loss. In general, the standard neoclassical toroidal and poloidal momentum transport rates are found to be smaller than those inferred from experiment. C1 [Stacey, Weston M.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Grierson, Brian A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Stacey, WM (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. FU DOE [DE-FG02-ER54538, DE-AC02-09CH11466]; Georgia Tech Research Corporation; Princeton Plasma Physics Laboratory; General Atomics [DE-AC03-99ER54463] FX The authors acknowledge their gratitude to other members of the DIII-D Team whose efforts have made these measurements possible, and in particular to Colin Chrystal for reducing the carbon spectroscopic data. The first author expresses his appreciation to General Atomics for their hospitality during part of this work. The work was supported by DOE grant DE-FG02-ER54538 with the Georgia Tech Research Corporation and by DOE contracts DE-AC02-09CH11466 with the Princeton Plasma Physics Laboratory and DE-AC03-99ER54463 with General Atomics. NR 37 TC 12 Z9 12 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2014 VL 54 IS 7 AR 073021 DI 10.1088/0029-5515/54/7/073021 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AK3SE UT WOS:000338344200027 ER PT J AU Umeda, T Ueno, S Nakamura, TKM AF Umeda, Takayuki Ueno, Satoshi Nakamura, Takuma K. M. TI Ion kinetic effects on nonlinear processes of the Kelvin-Helmholtz instability SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE Kelvin-Helmholtz instability; Vlasov equation; hydrodynamic instability; plasma turbulence ID SOLAR-WIND; SIMULATION; BOUNDARY; MAGNETOPAUSE; RECONNECTION; TRANSPORT; VORTICES; EQUATION; SCHEME; FIELDS AB The nonlinear evolution of the Kelvin-Helmholtz (KH) instability at a transverse velocity shear layer in an inhomogeneous space plasma is investigated by means of a four-dimensional (two spatial and two velocity dimensions) electromagnetic Vlasov simulation. When the rotation direction of the primary KH vortex and the direction of ion gyro motion are the same (i.e., the inner product between the vorticity of the primary velocity shear and the magnetic field vector is negative) there exists a strong ion cyclotron damping. In this case, spatial inhomogeneity inside the primary KH vortex is smoothed and the secondary Rayleigh-Taylor/KH instabilities are suppressed. It is also found that another secondary instability on the electron inertial scale is simultaneously generated at secondary shear layers for both cases, but at different locations. The small-scale secondary instability takes place only when the inner product between the vorticity of the secondary shear layer and the magnetic field vector is positive, suggesting the damping of small-scale processes by ion gyro motion. These results indicate that secondary instabilities occurring in the nonlinear stage of the primary KHI show different evolutions depending on the sign of the inner product between the magnetic field and the vorticity of the velocity shear layer. C1 [Umeda, Takayuki; Ueno, Satoshi] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Nakamura, Takuma K. M.] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM 87545 USA. RP Umeda, T (reprint author), Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. EM umeda@stelab.nagoya-u.ac.jp FU MEXT/JSPS [23740367, 25610144]; JHPCN program at Joint Usage/Research Center for Interdisciplinary Large-Scale Information Infrastructures [jh130005-NA03]; HPCI Systems Research Project [hp120092] FX The authors thank Yosuke Matsumoto and Tatsuki Ogino for their discussions. This work was supported by MEXT/JSPS under Grant-in-Aid for Young Scientists (B) No 23740367 and Grant-in-Aid for Challenging Exploratory Research No 25610144. The computer simulations were performed on the DELL PowerEdge R815 supercomputer system at the Solar-Terrestrial Environment Laboratory (STEL), the Fujitsu FX1 and HX600 supercomputer systems at the Information Technology Center, Nagoya University, the Fujitsu CX400 supercomputer system at the Research Institute for Information Technology, Kyushu University, and the Fujitsu FX10 supercomputer system at the Information Technology Center, University of Tokyo, and the K computer at the RIKEN Advanced Institute for Computational Science. The computational resources are provided as a STEL computational joint research program, a Nagoya University HPC program, a JHPCN program at Joint Usage/Research Center for Interdisciplinary Large-Scale Information Infrastructures (No jh130005-NA03), and the HPCI Systems Research Project (No hp120092). NR 45 TC 5 Z9 5 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JUL PY 2014 VL 56 IS 7 AR 075006 DI 10.1088/0741-3335/56/7/075006 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AK6CL UT WOS:000338515300007 ER PT J AU Ellison, PA McLaughlin, JP Stavsetra, L Gregorich, KE Nitsche, H AF Ellison, Paul A. McLaughlin, Joseph P. Stavsetra, Liv Gregorich, Kenneth E. Nitsche, Heino TI Measurement of the Am-240 production cross section via proton irradiation of Pu-242 SO RADIOCHIMICA ACTA LA English DT Article DE Am-240; Production cross section; Proton irradiation ID EXCITATION-FUNCTIONS; ACTINIDE PRODUCTION; HEAVIEST ELEMENTS; NATURAL NICKEL; ENERGY-RANGE; FISSION; NP-237; PURPOSES; TARGETS; NUCLEI AB A new nuclear reaction for the production of Am-240 was experimentally investigated. Targets of 150-500 mu g/cm(2) Pu-242 on 2 mu mTi were produced through molecular deposition. Five irradiations, in which Pu-242, Ti-nat, and Ni-nat targets were jointly activated with protons from the Lawrence Berkeley National Laboratory 88-Inch Cyclotron produced Am-240, V-48, and Ni-57, respectively. The radioactive decay of these nuclides was monitored using high-purity Ge gamma ray detectors in the weeks following irradiation. A maximum Pu-242(p, 3n)Am-240 nuclear reaction cross section was measured to be 45 +/- 13 mb with 23 MeV protons. While this value is lower than theoretical predictions, it is high enough to be the most viable nuclear reaction for the large-scale production of Am-240. C1 [Ellison, Paul A.; McLaughlin, Joseph P.; Nitsche, Heino] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ellison, Paul A.; McLaughlin, Joseph P.; Gregorich, Kenneth E.; Nitsche, Heino] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Stavsetra, Liv] Inst Energy Technol, N-2007 Kjeller, Norway. RP Nitsche, H (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM HNitsche@berkeley.edu FU U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) Steawardship Science Academic Alliance program [DE-FG52-06NA27480, DE-FG52-10NA29652]; DOE NNSA Stewardship Science Graduate Fellowship [DE-FC52-08NA28752] FX The authors would like to thank the LBNL staff, operators of the 88-Inch Cyclotron, Jan Dvorak, Zuzana Dvorakova, and Jacklyn Gates for their kind assistance during and following the 242Pu irradiations and Nicholas Esker for helpful editorial comments. Financial support was provided by U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) Steawardship Science Academic Alliance program under Contracts No. DE-FG52-06NA27480 and DE-FG52-10NA29652. P.A.E. was supported by a DOE NNSA Stewardship Science Graduate Fellowship under Contract No. DE-FC52-08NA28752. NR 40 TC 1 Z9 1 U1 0 U2 6 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PD JUL PY 2014 VL 102 IS 7 BP 561 EP 568 DI 10.1515/ract-2014-2219 PG 8 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AK5UD UT WOS:000338491000001 ER PT J AU Engle, JW Weidner, JW Ballard, BD Fassbender, ME Hudston, LA Jackman, KR Dry, DE Wolfsberg, LE Bitteker, LJ Ullmann, JL Gulley, MS Pillai, C Goff, G Birnbaum, ER John, KD Mashnik, SG Nortier, FM AF Engle, Jonathan W. Weidner, John W. Ballard, Beau D. Fassbender, Michael E. Hudston, Lisa A. Jackman, Kevin R. Dry, Donald E. Wolfsberg, Laura E. Bitteker, Leo J. Ullmann, John L. Gulley, Mark S. Pillai, Chandra Goff, George Birnbaum, Eva R. John, Kevin D. Mashnik, Stepan G. Nortier, Francois M. TI Ac, La, and Ce radioimpurities in Ac-225 produced in 40-200 MeV proton irradiations of thorium SO RADIOCHIMICA ACTA LA English DT Article DE Ac-225; Ac-227; Ce-139; Ce-141; Ce-143; La-140; Ba-140; Alpha-emitting; Radionuclides; Radiotherapy; Proton irradiation; Thorium ID CROSS-SECTIONS; RADIOIMMUNOTHERAPY; ACTINIUM; ISOTOPES; THERAPY; SPECTRA AB Accelerator production of Ac-225 addresses the global supply deficiency currently inhibiting clinical trials fromestablishing Ac-225's therapeutic utility, provided that the accelerator product is of sufficient radionuclidic purity for patient use. Two proton activation experiments utilizing the stacked foil technique between 40 and 200MeV were employed to study the likely co-formation of radionuclides expected to be especially challenging to separate from Ac-225. Foils were assayed by nondestructive gamma-spectroscopy and by alpha-spectroscopy of chemically processed target material. Nuclear formation cross sections for the radionuclides Ac-226 and Ac-227 as well as lower lanthanide radioisotopes Ce-139, Ce-141, Ce-143, and La-140 whose elemental ionic radii closely match that of actinium were measured and are reported. The predictions of the latest MCNP6 event generators are compared with measured data, as they permit estimation of the formation rates of other radionuclides whose decay emissions are not clearly discerned in the complex spectra collected from Th-232(p,x) fission product mixtures. C1 [Engle, Jonathan W.; Ballard, Beau D.; Fassbender, Michael E.; Hudston, Lisa A.; Jackman, Kevin R.; Dry, Donald E.; Wolfsberg, Laura E.; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; Goff, George; Birnbaum, Eva R.; John, Kevin D.; Mashnik, Stepan G.; Nortier, Francois M.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Weidner, John W.] Air Force Inst Technol, Wright Patterson AFB, OH USA. RP Engle, JW (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM jwengle@lanl.gov RI Ballard, Beau/E-2925-2017; OI Ballard, Beau/0000-0003-1206-9358; John, Kevin/0000-0002-6181-9330 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA253996]; US DOE Office of Science via award from The Isotope Development and Production for Research and Applications subprogram in the Office of Nuclear Physics FX We are grateful for technical assistance from LANL C-NR, C-IIAC, AOT-OPS, and LANSCEWNR groups' staff. This study was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA253996 with partial funding by the US DOE Office of Science via an award from The Isotope Development and Production for Research and Applications subprogram in the Office of Nuclear Physics. NR 34 TC 9 Z9 9 U1 1 U2 17 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PD JUL PY 2014 VL 102 IS 7 BP 569 EP 581 DI 10.1515/ract-2013-2179 PG 13 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AK5UD UT WOS:000338491000002 ER PT J AU Zimmerman, T Zavarin, M Powell, BA AF Zimmerman, Trevor Zavarin, Mavrik Powell, Brian A. TI Influence of humic acid on plutonium sorption to gibbsite: Determination of Pu-humic acid complexation constants and ternary sorption studies SO RADIOCHIMICA ACTA LA English DT Article DE Plutonium; Humic acid; Sorption; Ternary complex; Gibbsite ID METAL-IONS; SUBSTANCES; REDUCTION; ADSORPTION; TETRAVALENT; KAOLINITE; GOETHITE; SYSTEMS; PU(V); PH AB In this work stability constants describing Pu(IV), Th(IV), and Np(V) binding to Leonardite humic acid (HA) were determined using a discrete pK(a). model. A hybrid ultra-filtration/equilibrium dialysis, ligand exchange technique was used to generate the partitioning data. Ethylenediaminetetraacetic acid (EDTA) was used as a reference ligand to allow the aqueous chemistry of the Pu(IV)-HA system to be examined over a range of pH values, while minimizing the possibility of precipitation of Pu(IV). The conditional stability constant for Pu(IV) complexation with HA determined as part of this work is log beta(112) = 6.76 +/- 0.14 based on the equation: Pu4+ + HL3 + 2H(2)O <-> Pu(OH)(2)L3(+) + 3H(+) where HA is represented by HL3 (a binding site on the HA with a pK(a) value of 7). This value is three orders of magnitude higher than the Th(IV)-HA constant and between six and eight orders of magnitude higher than the Np(V)-HA complex. The magnitude of the stability constants and the general trend of increasing complexation strength with increasing pH is consistent with previous observations. The Pu(IV)-HA stability constants were used to model sorption of Pu(IV) to gibbsite in the presence of HA. Assuming only aqueous Pu-HA complexes and AlOH-Pu surface complexes, the model was unable to predict the observed data which exhibited greater sorption at pH 4 relative to pH 6; a phenomenon which does not occur in the absence of HA. Therefore, this study demonstrates that ternary Pu-HA-gibbsite complexes may form under low pH conditions and exhibit greater sorption than that observed in the absence of HA. Although the presence of HA may increase the solubility/aqueous concentrations of Pu in the absence of a solid phase, formation of ternary complexes may indeed retard the subsurface migration of Pu. The corollary to this finding is that increased mobility may occur if the ternary surface complex forms on a mobile colloid rather than part of the subsurface matrix C1 [Zimmerman, Trevor; Powell, Brian A.] Clemson Univ, Anderson, SC 29625 USA. [Zavarin, Mavrik] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Glenn T Seaborg Inst, Livermore, CA 94551 USA. RP Powell, BA (reprint author), Clemson Univ, Anderson, SC 29625 USA. EM bpowell@clemson.edu RI Powell, Brian /C-7640-2011 OI Powell, Brian /0000-0003-0423-0180 FU Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research FX The authors wish to thank Dr. Annie B. Kersting of Lawrence Livermore National Laboratory and Dr. Ruth Tinnacher of Lawrence Berkeley National Laboratory for helpful discussions regarding this work. This work was supported by the Subsurface Biogeochemical Research Program of the U. S. Department of Energy's Office of Biological and Environmental Research. NR 44 TC 7 Z9 7 U1 2 U2 43 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PD JUL PY 2014 VL 102 IS 7 BP 629 EP 643 DI 10.1515/ract-2014-2163 PG 15 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AK5UD UT WOS:000338491000008 ER PT J AU Chakrabarty, RK Beres, ND Moosmuller, H China, S Mazzoleni, C Dubey, MK Liu, L Mishchenko, MI AF Chakrabarty, Rajan K. Beres, Nicholas D. Moosmueller, Hans China, Swarup Mazzoleni, Claudio Dubey, Manvendra K. Liu, Li Mishchenko, Michael I. TI Soot superaggregates from flaming wildfires and their direct radiative forcing SO SCIENTIFIC REPORTS LA English DT Article ID INDIVIDUAL AEROSOL-PARTICLES; BIOMASS BURNING PARTICLES; SOUTHERN AFRICA; CARBONACEOUS PARTICLES; FRACTAL DIMENSION; LIGHT-SCATTERING; BROWN CARBON; MEXICO-CITY; T-MATRIX; ABSORPTION AB Wildfires contribute significantly to global soot emissions, yet their aerosol formation mechanisms and resulting particle properties are poorly understood and parameterized in climate models. The conventional view holds that soot is formed via the cluster-dilute aggregation mechanism in wildfires and emitted as aggregates with fractal dimension D-f approximate to 1.8 mobility diameter D-m <= 1 mu m, and aerodynamic diameter D-a <= 300 nm. Here we report the ubiquitous presence of soot superaggregates (SAs) in the outflow from a major wildfire in India. SAs are porous, low-density aggregates of cluster-dilute aggregates with characteristic D-f approximate to 2.6, D-m > 1 mu m, and D-a <= 300 nm that form via the cluster-dense aggregation mechanism. We present additional observations of soot SAs in wildfire smoke-laden air masses over Northern California, New Mexico, and Mexico City. We estimate that SAs contribute, per unit optical depth, up to 35% less atmospheric warming than freshly-emitted (Df approximate to 1.8) aggregates, and approximate to 90% more warming than the volume-equivalent spherical soot particles simulated in climate models. C1 [Chakrabarty, Rajan K.] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Chakrabarty, Rajan K.; Beres, Nicholas D.; Moosmueller, Hans] Nevada Syst Higher Educ, Desert Res Inst, Reno, NV USA. [China, Swarup; Mazzoleni, Claudio] Michigan Technol Univ, Atmospher Sci Program, Houghton, MI 49931 USA. [Dubey, Manvendra K.] Los Alamos Natl Lab, Earth Syst Observat, Los Alamos, NM USA. [Liu, Li; Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Chakrabarty, RK (reprint author), Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. EM rajan.chakrabarty@gmail.com RI Dubey, Manvendra/E-3949-2010; Mishchenko, Michael/D-4426-2012; OI Dubey, Manvendra/0000-0002-3492-790X; Moosmuller, Hans/0000-0002-1021-8877 FU NASA [NNX10AR89A, NNX11AB79G, NNX12AN97H]; U.S. Department of Energy Atmospheric System Research(PI-MKD) [DE-SC0010019, F265-LANL]; Desert Research Institute; U. S. National Science Foundation Division of Atmospheric and Geospace Sciences [ATM07-21142] FX This material is based upon work supported by NASA (NNX10AR89A, NNX11AB79G and NNX12AN97H), the U.S. Department of Energy Atmospheric System Research (DE-SC0010019 and F265-LANL(PI-MKD)), the U. S. National Science Foundation Division of Atmospheric and Geospace Sciences (ATM07-21142), and the Desert Research Institute. We thank V. Ramanathan for facilitating our participation in the field campaign at Maldives; K. Gorkowski for his help with sampling aerosols during CARES and the Las Conchas fire; O. Gustafsson for providing quartz fiber filter samples; B. Zielinska and her laboratory for performing mass spectrometry analyses of quartz fiber filters; M. Ahmadian for assisting with microscopy analysis; L. Wable for illustrations; R. Kreidberg for help with editing the manuscript; and C. M. Sorensen for insightful discussions. NR 56 TC 24 Z9 24 U1 3 U2 54 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 1 PY 2014 VL 4 AR 5508 DI 10.1038/srep05508 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AK4UR UT WOS:000338420100005 PM 24981204 ER PT J AU MacCarthy, JK Rowe, CA AF MacCarthy, Jonathan K. Rowe, Charlotte A. TI Pisces: A Practical Seismological Database Library in Python SO SEISMOLOGICAL RESEARCH LETTERS LA English DT Editorial Material ID MANAGEMENT; OBSPY; TOOL C1 [MacCarthy, Jonathan K.; Rowe, Charlotte A.] Los Alamos Natl Lab, Geophys Grp EES 17, Los Alamos, NM 87545 USA. RP MacCarthy, JK (reprint author), Los Alamos Natl Lab, Geophys Grp EES 17, MS DF665, Los Alamos, NM 87545 USA. EM jkmacc@lanl.gov OI Rowe, Charlotte/0000-0001-5803-0147 NR 23 TC 0 Z9 0 U1 0 U2 3 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0895-0695 J9 SEISMOL RES LETT JI Seismol. Res. Lett. PD JUL-AUG PY 2014 VL 85 IS 4 BP 905 EP 911 DI 10.1785/0220140013 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AK1NO UT WOS:000338182000017 ER PT J AU Ray, D Reichhardt, C Reichhardt, CJO AF Ray, D. Reichhardt, C. Reichhardt, C. J. Olson TI Vortex states in Archimedean tiling pinning arrays SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE periodic pinning; magnetization; vortex configurations ID SUPERCONDUCTING FILMS; CRITICAL CURRENTS; REGULAR ARRAY; MAGNETIC DOTS; FLUX; LATTICE; COMMENSURATE; DYNAMICS; DEFECTS AB We numerically study vortex ordering and pinning in Archimedean tiling substrates composed of square and triangular plaquettes. The two different plaquettes become occupied at different vortex densities, producing commensurate peaks in the magnetization at non-integer matching fields. We find that as the field increases, in some cases the fraction of occupied pins can decrease due to the competition between fillings of the different plaquette types. We also identify a number of different types of vortex orderings as a function of the field at integer and non-integer commensurate fillings. C1 [Ray, D.; Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ray, D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Ray, D (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cjrx@lanl.gov OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the US DoE at LANL [DE-AC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the US DoE at LANL under contract no. DE-AC52-06NA25396. NR 37 TC 4 Z9 4 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2014 VL 27 IS 7 AR 075006 DI 10.1088/0953-2048/27/7/075006 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA AK6KL UT WOS:000338536400009 ER PT J AU Susner, MA Sumption, MD Takase, A Collings, EW AF Susner, M. A. Sumption, M. D. Takase, A. Collings, E. W. TI Evidence for Zr site-substitution for Mg in PLD-deposited MgB2 thin films SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE magnesium diboride; pulsed laser deposition; thin films; superconducting critical fields ID CRITICAL-CURRENT DENSITY; UPPER CRITICAL-FIELD; IRREVERSIBILITY FIELD; SINGLE-CRYSTALS; SUPERCONDUCTIVITY; TRANSITION; NA AB In an investigation of possible atomic substitution for the Mg site in MgB2, superconducting thin films were deposited by pulsed laser deposition using MgB2 and ZrB2 targets. The resulting c-axis- oriented thin films contained various concentrations of Zr. The structural, chemical, and superconductive properties of these films were investigated. ZrB2 additions were found to increase the a lattice parameter; STEM-based chemical analysis showed Zr to be present within the grains. The superconducting critical temperature was suppressed for the heavily-doped samples. These observations are strong evidence for the substitution of Zr for Mg in the Mg sublattice of MgB2. C1 [Susner, M. A.; Sumption, M. D.; Collings, E. W.] Ohio State Univ, Dept Mat Sci & Engn, Ctr Superconducting & Magnet Mat, Columbus, OH 43210 USA. [Takase, A.] Rigaku Amer, The Woodlands, TX 77381 USA. RP Susner, MA (reprint author), ORNL, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Susner, Michael/G-3275-2015; Susner, Michael/B-1666-2013; Sumption, Mike/N-5913-2016 OI Susner, Michael/0000-0002-1211-8749; Susner, Michael/0000-0002-1211-8749; Sumption, Mike/0000-0002-4243-8380 FU United States Department of Energy, Office of High Energy Physics [DE-FG02-95ER40900]; National Science Foundation Cooperative Agreement [DMR-0654118]; State of Florida; US Department of Energy; Ohio State University NanoSystems Laboratory and Denis Pelekhov FX This work was supported by the United States Department of Energy, Office of High Energy Physics under grant DE-FG02-95ER40900. Additionally, a portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement no. DMR-0654118, the State of Florida, and the US Department of Energy. We also acknowledge the support of the Ohio State University NanoSystems Laboratory and Denis Pelekhov for use of their PPMS. Finally, the authors of this work would like to acknowledge Hendrik O Colijn and Daniel E Huber of the Ohio State CEOF/CEMAS facility for their assistance in electron microscopy characterization and training. NR 28 TC 1 Z9 1 U1 3 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2014 VL 27 IS 7 AR 075009 DI 10.1088/0953-2048/27/7/075009 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA AK6KL UT WOS:000338536400012 ER PT J AU Takahashi, M Herendeen, PS Xiao, XH Crane, PR AF Takahashi, Masamichi Herendeen, Patrick S. Xiao, Xianghui Crane, Peter R. TI Lauraceous Fossil Flowers from the Kamikitaba Assemblage (Coniacian, Late Cretaceous) of Northeastern Japan (Lauraceae) SO SYSTEMATIC BOTANY LA English DT Article DE Cretaceous; mesofossils; Microlaterus; SRXTM; Synchrotron-radiation X-Ray microtomography ID EASTERN NORTH-AMERICA; SP-NOV; POTOMAC GROUP; ANGIOSPERM RADIATION; FLORAL EVIDENCE; PHYLOGENY; GEN.; INFLORESCENCES; DIVERSITY; SEQUENCES AB A new genus and species of Lauraceae, Microlaurus perigynus gen. et sp. nov. is described based on fossil charcoalified flower buds recovered from the Kamikitaba assemblage (early Coniacian, Late Cretaceous; ca. 89 million years before present (myr BP)) in the Ashizawa Formation (Asamigawa Member) of the Futaba Group in northeastern Japan. Analysis of the internal structure of the fossil buds using synchrotron-radiation X-ray microtomography (SRXTM) at the 2-BM-B beamline of the Advanced Photon Source (APS), Argonne National Laboratory, shows that the flowers are small, pedicellate, bisexual, trimerous, and actinomorphic, with small outer tepals, larger inner tepals, three whorls of stamens, an innermost androecial whorl composed of staminodia, and a unicarpellate gynoecium containing a single ovule. Microlaurus perigynus is assigned to the Lauraceae based on the regular trimerous floral organization and other details of floral structure, but it is distinguished from most previously described lauraceous fossil flowers by the poorly differentiated filament and anther in the stamens of the third whorl and the marked size difference between the small outer tepals and the large inner tepals. Also unusual are the paired glandular appendages that appear to be associated with the first (outermost) whorl of stamens, rather than the stamens of the third whorl, although the precise position is not fully clear. The same feature occurs in Hernandiaceae, the sister group of Lauraceae, as well as in PowhaMnia connata, an earlier but fragmentary lauralean fossil flower from the Early to Middle Albian of Virginia. Microlaurus perigynus adds to the floral diversity of Lauraceae known from the Late Cretaceous, and its presence in the Kamikitaba assemblage from Japan underlines the broad geographic distribution and floristic significance of lauraceous plants during the Late Cretaceous. C1 [Takahashi, Masamichi] Niigata Univ, Fac Sci, Dept Environm Sci, Nishi Ku, Niigata 9502181, Japan. [Herendeen, Patrick S.] Chicago Bot Garden, Glencoe, IL 60022 USA. [Xiao, Xianghui] Adv Photon Source, Argonne, IL 60439 USA. [Crane, Peter R.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA. RP Takahashi, M (reprint author), Niigata Univ, Fac Sci, Dept Environm Sci, Nishi Ku, Niigata 9502181, Japan. EM masamichi@env.sc.niigata-u.ac.jp FU Japan Society for the Promotion of Science [18570083, 21570092, 24570092]; U.S. DOE [DE-AC02-06CH11357] FX We thank Drs. Hank van der Werff and Jens Rohwer for comments on the fossils and comparisons with extant Lauraceae, and two anonymous reviewers for helpful comments on the manuscript. The study was funded by Grants-in-Aid for Scientific Research (18570083, 21570092, and 24570092) from Japan Society for the Promotion of Science to M. Takahashi. Use of the Advanced Photon Source, an Office of Science User Facility, operated for the U. S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract no. DE-AC02-06CH11357. NR 57 TC 4 Z9 4 U1 4 U2 17 PU AMER SOC PLANT TAXONOMISTS PI LARAMIE PA UNIV WYOMING, DEPT BOTANY 3165, 1000 E UNIVERSITY AVE, LARAMIE, WY 82071 USA SN 0363-6445 EI 1548-2324 J9 SYST BOT JI Syst. Bot. PD JUL-SEP PY 2014 VL 39 IS 3 BP 715 EP 724 DI 10.1600/036364414X681464 PG 10 WC Plant Sciences; Evolutionary Biology SC Plant Sciences; Evolutionary Biology GA AK4OY UT WOS:000338405200004 ER PT J AU Provino, A Manfrinetti, P Gschneidner, KA Dhar, SK Schlagel, DL Lograsso, TA Miller, GJ Thimmaiah, S Wang, H Russell, AM Becker, A Mudryk, Y AF Provino, Alessia Manfrinetti, Pietro Gschneidner, Karl A., Jr. Dhar, Sudesh K. Schlagel, Deborah L. Lograsso, Thomas A. Miller, Gordon J. Thimmaiah, Srinivasa Wang, Hui Russell, Alan M. Becker, Andrew Mudryk, Yaroslav TI Self-assembled nano- to micron-size fibers from molten R11Ni4In9 intemietallics SO ACTA MATERIALIA LA English DT Article DE Rare-earth intermetallics; Nanocrystalline metals; Fibers; Anisotropic properties; Ferrimagnetism AB A study of the formation of Gd11M4In9 (M = Ni, Pd, Pt) and R11Ni4In9 (R = rare earth) compounds revealed a unique and peculiar property, which is to naturally crystallize in a bundle of self-assembled fibers when cooled from the melt. The fibers, which are nano- to millimeters in cross-section and approximate to 11-40 mm long, grow unidirectionally along a temperature gradient. These compounds adopt the orthorhombic Nd11Pd4In9 structure type (oC48-Cmmm). This structure is layered, with slabs of R atoms alternating with slabs of Ni/In atoms along a short c-axis (much shorter than either the a- or b-axis). The growth direction of the fibers is along the crystallographic c-axis, orthogonal to the a-b plane. Two strong and short In In bonds lie in the a-b plane, which are even shorter than in In metal. Integrated crystal orbital Hamilton population calculations show that the In In bonds create isolated "R8Ni4In9" rods growing along the c-axis, with the In In bonds being part of the rods. This appears to be an important factor explaining the microfibrous nature of these phases. Some physical properties have been measured on the Gd11Ni4In9 homolog. The compound orders ferrimagnetically at T-c approximate to 88 K, and at lower temperatures (46 and 10 K), two other magnetic anomalies were observed, probably due to spin reorientations. As expected from the bonding features, the mechanical, magnetic and electrical properties are strongly anisotropic. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Provino, Alessia; Manfrinetti, Pietro] Univ Genoa, Dept Chem, I-16146 Genoa, Italy. [Provino, Alessia; Manfrinetti, Pietro; Gschneidner, Karl A., Jr.; Schlagel, Deborah L.; Lograsso, Thomas A.; Miller, Gordon J.; Thimmaiah, Srinivasa; Wang, Hui; Mudryk, Yaroslav] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Gschneidner, Karl A., Jr.; Russell, Alan M.; Becker, Andrew] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Miller, Gordon J.; Wang, Hui] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Gschneidner, KA (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM cagey@ameslab.gov FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; [NSF-DMR 10-05765] FX The research carried out at the Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. A.P. is grateful to Prof. L. Banfi (Director of the PhD School in Sciences and Technologies of Chemistry and Materials, University of Genova, Italy) for support of a one-year fellowship abroad. A.P. and P.M. thank Mr. Roger Rink for technical support provided during measurements, and Mrs. Carol Smith for preparing the manuscript. Theoretical calculations (G.J.M. and H.W.) were supported by NSF-DMR 10-05765. The authors wish to thank Prof. M.E. Glicksman, Florida Institute of Technology for his useful comments. NR 24 TC 4 Z9 4 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUL PY 2014 VL 73 BP 27 EP 36 DI 10.1016/j.actamat.2014.03.061 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AJ7BV UT WOS:000337853100004 ER PT J AU Senninger, O Martinez, E Soisson, F Nastar, M Brechet, Y AF Senninger, Oriane Martinez, Enrique Soisson, Frederic Nastar, Maylise Brechet, Yves TI Atomistic simulations of the decomposition kinetics in Fe-Cr alloys: Influence of magnetism SO ACTA MATERIALIA LA English DT Article DE Fe-Cr alloys; Precipitation kinetics; Monte Carlo simulations; Magnetic transitions; Diffusion ID SMALL-ANGLE SCATTERING; SPINODAL DECOMPOSITION; ALPHA-IRON; DIFFUSION; CHROMIUM; MOSSBAUER; SYSTEM AB Magnetism plays a crucial role in the thermodynamic and kinetic properties of ferritic alloys. In fact, magnetism increases the solubility limit of Cr in Fe, inducing an asymmetrical phase diagram. Moreover, the phase transition from ferromagnetic to paramagnetic (F/P) iron alloys modifies to a large extent the system response to different environmental conditions by modification of the alloy diffusion properties. Indeed, experimental tracer diffusion coefficients deviate from an Arrhenius law during the F/P magnetic transition, leading to a large increase in the paramagnetic regime compared to the extrapolated value from the ferromagnetic domain. Furthermore, as the Curie temperature decreases with the Cr concentration, this evolution of the diffusion properties affects the decomposition kinetics in different ways depending on the alloy composition. An atomic diffusion model, with pair interactions that depend on the local composition and on temperature, has been developed to take into account this magnetic transition effect. The interaction model has been implemented in an atomistic kinetic Monte Carlo algorithm to study the diffusion coefficients and precipitation kinetics of the Fe Cr alloys. This model has been successfully compared to decomposition kinetic experiments for a wide range of concentrations and temperatures. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Senninger, Oriane; Soisson, Frederic; Nastar, Maylise] CEA, DEN, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. [Martinez, Enrique] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Brechet, Yves] CNRS UJF, INP Grenoble, SIMAP, St Martin Dheres, France. RP Soisson, F (reprint author), CEA, DEN, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. EM frederic.soisson@cea.fr OI Martinez Saez, Enrique/0000-0002-2690-2622 FU European fusion materials modeling program; European Atomic Energy Community 7th Framework Program [212175]; US Department of Energy through the LANL/LDRD Program FX We thank C.-C. Fu and E. Clouet for many fruitful discussions. This research has received partial funding from the European fusion materials modeling program and from the European Atomic Energy Community 7th Framework Program (FP7/2007-2011), under Grant Agreement No. 212175 (GetMat project). E.M. gratefully acknowledges the support of the US Department of Energy through the LANL/LDRD Program for this work. NR 46 TC 12 Z9 12 U1 2 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUL PY 2014 VL 73 BP 97 EP 106 DI 10.1016/j.actamat.2014.03.019 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AJ7BV UT WOS:000337853100010 ER PT J AU Lee, SY Wang, H Gharghouri, MA Nayyeri, G Woo, W Shin, E Wu, PD Poole, WJ Wu, W An, K AF Lee, S. Y. Wang, H. Gharghouri, M. A. Nayyeri, G. Woo, W. Shin, E. Wu, P. D. Poole, W. J. Wu, W. An, K. TI Deformation behavior of solid-solution-strengthened Mg-9 wt.% Al alloy: In situ neutron diffraction and elastic-viscoplastic self-consistent modeling SO ACTA MATERIALIA LA English DT Article DE Magnesium; Deformation; In situ neutron diffraction; EVPSC model; Lattice strain ID WROUGHT MAGNESIUM ALLOY; TWINNING-DETWINNING BEHAVIOR; LATTICE STRAIN EVOLUTION; FINITE-ELEMENT-METHOD; MECHANICAL-BEHAVIOR; TEXTURE DEVELOPMENT; AZ31B SHEET; STRESS-RELAXATION; STAINLESS-STEEL; INTERNAL STRAIN AB In situ neutron diffraction and elastic-viscoplastic self-consistent (EVPSC) modeling have been employed to understand the deformation mechanisms of the loading-unloading process under uniaxial tension in a solid-solution-strengthened extruded Mg-9 wt.% Al alloy. The initial texture measured by neutron diffraction shows that the {00.2} basal planes in most grains are tilted around 20-30 from the extrusion axis, indicating that basal slip should be easily activated in a majority of grains under tension. Non-linear stress strain responses are observed during unloading and reloading after the material is fully plastically deformed under tension. In situ neutron diffraction measurements have also demonstrated the non-linear behavior of lattice strains during unloading and reloading, revealing that load redistribution continuously occurs between soft and hard grain orientations. The predicted macroscopic stress-strain curve and the lattice strain evolution by the EVPSC model are in good agreement with the experimental data. The EVPSC model provides the relative activities of the available slip and twinning modes, as well as the elastic and plastic strains of the various grain families. It is suggested that the non-linear phenomena in the macroscopic stress-strain responses and microscopic lattice strains during unloading and reloading are due to plastic deformation by the operation of basal (a) slip in the soft grain orientations (e.g. {10.1}, {11.2} and {10.2} grain families). (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Lee, S. Y.] Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, South Korea. [Wang, H.; Wu, P. D.] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. [Gharghouri, M. A.] AECL Res, Chalk River Labs, Canadian Neutron Beam Ctr, Chalk River, ON K0J 1J0, Canada. [Nayyeri, G.; Poole, W. J.] Univ British Columbia, Dept Mat Engn, Vancouver, BC V6T 1Z4, Canada. [Woo, W.; Shin, E.] Korea Atom Energy Res Inst, Div Neutron Sci, Taejon 305353, South Korea. [Wu, W.; An, K.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Lee, SY (reprint author), Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, South Korea. EM sylee2012@cnu.ac.kr RI An, Ke/G-5226-2011; Wang, Huamiao/F-7693-2010; Wu, Wei/G-3204-2014; Wu, Peidong/A-7009-2008; OI An, Ke/0000-0002-6093-429X; Wang, Huamiao/0000-0002-7167-2483; Wu, Wei/0000-0002-8596-9253; WOO, Wanchuck/0000-0003-0350-5357 FU National Research Foundation of Korea (NRF) - Korean government (MSIP) [2012M2B2A4029572, 2013R1A4A1069528]; NSERC Magnesium Strategic Research Network (MagNET); Chungnam National University; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP) (Nos. 2012M2B2A4029572 and 2013R1A4A1069528). This work was also supported by funding from the NSERC Magnesium Strategic Research Network (MagNET) and the Chungnam National University. This research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 69 TC 24 Z9 24 U1 4 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUL PY 2014 VL 73 BP 139 EP 148 DI 10.1016/j.actamat.2014.03.038 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AJ7BV UT WOS:000337853100014 ER PT J AU Hunter, SD Bloser, PF Depaola, GO Dion, MP DeNolfo, GA Hanu, A Iparraguirre, M Legere, J Longo, F McConnell, ML Nowicki, SF Ryan, JM Son, S Stecker, FW AF Hunter, Stanley D. Bloser, Peter F. Depaola, Gerardo O. Dion, Michael P. DeNolfo, Georgia A. Hanu, Andrei Iparraguirre, Marcos Legere, Jason Longo, Francesco McConnell, Mark L. Nowicki, Suzanne F. Ryan, James M. Son, Seunghee Stecker, Floyd W. TI A pair production telescope for medium-energy gamma-ray polarimetry SO ASTROPARTICLE PHYSICS LA English DT Article DE Gamma rays; Pair production; Angular resolution; Polarimetry; Sensitivity; Time projection chamber ID DOUBLE RADIO-SOURCES; CARBON-DISULFIDE; LONGITUDINAL DIFFUSION; PROPORTIONAL-COUNTERS; MULTIPLE-SCATTERING; LINEAR-POLARIZATION; EGRET OBSERVATIONS; CRAB PULSAR; DETECTORS; EMISSION AB We describe the science motivation and development of a pair production telescope for medium-energy (similar to 5-200 MeV) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (similar to 0.6 degrees at 70 MeV), continuum sensitivity comparable with the Fermi-LAT front detector (<3 x 10(-6) MeV cm(-2) s(-1) 70 MeV), and minimum detectable polarization less than 10% for a 10 mCrab source in 10(6) s. Published by Elsevier B.V. C1 [Hunter, Stanley D.; DeNolfo, Georgia A.; Hanu, Andrei; Nowicki, Suzanne F.; Son, Seunghee; Stecker, Floyd W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bloser, Peter F.; Legere, Jason; McConnell, Mark L.; Ryan, James M.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Depaola, Gerardo O.; Iparraguirre, Marcos] Univ Cordoba, Fac Matemat Astron & Fis, RA-5008 Cordoba, Argentina. [Dion, Michael P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Longo, Francesco] Univ Trieste, Dipartimento Fis, Treste, Italy. [Nowicki, Suzanne F.; Son, Seunghee] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. RP Hunter, SD (reprint author), NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. EM stanley.d.hunter@nasa.gov OI Dion, Michael/0000-0002-3030-0050 NR 89 TC 12 Z9 12 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD JUL-AUG PY 2014 VL 59 BP 18 EP 28 DI 10.1016/j.astropartphys.2014.04.002 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AJ7MT UT WOS:000337881500004 ER PT J AU Ajello, M Albert, A Allafort, A Baldini, L Barbiellini, G Bastieri, D Bellazzini, R Bissaldi, E Bonamente, E Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Cecchi, C Charles, E Chekhtman, A Chiang, J Chiaro, G Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Cutini, S D'Ammando, F de Palma, F Dermer, CD Desiante, R Digel, SW Silva, EDE Drell, PS Drlica-Wagner, A Favuzzi, C Focke, WB Franckowiak, A Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grove, JE Guiriec, S Hadasch, D Hayashida, M Hays, E Horan, D Hou, X Hughes, RE Inoue, Y Jackson, MS Jogler, T Johannesson, G Johnson, AS Johnson, WN Kamae, T Knodlseder, J Kocevski, D Kuss, M Lande, J Larsson, S Latronico, L Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Mayer, M Mazziotta, MN McEnery, JE Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Murphy, R Nakamori, T Nemmen, R Nuss, E Ohno, M Ohsugi, T Omodei, N Orienti, M Orlando, E Ormes, JF Paneque, D Panetta, JH Perkins, JS Pesce-Rollins, M Petrosian, V Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Roth, M Schulz, A Sgro, C Siskind, EJ Spandre, G Spinelli, P Takahashi, H Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Tinivella, M Tosti, G Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Werner, M Winer, BL Wood, DL Wood, KS Yang, Z AF Ajello, M. Albert, A. Allafort, A. Baldini, L. Barbiellini, G. Bastieri, D. Bellazzini, R. Bissaldi, E. Bonamente, E. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Cutini, S. D'Ammando, F. de Palma, F. Dermer, C. D. Desiante, R. Digel, S. W. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Favuzzi, C. Focke, W. B. Franckowiak, A. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Horan, D. Hou, X. Hughes, R. E. Inoue, Y. Jackson, M. S. Jogler, T. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Larsson, S. Latronico, L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Mayer, M. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Murphy, R. Nakamori, T. Nemmen, R. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Perkins, J. S. Pesce-Rollins, M. Petrosian, V. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Roth, M. Schulz, A. Sgro, C. Siskind, E. J. Spandre, G. Spinelli, P. Takahashi, H. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Tinivella, M. Tosti, G. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Werner, M. Winer, B. L. Wood, D. L. Wood, K. S. Yang, Z. TI IMPULSIVE AND LONG DURATION HIGH-ENERGY GAMMA-RAY EMISSION FROM THE VERY BRIGHT 2012 MARCH 7 SOLAR FLARES SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: flares; Sun: X-rays, gamma rays ID LARGE-AREA TELESCOPE; STOCHASTIC ACCELERATION; X-RAY; VELA PULSAR; ELECTRON ACCELERATION; EGRET; CALIBRATION; PARTICLES; COMPTON; DIRECTIVITY AB The Fermi Large Area Telescope (LAT) detected gamma-rays up to 4 GeV from two bright X-class solar flares on 2012 March 7, showing both an impulsive and temporally extended emission phases. The gamma-rays appear to originate from the same active region as the X-rays associated with these flares. The >100 MeV gamma-ray flux decreases monotonically during the first hour (impulsive phase) followed by a slower decrease for the next 20 hr. A power law with a high-energy exponential cutoff can adequately describe the photon spectrum. Assuming that the gamma rays result from the decay of pions produced by accelerated protons and ions with a power-law spectrum, we find that the index of that spectrum is similar to 3, with minor variations during the impulsive phase. During the extended phase the photon spectrum softens monotonically, requiring the proton index varying from similar to 4 to >5. The >30 MeV proton flux observed by the GOES satellites also shows a flux decrease and spectral softening, but with a harder spectrum (index similar to 2-3). Based on these observations, we explore the relative merits of prompt or continuous acceleration scenarios, hadronic or leptonic emission processes, and acceleration at the solar corona or by the fast coronal mass ejections. We conclude that the most likely scenario is continuous acceleration of protons in the solar corona that penetrate the lower solar atmosphere and produce pions that decay into gamma rays. However, acceleration in the downstream of the shock cannot be definitely ruled out. C1 [Ajello, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Albert, A.; Allafort, A.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Inoue, Y.; Jogler, T.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Albert, A.; Allafort, A.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Inoue, Y.; Jogler, T.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Bissaldi, E.; Desiante, R.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Chiaro, G.; Pivato, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bissaldi, E.] Univ Trieste, I-34127 Trieste, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Guiriec, S.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Nemmen, R.; Perkins, J. S.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Horan, D.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, Palaiseau, France. [Buehler, R.; Mayer, M.; Schulz, A.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Ciprini, S.; Cutini, S.; Gasparrini, D.] Ist Nazl Astrofis Osservatorio Astron Roma, I-00040 Rome, Italy. [Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS IN2P3, Lab Univers & Particules Montpellier, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Larsson, S.; Yang, Z.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Larsson, S.; Yang, Z.] Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.] Royal Swedish Acad Sci, SE-10405 Stockholm, Sweden. [D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Murphy, R.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Drlica-Wagner, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Fukazawa, Y.; Ohno, M.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Grenier, I. A.] CEA IRFU CNRS Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM, F-91191 Gif Sur Yvette, France. [Hadasch, D.; Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Hadasch, D.; Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Hayashida, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Hou, X.; Lott, B.] Univ Bordeaux 1, CNRS IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.] Royal Inst Technol KTH, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France. [Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [McEnery, J. E.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Murgia, S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wood, D. L.] Praxis Inc, Alexandria, VA 22303 USA. RP Ajello, M (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM nicola.omodei@stanford.edu; melissa.pesce.rollins@pi.infn.it; vahep@stanford.edu RI Bissaldi, Elisabetta/K-7911-2016; Reimer, Olaf/A-3117-2013; Morselli, Aldo/G-6769-2011; Nemmen, Rodrigo/O-6841-2014; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Orlando, E/R-5594-2016; Mazziotta, Mario /O-8867-2015; Gargano, Fabio/O-8934-2015; giglietto, nicola/I-8951-2012; Moskalenko, Igor/A-1301-2007; Sgro, Carmelo/K-3395-2016 OI giommi, paolo/0000-0002-2265-5003; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Inoue, Yoshiyuki/0000-0002-7272-1136; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094; Giroletti, Marcello/0000-0002-8657-8852; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Larsson, Stefan/0000-0003-0716-107X; Bissaldi, Elisabetta/0000-0001-9935-8106; Reimer, Olaf/0000-0001-6953-1385; Morselli, Aldo/0000-0002-7704-9553; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Giordano, Francesco/0000-0002-8651-2394; Mazziotta, Mario /0000-0001-9325-4672; Gargano, Fabio/0000-0002-5055-6395; giglietto, nicola/0000-0002-9021-2888; Moskalenko, Igor/0000-0001-6141-458X; NR 56 TC 25 Z9 25 U1 1 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2014 VL 789 IS 1 AR 20 DI 10.1088/0004-637X/789/1/20 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK0LD UT WOS:000338103400020 ER PT J AU Firestone, RB AF Firestone, R. B. TI OBSERVATION OF 23 SUPERNOVAE THAT EXPLODED <300 pc FROM EARTH DURING THE PAST 300 kyr SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; Earth; ISM: supernova remnants; supernovae: general ID RADIOCARBON AGE CALIBRATION; NEARBY OB ASSOCIATIONS; VELA SUPERNOVA; COSMIC-RAYS; CLIMATE-CHANGE; CARBON-CYCLE; GAMMA-RAYS; HALF-LIFE; ICE CORE; REMNANTS AB Four supernovae (SNe), exploding <= 300 pc from Earth, were recorded 44, 37, 32, and 22 kyr ago in the radiocarbon (C-14) record during the past 50 kyr. Each SN left a nearly identical signature in the record, beginning with an initial sudden increase in atmospheric radiocarbon, when the SN exploded, followed by a hiatus of 1500 yr, and concluding with a sustained 2000 yr increase in global radiocarbon due to gamma-rays produced by diffusive shock in the SN remnant (SNR). For the past 18 kyr excess radiocarbon has decayed with the C-14 half-life. SN22kyrBP, is identified as the Vela SN that exploded 250 +/- 30 pc from Earth. These SN are confirmed in the Be-10, Al-26, Cl-36, and NO3- geologic records. The rate of near-Earth SNe is consistent with the observed rate of historical SNe giving a galactic rate of 14 +/- 3 kyr(-1) assuming the Chandra Galactic Catalog SNR distribution. The Earth has been used as a calorimeter to determine that approximate to 2 x 10(49) erg were released as gamma-rays at the time of each SN explosion and approximate to 10(50) erg in gamma-rays following each SN. The background rate of C-14 production by cosmic rays has been determined as 1.61 atoms cm(-2) s(-1). Approximately 1/3 of the cosmic ray energy produced by diffusive shock in the SNR was observed to be emitted as high-energy gamma-rays. Analysis of the Be-10/Be-9 ratio in marine sediment identified 19 additional near-Earth SNe that exploded 50-300 kyr ago. Comparison of the radiocarbon record with global temperature variations indicated that each SN explosion is correlated with a concurrent global warming of approximate to 3 degrees C-4 degrees C. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Firestone, RB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rbfirestone@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported, in part, by the U.S. Department of Energy Contract DE-AC02-05CH11231. The author is especially grateful for helpful discussions and suggestions by Allen West (Geoscience Consulting, Dewey, AZ), Jon Hagstrum (USGS, Menlo Park, CA), Spencer Klein (LBNL, Berkeley, CA), Christopher McKee (University of California, Berkeley, Department of Physics), and Mary Firestone (University of California, Berkeley, Department of Environmental Science Policy and Management. NR 65 TC 5 Z9 5 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2014 VL 789 IS 1 AR 29 DI 10.1088/0004-637X/789/1/29 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK0LD UT WOS:000338103400029 ER PT J AU Nynka, M Hailey, CJ Reynolds, SP An, HJ Baganoff, FK Boggs, SE Christensen, FE Craig, WW Gotthelf, EV Grefenstette, BW Harrison, FA Krivonos, R Madsen, KK Mori, K Perez, K Stern, D Wik, DR Zhang, WW Zoglauer, A AF Nynka, Melania Hailey, Charles J. Reynolds, Stephen P. An, Hongjun Baganoff, Frederick K. Boggs, Steven E. Christensen, Finn E. Craig, William W. Gotthelf, Eric V. Grefenstette, Brian W. Harrison, Fiona A. Krivonos, Roman Madsen, Kristin K. Mori, Kaya Perez, Kerstin Stern, Daniel Wik, Daniel R. Zhang, William W. Zoglauer, Andreas TI NuSTAR STUDY OF HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF PWN G21.5-0.9 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (G21.5-0.9); ISM: supernova remnants; radiation mechanisms: general; stars: neutron; X-rays: ISM ID SUPERNOVA REMNANT G21.5-0.9; PULSAR-WIND NEBULAE; XMM-NEWTON; CRAB-NEBULA; RELATIVISTIC ELECTRONS; INTERSTELLAR-MEDIUM; DUST SCATTERING; PSR J1833-1034; YOUNG PULSAR; HALO AB We present NuSTAR high-energy X-ray observations of the pulsar wind nebula (PWN)/supernova remnant G21.5-0.9. We detect integrated emission from the nebula up to similar to 40 keV, and resolve individual spatial features over a broad X-ray band for the first time. The morphology seen by NuSTAR agrees well with that seen by XMM-Newton and Chandra below 10 keV. At high energies, NuSTAR clearly detects non-thermal emission up to similar to 20 keV that extends along the eastern and northern rim of the supernova shell. The broadband images clearly demonstrate that X-ray emission from the North Spur and Eastern Limb results predominantly from non-thermal processes. We detect a break in the spatially integrated X-ray spectrum at similar to 9 keV that cannot be reproduced by current spectral energy distribution models, implying either a more complex electron injection spectrum or an additional process such as diffusion compared to what has been considered in previous work. We use spatially resolved maps to derive an energy-dependent cooling length scale, L(E) proportional to E-m with m = -0.21 +/- 0.01. We find this to be inconsistent with the model for the morphological evolution with energy described by Kennel & Coroniti. This value, along with the observed steepening in power-law index between radio and X-ray, can be quantitatively explained as an energy-loss spectral break in the simple scaling model of Reynolds, assuming particle advection dominates over diffusion. This interpretation requires a substantial departure from spherical magnetohydrodynamic, magnetic-flux-conserving outflow, most plausibly in the form of turbulent magnetic-field amplification. C1 [Nynka, Melania; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Perez, Kerstin] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Reynolds, Stephen P.] NC State Univ, Dept Phys, Raleigh, NC 27695 USA. [An, Hongjun] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Baganoff, Frederick K.] MIT, Ctr Space Res, Cambridge, MA 02139 USA. [Boggs, Steven E.; Craig, William W.; Krivonos, Roman; Zoglauer, Andreas] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wik, Daniel R.; Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Nynka, M (reprint author), Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; An, Hongjun/0000-0002-6389-9012; Madsen, Kristin/0000-0003-1252-4891 FU NASA [NNG08FD60C] FX This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTAR-DAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 52 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2014 VL 789 IS 1 AR 72 DI 10.1088/0004-637X/789/1/72 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK0LD UT WOS:000338103400072 ER PT J AU Vogel, JK Hascoet, R Kaspi, VM An, HJ Archibald, R Beloborodov, AM Boggs, SE Christensen, FE Craig, WW Gotthelf, EV Grefenstette, BW Hailey, CJ Harrison, FA Kennea, JA Madsen, KK Pivovaroff, MJ Stern, D Zhang, WW AF Vogel, Julia K. Hascoet, Romain Kaspi, Victoria M. An, Hongjun Archibald, Robert Beloborodov, Andrei M. Boggs, Steven E. Christensen, Finn E. Craig, William W. Gotthelf, Eric V. Grefenstette, Brian W. Hailey, Charles J. Harrison, Fiona A. Kennea, Jamie A. Madsen, Kristin K. Pivovaroff, Michael J. Stern, Daniel Zhang, William W. TI NuSTAR OBSERVATIONS OF THE MAGNETAR 1E 2259+586 SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (1E 2259+586); stars: magnetars; stars: neutron; X-rays: bursts ID X-RAY PULSAR; SOFT GAMMA REPEATERS; NEUTRON-STARS; 2002 OUTBURST; 4U 0142+61; EMISSION; SPECTRA; RXTE; ABSORPTION; G109.1-1.0 AB We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggest that an additional component, such as a power law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap. C1 [Vogel, Julia K.; Craig, William W.; Pivovaroff, Michael J.] Lawrence Livermore Natl Lab, Div Phys, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Hascoet, Romain; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hailey, Charles J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Hascoet, Romain; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Kaspi, Victoria M.; An, Hongjun; Archibald, Robert] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Kennea, Jamie A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Vogel, JK (reprint author), Lawrence Livermore Natl Lab, Div Phys, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RI Pivovaroff, Michael/M-7998-2014; Boggs, Steven/E-4170-2015; OI Pivovaroff, Michael/0000-0001-6780-6816; Boggs, Steven/0000-0001-9567-4224; An, Hongjun/0000-0002-6389-9012; Madsen, Kristin/0000-0003-1252-4891 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LDRD program [13-ERD-033]; NASA [NNG08FD60C]; National Aeronautics and Space Administration; NSERC; Centre de Recherche en Astrophysique du Quebec; Canadian Institute for Advanced Study; Canada Research Chairs Program; Lorne Trottier Chair in Astrophysics and Cosmology; NASA ATP [NNX 13AI34G] FX Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with support from the LDRD program through grant 13-ERD-033. This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). V. M. K. receives support from an NSERC Discovery Grant and Accelerator Supplement, from the Centre de Recherche en Astrophysique du Quebec, an R. Howard Webster Foundation Fellowship from the Canadian Institute for Advanced Study, the Canada Research Chairs Program, and the Lorne Trottier Chair in Astrophysics and Cosmology. A. M. B. is supported by the NASA ATP grant NNX 13AI34G. