FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Badosa, J
Calbo, J
Mckenzie, R
Liley, B
Gonzalez, JA
Forgan, B
Long, CN
AF Badosa, Jordi
Calbo, Josep
Mckenzie, Richard
Liley, Ben
Gonzalez, Josep-Abel
Forgan, Bruce
Long, Charles N.
TI Two Methods for Retrieving UV Index for All Cloud Conditions from Sky
Imager Products or Total SW Radiation Measurements
SO PHOTOCHEMISTRY AND PHOTOBIOLOGY
LA English
DT Article
ID CLEAR SKIES; IRRADIANCE; OZONE; MIDLATITUDES; VARIABILITY; ULTRAVIOLET;
ATMOSPHERE; NORTHERN; TRENDS; SITES
AB Cloud effects on UV Index (UVI) and total solar radiation (TR) as a function of cloud cover and sunny conditions (from sky images) as well as of solar zenith angle (SZA) are assessed. These analyses are undertaken for a southern-hemisphere mid-latitude site where a 10-years dataset is available. It is confirmed that clouds reduce TR more than UV, in particular for obscured Sun conditions, low cloud fraction (<60%) and large SZA (>60 degrees). Similarly, local short-time enhancement effects are stronger for TR than for UV, mainly for visible Sun conditions, large cloud fraction and large SZA. Two methods to estimate UVI are developed: (1) from sky imaging cloud cover and sunny conditions, and (2) from TR measurements. Both methods may be used in practical applications, although Method 2 shows overall the best performance, as TR allows considering cloud optical properties. The mean absolute (relative) differences of Method 2 estimations with respect to measured values are 0.17 UVI units (6.7%, for 1 min data) and 0.79 Standard Erythemal Dose (SED) units (3.9%, for daily integrations). Method 1 shows less accurate results but it is still suitable to estimate UVI: mean absolute differences are 0.37 UVI units (15%) and 1.6 SED (8.0%).
C1 [Badosa, Jordi] Ecole Polytech, LMD, Palaiseau, France.
[Calbo, Josep; Gonzalez, Josep-Abel] UdG, Dept Fis, Girona, Spain.
[Mckenzie, Richard; Liley, Ben] Natl Inst Water & Atmospher Res NIWA, Lauder, New Zealand.
[Forgan, Bruce] BoM, Melbourne, Vic, Australia.
[Long, Charles N.] PNNL, Richland, WA USA.
RP Calbo, J (reprint author), UdG, Dept Fis, Girona, Spain.
EM josep.calbo@udg.edu
RI Calbo, Josep/K-2462-2014;
OI Calbo, Josep/0000-0002-9374-0790; Liley, Ben/0000-0002-8844-7928
FU Ministry of Economy and Competitiveness project NUCLIEREX [CGL
2007-62664/CLI]; Ministry of Economy and Competitiveness project
NUCLIERSOL [CGL 2010-18546]; Spanish Complementary Action
[PCI2006-A7-0604]; Office of Science of the U.S. Department of Energy as
part of the Atmospheric Systems Research Program
FX We acknowledge the support in the data analyses from Michael Kotkamp
(NIWA, Lauder, New Zealand). This study has been partly financed by the
Spanish Ministry of Science and Innovation (currently Ministry of
Economy and Competitiveness) projects NUCLIEREX (CGL 2007-62664/CLI) and
NUCLIERSOL (CGL 2010-18546). Also, the Spanish Complementary Action
PCI2006-A7-0604 allowed travelling Dr. J. Calbo and Dr. R. L. McKenzie
to compile the data and to initiate the study. Dr. Long acknowledges
support from the Office of Science of the U.S. Department of Energy as
part of the Atmospheric Systems Research Program.
NR 37
TC 2
Z9 2
U1 0
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0031-8655
EI 1751-1097
J9 PHOTOCHEM PHOTOBIOL
JI Photochem. Photobiol.
PD JUL-AUG
PY 2014
VL 90
IS 4
BP 941
EP 951
DI 10.1111/php.12272
PG 11
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA AL4IM
UT WOS:000339096400027
PM 24645969
ER
PT J
AU Matmon, A
Fink, D
Davis, M
Niedermann, S
Rood, D
Frumkin, A
AF Matmon, A.
Fink, D.
Davis, M.
Niedermann, S.
Rood, D.
Frumkin, A.
TI Unraveling rift margin evolution and escarpment development ages along
the Dead Sea fault using cosmogenic burial ages
SO QUATERNARY RESEARCH
LA English
DT Article
DE Sedom Lagoon; Amora Lake; Cosmogenic burial dating; Dead Sea fault
ID BE-10 HALF-LIFE; RED-SEA; LANDSCAPE EVOLUTION; SEDOM DIAPIR; HISTORIC
EARTHQUAKES; TERRESTRIAL ROCKS; PLATE KINEMATICS; NORTHERN ISRAEL;
YAMMOUNEH FAULT; DRAINAGE-BASIN
AB The Dead Sea fault (DSF) is one of the most active plate boundaries in the world. Understanding the Quaternary history and sediments of the DSF requires investigation into the Neogene development of this plate boundary. DSF lateral motion preceded significant extension and rift morphology by -10 Ma. Sediments of the Sedom Formation, dated here between 5.0 0.5 Ma and 6.2 +/- 451 Ma, yielded extremely lowl Be concentrations and 26A1 is absent. These reflect the antiquity of the sediments, deposited in the Sedom Lagoon, which evolved in a subdued landscape and was connected to the Mediterranean Sea. The base of the overlying Amora Formation, deposited in the terminal Amora Lake which developed under increasing relief that promoted escarpment incision, was dated at 3.311 Ma. Burial ages of fluvial sediments within caves (3.4 +/- 0.2 Ma and 3.6 +/- 0.4 Ma) represent the timing of initial incision. Initial DSF topography coincides with the earliest Red Sea MORB's and the East Anatolian fault initiation. These suggest a change in the relative Arabian-African plate motion. This change introduced the rifting component to the DSF followed by a significant subsidence, margin uplift, and a reorganization of relief and drainage pattern in the region resulting in the topographic framework observed today. (C) 2014 University of Washington. Published by Elsevier Inc. All rights reserved.
C1 [Matmon, A.; Davis, M.] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel.
[Fink, D.] Australian Nucl Sci & Technol Org, Menai, NSW 2234, Australia.
[Niedermann, S.] Helmholtz Zentrum Potsdam, Deutsch GeoForschungsZentrum, D-14473 Potsdam, Germany.
[Rood, D.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA.
[Frumkin, A.] Hebrew Univ Jerusalem, Dept Geog, IL-91905 Jerusalem, Israel.
RP Matmon, A (reprint author), Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel.
EM arimatmon@mail.huji.ac.il
RI fink, David/A-9518-2012;
OI Niedermann, Samuel/0000-0003-1626-5284
FU ISF-Bikura [362/06]; Hebrew University Ring internal grant
FX This study was supported by the ISF-Bikura grant 362/06 and Hebrew
University Ring internal grant. We thank Roi Porat and Uri Davidovich
who noted to us the potential significance of the Masada cave sediments
to the rift margin evolution.
NR 117
TC 8
Z9 8
U1 0
U2 11
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0033-5894
EI 1096-0287
J9 QUATERNARY RES
JI Quat. Res.
PD JUL
PY 2014
VL 82
IS 1
BP 281
EP 295
DI 10.1016/j.ygres.2014.04.008
PG 15
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA AL4XP
UT WOS:000339138400027
ER
PT J
AU Kim, YJ
Karaulanov, T
Matlashov, AN
Newman, S
Urbaitis, A
Volegov, P
Yoder, J
Espy, MA
AF Kim, Y. J.
Karaulanov, T.
Matlashov, A. N.
Newman, S.
Urbaitis, A.
Volegov, P.
Yoder, J.
Espy, M. A.
TI Polarization enhancement technique for nuclear quadrupole resonance
detection
SO SOLID STATE NUCLEAR MAGNETIC RESONANCE
LA English
DT Article
DE Nuclear quadrupole resonance (NQR); Nitrogen-14; Polarization
enhancement NQR; Ammonium nitrate
ID N-14 NQR SIGNAL; RELAXATION MEASUREMENTS; SODIUM-NITRITE; EXPLOSIVES;
DRUGS; T1
AB We demonstrate a dramatic increase in the signal-to-noise ratio (SNR) of a nuclear quadrupole resonance (NQR) signal by using a polarization enhancement technique. By first applying a static magnetic field to pre-polarize one spin subsystem of a material, and then allowing that net polarization to be transferred to the quadrupole subsystem, we increased the SNR of a sample of ammonium nitrate by one-order of magnitude. Published by Elsevier Inc.
C1 [Kim, Y. J.; Karaulanov, T.; Matlashov, A. N.; Newman, S.; Urbaitis, A.; Volegov, P.; Yoder, J.; Espy, M. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Kim, YJ (reprint author), Los Alamos Natl Lab, POB 1663,MS-D454, Los Alamos, NM 87545 USA.
EM youngjin@lanl.gov
OI Urbaitis, Algis/0000-0002-8626-5987
FU Los Alamos National Laboratory LDRD office [201202187ER]
FX The authors are grateful for helpful discussions with Dr. Michael
Malone. This work was supported by the Los Alamos National Laboratory
LDRD office through Grant 201202187ER.
NR 26
TC 1
Z9 1
U1 0
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0926-2040
EI 1527-3326
J9 SOLID STATE NUCL MAG
JI Solid State Nucl. Magn. Reson.