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. We also thank Dr. A. M. Archibald for helpful discussions. NR 38 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2014 VL 789 IS 1 AR 75 DI 10.1088/0004-637X/789/1/75 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK0LD UT WOS:000338103400075 ER PT J AU Zhang, HC Chen, XH Bottcher, M AF Zhang, Haocheng Chen, Xuhui Boettcher, Markus TI SYNCHROTRON POLARIZATION IN BLAZARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; gamma rays: galaxies; radiation mechanisms: non-thermal; relativistic processes ID TIME-DEPENDENT SIMULATIONS; GAMMA-RAY ACTIVITY; PKS 1510-089; MULTIWAVELENGTH OBSERVATIONS; INNER JET; VARIABILITY; EMISSION; MODELS; MARCH; FLARE AB We present a detailed analysis of time-and energy-dependent synchrotron polarization signatures in a shock-in-jet model for gamma-ray blazars. Our calculations employ a full three-dimensional radiation transfer code, assuming a helical magnetic field throughout the jet. The code considers synchrotron emission from an ordered magnetic field, and takes into account all light-travel-time and other relevant geometric effects, while the relevant synchrotron self-Compton and external Compton effects are handled with the two-dimensional Monte-Carlo/Fokker-Planck (MCFP) code. We consider several possible mechanisms through which a relativistic shock propagating through the jet may affect the jet plasma to produce a synchrotron and high-energy flare. Most plausibly, the shock is expected to lead to a compression of the magnetic field, increasing the toroidal field component and thereby changing the direction of the magnetic field in the region affected by the shock. We find that such a scenario leads to correlated synchrotron + synchrotron-self-Compton flaring, associated with substantial variability in the synchrotron polarization percentage and position angle. Most importantly, this scenario naturally explains large polarization angle rotations by greater than or similar to 180 degrees, as observed in connection with gamma-ray flares in several blazars, without the need for bent or helical jet trajectories or other nonaxisymmetric jet features. C1 [Zhang, Haocheng; Boettcher, Markus] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA. [Zhang, Haocheng] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chen, Xuhui] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Chen, Xuhui] DESY, D-15738 Zeuthen, Germany. [Boettcher, Markus] North West Univ, Ctr Space Res, ZA-2531 Potchefstroom, South Africa. RP Zhang, HC (reprint author), Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA. OI Chen, Xuhui/0000-0002-9745-0248 FU NASA [NNX12AP20G]; LANL/LDRD program; DoE/Office of Fusion Energy Science through CMSO; Helmholtz Alliance for Astroparticle Physics HAP - Initiative and Networking Fund of the Helmholtz Association; South African Research Chairs Initiative of the Department of Science and Technology; National Research Foundation of South Africa FX We thank the anonymous referee for a careful review of the paper and helpful suggestions to improve the clarity of the manuscript, and Alan Marscher for valuable discussions and comments. This work was supported by NASA through Fermi Guest Investigator Grant no. NNX12AP20G. H.Z. is supported by the LANL/LDRD program and by DoE/Office of Fusion Energy Science through CMSO. X.C. acknowledges support by the Helmholtz Alliance for Astroparticle Physics HAP funded by the Initiative and Networking Fund of the Helmholtz Association. X.C. gratefully acknowledges the support during his visit to LANL when this work was started. M.B. acknowledges support by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation of South Africa. Simulations were conducted on LANL's Institutional Computing machines. NR 26 TC 16 Z9 16 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2014 VL 789 IS 1 AR 66 DI 10.1088/0004-637X/789/1/66 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AK0LD UT WOS:000338103400066 ER PT J AU Vinokur, JM Korman, TP Cao, Z Bowie, JU AF Vinokur, Jeffrey M. Korman, Tyler P. Cao, Zheng Bowie, James U. TI Evidence of a Novel Mevalonate Pathway in Archaea SO BIOCHEMISTRY LA English DT Article ID DIPHOSPHATE DECARBOXYLASE; PHYSIOLOGICAL-ASPECTS; CRYSTAL-STRUCTURES; BIOSYNTHESIS; ISOPRENOIDS; MECHANISM; EVOLUTION; BINDING; ORIGINS; SITE AB Isoprenoids make up a remarkably diverse class of more than 25000 biomolecules that include familiar compounds such as cholesterol, chlorophyll, vitamin A, ubiquinone, and natural rubber. The two essential building blocks of all isoprenoids, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), are ubiquitous in the three domains of life. In most eukaryotes and archaea, IPP and DMAPP are generated through the mevalonate pathway. We have identified two novel enzymes, mevalonate-3-kinase and mevalonate-3-phosphate-5-kinase from Thermoplasma acidophilum, which act sequentially in a putative alternate mevalonate pathway. We propose that a yet unidentified ATP-independent decarboxylase acts upon mevalonate 3,5-bisphosphate, yielding isopentenyl phosphate, which is subsequently phosphorylated by the known isopentenyl phosphate kinase from T. acidophilum to generate the universal isoprenoid precursor, IPP. C1 [Vinokur, Jeffrey M.; Korman, Tyler P.; Cao, Zheng; Bowie, James U.] Univ Calif Los Angeles, Dept Chem & Biochem, Inst Mol Biol, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Bowie, JU (reprint author), Univ Calif Los Angeles, 659 Boyer Hall,611 Charles E Young Dr East, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu OI Cao, Zheng/0000-0002-9147-5540 FU U.S. Department of Energy [DE-FC02-02ER63421]; National Institutes of Health Chemistry Biology Interface Training Program (National Institute of General Medical Sciences) [5T32GM008496]; National Center for Research Resources [S10-RR025631]; National Science Foundation [CHE-1048804] FX The work was supported by U.S. Department of Energy Grant DE-FC02-02ER63421 to J.U.B., and J.M.V. received support from the National Institutes of Health Chemistry Biology Interface Training Program (National Institute of General Medical Sciences Grant 5T32GM008496). Use of the Waters LCT Premier XE time-of-flight instrument was supported by Grant S10-RR025631 from the National Center for Research Resources. NMR experiments were supported by the National Science Foundation via Equipment Grant CHE-1048804. NR 34 TC 8 Z9 10 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 1 PY 2014 VL 53 IS 25 BP 4161 EP 4168 DI 10.1021/bi500566q PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AK0GA UT WOS:000338089700010 PM 24914732 ER PT J AU Lindedam, J Bruun, S Jorgensen, H Decker, SR Turner, GB DeMartini, JD Wyman, CE Felby, C AF Lindedam, Jane Bruun, Sander Jorgensen, Henning Decker, Stephen R. Turner, Geoffrey B. DeMartini, Jaclyn D. Wyman, Charles E. Felby, Claus TI Evaluation of high throughput screening methods in picking up differences between cultivars of lignocellulosic biomass for ethanol production SO BIOMASS & BIOENERGY LA English DT Article DE High throughput screening; Lignocellulosic ethanol; Wheat straw; Genetic selection; Microscale pretreatment ID WHEAT-STRAW; PRETREATMENT TECHNOLOGIES; ENZYMATIC-HYDROLYSIS; CELLULOSIC ETHANOL; CORN STOVER; IMPACT AB We present a unique evaluation of three advanced high throughput pretreatment and enzymatic hydrolysis systems (HTPH-systems) for screening of lignocellulosic biomass for enzymatic saccharification. Straw from 20 cultivars of winter wheat from two sites in Denmark was hydrothermally pretreated and enzymatically processed in each of the separately engineered HTPH-systems at 1) University of California, Riverside, 2) National Renewable Energy Laboratory (NREL), Colorado, and 3) University of Copenhagen (CPH). All three systems were able to detect significant differences between the cultivars in the release of fermentable sugars, with average cellulose conversions of 57%, 64%, and 71% from Riverside, NREL and CPH, respectively. The best correlation of glucose yields was found between the Riverside and NREL systems (R-2 = 0.2139), and the best correlation for xylose yields was found between Riverside and CPH (R-2 = 0.4269). All three systems identified Flair as the highest yielding cultivar and Dinosor, Glasgow, and Robigus as low yielding cultivars. Despite different conditions in the three HTPH-systems, the approach of microscale screening for phenotypically less recalcitrant feedstock seems sufficiently robust to be used as a generic analytical platform. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lindedam, Jane; Jorgensen, Henning; Felby, Claus] Univ Copenhagen, Dept Geosci & Nat Resource Management, DK-1958 Frederiksberg C, Denmark. [Lindedam, Jane; Bruun, Sander] Univ Copenhagen, Dept Plant & Environm Sci, DK-1871 Frederiksberg C, Denmark. [Decker, Stephen R.; Turner, Geoffrey B.] Natl Renewable Energy Lab, Prot Biochem Biosci Ctr, Golden, CO 80401 USA. [DeMartini, Jaclyn D.; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. RP Lindedam, J (reprint author), Dept Plant & Environm Sci, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. EM lindedam@life.ku.dk; sab@life.ku.dk; hnjoe@kt.dtu.dk; steve.decker@nrel.gov; geoffrey.turner@nrel.gov; jddemartini@gmail.com; cewyman@engr.ucr.edu; cf@life.ku.dk RI Bruun, Sander/G-3555-2014; Jorgensen, Henning/E-1728-2011; Lindedam, Jane/I-3523-2014; OI Bruun, Sander/0000-0002-2233-5122; Jorgensen, Henning/0000-0003-1220-6893; Lindedam, Jane/0000-0002-7063-7395; Felby, Claus/0000-0002-6537-0155 FU Danish Strategic Research Council [2117-05-0064]; BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science FX The collection of straw was funded through the OPUS project funded by the Danish Strategic Research Council (grant no. 2117-05-0064). Work at NREL and UCR was funded through the BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 19 TC 3 Z9 3 U1 2 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD JUL PY 2014 VL 66 BP 261 EP 267 DI 10.1016/j.biombioe.2014.03.006 PG 7 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA AJ7LB UT WOS:000337877100028 ER PT J AU Iroba, KL Tabil, LG Sokhansanj, S Dumonceaux, T AF Iroba, Kingsley L. Tabil, Lope G. Sokhansanj, Shahab Dumonceaux, Tim TI Pretreatment and fractionation of barley straw using steam explosion at low severity factor SO BIOMASS & BIOENERGY LA English DT Article DE Biomass straw; Steam explosion; Severity factor; Chemical composition; Higher heating value; Carbon content ID LIGNOCELLULOSIC BIOMASS; HEATING VALUE; LIGNIN; FUELS; WOOD; TORREFACTION; COMPONENTS; CONVERSION; CELLULOSE; SOFTWOOD AB Agricultural residues represent an abundant, readily available, and inexpensive source of renewable lignocellulosic biomass. However, biomass has complex structural formation that binds cellulose and hemicellulose. This necessitates the initial breakdown of the lignocellulosic matrix. Steam explosion pretreatment was performed on barley straw grind to assist in the deconstruction and disaggregation of the matrix, so as to have access to the cellulose and hemicellulose. The following process and material variables were used: temperature (140-180 degrees C), corresponding saturated pressure (500-1100 kPa), retention time (5-10 min), and mass fraction of water 8-50%. The effect of the pretreatment was assessed through chemical composition analysis. The severity factor R-o, which combines the temperature and time of the hydrolytic process into a single reaction ordinate was determined. To further provide detailed chemical composition of the steam exploded and non-treated biomass, ultimate analysis was performed to quantify the elemental components. Data show that steam explosion resulted in the breakdown of biomass matrix with increase in acid soluble lignin. However, there was a considerable thermal degradation of cellulose and hemicellulose with increase in acid insoluble lignin content. The high degradation of the hemicellulose can be accounted for by its amorphous nature which is easily disrupted by external influences unlike the well-arranged crystalline cellulose. The carbon content of the solid steam exploded product increased at higher temperature and longer residence time, while the hydrogen and oxygen content decreased, and the higher heating value (HHV) increased. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Iroba, Kingsley L.; Tabil, Lope G.] Univ Saskatchewan, Dept Chem & Biol Engn, Saskatoon, SK S7N 5A9, Canada. [Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Dumonceaux, Tim] Agr & Agri Food Canada, Saskatoon Res Ctr, Saskatoon, SK S7N 0X2, Canada. RP Tabil, LG (reprint author), Univ Saskatchewan, Dept Chem & Biol Engn, 57 Campus Dr, Saskatoon, SK S7N 5A9, Canada. EM lope.tabil@usask.ca OI Dumonceaux, Tim/0000-0001-5165-0343 FU Natural Sciences and Engineering Research Council of Canada; Agriculture and Agri-Food Canada through the Agricultural Bioproduct Innovation Program FX The authors acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada and Agriculture and Agri-Food Canada through the Agricultural Bioproduct Innovation Program. Acknowledgment goes to Dr. Thomas Canam and Ms. Jennifer Town at Agriculture and AgriFood Canada for their technical assistance. The support from Zahra Tooyserkani and Bahman Ghiasi of the Department of Chemical and Biological Engineering, University of British Columbia and the technical support unit (Blondin Richard and Bill Crerar) of Chemical and Biological Engineering Department, University of Saskatchewan is highly appreciated. NR 46 TC 14 Z9 15 U1 4 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD JUL PY 2014 VL 66 BP 286 EP 300 DI 10.1016/j.biombioe.2014.02.002 PG 15 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA AJ7LB UT WOS:000337877100031 ER PT J AU Moon, M Kim, CW Farooq, W Suh, WI Shrivastav, A Park, MS Mishra, SK Yang, JW AF Moon, Myounghoon Kim, Chul Woong Farooq, Wasif Suh, William I. Shrivastav, Anupama Park, Min S. Mishra, Sanjiv K. Yang, Ji-Won TI Utilization of lipid extracted algal biomass and sugar factory wastewater for algal growth and lipid enhancement of Ettlia sp. SO BIORESOURCE TECHNOLOGY LA English DT Article DE Microalgae; Ettlia sp.; Lipid extracted algal biomass (LEA); Sugar factory; FAME yield ID BIODIESEL PRODUCTION; CHLORELLA-PROTOTHECOIDES; OIL PRODUCTION; CULTIVATION; MICROALGAE; HYDROLYSATE; VULGARIS; SORGHUM AB The present study assessed the use of hydrolysate of lipid extracted algal biomass (LEA) combined with the sugar factory wastewater (SFW) as a low cost nutrient and a carbon source, respectively for microalgal cultivation. Microalgal strain Ettlia sp. was both mixotrophically and heterotrophically cultivated using various amounts of hydrolysate and SFW. The culture which was grown in medium containing 50% LEA hydrolysate showed highest growth, achieving 5.26 +/- 0.14 g L-1 after 12 days of cultivation. The addition of SFW increased the lipid productivity substantially from 5.8 to 95.5 mg L-1 d(-1) when the culture medium was fortified with 20% SFW. Gas chromatography analysis indicated a noticeable increase of 20% in C16 and C18 fraction in FAME distribution under above condition. Therefore, it can be concluded that the combination of LEA hydrolysate and sugar factory waste water can be a powerful growth medium for economical algal cultivation. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Moon, Myounghoon; Kim, Chul Woong; Farooq, Wasif; Yang, Ji-Won] Korea Adv Inst Sci & Technol, Dept Biomol & Chem Engn, Taejon 305701, South Korea. [Suh, William I.; Shrivastav, Anupama; Park, Min S.; Mishra, Sanjiv K.; Yang, Ji-Won] Korea Adv Inst Sci & Technol, Adv Biomass R&D Ctr, Taejon 305701, South Korea. [Park, Min S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Mishra, SK (reprint author), Korea Adv Inst Sci & Technol, Adv Biomass R&D Ctr, 291 Daehak Ro, Taejon 305701, South Korea. EM sanjivkm@kaist.ac.kr RI Yang, Ji-Won/C-1933-2011; Mishra, Sanjiv/I-4156-2014 OI Mishra, Sanjiv/0000-0002-0403-6575 FU Advanced Biomass R&D Center (ABC) of Korea - Ministry of Science, ICT and Future Planning [ABC-2010-0029728] FX This work was supported by the Advanced Biomass R&D Center (ABC) of Korea Grant funded by the Ministry of Science, ICT and Future Planning (ABC-2010-0029728). NR 32 TC 7 Z9 7 U1 0 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2014 VL 163 BP 180 EP 185 DI 10.1016/j.biortech.2014.04.033 PG 6 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA AJ7KK UT WOS:000337875400025 PM 24811446 ER PT J AU Rouet-Leduc, B Barros, K Cieren, E Elango, V Junghans, C Lookman, T Mohd-Yusof, J Pavel, RS Rivera, AY Roehm, D McPherson, AL Germann, TC AF Rouet-Leduc, Bertrand Barros, Kipton Cieren, Emmanuel Elango, Venmugil Junghans, Christoph Lookman, Turab Mohd-Yusof, Jamaludin Pavel, Robert S. Rivera, Axel Y. Roehm, Dominic McPherson, Allen L. Germann, Timothy C. TI Spatial adaptive sampling in multiscale simulation SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Multiscale; Adaptive sampling ID HYPERBOLIC CONSERVATION-LAWS; GRAINED MOLECULAR-DYNAMICS; VIRIAL STRESS; CONTINUUM MODELS; MESH REFINEMENT; SOLIDS; DEFORMATION; MECHANICS; COMPUTATION; ALGORITHMS AB In a common approach to multiscale simulation, an incomplete set of macroscale equations must be supplemented with constitutive data provided by fine-scale simulation. Collecting statistics from these fine-scale simulations is typically the overwhelming computational cost. We reduce this cost by interpolating the results of fine-scale simulation over the spatial domain of the macro-solver. Unlike previous adaptive sampling strategies, we do not interpolate on the potentially very high dimensional space of inputs to the fine-scale simulation. Our approach is local in space and time, avoids the need for a central database, and is designed to parallelize well on large computer clusters. To demonstrate our method, we simulate one-dimensional elastodynamic shock propagation using the Heterogeneous Multiscale Method (HMM); we find that spatial adaptive sampling requires only approximate to 50 x N-0.14 fine-scale simulations to reconstruct the stress field at all N grid points. Related multiscale approaches, such as Equation Free methods, may also benefit from spatial adaptive sampling. (C) 2014 Elsevier B.V. All rights reserved. C1 [Rouet-Leduc, Bertrand; Barros, Kipton; Cieren, Emmanuel; Junghans, Christoph; Lookman, Turab; Roehm, Dominic; Germann, Timothy C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Elango, Venmugil; Mohd-Yusof, Jamaludin; Pavel, Robert S.; Rivera, Axel Y.; McPherson, Allen L.] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. [Rouet-Leduc, Bertrand] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England. [Cieren, Emmanuel] CEA, DAM, DIF, F-91297 Arpajon, France. [Pavel, Robert S.] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA. [Rivera, Axel Y.] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA. [Roehm, Dominic] Univ Stuttgart, Inst Computat Phys, D-70569 Stuttgart, Germany. [Elango, Venmugil] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA. RP Barros, K (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM kbarros@lanl.gov; tcg@lanl.gov RI Junghans, Christoph/G-4238-2010; OI Junghans, Christoph/0000-0003-0925-1458; Elango, Venmugil/0000-0002-7031-9020; Mohd Yusof, Jamaludin/0000-0002-9844-689X; Germann, Timothy/0000-0002-6813-238X; Barros, Kipton/0000-0002-1333-5972 FU Los Alamos Information Science & Technology Center (IS&T) Co-Design Summer School; US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR) through the Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx, exmatex.org); Center for Nonlinear Studies (CNLS); Los Alamos National Laboratory Director's Fellowship; Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Los Alamos Information Science & Technology Center (IS&T) Co-Design Summer School, the US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR) through the Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx, exmatex.org), and the Center for Nonlinear Studies (CNLS). C.J. acknowledges funding by a Los Alamos National Laboratory Director's Fellowship. Assigned: LA-UR 13-29626. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 53 TC 4 Z9 5 U1 4 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2014 VL 185 IS 7 BP 1857 EP 1864 DI 10.1016/j.cpc.2014.03.011 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AJ5ZF UT WOS:000337768700001 ER PT J AU Hu, LB Amine, K Zhang, ZC AF Hu, Libo Amine, Khalil Zhang, Zhengcheng TI Fluorinated electrolytes for 5-V Li-ion chemistry: Dramatic enhancement of LiNi0.5Mn1.5O4/graphite cell performance by a lithium reservoir SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Fluorinated solvents; High voltage electrolyte; Lithium reservoir; 5-V LiNi0.5Mn1.5O4 cathode; Lithium-ion batteries ID HIGH-VOLTAGE; BATTERIES; PRELITHIATION; STABILITY; CAPACITY; SURFACE; ANODE; SLMP AB A fluorinated electrolyte was galvanostatically charged and discharged for 100 cycles at an elevated temperature (55 degrees C) with a LiNi0.5Mn1.5O4 cathode coupled with a graphite anode in the presence of a lithium reservoir. The incorporation of the lithium reservoir was able to compensate for the loss of the active lithium from the LiNi0.5Mn1.5O4 cathode due to the electrolyte oxidative decomposition. Our experimental data demonstrate for the first time that lithium compensation is an efficient way to enhance the performance of high voltage LiNi0.5Mn1.5O4/graphite cell at a high temperature (55 degrees C). 2014 Elsevier B.V. All rights reserved. C1 [Hu, Libo; Amine, Khalil; Zhang, Zhengcheng] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zhang, ZC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zzhang@anl.gov RI Hu, Libo/A-5911-2012 FU Advanced Battery Research (ABR) for Transportation, Vehicle Technologies Program; Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy; UChicago Argonne, LLC [DE-AC02-06CH11357] FX This research is supported by the Advanced Battery Research (ABR) for Transportation, Vehicle Technologies Program, and the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. NR 19 TC 18 Z9 18 U1 10 U2 102 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 EI 1873-1902 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD JUL PY 2014 VL 44 BP 34 EP 37 DI 10.1016/j.elecom.2014.04.006 PG 4 WC Electrochemistry SC Electrochemistry GA AJ8ZU UT WOS:000337997400010 ER PT J AU Guo, BK Yu, XQ Sun, XG Chi, MF Qiao, ZA Liu, J Hu, YS Yang, XQ Goodenough, JB Dai, S AF Guo, Bingkun Yu, Xiqian Sun, Xiao-Guang Chi, Miaofang Qiao, Zhen-An Liu, Jue Hu, Yong-Sheng Yang, Xiao-Qing Goodenough, John B. Dai, Sheng TI A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID PERFORMANCE; ELECTROLYTE; FRAMEWORK; SILICON; LINI0.5MN1.5O4; COMPOSITES; LITHIATION; NANOWIRES; NANOTUBES; CHEMISTRY AB A high performance TiNb2O7 anode material with a nanoporous nature, which was prepared by a facile approach, exhibits an average storage voltage of 1.66 V, a reversible capacity of 281mA h g(-1), and an 84% capacity retention after 1000 cycles, and may be suitable for long-life stationary lithium-ion batteries. C1 [Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhen-An; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Yu, Xiqian; Liu, Jue; Yang, Xiao-Qing] Brookhaven Natl Lab, Upton, NY 11973 USA. [Chi, Miaofang] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hu, Yong-Sheng] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Goodenough, John B.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Guo, BK (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM guobkun@hotmail.com; yshu@aphy.iphy.ac.cn; dais@ornl.gov RI Guo, Bingkun/J-5774-2014; Hu, Yong-Sheng/H-1177-2011; Chi, Miaofang/Q-2489-2015; Yu, Xiqian/B-5574-2014; LIU, JUE/I-8631-2016; Dai, Sheng/K-8411-2015 OI Qiao, Zhen-An/0000-0001-6064-9360; Goodenough, John Bannister/0000-0001-9350-3034; Hu, Yong-Sheng/0000-0002-8430-6474; Chi, Miaofang/0000-0003-0764-1567; Yu, Xiqian/0000-0001-8513-518X; LIU, JUE/0000-0002-4453-910X; Dai, Sheng/0000-0002-8046-3931 FU U.S. Department of Energy's office of Basic Energy Science, Division of Materials Sciences Engineering; U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, and the Office of Vehicle Technologies [DEAC02-98CH10886]; NSFC [51222210]; One Hundred Talent Project of the Chinese Academy of Sciences FX The research at Oak Ridge National Laboratory and the University of Texas at Austin was supported by the U.S. Department of Energy's office of Basic Energy Science, Division of Materials Sciences Engineering. The work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, and the Office of Vehicle Technologies under Contract Number DEAC02-98CH10886. The authors thank the technical support from scientists at beamlines X14A, X18a, and X18B of the National Synchrotron Light Source (NSLS). Y.- S. H. thanks the funding support from NSFC (51222210) and the One Hundred Talent Project of the Chinese Academy of Sciences. NR 40 TC 62 Z9 63 U1 19 U2 186 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUL PY 2014 VL 7 IS 7 BP 2220 EP 2226 DI 10.1039/c4ee00508b PG 7 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA AJ8SL UT WOS:000337977600010 ER PT J AU Quadros, WR AF Quadros, William Roshan TI Guest editorial: 20th international meshing roundtable special issue SO ENGINEERING WITH COMPUTERS LA English DT Editorial Material C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Quadros, WR (reprint author), Sandia Natl Labs, POB 5800,MS 0897, Albuquerque, NM 87185 USA. EM wrquadr@sandia.gov NR 0 TC 0 Z9 0 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0177-0667 EI 1435-5663 J9 ENG COMPUT-GERMANY JI Eng. Comput. PD JUL PY 2014 VL 30 IS 3 SI SI BP 287 EP 287 DI 10.1007/s00366-014-0365-y PG 1 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA AJ9JV UT WOS:000338026900001 ER PT J AU Owen, SJ Staten, ML Sorensen, MC AF Owen, Steven J. Staten, Matthew L. Sorensen, Marguerite C. TI Parallel hexahedral meshing from volume fractions SO ENGINEERING WITH COMPUTERS LA English DT Article DE Grid-based; Overlay grid; Hexahedral mesh generation; Parallel meshing ID GENERATION AB In this work, we introduce a new method for generating Lagrangian computational meshes from Eulerian-based data. We focus specifically on shock physics problems that are relevant to Eulerian-based codes that generate volume fraction data on a Cartesian grid. A step-by-step procedure for generating an all-hexahedral mesh is presented. We focus specifically on the challenges of developing a parallel implementation using the message passing interface to ensure a continuous, conformal and good quality hex mesh. C1 [Owen, Steven J.; Staten, Matthew L.; Sorensen, Marguerite C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Owen, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sjowen@sandia.gov; mlstate@sandia.gov; mcsoren@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 15 TC 1 Z9 1 U1 2 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0177-0667 EI 1435-5663 J9 ENG COMPUT-GERMANY JI Eng. Comput. PD JUL PY 2014 VL 30 IS 3 SI SI BP 301 EP 313 DI 10.1007/s00366-012-0292-8 PG 13 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA AJ9JV UT WOS:000338026900003 ER PT J AU Harris, JB Eldridge, ML Sayler, G Menn, FM Layton, AC Baudry, J AF Harris, Jason B. Eldridge, Melanie L. Sayler, Gary Menn, Fu-Min Layton, Alice C. Baudry, Jerome TI A COMPUTATIONAL APPROACH PREDICTING CYP450 METABOLISM AND ESTROGENIC ACTIVITY OF AN ENDOCRINE DISRUPTING COMPOUND (PCB-30) SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Endocrine disrupting compound; Cytochrome P450 2D6 (CYP2D6); Cytochrome P450 3A4 (CYP3A4); Polychlorinated biphenyl 30 (PCB-30); 2,4,6-trichlorobiphenyl (TCBP) ID POLYCYCLIC AROMATIC-HYDROCARBONS; RECOMBINANT YEAST ASSAY; POLYCHLORINATED-BIPHENYLS; CYTOCHROME-P450 2D6; IN-VITRO; MOLECULAR DOCKING; HYDROXYLATED METABOLITES; ANDROGENIC ACTIVITY; RECEPTOR BINDING; LIGAND-BINDING AB Endocrine disrupting chemicals influence growth and development through interactions with the hormone system, often through binding to hormone receptors such as the estrogen receptor. Computational methods can predict endocrine disrupting chemical activity of unmodified compounds, but approaches predicting activity following metabolism are lacking. The present study uses a well-known environmental contaminant, PCB-30 (2,4,6-trichlorobiphenyl), as a prototype endocrine disrupting chemical and integrates predictive (computational) and experimental methods to determine its metabolic transformation by cytochrome P450 3A4 (CYP3A4) and cytochrome P450 2D6 (CYP2D6) into estrogenic byproducts. Computational predictions suggest that hydroxylation of PCB-30 occurs at the 3- or 4-phenol positions and leads to metabolites that bind more strongly than the parent molecule to the human estrogen receptor alpha (hER-alpha). Gas chromatography-mass spectrometry experiments confirmed that the primary metabolite for CYP3A4 and CYP2D6 is 4-hydroxy-PCB-30, and the secondary metabolite is 3-hydroxy-PCB-30. Cell-based bioassays (bioluminescent yeast expressing hER-alpha) confirmed that hydroxylated metabolites are more estrogenic than PCB-30. These experimental results support the applied model's ability to predict the metabolic and estrogenic fate of PCB-30, which could be used to identify other endocrine disrupting chemicals involved in similar pathways. (C) 2014 SETAC C1 [Harris, Jason B.] Univ Tennessee, Genome Sci & Technol Grad Sch, Knoxville, TN USA. [Harris, Jason B.; Baudry, Jerome] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA. [Eldridge, Melanie L.; Sayler, Gary; Menn, Fu-Min; Layton, Alice C.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. [Sayler, Gary; Menn, Fu-Min] Univ Tennessee, Oak Ridge Natl Lab, Joint Inst Biol Sci, Oak Ridge, TN USA. [Sayler, Gary] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Baudry, Jerome] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN USA. RP Baudry, J (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA. EM jbaudry@utk.edu FU University of Tennessee; Genome Science and Technology graduate school; IGERT: SCALE-IT fellowship (NSF) [0801540] FX J.B. Harris and M.L. Eldridge contributed equally to this work. A. C. Layton and J. Baudry contributed equally to supervision and expertise. This work was supported financially by a start-up grant from the University of Tennessee to J. Baudry. J. Harris acknowledges support by the Genome Science and Technology graduate school and the IGERT: SCALE-IT fellowship (NSF Award 0801540). NR 62 TC 5 Z9 5 U1 6 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD JUL PY 2014 VL 33 IS 7 BP 1615 EP 1623 DI 10.1002/etc.2595 PG 9 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA AJ6FD UT WOS:000337784500024 PM 24687371 ER PT J AU Soteropoulos, DL Lance, SL Flynn, RW Scott, DE AF Soteropoulos, Diana L. Lance, Stacey L. Flynn, R. Wesley Scott, David E. TI EFFECTS OF COPPER EXPOSURE ON HATCHING SUCCESS AND EARLY LARVAL SURVIVAL IN MARBLED SALAMANDERS, AMBYSTOMA OPACUM SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Amphibian; Created wetland; Ecotoxicology; Metal toxicity; Treatment wetlands ID COAL-COMBUSTION WASTES; AMPHIBIAN EMBRYOS; CHRONIC TOXICITY; SOUTHERN TOADS; RANA-PIPIENS; FROG; TADPOLES; WETLANDS; RUNOFF; GROWTH AB The creation of wetlands, such as urban and industrial ponds, has increased in recent decades, and these wetlands often become enriched in pollutants over time. One metal contaminant trapped in created wetlands is copper (Cu2+). Copper concentrations in sediments and overlying water may affect amphibian species that breed in created wetlands. The authors analyzed the Cu concentration in dried sediments from a contaminated wetland and the levels of aqueous Cu released after flooding the sediments with different volumes of water, mimicking low, medium, and high pond-filling events. Eggs and larvae of Ambystoma opacum Gravenhorst, a salamander that lays eggs on the sediments in dry pond beds that hatch on pond-filling, were exposed to a range of Cu concentrations that bracketed potential aqueous Cu levels in created wetlands. Embryo survival varied among clutches, but increased Cu levels did not affect embryo survival. At Cu concentrations of 500 mu g/L or greater, however, embryos hatched earlier, and the aquatic larvae died shortly after hatching. Because Cu concentrations in sediments increase over time in created wetlands, even relatively tolerant species such as A. opacum may be affected by Cu levels in the posthatching environment. (C) 2014 SETAC C1 [Soteropoulos, Diana L.; Lance, Stacey L.; Flynn, R. Wesley; Scott, David E.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Scott, DE (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM scott@srel.uga.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU US Department of Energy [DE-FC09-07SR22506]; Department of Energy National Nuclear Security Administration FX We thank J. Seaman for assistance with metals analysis. This research was partially supported by US Department of Energy under award number DE-FC09-07SR22506 to the University of Georgia Research Foundation. Project funding was provided by the Department of Energy National Nuclear Security Administration. Animals were collected under SCDNR permit #G-09-03 following IACUC procedures (AUP A2009 10-175-Y2-A0) from the University of Georgia. This manuscript was improved by comments from members of the Lance Lab-R. Beasley, C. Love, C. Rumrill, and M. Winzeler. NR 54 TC 1 Z9 1 U1 3 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD JUL PY 2014 VL 33 IS 7 BP 1631 EP 1637 DI 10.1002/etc.2601 PG 7 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA AJ6FD UT WOS:000337784500026 PM 24729474 ER PT J AU Dong, B Li, XQ Xiao, LM Ruan, L AF Dong, Bin Li, Xiuqiao Xiao, Limin Ruan, Li TI Towards minimizing disk I/O contention: A partitioned file assignment approach SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE LA English DT Article DE Parallel I/O system; Partitioned file; File assignment algorithm; I/O contention probability; Distributed resource management ID PARALLEL I/O; HIGH-PERFORMANCE; SYSTEMS; ISSUES; TIME; WORKLOADS; STORAGE; ARRAYS; RAID AB One problem with data-intensive computing facilitating is how to effectively manage massive amounts of data stored in a parallel I/O system. The file assignment method plays a significant role in data management. However, in the context of a parallel I/O system, most existing file assignment approaches share the following two limitations. First, most existing methods are designed for a non-partitioned file, while the file in a parallel I/O system is generally partitioned to provide aggregated bandwidth. Second, the file allocation metric, e.g. service time, of most existing methods is difficult to determine in practice, and also these metrics only reflect the static property of the file. In this paper, a new metric, namely file access density is proposed to capture the dynamic property of file access, i.e. disk contention property. Based on file access density definition, this paper introduces a new static file assignment algorithm named MinCPP and its dynamic version DMinCPP, both of which aim at minimizing the disk contention property. Furthermore MinCPP and DMinCPP take the file partition property into consideration by trying to allocate the partitions belonging to the same file onto different disks. By assuming file request arrival follows the Poisson process, we prove the effectiveness of the proposed schemes both analytically and experimentally. The MinCPP presented in this study can be applied to reorganize the files stored in a large-scale parallel I/O system and the DMinCPP can be integrated into file systems which dynamically allocate files in a batch. (C) 2013 Elsevier B.V. All rights reserved. C1 [Dong, Bin; Li, Xiuqiao; Xiao, Limin; Ruan, Li] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China. [Dong, Bin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Dong, B (reprint author), Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China. EM Bdong@cse.buaa.edu.cn FU National Natural Science Foundation of China [61370059, 61232009]; Doctoral Fund of Ministry of Education of China [20101102110018] FX The work described in this paper is supported by the National Natural Science Foundation of China under Grant No. 61370059, supported by the National Natural Science Foundation of China under Grant No. 61232009, and supported by the Doctoral Fund of Ministry of Education of China under Grant No. 20101102110018. NR 53 TC 4 Z9 4 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD JUL PY 2014 VL 37 BP 178 EP 190 DI 10.1016/j.future.2013.12.022 PG 13 WC Computer Science, Theory & Methods SC Computer Science GA AJ8CV UT WOS:000337931200017 ER PT J AU Okoro, C Levine, LE Xu, RQ Hummler, K Obeng, YS AF Okoro, Chukwudi Levine, Lyle E. Xu, Ruqing Hummler, Klaus Obeng, Yaw S. TI Nondestructive Measurement of the Residual Stresses in Copper Through-Silicon Vias Using Synchrotron-Based Microbeam X-Ray Diffraction SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Interconnect; keep-out-zone (KOZ); stress measurement; synchrotron; three-dimensional integrated circuits (3DIC); through-silicon via (TSV); X-ray diffraction ID FAILURE ANALYSIS; CU-TSV; DEFORMATION AB In this paper, we report a new method for achieving depth resolved determination of the full stress tensor in buried Cu through-silicon vias (TSVs), using a synchrotron-based X-ray microdiffraction technique. Two adjacent Cu TSVs were analyzed; one capped with SiO2 (0.17 mu m) and the other without. The uncapped Cu TSV was found to have higher stresses with an average hydrostatic stress value of 145 +/- 37 MPa, as compared with the capped Cu TSV, which had a value of 89 +/- 28 MPa. Finite element-based parametric analyses of the effect of cap thickness on TSV stress were also performed. The differences in the stresses in the adjacent Cu TSVs were attributed to their microstructural differences and not to the presence of a cap layer. Based on the experimentally determined stresses, the stresses in the surrounding Si for both Cu TSVs were calculated and the FinFET keep-out-zone (KOZ) from the Cu TSV was estimated. The FinFET KOZ is influenced by the microstructural variations in their neighboring Cu TSVs, thus, it should be accounted for in KOZ design rules. C1 [Okoro, Chukwudi; Obeng, Yaw S.] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA. [Levine, Lyle E.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Xu, Ruqing] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Hummler, Klaus] SEMATECH, Albany, NY 12203 USA. RP Okoro, C (reprint author), NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA. EM chukwudi.okoro@nist.gov; lyle.levine@nist.gov; ruqingxu@anl.gov; klaus.hummler@sematech.org; yaw.obeng@nist.gov RI Xu, Ruqing/K-3586-2012 OI Xu, Ruqing/0000-0003-1037-0059 FU U.S Department of Energy's (DOE) Office of Science [DE-AC02-06CH11357] FX The XOR/UNI facilities on Sector 34 at the Advanced Photon Source (APS) is supported by the U.S Department of Energy's (DOE) Office of Science, under Contract No. DE-AC02-06CH11357. The review of this paper was arranged by Editor R. Venkatasubramanian. NR 17 TC 11 Z9 11 U1 1 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9383 EI 1557-9646 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD JUL PY 2014 VL 61 IS 7 BP 2473 EP 2479 DI 10.1109/TED.2014.2321736 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA AJ9JY UT WOS:000338027200036 ER PT J AU Santoso, S Lwin, M Ramos, J Singh, M Muljadi, E Jonkman, J AF Santoso, Surya Lwin, Min Ramos, Jaime Singh, Mohit Muljadi, Eduard Jonkman, Jason TI Designing and Integrating Wind Power Laboratory Experiments in Power and Energy Systems Courses SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Power engineering education; power system simulation; reactive power control; student experiments; wind power generation ID ELECTRONICS; CONVERSION AB The goal of this paper is to describe the approach in designing and constructing wind power laboratory experiments for undergraduate- and graduate-level courses in power and energy systems. These are separated into basic hands-on laboratory and advanced simulation-based experiments. The basic experiments are integrated into an undergraduate course that includes topics such as the steady-state operation of induction machines, fixed-speed, and variable-speed wind turbines. Advanced experiments are integrated into a stand-alone course dedicated to wind energy and power systems. Topics include the modeling of aerodynamic, mechanical, and electrical components for each type of wind turbine along with their steady-state and dynamic operations. The experiments were originally designed at the University of Texas at Austin. Their transferability to a different laboratory platform at the University of Texas Pan American is also discussed. C1 [Santoso, Surya; Lwin, Min] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA. [Ramos, Jaime] Univ Texas Pan Amer, Dept Elect Engn, Edinburg, TX 78539 USA. [Singh, Mohit; Muljadi, Eduard; Jonkman, Jason] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Santoso, S (reprint author), Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA. EM ssantoso@mail.utexas.edu; m.lwin@utexas.edu; jramos8@utpa.edu; Mohit.Singh@nrel.gov; Eduard.Muljadi@nrel.gov; Jason.Jonkman@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; National Science Foundation [DUE-0736974, DUE-0737051] FX This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory and the National Science Foundationunder grants DUE-0736974 and DUE-0737051. Paper no. TPWRS-00712-2013. NR 16 TC 1 Z9 1 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD JUL PY 2014 VL 29 IS 4 BP 1944 EP 1951 DI 10.1109/TPWRS.2014.2307324 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA AK1QF UT WOS:000338189600051 ER PT J AU Soong, Y Hedges, SW Howard, BH Dilmore, RM Allen, DE AF Soong, Yee Hedges, Sheila W. Howard, Bret H. Dilmore, Robert M. Allen, Douglas E. TI Effect of contaminants from flue gas on CO2 sequestration in saline formation SO INTERNATIONAL JOURNAL OF ENERGY RESEARCH LA English DT Article DE CO2 sequestration; flue gas; saline aquifers ID CARBON SEQUESTRATION; SO2; INJECTION; WATER AB Deep saline aquifers are reported to have the largest estimated capacity for CO2 sequestration. Most geochemical studies on CO2 storage in saline formations are focused on the interactions of pure CO2 and do not consider the potential impacts of contaminants such as SO2 found in typical post-composition flue gas streams. This paper reports on results of a combined CO2-co-contaminant-brine-rock experimental and a simple modeling study of the potential impact of flue gas contaminants on saline formations. Chemical reactions of the sandstone from Mount Simon formation exposed to CO2 mixed with other gas species under sequestration conditions were studied (i.e. solid material-representative Mount Simon sandstone; liquid - synthetic Illinois Basin brine; T and P - 50 degrees C, 110 bar; gas composition - 1% SO2, 4% O-2, 95% CO2). The experimental study indicates that the co-injection of 1% SO2 would lead to substantially reduced brine pH due to the formation of sulfuric acid and the formation of bassanite (major) and anhydrites. Preliminary equilibrium computational modeling yielded similar results. Copyright (C) 2013 John Wiley & Sons, Ltd. C1 [Soong, Yee; Hedges, Sheila W.; Howard, Bret H.; Dilmore, Robert M.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Allen, Douglas E.] Salem State Univ, Salem, MA 01970 USA. RP Soong, Y (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM soong@netl.doe.gov FU Department of Energy, National Energy Technology Laboratory, an agency of the United States Government; URS Energy & Construction, Inc. FX This project was funded in part by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy & Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied; or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed; or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 20 TC 3 Z9 3 U1 2 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0363-907X EI 1099-114X J9 INT J ENERG RES JI Int. J. Energy Res. PD JUL PY 2014 VL 38 IS 9 BP 1224 EP 1232 DI 10.1002/er.3140 PG 9 WC Energy & Fuels; Nuclear Science & Technology SC Energy & Fuels; Nuclear Science & Technology GA AJ6KF UT WOS:000337801900012 ER PT J AU Hasanbeigi, A Jiang, ZY Price, L AF Hasanbeigi, Ali Jiang, Zeyi Price, Lynn TI Retrospective and prospective analysis of the trends of energy use in Chinese iron and steel industry SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE Energy intensity forecast; Decomposition analysis; Chinese steel industry; Structural change ID DECOMPOSITION ANALYSIS; CO2 EMISSIONS; EFFICIENCY; INTENSITY; SECTOR AB The iron and steel industry accounted for approximately 27% of China's primary energy use for the manufacturing industry in 2010. This study aims to analyze influential factors that affected the energy use of steel industry in the past in order to quantify the likely effect of those factors in the future. This study analyzes the energy use trends of China's key medium- and large-sized steel enterprises during 2000-2030. In addition, the study uses a refined Logarithmic Mean Divisia Index decomposition analysis to quantify the effects of various factors in shaping energy consumption trends in the past and in the future. The result of our forecast shows the final energy use of the key steel enterprises peaks in year 2020 under scenario 1 and 2 (low and medium scrap usage) and in 2015 under scenario 3 (high scrap usage). The three scenarios produced for the forward-looking decomposition analysis for 2010-2030 show that contrary to the experience during 2000-2010, the structural (activity share of each process route) effect and the pig iron ratio (the ratio of pig iron used as feedstock in each process route) effect plays an important role in reducing final energy use during 2010-2030. Published by Elsevier Ltd. C1 [Hasanbeigi, Ali; Jiang, Zeyi; Price, Lynn] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, China Energy Grp,Environm Energy Technol Div, Berkeley, CA 94720 USA. [Jiang, Zeyi] Univ Sci & Technol Beijing, Sch Mech Engn, Beijing, Peoples R China. RP Hasanbeigi, A (reprint author), 1 Cyclotron Rd MS 90R2002, Berkeley, CA 94720 USA. EM AHasanbeigi@lbl.gov FU China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would like to thank David Fridley, Nina Khanna, and Ryan Triolo of the China Energy Group of Lawrence Berkeley National Laboratory for their contributions to this study. We are also thankful to Peng Wang and Fushan Tian of the School of Mechanical Engineering, University of Science and Technology Beijing, China for their research assistance in this study. We are grateful to Zhang Chunxia and Li Xiuping of the China Iron 82 Steel Research Institute for their valuable comments on an earlier version of the paper. NR 38 TC 8 Z9 8 U1 0 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 EI 1879-1786 J9 J CLEAN PROD JI J. Clean Prod. PD JUL 1 PY 2014 VL 74 BP 105 EP 118 DI 10.1016/j.jclepro.2014.03.065 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA AJ6AV UT WOS:000337773000011 ER PT J AU English, JM Kay, JE Gettelman, A Liu, XH Wang, Y Zhang, YY Chepfer, H AF English, Jason M. Kay, Jennifer E. Gettelman, Andrew Liu, Xiaohong Wang, Yong Zhang, Yuying Chepfer, Helene TI Contributions of Clouds, Surface Albedos, and Mixed-Phase Ice Nucleation Schemes to Arctic Radiation Biases in CAM5 SO JOURNAL OF CLIMATE LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; GLOBAL CLIMATE MODEL; ENERGY SYSTEM CERES; STRATIFORM CLOUDS; PARAMETERIZATION; MICROPHYSICS; SIMULATIONS; INSTRUMENT; REPRESENTATION; DISTRIBUTIONS AB The Arctic radiation balance is strongly affected by clouds and surface albedo. Prior work has identified Arctic cloud liquid water path (LWP) and surface radiative flux biases in the Community Atmosphere Model, version 5 (CAMS), and reductions to these biases with improved mixed-phase ice nucleation schemes. Here, CAMS net top-of-atmosphere (TOA) Arctic radiative flux biases are quantified along with the contributions of clouds, surface albedos, and new mixed-phase ice nucleation schemes to these biases. CAMS net TOA all-sky shortwave (SW) and outgoing longwave radiation (OLR) fluxes are generally within 10W m(-2) of Clouds and the Earth's Radiant Energy System Energy Balanced and Filled (CERES-EBAF) observations. However, CAMS has compensating SW errors: Surface albedos over snow are too high while cloud amount and LWP are too low. Use of a new CAMS Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar simulator that corrects an error in the treatment of snow crystal size confirms insufficient cloud amount in CAMS year-round. CAMS OLR is too low because of low surface temperature in winter, excessive atmospheric water vapor in summer, and excessive cloud heights year-round. Simulations with two new mixed-phase ice nucleation schemes-one based on an empirical fit to ice nuclei observations and one based on classical nucleation theory with prognostic ice nuclei improve surface climate in winter by increasing cloud amount and LWP. However, net TOA and surface radiation biases remain because of increases in midlevel clouds and a persistent deficit in cloud LWP. These findings highlight challenges with evaluating and modeling Arctic cloud, radiation, and climate processes. C1 [English, Jason M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Kay, Jennifer E.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80303 USA. [Gettelman, Andrew] Natl Ctr Atmospher Res, Earth Syst Lab, Boulder, CO 80307 USA. [Liu, Xiaohong; Wang, Yong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Wang, Yong] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China. [Zhang, Yuying] Lawrence Livermore Natl Lab, Livermore, CA USA. [Chepfer, Helene] Univ Paris 06, LMD IPSL, Paris, France. RP English, JM (reprint author), Univ Colorado, Lab Atmospher & Space Phys, 3665 Discovery Dr,600 UCB, Boulder, CO 80303 USA. EM jayenglish@gmail.com RI Liu, Xiaohong/E-9304-2011; Zhang, Yuying/H-5011-2012; English, Jason/E-9365-2015; Kay, Jennifer/C-6042-2012 OI Liu, Xiaohong/0000-0002-3994-5955; English, Jason/0000-0001-9700-6860; FU NASA [NNX09AJ05G]; DOE Office of Science Atmospheric System Research (ASR) Program and Earth System Modeling Program; Earth System Modeling program of the U.S. Department of Energy; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX Support for J. M. English was provided by NASA Award NNX09AJ05G. Support for X. Liu was provided by the DOE Office of Science Atmospheric System Research (ASR) Program and Earth System Modeling Program. Support for Y. Zhang was provided by the Earth System Modeling program of the U.S. Department of Energy. Thanks to NOAA and Rutgers for snow-cover data and to Mark Flanner for providing them in a convenient format. Thanks to Gijs de Boer for providing SHEBA data in a convenient format, to David Bailey for insightful conversations regarding the sea ice model, to Dave Lawrence for insightful conversations regarding the land model, and to Neil Barton for providing new cloud plots using the new lidar code. Thanks to NASA and CNES for CALIOP and CERES data. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. Work at LLNL was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. NR 68 TC 13 Z9 13 U1 5 U2 44 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL 1 PY 2014 VL 27 IS 13 BP 5174 EP 5197 DI 10.1175/JCLI-D-13-00608.1 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AJ8WG UT WOS:000337988200025 ER PT J AU Angleby, H Oskarsson, M Pang, JF Zhang, YP Leitner, T Braham, C Arvestad, L Lundeberg, J Webb, KM Savolainen, P AF Angleby, Helen Oskarsson, Mattias Pang, Junfeng Zhang, Ya-ping Leitner, Thomas Braham, Caitlyn Arvestad, Lars Lundeberg, Joakim Webb, Kristen M. Savolainen, Peter TI Forensic Informativity of similar to 3000bp of Coding Sequence of Domestic Dog mtDNA SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; domestic dog; mitochondrial DNA; coding region; control region; exclusion capacity ID CANINE MICROSATELLITE POLYMORPHISMS; MITOCHONDRIAL GENOME; CONTROL REGION; WOLF HYBRIDIZATION; DNA; POPULATION; IDENTIFICATION; ORIGIN; HAIRS; AMPLIFICATION AB The discriminatory power of the noncoding control region (CR) of domestic dog mitochondrial DNA alone is relatively low. The extent to which the discriminatory power could be increased by analyzing additional highly variable coding regions of the mitochondrial genome (mtGenome) was therefore investigated. Genetic variability across the mtGenome was evaluated by phylogenetic analysis, and the three most variable similar to 1kb coding regions identified. We then sampled 100 Swedish dogs to represent breeds in accordance with their frequency in the Swedish population. A previously published dataset of 59 dog mtGenomes collected in the United States was also analyzed. Inclusion of the three coding regions increased the exclusion capacity considerably for the Swedish sample, from 0.920 for the CR alone to 0.964 for all four regions. The number of mtDNA types among all 159 dogs increased from 41 to 72, the four most frequent CR haplotypes being resolved into 22 different haplotypes. C1 [Angleby, Helen; Oskarsson, Mattias; Lundeberg, Joakim; Savolainen, Peter] KTH Royal Inst Technol, Sch Biotechnol, Div Gene Technol, Sci Life Lab, SE-17165 Solna, Sweden. [Pang, Junfeng; Zhang, Ya-ping] Chinese Acad Sci, Kunming Inst Zool, State Key Lab Genet Resources & Evolut, Kunming 650223, Yunnan, Peoples R China. [Leitner, Thomas] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Braham, Caitlyn; Webb, Kristen M.] Allegheny Coll, Dept Biol, Meadville, PA 16335 USA. [Arvestad, Lars] Stockholm Univ, Dept Numer Anal & Comp Sci, Swedish E Sci Res Ctr, SE-17121 Stockholm, Sweden. [Arvestad, Lars] KTH Royal Inst Technol, Sch Comp Sci & Commun, Dept Computat Biol, Sci Life Lab, SE-17165 Solna, Sweden. RP Webb, KM (reprint author), Allegheny Coll, Dept Biol, 520 North Main St,Box 10, Meadville, PA 16335 USA. EM kwebb@allegheny.edu RI Pang, Junfeng/I-9148-2014; OI Arvestad, Lars/0000-0001-5341-1733 FU Knut and Alice Wallenberg Foundation FX Co-author Peter Savolainen is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. NR 38 TC 1 Z9 1 U1 0 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-1198 EI 1556-4029 J9 J FORENSIC SCI JI J. Forensic Sci. PD JUL PY 2014 VL 59 IS 4 BP 898 EP 908 DI 10.1111/1556-4029.12504 PG 11 WC Medicine, Legal SC Legal Medicine GA AJ9NL UT WOS:000338038300003 PM 24814664 ER PT J AU Ekstrand, L Zhang, S Grieve, T Chumbley, LS Kreiser, MJ AF Ekstrand, Laura Zhang, Song Grieve, Taylor Chumbley, L. Scott Kreiser, M. James TI Virtual Tool Mark Generation for Efficient Striation Analysis SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; tool mark comparison; computer simulation; screwdriver; statistics; striae AB This study introduces a tool mark analysis approach based upon 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. An open-source 3D graphics software package is utilized to simulate the marking process as the projection of the tip's geometry in the direction of tool travel. The edge of this projection becomes a virtual tool mark that is compared to cross-sections of the marked plate geometry using the statistical likelihood algorithm introduced by Chumbley etal. In a study with both sides of six screwdriver tips and 34 corresponding marks, the method distinguished known matches from known nonmatches with zero false-positive matches and two false-negative matches. For matches, it could predict the correct marking angle within +/- 5-10 degrees. Individual comparisons could be made in seconds on a desktop computer, suggesting that the method could save time for examiners. C1 [Ekstrand, Laura; Zhang, Song; Grieve, Taylor; Chumbley, L. Scott] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Zhang, S (reprint author), Iowa State Univ, Dept Mech Engn, 2096 Black Engn, Ames, IA 50011 USA. EM song@iastate.edu RI Zhang, Song/C-5294-2012 OI Zhang, Song/0000-0001-8452-4837 FU National Institute of Justice [2009-DN-R-119]; U.S. Department of Energy [DE-AC02-07CH11358] FX Supported by Award No. 2009-DN-R-119 from the National Institute of Justice and performed at the Ames Laboratory, which is operated by Iowa State University under contract number DE-AC02-07CH11358 with the U.S. Department of Energy. NR 10 TC 4 Z9 4 U1 0 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-1198 EI 1556-4029 J9 J FORENSIC SCI JI J. Forensic Sci. PD JUL PY 2014 VL 59 IS 4 BP 950 EP 959 DI 10.1111/1556-4029.12435 PG 10 WC Medicine, Legal SC Legal Medicine GA AJ9NL UT WOS:000338038300009 PM 24502818 ER PT J AU McClintock, DA Vevera, BJ Riemer, BW Gallmeier, FX Hyres, JW Ferguson, PD AF McClintock, David A. Vevera, Bradley J. Riemer, Bernard W. Gallmeier, Franz X. Hyres, James W. Ferguson, Phillip D. TI Post-irradiation tensile properties of the first and second operational target modules at the Spallation Neutron Source SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11) CY NOV 04-09, 2012 CL Ghent, BELGIUM ID SOURCE MERCURY TARGET; AUSTENITIC STAINLESS-STEELS; RESEARCH-AND-DEVELOPMENT; MECHANICAL-PROPERTIES; CONTAINER MATERIALS; PROTON; IRRADIATION; SNS; DEFORMATION; WAVES AB During neutron production the target module at the Spallation Neutron Source (SNS) is damaged by cavitation-induced erosion and the mechanical properties of the AISI 316L vessel material are altered by high-energy proton and neutron. radiation. Recently the first and second operational target modules at the SNS reached the end of their useful lifetime, and disk shaped specimens were sampled from the beam entrance region of both targets. Tensile specimens ranging in dose from 3 to 7 displacements per atom (dpa) were fabricated from the disk specimens using wire electrical discharge machining and tested at room temperature. This paper presents the tensile properties of the irradiated 316L vessel material removed from the first and second operational SNS target modules. Results show an increase in tensile strength and decrease in elongation values similar to previous spallation irradiated 316L results. Abnormally large elongation, 57% total elongation, was observed in a specimen irradiated to 5.4 dpa and considerable scatter was observed in the uniform and total elongation data. One possible explanation for the abnormally large elongations and scatter observed in tensile test results is the so-called deformation wave phase transformation-induced plasticity effect. Microscopy characterization revealed the presence of large nonmetallic inclusions rich in Al, S, Ca, O, and Mg on the fracture surface, which may have also contributed to the scatter in the tensile elongation results. While all specimens exhibited radiation-induced hardening and a decrease in ductility, the predominate topographical morphology on all specimen fracture surfaces examined was ductile microvoid coalescence and all specimens experienced appreciable necking prior to fracture. These findings indicate that 316L retains sufficient ductility (10-20% total elongation) and fractures in a ductile manor after irradiation to approximately 6-7 dpa in the mixed proton/neutron radiation environment at the SNS. (C) 2014 Elsevier B.V. All rights reserved. C1 [McClintock, David A.; Riemer, Bernard W.; Gallmeier, Franz X.; Ferguson, Phillip D.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. [Vevera, Bradley J.; Hyres, James W.] Babcock & Wilcox Tech Serv Grp Inc, Lynchburg, VA USA. RP McClintock, DA (reprint author), Oak Ridge Natl Lab, Instrument & Source Design Div, POB 2008,Bldg 8600,MS 6476, Oak Ridge, TN 37831 USA. EM mcclintockda@oml.gov OI Ferguson, Phillip/0000-0002-7661-4223; McClintock, David/0000-0002-9292-8951; Riemer, Bernard/0000-0002-6922-3056 FU Office of Science, U.S. Department of Energy; UT-Battelle, LLC for the U.S. Department of Energy [DE-AC05-00OR22725] FX The authors would like to thank Justin Carmichael for assistance with figures presented in this paper. The SNS is sponsored by the Office of Science, U.S. Department of Energy, and managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 26 TC 2 Z9 2 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2014 VL 450 IS 1-3 BP 130 EP 140 DI 10.1016/j.jnucmat.2014.02.037 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AJ7FM UT WOS:000337862600021 ER PT J AU Vevera, BJ McClintock, DA Hyres, JW Riemer, BW AF Vevera, Bradley J. McClintock, David A. Hyres, James W. Riemer, Bernard W. TI Characterization of irradiated AISI 316L stainless steel disks removed from the Spallation Neutron Source SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11) CY NOV 04-09, 2012 CL Ghent, BELGIUM ID TARGET; SNS AB Disk-shaped samples were removed from the first and second operational target modules at the Spallation Neutron Source for post-irradiation examination to assess the extent of radiation-induced changes in mechanical properties and the amount of cavitation-induced erosion to the AISI 316L stainless steel target vessel. Characterization techniques performed include: high-resolution photography of the disk specimens, ultrasonic cleaning to remove mercury residue and surface oxides, surface profile mapping of cavitation pits using high frequency ultrasonic testing, high-resolution surface replication, and scanning electron microscopy accompanied by energy dispersive spectroscopy. The target disk samples were machined using wire electrical discharge machining to produce microstructural and mechanical test specimens for tensile testing, Rockwell Superficial hardness testing, and Vickers microhardness testing. The effectiveness of the cleaning procedure was evident in the pre- and post-cleaning photography, and provided accurate photographs of areas on each disk that facilitated the creation of detailed machining maps. Due to the limited amount of material available and the unique geometry of the disks, test specimen design and development of fixturing for machining operations were critical aspects of this work; multiple designs were considered and refined during mock-up testing on unirradiated disks. The techniques used to successfully machine and test the various specimens will be presented along with a summary of important findings from the laboratory characterizations. (C) 2014 Elsevier B.V. All rights reserved. C1 [Vevera, Bradley J.; Hyres, James W.] Babcock & Wilcox Tech Serv Grp Inc, Lynchburg, VA USA. [McClintock, David A.; Riemer, Bernard W.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. RP McClintock, DA (reprint author), Oak Ridge Natl Lab, Instrument & Source Design Div, POB 2008,Bldg 8600,MS 6466, Oak Ridge, TN 37831 USA. EM mcclintockda@ornl.gov OI McClintock, David/0000-0002-9292-8951; Riemer, Bernard/0000-0002-6922-3056 FU Office of Science, U.S. Department of Energy; UT-Battelle, LLC for the U.S. Department of Energy [DE-AC05-00OR22725] FX The SNS is sponsored by the Office of Science, U.S. Department of Energy, and managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 8 TC 2 Z9 2 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2014 VL 450 IS 1-3 BP 147 EP 162 DI 10.1016/j.jnucmat.2014.02.035 PG 16 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AJ7FM UT WOS:000337862600023 ER PT J AU McClintock, DA Janney, JG Parish, CM AF McClintock, David A. Janney, Jim G. Parish, Chad M. TI Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11) CY NOV 04-09, 2012 CL Ghent, BELGIUM ID MECHANICAL-PROPERTIES; TENSILE PROPERTIES; STEEL; IRRADIATION; ALLOY; MICROSTRUCTURE; ENVIRONMENT; PLATES; FLOW AB effort is underway at the Spallation Neutron Source (SNS) to redesign the 1st Generation high-nickel alloy proton beam window (PEW) to a 2nd Generation design that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel shielding structure of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design and a testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in an aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with an niobium interlayer after repeated thermal-shock cycles, which was attributed to an extensive crack network that formed in an interfacial layer of a niobium-rich constituent phase located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, an explosively formed bond with a titanium interlayer was selected for the aluminum PEW design at the SNS. (C) 2014 Elsevier B.V. All rights reserved. C1 [McClintock, David A.; Janney, Jim G.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. [Parish, Chad M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP McClintock, DA (reprint author), Oak Ridge Natl Lab, Instrument & Source Design Div, POB 2008,Bldg 8600,MS 6466, Oak Ridge, TN 37831 USA. EM mcclintockda@ornl.gov RI Parish, Chad/J-8381-2013; OI McClintock, David/0000-0002-9292-8951 FU Office of Science, U.S. Department of Energy; UT-Battelle, LLC for the U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program; Office of Basic Energy Sciences, U.S. Department of Energy FX The SNS is sponsored by the Office of Science, U.S. Department of Energy, and managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract DE-AC05-00OR22725.; Research sponsored by Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 28 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2014 VL 450 IS 1-3 BP 163 EP 175 DI 10.1016/j.jnucmat.2014.02.016 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AJ7FM UT WOS:000337862600024 ER PT J AU McClintock, DA Hyres, JW Vevera, BJ AF McClintock, David A. Hyres, James W. Vevera, Bradley J. TI Hardness and stability of a carburized surface layer on AISI 316L stainless steel after irradiation in a spallation neutron environment SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11) CY NOV 04-09, 2012 CL Ghent, BELGIUM ID SNS TARGET TESTS; CAVITATION-EROSION; MERCURY TARGET; LANSCE-WNR; PRESSURE WAVES; DAMAGE; RESISTANCE; VESSELS; POWER AB The inner surfaces of mercury target vessels at the Spallation Neutron Source (SNS) experience material erosion caused by proton-beam induced cavitation of the liquid mercury. One approach developed and deployed to inhibit erosion of the target vessel material was surface hardening via a proprietary low-temperature carburization treatment, called Kolsterising, to the target surfaces most susceptible to cavitation-induced erosion. Previous testing has shown that the hardened surface produced by the Kolsterising treatment can delay the onset of erosion and inhibit erosion once initiated. But the stability of the carbon atmosphere in the treated surface layer after radiation to doses prototypic to the SNS target was unknown. Therefore, as part of the target Post Irradiation Examination program at the SNS, optical microscopy and microhardness testing were performed on material sampled from the first and second operational SNS target vessels. Optical micrographs contained no noticeable precipitation in the supersaturated carbon layer extending into the base material and several micrographs contained evidence of a proposed mechanism for mass wastage from the vessel surface. The hardened layer was characterized using Vickers microhardness testing and results show that the shape of hardness profile of the treated layer corresponded well with known pre-irradiation hardness values, though the microhardness results show some hardening occurred during irradiation. The results suggest that the hardened surface layer produced by the Kolsterising treatment is stable at the operational temperatures and dose levels experienced by the first and second operational SNS target modules. (C) 2014 Elsevier B.V. All rights reserved. C1 [McClintock, David A.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. [Hyres, James W.; Vevera, Bradley J.] Babcock & Wilcox Tech Serv Grp Inc, Lynchburg, VA USA. RP McClintock, DA (reprint author), Oak Ridge Natl Lab, Instrument & Source Design Div, POB 2008,Bldg 8600,MS 6476, Oak Ridge, TN 37831 USA. EM mcclintockda@ornl.gov OI McClintock, David/0000-0002-9292-8951 FU Office of Science, U.S. Department of Energy; UT-Battelle, LLC for the U.S. Department of Energy [DE-AC05-00OR22725] FX The authors would like to thank Genevieve Martin for her assistance with figures presented in this paper. The SNS is sponsored by the Office of Science, U.S. Department of Energy, and managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 15 TC 1 Z9 1 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2014 VL 450 IS 1-3 BP 176 EP 182 DI 10.1016/j.jnucmat.2014.01.005 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AJ7FM UT WOS:000337862600025 ER PT J AU Riemer, BW McClintock, DA Kaminskas, S Abdou, AA AF Riemer, B. W. McClintock, D. A. Kaminskas, S. Abdou, A. A. TI Correlation between simulations and cavitation-induced erosion damage in Spallation Neutron Source target modules after operation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11) CY NOV 04-09, 2012 CL Ghent, BELGIUM ID VESSELS AB An explicit finite element (FE) technique developed for estimating dynamic strain in the Spallation Neutron Source (SNS) mercury target module vessel is now providing insight into cavitation-induced erosion patterns observed on interior surfaces of SNS targets during post-irradiation examination. The technique uses an empirically developed material model for the mercury that describes its volumetric stiffness combined with a tensile pressure cut-off limit to approximate the threshold and effect of cavitation. The longest period each point in the mercury is at the tensile cut-off threshold is denoted as "saturation time". Patterns of saturation time can be obtained from the FE simulations and are being positively correlated with observed damage patterns as a qualitative measure of damage potential. Saturation time has been advocated by collaborators at the Japan Proton Accelerator Research Complex (J-PARC) as a factor in predicting bubble nuclei growth and collapse intensity. Larger ratios of maximum bubble-size-to-nucleus result in greater bubble collapse intensity; longer saturation times correlate to greater ratios. With the recent development of a user subroutine for the FE solver, saturation time is now provided over the entire mercury domain. Saturation time contour maps agree with patterns of damage seen on the SNS inner vessel beam window and elsewhere. The other simulation result which seems to correlate with observed damage patterns is the local mercury velocity. Related R&D has provided evidence that damage is mitigated by flow velocity. Surfaces which are near regions of low mercury velocity appear to be more vulnerable to damage than those where the mercury flow is strong and sustained. By combining the patterns of saturation time and velocity a viable explanation for observed damage patterns is presented. (C) 2013 Elsevier B.V. All rights reserved. C1 [Riemer, B. W.; McClintock, D. A.; Kaminskas, S.; Abdou, A. A.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Riemer, BW (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, POB 2008,Bldg 8600,MS 6476, Oak Ridge, TN 37831 USA. EM riemerbw@ornl.gov OI McClintock, David/0000-0002-9292-8951; Riemer, Bernard/0000-0002-6922-3056 NR 14 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2014 VL 450 IS 1-3 BP 183 EP 191 DI 10.1016/j.jnucmat.2013.10.057 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AJ7FM UT WOS:000337862600026 ER PT J AU Riemer, BW Wendel, MW Felde, DK Sangrey, RL Abdou, A West, DL Shea, TJ Hasegawa, S Kogawa, H Naoe, T Farny, CH Kaminsky, AL AF Riemer, B. W. Wendel, M. W. Felde, D. K. Sangrey, R. L. Abdou, A. West, D. L. Shea, T. J. Hasegawa, S. Kogawa, H. Naoe, T. Farny, C. H. Kaminsky, A. L. TI Small gas bubble experiment for mitigation of cavitation damage and pressure waves in short-pulse mercury spallation targets SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11) CY NOV 04-09, 2012 CL Ghent, BELGIUM ID VESSELS AB Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center-Weapons Neutron Research (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated small bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (j-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 pm in radius with achieved gas volume fractions in the 10(-5)-10(-4) range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was pitting damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was to one-third that of stagnant mercury. Other data collected included surface motion tracking by three Laser Doppler Vibrometers (LDV), test loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones. (C) 2013 Elsevier B.V. All rights reserved. C1 [Riemer, B. W.; Wendel, M. W.; Felde, D. K.; Sangrey, R. L.; Abdou, A.; West, D. L.; Shea, T. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hasegawa, S.; Kogawa, H.; Naoe, T.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Farny, C. H.] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. [Kaminsky, A. L.] Univ Tennessee, Knoxville, TN 37996 USA. RP Riemer, BW (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM riemerbw@ornl.gov RI West, David/A-3414-2009; OI West, David/0000-0002-1265-9350; Riemer, Bernard/0000-0002-6922-3056 FU US Department of Energy FX This work has benefited from the use of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. This facility is funded by the US Department of Energy. NR 15 TC 3 Z9 3 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2014 VL 450 IS 1-3 BP 192 EP 203 DI 10.1016/j.Mucmat.2013.10.011 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AJ7FM UT WOS:000337862600027 ER PT J AU Marino, A Lim, J Keijers, S Van den Bosch, J Deconinck, J Rubio, F Woloshun, K Caro, M Maloy, SA AF Marino, A. Lim, J. Keijers, S. Van den Bosch, J. Deconinck, J. Rubio, F. Woloshun, K. Caro, M. Maloy, S. A. TI Temperature dependence of dissolution rate of a lead oxide mass exchanger in lead-bismuth eutectic SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11) CY NOV 04-09, 2012 CL Ghent, BELGIUM ID TO-FLUID MASS; OXYGEN; SYSTEMS; COOLANT; LBE AB A Computational Fluid Dynamic (CFD) model of a lead oxide mass exchanger (MO MX) was developed. The mass exchanger consisted of a packed bed of PbO spheres. The geometry was created using Discrete Elements Method (DEM) software while the meshing, the solving and the post-processing were done by the commercial CFD package CFX. The dissolution process was modeled by implementing in the code oxygen mass transfer through the boundary layer. The dissolution rate was then predicted for different temperatures. Experiments were also performed at the LBE material test loop known as the DELTA loop. Oxygen concentration at the outlet of the PbO MX was measured for different conditions using a potentiometric oxygen sensor and the dissolution rate was determined for five different temperatures. The experimental data were compared with the numerical model. The temperature dependence of the dissolution rate was then determined in terms of Sherwood number by fitting the simulation results while keeping constant Reynolds number. The results showed that the Sherwood number for PbO MX in flowing LBE varies with Sc-0.323. (C) 2014 Elsevier B.V. All rights reserved. C1 [Marino, A.; Lim, J.; Keijers, S.; Van den Bosch, J.] SCK CEN, B-2400 Mol, Belgium. [Marino, A.; Deconinck, J.] Vrije Univ Brussel, B-1050 Elsene, Belgium. [Rubio, F.; Woloshun, K.; Caro, M.; Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Marino, A (reprint author), SCK CEN, Nucl Syst Res Conditioning & Chem Programme, Boeretang 200, B-2400 Mol, Belgium. EM amarino@sckcen.be RI Maloy, Stuart/A-8672-2009 OI Maloy, Stuart/0000-0001-8037-1319 FU US DOE-NE program on Advanced Small Modular Reactor Development FX The research at the DELTA loop was supported by the US DOE-NE program on Advanced Small Modular Reactor Development. The technical assistance of Frank Romero and Kenneth Hurtle is greatly appreciated. We also thank Simon Vanmaercke for his contribution on DEM. NR 17 TC 4 Z9 4 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2014 VL 450 IS 1-3 BP 270 EP 277 DI 10.1016/j.jnucmat.2013.12.023 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA AJ7FM UT WOS:000337862600036 ER PT J AU Sugita, T Bacon, J Ban, Y Borozdin, K Izumi, M Karino, Y Kume, N Miyadera, H Mizokami, S Morris, CL Nakayama, K Otsuka, Y Perry, JO Ramsey, J Sano, Y Yamada, D Yoshida, N Yoshioka, K AF Sugita, Tsukasa Bacon, Jeffery Ban, Yuichiro Borozdin, Konstantin Izumi, Mikio Karino, Yoshiji Kume, Naoto Miyadera, Haruo Mizokami, Shinya Morris, Christopher L. Nakayama, Kohichi Otsuka, Yasuyuki Perry, John O. Ramsey, John Sano, Yuji Yamada, Daichi Yoshida, Noriyuki Yoshioka, Kenichi TI Cosmic-ray muon radiography of UO2 fuel assembly SO JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY LA English DT Article DE fuel assembly; MonteCarlo; decommissioning; muon radiography; cosmic-ray muon; Geant4; NCA ID INNER-STRUCTURE AB A technical demonstration of cosmic-ray muon radiography of a UO2 fuel assembly was performed at Toshiba Nuclear Critical Assembly (NCA). The fuel assembly in the NCA was imaged through obstacles such as steel and concrete. The result suggested that the method can be applicable to assess the damage to the reactors at the Fukushima Daiichi nuclear power plant. Here, both scattering and displacement methods are presented, and the results are shown to agree with Monte Carlo simulations. In addition, detailed Monte Carlo simulations of the Fukushima Daiichi reactor were performed, which showed capability of muon radiography to locate the fuel in the damaged reactors. C1 [Sugita, Tsukasa; Yoshioka, Kenichi] Toshiba Co Ltd, Kawasaki, Kanagawa 2100862, Japan. [Ban, Yuichiro; Izumi, Mikio; Karino, Yoshiji; Kume, Naoto; Miyadera, Haruo; Nakayama, Kohichi; Sano, Yuji; Yoshida, Noriyuki] Toshiba Co Ltd, Isogo Ku, Yokohama, Kanagawa 2358523, Japan. [Bacon, Jeffery; Borozdin, Konstantin; Morris, Christopher L.; Perry, John O.; Ramsey, John] Los Alamos Natl Lab, Subat Phys Grp, Los Alamos, NM 87545 USA. [Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi] Tokyo Elect Power Co Ltd, Chiyoda Ku, Tokyo 1008560, Japan. RP Miyadera, H (reprint author), Toshiba Co Ltd, Isogo Ku, 8 Shinsugita Cho, Yokohama, Kanagawa 2358523, Japan. EM haruo.miyadera@toshiba.co.jp OI Morris, Christopher/0000-0003-2141-0255; Perry, John/0000-0003-3639-5617 FU Tokyo Electric Power Company; Toshiba Corporation FX We thank staffs at Toshiba NCA for their support during the reactor imaging demonstration. This work has been supported by Tokyo Electric Power Company and by Toshiba Corporation. NR 15 TC 6 Z9 6 U1 0 U2 7 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0022-3131 EI 1881-1248 J9 J NUCL SCI TECHNOL JI J. Nucl. Sci. Technol. PD JUL-AUG PY 2014 VL 51 IS 7-8 SI SI BP 1024 EP 1031 DI 10.1080/00223131.2014.919884 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AJ8OQ UT WOS:000337966000017 ER PT J AU Edman, JP Romps, DM AF Edman, Jacob P. Romps, David M. TI An Improved Weak Pressure Gradient Scheme for Single-Column Modeling SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID CLOUD-RESOLVING MODEL; GRAVITY-WAVES; APPROXIMATION; CONVECTION; INSTABILITY; TROPOSPHERE AB A new formulation of the weak pressure gradient approximation (WPG) is introduced for parameterizing large-scale dynamics in limited-domain atmospheric models. This new WPG is developed in the context of the one-dimensional, linearized, damped, shallow-water equations and then extended to Boussinesq and compressible fluids. Unlike previous supradomain-scale parameterizations, this formulation of WPG correctly reproduces both steady-state solutions and first baroclinic gravity waves. In so doing, this scheme eliminates the undesirable gravity wave resonance in previous versions of WPG. In addition, this scheme can be extended to accurately model the emission of gravity waves with arbitrary vertical wavenumber. C1 [Edman, Jacob P.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Edman, JP (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 449 McCone Hall, Berkeley, CA 94720 USA. EM jedman@berkeley.edu RI Romps, David/F-8285-2011; Edman, Jacob/J-5522-2014 OI Edman, Jacob/0000-0001-9130-7128 FU U.S. Department of Energy's Earth System Modeling, an Office of Science, Office of Biological and Environmental Research program [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy's Earth System Modeling, an Office of Science, Office of Biological and Environmental Research program under Contract DE-AC02-05CH11231. Thanks are due to Adam Sobel, David Raymond, and an anonymous reviewer for their helpful suggestions that improved this paper. NR 25 TC 7 Z9 7 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUL PY 2014 VL 71 IS 7 BP 2415 EP 2429 DI 10.1175/JAS-D-13-0327.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AJ7ZF UT WOS:000337920200008 ER PT J AU Zhou, BW Simon, JS Chow, FK AF Zhou, Bowen Simon, Jason S. Chow, Fotini K. TI The Convective Boundary Layer in the Terra Incognita SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID LARGE-EDDY-SIMULATION; NONHYDROSTATIC ATMOSPHERIC SIMULATION; PREDICTION SYSTEM ARPS; VERTICAL DIFFUSION; MODEL; INSTABILITY; RESOLUTION; DYNAMICS; FLOW AB Numerical simulations of a convective boundary layer (CBL) are performed to investigate model behavior in the terra incognita, also known as the gray zone. The terra incognita of the CBL refers to a range of model grid spacing that is comparable to the size of the most energetic convective eddies, which are on the order of the boundary layer depth. Using the Rayleigh-Benard thermal instability as reference, a set of idealized simulations is used to show that gray zone modeling is not only a numerical challenge, but also poses dynamical difficulties. When the grid spacing falls within the CBL gray zone, grid-dependent convection can occur. The size of the initial instability structures is set by the grid spacing rather than the natural state of the flow. This changes higher-order flow statistics and poses fundamental difficulties for gray zone modeling applications. C1 [Zhou, Bowen] Nanjing Univ, MOE, Key Lab Mesoscale Severe Weather, Nanjing 210008, Jiangsu, Peoples R China. [Zhou, Bowen] Nanjing Univ, Sch Atmospher Sci, Nanjing 210008, Jiangsu, Peoples R China. [Zhou, Bowen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Simon, Jason S.; Chow, Fotini K.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Chow, FK (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 621 Davis Hall, Berkeley, CA 94720 USA. EM tinakc@berkeley.edu FU National Science Foundation [ATM-0645784, OCI-1053575] FX We gratefully acknowledge the comments and suggestions on the manuscript from Prof. Bob Street. We also thank Prof. David Romps for insightful discussions. We are grateful for the support from National Science Foundation Grant ATM-0645784 (Physical and Dynamic Meteorology Program). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant OCI-1053575. NR 41 TC 16 Z9 16 U1 2 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUL PY 2014 VL 71 IS 7 BP 2545 EP 2563 DI 10.1175/JAS-D-13-0356.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AJ7ZF UT WOS:000337920200016 ER PT J AU Latch, EK Reding, DM Heffelfinger, JR Alcala-Galvan, CH Rhodes, OE AF Latch, Emily K. Reding, Dawn M. Heffelfinger, James R. Alcala-Galvan, Carlos H. Rhodes, Olin E. TI Range-wide analysis of genetic structure in a widespread, highly mobile species (Odocoileus hemionus) reveals the importance of historical biogeography SO MOLECULAR ECOLOGY LA English DT Review DE gene flow; isolation by distance; landscape genetics; Odocoileus hemionus; phylogeography; spatial genetic structure ID WHITE-TAILED DEER; MULTILOCUS GENOTYPE DATA; WESTERN NORTH-AMERICA; MULE DEER; POPULATION-STRUCTURE; MITOCHONDRIAL-DNA; INTROGRESSIVE HYBRIDIZATION; EVOLUTIONARY HISTORY; LANDSCAPE GENETICS; PLANT-POPULATIONS AB Highly mobile species that thrive in a wide range of habitats are expected to show little genetic differentiation across their range. A limited but growing number of studies have revealed that patterns of broad-scale genetic differentiation can and do emerge in vagile, continuously distributed species. However, these patterns are complex and often shaped by both historical and ecological factors. Comprehensive surveys of genetic variation at a broad scale and at high resolution are useful for detecting cryptic spatial genetic structure and for investigating the relative roles of historical and ecological processes in structuring widespread, highly mobile species. In this study, we analysed 10 microsatellite loci from over 1900 samples collected across the full range of mule deer (Odocoileus hemionus), one of the most widely distributed and abundant of all large mammal species in North America. Through both individual- and population-based analyses, we found evidence for three main genetic lineages, one corresponding to the mule deer' morphological type and two to the black-tailed deer' type. Historical biogeographic events likely are the primary drivers of genetic divergence in this species; boundaries of the three lineages correspond well with predictions based on Pleistocene glacial cycles, and substructure within each lineage demonstrates island vicariance. However, across large geographic areas, including the entire mule deer lineage, we found that genetic variation fit an isolation-by-distance pattern rather than discrete clusters. A lack of genetic structure across wide geographic areas of the continental west indicates that ecological processes have not resulted in restrictions to gene flow sufficient for spatial genetic structure to emerge. Our results have important implications for our understanding of evolutionary mechanisms of divergence, as well as for taxonomy, conservation and management. C1 [Latch, Emily K.] Univ Wisconsin, Behav & Mol Ecol Res Grp, Dept Biol Sci, Milwaukee, WI 53211 USA. [Reding, Dawn M.] Luther Coll, Dept Biol, Decorah, IA 52101 USA. [Reding, Dawn M.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA. [Heffelfinger, James R.] Arizona Game & Fish Dept, Tucson, AZ 85745 USA. [Alcala-Galvan, Carlos H.] DICTUS Univ Sonora, Hermosillo 83100, Sonora, Mexico. [Rhodes, Olin E.] Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Latch, EK (reprint author), Univ Wisconsin, Behav & Mol Ecol Res Grp, Dept Biol Sci, 3209 N Maryland Ave, Milwaukee, WI 53211 USA. EM latch@uwm.edu FU Boone Crockett Club; Pope and Young Club; Campfire Conservation Fund of the Camp Fire Club; National Fish and Wildlife Foundation; University of Wisconsin-Milwaukee; Purdue University; University of Arizona; Arizona Game and Fish Department; California Deer Association; Dallas Safari Club; Safari Club International (National and Seattle Chapter) FX We appreciate the support provided by the Boone & Crockett Club, Pope and Young Club, Campfire Conservation Fund of the Camp Fire Club, National Fish and Wildlife Foundation, University of Wisconsin-Milwaukee, Purdue University, University of Arizona, Arizona Game and Fish Department, California Deer Association, Dallas Safari Club, Safari Club International (National and Seattle Chapter), Eldon 'Buck' Buckner, James deVos, Scott Fitkin, Richard Green, Jeff Gronauer, Winifred Kessler, Paul Krausman, Mike Schlegel and Don Whittaker. Samples from the entire range were collected by more than 150 volunteers, which, regrettably, are too numerous to mention individually. Francisco Abarca was instrumental in helping with international coordination. We appreciate helpful comments provided by Lisette Waits and anonymous reviewers on an earlier draft of the manuscript. NR 104 TC 10 Z9 10 U1 9 U2 87 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0962-1083 EI 1365-294X J9 MOL ECOL JI Mol. Ecol. PD JUL PY 2014 VL 23 IS 13 BP 3171 EP 3190 DI 10.1111/mec.12803 PG 20 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA AJ9GE UT WOS:000338014900005 PM 24863151 ER PT J AU Bonito, G Reynolds, H Robeson, MS Nelson, J Hodkinson, BP Tuskan, G Schadt, CW Vilgalys, R AF Bonito, Gregory Reynolds, Hannah Robeson, Michael S. Nelson, Jessica Hodkinson, Brendan P. Tuskan, Gerald Schadt, Christopher W. Vilgalys, Rytas TI Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants SO MOLECULAR ECOLOGY LA English DT Article DE 454 pyrosequencing; bacterial communities; fungal communities; Glomeromycota; phylotyping; Pinus; Populus; Quercus; root endophytes ID ARBUSCULAR MYCORRHIZAL FUNGI; ECTOMYCORRHIZAL FUNGI; MICROBIAL COMMUNITIES; ROCKY-MOUNTAINS; POPULUS; DIVERSITY; IDENTIFICATION; FOREST; ASPEN; RHIZOSPHERE AB Microbial communities in plant roots provide critical links between above- and belowground processes in terrestrial ecosystems. Variation in root communities has been attributed to plant host effects and microbial host preferences, as well as to factors pertaining to soil conditions, microbial biogeography and the presence of viable microbial propagules. To address hypotheses regarding the influence of plant host and soil biogeography on root fungal and bacterial communities, we designed a trap-plant bioassay experiment. Replicate Populus, Quercus and Pinus plants were grown in three soils originating from alternate field sites. Fungal and bacterial community profiles in the root of each replicate were assessed through multiplex 454 amplicon sequencing of four loci (i.e., 16S, SSU, ITS, LSU rDNA). Soil origin had a larger effect on fungal community composition than did host species, but the opposite was true for bacterial communities. Populus hosted the highest diversity of rhizospheric fungi and bacteria. Root communities on Quercus and Pinus were more similar to each other than to Populus. Overall, fungal root symbionts appear to be more constrained by dispersal and biogeography than by host availability. C1 [Bonito, Gregory] Royal Bot Gardens, Melbourne, Vic 3141, Australia. [Bonito, Gregory; Reynolds, Hannah; Nelson, Jessica; Hodkinson, Brendan P.; Vilgalys, Rytas] Duke Univ, Dept Biol, Durham, NC 27708 USA. [Robeson, Michael S.; Tuskan, Gerald; Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Bonito, G (reprint author), Royal Bot Gardens, Melbourne, Vic 3141, Australia. EM Gregory.Bonito@rbg.vic.gov.au RI Schadt, Christopher/B-7143-2008; Tuskan, Gerald/A-6225-2011; OI Schadt, Christopher/0000-0001-8759-2448; Tuskan, Gerald/0000-0003-0106-1289; Robeson, Michael/0000-0001-7119-6301; Vilgalys, Rytas/0000-0001-8299-3605 FU Genomic Science Program, U.S. Department of Energy, Office of Science - Biological and Environmental Research as part of the Plant Microbe Interfaces Scientific Focus Area; National Science Foundation [EF-0832858, DEB-1011504, DEB-1145511]; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the Genomic Science Program, U.S. Department of Energy, Office of Science - Biological and Environmental Research as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). Support for B.P.H. was provided in part by the National Science Foundation under awards EF-0832858, DEB-1011504 and DEB-1145511. We thank Lee Gunter, Jud Isebrands, Zachary Moore, Paul Bloese and Bernard McMahon for supplying Populus cuttings, Joshua Steiger and Steve Mckeand from the NC State University's Forest Improvement Center for pine seed, Anthony Amend for helpful discussions regarding 454 primer design, and Victor Bonito for advice on ecological community statistics. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 76 TC 28 Z9 29 U1 7 U2 153 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0962-1083 EI 1365-294X J9 MOL ECOL JI Mol. Ecol. PD JUL PY 2014 VL 23 IS 13 BP 3356 EP 3370 DI 10.1111/mec.12821 PG 15 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA AJ9GE UT WOS:000338014900017 PM 24894495 ER PT J AU Schmutz, J McClean, PE Mamidi, S Wu, GA Cannon, SB Grimwood, J Jenkins, J Shu, SQ Song, QJ Chavarro, C Torres-Torres, M Geffroy, V Moghaddam, SM Gao, DY Abernathy, B Barry, K Blair, M Brick, MA Chovatia, M Gepts, P Goodstein, DM Gonzales, M Hellsten, U Hyten, DL Jia, GF Kelly, JD Kudrna, D Lee, R Richard, MMS Miklas, PN Osorno, JM Rodrigues, J Thareau, V Urrea, CA Wang, M Yu, Y Zhang, M Wing, RA Cregan, PB Rokhsar, DS Jackson, SA AF Schmutz, Jeremy McClean, Phillip E. Mamidi, Sujan Wu, G. Albert Cannon, Steven B. Grimwood, Jane Jenkins, Jerry Shu, Shengqiang Song, Qijian Chavarro, Carolina Torres-Torres, Mirayda Geffroy, Valerie Moghaddam, Samira Mafi Gao, Dongying Abernathy, Brian Barry, Kerrie Blair, Matthew Brick, Mark A. Chovatia, Mansi Gepts, Paul Goodstein, David M. Gonzales, Michael Hellsten, Uffe Hyten, David L. Jia, Gaofeng Kelly, James D. Kudrna, Dave Lee, Rian Richard, Manon M. S. Miklas, Phillip N. Osorno, Juan M. Rodrigues, Josiane Thareau, Vincent Urrea, Carlos A. Wang, Mei Yu, Yeisoo Zhang, Ming Wing, Rod A. Cregan, Perry B. Rokhsar, Daniel S. Jackson, Scott A. TI A reference genome for common bean and genome-wide analysis of dual domestications SO NATURE GENETICS LA English DT Article ID DISEASE RESISTANCE GENES; PHASEOLUS-VULGARIS L.; ARABIDOPSIS-THALIANA; SEQUENCE DATA; DIVERSIFICATION; REVEALS; SELECTION; CLUSTER; ORIGIN; LOCI AB Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement. C1 [Schmutz, Jeremy; Wu, G. Albert; Shu, Shengqiang; Barry, Kerrie; Chovatia, Mansi; Goodstein, David M.; Hellsten, Uffe; Wang, Mei; Zhang, Ming; Rokhsar, Daniel S.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Schmutz, Jeremy; Grimwood, Jane; Jenkins, Jerry] HudsonAlpha Inst Biotechnol, Huntsville, AL USA. [McClean, Phillip E.; Mamidi, Sujan; Moghaddam, Samira Mafi; Lee, Rian; Osorno, Juan M.] N Dakota State Univ, Dept Plant Sci, Fargo, ND 58105 USA. [Cannon, Steven B.] USDA ARS, Corn Insects & Crop Genet Res Unit, Ames, IA USA. [Song, Qijian; Hyten, David L.; Jia, Gaofeng; Rodrigues, Josiane; Cregan, Perry B.] USDA ARS, Soybean Genom & Improvement Lab, Beltsville, MD USA. [Chavarro, Carolina; Torres-Torres, Mirayda; Gao, Dongying; Abernathy, Brian; Gonzales, Michael; Jackson, Scott A.] Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA. [Geffroy, Valerie; Richard, Manon M. S.; Thareau, Vincent] Univ Paris 11, CNRS, Inst Biol Plantes, UMR 8618, F-91405 Orsay, France. [Geffroy, Valerie] Univ Paris 11, INRA, Unite Mixte Rech Genet Vegetale, Gif Sur Yvette, France. [Blair, Matthew] Tennessee State Univ, Dept Agr & Nat Sci, Nashville, TN 37203 USA. [Brick, Mark A.] Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA. [Gepts, Paul] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [Kelly, James D.] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. [Kudrna, Dave; Yu, Yeisoo; Wing, Rod A.] Univ Arizona, Arizona Genom Inst, Tucson, AZ USA. [Miklas, Phillip N.] USDA ARS, Vegetable & Forage Crop Res Unit, Prosser, WA 99350 USA. [Urrea, Carlos A.] Univ Nebraska, Panhandle Res & Extens Ctr, Scottsbluff, NE USA. RP Jackson, SA (reprint author), Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA. EM jschmutz@hudsonalpha.org; phillip.mcclean@ndsu.edu; sjackson@uga.edu OI Cannon, Steven/0000-0003-2777-8034; Hyten, David/0000-0001-6324-9389; mamidi, sujan/0000-0002-3837-6121; Wing, Rod/0000-0001-6633-6226 FU Office of Science of the US Department of Energy - US Department of Agriculture National Institute for Food and Agriculture [DE-AC02-05CH11231, 2006-35300-17266]; National Science Foundation [DBI 0822258]; US Department of Agriculture Cooperative State Research, Education and Extension Service [2009-01860, 2009-01929] FX The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under contract DE-AC02-05CH11231. This research was funded by grants from the US Department of Agriculture National Institute for Food and Agriculture (2006-35300-17266) and the National Science Foundation (DBI 0822258) to S.A.J. and from the US Department of Agriculture Cooperative State Research, Education and Extension Service (2009-01860 and 2009-01929) to S.A.J. and P.E.M., respectively. NR 45 TC 210 Z9 213 U1 17 U2 125 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1061-4036 EI 1546-1718 J9 NAT GENET JI Nature Genet. PD JUL PY 2014 VL 46 IS 7 BP 707 EP 713 DI 10.1038/ng.3008 PG 7 WC Genetics & Heredity SC Genetics & Heredity GA AK0HP UT WOS:000338093800011 PM 24908249 ER PT J AU Ilas, G Gauld, IC Liljenfeldt, H AF Ilas, Germina Gauld, Ian C. Liljenfeldt, Henrik TI Validation of ORIGEN for LWR used fuel decay heat analysis with SCALE SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID ANALYSIS CAPABILITIES; SPENT FUEL; DEPLETION AB The energy release rate from the decay of radionuclides can be a critical design parameter for used nuclear fuel storage, transportation, and repository engineered systems. Validation of the SCALE nuclear analysis code system capabilities in predicting decay heat for commercial used fuel applications has been performed using decay heat measurements for fuel assemblies irradiated in pressurized and boiling water reactors. The experimental data used for validation include a large number of full-length-assembly decay heat measurements that were performed between 2003 and 2010 at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel, Clab, operated by the Swedish Nuclear Fuel and Waste Management Company, SKB. The measured fuel assemblies cover the burnup range 14-51 GWd/MTU and cooling times between 12 and 27 years, which are times of interest to used fuel transportation and storage applications. The validation results indicate good agreement between calculated and measured decay heat values, generally within the reported measurement uncertainty. The effects of key modeling assumptions and data used in the calculations are presented and discussed. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ilas, Germina; Gauld, Ian C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Liljenfeldt, Henrik] Swedish Nucl Fuel & Waste Management Co AB SKB, S-10124 Stockholm, Sweden. RP Ilas, G (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM ilasg@ornl.gov; gauldi@ornl.gov; Henrik.Liljenfeldt@skb.se OI Gauld, Ian/0000-0002-3893-7515 FU UT-Battelle LLC [DE-AC05-000R22725]; US Department of Energy FX This manuscript has been authored by UT-Battelle LLC under contract DE-AC05-000R22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 18 TC 4 Z9 4 U1 0 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUL 1 PY 2014 VL 273 BP 58 EP 67 DI 10.1016/j.nucengdes.2014.02.026 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AJ7DD UT WOS:000337856500006 ER PT J AU Craft, AE O'Brien, RC Howe, SD King, JC AF Craft, A. E. O'Brien, R. C. Howe, S. D. King, J. C. TI Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID REACTORS; SYSTEM AB Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten-uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores. (c) 2014 Elsevier B.V. All rights reserved. C1 [Craft, A. E.; O'Brien, R. C.; Howe, S. D.] INL, Ctr Space Nucl Res, Idaho Falls, ID USA. [King, J. C.] Colorado Sch Mines, Dept Met & Mat Engn, Nucl Sci & Engn Program, Golden, CO 80401 USA. RP Craft, AE (reprint author), 995 Univ Blvd, Idaho Falls, ID 83402 USA. EM aaron.craft@inl.gov; Robert.OBrien@inl.gov; Steven.Howe@inl.gov; kingjc@mines.edu RI O'Brien, Robert/C-3355-2017; Craft, Aaron/B-7579-2017 OI O'Brien, Robert/0000-0002-7479-6764; Craft, Aaron/0000-0002-7092-3826 NR 25 TC 0 Z9 0 U1 0 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUL 1 PY 2014 VL 273 BP 143 EP 149 DI 10.1016/j.nucengdes.2014.01.028 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AJ7DD UT WOS:000337856500014 ER PT J AU Kryukov, A Nanstad, RK Brumovsky, M AF Kryukov, A. Nanstad, R. K. Brumovsky, M. TI Common comparison of the irradiation embrittlement of WWER/PWR reactor pressure vessel steels SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID ATOM-PROBE TOMOGRAPHY; SURVEILLANCE PROGRAM; EVOLUTION AB The paper presents the immediate comparison of Tk shifts due to neutron irradiation for WWER and PWR RPV materials and common experimental data analysis. The PWR and WWER RPV steels were irradiated at both the same temperature and neutron fluence range. For both PWR and WWER RPV material types, there is a similar degradation in mechanical properties. The comparison of "high sensitive" welds with "clean" welds reveals an expected influence of three main chemical elements (copper, nickel and phosphorus) on RPV steels irradiation embrittlement. The synergistic influence of these three elements is observed. Because the peak neutron fluence in WWER RPVs is significantly higher than for PWRs, the most part of WWER irradiation embrittlement data correspond to high fluence values. These additional data will greatly support the development of embrittlement correlations and embrittlement trend curves valid for long irradiation times. (C) 2014 Elsevier BM. All rights reserved. C1 [Kryukov, A.] Nucl Res Ee Consultancy Grp NRG, NL-1755 ZG Petten, Netherlands. [Nanstad, R. K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Brumovsky, M.] Nucl Res Inst, CZ-25068 Rez, Czech Republic. RP Kryukov, A (reprint author), Nucl Res Ee Consultancy Grp NRG, POB 25, NL-1755 ZG Petten, Netherlands. EM al.kryukov2013@yandex.ru NR 19 TC 2 Z9 2 U1 3 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUL 1 PY 2014 VL 273 BP 175 EP 180 DI 10.1016/j.nucengdes.2014.03.018 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AJ7DD UT WOS:000337856500018 ER PT J AU Seaver, SMD Gerdes, S Frelin, O Lerma-Ortiz, C Bradbury, LMT Zallot, R Hasnain, G Niehaus, TD El Yacoubi, B Pasternak, S Olson, R Pusch, G Overbeek, R Stevens, R de Crecy-Lagard, V Ware, D Hanson, AD Henry, CS AF Seaver, Samuel M. D. Gerdes, Svetlana Frelin, Oceane Lerma-Ortiz, Claudia Bradbury, Louis M. T. Zallot, Remi Hasnain, Ghulam Niehaus, Thomas D. El Yacoubi, Basma Pasternak, Shiran Olson, Robert Pusch, Gordon Overbeek, Ross Stevens, Rick de Crecy-Lagard, Valerie Ware, Doreen Hanson, Andrew D. Henry, Christopher S. TI High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE systems biology; computational biochemistry; plant metabolism; plant genomics ID ESCHERICHIA-COLI; METACYC DATABASE; PATHWAY DATABASE; ARABIDOPSIS; NETWORK; RECONSTRUCTION; GENERATION; PROTEOMICS; BIOSYNTHESIS; OPTIMIZATION AB The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed. C1 [Seaver, Samuel M. D.; Gerdes, Svetlana; Olson, Robert; Henry, Christopher S.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Pusch, Gordon; Stevens, Rick] Argonne Natl Lab, Argonne, IL 60439 USA. [Seaver, Samuel M. D.; Olson, Robert; Pusch, Gordon; Stevens, Rick; Henry, Christopher S.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Frelin, Oceane; Bradbury, Louis M. T.; Hasnain, Ghulam; Niehaus, Thomas D.] Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA. [Lerma-Ortiz, Claudia; Zallot, Remi; El Yacoubi, Basma; de Crecy-Lagard, Valerie] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA. [Pasternak, Shiran; Ware, Doreen] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Ware, Doreen] Cornell Univ, USDA ARS, North Atlantic Area Plant Soil & Nutr Lab Res Uni, Ithaca, NY 14853 USA. RP Henry, CS (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chenry@mcs.anl.gov RI ZALLOT, Remi/D-3933-2014 OI ZALLOT, Remi/0000-0002-7317-1578 FU National Science Foundation [IOS-1025398]; C V Griffin Sr Foundation; Office of Science, Office of Biological and Environmental Research, of the US Department of Energy (DOE) as part of the DOE Systems Biology Knowledgebase [DE-ACO2-06CH11357] FX We thank Kate Dreher for extensive discussions and support in the use of the AraCyc database and Joshua Stein for support in the use of the genomes and protein families. This work was supported by National Science Foundation Grant IOS-1025398, by an endowment from the C V Griffin Sr Foundation, and by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy (DOE) under Contract DE-ACO2-06CH11357, as part of the DOE Systems Biology Knowledgebase. NR 53 TC 21 Z9 21 U1 1 U2 23 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 1 PY 2014 VL 111 IS 26 BP 9645 EP 9650 DI 10.1073/pnas.1401329111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AK0QG UT WOS:000338118900071 PM 24927599 ER PT J AU Guan, DB Lin, JT Davis, SJ Pan, D He, KB Wang, C Wuebbles, DJ Streets, DG Zhang, Q AF Guan, Dabo Lin, Jintai Davis, Steven J. Pan, Da He, Kebin Wang, Can Wuebbles, Donald J. Streets, David G. Zhang, Qiang TI Reply to Lopez et al.: Consumption-based accounting helps mitigate global air pollution SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter ID EMISSIONS C1 [Guan, Dabo; He, Kebin; Wang, Can; Zhang, Qiang] Tsinghua Univ, Minist Educ, Key Lab Earth Syst Modeling, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Guan, Dabo] Univ Leeds, Sch Earth & Environm, Water Leeds, Leeds LS2 9JT, W Yorkshire, England. [Lin, Jintai] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China. [Davis, Steven J.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Pan, Da] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [He, Kebin] Collaborat Innovat Ctr Reg Environm Qual, Beijing 100084, Peoples R China. [Wang, Can] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Wuebbles, Donald J.] Univ Illinois, Sch Earth Soc & Environm, Dept Atmospher Sci, Urbana, IL 61801 USA. [Streets, David G.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Lin, JT (reprint author), Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China. EM linjt@pku.edu.cn RI Lin, Jintai/A-8872-2012; Zhang, Qiang/D-9034-2012; Chem, GEOS/C-5595-2014; OI Lin, Jintai/0000-0002-2362-2940; Davis, Steven/0000-0002-9338-0844; Guan, Dabo/0000-0003-3773-3403 NR 5 TC 7 Z9 7 U1 1 U2 18 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 1 PY 2014 VL 111 IS 26 BP E2631 EP E2631 DI 10.1073/pnas.1407383111 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AK0QG UT WOS:000338118900002 PM 25115000 ER PT J AU Green, MA Emery, K Hishikawa, Y Warta, W Dunlop, ED AF Green, Martin A. Emery, Keith Hishikawa, Yoshihiro Warta, Wilhelm Dunlop, Ewan D. TI Solar cell efficiency tables (version 44) SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar cell efficiency; photovoltaic efficiency; energy conversion efficiency ID CONCENTRATOR; MULTICRYSTALLINE; STABILITY; MODULE AB Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since January 2014 are reviewed. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Green, Martin A.] Univ New S Wales, Australian Ctr Adv Photovolta, Sydney, NSW 2052, Australia. [Emery, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hishikawa, Yoshihiro] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta Technol RCPVT, Tsukuba, Ibaraki 3058568, Japan. [Warta, Wilhelm] Fraunhofer Inst Solar Energy Syst, Dept Mat & Technol, D-79110 Freiburg, Germany. [Dunlop, Ewan D.] Commiss European Communities, Joint Res Ctr, Renewable Energy Unit, Inst Energy, IT-21027 Ispra, VA, Italy. RP Green, MA (reprint author), Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia. EM m.green@unsw.edu.au FU Australian Government through the Australian Renewable Energy Agency (ARENA) FX The Australian Centre for Advanced Photovoltaics commenced operation in February 2013 with support from the Australian Government through the Australian Renewable Energy Agency (ARENA). Responsibility for the views, information or advice expressed herein is not accepted by the Australian Government. NR 47 TC 355 Z9 364 U1 7 U2 250 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JUL PY 2014 VL 22 IS 7 BP 701 EP 710 DI 10.1002/pip.2525 PG 10 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AJ8KS UT WOS:000337953300001 ER PT J AU Hacke, P Smith, R Terwilliger, K Perrin, G Sekulic, B Kurtz, S AF Hacke, Peter Smith, Ryan Terwilliger, Kent Perrin, Greg Sekulic, Bill Kurtz, Sarah TI Development of an IEC test for crystalline silicon modules to qualify their resistance to system voltage stress SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE Energy conversion; Silicon ID POTENTIAL-INDUCED DEGRADATION; SOLAR-CELLS AB IEC 62804 Ed. 1, System voltage durability qualification test for crystalline silicon modules, is being developed. First, two module designs are compared in chamber and in the natural environment of Florida (USA). From these results, a stress level of 60 degrees C, 85% relative humidity, a bias of nameplate system voltage, 96h dwell, and a pass/fail limit of 5% relative power degradation at 25 degrees C and 1000W/m2 irradiance is initially proposed for the draft protocol. This paper next focuses on one of the main controversies within the development of this standardthe use of damp heat in an environmental chamber versus a conductive foil to complete the circuit to ground during the test. Conventional 60-cell multicrystalline silicon modules with (i) a standard aluminum frame, (ii) a modified frame, and (iii) a rear rail design were tested for potential-induced degradation (PID). These three module designs were stressed at the draft protocol conditions stated above and outdoors, applying negative system voltage bias during hours of daylight to simulate array voltage. The damp heat environmental chamber tests run according to the protocol distinguish the relative resistance of five module designs to PID in the field and correctly rank-order the durability in the field to the extent tested (up to 28months). Finally, the degradation rate is determined at 25 degrees C using a foil to ground the module face on a subset of modules susceptible to PID, and the results with respect to measured field performance of the modules are discussed. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Hacke, Peter; Terwilliger, Kent; Perrin, Greg; Sekulic, Bill; Kurtz, Sarah] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Smith, Ryan] Pordis LLC, Austin, TX 78729 USA. RP Hacke, P (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM peter.hacke@nrel.gov FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX The authors thank Bill Marion for helpful discussions; Steve Rummel and Allen Anderberg, Keith Emery, Showalter, Donard Metzger, and Stephen Barkaszi for module measurements; and Antonio Bonucci for providing module edge tape. This work was supported by the US Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 27 TC 12 Z9 12 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JUL PY 2014 VL 22 IS 7 BP 775 EP 783 DI 10.1002/pip.2434 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AJ8KS UT WOS:000337953300008 ER PT J AU Feng, YZ Grogan, P Caporaso, JG Zhang, HY Lin, XG Knight, R Chu, HY AF Feng, Youzhi Grogan, Paul Caporaso, J. Gregory Zhang, Huayong Lin, Xiangui Knight, Rob Chu, Haiyan TI pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Anoxygenic purple phototrophic bacteria; Arctic soils; Pyrosequencing; Spatial distribution; Soil pH ID MOLECULAR EVIDENCE; DIVERSITY; COMMUNITIES; EVOLUTION; PHOTOSYNTHESIS; MICROBES; LIGHT; OCEAN; PROKARYOTES; ECOSYSTEMS AB Anoxygenic purple phototrophic bacteria (AnPPB) are ecologically important microorganisms that are sensitive to shifts in environmental variables. However, there is little information about the composition and distribution of AnPPB in the Arctic. Here we present the first study of the spatial distribution of soil AnPPB in Arctic soils using pyrosequencing and quantitative real-time PCR. We show that the AnPPB community in Arctic soils is as diverse and abundant as that in lower latitudes. The phylum Alphaproteobacteria accounted for 54.1% of the total sequences; about one third of total sequences were identified as novel phylotypes. Consistent with their anaerobic niche, AnPPB abundances were positively correlated with soil moisture content. Furthermore, the relative and absolute abundances of several dominant AnPPB taxa were significantly correlated with soil pH. AnPPB phylogenetic community structure was correlated with soil pH, as was alpha diversity, with a minimum around pH 6.0. Previous research has shown that pH is a good predictor of the structure of soil bacterial communities. Our results here suggest that pH could be a key factor driving phylogenetic diversity of not just overall bacterial communities but also of discrete functional guilds of bacteria in terrestrial ecosystems. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Feng, Youzhi; Zhang, Huayong; Lin, Xiangui; Chu, Haiyan] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China. [Grogan, Paul] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada. [Caporaso, J. Gregory] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Caporaso, J. Gregory] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. RP Chu, HY (reprint author), Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China. EM xglin@issas.ac.cn; hychu@issas.ac.cn RI Knight, Rob/D-1299-2010 FU National Natural Science Foundation of China [_501100001809, 41071167, 41371254, 41001142, 41271256]; Hundred Talents Program of the Chinese Academy of Sciences [_501100002367]; AWS in Education researcher's grant; Howard Hughes Medical Institute [_100000011] FX We sincerely thank our many colleagues who collected soil samples across the Arctic. We also thank Linda Cameron and several undergraduate students for help with soil processing and lab analyses. This work was supported by National Natural Science Foundation of China (_501100001809) to H. Chu (41071167, 41371254) and to Y. Feng (41001142, 41271256), the Hundred Talents Program of the Chinese Academy of Sciences (_501100002367) to H. Chu, and NSERC as part of the International Polar Year Project: Climate Change Impacts on Canadian Arctic Tundra (P. Grogan), Amazon Web Services (AWS in Education researcher's grant to JG. Caporaso and R. Knight) and the Howard Hughes Medical Institute (_100000011) (R. Knight). NR 53 TC 9 Z9 13 U1 4 U2 57 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD JUL PY 2014 VL 74 BP 193 EP 200 DI 10.1016/j.soilbio.2014.03.014 PG 8 WC Soil Science SC Agriculture GA AJ7BZ UT WOS:000337853500022 ER PT J AU Singh, D Timofeeva, EV Moravek, MR Cingarapu, S Yu, WH Fischer, T Mathur, S AF Singh, Dileep Timofeeva, Elena V. Moravek, Michael R. Cingarapu, Sreeram Yu, Wenhua Fischer, Thomas Mathur, Sanjay TI Use of metallic nanoparticles to improve the thermophysical properties of organic heat transfer fluids used in concentrated solar power SO SOLAR ENERGY LA English DT Article DE Copper nanoparticles; Nanofluids; Thermophysical properties; Heat transfer ID ENHANCED THERMAL-CONDUCTIVITY; ETHYLENE-GLYCOL; COPPER NANOPARTICLES; BROWNIAN-MOTION; NANOFLUIDS AB One of the approaches to enhance the efficiency, and consequently, reduce costs to produce electricity from concentrated solar power (CSP) is by the development of advanced high temperature heat transfer fluids (HTFs). Incorporation of metallic nanoparticles into conventional heat transfer fluids could significantly improve the thermal transport properties of the HTFs. This study reports on the synthesis and investigation of copper nanoparticles synthesized in-house and dispersed in two synthetic HTFs Therminol 59 (TH59) and Therminol 66 (TH66). Liquid phase reduction of a copper salt was used to produce copper nanoparticles. Suspensions with various copper nanoparticle loadings (0.5-2 vol.%) were prepared. Characterizations such as the thermal conductivity, dynamic viscosity, mass specific heat capacity, and fluid stability were performed on the suspensions. Thermal conductivity enhancements over the base fluids were as high as approximately 20% at a 2 vol.% particle loading. These enhancements in the thermal conductivity are higher than the predictions based on the Effective Medium Theory (EMT). Dynamic viscosity measurements showed that if good dispersion of nanoparticles is achieved, the composite fluids behave in a Newtonian manner and the dynamic viscosity increases over the base fluid are minor at temperatures 125 C and above. Stability of the suspensions with time was also investigated. Based on the measured properties of the suspensions, a figure of merit for heat transfer was calculated to evaluate the viability of the suspensions. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Singh, Dileep; Moravek, Michael R.; Cingarapu, Sreeram] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Timofeeva, Elena V.; Yu, Wenhua] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Fischer, Thomas; Mathur, Sanjay] Univ Cologne, Inst Inorgan Chem, D-50923 Cologne, Germany. RP Singh, D (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dsingh@anl.gov RI Timofeeva, Elena/E-6391-2010; OI Timofeeva, Elena V./0000-0001-7839-2727 FU US Department of Energy's EERE Solar Energy Technology Program ARRA funding FX This work was supported by US Department of Energy's EERE Solar Energy Technology Program ARRA funding. Discussions with DOE project managers, Mr. Joe Stekli and Dr. Levi Irwin are much appreciated. The EMS was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a US Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago-Argonne, LLC. Assistance from Dr. Y. Yusufoglu is appreciated. NR 32 TC 11 Z9 11 U1 3 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD JUL PY 2014 VL 105 BP 468 EP 478 DI 10.1016/j.solener.2014.02.036 PG 11 WC Energy & Fuels SC Energy & Fuels GA AJ8VJ UT WOS:000337985700045 ER PT J AU Yue, DJ You, FQ Darling, SB AF Yue, Dajun You, Fengqi Darling, Seth B. TI Domestic and overseas manufacturing scenarios of silicon-based photovoltaics: Life cycle energy and environmental comparative analysis SO SOLAR ENERGY LA English DT Article DE Life cycle assessment; Silicon-based photovoltaics; Manufacturing; Renewable energy ID SOLAR-CELLS; EMISSIONS; IMPACTS AB While life cycle assessment (LCA) has been recognized as an invaluable tool to assess the energy and environmental profiles of a photovoltaic (PV) system, current LCA studies are limited to Europe and North America. However, today most PV modules are outsourced to and manufactured in non-OECD countries (e.g., China), which have a substantially different degree of industrialization and environmental restriction. To investigate this issue, we perform a comparative LCA between domestic and overseas manufacturing scenarios illustrated by three kinds of silicon-based PV technologies, namely mono-crystalline silicon, multi-crystalline silicon and ribbon silicon. We take into account geographic diversity by utilizing localized inventory data for processes and materials. The energy payback time, energy return on investment and greenhouse gas (GHG) emissions for both scenarios are calculated and analyzed. Compared to the domestic manufacturing scenario, the energy use efficiency is generally 30% lower and the carbon footprint is almost doubled in the overseas manufacturing scenario. Moreover, based on the LCA results, we propose a break-even carbon tariff model for the international trade of silicon-based PV modules, indicating an appropriate carbon tariff in the range of is an element of 105-is an element of 129/ton CO2. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Yue, Dajun; You, Fengqi] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP You, FQ (reprint author), Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM you@northwestern.edu RI You, Fengqi/F-6894-2011; You, Fengqi/B-5040-2011 OI You, Fengqi/0000-0001-9609-4299 FU Institute for Sustainability and Energy at Northwestern (ISEN); Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357] FX The authors gratefully acknowledge the financial support from the Institute for Sustainability and Energy at Northwestern (ISEN). This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract no. DE-AC02-06CH11357. We are also grateful to IKE Environmental Technology Co. Ltd. for providing part of the life cycle inventory data from the Chinese Life Cycle Database (CLCD) for the life cycle energy and environmental analysis of the overseas manufacturing scenario. NR 42 TC 29 Z9 29 U1 5 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD JUL PY 2014 VL 105 BP 669 EP 678 DI 10.1016/j.solener.2014.04.008 PG 10 WC Energy & Fuels SC Energy & Fuels GA AJ8VJ UT WOS:000337985700061 ER PT J AU Liu, RL Bohac, DL Gundel, LA Hewett, MJ Apte, MG Hammond, SK AF Liu, Ruiling Bohac, David L. Gundel, Lara A. Hewett, Martha J. Apte, Michael G. Hammond, S. Katharine TI Assessment of risk for asthma initiation and cancer and heart disease deaths among patrons and servers due to secondhand smoke exposure in restaurants and bars SO TOBACCO CONTROL LA English DT Article DE Secondhand smoke; Smoking Caused Disease; Public policy; Priority; special populations; Environment ID ENVIRONMENTAL TOBACCO-SMOKE; PASSIVE SMOKING; LUNG-CANCER; MORTALITY RISK; PUBLIC PLACES; UNITED-STATES; EXCESS; WORKERS; NONSMOKERS; POPULATION AB Background Despite efforts to reduce exposure to secondhand smoke (SHS), only 5% of the world's population enjoy smoke-free restaurants and bars. Methods Lifetime excess risk (LER) of cancer death, ischaemic heart disease (IHD) death and asthma initiation among non-smoking restaurant and bar servers and patrons in Minnesota and the US were estimated using weighted field measurements of SHS constituents in Minnesota, existing data on tobacco use and multiple dose-response models. Results A continuous approach estimated a LER of lung cancer death (LCD) of 18x10(-6)(95% CI 13 to 23x10(-6)) for patrons visiting only designated non-smoking sections, 80x10(-6)(95% CI 66 to 95x10(-6)) for patrons visiting only smoking venues/sections and 802x10(-6)(95% CI 658 to 936x10(-6)) for servers in smoking-permitted venues. An attributable-risk (exposed/non-exposed) approach estimated a similar LER of LCD, a LER of IHD death about 10(-2) for non-smokers with average SHS exposure from all sources and a LER of asthma initiation about 5% for servers with SHS exposure at work only. These risks correspond to 214 LCDs and 3001 IHD deaths among the general non-smoking population and 1420 new asthma cases among non-smoking servers in the US each year due to SHS exposure in restaurants and bars alone. Conclusions Health risks for patrons and servers from SHS exposure in restaurants and bars alone are well above the acceptable level. Restaurants and bars should be a priority for governments' effort to create smoke-free environments and should not be exempt from smoking bans. C1 [Liu, Ruiling; Hammond, S. Katharine] Univ Calif Berkeley, Sch Publ Hlth, Dept Environm Hlth Sci, Berkeley, CA 94720 USA. [Bohac, David L.; Hewett, Martha J.] Ctr Energy & Environm, Minneapolis, MN USA. [Gundel, Lara A.; Apte, Michael G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Indoor Environm, Berkeley, CA 94720 USA. RP Hammond, SK (reprint author), Univ Calif Berkeley, Sch Publ Hlth, Dept Environm Hlth Sci, 50 Univ Hall 7360, Berkeley, CA 94720 USA. EM hammondk@berkeley.edu FU ClearWay Minnesota [RC 2006-0050]; Flight Attendants Medical Research Institute FX This research project was funded in part by ClearWay Minnesota through Grant Number RC 2006-0050 and in part by Dr William Cahan Distinguished Professor Award to SKH from the Flight Attendants Medical Research Institute. NR 49 TC 3 Z9 3 U1 1 U2 5 PU BMJ PUBLISHING GROUP PI LONDON PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND SN 0964-4563 EI 1468-3318 J9 TOB CONTROL JI Tob. Control PD JUL PY 2014 VL 23 IS 4 BP 332 EP 338 DI 10.1136/tobaccocontrol-2012-050831 PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA AJ7ZE UT WOS:000337920100019 PM 23407112 ER PT J AU Liu, XY Afzal, W He, MG Prausnitz, JM AF Liu, Xiangyang Afzal, Waheed He, Maogang Prausnitz, John M. TI Solubilities of small hydrocarbons, viscosities of diluted tetraalkylphosphonium bis(2,4,4-trimethylpentyl) phosphinates SO AICHE JOURNAL LA English DT Article DE solubility; density; viscosity; phosphonium-based ionic liquids; diluent; mixtures of ionic liquids ID TEMPERATURE IONIC LIQUIDS; PHOSPHONIUM CATION; GASES; IMIDAZOLIUM; DENSITIES; WATER; BIS(TRIFLUOROMETHYLSULFONYL)IMIDE; HEXAFLUOROPHOSPHATE; DIFFUSIVITY AB Tetraalkylphosphonium bis(2,4,4-trimethylpentyl)phosphinates show large solubilities for methane, ethane, ethylene, and propane. In these ionic liquids, solubilities of ethane are larger than those of ethylene. Therefore, these ionic liquids may be useful solvents for separation of ethane and ethylene; because the vapor pressure of ethylene is higher than that of ethane, the relative volatility ethylene/ethane is enhanced. However, the viscosities of these ionic liquids are too high for an industrial process. Low-viscosity 1-butyl-3-H-imidazolium acetate([BHMIM][AC]) is a suitable diluent for reducing the large viscosities of trihexyl tetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate ([P(14)666][TMPP]) and tetrabutylphosphonium bis(2,4,4-trimethylpentyl) phosphinate ([P4444][TMPP]). Addition of 20 wt % [BHMIM][AC] gives a dramatic drop in the viscosities of these ionic liquids. Mixtures of [P(14)666][TMPP] or [P4444][TMPP] with 20 or 50 wt % [BHMIM][AC] show high solubilities for the four solutes when compared with those in other ionic liquids. In these mixtures, the solubility for ethane is higher than that for ethylene. (c) 2014 American Institute of Chemical Engineers C1 [Liu, Xiangyang; Afzal, Waheed; Prausnitz, John M.