PD JUL-SEP
PY 2014
VL 61-62
BP 35
EP 38
DI 10.1016/j.ssnmr.2014.05.002
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Physics,
Condensed Matter; Spectroscopy
SC Chemistry; Physics; Spectroscopy
GA AL7HT
UT WOS:000339305500006
PM 24882748
ER
PT J
AU Luo, ZP
Dauter, M
Dauter, Z
AF Luo, Zhipu
Dauter, Miroslawa
Dauter, Zbigniew
TI Phosphates in the Z-DNA dodecamer are flexible, but their P-SAD signal
is sufficient for structure solution
SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY
LA English
DT Article
ID HANDED Z-DNA; X-RAY-DIFFRACTION; SINGLE-CRYSTAL STRUCTURE; 1.0-A ATOMIC
RESOLUTION; PURE-SPERMINE FORM; DOUBLE-HELICAL DNA; BASE-PAIRS;
MOLECULAR-STRUCTURE; ANGSTROM RESOLUTION; MINOR-GROOVE
AB A large number of Z-DNA hexamer duplex structures and a few oligomers of different lengths are available, but here the first crystal structure of the d(CGCGCGCGCGCG)(2) dodecameric duplex is presented. Two synchrotron data sets were collected; one was used to solve the structure by the single-wavelength anomalous dispersion (SAD) approach based on the anomalous signal of P atoms, the other set, extending to an ultrahigh resolution of 0.75 angstrom, served to refine the atomic model to an R factor of 12.2% and an R-free of 13.4%. The structure consists of parallel duplexes arranged into practically infinitely long helices packed in a hexagonal fashion, analogous to all other known structures of Z-DNA oligomers. However, the dodecamer molecule shows a high level of flexibility, especially of the backbone phosphate groups, with six out of 11 phosphates modeled in double orientations corresponding to the two previously observed Z-DNA conformations: Z(I), with the phosphate groups inclined towards the inside of the helix, and Z(II), with the phosphate groups rotated towards the outside of the helix.
C1 [Luo, Zhipu; Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL 60439 USA.
[Dauter, Miroslawa] Argonne Natl Lab, Leidos Biomed Res Inc, Basic Res Program, Argonne, IL 60439 USA.
RP Dauter, Z (reprint author), NCI, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL 60439 USA.
EM dauter@anl.gov
RI Luo, Zhipu/P-9168-2014
FU NIH, National Cancer Institute, Center for Cancer Research; National
Cancer Institute, National Institutes of Health [NO1-CO-12400]; US
Department of Energy, Office of Science, Office of Basic Energy Sciences
[W-31-109-Eng-38]
FX This project was supported in part by the Intramural Research Program of
the NIH, National Cancer Institute, Center for Cancer Research and with
Federal funds from the National Cancer Institute, National Institutes of
Health (Contract No. NO1-CO-12400). Diffraction data were collected at
the NE-CAT beamline 24-ID and SER-CAT beamline 22-ID at the Advanced
Photon Source, Argonne National Laboratory. Use of the Advanced Photon
Source was supported by the US Department of Energy, Office of Science,
Office of Basic Energy Sciences under Contract No. W-31-109-Eng-38.
NR 83
TC 9
Z9 9
U1 0
U2 4
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1399-0047
J9 ACTA CRYSTALLOGR D
JI Acta Crystallogr. Sect. D-Biol. Crystallogr.
PD JUL
PY 2014
VL 70
BP 1790
EP 1800
DI 10.1107/S1399004714004684
PN 7
PG 11
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA AL1WM
UT WOS:000338917000001
PM 25004957
ER
PT J
AU Dufek, EJ
Lister, TE
Stone, SG
AF Dufek, Eric J.
Lister, Tedd E.
Stone, Simon G.
TI Sampling dynamics for pressurized electrochemical cells
SO JOURNAL OF APPLIED ELECTROCHEMISTRY
LA English
DT Article
DE CO2; Electroreduction; Pressurized electrolysis; Syngas
ID CARBON-DIOXIDE; CO2 REDUCTION; METAL-ELECTRODES; ELECTROLYTES;
TEMPERATURE; PERFORMANCE; SELECTIVITY; OPERATION; DESIGN; II.
AB A model describing the gas distribution within a constant pressure electrolysis system and how the distribution impacts electrochemical efficiencies is presented. The primary system of interest is the generation of syngas (CO and H-2) associated with the co-electrolysis of H2O and CO2. The model developed for this system takes into account the primary process variables of operation including total system pressure, applied current, and the in-flow of reactant gases. From these, and the chemical equilibria within the system, the impact on electrochemically generated gases is presented. Comparison of predicted and measured faradaic efficiency of an electrode's processes reveals significant disagreement under certain conditions. Methods to minimize and account for the discrepancy are presented with the goal of being able to discern, in a real-time manner, degradation of electrode performance. Comparison of the model to experimental data shows a strong correlation between the two with slight variation in experimental data, which is attributed to reversible system dynamics such as wetting of the gas diffusion electrode used as the cell cathode.
C1 [Dufek, Eric J.; Lister, Tedd E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Stone, Simon G.] Giner Inc, Newton, MA 02466 USA.
RP Dufek, EJ (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
EM eric.dufek@inl.gov
RI Dufek, Eric/B-8847-2017
OI Dufek, Eric/0000-0003-4802-1997
FU INL Laboratory Directed Research and Development (LDRD) Program under
DOE Idaho Operations Office; U.S. Department of Energy
[DE-AC07-05ID14517]
FX Work supported through the INL Laboratory Directed Research and
Development (LDRD) Program under DOE Idaho Operations Office. This
manuscript has been authored by Battelle Energy Alliance, LLC under
Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.