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Liu, Xiangyang; He, Maogang] Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China. [Afzal, Waheed; Prausnitz, John M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Afzal, Waheed] Univ Punjab, Inst Chem Engn & Technol, Lahore 54590, Pakistan. RP Prausnitz, JM (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM prausnit@cchem.berkeley.edu OI Afzal, Waheed/0000-0002-2927-0114 FU Environmental Energy Technologies Division of the Lawrence Berkeley National Laboratory FX The authors are grateful to the Environmental Energy Technologies Division of the Lawrence Berkeley National Laboratory for financial support, and to Profs. Alexis Bell and Scott Lynn and coworkers for general assistance. They are grateful to Prof. Michael Manga (Dept. of Earth and Planetary Sciences, University of California, Berkeley) for providing his density meter. NR 27 TC 8 Z9 9 U1 11 U2 40 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 EI 1547-5905 J9 AICHE J JI AICHE J. PD JUL PY 2014 VL 60 IS 7 BP 2607 EP 2612 DI 10.1002/aic.14453 PG 6 WC Engineering, Chemical SC Engineering GA AJ5BL UT WOS:000337695500020 ER PT J AU Kang, MK Lee, J Um, Y Lee, TS Bott, M Park, SJ Woo, HM AF Kang, Min-Kyoung Lee, Jungseok Um, Youngsoon Lee, Taek Soon Bott, Michael Park, Si Jae Woo, Han Min TI Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Corynebacterium glutamicum; Synthetic biology; Metabolic engineering; BglBrick ID ESCHERICHIA-COLI; ORGANIC-ACIDS; AMINO-ACIDS; PRECURSOR; PATHWAY; DNA; AMORPHA-4,11-DIENE; OVERPRODUCTION; OPTIMIZATION; PROMOTERS AB Currently, the majority of tools in synthetic biology have been designed and constructed for model organisms such as Escherichia coli and Saccharomyces cerevisiae. In order to broaden the spectrum of organisms accessible to such tools, we established a synthetic biological platform, called CoryneBrick, for gene expression in Corynebacterium glutamicum as a set of E. coli-C. glutamicum shuttle vectors whose elements are interchangeable with BglBrick standard parts. C. glutamicum is an established industrial microorganism for the production of amino acids, proteins, and commercially promising chemicals. Using the CoryneBrick vectors, we showed various time-dependent expression profiles of a red fluorescent protein. This CoryneBrick platform was also applicable for two-plasmid expression systems with a conventional C. glutamicum expression vector. In order to demonstrate the practical application of the CoryneBrick vectors, we successfully reconstructed the xylose utilization pathway in the xylose-negative C. glutamicum wild type by fast BglBrick cloning methods using multiple genes encoding for xylose isomerase and xylulose kinase, resulting in a growth rate of 0.11 +/- 0.004 h(-1) and a xylose uptake rate of 3.35 mmol/gDW/h when 1 % xylose was used as sole carbon source. Thus, CoryneBrick vectors were shown to be useful engineering tools in order to exploit Corynebacterium as a synthetic platform for the production of chemicals by controllable expression of the genes of interest. C1 [Kang, Min-Kyoung; Lee, Jungseok; Um, Youngsoon; Woo, Han Min] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 136791, South Korea. [Lee, Jungseok] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea. [Woo, Han Min] Korea Univ, Green Sch, Seoul 136701, South Korea. [Um, Youngsoon; Woo, Han Min] Univ Sci & Technol, Dept Clean Energy & Chem Engn, Taejon 305350, South Korea. [Lee, Taek Soon] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Lee, Taek Soon] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Bott, Michael] Forschungszentrum Julich, Inst Bio & Geosci, IBG Biotechnol 1, D-52425 Julich, Germany. [Park, Si Jae] Myongji Univ, Dept Environm Engn & Energy, Yongin 449728, Gyeonggido, South Korea. RP Woo, HM (reprint author), Korea Inst Sci & Technol, Clean Energy Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea. EM hmwoo@kist.re.kr RI Woo, Han Min/J-1847-2015; Bott, Michael/E-8004-2011 OI Woo, Han Min/0000-0002-8797-0477; Bott, Michael/0000-0002-4701-8254 FU National Research Foundation of Korea - Korean Government (Ministry of Science, ICT & Future Planning); Creative Allied Program (CAP) of the Korea Research Council of Fundamental Science and Technology (KRCF)/Korea Institute of Science and Technology (KIST) [2E24832] FX The authors thank Prof. Anthony J. Sinskey for the kind gift of pZ8-1 and M. S. Jae Hee Jung for technical assistant. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Science, ICT & Future Planning) (2014, University-Institute cooperation program) and Creative Allied Program (CAP) of the Korea Research Council of Fundamental Science and Technology (KRCF)/Korea Institute of Science and Technology (KIST) (project no. 2E24832). NR 46 TC 14 Z9 14 U1 3 U2 31 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 EI 1432-0614 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD JUL PY 2014 VL 98 IS 13 BP 5991 EP 6002 DI 10.1007/s00253-014-5714-7 PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AJ5SL UT WOS:000337747900018 PM 24706215 ER PT J AU Wecker, MSA Ghirardi, ML AF Wecker, Matt S. A. Ghirardi, Maria L. TI High-throughput biosensor discriminates between different algal H-2-photoproducing strains SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE Rhodobacter capsulatus; H-2 sensor; high-throughput screening; photobiohydrogen; Chlamydomonas reinhardtii; H-2 production ID HARVESTING CHLOROPHYLL ANTENNA; CYCLIC ELECTRON FLOW; CHLAMYDOMONAS-REINHARDTII; HYDROGEN-PRODUCTION; ESCHERICHIA-COLI; H-2 PRODUCTION; GENE; PHOTOPRODUCTION; EXPRESSION; PROTEIN AB A number of species of microalgae and cyanobacteria photosynthetically produce H2 gas by coupling water oxidation with the reduction of protons to molecular hydrogen, generating renewable energy from sunlight and water. Photosynthetic H2 production, however, is transitory, and there is considerable interest in increasing and extending it for commercial applications. Here we report a Petri-plate version of our previous, microplate-based assay that detects photosynthetic H2 production by algae. The assay consists of an agar overlay of H2-sensing Rhodobacter capsulatus bacteria carrying a green fluorescent protein that responds to H2 produced by single algal colonies in the bottom agar layer. The assay distinguishes between algal strains that photoproduce H2 at different levels under high light intensities, and it does so in a simple, inexpensive, and high-throughput manner. The assay will be useful for screening both natural populations and mutant libraries for strains having increased H2 production, and useful for identifying various genetic factors that physiologically or genetically alter algal hydrogen production. Biotechnol. Bioeng. 2014;111: 1332-1340. (c) 2014 Wiley Periodicals, Inc. C1 [Wecker, Matt S. A.] GeneBiologics LLC, Boulder, CO USA. [Ghirardi, Maria L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ghirardi, ML (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM maria.ghirardi@nrel.gov FU Department of Energy, Office of Biological and Environmental Research; National Renewable Energy Laboratory [DE-AC36-08GC28308z] FX Contract grant sponsor: Funded by the Department of Energy, Office of Biological and Environmental Research; Grant numbers: with the National Renewable Energy Laboratory: DE-AC36-08GC28308z NR 37 TC 9 Z9 9 U1 0 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD JUL PY 2014 VL 111 IS 7 BP 1332 EP 1340 DI 10.1002/bit.25206 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AJ3PU UT WOS:000337580000007 PM 24578287 ER PT J AU Kumar, R Wyman, CE AF Kumar, Rajeev Wyman, Charles E. TI Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE cellulase; inhibition; heteromannans; glucomannan; galactomannan; oligomers; xylan ID SOLIDS ENZYMATIC-HYDROLYSIS; LIGNOCELLULOSIC BIOMASS; LEADING TECHNOLOGIES; TRICHODERMA-REESEI; CLOSTRIDIUM-CELLULOVORANS; HYDROTHERMAL PRETREATMENT; PRODUCT INHIBITION; WHEAT-STRAW; XYLANASE; ETHANOL AB Cellulase enzymes contribute a major fraction of the total cost for biological conversion of lignocellulosic biomass to fuels and chemicals. Although a several fold reduction in cellulase production costs and enhancement of cellulase activity and stability have been reported in recent years, sugar yields are still lower at low enzyme doses than desired commercially. We recently reported that hemicellulose xylan and its oligomers strongly inhibit cellulase and that supplementation of cellulase with xylanase and -xylosidase would significantly reduce such inhibition. In this study, mannan polysaccharides and their enzymatically prepared hydrolyzates were discovered to be strongly inhibitory to fungal cellulase in cellulose conversion (>50% drop in % relative conversion), even at a small concentration of 0.1g/L, and inhibition was much greater than experienced by other known inhibitors such as cellobiose, xylooligomers, and furfural. Furthermore, cellulase inhibition dramatically increased with heteromannan loading and mannan substitution with galactose side units. In general, enzymatically prepared hydrolyzates were less inhibitory than their respective mannan polysaccharides except highly substituted ones. Supplementation of cellulase with commercial accessory enzymes such as xylanase, pectinase, and -glucosidase was effective in greatly relieving inhibition but only for less substituted heteromannans. However, cellulase supplementation with purified heteromannan specific enzymes relieved inhibition by these more substituted heteromannans as well, suggesting that commercial preparations need to have higher amounts of such activities to realize high sugar yields at the low enzyme protein loadings needed for low cost fuels production. Biotechnol. Bioeng. 2014;111: 1341-1353. (c) 2014 Wiley Periodicals, Inc. C1 [Kumar, Rajeev; Wyman, Charles E.] Univ Calif Riverside, Ctr Environm Res & Technol CE CERT, Bourns Coll Engn, Riverside, CA 92507 USA. [Kumar, Rajeev; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. [Wyman, Charles E.] Univ Calif Riverside, Dept Chem & Environm Engn, Bourns Coll Engn, Riverside, CA 92507 USA. RP Kumar, R (reprint author), Univ Calif Riverside, Ctr Environm Res & Technol CE CERT, Bourns Coll Engn, 1084 Columbia Ave, Riverside, CA 92507 USA. EM rkumar@cert.ucr.edu OI Kumar, Rajeev/0000-0001-7523-0108 FU Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center (BESC) FX Contract grant sponsor: Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center (BESC) NR 72 TC 13 Z9 13 U1 2 U2 55 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD JUL PY 2014 VL 111 IS 7 BP 1341 EP 1353 DI 10.1002/bit.25218 PG 13 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AJ3PU UT WOS:000337580000008 PM 24522973 ER PT J AU Liu, CZ Greene, DL Bunch, DS AF Liu, Changzheng Greene, David L. Bunch, David S. TI Vehicle Manufacturer Technology Adoption and Pricing Strategies under Fuel Economy/Emissions Standards and Feebates SO ENERGY JOURNAL LA English DT Article DE CAFE; Emissions standards; Manufacturer pricing; Technology adoption ID ENERGY EFFICIENCY; ECONOMY; TAXES AB New post-2010 Corporate Average Fuel Economy (CAFE) standards and carbon dioxide (CO2) emissions standards have significantly increased the stringency of requirements for new light-duty vehicle fuel efficiency. This study investigates the role of technology adoption and pricing strategies in meeting the new standards, and the impact of possible feebate policies. The analysis simulates manufacturer decision making over the period (2011-2020) using a dynamic optimization model of the new vehicle market that maximizes social surplus while meeting the standards. Consumer surplus is determined from consumer demand, which is represented by a nested multinomial logit model, and the model is conservative in its assumptions on available technology. Results indicate that technology adoption will likely play a much larger role than pricing strategies in meeting the new standards (consistent with the intent of the policy). Feebates, when implemented along with the standards, can bring additional fuel economy improvement and emissions reduction, but the impact of feebates diminishes with the increasing stringency of the standards. Results also show that the impact of the policy on consumers could be relatively limited. In the long run the policy requires increasing up-front technology costs to consumers that outweigh the perceived benefit of fuel savings, and there is some loss in total new vehicle sales. However, the net effect is limited, and the full value of fuel savings to society is substantial. Results also show a small decrease in average vehicle footprint size, indicating that efficiency improvements are primarily distributed across all vehicle sizes, consistent with the intent of the policy. C1 [Liu, Changzheng; Greene, David L.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. [Bunch, David S.] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA. RP Liu, CZ (reprint author), Oak Ridge Natl Lab, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM linc2@ornl.gov RI Liu, Changzheng/J-4268-2014 OI Liu, Changzheng/0000-0003-0052-4552 FU California Air Resources Board; U.S. Department of Energy FX The study reported in this paper was sponsored in part by the California Air Resources Board and the U.S. Department of Energy. Opinions and views expressed are those of the authors and do not necessarily reflect those of either agency. NR 20 TC 2 Z9 2 U1 1 U2 15 PU INT ASSOC ENERGY ECONOMICS PI CLEVELAND PA 28790 CHAGRIN BLVD, STE 210, CLEVELAND, OH 44122 USA SN 0195-6574 EI 1944-9089 J9 ENERG J JI Energy J. PD JUL PY 2014 VL 35 IS 3 BP 71 EP 90 DI 10.5547/01956574.35.3.4 PG 20 WC Economics; Energy & Fuels; Environmental Studies SC Business & Economics; Energy & Fuels; Environmental Sciences & Ecology GA AJ4PC UT WOS:000337657300004 ER PT J AU Ma, TH Li, CJ Lu, ZM Wang, BX AF Ma, Tuhua Li, Changjiang Lu, Zhiming Wang, Baoxin TI An effective antecedent precipitation model derived from the power-law relationship between landslide occurrence and rainfall level SO GEOMORPHOLOGY LA English DT Article DE Landslides; Effective antecedent precipitation; Lower bound rainfall threshold determination; Power-law distributions; Fractals ID THRESHOLDS; SHALLOW AB Antecedent rainfall is an important predisposing factor in triggering landslides because it reduces soil suction and increases the pore-water pressure in soils. The existing approaches to quantify the antecedent rainfall were derived from empirical methods used to develop rainfall-runoff models in which the daily decays of rainfall within a given period preceding a given day are considered as independent processes. In this study, a methodology accounting for the effective antecedent rainfall that influences landslide occurrence is developed from a power-law relationship between the frequency of landslide occurrence and the landslide-triggering rainfall level. In this model, the decay rate of the daily rainfall is related to a scaling exponent defined by the power-law relationship, the decay process of daily rainfall within a given period preceding a given day is not independent but is interrelated, and the impact of rainfall in the preceding k days on soil moisture is associated with the precipitation from the preceding (k - 1) days. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ma, Tuhua; Li, Changjiang] Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China. [Lu, Zhiming] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA. [Wang, Baoxin] Zhejiang Bur Geol & Mineral Resource Explorat & D, Hydrogeol Sect, Ningbo 315000, Peoples R China. RP Li, CJ (reprint author), Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China. EM zjigmr@mail.hz.zj.cn; zhiming@lanl.gov OI Lu, Zhiming/0000-0001-5800-3368 FU Special Fund for Land and Resources Research in the Public Interest of P.R. China [201211055] FX This study was partially funded by the Special Fund for Land and Resources Research in the Public Interest of P.R. China (No. 201211055). We would like to thank the Editor Dr. Richard A. Marston and the three anonymous reviewers for their valuable comments and suggestions, which have improved the paper. NR 27 TC 8 Z9 11 U1 0 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-555X EI 1872-695X J9 GEOMORPHOLOGY JI Geomorphology PD JUL 1 PY 2014 VL 216 BP 187 EP 192 DI 10.1016/j.geomorph.2014.03.033 PG 6 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AJ6CG UT WOS:000337776700015 ER PT J AU Bassu, S Brisson, N Durand, JL Boote, K Lizaso, J Jones, JW Rosenzweig, C Ruane, AC Adam, M Baron, C Basso, B Biernath, C Boogaard, H Conijn, S Corbeels, M Deryng, D De Sanctis, G Gayler, S Grassini, P Hatfield, J Hoek, S Izaurralde, C Jongschaap, R Kemanian, AR Kersebaum, KC Kim, SH Kumar, NS Makowski, D Muller, C Nendel, C Priesack, E Pravia, MV Sau, F Shcherbak, I Tao, F Teixeira, E Timlin, D Waha, K AF Bassu, Simona Brisson, Nadine Durand, Jean-Louis Boote, Kenneth Lizaso, Jon Jones, James W. Rosenzweig, Cynthia Ruane, Alex C. Adam, Myriam Baron, Christian Basso, Bruno Biernath, Christian Boogaard, Hendrik Conijn, Sjaak Corbeels, Marc Deryng, Delphine De Sanctis, Giacomo Gayler, Sebastian Grassini, Patricio Hatfield, Jerry Hoek, Steven Izaurralde, Cesar Jongschaap, Raymond Kemanian, Armen R. Kersebaum, K. Christian Kim, Soo-Hyung Kumar, Naresh S. Makowski, David Mueller, Christoph Nendel, Claas Priesack, Eckart Pravia, Maria Virginia Sau, Federico Shcherbak, Iurii Tao, Fulu Teixeira, Edmar Timlin, Dennis Waha, Katharina TI How do various maize crop models vary in their responses to climate change factors? SO GLOBAL CHANGE BIOLOGY LA English DT Article DE [CO2]; AgMIP; climate; maize; model intercomparison; simulation; temperature; uncertainty ID WATER-USE EFFICIENCY; AIR CO2 ENRICHMENT; SIMULATION-MODEL; ELEVATED CO2; SYSTEMS SIMULATION; NITROGEN DYNAMICS; CARBON-DIOXIDE; YIELD; WHEAT; AGRICULTURE AB Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per degrees C. Doubling [CO2] from 360 to 720 mu mol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information. C1 [Bassu, Simona; Brisson, Nadine; Makowski, David] INRA AgroParisTech, Unite Agron, F-78850 Thiverval Grignon, France. [Durand, Jean-Louis] INRA, Unite Rech Pluridisciplinaire Prairie & Plantes F, F-86600 Lusignan, France. [Boote, Kenneth] Univ Florida, Dept Agron, Gainesville, FL 32611 USA. [Lizaso, Jon; Sau, Federico] Univ Politecn Madrid, Dept Prod Vegetal, E-28040 Madrid, Spain. [Jones, James W.] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32611 USA. [Rosenzweig, Cynthia; Ruane, Alex C.] NASA, Goddard Inst Space Studies, Climate Impacts Grp, New York, NY 10025 USA. [Adam, Myriam] CIRAD, UMR AGAP PAM, Montpellier, France. [Baron, Christian] CIRAD, UMR TETIS, F-34093 Montpellier, France. [Basso, Bruno; Shcherbak, Iurii] Michigan State Univ, Dept Geol Sci, E Lansing, MI 48824 USA. [Basso, Bruno; Shcherbak, Iurii] Univ Basilicata, Dept Crop Syst Forestry & Environm Sci, I-85100 Potenza, Italy. [Biernath, Christian; Priesack, Eckart] Helmholtz Zentrum Munchen, Inst Bodenokol, D-85764 Neuherberg, Germany. [Boogaard, Hendrik; Hoek, Steven] Alterra, Ctr Geoinformat, NL-6700 AA Wageningen, Netherlands. [Conijn, Sjaak; Jongschaap, Raymond] Univ Wageningen & Res Ctr, WUR Plant Res Int, NL-6700 AA Wageningen, Netherlands. [Corbeels, Marc] CIRAD Annual Cropping Syst, BR-73310970 Planaltina, DF, Brazil. [Deryng, Delphine] Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England. [Deryng, Delphine] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [De Sanctis, Giacomo] INRA, Unite AGROCLIM, F-84914 Avignon 9, France. [Gayler, Sebastian] Univ Tubingen, Water & Earth Syst Sci WESS Competence Cluster, D-72074 Tubingen, Germany. [Grassini, Patricio] Univ Nebraska, Dept Agron & Hort, Lincoln, NE 68503 USA. [Hatfield, Jerry] USDA ARS, Natl Soil Tilth Lab Agr & Environm, Ames, IA 50011 USA. [Izaurralde, Cesar] Pacific NW Natl Lab, College Pk, MD 20740 USA. [Izaurralde, Cesar] Univ Maryland, College Pk, MD 20740 USA. [Kemanian, Armen R.; Pravia, Maria Virginia] Penn State Univ, Dept Plant Sci, University Pk, PA 16802 USA. [Kersebaum, K. Christian; Nendel, Claas] Leibniz Ctr Agr Landscape Res, ZALF, Inst Landscape Syst Anal, D-15374 Muencheberg, Germany. [Kim, Soo-Hyung] Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA. [Kumar, Naresh S.; Waha, Katharina] Indian Agr Res Inst, Ctr Environm Sci & Climate Resilient Agr, New Delhi 110012, India. [Mueller, Christoph] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany. [Tao, Fulu] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China. [Teixeira, Edmar] New Zealand Inst Plant & Food Res Ltd, Sustainable Prod, Canterbury, New Zealand. [Timlin, Dennis] USDA ARS, Crop Syst & Global Change Lab, Beltsville, MD 20705 USA. RP Durand, JL (reprint author), INRA, Unite Rech Pluridisciplinaire Prairie & Plantes F, BP 80006, F-86600 Lusignan, France. EM jean-louis.durand@lusignan.inra.fr RI Kim, Soo-Hyung/A-3012-2009; Priesack, Eckart/M-7341-2014; Deryng, Delphine/F-7417-2010; Nendel, Claas/C-8844-2013; Basso, Bruno/A-3128-2012; Teixeira, Edmar/K-1238-2016; Mueller, Christoph/E-4812-2016; De Sanctis, Giacomo/F-3498-2017; OI Priesack, Eckart/0000-0002-5088-9528; Kim, Soo-Hyung/0000-0003-3879-4080; Deryng, Delphine/0000-0001-6214-7241; Nendel, Claas/0000-0001-7608-9097; Basso, Bruno/0000-0003-2090-4616; Teixeira, Edmar/0000-0002-4835-0590; Mueller, Christoph/0000-0002-9491-3550; De Sanctis, Giacomo/0000-0002-3527-8091; Shcherbak@qut.edu.au, Iurii/0000-0003-4153-3770; Boote, Kenneth/0000-0002-1358-5496; Kersebaum, Kurt Christian/0000-0002-3679-8427 NR 72 TC 96 Z9 97 U1 17 U2 175 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD JUL PY 2014 VL 20 IS 7 BP 2301 EP 2320 DI 10.1111/gcb.12520 PG 20 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA AJ4WU UT WOS:000337680700025 PM 24395589 ER PT J AU White, JA AF White, Joshua A. TI Anisotropic damage of rock joints during cyclic loading: constitutive framework and numerical integration SO INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS LA English DT Article DE joints; fractures; anisotropy; damage; implicit integration ID ASPERITY DEGRADATION; SHEAR; MODEL; PLASTICITY; FRICTION; BEHAVIOR AB This work describes a constitutive framework for modeling the behavior of rough joints under cyclic loading. Particular attention is paid to the intrinsic links between dilatancy, surface degradation, and mobilized shear strength. The framework also accounts for the important effect of shear-induced anisotropy. The resulting approach is fully three-dimensional and is not restricted to plane-displacement kinematics. Both the governing formulation and an algorithm for implicit numerical integration are presented. While the proposed methods are general, we also postulate a specific model that is compared with experimental data. It employs relatively few free parameters but shows good agreement with laboratory tests. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP White, JA (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. EM jawhite@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The author is grateful to Ronaldo Borja, Eric Herbold, and two anonymous reviewers for helpful comments. NR 28 TC 1 Z9 1 U1 1 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0363-9061 EI 1096-9853 J9 INT J NUMER ANAL MET JI Int. J. Numer. Anal. Methods Geomech. PD JUL PY 2014 VL 38 IS 10 BP 1036 EP 1057 DI 10.1002/nag.2247 PG 22 WC Engineering, Geological; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA AJ3WR UT WOS:000337599100003 ER PT J AU Koissin, V Demcenko, A Korneev, VA AF Koissin, V. Demcenko, A. Korneev, V. A. TI Isothermal epoxy-cure monitoring using nonlinear ultrasonics SO INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES LA English DT Article DE Epoxy; Cure kinetics; Nonlinear ultrasonics; Calorimetry; Rheometry; Glass transition; Vitrification ID DIFFERENTIAL SCANNING CALORIMETRY; VELOCITY-MEASUREMENTS; REAL-TIME; RESIN; WAVES; SHEAR; COMPRESSION; ADHESIVES; POLYMERIZATION; VITRIFICATION AB Isothermal curing of LY 1564SP resin in an aluminium-adhesive-aluminium laminate is investigated, using a nonlinear ultrasonic immersion technique, to prove its applicability for this type of dynamic material transformation. For verification and comparison, epoxy-cure kinetics and theological behavior are measured using differential scanning calorimetery (DSC) and dynamic mechanical analysis (DMA). Results reveal that the nonlinear ultrasonics, based on noncollinear wave mixing, can successfully be applied to in situ epoxy-cure monitoring-for example, to adhesive bonds-with reliable detection of gelation and vitrification time instants. (C) 2014 Published by Elsevier Ltd. C1 [Koissin, V.; Demcenko, A.] Univ Twente, Fac Engn Technol, NL-7500 AE Enschede, Netherlands. [Korneev, V. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Demcenko, A (reprint author), Univ Twente, Fac Engn Technol, NL-7500 AE Enschede, Netherlands. EM andriejus.demcenko@gmail.com OI Koissin, Vitaly/0000-0001-9639-6537 FU Office of Energy Research, Office of Basic Energy Sciences, Engineering and Geosciences Division, of the U.S. Department of Energy [DE-ACO2-05CH11231] FX Dr. Ir. Roy Visser and Mr. Bert Vos (University of Twente) are gratefully acknowledged for their help with DMA and DSC tests. This work was partially supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Engineering and Geosciences Division, of the U.S. Department of Energy under Contract No. DE-ACO2-05CH11231. NR 38 TC 4 Z9 6 U1 3 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0143-7496 EI 1879-0127 J9 INT J ADHES ADHES JI Int. J. Adhes. Adhes. PD JUL PY 2014 VL 52 BP 11 EP 18 DI 10.1016/j.ijadhadh.2014.01.003 PG 8 WC Engineering, Chemical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA AJ4NJ UT WOS:000337652800002 ER PT J AU McCauley, SJ Davis, CJ Werner, EE Robeson, MS AF McCauley, Shannon J. Davis, Christopher J. Werner, Earl E. Robeson, Michael S., II TI Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies SO JOURNAL OF ANIMAL ECOLOGY LA English DT Article DE dispersal limitation; extinction-colonization; freshwater connectivity; geographic distribution; niche breadth; Odonata; range limits; range size ID GEOGRAPHIC RANGE; REGIONAL PROCESSES; CLIMATE-CHANGE; BODY-SIZE; TRAITS; OCCUPANCY; ABUNDANCE; SHIFTS; LIMITS; WATER AB Species' range sizes are shaped by fundamental differences in species' ecological and evolutionary characteristics, and understanding the mechanisms determining range size can shed light on the factors responsible for generating and structuring biological diversity. Moreover, because geographic range size is associated with a species' risk of extinction and their ability to respond to global changes in climate and land use, understanding these mechanisms has important conservation implications. Despite the hypotheses that dispersal behaviour is a strong determinant of species range areas, few data are available to directly compare the relationship between dispersal behaviour and range size. Here, we overcome this limitation by combining data from a multispecies dispersal experiment with additional species-level trait data that are commonly hypothesized to affect range size (e.g. niche breadth, local abundance and body size.). This enables us to examine the relationship between these species-level traits and range size across North America for fifteen dragonfly species. Ten models based on a priori predictions about the relationship between species traits and range size were evaluated and two models were identified as good predictors of species range size. These models indicated that only two species' level traits, dispersal behaviour and niche breadth were strongly related to range size. The evidence from these two models indicated that dragonfly species that disperse more often and further had larger North American ranges. Extinction and colonization dynamics are expected to be a key linkage between dispersal behaviour and range size in dragonflies. To evaluate how extinction and colonization dynamics among dragonflies were related to range size we used an independent data set of extinction and colonization rates for eleven dragonfly species and assessed the relationship between these populations rates and North American range areas for these species. We found a negative relationship between North American range size and species' extinction-to-colonization ratios. Our results indicate that metapopulation dynamics act to shape the extent of species' continental distributions. These population dynamics are likely to interact with dispersal behaviour, particularly at species range margins, to determine range limits and ultimately species range sizes. C1 [McCauley, Shannon J.] Univ Toronto, Dept Biol, Mississauga, ON L5L 1C6, Canada. [McCauley, Shannon J.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada. [Davis, Christopher J.; Werner, Earl E.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA. [Robeson, Michael S., II] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. RP McCauley, SJ (reprint author), Univ Toronto, Dept Biol, 3359 Mississauga Rd North, Mississauga, ON L5L 1C6, Canada. EM shannon.mccauley@utoronto.ca OI Robeson, Michael/0000-0001-7119-6301; McCauley, Shannon/0000-0001-9649-6693 FU Natural Science and Engineering Research Council; NSF LTREB [DEB-9727014, DEB-0454519] FX We thank M. Benard, M-J. Fortin, L. Rowe, and two anonymous reviewers for comments and discussion on the manuscript. S.J.M. was supported by Natural Science and Engineering Research Council grants to L. Rowe and M-J. Fortin while conducting this research and initial preparation of this manuscript. We are grateful to M. Benard, J. Hovermann, R. Relyea, D. Skelly, K. Yurewicz and the numerous research assistants and volunteers who have conducting surveys of habitats on the E.S. George Reserve. We also thank J. Abbott for compiling the distributional data for North American odonates and making species distribution maps accessible through OdonataCentral. The Museum of Zoology provided access to and logistical support at E. S. George Reserve where data on dispersal behaviour and species niche breadth were collected. This work was supported by NSF LTREB Grants DEB-9727014 and DEB-0454519. NR 42 TC 6 Z9 7 U1 7 U2 70 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8790 EI 1365-2656 J9 J ANIM ECOL JI J. Anim. Ecol. PD JUL PY 2014 VL 83 IS 4 BP 858 EP 865 DI 10.1111/1365-2656.12181 PG 8 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA AJ4CO UT WOS:000337618100012 PM 24237364 ER PT J AU Craig, EA Wang, NC Zhao, QJ AF Craig, Evisabel A. Wang, Nina Ching Zhao, Q. Jay TI Using quantitative structure-activity relationship modeling to quantitatively predict the developmental toxicity of halogenated azole compounds SO JOURNAL OF APPLIED TOXICOLOGY LA English DT Article DE QSAR; developmental toxicity; halogenated compounds; azoles ID VALIDATION; ACCEPTANCE; RISK AB Developmental toxicity is a relevant endpoint for the comprehensive assessment of human health risk from chemical exposure. However, animal developmental toxicity data remain unavailable for many environmental contaminants due to the complexity and cost of these types of analyses. Here we describe an approach that uses quantitative structure-activity relationship modeling as an alternative methodology to fill data gaps in the developmental toxicity profile of certain halogenated compounds. Chemical information was obtained and curated using the OECD Quantitative Structure-Activity Relationship Toolbox, version 3.0. Data from 35 curated compounds were analyzed via linear regression to build the predictive model, which has an R2 of 0.79 and a Q2 of 0.77. The applicability domain (AD) was defined by chemical category and structural similarity. Seven halogenated chemicals that fit the AD but are not part of the training set were employed for external validation purposes. Our model predicted lowest observed adverse effect level values with a maximal threefold deviation from the observed experimental values for all chemicals that fit the AD. The good predictability of our model suggests that this method may be applicable to the analysis of qualifying compounds whenever developmental toxicity information is lacking or incomplete for risk assessment considerations. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Craig, Evisabel A.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Craig, Evisabel A.; Wang, Nina Ching; Zhao, Q. Jay] US EPA, Natl Ctr Environm Assessment, Off Res Dev, Cincinnati, OH 45268 USA. RP Zhao, QJ (reprint author), US EPA, Natl Ctr Environm Assessment, Off Res Dev, Cincinnati, OH 45268 USA. EM zhao.jay@epa.gov FU U.S. Department of Energy; EPA FX The authors wish to thank Drs. Scott Wesselkamper and Dan Petersen for their critical review of this manuscript. The views expressed in this report are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement. This study was supported in part by the research participation program administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA. NR 21 TC 0 Z9 0 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0260-437X EI 1099-1263 J9 J APPL TOXICOL JI J. Appl. Toxicol. PD JUL PY 2014 VL 34 IS 7 BP 787 EP 794 DI 10.1002/jat.2940 PG 8 WC Toxicology SC Toxicology GA AJ3PJ UT WOS:000337578900006 PM 24122872 ER PT J AU Miller, A Wang, YF AF Miller, Andrew Wang, Yifeng TI Al-O-F materials as novel adsorbents for gaseous radioiodine capture SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Re-processing; Waste treatment; Iodine; Nanoporosity; Nanoporous materials ID SOL-GEL SYNTHESIS; METAL FLUORIDES; IODINE AB Re-processing used nuclear fuel requires a method to effectively capture and dispose of gaseous radioiodine. Previous work has shown that nanoporous Al-O materials are effective at capturing gaseous iodine; molecular dynamics simulations have shown that the addition of fluoride to the Al-O surface should increase the amount of iodine capture. Twelve different materials with different ratios of F:Al were created. These materials were chemically characterized and functionally characterized with respect to gaseous iodine uptake. The addition of fluoride does in fact lead to a substantial (10-100x) increase in iodine uptake per unit surface area. However, the amount of uptake does not appear to be directly related to the total fluoride content of the solid phase material. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Miller, Andrew; Wang, Yifeng] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Miller, A (reprint author), Sandia Natl Labs, 1515 Eubank Dr SE, Albuquerque, NM 87123 USA. EM andmill@sandia.gov FU Sandia Corporation; Lockheed Martin Company; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000. The synthesis and analytical work was greatly aided by Jessica Kruichak and Melissa Mills. NR 13 TC 3 Z9 3 U1 2 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD JUL PY 2014 VL 133 SI SI BP 35 EP 39 DI 10.1016/j.jenvrad.2013.02.018 PG 5 WC Environmental Sciences SC Environmental Sciences & Ecology GA AJ3GU UT WOS:000337555300007 PM 23582500 ER PT J AU Kochersberger, K Kroeger, K Krawiec, B Brewer, E Weber, T AF Kochersberger, Kevin Kroeger, Kenneth Krawiec, Bryan Brewer, Eric Weber, Thomas TI Post-disaster Remote Sensing and Sampling via an Autonomous Helicopter SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID SEARCH AB An unmanned remote sensing and sampling system has been developed to aid first responders in urban disaster assessment and recovery. The system design is based on a 90 kg autonomous helicopter platform with interchangeable payloads ranging from radiation detection to tethered robot deployment. A typical response would begin with three-dimensional terrain mapping using the stereovision system and a survey of radiation levels with an onboard spectrometer. From this initial survey, amore targeted flight is planned at a lower altitude with the option to localize radioactive sources in the event that radiation is present. Finally, a robot can be tether-deployed into the area of interest to collect samples. It is teleoperated from the ground control station, and after collection is finished the robot is retracted back to the helicopter for retrieval. The terrain mapping, radiation detection, radiation localization, and robot deployment and retrieval have all been flight-tested. Results of these tests indicate that the systems functioned successfully in the context of a prototype demonstrator. (C) 2014 Wiley Periodicals, Inc. C1 [Kochersberger, Kevin] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. [Kroeger, Kenneth] Virginia Tech, Blacksburg, VA 24061 USA. [Krawiec, Bryan; Brewer, Eric] Rockwell Collin, Warrenton, VA 20187 USA. [Weber, Thomas] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kochersberger, K (reprint author), Virginia Tech, Dept Mech Engn, 114 Randolph Hall, Blacksburg, VA 24061 USA. EM kbk@vt.edu; k609041@vt.edu; bmkrawie@rockwellcollins.com; etbrewer@rockwellcollins.com; tmweber@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 22 TC 2 Z9 2 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD JUL-AUG PY 2014 VL 31 IS 4 SI SI BP 510 EP 521 DI 10.1002/rob.21502 PG 12 WC Robotics SC Robotics GA AJ4WI UT WOS:000337679200003 ER PT J AU Xia, GG Chen, BW Zhang, R Zhang, ZC AF Xia, Guan-Guang Chen, Baowei Zhang, Rui Zhang, Z. Conrad TI Catalytic hydrolytic cleavage and oxy-cleavage of lignin linkages SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL LA English DT Article DE Lignin depolymerisation; Organic base; Catalyst; Hydrolytic cleavage; Oxy-cleavage ID ORGANIC MEDIA; DEGRADATION; DEPOLYMERIZATION; SPECTROMETRY; CHEMICALS; BIOMASS; WATER; WOOD AB In this work, new strategies involving organic bases were evaluated to depolymerize lignin to reduced molecular fragments in aqueous medium. NaOH as an inorganic base was also investigated as a reference. Full nature lignin samples were used for the study. As research tools to unravel the complexity of the macro lignin structure and bulky molecular size under this study, size exclusion chromatography and high resolution mass spectrometric analysis, typically used for protein characterizations, were used to follow the progress of lignin depolymerisation by measuring the molecular weight distribution of the products and determining the key molecular mass fingerprints, respectively. The results show that sodium phenoxide and guanidine carbonate are effective catalysts for lignin depolymerization. It is observed that the organic bases enhance the oxy-cleavage effect of H2O2, which is strongest with guanidine carbonate. (C) 2013 Elsevier B.V. All rights reserved. C1 [Xia, Guan-Guang; Chen, Baowei; Zhang, Rui; Zhang, Z. Conrad] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhang, Z. Conrad] Dalian Inst Chem Physcis, Dalian Natl Lab Clean Energy, State Key Lab Catalysis, Dalian, Peoples R China. RP Zhang, ZC (reprint author), Dalian Natl Lab Clean Energy, 457 Zhongshan Rd, Dalian 116023, Peoples R China. EM zczhang@yahoo.com FU Laboratory Directed Research and Development Program at the PNNL; Battelle for the U.S. DOE [AC06-76RL01830] FX This work was supported by the Laboratory Directed Research and Development Program at the PNNL, a multiprogram national laboratory operated by Battelle for the U.S. DOE under contract no. DE-AC06-76RL01830. Part of the research described in this paper was performed at the Environmental Molecular Science Laboratory, a national scientific user facility located at PNNL. NR 18 TC 5 Z9 5 U1 3 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-1169 EI 1873-314X J9 J MOL CATAL A-CHEM JI J. Mol. Catal. A-Chem. PD JUL PY 2014 VL 388 SI SI BP 35 EP 40 DI 10.1016/j.molcata.2013.08.016 PG 6 WC Chemistry, Physical SC Chemistry GA AJ3FL UT WOS:000337551800003 ER PT J AU Shatsky, M Arbelaez, P Han, BG Typke, D Brenner, SE Malik, J Glaeser, RM AF Shatsky, Maxim Arbelaez, Pablo Han, Bong-Gyoon Typke, Dieter Brenner, Steven E. Malik, Jitendra Glaeser, Robert M. TI Automated particle correspondence and accurate tilt-axis detection in tilted-image pairs SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Particle correspondence; Tilted pairs; Tilt-axis detection ID RANDOM CONICAL TILT; ELECTRON-MICROSCOPY; BIOLOGICAL MACROMOLECULES; RECONSTRUCTION METHOD; 3-D RECONSTRUCTION; SPECIMEN; CRYOMICROSCOPY; ORIENTATION; HANDEDNESS; RESOLUTION AB Tilted electron microscope images are routinely collected for an ab initio structure reconstruction as a part of the Random Conical Tilt (RCT) or Orthogonal Tilt Reconstruction (OTR) methods, as well as for various applications using the "free-hand" procedure. These procedures all require identification of particle pairs in two corresponding images as well as accurate estimation of the tilt-axis used to rotate the electron microscope (EM) grid. Here we present a computational approach, PCT (particle correspondence from tilted pairs), based on tilt-invariant context and projection matching that addresses both problems. The method benefits from treating the two problems as a single optimization task. It automatically finds corresponding particle pairs and accurately computes tilt-axis direction even in the cases when EM grid is not perfectly planar. (C) 2014 The Authors. Published by Elsevier Inc. C1 [Shatsky, Maxim; Brenner, Steven E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Arbelaez, Pablo; Malik, Jitendra] Univ Calif Berkeley, Elect Engn & Comp Sci Div, Berkeley, CA 94720 USA. [Han, Bong-Gyoon; Typke, Dieter; Glaeser, Robert M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Brenner, Steven E.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Shatsky, M (reprint author), Univ Calif Berkeley, 461 Koshland Hall, Berkeley, CA 94720 USA. EM max.shatsky@gmail.com RI Brenner, Steven/A-8729-2008; OI Brenner, Steven/0000-0001-7559-6185; Arbelaez, Pablo/0000-0001-5244-2407 FU Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-ACO2-05CH11231] FX We thank Florian Hauer and Holger Strak for providing program Maverick Tilt. This work conducted by ENIGMA - Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory, was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-ACO2-05CH11231. NR 29 TC 3 Z9 3 U1 2 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 EI 1095-8657 J9 J STRUCT BIOL JI J. Struct. Biol. PD JUL PY 2014 VL 187 IS 1 BP 66 EP 75 DI 10.1016/j.jsb.2014.03.017 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA AJ6DD UT WOS:000337779000008 PM 24694675 ER PT J AU Labbe, J Uehling, J Payen, T Plett, J AF Labbe, Jessy Uehling, Jessie Payen, Thibaut Plett, Jonathan TI Fungal biology: compiling genomes and exploiting them SO NEW PHYTOLOGIST LA English DT Editorial Material DE effectors; fungal evolution; fungal genetics and genomics; mycorrhizal fungi; pathogenic and mutualistic interactions; saprotrophs; symbiosis C1 [Labbe, Jessy] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Uehling, Jessie] Duke Univ, Dept Biol, Durham, NC 27708 USA. [Payen, Thibaut] Lorraine Univ, Lab Excellence ARBRE, INRA, UMR 1136, F-54280 Nancy, Champenoux, France. [Plett, Jonathan] Univ Western Sydney, Hawkesbury Inst Environm, Richmond, NSW, Australia. RP Labbe, J (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008, Oak Ridge, TN 37831 USA. EM labbejj@ornl.gov RI Labbe, Jessy/G-9532-2011; OI Labbe, Jessy/0000-0003-0368-2054; Plett, Jonathan/0000-0003-0514-8146 FU Genomic Science Program (project 'Plant-Microbe Interactions'), US Department of Energy, Office of Science, Biological and Environmental Research [DE-AC05-00OR22725] FX Many thanks to Krista Plett and Francis Martin for helpful comments on the manuscript. Thanks also to all who attended and gave freely of their data, thoughts and opinions. The authors acknowledge the Genomic Science Program (project 'Plant-Microbe Interactions'), US Department of Energy, Office of Science, Biological and Environmental Research, for supporting the authors' participation to this meeting, under the contract DE-AC05-00OR22725. NR 7 TC 1 Z9 1 U1 0 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD JUL PY 2014 VL 203 IS 2 BP 359 EP 361 DI 10.1111/nph.12891 PG 3 WC Plant Sciences SC Plant Sciences GA AJ4IW UT WOS:000337639800004 PM 24942153 ER PT J AU McKown, AD Klapste, J Guy, RD Geraldes, A Porth, I Hannemann, J Friedmann, M Muchero, W Tuskan, GA Ehlting, J Cronk, QCB El-Kassaby, YA Mansfield, SD Douglas, CJ AF McKown, Athena D. Klapste, Jaroslav Guy, Robert D. Geraldes, Armando Porth, Ilga Hannemann, Jan Friedmann, Michael Muchero, Wellington Tuskan, Gerald A. Ehlting, Juergen Cronk, Quentin C. B. El-Kassaby, Yousry A. Mansfield, Shawn D. Douglas, Carl J. TI Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa SO NEW PHYTOLOGIST LA English DT Article DE biomass; ecophysiology; genome-wide association study (GWAS); phenology; pleiotropy; poplar; single nucleotide polymorphisms (SNP) array; Unified Mixed Model ID CARBON-ISOTOPE DISCRIMINATION; MULTILOCUS GENOTYPE DATA; SPRUCE PICEA-SITCHENSIS; PINE PINUS-TAEDA; LOCAL ADAPTATION; BLACK COTTONWOOD; BALSAMIFERA L.; COMPLEX TRAITS; PHENOTYPIC ASSOCIATIONS; ARABIDOPSIS-THALIANA AB In order to uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa) from much of its range in western North America. Extensive data from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34K Populus single nucleotide polymorphism (SNP) array) of all accessions were used for gene discovery in a genome-wide association study (GWAS). We performed GWAS with 40 biomass, ecophysiology and phenology traits and 29355 filtered SNPs representing 3518 genes. The association analyses were carried out using a Unified Mixed Model accounting for population structure effects among accessions. We uncovered 410 significant SNPs using a Bonferroni-corrected threshold (P<1.7x10-6). Markers were found across 19 chromosomes, explained 1-13% of trait variation, and implicated 275 unique genes in trait associations. Phenology had the largest number of associated genes (240 genes), followed by biomass (53 genes) and ecophysiology traits (25 genes). The GWAS results propose numerous loci for further investigation. Many traits had significant associations with multiple genes, underscoring their genetic complexity. Genes were also identified with multiple trait associations within and/or across trait categories. In some cases, traits were genetically correlated while in others they were not. C1 [McKown, Athena D.; Klapste, Jaroslav; Guy, Robert D.; Porth, Ilga; El-Kassaby, Yousry A.] Univ British Columbia, Forest Sci Ctr, Fac Forestry, Dept Forest & Conservat Sci, Vancouver, BC V6T 1Z4, Canada. [Klapste, Jaroslav] Czech Univ Life Sci, Fac Forestry & Wood Sci, Dept Dendrol & Forest Tree Breeding, Prague 16521, Czech Republic. [Geraldes, Armando; Friedmann, Michael; Cronk, Quentin C. B.; Douglas, Carl J.] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. [Porth, Ilga; Mansfield, Shawn D.] Univ British Columbia, Forest Sci Ctr, Fac Forestry, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Hannemann, Jan; Ehlting, Juergen] Univ Victoria, Dept Biol, Victoria, BC V8W 3N5, Canada. [Hannemann, Jan; Ehlting, Juergen] Univ Victoria, Ctr Forest Biol, Victoria, BC V8W 3N5, Canada. [Muchero, Wellington; Tuskan, Gerald A.] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. RP McKown, AD (reprint author), Univ British Columbia, Forest Sci Ctr, Fac Forestry, Dept Forest & Conservat Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM admckown@gmail.com RI Klapste, Jaroslav/B-6668-2016; Porth, Ilga/N-4862-2015; El-Kassaby, Yousry/K-9856-2016; Tuskan, Gerald/A-6225-2011; OI Klapste, Jaroslav/0000-0001-5504-3735; Porth, Ilga/0000-0002-9344-6348; El-Kassaby, Yousry/0000-0002-4887-8977; Tuskan, Gerald/0000-0003-0106-1289; McKown, Athena/0000-0002-7402-9952; Cronk, Quentin/0000-0002-4027-7368 FU Genome British Columbia Applied Genomics Innovation Program [103BIO]; Genome Canada Large-Scale Applied Research Project [168BIO]; US Department of Energy Bioenergy Research Facility [DE-AC05-00OR22725] FX We thank L. E. Gunter, M. S. Azam, E. Drewes, N. Farzaneh, L. Liao, E. Moreno, L. Muenter and L. Quamme for data monitoring, collection and image presentation. We also thank anonymous reviewers for their suggestions and revisions in improving the manuscript. This work was supported by the Genome British Columbia Applied Genomics Innovation Program (Project 103BIO) and Genome Canada Large-Scale Applied Research Project (Project 168BIO) funds to R. D. G., J.E., Q. C. B. C., Y.A.E-K., S. D. M. and C.J.D. and by funds within the BioEnergy Science Center, a US Department of Energy Bioenergy Research Facility under contract DE-AC05-00OR22725. NR 89 TC 40 Z9 40 U1 11 U2 93 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD JUL PY 2014 VL 203 IS 2 BP 535 EP 553 DI 10.1111/nph.12815 PG 19 WC Plant Sciences SC Plant Sciences GA AJ4IW UT WOS:000337639800019 PM 24750093 ER PT J AU Kim, TN AF Kim, Tania N. TI Plant damage and herbivore performance change with latitude for two old-field plant species, but rarely as predicted SO OIKOS LA English DT Article ID SOLANUM-CAROLINENSE; SOLIDAGO-ALTISSIMA; INSECT HERBIVORES; PROTEASE INHIBITORS; FLORAL HERBIVORY; SALT MARSHES; RESISTANCE; TOLERANCE; TRAITS; COMPETITION AB A long standing hypothesis in biogeography is that latitudinal gradients in plant defenses (LGPD) should arise because selection for plant defenses is greater in the tropics compared to temperate areas. Previous studies have focused on plant traits thought to confer resistance, yet many traits may not actually confer resistance (putative resistance) or interact to influence herbivore performance. In this study, I used a multi-trophic approach to examine relationships between latitude, herbivore pressure, and plant resistance (measured as the growth rates of herbivores) of two old-field plant species (Solanum carolinense and Solidago altissima) using a field survey across a 12 degree gradient in the eastern US combined with laboratory bioassays measuring the performance of generalist and specialist herbivores. I used structural equation modeling to examine the direct and indirect pathways by which latitude influences herbivore pressure and plant resistance. A latitudinal gradient in plant damage was observed in the expected direction for S. caroliense (damage decreased with latitude), but the opposite relationship was observed for S. altissima. Damage to both plant species was mediated by herbivore abundances, which was in turn influenced by predator abundances. Resistance to herbivores also varied with latitude but the form of the relationship was dependent on herbivore and plant species. There were direct, non-linear relationships between latitude and resistance (for Spodoptera exigua and Schistocerca americana feeding on S. altissima; S. exigua and Manduca sexta feeding on S. carolinense). Herbivore growth rates were also mediated by the density of S. carolinense for Leptinotarsa juncta and S. americana feeding on S. carolinense. There was no relationship between plant resistance and herbivore pressure and no indication of feedbacks. Results from this study indicate that latitudinal variation in plant resistance is complex, possibly constrained by resource availability and tradeoffs in plant defenses. C1 [Kim, Tania N.] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA. RP Kim, TN (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. EM tkim@glbrc.wisc.edu FU Florida State Univ., Florida, USA FX I gratefully acknowledge M. Cipollini (Berry College, Georgia, USA), G. Crutsinger and L. Souza (Univ. of Tennessee, Tennessee, USA), M. Wise and D. Carr (Blandy Experimental Farm, Virginia, USA), and S. Campbell (Cornell Univ., New York, USA) for logistical support during latitudinal field surveys. I thank J. Capinera (Univ. of Florida, Florida, USA) for providing grasshoppers for bioassays. I thank J. Stanford for lab and greenhouse assistance. This manuscript was greatly improved by comments from N. Underwood, B. Spiesman, J. Grinath and A. Hakes. The Robert K. Godfrey Endowment Award for the Study of Botany (Florida State Univ., Florida, USA) helped fund this research. NR 54 TC 7 Z9 7 U1 13 U2 50 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0030-1299 EI 1600-0706 J9 OIKOS JI Oikos PD JUL PY 2014 VL 123 IS 7 BP 886 EP 896 DI 10.1111/j.1600-0706.2013.00946.x PG 11 WC Ecology SC Environmental Sciences & Ecology GA AJ5RP UT WOS:000337744900014 ER PT J AU Su, CC Radhakrishnan, A Kumar, N Long, F Bolla, JR Lei, HT Delmar, JA Do, SV Chou, TH Rajashankar, KR Zhang, QJ Yu, EW AF Su, Chih-Chia Radhakrishnan, Abhijith Kumar, Nitin Long, Feng Bolla, Jani Reddy Lei, Hsiang-Ting Delmar, Jared A. Do, Sylvia V. Chou, Tsung-Han Rajashankar, Kanagalaghatta R. Zhang, Qijing Yu, Edward W. TI Crystal structure of the Campylobacter jejuni CmeC outer membrane channel SO PROTEIN SCIENCE LA English DT Article DE efflux channel; multidrug resistance; resistance-nodulation-cell division; Campylobacter jejuni; membrane protein ID MULTIDRUG EFFLUX PUMP; PSEUDOMONAS-AERUGINOSA; FLUOROQUINOLONE RESISTANCE; MACROLIDE RESISTANCE; ACRB; PROTEIN; CMEABC; TRANSPORTER; SOFTWARE; SYSTEM AB As one of the world's most prevalent enteric pathogens, Campylobacter jejuni is a major causative agent of human enterocolitis and is responsible for more than 400 million cases of diarrhea each year. The impact of this pathogen on children is of particular significance. Campylobacter has developed resistance to many antimicrobial agents via multidrug efflux machinery. The CmeABC tripartite multidrug efflux pump, belonging to the resistance-nodulation-cell division (RND) superfamily, plays a major role in drug resistant phenotypes of C. jejuni. This efflux complex spans the entire cell envelop of C. jejuni and mediates resistance to various antibiotics and toxic compounds. We here report the crystal structure of C. jejuni CmeC, the outer membrane component of the CmeABC tripartite multidrug efflux system. The structure reveals a possible mechanism for substrate export. C1 [Su, Chih-Chia; Long, Feng; Delmar, Jared A.; Chou, Tsung-Han; Yu, Edward W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Radhakrishnan, Abhijith; Kumar, Nitin; Bolla, Jani Reddy; Lei, Hsiang-Ting; Yu, Edward W.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Do, Sylvia V.; Yu, Edward W.] Iowa State Univ, Bioinformat & Computat Biol Interdept Grad Progra, Ames, IA 50011 USA. [Rajashankar, Kanagalaghatta R.] Cornell Univ, Argonne Natl Lab, NE CAT, Argonne, IL 60439 USA. [Rajashankar, Kanagalaghatta R.] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, Argonne, IL 60439 USA. [Zhang, Qijing] Iowa State Univ, Coll Vet Med, Dept Vet Microbiol, Ames, IA 50011 USA. RP Yu, EW (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM ewyu@iastate.edu RI Long, Feng/F-5475-2011 OI Long, Feng/0000-0001-6313-8558 FU NIH [R01DK063008, R01GM086431] FX Grant sponsor: NIH; Grant numbers: R01DK063008 (Q.Z.) and R01GM086431 (E.W.Y.). NR 38 TC 9 Z9 10 U1 2 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2014 VL 23 IS 7 BP 954 EP 961 DI 10.1002/pro.2478 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AJ4TS UT WOS:000337669800011 PM 24753291 ER PT J AU Lohman, JR Ma, M Cuff, ME Bigelow, L Bearden, J Babnigg, G Joachimiak, A Phillips, GN Shen, B AF Lohman, Jeremy R. Ma, Ming Cuff, Marianne E. Bigelow, Lance Bearden, Jessica Babnigg, Gyorgy Joachimiak, Andrzej Phillips, George N., Jr. Shen, Ben TI The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE protein-protein interaction; natural product; biosynthesis; phylogenetics; structural genomics; reductive methylation ID BIOSYNTHETIC GENE-CLUSTER; HIGH-THROUGHPUT; COMBINATORIAL MUTAGENESIS; SURFACTIN SYNTHETASE; SEQUENCE ALIGNMENTS; MAXIMUM-LIKELIHOOD; ADENYLATION; DOMAINS; CLONING; PURIFICATION AB Carrier proteins (CPs) play a critical role in the biosynthesis of various natural products, especially in nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymology, where the CPs are referred to as peptidyl-carrier proteins (PCPs) or acyl-carrier proteins (ACPs), respectively. CPs can either be a domain in large multifunctional polypeptides or standalone proteins, termed Type I and Type II, respectively. There have been many biochemical studies of the Type I PKS and NRPS CPs, and of Type II ACPs. However, recently a number of Type II PCPs have been found and biochemically characterized. In order to understand the possible interaction surfaces for combinatorial biosynthetic efforts we crystallized the first characterized and representative Type II PCP member, BlmI, from the bleomycin biosynthetic pathway from Streptomyces verticillus ATCC 15003. The structure is similar to CPs in general but most closely resembles PCPs. Comparisons with previously determined PCP structures in complex with catalytic domains reveals a common interaction surface. This surface is highly variable in charge and shape, which likely confers specificity for interactions. Previous nuclear magnetic resonance (NMR) analysis of a prototypical Type I PCP excised from the multimodular context revealed three conformational states. Comparison of the states with the structure of BlmI and other PCPs reveals that only one of the NMR states is found in other studies, suggesting the other two states may not be relevant. The state represented by the BlmI crystal structure can therefore serve as a model for both Type I and Type II PCPs. Proteins 2014; 82:1210-1218. (c) 2013 Wiley Periodicals, Inc. C1 [Lohman, Jeremy R.; Ma, Ming; Shen, Ben] Scripps Res Inst, Dept Chem, Jupiter, FL 33458 USA. [Cuff, Marianne E.; Bigelow, Lance; Bearden, Jessica; Babnigg, Gyorgy; Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Cuff, Marianne E.; Bigelow, Lance; Bearden, Jessica; Babnigg, Gyorgy; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. [Phillips, George N., Jr.] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77251 USA. [Shen, Ben] Scripps Res Inst, Dept Mol Therapeut, Jupiter, FL 33458 USA. [Shen, Ben] Scripps Res Inst, Nat Prod Lib Initiat, Jupiter, FL 33458 USA. RP Shen, B (reprint author), Scripps Res Inst, 130 Scripps Way,3A1, Jupiter, FL 33458 USA. EM shenb@scripps.edu RI Lohman, Jeremy/M-1111-2015 OI Lohman, Jeremy/0000-0001-8199-2344 FU National Institute of General Medical Sciences Protein Structure Initiative [GM094596, GM094585]; National Institutes of Health [AI40475]; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX Grant sponsor: National Institute of General Medical Sciences Protein Structure Initiative (to GNP and BS); Grant number: GM094596; Grant sponsor: National Institute of General Medical Sciences Protein Structure Initiative (to MC, LB, JB, GB, and AJ); Grant number: GM094585; Grant sponsor: National Institutes of Health (to BS); Grant number: AI40475; Grant sponsor: U.S. Department of Energy, Office of Biological and Environmental Research (to MC and AJ); Grant number: DE-AC02-06CH11357. NR 45 TC 16 Z9 16 U1 3 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD JUL PY 2014 VL 82 IS 7 BP 1210 EP 1218 DI 10.1002/prot.24485 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AJ2GV UT WOS:000337474700009 PM 25050442 ER PT J AU Takasuka, TE Bianchetti, CM Tobimatsu, Y Bergeman, LF Ralph, J Fox, BG AF Takasuka, Taichi E. Bianchetti, Christopher M. Tobimatsu, Yuki Bergeman, Lai F. Ralph, John Fox, Brian G. TI Structure-guided analysis of catalytic specificity of the abundantly secreted chitosanase SACTE_ 5457 from Streptomyces sp SirexAA-E SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE Streptomyces; chitosanase; chitosan; biomass degradation; X-ray structure; GH46 ID BACILLUS-CIRCULANS MH-K1; RECALCITRANT POLYSACCHARIDES; CRYSTAL-STRUCTURE; COELICOLOR A3(2); SP N174; PURIFICATION; SEQUENCE; CLONING; CHITIN; GENE AB SACTE_5457 is secreted by Streptomyces sp. SirexAA-E, a highly cellulolytic actinobacterium isolated from a symbiotic community composed of insects, fungi, and bacteria. Here we report the 1.84 angstrom resolution crystal structure and functional characterization of SACTE_5457. This enzyme is a member of the glycosyl hydrolase family 46 and is composed of two -helical domains that are connected by an -helical linker. The catalytic residues (Glu74 and Asp92) are separated by 10.3 angstrom, matching the distance predicted for an inverting hydrolysis reaction. Normal mode analysis suggests that the connecting -helix is flexible and allows the domain motion needed to place active site residues into an appropriate configuration for catalysis. SACTE_5457 does not react with chitin, but hydrolyzes chitosan substrates with an approximate to 4-fold improvement in k(cat)/K-M as the percentage of acetylation and the molecular weights decrease. Analysis of the time dependence of product formation shows that oligosaccharides with degree of polymerization <4 are not hydrolyzed. By combining the results of substrate docking to the X-ray structure and end-product analysis, we deduce that SACTE_5457 preferentially binds substrates spanning the -2 to +2 sugar binding subsites, and that steric hindrance prevents binding of N-acetyl-d-glucosamine in the +2 subsite and may weakly interfere with binding of N-acetyl-d-glucosamine in the +1 subsites. A proposal for how these constraints account for the observed product distributions is provided. Proteins 2014; 82:1245-1257. (c) 2013 Wiley Periodicals, Inc. C1 [Takasuka, Taichi E.; Bianchetti, Christopher M.; Tobimatsu, Yuki; Bergeman, Lai F.; Ralph, John; Fox, Brian G.] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA. [Takasuka, Taichi E.; Bianchetti, Christopher M.; Tobimatsu, Yuki; Bergeman, Lai F.; Ralph, John; Fox, Brian G.] Univ Wisconsin, Coll Engn, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. RP Fox, BG (reprint author), Univ Wisconsin, Dept Biochem, 420 Henry Mall, Madison, WI 53705 USA. EM bgfox@biochem.wisc.edu FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494]; US Department of Energy, Basic Energy Sciences, Office of Science [W 31 109 ENG-38]; College of Agricultural and Life Sciences, Department of Biochemistry, the Graduate School of the University of Wisconsin; Michigan Economic Development Corporation; Michigan Technology Tri-Corridor [085P1000817] FX Grant sponsor: DOE Great Lakes Bioenergy Research Center (DOE Office of Science); Grant number: BER DE-FC02-07ER64494; Grant sponsor: US Department of Energy, Basic Energy Sciences, Office of Science; Grant number: W 31 109 ENG-38; Grant sponsor: College of Agricultural and Life Sciences, Department of Biochemistry, the Graduate School of the University of Wisconsin, the Michigan Economic Development Corporation, and the Michigan Technology Tri-Corridor; Grant number: 085P1000817. NR 63 TC 2 Z9 2 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD JUL PY 2014 VL 82 IS 7 BP 1245 EP 1257 DI 10.1002/prot.24491 PG 13 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AJ2GV UT WOS:000337474700012 PM 24338856 ER PT J AU Jungels, AM Brown, MA Stombler, M Yasumoto, S AF Jungels, Amanda M. Brown, Marni A. Stombler, Mindy Yasumoto, Saori TI Teaching Associates: Bridging Informal and Formal Mechanisms of Support for Graduate Student Instructors SO TEACHING SOCIOLOGY LA English DT Article DE formal networks; informal networks; bridging networks; teaching associate; graduate student instructors; director of instruction; graduate teacher training ID NETWORKS AB Faculty members and graduate student instructors (GSIs) spend a significant portion of their time in the classroom. Much of the literature calls for formal training for graduate students in pedagogy and teaching techniques (DeCesare 2003), and increasing attention has been paid to the benefits of informal supports for GSIs, such as peer networks. But scholars have paid far less attention to examining how formal and informal mechanisms of support might be bridged, thus strengthening support for GSIs. In this article, we explore and demonstrate the importance of bridging available support systems for GSIs, specifically through a position occupied by an advanced GSI, called the Teaching Associate. Using focus groups, semistructured interviews, and surveys, we argue that the Teaching Associate offers formal and informal forms of support for graduate student instructors and their departments and we advocate their use in teacher training. C1 [Jungels, Amanda M.] Oak Ridge Inst Sci & Educ, Baltimore, MD USA. [Brown, Marni A.] Georgia Gwinnett Coll, Lawrenceville, NJ USA. [Stombler, Mindy] Georgia State Univ, Dept Sociol, Atlanta, GA 30303 USA. [Yasumoto, Saori] Osaka Univ, Dept Human Sci, Program G30, Osaka, Japan. RP Stombler, M (reprint author), 38 Peachtree Ctr Ave,Langdale Hall Room 1041, Atlanta, GA 30303 USA. EM stombler@gsu.edu NR 17 TC 0 Z9 0 U1 2 U2 5 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0092-055X EI 1939-862X J9 TEACH SOCIOL JI Teach. Sociol. PD JUL PY 2014 VL 42 IS 3 BP 220 EP 230 DI 10.1177/0092055X14527423 PG 11 WC Education & Educational Research; Sociology SC Education & Educational Research; Sociology GA AJ4CZ UT WOS:000337619400005 ER PT J AU Bhagatwala, A Chen, JH Lu, TF AF Bhagatwala, Ankit Chen, Jacqueline H. Lu, Tianfeng TI Direct numerical simulations of HCCl/SACI with ethanol SO COMBUSTION AND FLAME LA English DT Article DE HCCI; SACI; Thermal stratification; Mixture stratification; Premixed flame; Autoignition ID IGNITION FRONT PROPAGATION; EXPLOSIVE MODE ANALYSIS; TEMPERATURE INHOMOGENEITIES; CONSTANT VOLUME; DIAGNOSTICS; FLAMES; JET AB Two and three dimensional direct numerical simulations (DNS) of an autoignitive premixture of air and ethanol in Homogeneous Charge Compression Ignition (HCCI) mode have been conducted. A special feature of these simulations is the use of compression heating through mass source/sink terms to emulate the compression and expansion due to piston motion. Furthermore, combustion phasing is adjusted such that peak heat release occurs after Top Dead Center (TDC) during the expansion stroke, as in a real engine. Zero dimensional simulations were first conducted to identify important parameters for the higher dimensional simulations. They showed that for ethanol, temperature and dilution are the parameters the problem is most sensitive to. One set of two dimensional simulations were conducted with a uniform mixture composition and different levels of temperature stratification, both with and without compression heating. Another set of simulations varied the mixture stratification with constant temperature stratification. Both sets showed considerable differences in ignition delay, heat release and peak temperature and peak pressure. Compression heating was also found to have a significant effect on the heat release profile. A three dimensional simulation was conducted for Spark-Assisted HCCI (SACI). It was initiated with a small spark kernel, which evolved into a premixed flame. The entire mixture eventually underwent autoignition. Distance function based analysis showed a strongly attenuating flame. Analysis of scalar mixing frequencies shows that differential diffusion and reaction induced mixing play an important role in predicting the mixing of reactive scalars. This has significant implications for mixing models for reactive flows. Chemical explosive mode analysis (CEMA) was applied to the 3D simulation and showed promise in identifying the transition from flame propagation to autoignition. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Bhagatwala, Ankit; Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. [Lu, Tianfeng] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. RP Bhagatwala, A (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. EM abhagat@sandia.gov RI Lu, Tianfeng/D-7455-2014 OI Lu, Tianfeng/0000-0001-7536-1976 FU Combustion Energy Frontier Research Center (CEFRC), an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) [DE-SC0001198]; United States Department of Energy [DE-AC04-94AL85000]; Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-SC0008622]; Department of Energy's Advanced Leadership Computing Challenge (ALCC) at the National Energy Research Scientific Computing Center (NERSC) FX This research is supported by the Combustion Energy Frontier Research Center (CEFRC), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) under Award No. DE-SC0001198. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. The work at University of Connecticut was supported by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Grant DE-SC0008622. Computer allocations were awarded by the Department of Energy's Advanced Leadership Computing Challenge (ALCC) at the National Energy Research Scientific Computing Center (NERSC). NR 35 TC 16 Z9 16 U1 5 U2 28 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD JUL PY 2014 VL 161 IS 7 BP 1826 EP 1841 DI 10.1016/j.combustflame.2013.12.027 PG 16 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA AI8TU UT WOS:000337200700013 ER PT J AU Anderson, EK Aslam, TD Jackson, SI AF Anderson, Eric K. Aslam, Tariq D. Jackson, Scott I. TI Transverse initiation of an insensitive explosive in a layered slab geometry: Front shapes and post-shock flow measurements SO COMBUSTION AND FLAME LA English DT Article DE Detonation; Shock; Explosive AB Experiments are presented that explore the shock initiating layer dynamics in an insensitive high explosive. Tests were conducted with a PBX 9502 slab bonded on one side to a PBX 9501 slab. For each test, a detonation in the PBX 9501 was generated to drive an oblique shock intended to initiate the PBX 9502. Shocks of sufficient strength generated an initiating layer, or region of delayed reaction (relative to typical PBX 9502 detonation reaction timescales) in the PBX 9502 immediately adjacent to the PBX 9501. These reactions result in a transition to detonation away from the 9501/9502 interface in a process analogous to the shock-to-detonation transition in shocked one-dimensional (1D) explosive configurations. The thickness of the PBX 9501 layer was varied from 0.5-2.5 mm to control the strength and duration of the transmitted shock into the 8 mm thick PBX 9502. Phase velocities at the explosive outer surfaces, wave front breakout shapes, and post shock particle velocity histories associated with the detonating and initiating zones in the two explosives are reported and discussed. The initiating layer thickness decreased with increasing PBX 9501 thickness for tests with PBX 9501 thicknesses larger than 1.0 mm. A 1.0 mm thick PBX 9501 slab was not able to initiate detonation in the 8.0 mm thick PBX 9502 slab. Further decreasing the PBX 9501 thickness to 0.5 mm resulted in detonation throughout both slabs, with no initiating layer due to the intersection of each explosive's thickness effect curve at this condition. Initiating layers exhibited particle velocity profiles characteristic of non-detonating shocks. Measured phase velocities are in good agreement with Detonation Shock Dynamics (DSD) predictions for PBX 9501. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Anderson, Eric K.; Aslam, Tariq D.; Jackson, Scott I.] LANL, Shock & Detonat Phys Grp, Los Alamos, NM 87545 USA. RP Anderson, EK (reprint author), LANL, Shock & Detonat Phys Grp, WX-9, Los Alamos, NM 87545 USA. EM eanderson@lanl.gov OI Jackson, Scott/0000-0002-6814-3468; Aslam, Tariq/0000-0002-4263-0401; Anderson, Eric/0000-0002-5309-5686 FU US Department of Energy Campaign 2: "Dynamic Material Properties." FX This effort was funded by the US Department of Energy Campaign 2: "Dynamic Material Properties." Experiments were assembled and fielded with assistance provided by Sam Vincent and Tim Tucker. NR 19 TC 1 Z9 1 U1 0 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD JUL PY 2014 VL 161 IS 7 BP 1944 EP 1954 DI 10.1016/j.combustflame.2013.12.023 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA AI8TU UT WOS:000337200700022 ER PT J AU Dale, VH AF Dale, Virginia H. TI Environmental Management: Past and Future Communications SO ENVIRONMENTAL MANAGEMENT LA English DT Editorial Material C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Dale, VH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM dalevh@ornl.gov NR 3 TC 0 Z9 0 U1 1 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0364-152X EI 1432-1009 J9 ENVIRON MANAGE JI Environ. Manage. PD JUL PY 2014 VL 54 IS 1 BP 1 EP 2 DI 10.1007/s00267-014-0298-7 PG 2 WC Environmental Sciences SC Environmental Sciences & Ecology GA AI9UP UT WOS:000337285900001 ER PT J AU Grahame, TJ AF Grahame, Thomas J. TI PM2.5 Species Importance of Accurate Measurement SO EPIDEMIOLOGY LA English DT Letter ID AIR-POLLUTION; HEART-RATE; ERROR C1 US DOE, Washington, DC 20585 USA. RP Grahame, TJ (reprint author), US DOE, Washington, DC 20585 USA. EM Thomas.grahame@hq.doe.gov NR 4 TC 1 Z9 1 U1 0 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1044-3983 EI 1531-5487 J9 EPIDEMIOLOGY JI Epidemiology PD JUL PY 2014 VL 25 IS 4 BP 615 EP 615 DI 10.1097/EDE.0000000000000112 PG 1 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA AJ0CM UT WOS:000337316700021 PM 24887164 ER PT J AU Landau, SM Thomas, BA Thurfjell, L Schmidt, M Margolin, R Mintun, M Pontecorvo, M Baker, SL Jagust, WJ AF Landau, S. M. Thomas, B. A. Thurfjell, L. Schmidt, M. Margolin, R. Mintun, M. Pontecorvo, M. Baker, S. L. Jagust, W. J. CA Alzheimer's Dis Neuroimaging Initi TI Amyloid PET imaging in Alzheimer's disease: a comparison of three radiotracers SO EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING LA English DT Article DE Amyloid; Alzheimer's disease; PET imaging; Neurology ID PITTSBURGH COMPOUND-B; MILD COGNITIVE IMPAIRMENT; F 18; BETA; FLORBETAPIR; F-18-FLUTEMETAMOL; DEPOSITION; RADIOLIGAND; VALIDATION; DEMENTIA AB Purpose The increasing use of amyloid PET in Alzheimer's disease research and clinical trials has motivated efforts to standardize methodology. We compared retention of the C-11 radiotracer Pittsburgh Compound B (PiB) and that of two F-18 amyloid radiotracers (florbetapir and flutemetamol) using two study populations. We also examined the feasibility of converting between tracer-specific measures, using PiB as the common link between the two F-18 tracers. Methods One group of 40 subjects underwent PiB and flutemetamol imaging sessions and a separate group of 32 subjects underwent PiB and florbetapir imaging sessions. We compared cortical and white matter retention for each F-18 tracer relative to that of PiB, as well as retention in several reference regions and image analysis methods. Correlations between tracer pairs were used to convert tracer-specific threshold values for amyloid positivity between tracers. Results Cortical retention for each pair of tracers was strongly correlated regardless of reference region (PiB-flutemetamol, rho = 0.84-0.99; PiB-florbetapir, rho = 0.83-0.97) and analysis method (rho = 0.90-0.99). Compared to PiB, flutemetamol had higher white matter retention, while florbetapir had lower cortical retention. Two previously established independent thresholds for amyloid positivity were highly consistent when values were converted between tracer pairs. Conclusion Despite differing white and grey matter retention characteristics, cortical retention for each F-18 tracer was highly correlated with that of PiB, enabling conversion of thresholds across tracer measurement scales with a high level of internal consistency. Standardization of analysis methods and measurement scales may facilitate the comparison of amyloid PET data obtained using different tracers. C1 [Landau, S. M.; Jagust, W. J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Landau, S. M.; Baker, S. L.; Jagust, W. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Thomas, B. A.] UCL, Inst Nucl Med, London, England. [Thurfjell, L.] GE Healthcare, Uppsala, Sweden. [Schmidt, M.] Janssen Pharmaceut NV, Beerse, Belgium. [Margolin, R.] Janssen Alzheimer Immunotherapy, San Francisco, CA USA. [Mintun, M.; Pontecorvo, M.] Avid Radiopharmaceut Inc, Philadelphia, PA USA. RP Landau, SM (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 118 Barker Hall MC 3190, Berkeley, CA 94720 USA. EM slandau@berkeley.edu; Benjamin_Thomas@circ.a-star.edu.sg; lennart.thurfjell@ge.com; mschmid4@its.jnj.com; rmargoli@its.jnj.com; mintun@avidrp.com; pontecorvo@avidrp.com; slbaker@lbl.gov; jagust@berkeley.edu RI Schmidt, Mark/I-5052-2016; OI Schmidt, Mark/0000-0003-3417-8977; Thomas, Benjamin/0000-0002-9784-1177 FU GlaxoSmithKline (GSK); UCL/UCLH from the UK Department of Health Biomedical Research Centre; ADNI (National Institutes of Health) [U01 AG024904]; National Institute on Aging; National Institute of Biomedical Imaging and Bioengineering; Canadian Institutes of Health Research; NIH [P30 AG010129, K01 AG030514] FX B. T. acknowledges the support of GlaxoSmithKline (GSK) and also that UCL/UCLH receives a portion of its research funding from the UK Department of Health Biomedical Research Centre's funding scheme.; Data collection and sharing for this project was funded by the ADNI (National Institutes of Health grant U01 AG024904). ADNI is funded by the National Institute on Aging, and the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research provides funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129 and K01 AG030514. NR 21 TC 47 Z9 47 U1 1 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1619-7070 EI 1619-7089 J9 EUR J NUCL MED MOL I JI Eur. J. Nucl. Med. Mol. Imaging PD JUL PY 2014 VL 41 IS 7 BP 1398 EP 1407 DI 10.1007/s00259-014-2753-3 PG 10 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA AI9UR UT WOS:000337286200016 PM 24647577 ER PT J AU Schaefer, JD Werner, BT Daniel, IM AF Schaefer, J. D. Werner, B. T. Daniel, I. M. TI Strain-Rate-Dependent Failure of a Toughened Matrix Composite SO EXPERIMENTAL MECHANICS LA English DT Article DE Composites; Toughened matrix; Strain rate dependence; Failure prediction; Dynamic testing ID SHEET WRINKLE DEFECTS; WIND TURBINE-BLADES; EPOXY COMPOSITES; PREDICTIVE CAPABILITIES; PROGRESSIVE FAILURE; NONLINEAR RESPONSE; FIBER COMPOSITES; FATIGUE FAILURE; PART-B; BEHAVIOR AB The strain-rate-dependent behavior of a toughened matrix composite (IM7/8552) was characterized under quasi-static and dynamic loading conditions. Unidirectional and off-axis composite specimens were tested at strain rates ranging from 10(-4) to 10(3) s(-1) using a servo-hydraulic testing machine and split Hopkinson pressure bar apparatus. The nonlinear response and failure were analyzed and evaluated based on classical failure criteria and the Northwestern (NU) failure theory. The predictive NU theory was shown to be in excellent agreement with experimental results and to accurately predict the strain-rate-dependent failure of the composite system based on measured average lamina properties. C1 [Schaefer, J. D.; Daniel, I. M.] Northwestern Univ, Ctr Intelligent Proc Composites, Evanston, IL 60208 USA. [Werner, B. T.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Daniel, IM (reprint author), Northwestern Univ, Ctr Intelligent Proc Composites, Evanston, IL 60208 USA. EM imdaniel@northwestern.edu RI Daniel, Isaac/B-6932-2009 FU Office of Naval Research (ONR) FX The work described in this paper was sponsored by the Office of Naval Research (ONR). The authors are grateful to Dr. Y.D.S. Rajapakse of ONR for his encouragement and cooperation. NR 43 TC 6 Z9 6 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD JUL PY 2014 VL 54 IS 6 BP 1111 EP 1120 DI 10.1007/s11340-014-9876-0 PG 10 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA AI8JJ UT WOS:000337159200015 ER PT J AU Wang, LF AF Wang, Li-Fang TI Meshfree-enriched electromagnetic finite element formulation using nodal integration SO INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS LA English DT Article DE finite element; meshfree; electromagnetics; nodal integration ID MESHLESS METHOD; PARTICLE METHODS; SHAPE FUNCTION; COMPUTATIONS; FIELDS AB This paper presents a meshfree-enriched finite element formulation using nodal integration for electrostatic analysis. The meshfree-enriched finite element method, originally proposed to solve the incompressible constraint in mechanical problem, is revisited in this paper and applied to the analysis of electrostatic problems to improve the solution accuracy of conventional finite element method. A novel nodal integration scheme based on the meshfree-enriched finite element mesh is developed for the integration of discrete equation and is shown to pass the linear exactness in the Galerkin approximation. To demonstrate the accuracy of the proposed formulation, two numerical examples are studied and comparisons are made to several other finite element formulations. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Wang, LF (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM wang22@llnl.gov NR 23 TC 1 Z9 1 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0894-3370 EI 1099-1204 J9 INT J NUMER MODEL EL JI Int. J. Numer. Model.-Electron. Netw. Device Fields PD JUL-AUG PY 2014 VL 27 IS 4 BP 669 EP 681 DI 10.1002/jnm.1940 PG 13 WC Engineering, Electrical & Electronic; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA AJ4EG UT WOS:000337623900004 ER PT J AU Barlat, F Vincze, G Gracio, JJ Lee, MG Rauch, EF Tome, CN AF Barlat, F. Vincze, G. Gracio, J. J. Lee, M. -G. Rauch, E. F. Tome, C. N. TI Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Yield condition; Constitutive behavior; Metallic material; Mechanical testing; Cross-loading ID LOW-CARBON STEEL; CHANGING STRAIN PATHS; ELASTIC-PLASTIC BEHAVIOR; SPRING-BACK PREDICTION; ALUMINUM-ALLOY SHEETS; STRESS YIELD FUNCTION; METAL PLASTICITY; PLANE-STRESS; CYCLIC PLASTICITY; PART-I AB The formulation of the so-called homogeneous anisotropic hardening (HAH) model, which was originally proposed in Barlat et al. (2011), is refined. With the new features, this distortional plasticity-based constitutive model predicts the mechanical response of metals subjected to non-proportional loading with improved accuracy, in particular for cross-loading. In that case, applications to two different steels are provided for illustration purposes. For mild steel, the stress overshoot of the monotonic flow curve observed during a double load change is well reproduced by the model. In addition, for a dual-phase steel deformed in a two-step tension test with axes at 450 from each other, the new features allow the reloading yield stress to be lower than the unloading flow stress, in good agreement with experimental observations. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Barlat, F.; Lee, M. -G.] Pohang Univ Sci & Technol POSTECH, GIFT, Pohang 790784, Gyeongbuk, South Korea. [Barlat, F.; Vincze, G.; Gracio, J. J.] Univ Aveiro, Ctr Mech Technol & Automat, Dept Mech Engn, P-3810 Aveiro, Portugal. [Rauch, E. F.] INPG UJF, CNRS, Grp GPM2, UMR 5266, F-38402 St Martin Dheres, France. [Tome, C. N.] Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA. RP Lee, MG (reprint author), Pohang Univ Sci & Technol POSTECH, GIFT, San 31 Hyoja Dong, Pohang 790784, Gyeongbuk, South Korea. EM f.barlat@postech.ac.kr; mglee@postech.ac.kr RI RAUCH, Edgar/C-9852-2011; Tome, Carlos/D-5058-2013; Group, GAME/B-3464-2014; Vincze, Gabriela/D-2383-2013; OI Vincze, Gabriela/0000-0002-0338-3911; Barlat, Frederic/0000-0002-4463-3454 FU POSCO; National Research Foundation of Korea (NRF) - Korean government (MSIP) [2012R1A5A1048294]; Foundation of Science and Technology of Portugal [PTDC/EME-PME/116683/2010] FX The supports of POSCO, the National Research Foundation of Korea (NRF), through the Grant No. 2012R1A5A1048294 funded by the Korean government (MSIP), and the Foundation of Science and Technology of Portugal through the Grant PTDC/EME-PME/116683/2010, are gratefully acknowledged. The comments and suggestions of Mr. Jinwoo Lee (GIFT) about this work are greatly appreciated. NR 84 TC 21 Z9 22 U1 1 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD JUL PY 2014 VL 58 SI SI BP 201 EP 218 DI 10.1016/j.ijplas.2013.11.002 PG 18 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA AI9OM UT WOS:000337261900010 ER PT J AU Luszczek, P Kurzak, J Dongarra, J AF Luszczek, Piotr Kurzak, Jakub Dongarra, Jack TI Looking back at dense linear algebra software SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Decompositional approach; Parallel algorithms; Dense linear algebra ID MODEL IMPLEMENTATION; PROGRAM PARAGAUSS; EXTENDED SET; SUBPROGRAMS; COMPUTATION; ALGORITHMS; PLASMAS; FORTRAN AB Over the years, computational physics and chemistry served as an ongoing source of problems that demanded the ever increasing performance from hardware as well as the software that ran on top of it. Most of these problems could be translated into solutions for systems of linear equations: the very topic of numerical linear algebra. Seemingly then, a set of efficient linear solvers could be solving important scientific problems for years to come. We argue that dramatic changes in hardware designs precipitated by the shifting nature of the marketplace of computer hardware had a continuous effect on the software for numerical linear algebra. The extraction of high percentages of peak performance continues to require adaptation of software. If the past history of this adaptive nature of linear algebra software is any guide then the future theme will feature changes as well - changes aimed at harnessing the incredible advances of the evolving hardware infrastructure. Published by Elsevier Inc. C1 [Luszczek, Piotr] Univ Tennessee, Knoxville, TN USA. [Kurzak, Jakub] Univ Tennessee, Dept Elect Engn & Comp Sci, Innovat Comp Lab, Knoxville, TN USA. [Dongarra, Jack] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Dongarra, Jack] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Dongarra, Jack] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England. [Dongarra, Jack] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England. RP Dongarra, J (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM luszczek@eecs.utk.edu; kurzak@eecs.utk.edu; dongarra@cs.utk.edu NR 36 TC 1 Z9 1 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 EI 1096-0848 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD JUL PY 2014 VL 74 IS 7 BP 2548 EP 2560 DI 10.1016/j.jpdc.2013.10.005 PG 13 WC Computer Science, Theory & Methods SC Computer Science GA AI9OD UT WOS:000337261000003 ER PT J AU Smith, KA Stewart, B Yager, KG Strzalka, J Verduzco, R AF Smith, Kendall A. Stewart, Bridget Yager, Kevin G. Strzalka, Joseph Verduzco, Rafael TI Control of all-conjugated block copolymer crystallization via thermal and solvent annealing SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE block copolymers; conducting polymers; crystallization; films; organic photovoltaics; poly(3-alkylthiophene); poly(9; 9-dioctylfluorene); poly(3-dodecylthiophene); rod-rod polymers ID MICROPHASE SEPARATION; CLICK CHEMISTRY; POLY(3-ALKYLTHIOPHENES); POLY(3-HEXYLTHIOPHENE); CRYSTALLINITY; EMISSION AB Control of the crystallization of conjugated polymers is of critical importance to the performance of organic electronics, such as organic photovoltaic devices, due to the effect on charge separation and transport, particularly for all-polymer devices. The block copolymer poly(3-dodecylthiophene)-block-poly(9,9-dioctylfluorene) (P3DDT-b-PF), which has matched crystallization temperatures for each block, is used to study the effects of processing history on resulting crystallization. For longer annealing times and rapid quenching to room temperature, P3DDT crystals are preferred whereas for shorter annealing times and slower quenching, PF crystals are preferred. Both crystal forms are evidenced for long annealing time and slow quenching. Additionally, for room temperature annealing in the presence of a chloroform vapor, PF crystals are found in the PF phase with the predominant crystal peak oriented perpendicular to the thermally annealed case. These results will provide guidance for optimizing annealing strategies for future donor/acceptor block copolymer photovoltaic devices. (c) 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 900-906 C1 [Smith, Kendall A.; Stewart, Bridget; Verduzco, Rafael] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA. [Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Strzalka, Joseph] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Verduzco, R (reprint author), Rice Univ, Dept Chem & Biomol Engn, 6100 Main MS 362 St, Houston, TX 77005 USA. EM rafaelv@rice.edu RI Yager, Kevin/F-9804-2011 OI Yager, Kevin/0000-0001-7745-2513 FU National Science Foundation [CBET-1264703]; Shell Center for Sustainability; Louis and Peaches Owen; Department of Homeland Security, Science, and Technology Division [2009-ST-062-000031]; US DOE [DE-AC02-06CH11357]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by the National Science Foundation under Grant No. CBET-1264703, the Shell Center for Sustainability, and Louis and Peaches Owen. B. Stewart acknowledges the Department of Homeland Security, Science, and Technology Division, Award #2009-ST-062-000031. K. A. Smith acknowledges Aditya Mohite, Gautam Gupta, Hsing-LinWang, and Hsinhan Tsai of Los Alamos National Laboratory for useful discussion during the preparation of this manuscript. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. Use of the National Synchrotron Light Source and Center for Functional Nanomaterials, Brookhaven National Laboratory, were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 24 TC 6 Z9 6 U1 6 U2 51 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-6266 EI 1099-0488 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD JUL 1 PY 2014 VL 52 IS 13 BP 900 EP 906 DI 10.1002/polb.23506 PG 7 WC Polymer Science SC Polymer Science GA AJ3OR UT WOS:000337576900007 ER PT J AU Luo, HB Beckles, GLA Zhang, XZ Sotnikov, S Thompson, T Bardenheier, B AF Luo, Huabin Beckles, Gloria L. A. Zhang, Xinzhi Sotnikov, Sergey Thompson, Ted Bardenheier, Barbara TI The Relationship Between County-Level Contextual Characteristics and Use of Diabetes Care Services SO JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE LA English DT Article DE Andersen's model; multilevel models; preventive diabetes care; social determinants ID SELF-MANAGEMENT EDUCATION; SAFETY-NET; GLYCEMIC CONTROL; UNITED-STATES; ACCESS; HEALTH; METAANALYSIS; COMPLICATIONS; COMMUNITIES; DISPARITIES AB Objectives: To examine the relationship between county-level measures of social determinants and use of preventive care among US adults with diagnosed diabetes. To inform future diabetes prevention strategies. Methods: Data are from the Behavioral Risk Factor Surveillance System (BRFSS) 2004 and 2005 surveys, the National Diabetes Surveillance System, and the Area Resource File. Use of diabetes care services was defined by self-reported receipt of 7 preventive care services. Our study sample included 46 806 respondents with self-reported diagnosed diabetes. Multilevel models were run to assess the association between county-level characteristics and receipt of each of the 7 preventive diabetes care service after controlling for characteristics of individuals. Results were considered significant if P < .05. Results: Controlling for individual-level characteristics, our analyses showed that 7 of the 8 county-level factors examined were significantly associated with use of 1 or more preventive diabetes care services. For example, people with diabetes living in a county with a high uninsurance rate were less likely to have an influenza vaccination, visit a doctor for diabetes care, have an A1c test, or a foot examination; people with diabetes living in a county with a high physician density were more likely to have an A1c test, foot examination, or an eye examination; and people with diabetes living in a county with more people with less than high-school education were less likely to have influenza vaccination, pneumococcal vaccination, or self-care education (all P < .05). Conclusions: Many of the county-level factors examined in this study were found to be significantly associated with use of preventive diabetes care services. County policy makers may need to consider local circumstances to address the disparities in use of these services. C1 [Luo, Huabin] Ctr Dis Control & Prevent, ORISE, OSTLTS, Atlanta, GA 30333 USA. [Sotnikov, Sergey] CDC, OSTLTS, Atlanta, GA 30333 USA. [Beckles, Gloria L. A.; Zhang, Xinzhi; Thompson, Ted; Bardenheier, Barbara] CDC, Div Diabet Translat, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30333 USA. RP Luo, HB (reprint author), Ctr Dis Control & Prevent, Off State Tribal Local & Territorial Support, 1600 Clifton Rd M-S E-70, Atlanta, GA 30333 USA. EM vbz7@CDC.gov FU Intramural CDC HHS [CC999999] NR 44 TC 1 Z9 1 U1 2 U2 10 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1078-4659 EI 1550-5022 J9 J PUBLIC HEALTH MAN JI J. Public Health Manag. Pract. PD JUL-AUG PY 2014 VL 20 IS 4 BP 401 EP 410 DI 10.1097/PHH.0b013e31829bfa60 PG 10 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA AI8DV UT WOS:000337137700012 PM 23963254 ER PT J AU Roan, NR Liu, HC Usmani, SM Neidleman, J Muller, JA Avila-Herrera, A Gawanbacht, A Zirafi, O Chu, S Dong, M Kumar, ST Smith, JF Pollard, KS Fandrich, M Kirchhoff, F Munch, J Witkowska, HE Greene, WC AF Roan, Nadia R. Liu, Haichuan Usmani, Shariq M. Neidleman, Jason Mueller, Janis A. Avila-Herrera, Aram Gawanbacht, Ali Zirafi, Onofrio Chu, Simon Dong, Ming Kumar, Senthil T. Smith, James F. Pollard, Katherine S. Faendrich, Marcus Kirchhoff, Frank Muench, Jan Witkowska, H. Ewa Greene, Warner C. TI Liquefaction of Semen Generates and Later Degrades a Conserved Semenogelin Peptide That Enhances HIV Infection SO JOURNAL OF VIROLOGY LA English DT Article ID PROSTATE-SPECIFIC ANTIGEN; SPERM MOTILITY INHIBITOR; MEDIATED ENHANCEMENT; AMYLOID FIBRILS; PROTEIN; CELLS; COAGULUM; ASSAY AB Semen enhances HIV infection in vitro, but how long it retains this activity has not been carefully examined. Immediately postejaculation, semen exists as a semisolid coagulum, which then converts to a more liquid form in a process termed liquefaction. We demonstrate that early during liquefaction, semen exhibits maximal HIV-enhancing activity that gradually declines upon further incubation. The decline in HIV-enhancing activity parallels the degradation of peptide fragments derived from the semenogelins (SEMs), the major components of the coagulum that are cleaved in a site-specific and progressive manner upon initiation of liquefaction. Because amyloid fibrils generated from SEM fragments were recently demonstrated to enhance HIV infection, we set out to determine whether any of the liquefaction-generated SEM fragments associate with the presence of HIVenhancing activity. We identify SEM1 from amino acids 86 to 107 [ SEM1(86-107)] to be a short, cationic, amyloidogenic SEM peptide that is generated early in the process of liquefaction but that, conversely, is lost during prolonged liquefaction due to the activity of serine proteases. Synthetic SEM1(86-107) amyloids directly bind HIV-1 virions and are sufficient to enhance HIV infection of permissive cells. Furthermore, endogenous seminal levels of SEM1(86-107) correlate with donor-dependent variations in viral enhancement activity, and antibodies generated against SEM1(86-107) recognize endogenous amyloids in human semen. The amyloidogenic potential of SEM1(86-107) and its virus-enhancing properties are conserved among great apes, suggesting an evolutionarily conserved function. These studies identify SEM1(86-107) to be a key, HIV-enhancing amyloid species in human semen and underscore the dynamic nature of semen's HIV-enhancing activity. C1 [Roan, Nadia R.; Neidleman, Jason; Chu, Simon; Greene, Warner C.] Univ Calif San Francisco, Gladstone Inst Virol & Immunol, San Francisco, CA 94143 USA. [Roan, Nadia R.; Smith, James F.] Univ Calif San Francisco, Dept Urol, San Francisco, CA USA. [Liu, Haichuan; Witkowska, H. Ewa] Univ Calif San Francisco, Dept Obstet Gynecol & Reprod Sci, San Francisco, CA USA. [Liu, Haichuan; Witkowska, H. Ewa] Univ Calif San Francisco, Sandler Moore Mass Spectrometry Core Facil, San Francisco, CA 94143 USA. [Avila-Herrera, Aram; Pollard, Katherine S.] Univ Calif San Francisco, Gladstone Inst Cardiovasc Dis, San Francisco, CA USA. [Pollard, Katherine S.] Univ Calif San Francisco, Dept Epidemiol & Biostat, Inst Human Genet, San Francisco, CA 94143 USA. [Greene, Warner C.] Univ Calif San Francisco, Dept Med, San Francisco, CA USA. [Greene, Warner C.] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94143 USA. [Usmani, Shariq M.; Mueller, Janis A.; Gawanbacht, Ali; Zirafi, Onofrio; Kirchhoff, Frank; Muench, Jan] Univ Ulm, Inst Mol Virol, Med Ctr, D-89069 Ulm, Germany. [Dong, Ming] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kumar, Senthil T.; Faendrich, Marcus] Univ Ulm, Inst Pharmaceut Biotechnol, D-89069 Ulm, Germany. RP Roan, NR (reprint author), Univ Calif San Francisco, Gladstone Inst Virol & Immunol, San Francisco, CA 94143 USA. EM roann@urology.ucsf.edu OI Usmani, Shariq/0000-0002-6462-1098 FU Hellman Family Awards [1PO1 AI083050 PPG]; U.S. Department of Defense [W81XWH-11-1-0562, R01HD074511]; DFG; Ministry of Science; VW Stiftung; San Simeon Fund; Sandler Family Foundation; Gordon and Betty Moore Foundation; NIH/NCI Cancer Center [P30 CA082103]; CFAR [P30 AI027763, P30-AI027763]; [5K12 DK083021-04 KURe]; [K99/R00 1K99AI104262]; [DFG FA 456/10-1]; [DFG US116/1] FX This work was supported, in whole or in part, by grant 5K12 DK083021-04 KURe, grant K99/R00 1K99AI104262, and Hellman Family Awards grants (to N.R.R.), grant 1PO1 AI083050 PPG and U.S. Department of Defense grant W81XWH-11-1-0562 (to W.C.G.), grant R01HD074511 (to N.R.R. and W.C.G.), the DFG and the Ministry of Science (to J.M.), the VW Stiftung (to J.M. and F.K.), DFG FA 456/10-1 (to M.F.), DFG US116/1-funding (to S. M.U., a fellow of the DFG Junior Research Academy OFFSPRing), and institutional funds from the Gladstone Institutes and a gift from the San Simeon Fund (to K.S.P.). The UCSF Sandler-Moore Mass Spectrometry Core Facility acknowledges support from the Sandler Family Foundation, the Gordon and Betty Moore Foundation, and NIH/NCI Cancer Center support grant P30 CA082103. We also acknowledge CFAR for funding for the Flow Core (P30 AI027763) and for H.L. (P30-AI027763). NR 32 TC 12 Z9 12 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X EI 1098-5514 J9 J VIROL JI J. Virol. PD JUL PY 2014 VL 88 IS 13 BP 7221 EP 7234 DI 10.1128/JVI.00269-14 PG 14 WC Virology SC Virology GA AI9GN UT WOS:000337240700010 PM 24741080 ER PT J AU Bailey, DH Borwein, JM Crandall, RE AF Bailey, David H. Borwein, Jonathan M. Crandall, Richard E. TI COMPUTATION AND THEORY OF EXTENDED MORDELL-TORNHEIM-WITTEN SUMS SO MATHEMATICS OF COMPUTATION LA English DT Article ID RIEMANN ZETA-FUNCTION; VALUES; DERIVATIVES; INTEGRALS AB We consider some fundamental generalized Mordell-TornheimWitten (MTW) zeta-function values along with their derivatives, and explore connections with multiple-zeta values (MZVs). To achieve this, we make use of symbolic integration, high precision numerical integration, and some interesting combinatorics and special-function theory. Our original motivation was to represent unresolved constructs such as Eulerian log-gamma integrals. We are able to resolve all such integrals in terms of an MTW basis. We also present, for a substantial subset of MTW values, explicit closed-form expressions. In the process, we significantly extend methods for high-precision numerical computation of polylogarithms and their derivatives with respect to order. C1 [Bailey, David H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Borwein, Jonathan M.] Univ Newcastle, CARMA, Callaghan, NSW 2308, Australia. [Borwein, Jonathan M.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Crandall, Richard E.] Reed Coll, Ctr Adv Computat, Portland, OR 97202 USA. RP Bailey, DH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM DHBailey@lbl.gov; jonathan.borwein@newcastle.edu.au; crandall@reed.edu FU U.S. Department of Energy [DE-AC02-05CH11231] FX LBNL authored documents are sponsored by the U.S. Department of Energy under Contract DE-AC02-05CH11231. Accordingly, the U.S. Government retains a nonexclusive, royalty- free license to publish or reproduce these documents, or allow others to do so, for U.S. Government purposes. The documents may be freely distributed and used for noncommercial, scientific and educational purposes. NR 35 TC 5 Z9 5 U1 1 U2 1 PU AMER MATHEMATICAL SOC PI PROVIDENCE PA 201 CHARLES ST, PROVIDENCE, RI 02940-2213 USA SN 0025-5718 EI 1088-6842 J9 MATH COMPUT JI Math. Comput. PD JUL PY 2014 VL 83 IS 288 BP 1795 EP 1821 AR PII S 0025-5718(2014)02768-3 PG 27 WC Mathematics, Applied SC Mathematics GA AI9DT UT WOS:000337230000010 ER PT J AU Tafrova, JI Tafrov, ST AF Tafrova, Juliana I. Tafrov, Stefan T. TI Human histone acetyltransferase 1 (Hat1) acetylates lysine 5 of histone H2A in vivo SO MOLECULAR AND CELLULAR BIOCHEMISTRY LA English DT Article DE Hat1; Histone Acetylation; H2A; H4; Insoluble nuclear proteins; Gamma radiation ID STRAND BREAK REPAIR; DNA-DAMAGE; CHROMATIN; TIP60; REPLICATION; COMPLEX; YEAST; INVOLVEMENT; CHAPERONES; EXPRESSION AB The primary structure of Histone Acetyltransferase 1 (Hat1) has been conserved throughout evolution; however, despite its ubiquity, its cellular function is not well characterized. To study its in vivo acetylation pattern and function, we utilized shRNAmir against Hat1 expressed in the well-substantiated HeLa (human cervical cancer) cell line. To reduce the interference by enzymes with similar HAT specificity, we used HeLa cells expressing histone acetyltransferase Tip60 with mutated acetyl-CoA binding site that abrogates its enzyme activity (mutant HeLa-tip60). Two shRNAmir were identified that reduced the expression of the cytoplasmic and nuclear forms of Hat1. Cytosolic protein preparations from these two clones showed decreased levels of acetylation of lysine 5 (K5) and K12 on histone H4, with the concomitant loss of the acetylation of histone H2A at K5. This pattern of decreased acetylation of H2AK5 was well defined in preparations of histone protein and insoluble nuclear-protein (INP) fractions as well. Abrogating the Hat1 expression caused a 74 % decrease in colony-forming efficiency of mutant HeLa-tip60 cells, reduced the size of the colonies by 50 %, and decreased the amounts of proteins with molecular weights below 35 kDa in the INP fractions. C1 [Tafrova, Juliana I.] SUNY Stony Brook, Dept Oral Biol & Pathol, Stony Brook, NY 11794 USA. [Tafrova, Juliana I.] Genet Ctr, Smithtown, NY 11787 USA. [Tafrov, Stefan T.] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Tafrov, Stefan T.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Tafrov, ST (reprint author), Brookhaven Natl Lab, Dept Biol, 50 Bell Ave,Bldg 463, Upton, NY 11973 USA. EM tafrov@bnl.gov FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department of Energy; National Aeronautics and Space Administration under Department of Energy [DE-AC02-98CH10886, NNJ08HB63I]; Brookhaven National Laboratory FX We would like to thank Dr. Avril Woodhead for her critical help with the manuscript preparation and Dr. Rolf Sternglanz for the invaluable support, discussions, and comments throughout the years. We would like to thank Dr. David Schlyer, Dr. John Shanklin, and the entire Biosciences Department for the support; and Dr. Tsuyoshi Ikura for providing the HeLa-TIP60 and HeLa-tip60 cell lines. This article has been authored by Brookhaven Science Associates, LLC under contract number DE-AC02-98CH10886 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This work was supported by a grant from the National Aeronautics and Space Administration NNJ08HB63I under Department of Energy Prime Contract DE-AC02-98CH10886 with the Brookhaven National Laboratory (to STT). NR 42 TC 2 Z9 2 U1 0 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0300-8177 EI 1573-4919 J9 MOL CELL BIOCHEM JI Mol. Cell. Biochem. PD JUL PY 2014 VL 392 IS 1-2 BP 259 EP 272 DI 10.1007/s11010-014-2036-0 PG 14 WC Cell Biology SC Cell Biology GA AI9EW UT WOS:000337233900024 PM 24682716 ER PT J AU Karpinets, TV Park, BH Syed, MH Klotz, MG Uberbacher, EC AF Karpinets, Tatiana V. Park, Byung H. Syed, Mustafa H. Klotz, Martin G. Uberbacher, Edward C. TI Metabolic Environments and Genomic Features Associated with Pathogenic and Mutualistic Interactions Between Bacteria and Plants SO MOLECULAR PLANT-MICROBE INTERACTIONS LA English DT Article ID SOYBEAN ROOT-NODULES; EXPRESSION PROFILES; NITROGEN-FIXATION; PROTEIN FAMILIES; DATABASE; NETWORK; SYSTEM; RECONSTRUCTION; SPECIFICITY; SALMONELLA AB Genomic characteristics discriminating parasitic and mutualistic relationship of bacterial symbionts with plants are poorly understood. This study comparatively analyzed the genomes of 54 mutualists and pathogens to discover genomic markers associated with the different phenotypes. Using metabolic network models, we predict external environments associated with free-living and symbiotic lifestyles and quantify dependences of symbionts on the host in terms of the consumed metabolites. We show that specific differences between the phenotypes are pronounced at the levels of metabolic enzymes, especially carbohydrate active, and protein functions. Overall, biosynthetic functions are enriched and more diverse in plant mutualists whereas processes and functions involved in degradation and host invasion are enriched and more diverse in pathogens. A distinctive characteristic of plant pathogens is a putative novel secretion system with a circadian rhythm regulator. A specific marker of plant mutualists is the co-residence of genes encoding nitrogenase and ribulose bisphosphate carboxylase/oxygenase (RuBisCO). We predict that RuBisCO is likely used in a putative metabolic pathway to supplement carbon obtained heterotrophically with low-cost assimilation of carbon from CO2. We validate results of the comparative analysis by predicting correct phenotype, pathogenic or mutualistic, for 20 symbionts in an independent set of 30 pathogens, mutualists, and commensals. C1 [Karpinets, Tatiana V.; Syed, Mustafa H.; Uberbacher, Edward C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Park, Byung H.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Klotz, Martin G.] Univ N Carolina, Dept Biol Sci, Charlotte, NC 28223 USA. RP Karpinets, TV (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM karpinetstv@ornl.gov RI Klotz, Martin/D-2091-2009 OI Klotz, Martin/0000-0002-1783-375X FU Plant Microbe Interface Project of the Genomic Science Program, U.S. Department of Energy (DOE), Office of Science, Biological, and Environmental Research; U.S. DOE [DE-AC05-00OR22725]; Office of Biological and Environmental Research in the DOE Office of Science; University of North Carolina at Charlotte FX This research was sponsored by the Plant Microbe Interface Project of the Genomic Science Program, U.S. Department of Energy (DOE), Office of Science, Biological, and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. The work of M. H. Syed to adapt certain tools was supported by The BioEnergy Science Center (BESC). BESC is a U.S. DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. M. G. Klotz was supported by incentive funds from the University of North Carolina at Charlotte. We thank anonymous reviewers of the manuscript for thoughtful suggestions and comments on the study. NR 67 TC 2 Z9 2 U1 2 U2 20 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0894-0282 EI 1943-7706 J9 MOL PLANT MICROBE IN JI Mol. Plant-Microbe Interact. PD JUL PY 2014 VL 27 IS 7 BP 664 EP 677 DI 10.1094/MPMI-12-13-0368-R PG 14 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences GA AI9FW UT WOS:000337238200006 PM 24580106 ER PT J AU Desai, S Naik, D Cumming, JR AF Desai, Shalaka Naik, Dhiraj Cumming, Jonathan R. TI The influence of phosphorus availability and Laccaria bicolor symbiosis on phosphate acquisition, antioxidant enzyme activity, and rhizospheric carbon flux in Populus tremuloides SO MYCORRHIZA LA English DT Article DE Ectomycorrhizal fungi; Environmental stress; Exudation; Organic acids; Poplar; Trembling aspen ID ORGANIC-ACID EXUDATION; ARBUSCULAR MYCORRHIZAL FUNGI; PINUS-SYLVESTRIS SEEDLINGS; LATERAL ROOT DEVELOPMENT; ECTOMYCORRHIZAL FUNGI; PHOSPHOENOLPYRUVATE CARBOXYLASE; ALUMINUM TOLERANCE; FOREST SOILS; WHITE LUPIN; DEFICIENCY AB Many forest tree species are dependent on their symbiotic interaction with ectomycorrhizal (ECM) fungi for phosphorus (P) uptake from forest soils where P availability is often limited. The ECM fungal association benefits the host plant under P limitation through enhanced soil exploration and increased P acquisition by mycorrhizas. To study the P starvation response (PSR) and its modification by ECM fungi in Populus tremuloides, a comparison was made between nonmycorrhizal (NM) and mycorrhizal with Laccaria bicolor (Myc) seedlings grown under different concentrations of phosphate (Pi) in sand culture. Although differences in growth between NM and Myc plants were small, Myc plants were more effective at acquiring P from low Pi treatments, with significantly lower k (m) values for root and leaf P accumulation. Pi limitation significantly increased the activity of catalase, ascorbate peroxidase, and guaiacol-dependent peroxidase in leaves and roots to greater extents in NM than Myc P. tremuloides. Phosphoenolpyruvate carboxylase activity also increased in NM plants under P limitation, but was unchanged in Myc plants. Formate, citrate, malonate, lactate, malate, and oxalate and total organic carbon exudation by roots was stimulated by P limitation to a greater extent in NM than Myc plants. Colonization by L. bicolor reduced the solution Pi concentration thresholds where PSR physiological changes occurred, indicating that enhanced Pi acquisition by P. tremuloides colonized by L. bicolor altered host P homeostasis and plant stress responses to P limitation. Understanding these plant-symbiont interactions facilitates the selection of more P-efficient forest trees and strategies for tree plantation production on marginal soils. C1 [Desai, Shalaka; Naik, Dhiraj; Cumming, Jonathan R.] W Virginia Univ, Dept Biol, Morgantown, WV 26506 USA. [Desai, Shalaka] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Naik, Dhiraj] Indian Inst Adv Res, Dept Environm Sci, Koba Inst Area, Gandhinagar 382007, Gujarat, India. RP Cumming, JR (reprint author), W Virginia Univ, Dept Biol, POB 6057, Morgantown, WV 26506 USA. EM jcumming@wvu.edu OI Naik, Dhiraj/0000-0002-1226-2337 FU United States Department of Energy [FG02-06ER64148]; West Virginia University Eberly College of Arts and Sciences FX We thank Joshua Smith and Nathaniel Chapman for their excellent technical support. The West Virginia University Eberly College of Arts and Sciences and the United States Department of Energy (FG02-06ER64148) provided financial support for this work. NR 88 TC 8 Z9 8 U1 7 U2 50 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0940-6360 EI 1432-1890 J9 MYCORRHIZA JI Mycorrhiza PD JUL PY 2014 VL 24 IS 5 BP 369 EP 382 DI 10.1007/s00572-013-0548-1 PG 14 WC Mycology SC Mycology GA AI9FC UT WOS:000337235000005 PM 24338046 ER PT J AU Li, L Huang, C Huang, HY Wang, YJ Yan, RS Zhang, GF Zhou, M Lou, SR Tao, SK Wang, HL Qiao, LP Chen, CH Streets, DG Fu, JS AF Li, L. Huang, C. Huang, H. Y. Wang, Y. J. Yan, R. S. Zhang, G. F. Zhou, M. Lou, S. R. Tao, S. K. Wang, H. L. Qiao, L. P. Chen, C. H. Streets, D. G. Fu, J. S. TI An integrated process rate analysis of a regional fine particulate matter episode over Yangtze River Delta in 2010 SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Integrated process rate; PM2.5; CMAQ; Yangtze River Delta ID QUALITY MODELING SYSTEM; AIR-QUALITY; PART II; PERFORMANCE EVALUATION; SECONDARY FORMATION; MASS-SPECTROMETRY; CHINA; AEROSOL; CMAQ; POLLUTION AB A high PM2.5 pollution episode was detected in Shanghai in November 2010. The integrated process rate method, an advanced diagnostic tool, was applied to account for the contribution of different atmospheric processes during the high pollution episode in the Yangtze River Delta region (YRD). The PM2.5 process analysis indicates that the emission of fine particles is the dominant source of high surface PM2.5 concentrations in the major cities of the YRD like Shanghai, Nanjing, and Hangzhou, following horizontal transportation and aerosols. The PM2.5 concentration could be reduced due to vertical advection and diffusion from lower levels to the upper air. The aerosols process such as homogeneous nucleation and condensation producing PM2.5 occurs throughout the PBL layer in urban areas, causing vertical transport from upper levels down to the surface layer. The aerosols process is much more significant in a downwind rural and coastal site like Zhoushan than in the urban areas. The PM2.5 change initiated by both horizontal transport and vertical transport is much stronger at 40-2000 m height than in the surface layer, while the PM2.5 change caused by horizontal diffusion is very small. Dry deposition can significantly reduce concentration of the particulates in the surface level of the atmosphere, and wet deposition can remove the particles in the planetary boundary layer (PBL). The cloud processes can either increase PM2.5 due to the aqueous-phase oxidation of SO2 and NO2 or remove PM2.5 due to cloud scavenging. Solar radiation and humidity are more important to secondary pollution, and they are the significant external factors affecting the chemical reactions among sulfur dioxide, nitrogen oxides, ammonia, volatile compounds and fine particles. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Li, L.; Huang, C.; Huang, H. Y.; Yan, R. S.; Zhang, G. F.; Zhou, M.; Lou, S. R.; Tao, S. K.; Wang, H. L.; Qiao, L. P.; Chen, C. H.] Sate Environm Protect Key Lab Cause & Prevent Urb, Shanghai 200233, Peoples R China. [Li, L.; Huang, C.; Huang, H. Y.; Yan, R. S.; Zhang, G. F.; Zhou, M.; Lou, S. R.; Tao, S. K.; Wang, H. L.; Qiao, L. P.; Chen, C. H.] Shanghai Acad Environm Sci, Shanghai 200233, Peoples R China. [Wang, Y. J.] Shanghai Univ, Sch Environm & Chem Engn, Inst Environm Pollut & Hlth, Shanghai 200444, Peoples R China. [Streets, D. G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Fu, J. S.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. RP Li, L (reprint author), Sate Environm Protect Key Lab Cause & Prevent Urb, Shanghai 200233, Peoples R China. EM lili@saes.sh.cn RI Huang, Cheng/I-7099-2015 FU National Natural Science Foundation of China (NSFC) [41205122, 41105102]; Science and Technology Commission of Shanghai Municipality Fund Project [11231200500]; National Non-profit Scientific Research Program for Environmental Protection [201409008] FX This study was supported by the National Natural Science Foundation of China (NSFC) via grant No. 41205122 and No. 41105102, the Science and Technology Commission of Shanghai Municipality Fund Project via grant No. 11231200500, and the National Non-profit Scientific Research Program for Environmental Protection via grant No. 201409008. NR 50 TC 3 Z9 5 U1 1 U2 74 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUL PY 2014 VL 91 BP 60 EP 70 DI 10.1016/j.atmosenv.2014.03.053 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AI6AP UT WOS:000336952500007 ER PT J AU Yoon, H Leibeling, S Zhang, CY Muller, RH Werth, CJ Zilles, JL AF Yoon, Hongkyu Leibeling, Sabine Zhang, Changyong Mueller, Roland H. Werth, Charles J. Zilles, Julie L. TI Adaptation of Delftia acidovorans for degradation of 2,4-dichlorophenoxyacetate in a microfluidic porous medium SO BIODEGRADATION LA English DT Article DE 2,4-D; Adaptation; Chlorinated phenoxyalkanoates; Delftia acidovorans; Porous media; Micromodel ID TRANSVERSE MIXING ZONE; ALPHA-KETOGLUTARATE; ADAPTIVE RADIATION; MICROBIAL-GROWTH; BACTERIAL-GROWTH; VISUALIZATION; POPULATIONS; CHEMOTAXIS; HERBICIDES; MIGRATION AB Delftia acidovorans MC1071 can productively degrade R-2-(2,4-dichlorophenoxy)propionate (R-2,4-DP) but not 2,4-dichlorophenoxyacetate (2,4-D) herbicides. This work demonstrates adaptation of MC1071 to degrade 2,4-D in a model two-dimensional porous medium (referred to here as a micromodel). Adaptation for 2,4-D degradation in the 2 cm-long micromodel occurred within 35 days of exposure to 2,4-D, as documented by substrate removal. The amount of 2,4-D degradation in the adapted cultures in two replicate micromodels (similar to 10 and 20 % over 142 days) was higher than a theoretical maximum (4 %) predicted using published numerical simulation methods, assuming instantaneous biodegradation and a transverse dispersion coefficient obtained for the same pore structure without biomass present. This suggests that the presence of biomass enhances substrate mixing. Additional evidence for adaptation was provided by operation without R-2,4-DP, where degradation of 2,4-D slowly decreased over 20 days, but was restored almost immediately when R-2,4-DP was again provided. Compared to suspended growth systems, the micromodel system retained the ability to degrade 2,4-D longer in the absence of R-2,4-DP, suggesting slower responses and greater resilience to fluctuations in substrates might be expected in the soil environment than in a chemostat. C1 [Yoon, Hongkyu; Werth, Charles J.; Zilles, Julie L.] Univ Illinois, Dept Civil & Environm Engn, Newmark Civil Engn Lab 3230C MC 250, Urbana, IL 61801 USA. [Leibeling, Sabine; Mueller, Roland H.] UFZ Helmholtz Ctr Environm Res, Dept Environm Microbiol, D-04318 Leipzig, Germany. [Zhang, Changyong] Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zilles, JL (reprint author), Univ Illinois, Dept Civil & Environm Engn, Newmark Civil Engn Lab 3230C MC 250, 205 N Mathews Ave, Urbana, IL 61801 USA. EM jzilles@illinois.edu RI Zhang, Changyong/A-8012-2013; OI Zilles, Julie/0000-0001-8684-4519 FU United States Department of Agriculture National Institute of Food and Agriculture [2007-35107-17817]; German Academic Exchange Service (DAAD) fellowship; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy Office of Biological and Environmental Research, Subsurface Biogeochemistry Research Program Scientific Focus Area at the Pacific Northwest National Laboratory FX This work was supported by the National Research Initiative Grant 2007-35107-17817 from the United States Department of Agriculture National Institute of Food and Agriculture and a German Academic Exchange Service (DAAD) fellowship to SL. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. CYZ also acknowledges financial support from the U.S. Department of Energy Office of Biological and Environmental Research, Subsurface Biogeochemistry Research Program Scientific Focus Area at the Pacific Northwest National Laboratory. NR 32 TC 3 Z9 3 U1 2 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0923-9820 EI 1572-9729 J9 BIODEGRADATION JI Biodegradation PD JUL PY 2014 VL 25 IS 4 BP 595 EP 604 DI 10.1007/s10532-014-9684-3 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AI7JI UT WOS:000337064200010 PM 24519176 ER PT J AU Goldberg, N Kim, Y Leyffer, S Veselka, TD AF Goldberg, Noam Kim, Youngdae Leyffer, Sven Veselka, Thomas D. TI Adaptively refined dynamic program for linear spline regression SO COMPUTATIONAL OPTIMIZATION AND APPLICATIONS LA English DT Article DE Piecewise regression; Least squares; Change point detection; Dynamic programming; Mixed-integer programming AB The linear spline regression problem is to determine a piecewise linear function for estimating a set of given points while minimizing a given measure of misfit or error. This is a classical problem in computational statistics and operations research; dynamic programming was proposed as a solution technique more than 40 years ago by Bellman and Roth (J Am Stat Assoc 64:1079-1084, 1969). The algorithm requires a discretization of the solution space to define a grid of candidate breakpoints. This paper proposes an adaptive refinement scheme for the grid of candidate breakpoints in order to allow the dynamic programming method to scale for larger instances of the problem. We evaluate the quality of solutions found on small instances compared with optimal solutions determined by a novel integer programming formulation of the problem. We also consider a generalization of the linear spline regression problem to fit multiple curves that share breakpoint horizontal coordinates, and we extend our method to solve the generalized problem. Computational experiments verify that our nonuniform grid construction schemes are useful for computing high-quality solutions for both the single-curve and two-curve linear spline regression problem. C1 [Goldberg, Noam] Bar Ilan Univ, Dept Management, IL-52900 Ramat Gan, Israel. [Kim, Youngdae] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA. [Leyffer, Sven] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Veselka, Thomas D.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Goldberg, N (reprint author), Bar Ilan Univ, Dept Management, IL-52900 Ramat Gan, Israel. EM noam.goldberg@biu.ac.il; youngdae@cs.wisc.edu; leyffer@mcs.anl.gov; tdveselka@anl.gov FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 11 TC 0 Z9 0 U1 1 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0926-6003 EI 1573-2894 J9 COMPUT OPTIM APPL JI Comput. Optim. Appl. PD JUL PY 2014 VL 58 IS 3 BP 523 EP 541 DI 10.1007/s10589-014-9647-y PG 19 WC Operations Research & Management Science; Mathematics, Applied SC Operations Research & Management Science; Mathematics GA AI7PB UT WOS:000337084900001 ER PT J AU Li, Q Wu, G Johnston, CM Zelenay, P AF Li, Qing Wu, Gang Johnston, Christina M. Zelenay, Piotr TI Direct Dimethyl Ether Fuel Cell with Much Improved Performance SO ELECTROCATALYSIS LA English DT Article DE Dimethyl ether; DME; Electrooxidation; PtRu catalysts; Direct dimethyl ether fuel cell ID METHANOL ELECTROOXIDATION; ACID-SOLUTIONS; ANODE; CATALYSTS; ELECTRODE; DME; OXIDATION; CROSSOVER; MECHANISM AB Due to several apparent advantages over methanol, dimethyl ether (DME) has been viewed as a promising alternative fuel for direct fuel cell technology. Similar to methanol, DME oxidation requires a surface oxidant, such as OH, for the removal of adsorbed CO. Consequently, the reaction occurs at much faster rates on binary PtRu catalysts than Pt alone. In this work, PtRu catalysts with a wide variety of Pt-to-Ru ratios were systematically studied in the direct DME fuel cell (DDMEFC) operating at 80 degrees C. A Pt50Ru50 catalyst was found to perform the best at high and middle voltages, while a Pt80Ru20 catalyst performed best at low voltages. DDMEFC operation conditions, such as DME flow rate, anode back pressure, DME-to-water molar ratio, and membrane thickness, were also studied in order to maximize the cell performance. A maximum power density of 0.12 W cm(-2) obtained in this work exceeds the highest reported DME performance. In comparison with the direct methanol fuel cell (DMFC), the optimized DDMEFC performs better at cell voltages higher than 0.55 and 0.49 V with feed concentrations of methanol of 0.5 and 1.0 M, respectively. C1 [Li, Qing; Wu, Gang; Johnston, Christina M.; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Zelenay, P (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. EM zelenay@lanl.gov RI Wu, Gang/E-8536-2010; Li, Qing/G-4502-2011 OI Wu, Gang/0000-0003-4956-5208; Li, Qing/0000-0003-4807-030X FU DOE-EERE Fuel Cell Technologies Program [FC091] FX Financial support from the DOE-EERE Fuel Cell Technologies Program (project ID: FC091) is gratefully acknowledged. NR 22 TC 3 Z9 3 U1 4 U2 51 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1868-2529 EI 1868-5994 J9 ELECTROCATALYSIS-US JI Electrocatalysis PD JUL PY 2014 VL 5 IS 3 BP 310 EP 317 DI 10.1007/s12678-014-0196-z PG 8 WC Chemistry, Physical; Electrochemistry SC Chemistry; Electrochemistry GA AI7DF UT WOS:000337041700013 ER PT J AU VandeVoort, AR Tappero, R Arai, Y AF VandeVoort, Allison Rick Tappero, Ryan Arai, Yuji TI Residence time effects on phase transformation of nanosilver in reduced soils SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Silver nanoparticles; Silver; Fate; Soils; X-ray microprobe; XANES ID SILVER NANOPARTICLES; SPECIATION; EXPOSURE; DISSOLUTION; ENVIRONMENT; INTERFACE; CHEMISTRY; KINETICS; RELEASE; SULFIDE AB Residence time effects on phase transformation of silver nanoparticles (AgNPs) (15-50 nm, with and without polyvinylpyrrolidone (PVP) coating) were investigated in reducing soils using experimental geochemistry and synchrotron-based x-ray techniques. After 30 days of anaerobic incubation, a substantial fraction of PVP-coated AgNPs (15 nm) were transformed into Ag2S and or humic acid (HA) complexed Ag(I), whereas only the HA fraction was dominant in uncoated AgNPs (50 nm). Several investigations recently reported that sulfidation of AgNPs to Ag2S was the predominant mechanism controlling the fate of AgNP in soil-water environments. However, this investigation showed each AgNP underwent particle-specific chemical transformations to different end compounds after 30 days. Considering the small contribution of Ag(I) dissolution from all AgNPs (less than 5%), we concluded that changes in solid-state chemical speciation of sorbed AgNPs was promoted by particle-specific interactions of NPs in soil chemical constituents, suggesting a critical role of soil absorbents in predicting the fate of AgNPs in terrestrial environments. C1 [VandeVoort, Allison Rick] Georgia Coll & State Univ, Dept Biol & Environm Sci, Milledgeville, GA 31061 USA. [Tappero, Ryan] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Arai, Yuji] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA. RP Arai, Y (reprint author), Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA. EM yarai@illinois.edu FU AFRI Competitive Grants Program, Nanotechnology for Agriculture and Food systems [2011-03580]; US DOE-Geosciences [DE-FG02-92ER14244]; BNL-Department of Environmental Sciences; US DOE, Office of Science, Office of BES [DE-AC02-98CH10886] FX This research was supported by the 2011 AFRI Competitive Grants Program, Nanotechnology for Agriculture and Food systems (#2011-03580). Portions of this work were performed at BLX27A, NSLS, Brookhaven National Laboratory. X27A is supported in part by the US DOE-Geosciences (DE-FG02-92ER14244 to The University of Chicago - CARS) and BNL-Department of Environmental Sciences. Use of the NSLS was supported by the US DOE, Office of Science, Office of BES, under Contract No. DE-AC02-98CH10886. NR 35 TC 4 Z9 4 U1 5 U2 45 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD JUL PY 2014 VL 21 IS 13 BP 7828 EP 7837 DI 10.1007/s11356-014-2743-9 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA AI7PO UT WOS:000337086600005 ER PT J AU McFarland, JA Greenough, JA Ranjan, D AF McFarland, Jacob A. Greenough, Jeffrey A. Ranjan, Devesh TI Simulations and Analysis of the Reshocked Inclined Interface Richtmyer-Meshkov Instability for Linear and Nonlinear Interface Perturbations SO JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID SHOCK-WAVES; HYDRODYNAMIC ISSUES; AIR/SF6 INTERFACE; GAS INTERFACE; TUBE; REFINEMENT; DEPOSITION; GROWTH; FLOW AB A computational study of the Richtmyer-Meshkov instability (RMI) is presented for an inclined interface perturbation in support of experiments being performed at the Texas A&M shock tube facility. The study is comprised of 2D, viscous, diffusive, compressible simulations performed using the arbitrary Lagrange Eulerian code, ARES, developed at Lawrence Livermore National Laboratory. These simulations were performed to late times after reshock with two initial interface perturbations, in the linear and nonlinear regimes each, prescribed by the interface inclination angle. The interaction of the interface with the reshock wave produced a complex 2D set of compressible wave interactions including expansion waves, which also interacted with the interface. Distinct differences in the interface growth rates prior to reshock were found in previous work. The current work provides in-depth analysis of the vorticity and enstrophy fields to elucidate the physics of reshock for the inclined interface RMI. After reshock, the two cases exhibit some similarities in integral measurements despite their disparate initial conditions but also show different vorticity decay trends, power law decay for the nonlinear and linear decay for the linear perturbation case. C1 [McFarland, Jacob A.; Ranjan, Devesh] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Greenough, Jeffrey A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ranjan, D (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM jacmcfar@tamu.edu; greenough1@llnl.gov; dranjan@tamu.edu OI Ranjan, Devesh/0000-0002-1231-9313 FU U.S. Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; CAREER NSF [1254760] FX The authors would like to thank the HEDP summer student program at LLNL. The authors would like to thank the scientists and staff of LLNL that helped make this work possible. This work was performed under the auspices of the U.S. Department of Energy, Lawrence Livermore National Laboratory, under Contract No. DE-AC52-07NA27344. D. R. would like to acknowledge the support of CAREER NSF Award 1254760. NR 55 TC 4 Z9 4 U1 0 U2 8 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0098-2202 EI 1528-901X J9 J FLUID ENG-T ASME JI J. Fluids Eng.-Trans. ASME PD JUL PY 2014 VL 136 IS 7 AR 071203 DI 10.1115/1.4026858 PG 11 WC Engineering, Mechanical SC Engineering GA AI7EL UT WOS:000337045900008 ER PT J AU Xie, ZL Graule, M Orlovskaya, N Payzant, EA Cullen, DA Blair, RG AF Xie, Zhilin Graule, Moritz Orlovskaya, Nina Payzant, E. Andrew Cullen, David A. Blair, Richard G. TI Novel high pressure hexagonal OsB2 by mechanochemistry SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Osmium; Boron; Mechanochemistry; Ceramic ID OSMIUM DIBORIDE; SUPERHARD MATERIAL; CRYSTAL STRUCTURE; RHENIUM DIBORIDE; HARD MATERIAL; BORIDES; PHASE; RUB2; TRANSITION; IRIDIUM AB Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 angstrom and c=7.376 angstrom. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling, in situ X-ray diffraction experiments showed that the phase is stable from 225 degrees C to 1050 degrees C. The hexagonal OsB2 powder was annealed at 1050 degrees C for 6 days in vacua to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 degrees C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods. (C) 2014 Elsevier Inc. All rights reserved. C1 [Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. [Payzant, E. Andrew] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Cullen, David A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Blair, Richard G.] Univ Cent Florida, Dept Chem, Orlando, FL 32816 USA. RP Orlovskaya, N (reprint author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. EM Nina.Orlovskaya@ucf.edu RI Payzant, Edward/B-5449-2009; Cullen, David/A-2918-2015 OI Payzant, Edward/0000-0002-3447-2060; Cullen, David/0000-0002-2593-7866 FU Center for Nanophase Material Sciences, Oak Ridge National Laboratory; Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program - Office of Basic Energy Sciences, U.S. Department of Energy; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by NSF projects- DMR-0748364. High and low temperature X-ray diffraction studies were supported by Center for Nanophase Material Sciences, Oak Ridge National Laboratory; STEM studies were supported by Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. We gratefully acknowledge the use of WebEMAPS for generating simulated diffraction patterns, available online at http://emaps.mrl.uiuc.edu/. We acknowledge Prof. Miladin Radovic and Mr. Huili Gao, Texas A&M University, College Station, Texas for the help with SPS, and Dr. Yan Chen, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee for the help with Rietveld refinement Use of the Advanced Photon Source was supported by the Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract no. DE-AC02-06CH11357. NR 30 TC 8 Z9 8 U1 2 U2 33 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUL PY 2014 VL 215 BP 16 EP 21 DI 10.1016/j.jssc.2014.03.020 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA AI5FR UT WOS:000336891300003 ER PT J AU Dera, P Manghnani, MH Hushur, A Hu, Y Tkachev, S AF Dera, Przemyslaw Manghnani, Murli H. Hushur, Anwar Hu, Yi Tkachev, Sergey TI New insights into the enigma of boron carbide inverse molecular behavior SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE High pressure; Superhard materials; Boron carbide; Icosahedral boron compounds; Elastic properties; Phase transitions ID ALPHA-RHOMBOHEDRAL BORON; DEFORMATION DENSITIES; FORCE-CONSTANTS; B13C2; PRESSURE; CHAINS; B4C AB Equation of state and compression mechanism of nearly stoichiometric boron carbide B4C were investigated using diamond anvil cell single crystal synchrotron X-ray diffraction technique up to a maximum quasi-hydrostatic pressure of 74.0(1) GPa in neon pressure transmitting medium at ambient temperature. No signatures of structural phase transitions were observed on compression. Crystal structure refinements indicate that the icosahedral units are less compressible (13% volume reduction at 60 GPa) than the unit cell volume (18% volume reduction at 60 GPa), contrary to expectations based on the inverse molecular behavior hypothesis, but consistent with spectroscopic evidence and first principles calculations. The high-pressure crystallographic refinements reveal that the nature of the chemical bonds (two, versus three centered character) has marginal effect on the bond compressibility and the compression of the crystal is mainly governed by the force transfer between the rigid icosahedral structural units. (C) 2014 Elsevier Inc. All rights reserved. C1 [Dera, Przemyslaw; Manghnani, Murli H.; Hushur, Anwar; Hu, Yi] Univ Hawaii, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Tkachev, Sergey] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. RP Dera, P (reprint author), Univ Hawaii, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, 1680 East West Rd,POST Bldg, Honolulu, HI 96822 USA. EM pdera@hawaii.edu FU Carnegie - Department of Energy Alliance Center (CDAC); National Science Foundation - Earth Sciences [EAR-1128799]; U.S. Department of Energy - Geosciences [DE-FG02-94ER14466]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We would like or express our thanks to all three anonymous reviewers for their valuable and constructive comments and suggestions. PD and YH were supported by a grant from Carnegie - Department of Energy Alliance Center (CDAC). This work was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-1128799) and U.S. Department of Energy - Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. NR 40 TC 9 Z9 9 U1 5 U2 36 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUL PY 2014 VL 215 BP 85 EP 93 DI 10.1016/j.jssc.2014.03.018 PG 9 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA AI5FR UT WOS:000336891300013 ER PT J AU Zhang, HK Yao, ZW Kirk, MA Daymond, MR AF Zhang, He K. Yao, Zhongwen Kirk, Marquis A. Daymond, Mark R. TI Stability of Ni-3(Al, Ti) Gamma Prime Precipitates in a Nickel-Based Superalloy Inconel X-750 Under Heavy Ion Irradiation SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID NEUTRON DAMAGE; ALLOYS; AL; DISSOLUTION; MECHANISMS; EVOLUTION; KINETICS; HELIUM; ORDER; IRON AB Phase stability of Ni-3(Al, Ti) precipitates in Inconel X-750 under cascade damage was studied using heavy ion irradiation with transmission electron microscope (TEM) in situ observations. From 333 K to 673 K (60 A degrees C to 400 A degrees C), ordered Ni-3(Al, Ti) precipitates became completely disordered at low irradiation dose of 0.06 displacement per atom (dpa). At higher dose, a trend of precipitate dissolution occurring under disordered state was observed, which is due to the ballistic mixing effect by irradiation. However, at temperatures greater than 773 K (500 A degrees C), the precipitates stayed ordered up to 5.4 dpa, supporting the view that irradiation-induced disordering/dissolution and thermal recovery reach a balance between 673 K and 773 K (400 A degrees C and 500 A degrees C). Effects of Ti/Al ratio and irradiation dose rate are also discussed. (C) The Minerals, Metals & Materials Society and ASM International 2014 C1 [Zhang, He K.; Yao, Zhongwen; Daymond, Mark R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Kirk, Marquis A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Yao, ZW (reprint author), Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. EM yaoz@me.queensu.ca OI Daymond, Mark/0000-0001-6242-7489 FU Canada UNENE-CRD Project; National Science and Engineering Research Council (NSERC); Industry Research Chair of Nuclear Program; US Department of Energy Office of Science FX The current study is funded by the Canada UNENE-CRD Project, National Science and Engineering Research Council (NSERC) and Industry Research Chair of Nuclear Program. Electron microscopy was accomplished at the Electron Microscopy Centre for Materials Research at Argonne National Laboratory, supported by the US Department of Energy Office of Science. The authors thank Mr. Pete Boldo and Mr. Ed Ryan of Argonne National Lab for their help with the microscopy and ion beam facility. The authors also thank Prof Rick Holt of Queen's University and Dr. Malcolm Griffiths of AECL Chalk River Laboratories for their insightful discussions. NR 29 TC 5 Z9 5 U1 2 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUL PY 2014 VL 45A IS 8 BP 3422 EP 3428 DI 10.1007/s11661-014-2309-y PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AI7MX UT WOS:000337076900025 ER PT J AU Heo, TW Shih, DS Chen, LQ AF Heo, Tae Wook Shih, Donald S. Chen, Long-Qing TI Kinetic Pathways of Phase Transformations in Two-Phase Ti Alloys SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID TITANIUM-ALLOYS; BETA-PHASE; V ALLOYS; MARTENSITIC TRANSFORMATIONS; SPINODAL DECOMPOSITION; NB ALLOYS; MICROSTRUCTURE; TI-6AL-4V; OMEGA; MO AB Possible phase transformation kinetic pathways from the high temperature beta phase to the low temperature (alpha + beta) two-phase Ti alloys were analyzed using the graphical thermodynamic method and the assumption that diffusionless and displacive transformations take place much faster than phase separation which requires long-range diffusion. It is shown that depending on the composition of a beta-stabilizing element, many transformation mechanisms are possible, involving competing continuous and discontinuous displacive/diffusional transformations. We discuss the proposed phase transformation sequences employing existing experimental microstructures. C1 [Heo, Tae Wook; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Shih, Donald S.] Boeing Res & Technol, St Louis, MO 63166 USA. RP Heo, TW (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. EM heo1@llnl.gov FU Center for Computational Materials Design (CCMD); National Science Foundation (NSF) Industry/University Cooperative Research Center at Penn State [IIP-1034965]; Georgia Tech [IIP-1034968] FX This work is funded by the Center for Computational Materials Design (CCMD), a joint National Science Foundation (NSF) Industry/University Cooperative Research Center at Penn State (IIP-1034965) and Georgia Tech (IIP-1034968). NR 31 TC 3 Z9 3 U1 0 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUL PY 2014 VL 45A IS 8 BP 3438 EP 3445 DI 10.1007/s11661-014-2269-2 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AI7MX UT WOS:000337076900027 ER PT J AU Cordero, ZC Huskins, EL Park, M Livers, S Frary, M Schuster, BE Schuh, CA AF Cordero, Zachary C. Huskins, Emily L. Park, Mansoo Livers, Steven Frary, Megan Schuster, Brian E. Schuh, Christopher A. TI Powder-Route Synthesis and Mechanical Testing of Ultrafine Grain Tungsten Alloys SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID PLASMA PRESSURE COMPACTION; NI-W ALLOYS; REFRACTORY-METALS; HIGH-STRAIN; NANOCRYSTALLINE; SIZE; BEHAVIOR; HARDNESS; COMPRESSION; DRAWN AB We report a W-rich alloy (W-7Cr-9Fe, at. pct) produced by high-energy ball milling, with alloying additions that both lower the densification temperature and retard grain growth. The alloy's consolidation behavior and the resultant compacts' microstructure and mechanical properties are explored. Under one condition, a 98 pct dense compact with a mean grain size of 130 nm was achieved, and exhibited a hardness of 13.5 GPa, a dynamic uniaxial yield strength of 4.14 GPa in Kolsky bar experiments, and signs of structural shear localization during deformation. C1 [Cordero, Zachary C.; Park, Mansoo; Schuh, Christopher A.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Huskins, Emily L.] Army Res Lab, Oak Ridge Inst Sci & Educ, Postdoctoral Fellowship Program, Aberdeen Proving Ground, MD 21005 USA. [Livers, Steven; Frary, Megan] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Schuster, Brian E.] Army Res Laboratory, Expt & Computat Penetrat Mech Team, Weap & Mat Res Directorate, Adelphi, MD USA. RP Cordero, ZC (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. EM schuh@mit.edu FU US Defense Threat Reduction Agency [HDTRA1-11-1-0062]; Department of Defense through the NDSEG fellowship program; US Army Research Laboratory through the Oak Ridge Institute for Space and Education (ORISE) Program [1120-1120-99]; [11-24] FX This study was supported by the US Defense Threat Reduction Agency under Grant No. HDTRA1-11-1-0062. ZCC acknowledges support from the Department of Defense through the NDSEG fellowship program. ELH acknowledges support from the US Army Research Laboratory through the Oak Ridge Institute for Space and Education (ORISE) Program # 1120-1120-99. BES would like to acknowledge support work from the Cooperative Research and Development Agreement #11-24. We would like to thank Ms. Alexandria Will-Cole for her indentation work on the intermetallic phase, Dr. Kisub Cho for performing the THERMOCALC calculations, and Dr. Daniel T. Casem for his assistance with the Kolsky bar tests. NR 58 TC 3 Z9 3 U1 5 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUL PY 2014 VL 45A IS 8 BP 3609 EP 3618 DI 10.1007/s11661-014-2286-1 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA AI7MX UT WOS:000337076900043 ER PT J AU Morris, CL Bacon, J Borozdin, K Fabritius, J Miyadera, H Perry, J Sugita, T AF Morris, Christopher L. Bacon, Jeffrey Borozdin, Konstantin Fabritius, Joseph Miyadera, Haruo Perry, John Sugita, Tsukasa TI Horizontal cosmic ray muon radiography for imaging nuclear threats SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Muon tomography; Coulomb scattering cosmic ray tracking detectors; Imaging with near horizontal muons; Imaging with near vertical muons ID TOMOGRAPHY; RECONSTRUCTION; SCATTERING; SYSTEM AB Muon tomography is a technique that uses information contained in the Coulomb scattering of cosmic ray muons to generate three dimension images of volumes between tracking detectors. Advantages of this technique are the muons ability to penetrate significant overburden and the absence of any additional dose beyond the natural cosmic ray flux. Disadvantages include the long exposure times and limited resolution because of the low flux. Here we compare the times needed to image objects using both vertically and horizontally mounted tracking detectors and we develop a predictive model for other geometries. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Morris, Christopher L.; Bacon, Jeffrey; Borozdin, Konstantin; Fabritius, Joseph; Miyadera, Haruo; Perry, John] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sugita, Tsukasa] Toshiba Co Ltd, Power Syst Co, Kawasaki Ku, Kawasaki, Kanagawa, Japan. RP Morris, CL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM cmorris@lanl.gov OI Morris, Christopher/0000-0003-2141-0255; Perry, John/0000-0003-3639-5617 FU Toshiba Corporation Power Systems Company; Tokyo Electric Power Company; United States Department of Energy FX This work was supported in part by Toshiba Corporation Power Systems Company, Tokyo Electric Power Company and by the United States Department of Energy. NR 29 TC 6 Z9 7 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUL 1 PY 2014 VL 330 BP 42 EP 46 DI 10.1016/j.nimb.2014.03.017 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AI6WD UT WOS:000337016800007 ER PT J AU He, LF Pakarinen, J Kirk, MA Gan, J Nelson, AT Bai, XM El-Azab, A Allen, TR AF He, L. F. Pakarinen, J. Kirk, M. A. Gan, J. Nelson, A. T. Bai, X. -M. El-Azab, A. Allen, T. R. TI Microstructure evolution in Xe-irradiated UO2 at room temperature SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Nuclear fuel; TEM; Irradiation; Dislocation; Inert gas bubble ID HIGH-RESOLUTION TEM; IN-SITU TEM; URANIUM-DIOXIDE; RADIATION-DAMAGE; BUBBLES; PRECIPITATION; KRYPTON; XENON; FUELS AB In situ Transmission Electron Microscopy was conducted for single crystal UO2 to understand the microstructure evolution during 300 key Xe irradiation at room temperature. The dislocation microstructure evolution was shown to occur as nucleation and growth of dislocation loops at low irradiation doses, followed by transformation to extended dislocation segments and tangles at higher doses. Xe bubbles with dimensions of 1-2 nm were observed after room-temperature irradiation. Electron Energy Loss Spectroscopy indicated that UO2 remained stoichiometric under room temperature Xe irradiation. Published by Elsevier B.V. C1 [He, L. F.; Pakarinen, J.; Allen, T. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Kirk, M. A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gan, J.; Bai, X. -M.; Allen, T. R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Nelson, A. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [El-Azab, A.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [El-Azab, A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. RP He, LF (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM lhe33@wisc.edu RI Bai, Xianming/E-2376-2017; OI Bai, Xianming/0000-0002-4609-6576; Allen, Todd/0000-0002-2372-7259; He, Lingfeng/0000-0003-2763-1462 FU Center for Materials Science of Nuclear Fuel, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office [DE-AC07-051D14517]; Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX This work was supported as part of the Center for Materials Science of Nuclear Fuel, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. A portion of this research was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517. The in situ electron microscopy observation was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. We thank Peter M. Baldo of Argonne National Lab for his help in performing the irradiations. NR 23 TC 5 Z9 5 U1 0 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUL 1 PY 2014 VL 330 BP 55 EP 60 DI 10.1016/j.nimb.2014.03.018 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AI6WD UT WOS:000337016800009 ER PT J AU Yoon, SJ Sabharwall, P AF Yoon, Su-Jong Sabharwall, Piyush TI Parametric study on maximum transportable distance and cost for thermal energy transportation using various coolants SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Advanced nuclear reactor; Thermal energy transportation; Maximum transportable distance; Cost estimation; Molten-salts; Helium AB The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors, and thermal energy from advanced nuclear reactor can be used for various purposes, such as district heating, desalination, hydrogen production and other process heat applications. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor must be transported a fair distance. In this study, the analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium, and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium, and water. Fluoride salts are superior because of better heat transport characteristics, but chloride salts are most economical for higher temperature transportation purposes. For lower temperature, the water is a possible alternative when compared with helium because low-pressure helium requires extremely high pumping power, which makes the process very inefficient and economically not viable for both low and high-temperature application. Published by Elsevier Ltd. C1 [Yoon, Su-Jong; Sabharwall, Piyush] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Yoon, SJ (reprint author), Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. EM sujong.yoon@inl.gov FU agency of the U.S. Government FX This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. NR 12 TC 0 Z9 0 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD JUL PY 2014 VL 74 BP 110 EP 119 DI 10.1016/j.pnucene.2014.02.016 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AI6VU UT WOS:000337015900010 ER PT J AU Hernandez-Garcia, MR Masri, SF Ghanem, R Figueiredo, E Farrar, CR AF Hernandez-Garcia, Miguel R. Masri, Sami F. Ghanem, Roger Figueiredo, Eloi Farrar, Charles R. TI An Evaluation of a Methodology for Detection, Localization, and Quantification of Changes in Nonlinear Systems Based on Experimental Measurements SO INGEGNERIA SISMICA LA English DT Article DE Structural Health Monitoring; reduced-order models; structural changes; restoring forces ID CHAIN-LIKE SYSTEMS; NONPARAMETRIC IDENTIFICATION; BUILDINGS; DYNAMICS AB Experimental data from a test-bed structure tested is used to evaluate and validate a methodology for detecting, localizing, and quantifying structural changes in nonlinear structures using chain-like reduced-order models estimated from measurements. This study showed that variations in the mathematical representation (i.e., two-dimensional polynomial expansion) of the restoring forces in the estimated chain-like reduced-order models could be employed to confidently detect the presence of physical structural changes introduced into the test-bed structure, accurately locate the structural section where the changes occurred, and provide an estimate of the severity or magnitude of the structural changes. C1 [Hernandez-Garcia, Miguel R.] Alta Vista Solut, Richmond, CA 94806 USA. [Hernandez-Garcia, Miguel R.; Masri, Sami F.; Ghanem, Roger] Univ So Calif, Viterbi Sch Engn, Los Angeles, CA 90089 USA. [Figueiredo, Eloi] Univ Lusfona, Fac Engn, Dept Civil Engn, Lisbon, Portugal. [Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. RP Hernandez-Garcia, MR (reprint author), Alta Vista Solut, 3260 Blume Dr,Suite 500, Richmond, CA 94806 USA. RI Ghanem, Roger/B-8570-2008 OI Ghanem, Roger/0000-0002-1890-920X FU National Science Foundation FX This study was supported in part by a grant from the National Science Foundation. NR 24 TC 0 Z9 0 U1 0 U2 0 PU PATRON EDITORE S R L PI BOLOGNA PA VIA BADINI 12, QUARTO INFERIORE, BOLOGNA, 00000, ITALY SN 0393-1420 J9 ING SISMICA-ITAL JI Ing. Sismica PD JUL-DEC PY 2014 VL 31 IS 3-4 BP 72 EP 86 PG 15 WC Engineering, Civil; Engineering, Geological SC Engineering GA CP6AO UT WOS:000359966900007 ER PT J AU Zhang, JS Cui, LS Yu, C Shao, Y Wang, ZQ Ru, YD Zhang, G Jiang, DQ Huan, Y Ren, Y AF Zhang, J. S. Cui, L. S. Yu, C. Shao, Y. Wang, Z. Q. Ru, Y. D. Zhang, G. Jiang, D. Q. Huan, Y. Ren, Y. TI Novel Ti3Sn based high damping material with high strength SO MATERIALS RESEARCH INNOVATIONS LA English DT Article DE Damping; Ti3Sn; Synchrotron ID METAL-MATRIX COMPOSITES; ALLOY; BEHAVIOR; CAPACITY AB In this paper, ductile beta-Ti was selected to toughen brittle high damping intermetallic compound Ti3Sn. An in situ Ti3Sn/beta-Ti composite with a composition of Ti77Mo3Sn20 was prepared by arc melting. The composite simultaneously exhibited high yield strength (500 MPa), large plasticity (35%) and high damping capacity (tan delta>0.06). In situ synchrotron high energy X-ray diffraction compression testing revealed that the beta-Ti mainly accounts for the plasticity, while Ti3Sn provided the strength of the composite. C1 [Zhang, J. S.; Cui, L. S.; Yu, C.; Shao, Y.; Wang, Z. Q.; Ru, Y. D.; Zhang, G.; Jiang, D. Q.] China Univ Petr, Dept Mat Sci & Engn, Beijing 102200, Peoples R China. [Huan, Y.] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China. [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Cui, LS (reprint author), China Univ Petr, Dept Mat Sci & Engn, Beijing 102200, Peoples R China. EM lishancui63@126.com RI Jiang, Daqiang /G-5511-2014; OI Yu, Cun/0000-0003-0084-6746 FU National Natural Science Foundation of China (NSFC) [51071175]; Key (key grant) Project of Chinese Ministry of Education [313055]; US Department of Energy, Office of Science and Office of Basic Energy Science [DE-AC02-06CH11357] FX This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 51071175) and the Key (key grant) Project of Chinese Ministry of Education (Grant No. 313055). The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science and Office of Basic Energy Science under contract no. DE-AC02-06CH11357. NR 12 TC 0 Z9 0 U1 1 U2 1 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1432-8917 EI 1433-075X J9 MATER RES INNOV JI Mater. Res. Innov. PD JUL PY 2014 VL 18 SU 4 BP 584 EP 587 DI 10.1179/1432891714Z.000000000750 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA AW3HZ UT WOS:000346178400118 ER PT J AU Khanna, N Fridley, D Hong, LX AF Khanna, Nina Fridley, David Hong, Lixuan TI China's pilot low-carbon city initiative: A comparative assessment of national goals and local plans SO SUSTAINABLE CITIES AND SOCIETY LA English DT Article DE China; Low carbon city; Energy consumption AB In the past decade, China's unprecedented urbanization has paralleled a 250% growth in primary energy demand and urban areas have emerged as the crux of energy and CO2 emissions reduction in China. In recognition of cities' importance in mitigating future energy and CO2 emissions growth, the Chinese government launched a demonstration program of 5 low-carbon pilot provinces and 8 pilot cities in 2010 to promote low-carbon urban development. As one of the first national programs to promote low-carbon urban development, the recent plans and policies adopted by these 8 pilot low-carbon cities can shed light on if and how low-carbon cities can shape China's future energy and emission trajectories. This paper reviews the historical development and context for low-carbon urban development in China and then presents an ex-ante comparative assessment of the low-carbon development plans and supporting measures formulated for each of China's 8 pilot low-carbon cities. We find that while the 8 pilot cities have made progress in establishing low-carbon plans, key barriers such as a lack of explicit definition for low-carbon city, complexity and confusion resulting from several parallel programs, and insufficient supporting policies and market-based instruments may hinder urban development that is truly low carbon. Published by Elsevier B.V. C1 [Khanna, Nina; Fridley, David; Hong, Lixuan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Energy Anal & Environm Impacts Dept, Berkeley, CA 94720 USA. RP Khanna, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, MS 90R2002, Berkeley, CA 94720 USA. EM xzheng@lbl.gov FU U.S, Department of Energy [DE-AC02-05CH11231] FX This work was supported through the U.S, Department of Energy under Contract No, DE-AC02-05CH11231, We are grateful to He Gang of LBNL for reviewing an earlier draft of this paper, and to the two anonymous reviewers for their valuable feedback and suggestions. NR 35 TC 12 Z9 12 U1 5 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2210-6715 J9 SUSTAIN CITIES SOC JI Sust. Cities Soc. PD JUL PY 2014 VL 12 BP 110 EP 121 DI 10.1016/j.scs.2014.03.005 PG 12 WC Construction & Building Technology; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Construction & Building Technology; Science & Technology - Other Topics; Energy & Fuels GA V41OE UT WOS:000209554700013 ER PT J AU Callejo, A Narayanan, SHK de Jalon, JG Norris, B AF Callejo, Alfonso Narayanan, Sri Hari Krishna Garcia de Jalon, Javier Norris, Boyana TI Performance of automatic differentiation tools in the dynamic simulation of multibody systems SO ADVANCES IN ENGINEERING SOFTWARE LA English DT Article DE Multibody dynamics; Semi-recursive penalty formulation; Automatic differentiation; Operator overloading; Source-to-source transformation; ADOL-C; ADIC2 ID ALGORITHMS AB Within the multibody systems literature, few attempts have been made to use automatic differentiation for solving forward multibody dynamics and evaluating its computational efficiency. The most relevant implementations are found in the sensitivity analysis field, but they rarely address automatic differentiation issues in depth. This paper presents a thorough analysis of automatic differentiation tools in the time integration of multibody systems. To that end, a penalty formulation is implemented. First, open-chain generalized positions and velocities are computed recursively, while using Cartesian coordinates to define local geometry. Second, the equations of motion are implicitly integrated by using the trapezoidal rule and a Newton-Raphson iteration. Third, velocity and acceleration projections are carried out to enforce kinematic constraints. For the computation of Newton-Raphson's tangent matrix, instead of using numerical or analytical differentiation, automatic differentiation is implemented here. Specifically, the source-to-source transformation tool ADIC2 and the operator overloading tool ADOL-C are employed, in both dense and sparse modes. The theoretical approach is backed with the numerical analysis of a 1-DOF spatial four-bar mechanism, three different configurations of a 15-DOF multiple four-bar linkage, and a 16-DOF coach maneuver. Numerical and automatic differentiation are compared in terms of their computational efficiency and accuracy. Overall, we provide a global perspective of the efficiency of automatic differentiation in the field of multibody system dynamics. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Callejo, Alfonso; Garcia de Jalon, Javier] Univ Politecn Madrid, Inst Univ Invest Automovil, Madrid, Spain. [Narayanan, Sri Hari Krishna; Norris, Boyana] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Callejo, A (reprint author), Univ Politecn Madrid, Inst Univ Invest Automovil, Madrid, Spain. EM a.callejo@upm.es OI Norris, Boyana/0000-0001-5811-9731 FU U.S. Dept. of Energy Office of Science Applied Mathematics Program [DE-ACO2-06CH11357]; Spanish Ministry of Science and Innovation [TRA2009-14513CO2-01]; Government of Navarra FX This work was supported by the U.S. Dept. of Energy Office of Science Applied Mathematics Program (DE-ACO2-06CH11357), the Spanish Ministry of Science and Innovation (TRA2009-14513CO2-01) and the Government of Navarra. NR 26 TC 3 Z9 3 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0965-9978 EI 1873-5339 J9 ADV ENG SOFTW JI Adv. Eng. Softw. PD JUL PY 2014 VL 73 BP 35 EP 44 DI 10.1016/j.advengsoft.2014.03.002 PG 10 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering; Engineering, Multidisciplinary SC Computer Science; Engineering GA AI4GF UT WOS:000336823000004 ER PT J AU Dorcioman, G Socol, G Craciun, D Argibay, N Lambers, E Hanna, M Taylor, CR Craciun, V AF Dorcioman, G. Socol, G. Craciun, D. Argibay, N. Lambers, E. Hanna, M. Taylor, C. R. Craciun, V. TI Wear tests of ZrC and ZrN thin films grown by pulsed laser deposition SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT European-Materials-Research-Society Fall Meeting / Symposium B on Stress, Dtructure and Dtoichiometry Rffects on the Properties of Nanomaterials II CY SEP 16-20, 2013 CL Warsaw, POLAND SP European Mat Res Soc DE ZrC; ZrN; Hard coatings; Pulsed laser deposition ID COATINGS; CORROSION; INDENTATION; EVAPORATION; BEHAVIOR AB Very thin ZrC and ZrN films (<500 nm) were grown on (1 0 0) Si substrates at 500 degrees C by the pulsed laser deposition (PLD) technique using a KrF excimer laser. X-ray reflectivity investigations showed that films exhibited mass densities similar to bulk values. X-ray diffraction investigations found that films were nanocristalline, exhibited a (1 1 1) texture and high micro-strain values. Auger electron spectroscopy investigations indicated that films contained in bulk a relatively low oxygen concentration, usually below 2.0%. Atomic force microscopy found that ZrN films deposited under 2 X 10(-2) Pa of N-2 exhibited a very smooth surface, with an rms value of only 3 angstrom, while wear tests found a low wear rate of only 4.5 X 10(-6) mm(3)/N m. (C) 2014 Elsevier B.V. All rights reserved. C1 [Dorcioman, G.; Socol, G.; Craciun, D.; Craciun, V.] Natl Inst Lasers Plasma & Radiat Phys, Laser Dept, Bucharest, Romania. [Argibay, N.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87123 USA. [Lambers, E.] Univ Florida, Coll Engn, Major Analyt Instrumentat Ctr, Gainesville, FL 32611 USA. [Hanna, M.; Taylor, C. R.] Univ Florida, Gainesville, FL 32611 USA. RP Craciun, D (reprint author), Natl Inst Lasers Plasma & Radiat Phys, 409 Atomistilor, RO-077125 Magurele, Romania. EM doina.craciun@inflpr.ro RI Socol, Gabriel/A-5405-2011 OI Socol, Gabriel/0000-0002-1992-7346 FU Romanian Ministry of Education; CNCS-UEFISCDI [PN-II-ID 337/2011, PN-II-RU-2012-3-0346]; project Nucleu 2013; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to thank the Major Analytical Instrumentation Center-University of Florida for help with samples characterization. This work was supported by grants of the Romanian Ministry of Education, CNCS-UEFISCDI, project number PN-II-ID 337/2011 and PN-II-RU-2012-3-0346, and project Nucleu 2013. This work was partially funded by the Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 11 Z9 12 U1 7 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 1 PY 2014 VL 306 BP 33 EP 36 DI 10.1016/j.apsusc.2013.12.048 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA AI1DX UT WOS:000336591500007 ER PT J AU Hale, LM Zimmerman, JA Weinberger, CR AF Hale, Lucas M. Zimmerman, Jonathan A. Weinberger, Christopher R. TI Simulations of bcc tantalum screw dislocations: Why classical inter-atomic potentials predict {112} slip SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Molecular dynamic simulation; Dislocation structures; Tantalum; Plasticity of metals ID MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; TRANSITION-METALS; CORE STRUCTURE; PLASTIC-DEFORMATION; ANISOTROPIC ELASTICITY; SINGLE-CRYSTALS; SADDLE-POINTS; ALPHA-FE; GLIDE AB A thorough molecular dynamics study is performed to investigate the predicted {112} yield behavior associated with the slip of a single screw dislocation using classical atomistic potentials of body-centered cubic metals. Previous works have drawn an association between the structure of the stable screw dislocation core and the resulting slip nature showing that a polarized core can lead to {112} slip, while a non-polarized core is expected to slip on {110} planes. Here, results from five different potentials for tantalum are presented as they all show slip to be primarily active along {112} planes even though the stable core structure is non-polar. This {112} slip occurs through dislocation glide on two different {110} planes due to the presence of a metastable split core structure, and regardless of the relative magnitudes of resolved shear stresses for the two {110} planes. Further investigations shows that the split core structure, an artifact of the atomic potentials used, also influences slip behavior associated with dynamic motion of kinked dislocations in ambient temperature simulations. (C) 2014 Elsevier B. V. All rights reserved. C1 [Hale, Lucas M.; Zimmerman, Jonathan A.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94551 USA. [Weinberger, Christopher R.] Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87125 USA. [Weinberger, Christopher R.] Drexel Univ, Philadelphia, PA 19104 USA. RP Hale, LM (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94551 USA. EM lmhale99@gmail.com FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 47 TC 5 Z9 5 U1 2 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD JUL PY 2014 VL 90 BP 106 EP 115 DI 10.1016/j.commatsci.2014.03.064 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA AI1ZX UT WOS:000336656200014 ER PT J AU Zhao, Y Ke, J Ni, CC McNeil, M Khanna, NZ Zhou, N Fridley, D Li, QQ AF Zhao, Yue Ke, Jing Ni, Chun Chun McNeil, Michael Khanna, Nina Zheng Zhou, Nan Fridley, David Li, Qiqiang TI A comparative study of energy consumption and efficiency of Japanese and Chinese manufacturing industry SO ENERGY POLICY LA English DT Article DE Industry; Energy efficiency; Energy policies ID INDEX DECOMPOSITION APPROACH; PERSPECTIVE AB The industrial sector consumes about 50% of the world's delivered energy and thus has a large impact on the world's energy production and consumption. Japan is one of the leading countries in industrial efficiency while China is the world's largest industrial energy consumer. This study analyzes the energy consumption and efficiency of the Japanese and Chinese manufacturing industry Analysis shows that the energy intensity of both Japanese and Chinese manufacturing industry has decreased significantly. Decomposition analysis shows that the efficiency effect played an important role in reducing energy intensity; improvement of the energy efficiency of both Japanese and Chinese manufacturing industry showed a trend of exponential decay. Structural effect significantly reduced the energy intensity of the Japanese manufacturing industry while having a relatively small influence on the energy intensity of the Chinese manufacturing industry. Our analysis also shows a strong association of industrial energy efficiency improvement with energy policies, highlighting that energy efficiency policies can play an important role in the reduction of industrial energy intensity. The results of this study also underscore the important, yet very challenging, task of achieving structural change to further improve efficiency. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Zhao, Yue] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China. [Ke, Jing; Ni, Chun Chun; McNeil, Michael; Khanna, Nina Zheng; Zhou, Nan; Fridley, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Li, Qiqiang] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China. RP Ke, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, MS 90R2002,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM Jke@lbl.gov RI Ke, Jing/H-4816-2016 OI Ke, Jing/0000-0002-5972-8042 FU Energy Foundation through the Department of Energy [DE-AC02-05CH11231]; Natural Science Foundation of Shandong Province of China [ZR2010FZ001] FX This work was supported by the Energy Foundation through the Department of Energy under Contract no. DE-AC02-05CH11231, the Key Project of Natural Science Foundation of Shandong Province of China under Grant no. ZR2010FZ001. The authors thank the anonymous reviewers for their valuable comments and suggestions. NR 49 TC 10 Z9 10 U1 3 U2 38 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD JUL PY 2014 VL 70 BP 45 EP 56 DI 10.1016/j.enpol.2014.02.034 PG 12 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA AI2OS UT WOS:000336698500004 ER PT J AU Dagle, RA Lizarazo-Adarme, JA Dagle, VL Gray, MJ White, JF King, DL Palo, DR AF Dagle, Robert A. Lizarazo-Adarme, Jair A. Dagle, Vanessa Lebarbier Gray, Michel J. White, James F. King, David L. Palo, Daniel R. TI Syngas conversion to gasoline-range hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 composite catalyst system SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE Syngas; Methanol; Methanol-to-hydrocarbons; Methanol-to-gasoline (MTG); Gas-to-liquid; PdZn catalyst ID BIOMASS-DERIVED SYNGAS; ZEOLITE AB A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al = 40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. A bifunctional catalyst comprising PdZn metal and zeolitic acid sites provides the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and dimethyl ether-to-gasoline reactions. Using a molar syngas H-2/CO feed ratio of 2, the effects of temperature (310-375 degrees C), pressure (300-1000 psig), and gas hourly space velocity (740-2970h(-1)) were investigated. The liquid hydrocarbon product provided by the Pd/ZnO/Al2O3 + ZSM-5 composite catalyst is aromatic-rich, and contains a significant amount of methylated benzenes. Catalytic stability was favorable due to the presence of hydrogen in the syngas, thus mitigating coke formation within the zeolite. When ZSM-5 is replaced by zeolite-Y (Si/Al = 15), the aromatic content of the hydrocarbon liquid markedly decreased while branched and cyclic hydrocarbons increased. The Pd/Zn/Al2O3 catalyst was found to be highly stable and resistant to sintering under the conditions of the testing, in contrast to the industry standard Cu/ZnO/Al2O3 methanol catalyst. Yield to C-5(+) liquid hydrocarbon product was limited by alternative syngas conversion pathways (water gas shift, methanation) and by hydrogenation of light olefins that would otherwise convert to a liquid hydrocarbon product. (C) 2014 Elsevier B.V. All rights reserved. C1 [Dagle, Robert A.; Dagle, Vanessa Lebarbier; Gray, Michel J.; White, James F.; King, David L.; Palo, Daniel R.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Lizarazo-Adarme, Jair A.; Palo, Daniel R.] Pacific NW Natl Lab, Microprod Breakthrough Inst Corvallis, Corvallis, OR 97330 USA. [White, James F.] 3 Rivers Catalysis LLC, Richland, WA USA. RP Dagle, RA (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM robert.dagle@pnnl.gov FU Energy Conversion Initiative at Pacific Northwest National Laboratory; National Advanced Biofuels Consortium - Department of Energy's Office of Biomass Program; U.S. Department of Energy [DEAC05-76RL01830] FX The authors would like to kindly thank the following either current or former colleagues: Yong Wang, Jianli (John) Hu, Ya-Huei (Cathy) Chin, Chunshe (James) Cao, Alex Platon, Jamie Holladay, and Guan-Guang (Gordon) Xia. Their previous efforts on development of the high temperature PdZn-based methanol catalyst were foundational. The authors also acknowledge that initial work on this concept was funded through the Energy Conversion Initiative at Pacific Northwest National Laboratory. The bulk of this work was supported by the National Advanced Biofuels Consortium which is funded by the Department of Energy's Office of Biomass Program with recovery act funds. PNNL work was conducted under U.S. Department of Energy contract DE-AC05-76RL01830. The facilities of the Microproducts Breakthrough Institute in Corvallis, OR were utilized for the mixed catalyst bed experiments. Finally, the authors would like to acknowledge that a portion of this work was done in the Environmental Molecular Sciences Laboratory (EMSL), a DOE sponsored user facility located in Richland, WA at the Pacific Northwest National Laboratory. NR 21 TC 13 Z9 15 U1 17 U2 105 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 EI 1873-7188 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD JUL PY 2014 VL 123 BP 65 EP 74 DI 10.1016/j.fuproc.2014.01.041 PG 10 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA AH9NM UT WOS:000336469100009 ER PT J AU Katz, DS Zhang, Z AF Katz, Daniel S. Zhang, Zhao TI Special issue on eScience infrastructure and applications SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE LA English DT Editorial Material DE eScience; eResearch; eInfrastructure; Cyberinfrastructure; CDS&E ID MAPREDUCE; WORKFLOW; ACCESS AB This special issue contains extensions of work presented at the 2012 IEEE International Conference on eScience, held in Chicago, IL in October 2012. For eScience to be successful, simultaneous advances in infrastructure and applications are required, which in turn requires research teams with widely varying expertise, from computer science to Earth sciences and biological sciences, as well as fora for different teams to interact and share knowledge and lessons learned, such as the eScience series of conferences. The papers in this special issue represent advances in both infrastructure and applications and how they can influence each other. (C) 2014 Published by Elsevier B.V. C1 [Katz, Daniel S.] Univ Chicago, Chicago, IL 60637 USA. [Zhang, Zhao] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA. [Katz, Daniel S.] Argonne Natl Lab, Chicago, IL USA. RP Katz, DS (reprint author), Univ Chicago, Chicago, IL 60637 USA. EM d.katz@ieee.org; zhaozhang@uchicago.edu NR 18 TC 2 Z9 2 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD JUL PY 2014 VL 36 BP 335 EP 337 DI 10.1016/j.future.2014.03.007 PG 3 WC Computer Science, Theory & Methods SC Computer Science GA AI3OB UT WOS:000336770700029 ER PT J AU Fadika, Z Dede, E Govindaraju, M Ramakrishnan, L AF Fadika, Zacharia Dede, Elif Govindaraju, Madhusudhan Ramakrishnan, Lavanya TI MARIANE: Using MApReduce in HPC environments SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE LA English DT Article DE Hadoop; MapReduce; Data intensive; Scientific computing AB MapReduce is increasingly becoming a popular programming model. However, the widely used implementation, Apache Hadoop, uses the Hadoop Distributed File System (HDFS), which is currently not directly applicable to a majority of existing HPC environments such as Teragrid and NERSC that support other distributed file systems. On such resourceful High Performance Computing (HPC) infrastructures, the MapReduce model can rarely make use of full resources, as special circumstances must be created for its adoption, or simply limited resources must be isolated to the same end. This paper not only presents a MapReduce implementation directly suitable for such environments, but also exposes the design choices for better performance gains in those settings. By leveraging inherent distributed file systems' functions, and abstracting them away from its MapReduce framework, MARIANE (MApReduce Implementation Adapted for HPC Environments) not only allows for the use of the model in an expanding number of HPC environments, but also shows better performance in such settings. This paper identifies the components and trade-offs necessary for this model, and quantifies the performance gains exhibited by our approach in HPC environments over Apache Hadoop in a data intensive setting at the National Energy Research Scientific Computing Center (NERSC). (C) 2014 Elsevier B.V. All rights reserved. C1 [Fadika, Zacharia; Dede, Elif; Govindaraju, Madhusudhan] SUNY Binghamton, Dept Comp Sci, Grid & Cloud Comp Res Lab, Vestal, NY 13902 USA. [Ramakrishnan, Lavanya] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Govindaraju, M (reprint author), SUNY Binghamton, Dept Comp Sci, Grid & Cloud Comp Res Lab, Vestal, NY 13902 USA. EM zfadika@cs.binghamton.edu; edede1@cs.binghamton.edu; mgovinda@cs.binghamton.edu; lramakrishnan@lbl.gov NR 22 TC 3 Z9 3 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD JUL PY 2014 VL 36 BP 379 EP 388 DI 10.1016/j.future.2013.12.007 PG 10 WC Computer Science, Theory & Methods SC Computer Science GA AI3OB UT WOS:000336770700033 ER PT J AU Dede, E Fadika, Z Govindaraju, M Ramakrishnan, L AF Dede, Elif Fadika, Zacharia Govindaraju, Madhusudhan Ramakrishnan, Lavanya TI Benchmarking MapReduce implementations under different application scenarios SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID COMPUTING AND ESCIENCE LA English DT Article DE Distributed Computing; MapReduce; Hadoop; Benchmarking AB The MapReduce paradigm provides a scalable model for large scale data intensive computing and associated fault-tolerance. Data volumes generated and processed by scientific applications are growing rapidly. Several MapReduce implementations, with various degrees of conformance to the key tenets of the model, are available today. Each of these implementations is optimized for specific features. To make the right decisions, HPC application and middleware developers must thus understand the complex dependences between MapReduce features and their application. We present a set of benchmarks for quantifying, comparing, and contrasting the performance of MapReduce implementations under a wide range of representative use cases. To demonstrate the utility of the benchmarks and to provide a snapshot of the current implementation landscape, we report the performance of three different MapReduce implementations, and draw conclusions about their current performance characteristics. The three implementations we chose for evaluation are the widely used Hadoop implementation, Twister, which has been widely discussed in the literature in the context of scientific applications, and LEMO-MR which is our own implementation. We present the performance of these three implementations and draw conclusions about their performance characteristics. (C) 2014 Elsevier B.V. All rights reserved. C1 [Dede, Elif; Fadika, Zacharia; Govindaraju, Madhusudhan] SUNY Binghamton, Dept Comp Sci, Grid & Cloud Comp Res Lab, Vestal, NY 13902 USA. [Ramakrishnan, Lavanya] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Govindaraju, M (reprint author), SUNY Binghamton, Dept Comp Sci, Grid & Cloud Comp Res Lab, Vestal, NY 13902 USA. EM edede1@cs.binghamton.edu; zfadika@cs.binghamton.edu; mgovinda@cs.binghamton.edu; lramakrishnan@lbl.gov FU NSF [0958501]; Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by NSF grant 0958501 and also in part by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 25 TC 4 Z9 4 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD JUL PY 2014 VL 36 BP 389 EP 399 DI 10.1016/j.future.2014.01.001 PG 11 WC Computer Science, Theory & Methods SC Computer Science GA AI3OB UT WOS:000336770700034 ER PT J AU Cinquini, L Crichton, D Mattmann, C Harney, J Shipman, G Wang, FY Ananthakrishnan, R Miller, N Denvil, S Morgan, M Pobre, Z Bell, GM Doutriaux, C Drach, R Williams, D Kershaw, P Pascoe, S Gonzalez, E Fiore, S Schweitzer, R AF Cinquini, Luca Crichton, Daniel Mattmann, Chris Harney, John Shipman, Galen Wang, Feiyi Ananthakrishnan, Rachana Miller, Neill Denvil, Sebastian Morgan, Mark Pobre, Zed Bell, Gavin M. Doutriaux, Charles Drach, Robert Williams, Dean Kershaw, Philip Pascoe, Stephen Gonzalez, Estanislao Fiore, Sandro Schweitzer, Roland TI The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID COMPUTING AND ESCIENCE LA English DT Article DE Climate science; Federation; Search; Discovery; Peer-to-peer; CMIP5 AB The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF's architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software stack integrates custom components (for data publishing, searching, user interface, security and messaging), developed collaboratively by the team, with popular application engines (Tomcat, Solr) available from the open source community. The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire Fifth Coupled Model Intercomparison Project (CMIP5) output used by the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs). This paper presents ESGF as a successful example of integration of disparate open source technologies into a cohesive, wide functional system, and describes our experience in building and operating a distributed and federated infrastructure to serve the needs of the global climate science community. (C) 2013 Elsevier B.V. All rights reserved. C1 [Cinquini, Luca; Crichton, Daniel; Mattmann, Chris] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cinquini, Luca; Crichton, Daniel; Mattmann, Chris] CALTECH, Pasadena, CA 91106 USA. [Harney, John; Wang, Feiyi] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Shipman, Galen] Oak Ridge Natl Lab, Comp & Computat Sci Directorate, Oak Ridge, TN USA. [Ananthakrishnan, Rachana] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Miller, Neill] Univ Chicago, Chicago, IL 60637 USA. [Ananthakrishnan, Rachana; Miller, Neill] Argonne Natl Lab, Argonne, IL 60439 USA. [Denvil, Sebastian] Inst Pierre Simon Laplace, Climate Modeling Grp, Paris, France. [Morgan, Mark] Inst Pierre Simon Laplace, Earth Syst Modeling Platform, Paris, France. [Pobre, Zed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bell, Gavin M.; Doutriaux, Charles; Drach, Robert; Williams, Dean] Lawrence Livermore Natl Lab, Livermore, CA USA. [Kershaw, Philip] STEC Rutherford Appleton Lab, RAL Space, Ctr Environm Data Archival, Didcot, Oxon, England. [Pascoe, Stephen] STEC Rutherford Appleton Lab, Didcot, Oxon, England. [Kershaw, Philip; Pascoe, Stephen] NCAS BADC, Didcot, Oxon, England. [Gonzalez, Estanislao] German Climate Comp Ctr DKRZ, Hamburg, Germany. [Fiore, Sandro] Euromediterranean Ctr Climate Change CMCC, Lecce, Italy. [Schweitzer, Roland] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Cinquini, L (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM luca.cinquini@jpl.nasa.gov; daniel.j.crichton@jpl.nasa.gov; chris.a.mattmann@jpl.nasa.gov; harneyjf@ornl.gov; gshipman@ornl.gov; fwang2@ornl.gov; ranantha@mcs.anl.gov; neillm@mcs.anl.gov; sebastien.denvil@ipsl.jussieu.fr; momipsl@ipsl.jussieu.fr; zed.pobre@nasa.gov; gavin@llnl.gov; doutriaux1@llnl.gov; drach1@llnl.gov; williams13@llnl.gov; philip.kershaw@stfc.ac.uk; stephen.pascoe@stfc.ac.uk; estanislao.gonzalez@met.fu-berlin.de; sandro.fiore@unisalento.it; Roland.Schweitzer@noaa.gov OI Kershaw, Philip/0000-0002-7646-291X FU U.S. Department of Energy; National Atmospheric and Space Administration (NASA); European Infrastructure for the European Network for Earth System Modeling (IS-ENES) FX The development and operation of ESGF is supported by the efforts of principal investigators, software engineers, data managers and system administrators from many agencies and institutions worldwide. Primary contributors include ANL, ANU, BADC, CMCC, DKRZ, ESRL, GFDL, GSFC, JPL, IPSL, NCAR, ORNL, LBNL, LLNL (leading institution), PMEL, PNNL and SNL. Major funding provided by the U.S. Department of Energy, the National Atmospheric and Space Administration (NASA), and the European Infrastructure for the European Network for Earth System Modeling (IS-ENES). NR 18 TC 16 Z9 16 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD JUL PY 2014 VL 36 BP 400 EP 417 DI 10.1016/j.future.2013.07.002 PG 18 WC Computer Science, Theory & Methods SC Computer Science GA AI3OB UT WOS:000336770700035 ER PT J AU Hendrix, V Ramakrishnan, L Ryu, Y van Ingen, C Jackson, KR Agarwal, D AF Hendrix, Valerie Ramakrishnan, Lavanya Ryu, Youngryel van Ingen, Catharine Jackson, Keith R. Agarwal, Deborah TI CAMP: Community Access MODIS Pipeline SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID COMPUTING AND ESCIENCE LA English DT Article DE MODIS; Data-intensive; High Performance computing ID LIFE SCIENCES AB The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's land and atmosphere data are important to many scientific analyses that study processes at both local and global scales. The Terra and Aqua MODIS satellites acquire data of the entire Earth's surface every one or two days in 36 spectral bands. MODIS data provide information to complement many of the ground-based observations but are extremely critical when studying global phenomena such as gross photosynthesis and evapotranspiration. However, data procurement and processing can be challenging and cumbersome due to difficulties in volume, size of data and scale of analyses. For example, the very first step in MODIS data processing is to ensure that all products are in the same resolution and coordinate system. The reprojection step involves a complex inverse gridding algorithm and involves downloading tens of thousands of files for a single year that is often infeasible to perform on a scientist's desktop. Thus, use of large-scale resource environments such as high performance computing (HPC) environments are becoming crucial for processing of MODIS data. However, HPC environments have traditionally been used for tightly coupled applications and present several challenges for managing data-intensive pipelines. We have developed a data-processing pipeline that downloads the MODIS swath products and reprojects the data to a sinusoidal system on an HPC system. The 10 year archive of the reprojected data generated using the pipeline is made available through a web portal. In this paper, we detail a system architecture (CAMP) to manage the lifecycle of MODIS data that includes procurement, storage, processing and dissemination. Our system architecture was developed in the context of the MODIS reprojection pipeline but is extensible to other analyses of MODIS data. Additionally, our work provides a framework and valuable experiences for future developments and deployments of data-intensive pipelines from other scientific domains on HPC systems. (C) 2014 Published by Elsevier B.V. C1 [Hendrix, Valerie; Ramakrishnan, Lavanya; Jackson, Keith R.; Agarwal, Deborah] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ryu, Youngryel] Seoul Natl Univ, Dept Landscape Architecture & Rural Syst Engn, Seoul 151, South Korea. [van Ingen, Catharine] Microsoft Res, Redmond, WA USA. RP Hendrix, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM vchendrix@lbl.gov; lramakrishnan@lbl.gov; yryu@snu.ac.kr; vaningen@microsoft.com; KRJackson@lbl.gov; daagarwal@lbl.gov RI Ryu, Youngryel/C-3072-2008 OI Ryu, Youngryel/0000-0001-6238-2479 FU Office of Science, Office of Advanced Scientific Computing, of the US Department of Energy [DEAC02-05CH11231]; Microsoft Research; Office of Science of the US Department of Energy [DEAC02-05CH11231] FX This work is supported in part by the Director, Office of Science, Office of Advanced Scientific Computing, of the US Department of Energy under Contract No. DEAC02-05CH11231 and Microsoft Research. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DEAC02-05CH11231. The authors would also like to thank Jie Li, and Christine Morin. NR 27 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD JUL PY 2014 VL 36 BP 418 EP 429 DI 10.1016/j.future.2013.09.023 PG 12 WC Computer Science, Theory & Methods SC Computer Science GA AI3OB UT WOS:000336770700036 ER PT J AU Pandey, SN Chaudhuri, A Kelkar, S Sandeep, VR Rajaram, H AF Pandey, S. N. Chaudhuri, A. Kelkar, S. Sandeep, V. R. Rajaram, H. TI Investigation of permeability alteration of fractured limestone reservoir due to geothermal heat extraction using three-dimensional thermo-hydro-chemical (THC) model SO GEOTHERMICS LA English DT Article DE Geothermal reservoir; Renewable energy; Thermo-hydro-chemical model; Aperture alteration; Calcite; Dissolution/precipitation; Reactive transport ID GEOLOGICALLY RELEVANT SITUATIONS; COLD-WATER INJECTION; SOULTZ-SOUS-FORETS; CALCITE DISSOLUTION; CO2-WATER SYSTEMS; KARST AREAS; FLUID-FLOW; PRECIPITATION; KINETICS; ROCK AB Heat extraction by cold water circulation disturbs the thermo-chemical equilibrium of a geothermal reservoir, activating the dissolution/precipitation of minerals in the fractures. Calcite being a more reactive mineral than other rock minerals composing the earth curst, we investigate the permeability alteration during geothermal heat production from carbonate reservoirs. In this study the simulations are performed using the code FEHM with coupled thermo-hydro-chemical (THC) capabilities for a three dimensional domain. The computational domain consists of a single fracture connecting the injection and production wells. For reactive alteration of aperture, the model considers that the kinetics of dissolution/precipitation is coupled to the equilibrium interactions among the aqueous species/ions. The reaction rate predominantly depends on the temperature dependent solubility and advective-dispersive solute transport in the fracture. Due to the nonuniform flow fields resulting from injection and production, the coupled thermo-hydro-chemical processes initiate significant variation of the aperture alteration rate over the fracture. We have considered different operating conditions such as different mass injection rate, injection temperature and concentration of minerals. Our simulations show that dissolution and precipitation can occur simultaneously at different locations in fracture. Furthermore the reaction rate varies with time and the reaction rate can also switch between dissolution and precipitation. To illustrate this interesting behavior, the variations of shape and size of zero reaction rate contours with time are shown. An interesting outcome is a non-monotonic evolution of the overall transmissivity between the wells. The alteration of overall transmissivity largely depends on the concentration of mineral in the injected water. with respect to the solubility at the initial fracture temperature. For both dissolution and precipitation controlled cases, the rapid changes in transmissivity provide challenges for maintaining circulation of water at constant mass flow rate. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Pandey, S. N.; Chaudhuri, A.; Sandeep, V. R.] Indian Inst Technol, Dept Appl Mech, Madras 600036, Tamil Nadu, India. [Kelkar, S.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Rajaram, H.] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA. RP Chaudhuri, A (reprint author), Indian Inst Technol, Dept Appl Mech, Madras 600036, Tamil Nadu, India. EM abhijit.chaudhuri@iitm.ac.in NR 53 TC 13 Z9 13 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD JUL PY 2014 VL 51 BP 46 EP 62 DI 10.1016/j.geothermics.2013.11.004 PG 17 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA AI3RD UT WOS:000336778700005 ER PT J AU Spycher, N Peiffer, L Sonnenthal, EL Saldi, G Reed, MH Kennedy, BM AF Spycher, N. Peiffer, L. Sonnenthal, E. L. Saldi, G. Reed, M. H. Kennedy, B. M. TI Integrated multicomponent solute geothermometry SO GEOTHERMICS LA English DT Article DE Geothermometer; Optimization; Exploration; Numerical modeling; Mixing; Geothermal ID MOLAL THERMODYNAMIC PROPERTIES; MINERAL EQUILIBRIA; WATERS; CHEMISTRY; ICELAND; TEMPERATURES; SIMULATION; PROGRAM; SPRINGS; GASES AB The previously developed and well-demonstrated mineral saturation geothermometry method is revisited with the objective to ease its application, and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated by assessing numerically the clustering of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are implemented into one stand-alone program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimation software. The geothermometry system is tested with geothermal waters from previous studies, and with fluids at various degrees of fluid rock chemical equilibrium obtained from laboratory experiments and reactive transport simulations. Such an integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Spycher, N.; Peiffer, L.; Sonnenthal, E. L.; Saldi, G.; Kennedy, B. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Reed, M. H.] Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA. RP Spycher, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM nspycher@lbl.gov RI Sonnenthal, Eric/A-4336-2009; Spycher, Nicolas/E-6899-2010; OI Peiffer, Loic/0000-0002-2036-8449 FU U.S. Department of Energy, Geothermal Technologies Program, Energy Efficiency and Renewable Energy Office [DE-EE0002765] FX This work was supported by the U.S. Department of Energy, Geothermal Technologies Program, Energy Efficiency and Renewable Energy Office, Award No. DE-EE0002765. We thank Patrick Dobson and Jennifer Lewicki for their valuable inputs after testing GeoT, Kevin Knauss for his leadership with the experimental component of this study, Joe Iovenitti (Alta Rock) for providing data on the Newberry project, and Christoph Wanner for compiling and testing GeoT on various platforms. We are also grateful to Stuart F. Simmons and William C. Evans for their constructive reviews which helped improve the original manuscript. NR 40 TC 12 Z9 12 U1 5 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD JUL PY 2014 VL 51 BP 113 EP 123 DI 10.1016/j.geothermics.2013.10.012 PG 11 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA AI3RD UT WOS:000336778700010 ER PT J AU Wanner, C Peiffe, L Sonnenthal, E Spycher, N Iovenitti, J Kennedy, BM AF Wanner, Christoph Peiffe, Loic Sonnenthal, Eric Spycher, Nicolas Iovenitti, Joe Kennedy, Burton Mack TI Reactive transport modeling of the Dixie Valley geothermal area: Insights on flow and geothermometry SO GEOTHERMICS LA English DT Article DE Reactive transport modeling; Solute geothermometry; Dixie Valley; Fracture flow; Geothermal springs ID HYDROTHERMAL SYSTEM; YUCCA MOUNTAIN; FLUID-FLOW; SIMULATION; WATERS; EQUILIBRIA; FRACTURE; NEVADA; FORM AB A 2D reactive transport model of the Dixie Valley geothermal area in Nevada, USA was developed to assess fluid flow pathways and fluid rock interaction processes. The model includes two major normal faults and the incorporation of a dual continuum domain to simulate the presence of a small-scale thermal spring being fed by a highly permeable but narrow fracture zone. Simulations were performed incorporating fluid flow, heat conduction and advection, and kinetic mineral-water reactions. Various solute geothermometry methods were applied to simulated spring compositions, to compare estimated reservoir temperatures with "true" modeled reservoir temperatures, for a fluid ascending the simulated fracture and cooling on its way to the surface. Under the modeled conditions (cooling but no mixing or boiling), the classical Na-K(-Ca) geothermometers performed best because these are least affected by mineral precipitation upon cooling. Geothermometry based on computed mineral saturation indices and the quartz geothermometer were more sensitive to re-equilibration upon cooling, but showed good results for fluid velocities above ca. 0.1 m/d and a reactive fracture surface area 1-2 orders of magnitude lower than the corresponding geometric surface area. This suggests that such upflow rates and relatively low reactive fracture surface areas are likely present in many geothermal fields. The simulations also suggest that the presence of small-scale fracture systems having an elevated permeability of 10-12 to 10(-10) m(2) can significantly alter the shallow fluid flow regime of geothermal systems. For the Dixie Valley case, the model implies that such elevated permeabilities lead to a shallow (less than 1 km) convection cell where superficial water infiltrates along the range front normal fault and connects the small-scale geothermal spring through basin filling sediments. Furthermore, we conclude that a fracture permeability on the order of 10(-12) m(2) may lead to near surface temperature >100 degrees C whereas a permeability of 10-10 m2 is not realistic because this permeability led to extreme upflow velocities and to a short-circuit of the regional fault zone. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Wanner, Christoph; Peiffe, Loic; Sonnenthal, Eric; Spycher, Nicolas; Kennedy, Burton Mack] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Iovenitti, Joe] AltaRockEnergy Inc, Sausalito, CA USA. RP Wanner, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cwanner@lbl.gov RI Sonnenthal, Eric/A-4336-2009; Spycher, Nicolas/E-6899-2010; OI Wanner, Christoph/0000-0003-3488-8602; Peiffer, Loic/0000-0002-2036-8449 FU U.S. Department of Energy, Geothermal Technologies Program, Energy Efficiency and Renewable Energy Office [DE-EE0002765, DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Geothermal Technologies Program, Energy Efficiency and Renewable Energy Office, Award Nos. DE-EE0002765 and DE-AC02-05CH11231. We thank one anonymous reviewer for a thorough review and constructive comments. NR 42 TC 6 Z9 6 U1 1 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD JUL PY 2014 VL 51 BP 130 EP 141 DI 10.1016/j.geothermics.2013.12.003 PG 12 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA AI3RD UT WOS:000336778700012 ER PT J AU Peiffer, L Wanner, C Spycher, N Sonnenthal, EL Kennedy, BM Iovenitti, J AF Peiffer, L. Wanner, C. Spycher, N. Sonnenthal, E. L. Kennedy, B. M. Iovenitti, J. TI Optimized multicomponent vs. classical geothermometry: Insights from modeling studies at the Dixie Valley geothermal area SO GEOTHERMICS LA English DT Article DE Geothermometer; Optimization; Exploration; Numerical modeling; Mixing; Geothermal ID NEVADA; WATERS; EQUILIBRIA; SIMULATION; BASIN AB A new geothermometry approach is explored, incorporating multicomponent geothermometry coupled with numerical optimization to provide more confident estimates of geothermal reservoir temperatures when results of classical geothermometers are inconsistent. This approach is applied to geothermal well and spring waters from the Dixie Valley geothermal area (Nevada), to evaluate the influence of salt brines mixing and dilution of geothermal fluids on calculated temperatures. The main advantage of the optimized multicomponent method over classical geothermometers is its ability to quantify the extent of dilution and gas loss experienced by a geothermal fluid, and to optimize other poorly constrained or unknown parameters (such as Al and Mg concentrations), allowing the reconstruction of the deep reservoir fluid composition and therefore gaining confidence in reservoir temperatures estimations. Because the chemical evolution of deep geothermal fluids is a combination of multiple time-dependent processes that take place when these fluids ascend to the surface, reactive transport modeling is used to assess constraints on the application of solute geothermometers. Simulation results reveal that Al and Mg concentrations of ascending fluids are sensitive to mineral precipitation-dissolution affecting reservoir temperatures inferred with multicomponent geothermometry. In contrast, simulations show that the concentrations of major elements such as Na, K, and SiO2 are less sensitive to re-equilibration. Geothermometers based on these elements give reasonable reservoir temperatures in many cases, except when dilution or mixing with saline waters has taken place. Optimized multicomponent geothermometry yields more representative temperatures for such cases. Taking into account differences in estimated temperatures, and chemical compositions of the Dixie Valley thermal waters, a conceptual model of two main geothermal reservoirs is proposed. The first reservoir is located along the Stillwater range normal fault system and has an estimated temperature of 240-260 degrees C. It covers the area corresponding to the geothermal field but could extend towards the south-west where deep temperatures of 200-225 degrees C are estimated. The second reservoir has an estimated temperature of 175-190 degrees C and extends from well 62-21 to northeastern Hyder, Lower Ranch, Fault Line, and Jersey springs. (c) 2014 Elsevier Ltd. All rights reserved. C1 [Peiffer, L.; Wanner, C.; Spycher, N.; Sonnenthal, E. L.; Kennedy, B. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Iovenitti, J.] AltaRockEnergy Inc, Sausalito, CA 94965 USA. RP Peiffer, L (reprint author), Univ Nacl Autonoma Mexico, Inst Energias Renovables, Temixco 62580, Morelos, Mexico. EM loic.peiffer@gmail.com; nspycher@lbl.gov RI Sonnenthal, Eric/A-4336-2009; Spycher, Nicolas/E-6899-2010; OI Wanner, Christoph/0000-0003-3488-8602; Peiffer, Loic/0000-0002-2036-8449 FU U.S. Department of Energy, Geothermal Technologies Program, Energy Efficiency and Renewable Energy Office [DE-EE0002765] FX This work was supported by the U.S. Department of Energy, Geothermal Technologies Program, Energy Efficiency and Renewable Energy Office, Award no. DE-EE0002765. We thank Susan Lutz for providing XRD analyses, and Dick Benoit and Lisa Shevenell for personal communications regarding Dixie Valley. We are also grateful to Patrick Dobson for a constructive review of the original manuscript. Reviews by S. Simmons and an anonymous reviewer are also greatly appreciated. NR 42 TC 6 Z9 7 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD JUL PY 2014 VL 51 BP 154 EP 169 DI 10.1016/j.geothermics.2013.12.002 PG 16 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA AI3RD UT WOS:000336778700014 ER PT J AU Jeanne, P Rutqvist, J Vasco, D Garcia, J Dobson, PF Walters, M Hartline, C Borgia, A AF Jeanne, Pierre Rutqvist, Jonny Vasco, Donald Garcia, Julio Dobson, Patrick F. Walters, Mark Hartline, Craig Borgia, Andrea TI A 3D hydrogeological and geomechanical model of an Enhanced Geothermal System at The Geysers, California SO GEOTHERMICS LA English DT Article DE Enhanced Geothermal Systems; The Geysers; Induced seismicity; TerraSAR-X satellites; Shear zones; Thermo-hydromechanical simulation ID FIELD; DEFORMATION; ROCK AB In this study, integrated coupled process modeling and field observations are used to build a threedimensional hydrogeological and geomechanical model of an Enhanced Geothermal System (EGS) in the northwestern part of The Geysers geothermal field, California. We constructed a model and characterized hydraulic and mechanical properties of relevant geological layers and a system of multiple intersecting shear zones. This characterization was conducted through detailed coupled process modeling of a oneyear injection stimulation with simultaneous field monitoring of reservoir pressure, microseismicity, and surface deformations. The analysis of surface deformations was found to be particularly challenging as the subtle surface deformations caused by the injection taking place below 3 km depth are intermingled with deformations caused by both tectonic effects and seasonal surface effects associated with rainfall. However, through a detailed analysis of the field data we identified deformations associated with injection. Hydraulic and mechanical properties of relevant rock layers and shear zones were determined using a 3D hydrogeological and geomechanical model. Hydraulic properties were determined using inverse analysis by fitting the pressure evolution in monitoring wells surrounding the injection well. Mechanical properties were estimated by comparison of the predicted microseismicity potential with the observed microseismicity and by fitting the predicted vertical displacement with the surface deformations measured by satellite. The results show the critical importance of considering the regional fault system, especially reservoir-level faults and shear zones that modify injection water flow and steam pressure diffusion. In the vicinity of the EGS Demonstration Project, fluid flow pathways and pressure diffusion fronts appears to be at a maximum along N130 oriented shear zones and at a minimum along N50 oriented shear zones. Evidence for this comes from microseismic event hypocenters which extend several kilometers horizontally from the injection well and deep into a recent granitic intrusion that underlies the high temperature reservoir. Published by Elsevier Ltd. C1 [Jeanne, Pierre; Rutqvist, Jonny; Vasco, Donald; Dobson, Patrick F.; Borgia, Andrea] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Garcia, Julio; Walters, Mark; Hartline, Craig] Calpine Corp, Middletown, CA 95461 USA. RP Jeanne, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM pjeanne@lbl.gov RI Dobson, Patrick/D-8771-2015; Rutqvist, Jonny/F-4957-2015; Jeanne, Pierre/I-2996-2015; Vasco, Donald/I-3167-2016; Vasco, Donald/G-3696-2015 OI Dobson, Patrick/0000-0001-5031-8592; Rutqvist, Jonny/0000-0002-7949-9785; Jeanne, Pierre/0000-0003-1487-8378; Vasco, Donald/0000-0003-1210-8628; Vasco, Donald/0000-0003-1210-8628 FU Energy Efficiency and Renewable Energy, Geothermal Technologies Program, of the U.S. Department under the U.S. Department of Energy [DE-AC02-05CH11231]; Calpine Corporation FX This work was conducted with funding provided by the Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program, of the U.S. Department under the U.S. Department of Energy Contract No. DE-AC02-05CH11231, and by Calpine Corporation. We are grateful to Katie Boyle and Lawrence Hutchings from the Lawrence Berkeley National Laboratory (LBNL) for making their seismic data available to us. NR 24 TC 13 Z9 14 U1 0 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD JUL PY 2014 VL 51 BP 240 EP 252 DI 10.1016/j.geothermics.2014.01.013 PG 13 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA AI3RD UT WOS:000336778700020 ER PT J AU Jeanne, P Rutqvist, J Hartline, C Garcia, J Dobson, PF Walters, M AF Jeanne, Pierre Rutqvist, Jonny Hartline, Craig Garcia, Julio Dobson, Patrick F. Walters, Mark TI Reservoir structure and properties from geomechanical modeling and microseismicity analyses associated with an enhanced geothermal system at The Geysers, California SO GEOTHERMICS LA English DT Article DE Enhanced geothermal system; Micro-earthquake analysis; Fault zone network; Inverse fluid flow modeling; Thermo-hydromechanical simulation; Micro-earthquake predicted ID FLUID-FLOW; FIELD; ROCK; AREA; SEISMICITY AB This work contributes to modeling studies associated with an enhanced geothermal system demonstration project in the northwestern region of The Geysers, California. We first attempt to determine the structural configuration and reservoir properties of the steam-bearing reservoir, based on microseismicity recorded during a one-year water injection operation. This is particularly challenging because errors in hypocenter determination (due primarily to errors in the velocity model and first-arrival picks) tend to "defocus" any microseismic events related to a distributed network of fractures, resulting in a "cloud" of microseismic events. This work includes a dynamic analysis of the observed alignments in daily microseismicity hypocenters during water injection, along with the constraints provided by geological data (surface mapping and drill cuttings) to determine the location and orientation of shear zones. We then evaluate the viability of the resulting network of proposed shear zones, using a 2D fluid flow and geomechanical model simulation of the injection and comparing it to the evolution of observed (1) pressure in nearby monitoring wells and (2) microseismicity hypocenters. The shear-zone hydraulic properties were estimated using inverse analysis of the pressure evolution in the surrounding wells, while mechanical properties were estimated by comparing the calculated stress changes and associated microseismic potential with the observed microseismicity. The results indicate that a model including the network of proposed shear zones does calculate reservoir hydraulic and mechanical responses similar to those observed during water injection. Finally, the results confirm previous studies at The Geysers indicating that the injection-induced microseismicity is caused by thermal contraction near the injection wells where strong cooling prevails, whereas away from the injection wells, small increases in steam pressure are the primary trigger of microseismicity. Published by Elsevier Ltd. C1 [Jeanne, Pierre; Rutqvist, Jonny; Dobson, Patrick F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hartline, Craig; Garcia, Julio; Walters, Mark] Calpine Corp, Middletown, CA 95461 USA. RP Jeanne, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM pjeanne@lbl.gov RI Dobson, Patrick/D-8771-2015; Rutqvist, Jonny/F-4957-2015; Jeanne, Pierre/I-2996-2015; OI Dobson, Patrick/0000-0001-5031-8592; Rutqvist, Jonny/0000-0002-7949-9785; Jeanne, Pierre/0000-0003-1487-8378; Walters, Mark/0000-0001-8458-4813 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program, of the U.S. Department under the U.S. Department of Energy [DE-AC02-05CH11231]; Calpine Corporation FX This work was conducted with funding by the Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program, of the U.S. Department under the U.S. Department of Energy Contract No. DE-AC02-05CH11231, and by Calpine Corporation. We are grateful to Katie Boyle and Lawrence Hutchings from Lawrence Berkeley National Laboratory (LBNL) for making seismic data available to us, and for the constructive comments and recommendations of the reviewers. NR 33 TC 11 Z9 11 U1 0 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD JUL PY 2014 VL 51 BP 460 EP 469 DI 10.1016/j.geothermics.2014.02.003 PG 10 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA AI3RD UT WOS:000336778700039 ER PT J AU Solbrig, CW Pope, CL Andrus, JP AF Solbrig, Charles W. Pope, Chad L. Andrus, Jason P. TI Stress and diffusion in stored Pu ZPPR fuel from alpha generation SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Metal fuel failure in long term storage; Metal fuel swelling stress; Gas diffusion in metal; High Pu content nuclear fuel ID HELIUM AB ZPPR (Zero Power Physics Reactor) is a research reactor that has been used to investigate breeder reactor fuel designs. The reactor has been dismantled but its fuel is still stored there. Of concern are its plutonium containing metal fuel elements which are enclosed in stainless steel cladding with gas space filled with helium-argon gas and welded air tight. The fuel elements which are 5.08 cm by 0.508 cm up to 20.32 cm long (2 in x 0.2 in x 8 in) were manufactured in 1968. A few of these fuel elements have failed releasing contamination raising concern about the general state of the large number of other fuel elements. Inspection of the large number of fuel elements could lead to contamination release so analytical studies have been conducted to estimate the probability of failed fuel elements. This paper investigates the possible fuel failures due to generation of helium in the metal fuel from the decay of Pu and its possible damage to the fuel cladding from metal fuel expansion or from diffusion of helium into the fuel gas space. This paper (1) calculates the initial gas loading in a fuel element and its internal free volume after it has been brought into the atmosphere at ZPPR, (2) shows that the amount of helium generated by decay of Pu over 46 years since manufacture is significantly greater than this initial loading, (3) determines the amount of fuel swelling if the helium stays fixed in the fuel plate and estimates the amount of helium which diffuses out of the fuel plate into the fuel plenum assuming the helium does not remain fixed in the fuel plate but can diffuse to the plenum and possibly through the cladding. Since the literature is not clear as to which possibility occurs, as with Schroedinger's cat, both possibilities are analyzed. The paper concludes that (1) if the gas generated is fixed in the fuel, then the fuel swelling it can cause would not cause any fuel failure and (2) if the helium does diffuse out of the fuel (in accordance diffusivities estimated from the literature), then it is unlikely that fuel element bulging will occur. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Solbrig, Charles W.; Pope, Chad L.; Andrus, Jason P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Solbrig, CW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM charles.solbrig@inl.gov FU U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work is supported by the U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 13 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD JUL PY 2014 VL 74 BP 251 EP 262 DI 10.1016/j.ijheatmasstransfer.2014.03.006 PG 12 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA AI2NV UT WOS:000336696100024 ER PT J AU Aguirre, BA Zubia, D Ordonez, R Anwar, F Prieto, H Sanchez, CA Salazar, MT Pimentel, AA Michael, JR Zhou, XW Mcclure, JC Nielson, GN Cruz-Campa, JL AF Aguirre, Brandon A. Zubia, David Ordonez, Rafael Anwar, Farhana Prieto, Heber Sanchez, Carlos A. Salazar, Maria T. Pimentel, Alejandro. A. Michael, Joseph R. Zhou, Xiaowang Mcclure, John C. Nielson, Gregory N. Cruz-Campa, Jose L. TI Selective Growth of CdTe on Nano-patterned CdS via Close-Space Sublimation SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE CdTe; solar cells; close space sublimation; nanoheteroepitaxy; selective growth ID VAPOR-PHASE EPITAXY; SOLAR-CELLS AB Selective-area deposition of CdTe on CdS via close-space sublimation is used to study the effect of window size (2 mu m and 300 nm) on grain growth. The basic fabrication procedures for each of the layers (CdS, SiO2, and CdTe) and for achieving selective-area growth are presented. Selective-area growth of both micro- and nano-scale CdTe islands on CdS substrates using close-spaced sublimation is demonstrated. Scanning electron microscopy and electron backscatter diffraction microstructure analysis show that the micro-scale CdTe islands remain polycrystalline. However, when the island size is reduced to 300 nm, single crystal CdTe can be achieved within the windows. The CdTe grains were most often in the (101) orientation for both the micro- and nano-sized CdTe islands. C1 [Aguirre, Brandon A.; Zubia, David; Ordonez, Rafael; Anwar, Farhana; Prieto, Heber; Sanchez, Carlos A.; Mcclure, John C.] Univ Texas El Paso, El Paso, TX 79968 USA. [Salazar, Maria T.] Sandia Natl Labs, MESAFAB Operat, Albuquerque, NM 87185 USA. [Pimentel, Alejandro. A.; Michael, Joseph R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zhou, Xiaowang] Sandia Natl Labs, Livermore, CA USA. [Aguirre, Brandon A.; Nielson, Gregory N.; Cruz-Campa, Jose L.] Sandia Natl Labs, MEMS Technol, Albuquerque, NM 87185 USA. RP Aguirre, BA (reprint author), Univ Texas El Paso, El Paso, TX 79968 USA. EM baaguirre@miners.utep.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Science Foundation [ECS-0335765]; National Institute of Nano Engineering (NINE); Solar Economy Integrative Graduate Education Research Traineeship (SEIGERT), NSF [DGE-0903670]; Solar Economy Integrative Graduate Education Research Traineeship (SEIGERT), DOE [DE-EE0005958] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U. S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was performed in part at the Microelectronics Research Center at UT Austin, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation under award no. ECS-0335765. This work is sponsored by the National Institute of Nano Engineering (NINE) and the Solar Economy Integrative Graduate Education Research Traineeship (SEIGERT), NSF award DGE-0903670, and DOE award DE-EE0005958. NR 21 TC 7 Z9 7 U1 1 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2014 VL 43 IS 7 BP 2651 EP 2657 DI 10.1007/s11664-014-3104-7 PG 7 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA AI3WT UT WOS:000336796700024 ER PT J AU Reina, C Conti, S AF Reina, C. Conti, S. TI Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of F=(FFP)-F-e SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Crystal plasticity; Finite kinematics; Dislocation density tensor ID SINGLE-CRYSTALS; STRUCTURED DEFORMATIONS; CONTINUUM THEORY; DISLOCATIONS; ENERGY; ELASTOPLASTICITY; INCOMPATIBILITY; DECOMPOSITION; ENERGETICS; MECHANICS AB The plastic component of the deformation gradient plays a central role in finite kinematic models of plasticity. However, its characterization has been the source of extended debates in the literature and many important issues still remain unresolved. Some examples are the micromechanical understanding of F = (FFp)-F-e with multiple active slip systems, the uniqueness of the decomposition, or the characterization of the plastic deformation without reference to the so-called intermediate configuration. In this paper, we shed some light to these issues via a two-dimensional kinematic analysis of the plastic deformation induced by discrete slip surfaces and the corresponding dislocation structures. In particular, we supply definitions for the elastic and plastic components of the deformation gradient as a function of the active slip systems without any a priori assumption on the decomposition of the total deformation gradient. These definitions are explicitly and uniquely given from the microstructure and do not make use of any unrealizable intermediate configuration. The analysis starts from a semi-continuous mathematical description of the deformation at the microscale, where the displacements are considered continuous everywhere in the domain except at the discrete slip surfaces, over which there is a displacement jump. At this scale, where the microstructure is resolved, the deformation is uniquely characterized from purely kinematic considerations and the elastic and plastic components of the deformation gradient can be defined based on physical arguments. These quantities are then passed to the continuous limit via homogenization, i.e. by increasing the number of slip surfaces to infinity and reducing the lattice parameter to zero. This continuum limit is computed for several illustrative examples, where the well-known multiplicative decomposition of the total deformation gradient is recovered. Additionally, by similar arguments, an expression of the dislocation density tensor is obtained as the limit of discrete dislocation densities which are well characterized within the semi-continuous model. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Reina, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Reina, C.; Conti, S.] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany. [Reina, C.] Univ Penn, Philadelphia, PA 19104 USA. RP Reina, C (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM creina@seas.upenn.edu RI Conti, Sergio/B-3214-2009 OI Conti, Sergio/0000-0001-7987-9174 FU Hausdorff Center for Mathematics; Deutsche Forschungsgemeinschaft [Forschergruppe 797, CO 304/4-2]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors acknowledge support from the Hausdorff Center for Mathematics and the Deutsche Forschungsgemeinschaft through Forschergruppe 797, project CO 304/4-2. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 41 TC 16 Z9 16 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD JUL PY 2014 VL 67 BP 40 EP 61 DI 10.1016/j.jmps.2014.01.014 PG 22 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA AI2PE UT WOS:000336699700005 ER PT J AU Hopkins, JB Vericella, JJ Harvey, CD AF Hopkins, Jonathan B. Vericella, John J. Harvey, Christopher D. TI Modeling and generating parallel flexure elements SO PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY LA English DT Article DE Flexure elements; Compliant members; Flexible joints; Elements of constraint; Flexure systems; Screw theory; Freedom and Constraint Topologies; FACT ID DEGREE-OF-FREEDOM; THERMAL-EXPANSION; SYSTEM CONCEPTS AB This work introduces the principles necessary to model and generate parallel flexure elements (i.e., compliant members or flexible joints) that may be used to synthesize next-generation precision flexure systems. These principles are extensions of the Freedom and Constraint Topologies (FACT) synthesis approach, which utilizes geometric shapes to help designers synthesize flexure systems that achieve desired degrees of freedom (DOFs). Prior to this paper, FACT was limited to the design of flexure systems that consisted primarily of simple wire or blade flexure elements only. In this paper, the principles are introduced that enable designers to use the same shapes of FACT to synthesize parallel flexure elements of any geometry, including new and often irregularly-shaped elements (e.g., hyperboloids or hyperbolic paraboloids). The ability to recognize such elements within the shapes of FACT, therefore, enables designers to consider a larger body of solution options that satisfy a broader range of kinematic, elastomechanical, and dynamic design requirements. Example flexure systems that consist of flexure elements, generated using this theory, are provided as case studies. (c) 2014 Elsevier Inc. All rights reserved. C1 [Hopkins, Jonathan B.; Vericella, John J.; Harvey, Christopher D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Hopkins, JB (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM jonathanbhopkins@gmail.com FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-614192]; DARPA's Materials; Controlled Microstructural Architecture program in the Defense Sciences Office, Program Manager Judah Goldwasser FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-614192. Support from DARPA's Materials with Controlled Microstructural Architecture program in the Defense Sciences Office, Program Manager Judah Goldwasser, is gratefully acknowledged. NR 32 TC 3 Z9 3 U1 0 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0141-6359 EI 1873-2372 J9 PRECIS ENG JI Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. PD JUL PY 2014 VL 38 IS 3 BP 525 EP 537 DI 10.1016/j.precisioneng.2014.02.001 PG 13 WC Engineering, Multidisciplinary; Engineering, Manufacturing; Nanoscience & Nanotechnology; Instruments & Instrumentation SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation GA AI3OC UT WOS:000336770800009 ER PT J AU Barnette, AL Ohlhausen, JA Dugger, MT Kim, SH AF Barnette, Anna L. Ohlhausen, J. Anthony Dugger, Michael T. Kim, Seong H. TI Humidity Effects on In Situ Vapor Phase Lubrication with n-Pentanol SO TRIBOLOGY LETTERS LA English DT Article DE Nanotribology; Boundary lubrication chemistry; FTIR; Vapor phase lubrication ID SILICON-OXIDE; ADSORPTION-ISOTHERM; MICROELECTROMECHANICAL SYSTEMS; AMBIENT CONDITIONS; CAPILLARY FORCE; SURFACE; WATER; ADHESION; LIQUID; FRICTION AB The effect of water vapor on n-pentanol vapor phase lubrication (VPL) was studied with a microelectromechanical system (MEMS) side-wall tribometer, a pin-on-disc tribometer, and attenuated total reflection infrared (ATR-IR) spectroscopy. The n-pentanol vapor pressure was fixed at 50 % relative to its saturation vapor pressure (P (sat) = similar to 2.2 Torr at room temperature), which is sufficient to maintain a monolayer of n-pentanol on a SiO2 surface in a dry Ar environment. As the relative humidity (RH) was increased from zero to 30 %, ATR-IR measurements showed that the water adsorption on the surface increases and the adsorbed pentanol thickness decreases by 60 %. These changes in the adsorption isotherm were manifested as higher, and more scattered friction coefficients observed during the MEMS tribometer operation. The maximum RH tolerance appeared to be 25-30 % RH above which the MEMS tribometer failed to operate reliably. In contrast, the n-pentanol VPL efficiency was not affected significantly during the macro-scale pin-on-disc tribometer tests. These results imply that the friction behavior of the asperity contacts in MEMS is more susceptible to co-adsorption of water than the friction behavior of macro-scale contacts. C1 [Barnette, Anna L.; Kim, Seong H.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Barnette, Anna L.; Kim, Seong H.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Ohlhausen, J. Anthony; Dugger, Michael T.] Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA. RP Kim, SH (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. EM mtdugge@sandia.gov; shk10@psu.edu FU National Science Foundation [CMMI-1000021]; Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was financially supported by the National Science Foundation (Grant No. CMMI-1000021) and Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 30 TC 5 Z9 5 U1 4 U2 12 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 EI 1573-2711 J9 TRIBOL LETT JI Tribol. Lett. PD JUL PY 2014 VL 55 IS 1 BP 177 EP 186 DI 10.1007/s11249-014-0345-9 PG 10 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA AI3AB UT WOS:000336729400018 ER PT J AU Bonvini, M Sohn, MD Granderson, J Wetter, M Piette, MA AF Bonvini, Marco Sohn, Michael D. Granderson, Jessica Wetter, Michael Piette, Mary Ann TI Robust on-line fault detection diagnosis for HVAC components based on nonlinear state estimation techniques SO APPLIED ENERGY LA English DT Article DE Fault detection and diagnosis; Bayesian Updating; Chiller plant faults; Unscented Kalman filtering ID QUANTITATIVE MODEL; BUILDING SYSTEMS; PART II; STRATEGY; PROGNOSTICS AB This work presents a robust and computationally efficient algorithm for both whole-building and component-level energy fault detection and diagnosis (FDD). The algorithm is able to provide reliable estimation of multiple and simultaneous fault conditions, even in the presence of noisy and sometimes erroneous sensor data, and to provide uncertainty estimation. The algorithm can be used to provide such outputs as the probability of a fault, the likely cause(s), and the expected consequences of the fault(s) on energy use. The approach is based on an advanced Bayesian nonlinear state estimation technique called Unscented Kalman Filtering, but with our addition of a back-smoothing method that provides fast and robust FDD for common building use cases. The approach is presented and demonstrated for detecting energy and hydraulic faults in a chiller plant. The model of the chiller plant is a subsystem of an actual chiller plant, calibrated to real data. The algorithm can detect common faults, such as (1) energy faults (e.g., the chiller is not working properly, or far from its nominal condition), (2) functional faults caused by issues in the compressor and (3) occlusions in the valves that may reduce the water flow rate through the condenser and evaporator water loop. It is also shown that estimates of uncertainty are consistent with the error in the synthetic data, and can be updated as new data stream in from sensors. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Bonvini, Marco; Granderson, Jessica; Wetter, Michael; Piette, Mary Ann] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Dept, Berkeley, CA 94720 USA. [Sohn, Michael D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Berkeley, CA 94720 USA. RP Sohn, MD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Dept, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mdsohn@lbl.gov FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; US Department of Defense under the ESTCP program FX This research was supported in part by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technologies of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. The research was also supported by the US Department of Defense under the ESTCP program. NR 25 TC 19 Z9 19 U1 2 U2 35 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD JUL 1 PY 2014 VL 124 BP 156 EP 166 DI 10.1016/j.apenergy.2014.03.009 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AH7TT UT WOS:000336338800014 ER PT J AU Zimmermann, EA Gludovatz, B Schaible, E Busse, B Ritchie, RO AF Zimmermann, Elizabeth A. Gludovatz, Bernd Schaible, Eric Busse, Bjoern Ritchie, Robert O. TI Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates SO BIOMATERIALS LA English DT Article DE Bone; Strain rate; Fracture toughness; Plasticity; X-ray diffraction ID FATIGUE-CRACK-PROPAGATION; MECHANICAL-PROPERTIES; COMPACT-BONE; CEMENT LINE; BOVINE BONE; TOUGHNESS; COLLAGEN; DEFORMATION; NANOSCALE; DENSITY AB While most fracture-mechanics investigations on bone have been performed at low strain rates, physiological fractures invariably occur at higher loading rates. Here, at strain rates from 10(-5) to 10(-1) s(-1), we investigate deformation and fracture in bone at small length-scales using in situ small-angle x-ray scattering (SAXS) to study deformation in the mineralized collagen fibrils and at the microstructural level via fracture-mechanics experiments to study toughening mechanisms generating toughness through crack-tip shielding. Our results show diminished bone toughness at increasing strain rates as cracks penetrate through the osteons at higher strain rates instead of deflecting at the cement lines, which is a prime toughening mechanism in bone at low strain rates. The absence of crack deflection mechanisms at higher strain rates is consistent with lower intrinsic bone matrix toughness. In the SAXS experiments, higher fibrillar strains at higher strain rates suggest less inelastic deformation and thus support a lower intrinsic toughness. The increased incidence of fracture induced by high strain rates can be associated with a loss in toughness in the matrix caused by a strain rate induced stiffening of the fibril ductility, Le., a "locking-up" of the viscous sliding and sacrificial bonding mechanisms, which are the origin of inelastic deformation (and toughness) in bone at small length-scales. Published by Elsevier Ltd. C1 [Zimmermann, Elizabeth A.; Gludovatz, Bernd; Busse, Bjoern; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Schaible, Eric] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Expt Syst Grp, Berkeley, CA 94720 USA. [Busse, Bjoern] Univ Med Ctr, Dept Osteol & Biomech, Hamburg, Germany. [Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM RORitchie@lbl.gov RI Ritchie, Robert/A-8066-2008; Zimmermann, Elizabeth/A-4010-2015; Busse, Bjorn/O-8462-2016; OI Ritchie, Robert/0000-0002-0501-6998; Gludovatz, Bernd/0000-0002-2420-3879; Busse, Bjorn/0000-0002-3099-8073; Zimmermann, Elizabeth/0000-0001-9927-3372 FU National Institute of Health (NIH/NIDCR) [5R01 DE015633]; Emmy Noether program of the German Research Foundation (DFG) [BU 2562/2-1]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Institute of Health (NIH/NIDCR) under grant no. 5R01 DE015633 to the Lawrence Berkeley National Laboratory (LBNL). BB was supported by the Emmy Noether program of the German Research Foundation (DFG) under grant number BU 2562/2-1. We acknowledge the use of the x-ray synchrotron beamline 7.3.3 (SAXS/WAXD) at the Advanced Light Source (ALS) at LBNL, which is funded by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The authors wish to thank Dr. Tony Tomsia at LBNL for his support. NR 61 TC 22 Z9 22 U1 6 U2 55 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 EI 1878-5905 J9 BIOMATERIALS JI Biomaterials PD JUL PY 2014 VL 35 IS 21 BP 5472 EP 5481 DI 10.1016/j.biomaterials.2014.03.066 PG 10 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA AH7WL UT WOS:000336346000006 PM 24731707 ER PT J AU Basu, A Sanford, RA Johnson, TM Lundstrom, CC Loffler, FE AF Basu, Anirban Sanford, Robert A. Johnson, Thomas M. Lundstrom, Craig C. Loeffler, Frank E. TI Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID SULFATE-REDUCING BACTERIA; MASS-DEPENDENT FRACTIONATION; ANAEROMYXOBACTER-DEHALOGENANS; MICROBIAL REDUCTION; CHROMIUM ISOTOPES; ELECTRON-TRANSFER; U-238/U-235; GROUNDWATER; RATIOS; CR(VI) AB We experimentally determined the magnitude of uranium isotopic fractionation induced by U(VI) reduction by metal reducing bacterial isolates. Our results indicate that microbial U(VI) reduction induces isotopic fractionation; heavier isotopes (i.e., U-238) partition into the solid U(IV) products. The magnitudes of isotopic fractionation (expressed as epsilon = 1000 parts per thousand * (alpha-1)) for U-238/U-235 were 0.68 parts per thousand +/- 0.05 parts per thousand and 0.99 parts per thousand +/- 0.12 parts per thousand for Geobacter sulfurreducens strain PCA and strain IFRC-N, respectively. The epsilon values for Anaeromyxobacter dehalogenans strain FRC-W, strain FRC-R5, a novel Shewanella isolate, and Desulfitobacterium sp. strain Viet1 were 0.72 parts per thousand +/- 0.15 parts per thousand, 0.99 parts per thousand +/- 0.12 parts per thousand, 0.96 parts per thousand +/- 0.16 parts per thousand and 0.86 parts per thousand +/- 0.06 parts per thousand, respectively. Our results show that the maximum epsilon values of similar to 1.0 parts per thousand were obtained with low biomass (similar to 10(7) cells/mL) and low electron donor concentrations (similar to 500 mu M). These results provide an initial assessment of U-238/U-235 shifts induced by microbially-mediated U(VI) reduction, which is needed as U-238/U-235 data are increasingly applied as redox indicators in various geochemical settings. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Basu, Anirban] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Sanford, Robert A.; Johnson, Thomas M.; Lundstrom, Craig C.] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Basu, A (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 483 McCone Hall, Berkeley, CA 94720 USA. EM anirbanbasu@berkeley.edu RI Basu, Anirban/P-5048-2016 OI Basu, Anirban/0000-0002-4905-9156 FU US Department of Energy, Office of Science - Subsurface Biogeochemical Research Program [DE-SC0001281] FX This material is based upon work supported by US Department of Energy, Office of Science within the Subsurface Biogeochemical Research Program under grant DE-SC0001281. We thank three anonymous reviewers for their comments, which greatly improved the quality of this work. NR 62 TC 28 Z9 29 U1 7 U2 47 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2014 VL 136 BP 100 EP 113 DI 10.1016/j.gca.2014.02.041 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AH9SG UT WOS:000336481800007 ER PT J AU Lee, JH Zachara, JM Fredrickson, JK Heald, SM McKinley, JP Plymale, AE Resch, CT Moore, DA AF Lee, Ji-Hoon Zachara, John M. Fredrickson, James K. Heald, Steve M. McKinley, James P. Plymale, Andrew E. Resch, Charles T. Moore, Dean A. TI Fe(II)- and sulfide-facilitated reduction of Tc-99(VII) O-4(-) in microbially reduced hyporheic zone sediments SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY-ABSORPTION; HANFORD SITE; VADOSE ZONE; PERTECHNETATE IMMOBILIZATION; TECHNETIUM SPECIATION; SUBSURFACE SEDIMENTS; HYDROGEN-SULFIDE; URANIUM; RIVER; IRON AB Redox-reactive, biogeochemical phases generated by reductive microbial activity in hyporheic zone sediments from a dynamic groundwater-river interaction zone were evaluated for their ability to reduce soluble pertechnetate [Tc-99(VII) O-4(-)] to less soluble Tc(IV). The sediments were bioreduced by indigenous microorganisms that were stimulated by organic substrate addition in synthetic groundwater with or without sulfate. In most treatments, 20 mu mol L-1 initial aqueous Tc(VII) was reduced to near or below detection (3.82 X 10(-9) mol L-1) over periods of days to months in suspensions of variable solids concentrations. Native sediments containing significant lithogenic Fe(II) in various phases were, in contrast, unreactive with Tc(VII). The reduction rates in the bioreduced sediments increased with increases in sediment mass, in proportion to weak acid-extractable Fe(II) and sediment-associated sulfide (AVS). The rate of Tc(VII) reduction was first order with respect to both aqueous Tc(VII) concentration and sediment mass, but correlations between specific reductant concentrations and reaction rate were not found. X-ray microprobe measurements revealed a strong correlation between Tc hot spots and Fe-containing mineral particles in the sediment. However, only a portion of Fe-containing particles were Tc-hosts. The Tc-hot spots displayed a chemical signature (by EDXRF) similar to pyroxene. The application of autoradiography and electron microprobe allowed further isolation of Tc-containing particles that were invariably found to be ca 100 mu m aggregates of primary mineral material embedded within a fine-grained phyllosilicate matrix. EXAFS spectroscopy revealed that the Tc(IV) within these were a combination of a Tc(IV) O-2-like phase and Tc(IV)-Fe surface clusters, with a significant fraction of a TcSx-like phase in sediments incubated with SO42-. AVS was implicated as a more selective reductant at low solids concentration even though its concentration was below that required for stoichiometric reduction of Tc(VII). These results demonstrate that composite mineral aggregates may be redox reaction centers in coarse-textured hyporheic zone sediments regardless of the dominant anoxic biogeochemical processes. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lee, Ji-Hoon; Zachara, John M.; Fredrickson, James K.; McKinley, James P.; Plymale, Andrew E.; Resch, Charles T.; Moore, Dean A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Heald, Steve M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Zachara, JM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM john.zachara@pnnl.gov FU Subsurface Biogeochemical Research Program (SBR); Office of Biological and Environmental Research (OBER); US DOE; PNNL Scientific Focus Area (SFA); Department of Energy's Office of Biological and Environmental Research; Office of Basic Energy Sciences, US DOE [DE-AC02-06CH11357] FX This research was supported by the Subsurface Biogeochemical Research Program (SBR), Office of Biological and Environmental Research (OBER), US DOE; and is a contribution of the PNNL Scientific Focus Area (SFA). Subsurface sediment samples were provided courtesy of the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area. Selected analyses were performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. PNNL is operated for the DOE by Battelle. XAS analyses were performed at the Advanced Photon Source supported by Office of Basic Energy Sciences, US DOE under Contract DE-AC02-06CH11357. The reviewers acknowledge, with apprecia-tion, three insightful reviews that improved the quality of this contribution. NR 49 TC 11 Z9 11 U1 14 U2 76 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2014 VL 136 BP 247 EP 264 DI 10.1016/j.gca.2013.08.017 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AH9SG UT WOS:000336481800015 ER PT J AU Bellomo, N Brezzi, F Manzini, G AF Bellomo, N. Brezzi, F. Manzini, G. TI Recent techniques for PDE discretizations on polyhedral meshes SO MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES LA English DT Article DE Polygonal meshes; polyhedral meshes; Mimetic Finite Differences; Virtual Element Methods; Finite Volumes; discontinuous Galerkin methods ID MIMETIC FINITE-DIFFERENCES; ELEMENT-METHOD; DIFFERENCE METHOD AB This brief paper is an introduction to the papers published in a special issue devoted to survey on recent techniques for discretizing Partial Differential Equations on general polygonal and polyhedral meshes. The number of different techniques to deal with discretizations on polygonal and polyhedral meshes is quite huge, and their history is quite long. Here we concentrate on the most recent techniques, including Mimetic Finite Differences, Virtual Element Methods, and the recent developments, in this direction, of Finite Volumes and Discontinuous Galerkin Methods. C1 [Bellomo, N.] Politecn Torino, Dept Math Sci, I-10129 Turin, Italy. [Brezzi, F.] IUSS, I-27100 Pavia, Italy. [Brezzi, F.] IMATI CNR, I-27100 Pavia, Italy. [Manzini, G.] Los Alamos Natl Lab, Appl Math & Plasma Phys Grp, Div Theoret, Los Alamos, NM 87545 USA. RP Brezzi, F (reprint author), IUSS, Via Ferrata 5, I-27100 Pavia, Italy. EM nicola.bellomo@polito.it; brezzi@imati.cnr.it; gmanzini@lanl.gov RI Brezzi, Franco/D-4362-2009; Bellomo, Nicola/B-3431-2010; OI Brezzi, Franco/0000-0003-4715-5475; Bellomo, Nicola/0000-0002-5989-1608; Manzini, Gianmarco/0000-0003-3626-3112 NR 21 TC 0 Z9 0 U1 0 U2 11 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2025 EI 1793-6314 J9 MATH MOD METH APPL S JI Math. Models Meth. Appl. Sci. PD JUL PY 2014 VL 24 IS 8 SI SI BP 1453 EP 1455 DI 10.1142/S0218202514030018 PG 3 WC Mathematics, Applied SC Mathematics GA AH1ZS UT WOS:000335921100001 ER PT J AU Gyrya, V Lipnikov, K Manzini, G Svyatskiy, D AF Gyrya, Vitaliy Lipnikov, Konstantin Manzini, Gianmarco Svyatskiy, Daniil TI M-Adaptation in the mimetic finite difference method SO MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES LA English DT Article DE Mimetic discretization; unstructured polyhedral meshes; discrete maximum principles; numerical optimization ID DISCRETE MAXIMUM PRINCIPLE; ANISOTROPIC DIFFUSION-PROBLEMS; MULTIPOINT FLUX APPROXIMATION; TENSOR ARTIFICIAL VISCOSITY; ELLIPTIC PROBLEMS; POLYGONAL MESHES; POLYHEDRAL MESHES; VOLUME METHOD; TOPOLOGY OPTIMIZATION; UNSTRUCTURED GRIDS AB The mimetic finite difference method produces a family of schemes with equivalent properties such as the stencil size, stability region, and convergence order. Each member of this family is defined by a set of parameters which can be chosen locally for every mesh element. The number of parameters depends on the geometry of a particular mesh element. M-Adaptation is a new adaptation methodology that identifies a member of this family with additional (superior) properties compared to the other schemes in the family. We analyze the enforcement of the discrete maximum principles for the diffusion equation in the primal and dual forms, the reduction of numerical dispersion and anisotropy for the acoustic wave equation, and the optimization of the performance of multi-grid solvers. C1 [Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco; Svyatskiy, Daniil] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. [Manzini, Gianmarco] CNR, Ist Matemat Appl & Tecnol Informat, I-27100 Pavia, Italy. RP Manzini, G (reprint author), Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. EM gyrya@lanl.gov; lipnikov@lanl.gov; gmanzini@lanl.gov; dasvyat@lanl.gov OI Manzini, Gianmarco/0000-0003-3626-3112; Gyrya, Vitaliy/0000-0002-5083-8878 FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research FX This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. The authors acknowledge support of the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research. The model in Sec. 6 was provided by the DOE Office of Environmental Management Advanced Simulation Capability for Environmental Management (ASCEM) Program. 128 NR 129 TC 7 Z9 7 U1 0 U2 7 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2025 EI 1793-6314 J9 MATH MOD METH APPL S JI Math. Models Meth. Appl. Sci. PD JUL PY 2014 VL 24 IS 8 SI SI BP 1621 EP 1663 DI 10.1142/S0218202514400053 PG 43 WC Mathematics, Applied SC Mathematics GA AH1ZS UT WOS:000335921100006 ER PT J AU Manzini, G Russo, A Sukumar, N AF Manzini, Gianmarco Russo, Alessandro Sukumar, N. TI New perspectives on polygonal and polyhedral finite element methods SO MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES LA English DT Article DE Wachspress basis functions; barycentric finite elements; virtual element method; numerical integration; consistency ID TENSOR ARTIFICIAL VISCOSITY; ARBITRARY PLANAR POLYGONS; MOVING LEAST-SQUARES; DIFFERENCE METHOD; ELLIPTIC PROBLEMS; DIFFUSION-PROBLEMS; MIMETIC DISCRETIZATION; TOPOLOGY OPTIMIZATION; CONVEX POLYGONS; SOLID MECHANICS AB Generalized barycentric coordinates such as Wachspress and mean value coordinates have been used in polygonal and polyhedral finite element methods. Recently, mimetic finite difference schemes were cast within a variational framework, and a consistent and stable finite element method on arbitrary polygonal meshes was devised. The method was coined as the virtual element method (VEM), since it did not require the explicit construction of basis functions. This advance provides a more in-depth understanding of mimetic schemes, and also endows polygonal-based Galerkin methods with greater flexibility than three-node and four-node finite element methods. In the VEM, a projection operator is used to realize the decomposition of the stiffness matrix into two terms: a consistent matrix that is known, and a stability matrix that must be positive semi-definite and which is only required to scale like the consistent matrix. In this paper, we first present an overview of previous developments on conforming polygonal and polyhedral finite elements, and then appeal to the exact decomposition in the VEM to obtain a robust and efficient generalized barycentric coordinate-based Galerkin method on polygonal and polyhedral elements. The consistent matrix of the VEM is adopted, and numerical quadrature with generalized barycentric coordinates is used to compute the stability matrix. This facilitates post-processing of field variables and visualization in the VEM, and on the other hand, provides a means to exactly satisfy the patch test with efficient numerical integration in polygonal and polyhedral finite elements. We present numerical examples that demonstrate the sound accuracy and performance of the proposed method. For Poisson problems in R-2 and R-3, we establish that linearly complete generalized barycentric interpolants deliver optimal rates of convergence in the L-2-norm and the H-1-seminorm. C1 [Manzini, Gianmarco] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. [Manzini, Gianmarco; Russo, Alessandro] CNR, Ist Matemat Appl & Tecnol Informat E Magenes, I-27100 Pavia, Italy. [Russo, Alessandro] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20153 Milan, Italy. [Sukumar, N.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. RP Manzini, G (reprint author), Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. EM gmanzini@lanl.gov; alessandro.russo@unimib.it; nsukumar@ucdavis.edu RI Sukumar, N/B-1660-2008; Russo, Alessandro/F-6081-2012; OI Russo, Alessandro/0000-0002-6878-402X; Manzini, Gianmarco/0000-0003-3626-3112 FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics; National Science Foundation [CMMI-1334783] FX The work of G. M. was partially supported by the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics. N.S. gratefully acknowledges the research support of the National Science Foundation through Contract Grant CMMI-1334783 to the University of California at Davis. N.S. also thanks Michael Floater, Andrew Gillette and Kai Hormann for many helpful discussions. NR 136 TC 30 Z9 30 U1 6 U2 21 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2025 EI 1793-6314 J9 MATH MOD METH APPL S JI Math. Models Meth. Appl. Sci. PD JUL PY 2014 VL 24 IS 8 SI SI BP 1665 EP 1699 DI 10.1142/S0218202514400065 PG 35 WC Mathematics, Applied SC Mathematics GA AH1ZS UT WOS:000335921100007 ER PT J AU Shim, YS Zhang, L Kim, DH Kim, YH Choi, YR Nahm, SH Kang, CY Lee, W Jang, HW AF Shim, Young-Seok Zhang, Lihua Kim, Do Hong Kim, Yeon Hoo Choi, You Rim Nahm, Seung Hoon Kang, Chong-Yun Lee, Wooyoung Jang, Ho Won TI Highly sensitive and selective H-2 and NO2 gas sensors based on surface-decorated WO3 nanoigloos SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE WO3; Nanoigloos; Surface decoration; Metal nanoparticles; Sensitization ID ELECTRONIC NOSE; SENSING PROPERTIES; THIN-FILMS; CATALYSIS; SILVER; NANOSTRUCTURES; TEMPERATURE AB WO3 nanoigloos decorated with Ag-, Pd-. and Au nanoparticles are fabricated by soft-template method and self-agglomeration of metal films. The responses of WO3 nanoigloos decorated with metal nanoparticies to various gases such as NO2, CH3COCH3, C2H5OH, and H-2 are much higher than those of bare WO3 nanoigloos. According to the surface decoration, WO3 nanigloos show significantly different behaviors in the response enhancement, revealing that Pd-decorated WO3 nanoigloos exhibit the highest response to H-2 together with fast response time to H-2,H- C2H5OH, and CH3COCH3 (below 10s),Au-decorated WO3 nanoigloos exhibit the highest response to NO2. The catalytic effect of Ag is relatively weaker than Pd and Au nanoparticles, however, it exhibit the fastest response time to NO2. These are attributed to not only the varied catalytic activities of the metal nanoparticles, but also the different work function energies of them. Our results show that highly sensitive and selective WO3 nanoigloos decorated with metal nanoparticles can be an effective platform to fabricate an electronic nose for the further application of semiconducting metal oxide gas sensors. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lee, Wooyoung] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea. [Shim, Young-Seok; Lee, Wooyoung] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea. [Shim, Young-Seok; Kim, Do Hong; Kim, Yeon Hoo; Choi, You Rim; Jang, Ho Won] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 151744, South Korea. [Kang, Chong-Yun] Korea Inst Sci & Technol, Ctr Elect Mat, Seoul 136791, South Korea. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Nahm, Seung Hoon] Korea Res Inst Stand & Sci, Ctr Energy Mat Metrol, Taejon 305340, South Korea. Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 136701, South Korea. RP Lee, W (reprint author), Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea. EM wooyouong@yonsei.ac.kr; hwjang@snu.ac.kr RI Jang, Ho Won/D-9866-2011; OI Jang, Ho Won/0000-0002-6952-7359; Kang, Chong-Yun/0000-0002-4516-8160 FU Minstry of science, ICT AMP;Future Planning as the Globlal Frontier Project; Outstanding Young Researcher Program,; National Research Foundation of Korea; Korea Institure of science and Techmology; National Research Foundation of Korea (NRF) [2009-0093823]; U.S. Department of Energy, Office of Basic Energy Sciences, [DE-AC02-98CH10886] FX This work was financially supported by the Center for Integrated Smart Sensors funded by the Ministry of science, ICT & Future Planning as the Global Frontier Project, the Outstanding Young Researcher Program, and the National Research Foundation of Korea and a research program of the Korea Institute of science and Technology. WL is grateful for the support of priority Research Centers Program (2009-0093823) though the National Research Foundation of Korea (NRF). TEM Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory. which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences,under Contract No.DE-AC02-98CH10886. NR 38 TC 20 Z9 21 U1 6 U2 78 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JUL PY 2014 VL 198 BP 294 EP 301 DI 10.1016/j.snb.2014.03.073 PG 8 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA AG7EE UT WOS:000335580100043 ER PT J AU Chen, CF Marksteiner, QR Reiten, MR Wynn, TA Guidry, DR AF Chen, Ching-Fong Marksteiner, Quinn R. Reiten, Matthew R. Wynn, Thomas A. Guidry, Dennis R. TI Lamination of magnesium oxide spacers to barium strontium zirconium titanate ceramics SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID SOLITON GENERATION; FREQUENCY AB We propose an innovative idea to bond the dielectric barium strontium zirconium titanate (BSTZO) plates with magnesium oxide (MgO) as the spacers to achieve a hermetic module without any air gaps between the dielectric and the spacer. The gold metallization can be applied across the whole assembly to create an integrated electrode. The gold metallization also eliminates pressure contact by external copper plates assemblies, which are required to achieve good contacts between the copper plates and the metallized surfaces of the BSTZO. The MgO spacers are processed using a dry-pressing and pressureless-sintering method. The thermal expansion coefficient (CTE) of BSTZO and MgO spacer was measured. In addition to matching the CTE between BSTZO dielectric and the MgO spacer, it is also critical to develop a good bonding material with CTE matching to BSTZO and MgO spacer. The effect of CTE for various bonding compositions on the dielectric properties was thoroughly studied and reported. The mechanism explaining the high and low dielectric constants for the laminates is proposed and discussed based on the CTE results and their effect on microstructural development. C1 [Chen, Ching-Fong; Wynn, Thomas A.; Guidry, Dennis R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Marksteiner, Quinn R.; Reiten, Matthew R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chen, CF (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM cchen@lanl.gov FU US Department of Energy through the LANL LDRD program; DOE [DE-AC52-06NA25396] FX The authors would like to thank Elias N. Pulliam for measuring the dielectrical properties of some laminates. We gratefully acknowledge the support of the US Department of Energy through the LANL LDRD program for this work. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 14 TC 1 Z9 1 U1 0 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD JUL PY 2014 VL 49 IS 14 BP 5218 EP 5226 DI 10.1007/s10853-014-8238-8 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA AG5IC UT WOS:000335451700055 ER PT J AU Hecht, AA Blakeley, RE Martin, WJ Leonard, E AF Hecht, A. A. Blakeley, R. E. Martin, W. J. Leonard, E. TI Comparison of Geant4 and MCNP6 for use in delayed fission radiation simulation SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Fission distribution; Delayed radiation; Monte Carlo; Geant4; MCNP; CINDER ID GAMMA SIGNATURE CALCULATION; NEUTRON-INDUCED FISSION; MONTE-CARLO AB Neutron induced fission fragment distributions and delayed fission radiation are extremely important with reactor applications in fission cross sections and heating. Data on the fragment distributions are sparse so simulations use models or interpolations between known neutron energies. Different simulations perform different treatments of the distributions, and have different capabilities and flexibility in use. MCNP is a typical workhorse for fission simulations and coupled with burn-up codes such as CINDER can provide delayed radiation from fission. Geant4 is an extremely flexible physics based Monte Carlo simulation framework, but is not typically used for fission research. In this work the applicability of Geant4 for delayed fission radiation simulations is examined, with comparison to MCNP6 coupled with the CINDER2008 burn-up code. The Fisher and Engle fission experiment with the Godiva II subcritical assembly as a fission neutron source is used as a test case. Both simulations are adapted from that experiment and simulation results are compared with that experiment. Following Fisher and Engle, photons/fission/sec, MeV/fission/sec, and MeV/photon are examined. For the first two quantities results from both simulation codes are similar and are lower than experimental values, with Geant4 giving a higher value for earlier time bins and MCNP6/CINDER giving a higher value for the later time bins. For the last quantity both simulations are usually within uncertainty of the experimental values, with MCNP6/CINDER values consistently higher than both experimental and Geant4 values. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Hecht, A. A.; Blakeley, R. E.; Martin, W. J.; Leonard, E.] Univ New Mexico, Albuquerque, NM 87131 USA. [Martin, W. J.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Hecht, AA (reprint author), Univ New Mexico, Albuquerque, NM 87131 USA. EM hecht@unm.edu FU DTRA [DTRA01-03-D-0009-0025] FX This work was partially supported through DTRA contract DTRA01-03-D-0009-0025, Modeling and Simulation to Support Systems Development and Assessment for Standoff Detection of Nuclear Materials and through a UNM Junior Faculty Collaborative Research Grant. The authors acknowledge useful discussions on programming with John Perry of both UNM and LANL. NR 22 TC 1 Z9 1 U1 3 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD JUL PY 2014 VL 69 BP 134 EP 138 DI 10.1016/j.anucene.2014.02.004 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AG0LR UT WOS:000335107500017 ER PT J AU Hunt, RD Hickman, RR Ladd-Lively, JL Anderson, KK Collins, RT Collins, JL AF Hunt, R. D. Hickman, R. R. Ladd-Lively, J. L. Anderson, K. K. Collins, R. T. Collins, J. L. TI Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Internal gelation; Uranium oxide microspheres; Cermet fuel AB The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/(tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 mu m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 mu m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide (UOx) microspheres. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Hunt, R. D.; Ladd-Lively, J. L.; Anderson, K. K.; Collins, R. T.; Collins, J. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hickman, R. R.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35802 USA. RP Hunt, RD (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM huntrd@ornl.gov RI Ladd-Lively, Jennifer/I-6305-2016 OI Ladd-Lively, Jennifer/0000-0001-9353-675X NR 18 TC 3 Z9 3 U1 2 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD JUL PY 2014 VL 69 BP 139 EP 143 DI 10.1016/j.anucene.2014.02.003 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AG0LR UT WOS:000335107500018 ER PT J AU Ashley, SF Lindley, BA Parks, GT Nuttall, WJ Gregg, R Hesketh, KW Kannan, U Krishnani, PD Singh, B Thakur, A Cowper, M Talamo, A AF Ashley, S. F. Lindley, B. A. Parks, G. T. Nuttall, W. J. Gregg, R. Hesketh, K. W. Kannan, U. Krishnani, P. D. Singh, B. Thakur, A. Cowper, M. Talamo, A. TI Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Thorium; Nuclear energy; Fuel cycle modelling; Open nuclear fuel cycle; Proliferation resistance ID REACTOR; DESIGN AB In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium-uranium-fuelled (Th-U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to similar to 20% U-235, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory's fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th-U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of similar to 6% in the required uranium ore per kWh was seen for one of the Th-U-fuelled systems compared to the reference U-fuelled system, the other two Th-U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th-U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little merit in incorporating thorium into nuclear energy systems operating with open nuclear fuel cycles. (C) 2014 The Authors. Published by Elsevier Ltd. C1 [Ashley, S. F.; Lindley, B. A.; Parks, G. T.] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. [Nuttall, W. J.] Open Univ, Dept Engn & Innovat, Milton Keynes MK7 6AA, Bucks, England. [Gregg, R.; Hesketh, K. W.] UK Natl Nucl Lab, Preston PR4 0XJ, Lancs, England. [Kannan, U.; Krishnani, P. D.; Singh, B.; Thakur, A.] Bhabha Atom Res Ctr, Reactor Phys Design Div, Bombay 400085, Maharashtra, India. [Cowper, M.] Univ Liverpool, Oliver Lodge Lab, Dept Phys, NTEC, Liverpool L69 7ZE, Merseyside, England. [Talamo, A.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Ashley, SF (reprint author), Open Univ, Dept Engn & Innovat, Milton Keynes MK7 6AA, Bucks, England. EM sfa24@cam.ac.uk OI Ashley, Stephen/0000-0001-5139-2209; talamo, alberto/0000-0001-5685-0483 FU UK Engineering and Physical Sciences Research Council [EP/I018425/1] FX This work is supported by the UK Engineering and Physical Sciences Research Council under Grant No. EP/I018425/1. Two of the authors (SFA and WJN) would like to acknowledge the generous welcome provided by Bhabha Atomic Research Centre during a visit to their facilities. NR 62 TC 8 Z9 8 U1 2 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD JUL PY 2014 VL 69 BP 314 EP 330 DI 10.1016/j.anucene.2014.01.042 PG 17 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AG0LR UT WOS:000335107500036 ER PT J AU Al-Azizi, AA Eryilmaz, O Erdemir, A Kim, SH AF Al-Azizi, Ala' A. Eryilmaz, Osman Erdemir, Ali Kim, Seong H. TI Nano-texture for a wear-resistant and near-frictionless diamond-like carbon SO CARBON LA English DT Article ID DLC FILMS; SUPERLOW-FRICTION; INTERNAL-STRESS; THIN-FILMS; SURFACE-ROUGHNESS; AMORPHOUS-CARBON; ELASTIC-MODULUS; COATINGS; LUBRICATION; HARDNESS AB The effect of nano-scale surface texture on wear resistance of diamond-like carbon 0)14 films was studied using a reciprocating ball-on-fiat tribometer in dry, humid, and liquid water environments. The nano-scale surface texture was produced by depositing similar to 1 gm thick DLC films onto silicon substrates pre-textured with pyramidal wells and polystyrene spheres. The surface roughness of the textured DLC films was about 50 nm in both cases. The friction and wear behavior of the flat and nano-textured DLC films were tested with AISI 440C-grade stainless steel balls at a contact load creating about 360 nm deep Hertzian deformation which is significantly larger than the surface roughness. At this condition, nano-texturing did not affect the friction coefficient, but it significantly reduced the wear of DLC films in dry and humid nitrogen compared to flat DLC. In dry nitrogen, the nanotextured DLC films showed the ultra-low friction without substantial wear of DLC and deposition of thick transfer films onto the counter-surface. The wear reduction appeared to be related to the stress relief in the nano-textured DLC film. In liquid water, surface features on the nano-textured DLC films were diminished due to tribochemical oxidation and material removal at the sliding interface. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Al-Azizi, Ala' A.; Kim, Seong H.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Eryilmaz, Osman; Erdemir, Ali] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Eryilmaz, Osman; Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Kim, SH (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. EM shkim@engr.psu.edu FU National Science Foundation [CMMI-1131128]; U.S. Department of Energy, Basic 'Energy Sciences, Office of Energy Efficiency and Renewable Energy [DE-ACO2-06CH11357] FX This work was supported by the National Science Foundation (Grant No. CMMI-1131128). The authors acknowledged Dr. Shikuan Yang for his help with electron microscope imaging. O.E. and A.E. were supported by the U.S. Department of Energy, Basic 'Energy Sciences, Office of Energy Efficiency and Renewable Energy, under contract #DE-ACO2-06CH11357. NR 67 TC 9 Z9 9 U1 9 U2 102 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD JUL PY 2014 VL 73 BP 403 EP 412 DI 10.1016/j.carbon.2014.03.003 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AG0HK UT WOS:000335096300044 ER PT J AU Shin, SJ Tran, IC Willey, TM van Buuren, T Ilausky, J Biener, MM Worsley, MA Hamza, AV Kucheyev, SO AF Shin, S. J. Tran, I. C. Willey, T. M. van Buuren, T. Ilausky, J. Biener, M. M. Worsley, M. A. Hamza, A. V. Kucheyev, S. O. TI Robust nanoporous alumina monoliths by atomic layer deposition on low-density carbon-nanotube scaffolds SO CARBON LA English DT Article ID SENSING INDENTATION; AEROGELS; SOLIDS AB Synthesis of nanoporous alumina monoliths with controlled morphology and density is a challenge. Here, we demonstrate mechanically robust alumina monoliths synthesized by conformal overcoating of graphitic nanoligaments of low-density carbon-nanotube-based aerogels (CNT-CAs) by using atomic layer deposition. Young's modulus of resultant monoliths increases superlinearly with the monolith density with an exponent of -2.4, defined by the morphology and connectivity of the CNT-CA scaffold. As a result, for a given monolith density, alumina-carbon composites have moduli comparable to those of CNT-CAs and significantly superior to those of pure alumina aerogels reported previously. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Shin, S. J.; Tran, I. C.; Willey, T. M.; van Buuren, T.; Biener, M. M.; Worsley, M. A.; Hamza, A. V.; Kucheyev, S. O.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ilausky, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Shin, SJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM shin5@llnl.gov RI Worsley, Marcus/G-2382-2014; USAXS, APS/D-4198-2013; Tran, Ich/C-9869-2014; Foundry, Molecular/G-9968-2014; Ilavsky, Jan/D-4521-2013; Willey, Trevor/A-8778-2011 OI Worsley, Marcus/0000-0002-8012-7727; Ilavsky, Jan/0000-0003-1982-8900; Willey, Trevor/0000-0002-9667-8830 FU LLNL [DE-AC52-07NA27344]; US DOE [DE-ACO2-05CH11231, DE-ACO2-06CH11357]; National Science Foundation/DOE [NSF/CHE-0822838] FX This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. Transmission electron microscopy experiments were conducted at the National Center for Electron Microscopy, LBNL, which is supported by the US DOE under Contract DE-ACO2-05CH11231. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-ACO2-06CH11357. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/ DOE under Grant No. NSF/CHE-0822838. NR 24 TC 5 Z9 5 U1 3 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD JUL PY 2014 VL 73 BP 443 EP 447 DI 10.1016/j.carbon.2014.03.006 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AG0HK UT WOS:000335096300048 ER PT J AU Abdalla, M Hastings, A Helmy, M Prescher, A Osborne, B Lanigan, G Forristal, D Killi, D Maratha, P Williams, M Rueangritsarakul, K Smith, P Nolan, P Jones, MB AF Abdalla, M. Hastings, A. Helmy, M. Prescher, A. Osborne, B. Lanigan, G. Forristal, D. Killi, D. Maratha, P. Williams, M. Rueangritsarakul, K. Smith, P. Nolan, P. Jones, M. B. TI Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem SO GEODERMA LA English DT Article DE Reduced tillage; Conventional tillage; Cover crop; DNDC model; Greenhouse gas emissions; Future climate ID NITROUS-OXIDE EMISSIONS; SOIL CO2 EFFLUX; FLUXES FOLLOWING TILLAGE; FILLED PORE-SPACE; LOAMY SAND SOIL; CARBON-DIOXIDE; LONG-TERM; CONSERVATION TILLAGE; CROPPING SYSTEM; ORGANIC-MATTER AB Field management activities have significant impacts on greenhouse gas (GHG) emissions from cropland soils. In this study, the effectiveness of combining reduced tillage with a mustard cover crop (RT-CC) to mitigate present and future GHG emissions from a fertilized spring barley field in the southeast of Ireland was assessed. The field site which had a free-draining sandy loam soil with low soil moisture holding capacity, had been managed for three years prior to measurements under two different tillage systems; conventional (CT) and RT-CC. Field measurements of soil CO2, N2O and CH4 emissions, crop biomass, water filled pore space (WFPS), soil temperature and soil nitrate were made to capture both steady state conditions as well as the management events. Field data were used to validate the DNDC (DeNitrification-DeComposition) model and future GHG emissions under two sets of climate projections were predicted. Although fertilizer use was the same for both treatments the RT-CC treatment had significantly (p < 0.05) higher N2O emissions for both present and future climate. However, the inclusion of a cover crop with the RT treatment increased predicted soil organic carbon (SOC), which more than compensated for the higher N2O flux resulting in a lower total GHG balance (TGGB) compared with the CT treatment. Results show that the effectiveness of RT-CC in mitigating GHG emissions will depend crucially on the magnitude of compensatory increases in carbon dioxide uptake by the cover crop that will contribute to a reduction in the total GHG balance. (C) 2014 Elsevier B.V. All rights reserved. C1 [Abdalla, M.; Hastings, A.; Smith, P.] Univ Aberdeen, Sch Biol Sci, Inst Biol & Environm Sci, Aberdeen AB24 3UU, Scotland. [Abdalla, M.; Williams, M.; Rueangritsarakul, K.; Jones, M. B.] Univ Dublin Trinity Coll, Sch Nat Sci, Dept Bot, Dublin 2, Ireland. [Helmy, M.; Osborne, B.; Killi, D.; Maratha, P.] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 4, Ireland. [Prescher, A.] Inst Landscape Syst Anal, Leibniz Ctr Agr Landscape Res ZALF, D-15374 Muncheberg, Germany. [Lanigan, G.] TEAGASC, Johnstown Castle Res Ctr, Wexford, Ireland. [Forristal, D.] TEAGASC, Oak Pk Crops Res Ctr, Oak Pk, Co Carlow, Ireland. [Nolan, P.] Univ Coll Dublin, Meteorol & Climate Ctr, Dublin 4, Ireland. RP Abdalla, M (reprint author), Univ Aberdeen, Sch Biol Sci, Inst Biol & Environm Sci, 23 St Machar Dr, Aberdeen AB24 3UU, Scotland. EM mabdalla@abdn.ac.uk RI Lanigan, Gary/C-6864-2012; Smith, Pete/G-1041-2010 OI Lanigan, Gary/0000-0003-0813-3097; Smith, Pete/0000-0002-3784-1124 FU Irish Department of Agriculture Research Stimulus Fund [07 528] FX This work was funded by the Irish Department of Agriculture Research Stimulus Fund (project no: 07 528) and contributed to the EU FP7 project GHG-Europe. We are grateful to the staff of Teagasc Research Centre, Carlow for facilitating our field work. Pete Smith is a Royal Society-Wolfson Research Merit Award holder. NR 138 TC 6 Z9 6 U1 15 U2 122 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0016-7061 EI 1872-6259 J9 GEODERMA JI Geoderma PD JUL PY 2014 VL 223 BP 9 EP 20 DI 10.1016/j.geoderma.2014.01.030 PG 12 WC Soil Science SC Agriculture GA AG3CA UT WOS:000335292200002 ER PT J AU Chae, KY Ahn, S Bardayan, DW Chipps, KA Manning, B Pain, SD Peters, WA Schmitt, KT Smith, MS Strauss, SY AF Chae, K. Y. Ahn, S. Bardayan, D. W. Chipps, K. A. Manning, B. Pain, S. D. Peters, W. A. Schmitt, K. T. Smith, M. S. Strauss, S. Y. TI Construction of a fast ionization chamber for high-rate particle identification SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Gas-filled ionization chamber; Fast response; High-current heavy ion beams; Particle identification AB A new gas filled ionization chamber for high count rate particle identification has been constructed and commissioned at the Holifielcl Radioactive lon Beam Facility (RIME) at Oak Ridge National Laboratory (ORNL). To enhance the response Lime of the ionization chamber, a design utilizing a tilted entrance window and tilted electrodes was adopted, which is modified from art original design by Kimura et al. [1]. A maximum counting rate of 700,000 particles per second has been achieved. The detector has been used for several radioactive beam measurements performed at the HRIBF. (C) 2014 Elsevier BY. All rights reserved. C1 [Chae, K. Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Chae, K. Y.; Bardayan, D. W.; Chipps, K. A.; Pain, S. D.; Smith, M. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Ahn, S.; Chipps, K. A.; Schmitt, K. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Bardayan, D. W.; Strauss, S. Y.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Chipps, K. A.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Manning, B.; Strauss, S. Y.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Peters, W. A.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Chae, KY (reprint author), Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. EM kchae@skku.edu RI Pain, Steven/E-1188-2011; Peters, William/B-3214-2012; OI Pain, Steven/0000-0003-3081-688X; Peters, William/0000-0002-3022-4924; Chipps, Kelly/0000-0003-3050-1298 FU National Research Foundation of Korea (NRF) - Korea government (MEST) [NRF-2012R1A1A1041763]; US Department of Energy Office of Nuclear Physics [DE-AC05-00OR22725 (ORNL), DE-FG02-96ER40983, DE-SC0001174, DE-FG03-93ER40789]; National Nuclear Security Administration [DE-FG52-08NA28552] FX The authors wish to thank the staff members of the HRIBF for making this work possible. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2012R1A1A1041763), the US Department of Energy Office of Nuclear Physics under Contract nos. DE-AC05-00OR22725 (ORNL), DE-FG02-96ER40983 and DE-SC0001174 (University of Tennessee), DE-FG03-93ER40789 (Colorado School of Mines), and the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement no. DE-FG52-08NA28552. NR 15 TC 5 Z9 5 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2014 VL 751 BP 6 EP 10 DI 10.1016/j.nima.2014.03.016 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AG0WD UT WOS:000335135500002 ER PT J AU Wang, CL Riedel, RA AF Wang, C. L. Riedel, R. A. TI Uniformity measurements and new positioning algorithms for wavelength-shifting fiber neutron detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Wavelength-shifting fiber neutron detector; Neutron diffraction; Quantum noise; Non-uniformity; Positioning algorithm; Gamma-ray sensitivity ID SCINTILLATION CAMERAS; LIGHT AB Wavelength-shifting (WLS) fiber scintillator detectors were successfully installed at two neutron powder diffractometers at the Spallation Neutron Source (SNS). However, they have the following second-order disadvantages: (i) they cannot have both high efficiency and images free of ghosting (position misassignment) concurrently; (ii) the apparent detection efficiency and spatial resolution are not uniform. These issues are related to the diffusion of scintillation photons and the fluctuation in the number of photons (quantum noise) collected by photo-multiplier tubes (PMTs). To mitigate these two issues, we developed two statistics-based positioning algorithms. i.e., a centroid algorithm (CEA) and a correlation algorithm (CA). Compared with the generally used maximum-photon algorithm (MPA), the CEA eliminates the ghosting with only about a 10% loss in detection efficiency, and provides better uniformity in detection efficiency and intrinsic background and lower gamma-ray sensitivity. The CA can effectively eliminate ghosting too, but the loss of efficiency at the group boundaries of PMTs is large. The results indicate that both algorithms can reduce the influence of quantum noise on the neutron positioning. (C) 2014 Elsevier B.V. All rights reserved. C1 [Wang, C. L.; Riedel, R. A.] Oak Ridge Natl Lab, Neutron Sci Directorate, Instrument & Source Div, Oak Ridge, TN 37831 USA. RP Wang, CL (reprint author), Oak Ridge Natl Lab, Neutron Sci Directorate, Instrument & Source Div, Oak Ridge, TN 37831 USA. EM wangc@ornl.gov OI Wang, Cai-Lin/0000-0001-9745-2334 NR 19 TC 1 Z9 1 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2014 VL 751 BP 55 EP 61 DI 10.1016/j.nima.2014.03.024 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AG0WD UT WOS:000335135500010 ER PT J AU Pawelczak, IA Glenn, AM Martinez, HP Carman, ML Zaitseva, NP Payne, A AF Pawelczak, I. A. Glenn, A. M. Martinez, H. P. Carman, M. L. Zaitseva, N. P. Payne, S. A. TI Boron-loaded plastic scintillator with neutron-gamma pulse shape discrimination capability SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE (10)Boron-loaded PSD plastic scintillator; Pulse shape discrimination; Thermal-neutron detection; Fast-neutron detection ID LIQUID SCINTILLATOR; DETECTORS AB Development of the plastic scintillator with neutron sensitivity from thermal to multi-MeV and pulse shape discrimination(PSD) has been demonstrated. Incorporation of B-10-containing compounds into the plastic scintillator with PSD capability leads to detector improvement in regard to neutron detection efficiency while preserving the discrimination between neutrons and gamma-rays. Effects of boron loading on scintillation and pulse shape discrimination properties are discussed. A PSD figure-of-merit value of 1.4 +/- 0.03 has been achieved for events in a thermal neutron energy domain, 50-100keV(ee), for PSD plastic loaded with 5 wt.% of m-carborane. (C) 2014 Elsevier B.V. All rights reserved. C1 [Pawelczak, I. A.; Glenn, A. M.; Martinez, H. P.; Carman, M. L.; Zaitseva, N. P.; Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Pawelczak, IA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM pawelczak1@llnl.gov FU U.S.Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S.Department of Energy Office of Nonproliferation Research and Development [NA-22]; Defense and Thread Reduction Agency FX This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Financial support provided by the U.S.Department of Energy Office of Nonproliferation Research and Development (NA-22) and Defense and Thread Reduction Agency. The authors wish to thank Dr. Benjamin Rupert for preparation of liquid scintillator and Dr. Ronald Wurtz for valuable discussions. NR 20 TC 11 Z9 12 U1 0 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2014 VL 751 BP 62 EP 69 DI 10.1016/j.nima.2014.03.027 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AG0WD UT WOS:000335135500011 ER PT J AU Burr, T Hamada, MS Ticknor, L Weaver, B AF Burr, Tom Hamada, Michael S. Ticknor, Larry Weaver, Brian TI Model selection and change detection for a time-varying mean in process monitoring SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Approximate Bayesian computation; Model selection; Process monitoring residuals ID APPROXIMATE BAYESIAN COMPUTATION AB Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Thresholde stimation is an old topic; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of alarm threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual=data - prediction. This paper briefly reviews alarm threshold estimation, introduces model selection options, and considers several assumptions regarding the data-generating mechanism for PM residuals. Four PM examples from nuclear safeguards are included. One example involves frequent by-batch material balance closures where a dissolution vessel has time-varying efficiency, leading to time-varying material holdup. Another example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals. Our main focus is model selection to select a defensible model for normal behavior with a time-varying mean in a PM residual stream. We use approximate Bayesian computation to perform the model selection and parameter estimation for normal behavior. We then describe a simple lag-one-differencing option similar to that used to monitor non-stationary times series to monitor for off-normal behavior. (C) 2014 Elsevier B.V. All rights reserved. C1 [Burr, Tom; Hamada, Michael S.; Ticknor, Larry; Weaver, Brian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Burr, T (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM tburr@lanl.gov OI Ticknor, Lawrence/0000-0002-7967-7908 NR 31 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2014 VL 751 BP 79 EP 87 DI 10.1016/j.nima.2014.03.023 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AG0WD UT WOS:000335135500013 ER PT J AU Wu, LZ Serpersu, EH AF Wu, Lingzhi Serpersu, Engin H. TI Erratum: "Deciphering interactions of the aminoglycoside phosphotransferase( 3')-IIIa with its ligands," Biopolymers 91( 9), 801- 809, ( 2009) SO BIOPOLYMERS LA English DT Correction C1 [Wu, Lingzhi; Serpersu, Engin H.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Wu, Lingzhi] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Wu, Lingzhi] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Serpersu, Engin H.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Oak Ridge Natl Lab, Knoxville, TN 37996 USA. RP Wu, LZ (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. NR 1 TC 0 Z9 0 U1 2 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3525 EI 1097-0282 J9 BIOPOLYMERS JI Biopolymers PD JUL PY 2014 VL 101 IS 7 BP 819 EP 819 DI 10.1002/bip.22480 PG 1 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA AF4KN UT WOS:000334681000011 ER PT J AU Tan, ECD Marker, TL Roberts, MJ AF Tan, Eric C. D. Marker, Terry L. Roberts, Michael J. TI Direct Production of Gasoline and Diesel Fuels from Biomass via Integrated Hydropyrolysis and Hydroconversion Process-A Techno- economic Analysis SO ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY LA English DT Article DE biomass to fuels; hydropyrolysis; gasoline; diesel; techno-economic analysis; process modeling ID LIGNOCELLULOSIC BIOMASS; FAST PYROLYSIS; TECHNOECONOMICS; GASIFICATION AB A techno-economic analysis (TEA) is performed to investigate the production of gasoline and diesel range hydrocarbon fuels by conversion of woody biomass via Gas Technology Institute (GTI)'s integrated hydropyrolysis plus hydroconversion (IH2) process. The processing capacity is 2000 dry metric tonnes (2205 dry US tons) of woody biomass per day. Major process areas include catalytic hydropyrolysis, catalytic hydroconversion, on-site hydrogen production, feedstock handling and storage, hydrocarbon absorber, sour water stripper, hydrogen sulfide scrubber, distillation tower, and all other operations support utilities. The TEA incorporates applicable commercial technologies, process modeling using Aspen HYSYS software, equipment cost estimation, and discounted cash flow analysis. The resulting minimum fuel selling price is $1.64 per gallon (or $1.68 per gallon of gasoline equivalent) in 2007 US dollars. The process yields 79 gallons of liquid fuels per dry US ton of woody biomass feedstock, for an annual fuel production rate of 61 million gallons at 96% on-stream time. The estimated total capital investment for an nth-plant is $264 million. A sensitivity analysis captures uncertainties in costs and plant performance. Results from this TEA can serve as the baseline for future comparison and as a basis for comparing this process to other biomass-to-liquid fuel pathways. (c) 2013 American Institute of Chemical Engineers Environ Prog, 33: 609-617, 2014 C1 [Tan, Eric C. D.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Marker, Terry L.; Roberts, Michael J.] Inst Gas Technol, Des Plaines, IL 60018 USA. RP Tan, ECD (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM eric.tan@nrel.gov FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; DOE Cooperative Agreement [DE-EE-0002873] FX This work was supported by the US Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The work is based on joint work between NREL and GTI under NREL agreement number CRD-10-388. GTI would like to acknowledge funding of the research through DOE Cooperative Agreement DE-EE-0002873. The authors thank Sara Havig (NREL) for communications support. NR 23 TC 10 Z9 10 U1 6 U2 39 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1944-7442 EI 1944-7450 J9 ENVIRON PROG SUSTAIN JI Environ. Prog. Sustain. Energy PD JUL PY 2014 VL 33 IS 2 BP 609 EP 617 DI 10.1002/ep.11791 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Engineering, Chemical; Engineering, Industrial; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA AE9BL UT WOS:000334298800035 ER PT J AU Daldorff, LKS Toth, G Gombosi, TI Lapenta, G Amaya, J Markidis, S Brackbill, JU AF Daldorff, Lars K. S. Toth, Gabor Gombosi, Tamas I. Lapenta, Giovanni Amaya, Jorge Markidis, Stefano Brackbill, Jeremiah U. TI Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Plasma physics; MHD; PIC; Model coupling ID HYBRID DRIFT INSTABILITY; BLOCK-ADAPTIVE GRIDS; PLASMA SIMULATION; COLLISIONLESS DISSIPATION; MAGNETIC RECONNECTION; KINETIC SIMULATIONS; RADIATIVE SHOCKS; SPACE WEATHER; SCHEME; FIELD AB Computational models based on a fluid description of the plasma, such as magnetohydrodynamic (MHD) and extended magnetohydrodynamic (XMHD) codes are highly efficient, but they miss the kinetic effects due to the assumptions of small gyro radius, charge neutrality, and Maxwellian thermal velocity distribution. Kinetic codes can properly take into account the kinetic effects, but they are orders of magnitude more expensive than the fluid codes due to the increased degrees of freedom. If the fluid description is acceptable in a large fraction of the computational domain, it makes sense to confine the kinetic model to the regions where kinetic effects are important. This coupled approach can be much more efficient than a pure kinetic model. The speed up is approximately the volume ratio of the full domain relative to the kinetic regions assuming that the kinetic code uses a uniform grid. This idea has been advocated by [1] but their coupling was limited to one dimension and they employed drastically different grid resolutions in the fluid and kinetic models. We describe a fully two-dimensional two-way coupling of a Hall MHD model BATS-R-US with an implicit Particle-in-Cell (PIC) model iPIC3D. The coupling can be performed with identical grid resolutions and time steps. We call this coupled computational plasma model MHD-EPIC (MHD with Embedded PIC regions). Our verification tests show that MHD-EPIC works accurately and robustly. We show a two-dimensional magnetosphere simulation as an illustration of the potential future applications of MHD-EPIC. (C) 2014 Elsevier Inc. All rights reserved. C1 [Daldorff, Lars K. S.; Toth, Gabor; Gombosi, Tamas I.] Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA. [Lapenta, Giovanni; Amaya, Jorge] Katholieke Univ Leuven, Louvain, Belgium. [Markidis, Stefano] KTH, Stockholm, Sweden. [Brackbill, Jeremiah U.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Toth, G (reprint author), Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA. RI Daldorff, Lars/M-4117-2013; Toth, Gabor/B-7977-2013; Gombosi, Tamas/G-4238-2011; OI Daldorff, Lars/0000-0002-1198-5138; Toth, Gabor/0000-0002-5654-9823; Gombosi, Tamas/0000-0001-9360-4951; Lapenta, Giovanni/0000-0002-3123-4024 FU National Science Foundation [AGS-1322543]; European Commission [263340]; Interuniversity Attraction Poles Programme; Belgian Science Policy Office [IAP P7/08 CHARM] FX The work performed at the University of Michigan was supported by the National Science Foundation grant AGS-1322543. The research in support of iPic3D has been funded by the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement SWIFF (project No. 263340, www.swiff.eu) and by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (IAP P7/08 CHARM). NR 49 TC 22 Z9 23 U1 1 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2014 VL 268 BP 236 EP 254 DI 10.1016/j.jcp.2014.03.009 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AF3BP UT WOS:000334586800011 ER PT J AU Banks, JW Henshaw, WD Schwendeman, DW AF Banks, J. W. Henshaw, W. D. Schwendeman, D. W. TI An analysis of a new stable partitioned algorithm for FSI problems. Part II: Incompressible flow and structural shells SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Fluid-structure interaction; Added mass instability; Incompressible fluid flow; Structures; Shells; Beams ID FLUID-STRUCTURE PROBLEMS; OVERLAPPING GRIDS; EQUATIONS AB Stable partitioned algorithms for fluid-structure interaction (FSI) problems are developed and analyzed in this two-part paper. Part I describes an algorithm for incompressible flow coupled with compressible elastic solids, while Part II discusses an algorithm for incompressible flow coupled with structural shells. The numerical approach described here for structural shells uses Robin (mixed) interface conditions for the pressure and velocity in the fluid which are derived directly from the governing equations. The resulting added-mass partitioned (AMP) algorithm is stable even for very light structures, requires no subiterations per time step, and is second-order accurate. The stability and accuracy of the AMP algorithm is evaluated for linearized FSI model problems. A normal mode analysis is performed to show that the new AMP algorithm is stable, even for the case of very light structures when added-mass effects are large. Exact traveling wave solutions are derived for the FSI model problems, and these solutions are used to verify the stability and accuracy of the corresponding numerical results obtained from the AMP algorithm for the cases of light, medium and heavy structures. A summary comparison of the AMP algorithm developed here and the one in Part I is provided. (C) 2014 Elsevier Inc. All rights reserved. C1 [Banks, J. W.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Henshaw, W. D.; Schwendeman, D. W.] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA. RP Henshaw, WD (reprint author), Rensselaer Polytech Inst, Dept Math Sci, 110 8th St, Troy, NY 12180 USA. EM banks20@llnl.gov; henshw@rpi.edu; schwed@rpi.edu RI Banks, Jeffrey/A-9718-2012 FU U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE contracts from the ASCR Applied Math Program; Lawrence Livermore National Laboratory [B548468]; National Science Foundation [DMS-1016188] FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by DOE contracts from the ASCR Applied Math Program.; This research was supported by Lawrence Livermore National Laboratory under Subcontract B548468, and by the National Science Foundation under Grant DMS-1016188. NR 16 TC 9 Z9 9 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2014 VL 268 BP 399 EP 416 DI 10.1016/j.jcp.2014.03.004 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AF3BP UT WOS:000334586800019 ER PT J AU Li, X Singh, RP Dudeck, KW Berchtold, KA Benicewicz, BC AF Li, Xin Singh, Rajinder P. Dudeck, Kevin W. Berchtold, Kathryn A. Benicewicz, Brian C. TI Influence of polybenzimidazole main chain structure on H-2/CO2 separation at elevated temperatures SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Polybenzimidazole; Gas separation; Synthesis gas; Hydrogen separation membrane; Pre-combustion carbon capture ID MEMBRANE FUEL-CELLS; CARBON-DIOXIDE CAPTURE; IGCC POWER-PLANT; POLYMER ELECTROLYTE; HYDROGEN-PRODUCTION; POLYIMIDE MEMBRANES; GAS SEPARATIONS; CO2 CAPTURE; PBI; DMAC/LICL AB Four polybenzimidazole (PBI) derivatives were prepared to study the effects of main chain chemistry and structure on H-2/CO2 perm selectivity of cast films. These structural variations were designed to exhibit high localized mobility at elevated temperatures, contain rigid and bent configurations that frustrated close chain packing, or possess bulky side groups. The modified PBIs exhibited high molecular weights, slightly lower thermal stabilities, and higher organo-solubilities compared with commercial m-PBI. Dilute polymer solutions (< 3.0 wt%) were used to fabricate high quality thin films under carefully optimized film processing conditions. Gas permeation properties of these PBl films were evaluated aL elevated temperatures (up to 250 degrees C) and pressures (up to 50 psia). It was found that the main chain structural variations effectively disrupted the PBl chain packing resulting in much improved film H-2 permeability (up to 997.2 barrer) compared with m-PBI (76.81 barrer) at 250 degrees C and 50 psia. However, lower H-2/CO2 selectivities (5-7(modified PBIs) versus 23 (m-PBI) were also measured and reflected the general trade-off betvveen gas permeability and selectivity. When tested at 250 degrees C, PM -based materials exhibited gas separation performance higher than the Robeson upper bound prediction and are promising materials for high temperature H-2 separation horn syngas. (c) 2014 Elsevier B.V. All rights reserved. C1 [Li, Xin; Benicewicz, Brian C.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Singh, Rajinder P.; Dudeck, Kevin W.; Berchtold, Kathryn A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Carbon Capture & Separat Energy Applicat CaSEA La, Los Alamos, NM 87545 USA. RP Benicewicz, BC (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. EM benice@sc.edu OI Benicewicz, Brian/0000-0003-4130-1232; Singh, Rajinder/0000-0003-4634-4290 FU U.S. DOE Energy Efficiency and Renewable Energy; Advanced Manufacturing Office; Industrial Technologies Program; Los Alamos National Laborator; Los Alamos National Security; DOE/NNSA [DE-AC52-06NA25396] FX This project supports the U.S. DOE Energy Efficiency and Renewable Energy-Advanced Manufacturing Office - Industrial Technologies Program. The authors gratefully acknowledge the U.S. DOE/EIRE for financial support of the project under Contract CPS #18990, Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for DOE/NNSA under Contract DE-AC52-06NA25396. The authors also acknowledge PBI Performance Products Inc. for their programmatic contributions. NR 41 TC 9 Z9 9 U1 8 U2 76 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 EI 1873-3123 J9 J MEMBRANE SCI JI J. Membr. Sci. PD JUL 1 PY 2014 VL 461 BP 59 EP 68 DI 10.1016/j.memsci.2014.03.008 PG 10 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA AF1YH UT WOS:000334509300007 ER PT J AU Layton, W Tran, H Trenchea, C AF Layton, W. Tran, H. Trenchea, C. TI Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS LA English DT Article DE magnetohydrodynamics; finite element methods; partitioned methods ID FINITE-ELEMENT APPROXIMATION; INCOMPRESSIBLE MAGNETOHYDRODYNAMICS; STATIONARY; EQUATIONS; STABILITY; BLANKETS; BOUNDARY AB Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids, involving Navier-Stokes (NSE) equations in fluid dynamics and Maxwell equations in eletromagnetism. The physical processes of fluid flows and electricity and magnetism are quite different and numerical simulations of each subprocess can require different meshes, time steps, and methods. In most terrestrial applications, MHD flows occur at low-magnetic Reynold numbers. We introduce two partitioned methods to solve evolutionary MHD equations in such cases. The methods we study allow us at each time step to call NSE and Maxwell codes separately, each possibly optimized for the subproblem's respective physics. Complete error analysis and computational tests supporting the theory are given.Copyright (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1083-1102, 2014 C1 [Layton, W.; Trenchea, C.] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA. [Tran, H.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Tran, H (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM tranha@ornl.gov FU NSF grant [DMS1216465]; Air Force grant [9550-12-1-0191] FX Contract grant sponsor: NSF grant (W.L. and H.T.); contract grant number: DMS1216465; Contract grant sponsor: Air Force grant (W.L., H.T., and C.T.); contract grant number: 9550-12-1-0191 NR 22 TC 4 Z9 4 U1 1 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0749-159X EI 1098-2426 J9 NUMER METH PART D E JI Numer. Meth. Part Differ. Equ. PD JUL PY 2014 VL 30 IS 4 BP 1083 EP 1102 DI 10.1002/num.21857 PG 20 WC Mathematics, Applied SC Mathematics GA AF9CS UT WOS:000335013400001 ER PT J AU Shi, XB Cui, LS Jiang, DQ Yu, C Guo, FM Yu, MY Ren, Y Liu, YN AF Shi, Xiaobin Cui, Lishan Jiang, Daqiang Yu, Cun Guo, Fangmin Yu, Mengying Ren, Yang Liu, Yinong TI Grain size effect on the R-phase transformation of nanocrystalline NiTi shape memory alloys SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID EQUIATOMIC TINI ALLOY; MARTENSITIC-TRANSFORMATION; AT.PERCENT-NI; DEFORMATION; BEHAVIOR; TEM AB Development of nanoscale actuators and sensors in recent years calls for functional materials with small dimensions and high strengths. High strength nanocrystalline NiTi alloys which experience the R-phase transformation with a small thermal hysteresis are ideal candidates for these applications. To facilitate the application of the R-phase transformation in nanocrystalline NiTi alloys, this study investigated the effect of grain size on the R-phase transformation of a nanocrystalline Ti-50.2at.%Ni alloy. The nanometric grain size was created by severe cold deformation and low temperature anneal. It was found that in the recrystallized state, achieving nanoscale grain sizes (< 100 nm) was effective in suppressing the B2 -> B19' martensitic transformation and revealing the B2a dagger"R transformation. The B2a dagger"R transformation temperature was found to increase with the decreasing grain size within the range of 22-155 nm. The suppression of the B19' martensite in nanograins is attributed to the limited space within the grains to allow the formation of self-accommodation structures to contain the large lattice distortion of the martensite. C1 [Shi, Xiaobin; Cui, Lishan; Jiang, Daqiang; Yu, Cun; Guo, Fangmin; Yu, Mengying] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Liu, Yinong] Univ Western Australia, Sch Mech & Chem Engn, Crawley, WA 6009, Australia. RP Shi, XB (reprint author), China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China. EM shyllen@sina.com RI Liu, Yinong/G-6637-2011; Jiang, Daqiang /G-5511-2014 OI Liu, Yinong/0000-0002-8784-8543; FU Natural Science Foundation of China (NSFC) [51231008]; Australian Research Council [DP140103805]; National 973 Programs of China [2012CB619400]; US Department of Energy, Office of Science [DE-AC02-06CH11357]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Natural Science Foundation of China (NSFC) (key program project 51231008), Australian Research Council (Grant No. DP140103805), and National 973 Programs of China (2012CB619400). The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 20 TC 6 Z9 6 U1 0 U2 55 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD JUL PY 2014 VL 49 IS 13 BP 4643 EP 4647 DI 10.1007/s10853-014-8167-6 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA AF1RW UT WOS:000334492000028 ER PT J AU Neubauer, J Wood, E AF Neubauer, Jeremy Wood, Eric TI The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility SO JOURNAL OF POWER SOURCES LA English DT Article DE Battery Lifetime Analysis and Simulation; Tool for Vehicles; Range anxiety; Electric vehicle; Workplace charging; Public charging; Fast charging AB Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility due to factors including driver range anxiety and access to charging infrastructure. In this paper we apply NREL's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to range anxiety and different charging infrastructure scenarios, including variable time schedules, power levels, and locations (home, work, and public installations). We find that the effects of range anxiety can be significant, but are reduced with access to additional charging infrastructure. We also find that (1) increasing home charging power above that provided by a common 15 A, 120 V circuit offers little added utility, (2) workplace charging offers significant utility benefits to select high mileage commuters, and (3) broadly available public charging can bring many lower mileage drivers to near-100% utility while strongly increasing the achieved miles of high mileage drivers. (C) 2014 Elsevier B.V. All rights reserved. C1 [Neubauer, Jeremy; Wood, Eric] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Neubauer, J (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Jeremy.neubauer@nrel.gov FU Dave Howell and Brian Cunningham of the Energy Storage, Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy; U.S. Department of Energy's Vehicle Technologies Program FX This study was supported by Dave Howell and Brian Cunningham of the Energy Storage, Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. The use of the battery degradation and FASTSim tools, both developed at the National Renewable Energy Laboratory under funding from the U.S. Department of Energy's Vehicle Technologies Program, was critical to the completion of this study. Special thanks to Kandler Smith for developing and supporting the integration of the battery degradation model, and Ahmad Pesaran, the National Renewable Energy Laboratory's Energy Storage team leader, for his continual guidance. NR 7 TC 24 Z9 24 U1 2 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2014 VL 257 BP 12 EP 20 DI 10.1016/j.jpowsour.2014.01.075 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AE2CD UT WOS:000333780000002 ER PT J AU Cao, WJ Shih, J Zheng, JP Doung, T AF Cao, W. J. Shih, J. Zheng, J. P. Doung, T. TI Development and characterization of Li-ion capacitor pouch cells SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion capacitor; Pouch cells; Activated carbon; Hard carbon; SLMP; Pore size distribution ID HYBRID ELECTROCHEMICAL CAPACITOR; ENERGY DENSITY; NEGATIVE ELECTRODES; CYCLE PERFORMANCE; LAYER CAPACITOR; SOFT CARBON; IMPROVEMENT; CATHODE AB High energy density Li-ion capacitor (LIC) pouch cell prototypes were assembled with lab-scale equipment using activated carbon cathode and hard carbon/lithium stabilized metal power (SLMP) anode. The specific energy and energy density as high as 30 Wh kg(-1) and 39 Wh L-1 have been achieved, respectively. The pouch cells can deliver over 50% of the maximum stored energy at a discharge rate over 100 Crate. After 10,000 cycles, the LIC pouch cell still has 80% of the initial capacitance. The average leakage current is 0.3 mu A cm(-2) during the first 72 h. (C) 2014 Published by Elsevier B.V. C1 [Cao, W. J.; Shih, J.; Zheng, J. P.] Florida A&M Univ, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA. [Cao, W. J.; Shih, J.; Zheng, J. P.] Florida State Univ, Tallahassee, FL 32310 USA. [Cao, W. J.; Shih, J.; Zheng, J. P.] Florida State Univ, Aeropropuls Mechatron & Energy AME Ctr, Tallahassee, FL 32310 USA. [Zheng, J. P.] Florida State Univ, CAPS, Tallahassee, FL 32310 USA. [Doung, T.] US DOE, Off Vehicle Technol, Annandale, VA 22003 USA. RP Zheng, JP (reprint author), Florida State Univ, CAPS, Tallahassee, FL 32310 USA. EM zheng@eng.fsu.edu FU DOE BAIT Program through PNNL [212964]; Florida State University Research Foundation GAPS Program FX This study is supported by DOE BAIT Program through PNNL with contract No. 212964 and Florida State University Research Foundation GAPS Program. NR 23 TC 20 Z9 20 U1 8 U2 86 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2014 VL 257 BP 388 EP 393 DI 10.1016/j.jpowsour.2014.01.087 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AE2CD UT WOS:000333780000050 ER PT J AU Chou, YS Stevenson, JW Choi, JP AF Chou, Yeong-Shyung Stevenson, Jeffry W. Choi, Jung-Pyung TI Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic stack test fixture, part III: Stability and microstructure of Ce-(Mn,Co)-spinel coating, AISI441 interconnect, alumina coating, cathode and anode SO JOURNAL OF POWER SOURCES LA English DT Article DE Sealing glass; AISI441; Aluminization; (Mn,Co)-spinel; SOFC ID FERRITIC STAINLESS-STEEL; (MN,CO)(3)O-4 SPINEL COATINGS; OXIDATION BEHAVIOR; CHEMICAL COMPATIBILITY; SEALING GLASSES; SOFC CATHODES; CR; TEMPERATURE; PERFORMANCE; ALLOYS AB A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing under realistic conditions. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell's degradation. After 6000 h test, the spinel coating showed densification with some diffusion of Cr. At the metal interface, segregation of Si and Ti was observed, however, no continuous layer formed. The alumina coating for perimeter sealing areas appeared more dense and thick at the air side than the fuel side. Both the spinel and alumina coatings remained bonded. EDS analysis of Cr within the metal showed small decrease in concentration near the coating interface and would expect to cause no issue of Cr depletion. Inter-diffusion of Ni, Fe, and Cr between spot-welded Ni wire and AISI441 interconnect was observed and Cr-oxide scale formed along the circumference of the weld. The microstructure of the anode and cathode was discussed relating to degradation of the top and middle cells. Overall, the Ce-(Mn,Co) spinet coating, alumina coating, and AISI441 steel showed the desired long-term stability and the developed generic stack fixture proved to be a useful tool to validate candidate materials for SOFC. (C) 2013 Published by Elsevier B.V. C1 [Chou, Yeong-Shyung; Stevenson, Jeffry W.; Choi, Jung-Pyung] Pacific NW Natl Lab, Energy & Efficiency Div, Richland, WA 99354 USA. RP Chou, YS (reprint author), Pacific NW Natl Lab, Energy & Efficiency Div, K2-44,POB 999, Richland, WA 99354 USA. EM yeong-shyung.chou@pnnl.gov FU US Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program; [DE-AC06-76RL0 1830] FX The authors would like to thank S. Carlson for SEM sample preparation, and J. Coleman for SEM analysis. The work summarized in this paper was funded by the US Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program. The authors would like to thank Shailesh Vora, Briggs White, Patcharin Burke, and Joe Stoffa from National Energy Technology Laboratory for helpful discussions. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy under Contract no. DE-AC06-76RL0 1830. NR 40 TC 4 Z9 4 U1 5 U2 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2014 VL 257 BP 444 EP 453 DI 10.1016/j.jpowsour.2013.11.086 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA AE2CD UT WOS:000333780000055 ER PT J AU Grasso, S Tatarko, P Rizzo, S Porwal, H Hu, CF Katoh, Y Salvo, M Reece, MJ Ferraris, M AF Grasso, Salvatore Tatarko, Peter Rizzo, Stefano Porwal, Harshit Hu, Chunfeng Katoh, Yutai Salvo, Milena Reece, Michael J. Ferraris, Monica TI Joining of beta-SiC by spark plasma sintering SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE beta-SiC; Joining; Spark plasma sintering ID SILICON-CARBIDE; TEMPERATURE; STRENGTH; DEPOSITION; CERAMICS; ALUMINUM AB Spark plasma sintering (SPS) was employed to join monolithic beta-SiC with or without titanium as intermediate joining material. Both the localized and rapid heating contributed to the inherent energy saving of electric current assisted joining technique. The effects of uniaxial pressure and surface preparation were analyzed independently with respect to the flexural strength and the morphology of the joints. In particular samples polished down to 1 mu m and joined at 1900 degrees C for 5 min achieved the strength of the as received material. The failure occurred outside the joining interface, confirming the optimum quality of the joint. Pressure in combination with surface preparation was necessary to achieve perfect adhesion and pore free direct joining of SiC. The use of Ti foil as a joining material and pressure allowed joining of unpolished SiC. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved. C1 [Grasso, Salvatore; Porwal, Harshit; Reece, Michael J.] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England. [Grasso, Salvatore; Porwal, Harshit; Reece, Michael J.] Queen Mary Univ London, Nanoforce Technol Ltd, London E1 4NS, England. [Tatarko, Peter] Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic. [Rizzo, Stefano; Salvo, Milena; Ferraris, Monica] Politecn Torino, Inst Mat Phys & Engn, Dept Appl Sci & Technol, I-10129 Turin, Italy. [Hu, Chunfeng] Chinese Acad Sci, NIMTE, Ningbo 315201, Zhejiang, Peoples R China. [Katoh, Yutai] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Grasso, S (reprint author), Queen Mary Univ London, Nanoforce Technol Ltd, Joseph Priestley Bldg,Mile End Rd, London E1 4NS, England. EM s.grasso@nanoforce.co.uk RI Porwal, Harshit/K-6738-2014; Tatarko, Peter/F-1446-2016 OI Porwal, Harshit/0000-0002-4817-6545; FU European Union [264526] FX The research leading to these results was supported by the European Union's Seventh Framework Programme managed by REA-Research Executive Agency (http://www.ec.europa.eu/research/rea) (Marie Curie Action, GlaCERCo GA 264526). NR 25 TC 12 Z9 13 U1 0 U2 49 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 EI 1873-619X J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD JUL PY 2014 VL 34 IS 7 BP 1681 EP 1686 DI 10.1016/j.jeurceramsoc.2013.12.023 PG 6 WC Materials Science, Ceramics SC Materials Science GA AD8CD UT WOS:000333493200004 ER PT J AU Remillieux, MC Anderson, BE Le Bas, PY Ulrich, TJ AF Remillieux, Marcel C. Anderson, Brian E. Le Bas, Pierre-Yves Ulrich, T. J. TI Improving the air coupling of bulk piezoelectric transducers with wedges of power-law profiles: A numerical study SO ULTRASONICS LA English DT Article DE Piezoelectric transducers; Air-coupled ultrasound; Acoustic-structure interaction; Finite-element analysis; Time-reversed acoustics ID CHANNEL TIME-REVERSAL; NONDESTRUCTIVE EVALUATION; ULTRASONIC TRANSDUCERS; CHAOTIC CAVITIES; FLEXURAL WAVES; ACOUSTICS; PLATES AB An air-coupled ultrasonic transducer is created by bonding a bulk piezoelectric element onto the surface of a thick plate with a wedge of power-law profile. The wedge is used to improve the ultrasonic radiation efficiency. The power-law profile provides a smooth, impedance-matching transition for the mechanical energy to be transferred from the thick plate to the air, through the large-amplitude flexural waves observed in the thinnest region of the wedge. The performance of the proposed transducer is examined numerically and compared to that of a design where the piezoelectric element is isolated and where it is affixed to a thin plate of uniform thickness. The numerical analysis is first focused on the free-field radiation of the transducers. Then, time-reversal experiments are simulated by placing the transducers inside a cavity of arbitrary shape with some perfectly reflecting boundaries. In addition to time-reversal mirrors, the proposed concept could be integrated in the design of phased arrays and parametric arrays. Published by Elsevier B.V. C1 [Remillieux, Marcel C.; Anderson, Brian E.; Le Bas, Pierre-Yves; Ulrich, T. J.] Los Alamos Natl Lab, Geophys Grp EES 17, Los Alamos, NM 87545 USA. RP Remillieux, MC (reprint author), Los Alamos Natl Lab, Geophys Grp EES 17, MS D446, Los Alamos, NM 87545 USA. EM mcr1@lanl.gov; bea@lanl.gov; pylb@lanl.gov; tju@lanl.gov NR 30 TC 4 Z9 4 U1 5 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0041-624X EI 1874-9968 J9 ULTRASONICS JI Ultrasonics PD JUL PY 2014 VL 54 IS 5 BP 1409 EP 1416 DI 10.1016/j.ultras.2014.02.017 PG 8 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA AE1XK UT WOS:000333766300035 PM 24636675 ER PT J AU Calderon-Moreno, JM Pol, VG Suh, SH Shin, HK Popa, M AF Calderon-Moreno, J. M. Pol, V. G. Suh, S. -H. Shin, H. -K. Popa, M. TI Formation Mechanism and Red Light Emission Photoluminescence of Single-Phase Crystalline Eu2O2CO3 Nanoplates Compared with Y2O3:Eu Phosphor SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Phosphor; Nanoplate; Photoluminescence; Crystalline ID LUMINESCENCE PROPERTIES; THERMAL-DECOMPOSITION; FACILE SYNTHESIS; NANOPARTICLES; EU2O3; OXYCARBONATE; SUPERSTRUCTURES; NANOCRYSTALS; FABRICATION; SYMMETRY AB The photoluminescence properties and formation mechanism of a novel stoichiometric phosphor are presented. Nanoplates of pure single-phase crystalline Eu2O2CO3 oxycarbonate (hexagonal type-II) were synthesized by dry autoclaving under autogenic pressure (under 3 MPa) using an efficient, high yield solid state green-chemistry route that can be extended to other rare-earth oxycarbonate and oxide systems, resulting in the full conversion of a simple commercial precursor in single-crystalline nanoplates with strong visible luminescence. Phosphors made of an oxide host and an active luminescent dopant ion are the commercial standard (i.e., Y2O3:Eu). It is generally considered that the activity of luminescent species, such as Eu3+, is quenched and disappears above a certain concentration of them in the lattice (concentration quenching). The truly stoichoimetric oxycarbonate phosphor without active dopant ions exhibits very strong red emission when excited by different excitations, in the UV and visible range, without any concentration quench