NR 23
TC 0
Z9 0
U1 0
U2 11
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0021-891X
EI 1572-8838
J9 J APPL ELECTROCHEM
JI J. Appl. Electrochem.
PD JUL
PY 2014
VL 44
IS 7
BP 849
EP 855
DI 10.1007/s10800-014-0693-z
PG 7
WC Electrochemistry
SC Electrochemistry
GA AK9QM
UT WOS:000338761700010
ER
PT J
AU Philippov, A
Tchekhovskoy, A
Li, JG
AF Philippov, Alexander
Tchekhovskoy, Alexander
Li, Jason G.
TI Time evolution of pulsar obliquity angle from 3D simulations of
magnetospheres
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE stars: magnetic field; stars: neutron; pulsars: general; stars: rotation
ID FORCE-FREE MAGNETOSPHERE; MAGNETIC-FIELD; NEUTRON-STAR;
MAGNETOHYDRODYNAMIC SIMULATIONS; NUMERICAL SCHEME; RADIO PULSARS;
BLACK-HOLES; ALIGNMENT; POPULATION; PRECESSION
AB The rotational period of isolated pulsars increases over time due to the extraction of angular momentum by electromagnetic torques. These torques also change the obliquity angle alpha between the magnetic and rotational axes. Although actual pulsar magnetospheres are plasma filled, the time evolution of alpha has mostly been studied for vacuum pulsar magnetospheres. In this work, we self-consistently account for the plasma effects for the first time by analysing the results of time-dependent 3D force-free and magnetohydrodynamic simulations of pulsar magnetospheres. We show that if a neutron star is spherically symmetric and is embedded with a dipolar magnetic moment, the pulsar evolves so as to minimize its spin-down luminosity: both vacuum and plasma-filled pulsars evolve towards the aligned configuration (alpha = 0). However, they approach the alignment in qualitatively different ways. Vacuum pulsars come into alignment exponentially fast, with alpha proportional to exp (-t/tau) and tau similar to spin-down time-scale. In contrast, we find that plasma-filled pulsars align much more slowly, with alpha proportional to (t/tau)(-1/2). We argue that the slow time evolution of obliquity of plasma-filled pulsars can potentially resolve several observational puzzles, including the origin of normal pulsars with periods of similar to 1 s, the evidence that oblique pulsars come into alignment over a time-scale of similar to 10(7) yr, and the observed deficit, relative to an isotropic obliquity distribution, of pulsars showing interpulse emission.
C1 [Philippov, Alexander; Li, Jason G.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Tchekhovskoy, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Tchekhovskoy, Alexander] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
RP Philippov, A (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
EM philippo@astro.princeton.edu
FU Princeton Center for Theoretical Science; NASA [PF3-140115]
FX We thank J. Arons, L. Arzamasskiy, V.S. Beskin, R. Blandford, C.-A.
Faucher-Giguere, P. Goldreich, A. Jessner, R. Narayan, A. Spitkovsky, T.
Tauris, D. Uzdensky and J. Zrake for insightful discussions. AT was
supported by a Princeton Center for Theoretical Science Fellowship and
by NASA through the Einstein Fellowship Program, grant PF3-140115. The
simulations presented in this article used computational resources
supported by the PICSciE-OIT High Performance Computing Center and
Visualization Laboratory, and by XSEDE allocation TG-AST100040 on NICS
Kraken and Nautilus and TACC Lonestar, Longhorn and Ranch.
NR 41
TC 21
Z9 22
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 1
PY 2014
VL 441
IS 3
BP 1879
EP 1887
DI 10.1093/mnras/stu591
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RE
UT WOS:000338763600003
ER
PT J
AU Chen, XH
Chatterjee, R
Zhang, HC
Pohl, M
Fossati, G
Bottcher, M
Bailyn, CD
Bonning, EW
Buxton, M
Coppi, P
Isler, J
Maraschi, L
Urry, M
AF Chen, Xuhui
Chatterjee, Ritaban
Zhang, Haocheng
Pohl, Martin
Fossati, Giovanni
Boettcher, Markus
Bailyn, Charles D.
Bonning, Erin W.
Buxton, Michelle
Coppi, Paolo
Isler, Jedidah
Maraschi, Laura
Urry, Meg
TI Magnetic field amplification and flat spectrum radio quasars
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE radiation mechanisms: non-thermal; galaxies: active; galaxies: jets;
quasars: individual: PKS 0208-512
ID ACTIVE GALACTIC NUCLEI; TIME-DEPENDENT SIMULATIONS; RAPID NONTHERMAL
FLARES; SELF-COMPTON MODEL; ENERGY-DISTRIBUTIONS; EXTERNAL COMPTON; PKS
1510-089; MULTIWAVELENGTH VARIABILITY; TURBULENT AMPLIFICATION;
RELATIVISTIC SHOCK
AB We perform time-dependent, spatially resolved simulations of blazar emission to evaluate several flaring scenarios related to magnetic-field amplification and enhanced particle acceleration. The code explicitly accounts for light-travel-time effects and is applied to flares observed in the flat spectrum radio quasar (FSRQ) PKS 0208-512, which show optical/gamma-ray correlation at some times, but orphan optical flares at other times. Changes in both the magnetic field and the particle acceleration efficiency are explored as causes of flares. Generally, external Compton (EC) emission appears to describe the available data better than a synchrotron self-Compton (SSC) scenario, and in particular orphan optical flares are difficult to produce in the SSC framework. X-ray soft-excesses, gamma-ray spectral hardening, and the detections at very high energies of certain FSRQs during flares find natural explanations in the EC scenario with particle acceleration change. Likewise, optical flares with/without gamma-ray counterparts can be explained by different allocations of energy between the magnetization and particle acceleration, which may be related to the orientation of the magnetic field relative to the jet flow. We also calculate the degree of linear polarization and polarization angle as a function of time for a jet with helical magnetic field. Tightening of the magnetic helix immediately downstream of the jet perturbations, where flares occur, can be sufficient to explain the increases in the degree of polarization and a rotation by a parts per thousand yen180A degrees of the observed polarization angle, if light-travel-time effects are properly considered.
C1 [Chen, Xuhui; Pohl, Martin] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany.
[Chen, Xuhui; Pohl, Martin] DESY, D-15738 Zeuthen, Germany.
[Chatterjee, Ritaban] Presidency Univ, Dept Phys, Kolkata 700073, W Bengal, India.
[Zhang, Haocheng; Boettcher, Markus] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA.
[Zhang, Haocheng] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Fossati, Giovanni] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
[Boettcher, Markus] North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa.
[Bailyn, Charles D.; Buxton, Michelle; Coppi, Paolo; Isler, Jedidah] Yale Univ, Dept Astron, New Haven, CT 06520 USA.
[Bonning, Erin W.] Emory Univ, Dept Phys, Atlanta, GA 30322 USA.
[Maraschi, Laura] INAFOsservatorio Astron Brera, I-20100 Milan, Italy.
[Urry, Meg] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Urry, Meg] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
RP Chen, XH (reprint author), Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany.
EM chenxuhui.phys@gmail.com
OI Urry, Meg/0000-0002-0745-9792
FU Helmholtz Alliance for Astroparticle Physics HAP - Initiative and
Networking Fund of the Helmholtz Association; NASA [NNX12AP20G,
NNX12AE43G]; LANL/LDRD programme; DoE/Office of Fusion Energy Science
through CMSO; Department of Science and Technology of South Africa;
South African Research Chair Initiative of the National Research
Foundation
FX The authors thank A. Barnacka for useful discussions. XC and MP
acknowledge support by the Helmholtz Alliance for Astroparticle Physics
HAP funded by the Initiative and Networking Fund of the Helmholtz
Association. HZ acknowledges supports by NASA through Fermi Guest
Investigator Grant no. NNX12AP20G, and by the LANL/LDRD programme and by
DoE/Office of Fusion Energy Science through CMSO. GF acknowledges
support by NASA grant NNX12AE43G. MB acknowledges support through the
South African Research Chair Initiative of the National Research
Foundation and the Department of Science and Technology of South Africa.
NR 51
TC 10
Z9 10
U1 0
U2 5
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 1
PY 2014
VL 441
IS 3
BP 2188
EP 2199
DI 10.1093/mnras/stu713
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK9RE
UT WOS:000338763600028
ER
PT J
AU Pasqualini, D
Bassi, AM
AF Pasqualini, D.
Bassi, A. M.
TI Oil shale and climate policy in the shift to a low carbon and more
resilient economy
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Climate policy; Oil shale; Integrated modeling; Energy development
impacts; Unconventional fossil fuels
ID ENERGY; GAS
AB Policy makers worldwide are recently debating options to implement an effective climate policy that would put a cap on green house gas emissions. At the same time, investors are carefully evaluating the profitability of unconventional fossil fuels such as shale oil. To enhance the understanding of the impacts of a climate policy such as the American Clean Energy and Security Act of 2009, on oil shale production - and vice versa - we have customized an integrated assessment model, the Climate and Energy Assessment for Resiliency model for Unconventional Fossil Fuels to the U.S. Western Energy Corridor. Our analysis indicates that while the bill would increase the production cost of oil shale, the industry remains highly profitable in the longer-term, generating a potential profit of about $10 to $16 billion per year by 2040 at 2.5 million barrels per day. These results suggest that the oil shale industry may comfortably face the enactment of a carbon policy, albeit with some caveats. Furthermore, while its potential economic impact on non-compliant industries may be severe, it would generate mounting profits for those achieving energy efficiency gains, thereby increasing the profitability of energy efficiency investments. Published by Elsevier Inc.
C1 [Pasqualini, D.] Los Alamos Natl Lab, Div Los Alamos D, Los Alamos, NM 87545 USA.
[Bassi, A. M.] Millennium Inst, Arlington, VA 22201 USA.
RP Pasqualini, D (reprint author), Los Alamos Natl Lab, Div Los Alamos D, Los Alamos, NM 87545 USA.
EM dmp@lanl.gov
NR 22
TC 0
Z9 0
U1 3
U2 14
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD JUL
PY 2014
VL 86
BP 168
EP 176
DI 10.1016/j.techfore.2013.08.018
PG 9
WC Business; Planning & Development
SC Business & Economics; Public Administration
GA AL0JO
UT WOS:000338813400015
ER
PT J
AU Zhi, MJ
Yang, F
Meng, FK
Li, MQ
Manivannan, A
Wu, NQ
AF Zhi, Mingjia
Yang, Feng
Meng, Fanke
Li, Minqi
Manivannan, Ayyakkannu
Wu, Nianqiang
TI Effects of Pore Structure on Performance of An Activated-Carbon
Supercapacitor Electrode Recycled from Scrap Waste Tires
SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING
LA English
DT Article
DE Activated carbon; Waste tire; Supercapacitor; Electrode; Porous material
ID DOUBLE-LAYER CAPACITANCE; COAL-TAR PITCH; ENERGY-STORAGE; KOH
ACTIVATION; POROUS CARBONS; TEMPLATE; BLACK
AB It is important to address the challenges posed with the ever-increasing demand for energy supply and environmental sustainability. Activated carbon, which is the common material for commercial supercapadtor electrodes, is currently derived from petroleum-based precursors. This paper presents an effective synthetic method that utilizes waste tires as the precursor to prepare the activated carbon electrodes by the pyrolysis and chemical activation processes. Adjusting the activation parameters can tailor multiple physical properties of the resulting activated carbon, which in turns tunes the performance of the activated carbon electrode. Statistical multiple linear regression and stepwise regression methods are employed to investigate the dependence of the specific capacitance and the rate capability upon the physical properties (such as porosity) of the activated carbon electrode. The specific capacitance of activated carbon electrode is controlled by the micropore volume but independent of the mesopores volume. The rate capability is dominated by the mesopore/micropore volume ratio instead of the absolute value of mesopore volume.
C1 [Zhi, Mingjia] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China.
[Zhi, Mingjia; Meng, Fanke; Manivannan, Ayyakkannu; Wu, Nianqiang] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA.
[Yang, Feng; Li, Minqi] W Virginia Univ, Ind & Management Syst Engn Dept, Morgantown, WV 26506 USA.
[Manivannan, Ayyakkannu] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA.
RP Wu, NQ (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA.
EM nick.wu@mail.wvu.edu
RI Meng, Fanke /F-3978-2010; Zhi, Mingjia/A-6866-2010; Wu,
Nianqiang/B-9798-2015; Meng, Fanke/D-7395-2017
OI Zhi, Mingjia/0000-0002-4291-0809; Wu, Nianqiang/0000-0002-8888-2444;
Meng, Fanke/0000-0001-7961-4248
FU NSF [CMMI-1068131]
FX F.Y. is grateful for partial support by NSF grant (CMMI-1068131). The
use of the WVU Shared Facility is appreciated. The authors thank Mr. J.
Bright, S. Hao, and P. Zheng for their assistance with XPS, Raman, and
FTIR analysis.
NR 32
TC 45
Z9 47
U1 18
U2 119
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2168-0485
J9 ACS SUSTAIN CHEM ENG
JI ACS Sustain. Chem. Eng.
PD JUL
PY 2014
VL 2
IS 7
BP 1592
EP 1598
DI 10.1021/sc500336h
PG 7
WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY;
Engineering, Chemical
SC Chemistry; Science & Technology - Other Topics; Engineering
GA AK9LK
UT WOS:000338748400008
ER
PT J
AU Danalis, A
Luszczek, P
Marin, G
Vetter, JS
Dongarra, J
AF Danalis, Anthony
Luszczek, Piotr
Marin, Gabriel
Vetter, Jeffrey S.
Dongarra, Jack
TI BlackjackBench: Portable Hardware Characterization with Automated
Results' Analysis
SO COMPUTER JOURNAL
LA English
DT Article
DE micro-benchmarks; hardware characterization; statistical analysis
ID PERFORMANCE; CACHE; ACCURATE; SOFTWARE
AB DARPA's AACE project aimed to develop Architecture Aware Compiler Environments. Such a compiler automatically characterizes the targeted hardware and optimizes the application codes accordingly. We present the BlackjackBench suite, a collection of portable micro-benchmarks that automate system characterization, plus statistical analysis techniques for interpreting the results. The BlackjackBench benchmarks discover the effective sizes and speeds of the hardware environment rather than the often unattainable peak values. We aim at hardware characteristics that can be observed by running executables generated by existing compilers from standard C codes. We characterize the memory hierarchy, including cache sharing and non-uniform memory access characteristics of the system, properties of the processing cores affecting the instruction execution speed and the length of the operating system scheduler time slot. We show how these features of modern multicores can be discovered programmatically. We also show how the features could potentially interfere with each other resulting in incorrect interpretation of the results, and how established classification and statistical analysis techniques can reduce experimental noise and aid automatic interpretation of results. We show how effective hardware metrics from our probes allow guided tuning of computational kernels that outperform an autotuning library further tuned by the hardware vendor.
C1 [Danalis, Anthony; Luszczek, Piotr; Dongarra, Jack] Univ Tennessee, Knoxville, TN 37996 USA.
[Marin, Gabriel; Vetter, Jeffrey S.] Oak Ridge Natl Lab, Oak Ridge, TN USA.
RP Luszczek, P (reprint author), Univ Tennessee, Knoxville, TN 37996 USA.
EM luszczek@eecs.utk.edu
NR 23
TC 0
Z9 0
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0010-4620
EI 1460-2067
J9 COMPUT J
JI Comput. J.
PD JUL
PY 2014
VL 57
IS 7
BP 1002
EP 1016
DI 10.1093/comjnl/bxt057
PG 15
WC Computer Science, Hardware & Architecture; Computer Science, Information
Systems; Computer Science, Software Engineering; Computer Science,
Theory & Methods
SC Computer Science
GA AK8AG
UT WOS:000338648900005
ER
PT J
AU Aad, G
Abajyan, T
Abbott, B
Abdallah, J
Khalek, SA
Abdelalim, AA
Abdinov, O
Aben, R
Abi, B
Abolins, M
AbouZeid, OS
Abramowicz, H
Abreu, H
Acharya, BS
Adamczyk, L
Adams, DL
Addy, TN
Adelman, J
Adomeit, S
Adragna, P
Adye, T
Aefsky, S
Aguilar-Saavedra, JA
Agustoni, M
Aharrouche, M
Ahlen, SP
Ahles, F
Ahmad, A
Ahsan, M
Aielli, G
Akesson, TPA
Akimoto, G
Akimov, AV
Alam, MS
Alam, MA
Albert, J
Albrand, S
Aleksa, M
Aleksandrov, IN
Alessandria, F
Alexa, C
Alexander, G
Alexandre, G
Alexopoulos, T
Alhroob, M
Aliev, M
Alimonti, G
Alison, J
Allbrooke, BMM
Allport, PP
Allwood-Spiers, SE
Almond, J
Aloisio, A
Alon, R
Alonso, A
Alonso, F
Altheimer, A
Gonzalez, BA
Alviggi, MG
Amako, K
Amelung, C
Ammosov, VV
Dos Santos, SPA
Amorim, A
Amram, N
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anderson, KJ
Andreazza, A
Andrei, V
Andrieux, ML
Anduaga, XS
Angelidakis, S
Anger, P
Angerami, A
Anghinolfi, F
Anisenkov, A
Anjos, N
Annovi, A
Antonaki, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoki, M
Aoun, S
Bella, LA
Apolle, R
Arabidze, G
Aracena, I
Arai, Y
Arce, ATH
Arfaoui, S
Arguin, JF
Argyropoulos, S
Arik, E
Arik, M
Armbruster, AJ
Arnaez, O
Arnal, V
Arnault, C
Artamonov, A
Artoni, G
Arutinov, D
Asai, S
Ask, S
Asman, B
Asquith, L
Assamagan, K
Astbury, A
Atkinson, M
Aubert, B
Auge, E
Augsten, K
Aurousseau, M
Avolio, G
Avramidou, R
Axen, D
Azuelos, G
Azuma, Y
Baak, MA
Baccaglionia, G
Bacci, C
Bach, AM
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Mayes, JB
Badescu, E
Bagnaia, P
Bahinipati, S
Bai, Y
Bailey, DC
Bain, T
Baines, JT
Baker, OK
Baker, MD
Baker, S
Balek, P
Banas, E
Banerjee, P
Banerjee, S
Banfi, D
Bangert, A
Bansal, V
Bansil, HS
Barak, L
Baranov, SP
Galtieri, AB
Barber, T
Barberio, EL
Barberis, D
Barbero, M
Bardin, DY
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnett, BM
Barnett, RM
Baroncelli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Barrillon, P
Bartoldus, R
Barton, AE
Bartsch, V
Basye, A
Bates, RL
Batkova, L
Batley, JR
Battaglia, A
Battistin, M
Bauer, F
Bawa, HS
Beale, S
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Becker, AK
Becker, S
Beckingham, M
Becks, KH
Beddall, AJ
Beddall, A
Bedikian, S
Bednyakov, VA
Bee, CP
Beemster, LJ
Begel, M
Harpaz, SB
Behera, PK
Beimforde, M
Belanger-Champagne, C
Bell, PJ
Bell, WH
Bella, G
Bellagamba, L
Bellomo, M
Belloni, A
Beloborodova, O
Belotskiy, K
Beltramello, O
Benary, O
Benchekroun, D
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Garcia, JAB
Benjamin, DP
Benoit, M
Bensinger, JR
Benslama, K
Bentvelsen, S
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Berglund, E
Beringer, J
Bernat, P
Bernhard, R
Bernius, C
Berry, T
Bertella, C
Bertin, A
Bertolucci, F
Besana, MI
Besjes, GJ
Besson, N
Bethke, S
Bhimji, W
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Bieniek, SP
Bierwagen, K
Biesiada, J
Biglietti, M
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Biscarat, C
Bittner, B
Black, CW
Black, KM
Blair, RE
Blanchard, JB
Blanchot, G
Blazek, T
Bloch, I
Blocker, C
Blocki, J
Blondel, A
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VB
Bocchetta, SS
Bocci, A
Boddy, CR
Boehler, M
Boek, J
Boelaert, N
Bogaerts, JA
Bogdanchikov, A
Bogouch, A
Bohm, C
Bohm, J
Boisvert, V
Bold, T
Boldea, V
Bolnet, NM
Bomben, M
Bona, M
Boonekamp, M
Bordoni, S
Borer, C
Borisov, A
Borissov, G
Borjanovic, I
Borri, M
Borroni, S
Bortfeldt, J
Bortolotto, V
Bos, K
Boscherini, D
Bosman, M
Boterenbrood, H
Bouchami, J
Boudreau, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Bousson, N
Boveia, A
Boyd, J
Boyko, IR
Bozovic-Jelisavcic, I
Bracinik, J
Branchini, P
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brazzale, SF
Brelier, B
Bremer, J
Brendlinger, K
Brenner, R
Bressler, S
Britton, D
Brochu, FM
Brock, I
Brock, R
Broggi, F
Bromberg, C
Bronner, J
Brooijmans, G
Brooks, T
Brooks, WK
Brown, G
Brown, H
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Brunet, S
Bruni, A
Bruni, G
Bruschi, M
Buanes, T
Buat, Q
Bucci, F
Buchanan, J
Buchholz, P
Buckingham, RM
Buckley, AG
Buda, SI
Budagov, IA
Budick, B
Buescher, V
Bugge, L
Bulekov, O
Bundock, AC
Bunse, M
Buran, T
Burckhart, H
Burdin, S
Burgess, T
Burke, S
Busato, E
Bussey, P
Buszello, CP
Butler, B
Butler, JM
Buttar, CM
Butterworth, JM
Buttinger, W
Byszewski, M
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calderini, G
Calfayan, P
Calkins, R
Caloba, LP
Caloi, R
Calvet, D
Calvet, S
Toro, RC
Camarri, P
Cameron, D
Caminada, LM
Armadans, RC
Campana, S
Campanelli, M
Canale, V
Canelli, F
Canepa, A
Cantero, J
Cantrill, R
Capasso, L
Garrido, MDMC
Caprini, I
Caprini, M
Capriotti, D
Capua, M
Caputo, R
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, B
Caron, S
Carquin, E
Carrillo-Montoya, GD
Carter, AA
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Cascella, M
Caso, C
Hernandez, AMC
Castaneda-Miranda, E
Gimenez, VC
Castro, NF
Cataldi, G
Catastini, P
Catinaccio, A
Catmore, JR
Cattai, A
Cattani, G
Caughron, S
Cavaliere, V
Cavalleri, P
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cetin, SA
Chafaq, A
Chakraborty, D
Chalupkova, I
Chan, K
Chang, P
Chapleau, B
Chapman, JD
Chapman, JW
Chareyre, E
Charlton, DG
Chavda, V
Barajas, CAC
Cheatham, S
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, S
Chen, X
Chen, Y
Cheng, Y
Cheplakov, A
El Moursli, RC
Chernyatin, V
Cheu, E
Cheung, SL
Chevalier, L
Chiefari, G
Chikovani, L
Childers, JT
Chilingarov, A
Chiodini, G
Chisholm, AS
Chislett, RT
Chitan, A
Chizhov, MV
Choudalakis, G
Chouridou, S
Christidi, IA
Christov, A
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Ciapetti, G
Ciftci, AK
Ciftci, R
Cinca, D
Cindro, V
Ciocca, C
Ciocio, A
Cirilli, M
Cirkovic, P
Citron, ZH
Citterio, M
Ciubancan, M
Clark, A
Clark, PJ
Clarke, RN
Cleland, W
Clemens, JC
Clement, B
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coffey, L
Cogan, JG
Coggeshall, J
Cogneras, E
Colas, J
Cole, S
Colijn, AP
Collins, NJ
Collins-Tooth, C
Collot, J
Colombo, T
Colon, G
Compostella, G
Munio, PC
Coniavitis, E
Conidi, MC
Consonni, SM
Consorti, V
Constantinescu, S
Conta, C
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Cote, D
Courneyea, L
Cowan, G
Cowden, C
Cox, BE
Cranmer, K
Crescioli, F
Cristinziani, M
Crosetti, G
Crepe-Renaudin, S
Cuciuc, CM
Almenar, CC
Donszelmann, TC
Cummings, J
Curatolo, M
Curtis, CJ
Cuthbert, C
Cwetanski, P
Czirr, H
Czodrowski, P
Czyczula, Z
D'Auria, S
D'Onofrio, M
D'Orazio, A
Sousa, MJDS
Da Via, C
Dabrowski, W
Dafinca, A
Dai, T
Dallapiccola, C
Dam, M
Dameri, M
Damiani, DS
Danielsson, HO
Dao, V
Darbo, G
Darlea, GL
Dassoulas, JA
Davey, W
Davidek, T
Davidson, N
Davidson, R
Davies, E
Davies, M
Davignon, O
Davison, AR
Davygora, Y
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
de Asmundis, R
De Castro, S
De Cecco, S
de Graat, J
De Groot, N
de Jong, P
De La Taille, C
De la Torre, H
De Lorenzi, F
de Mora, L
De Nooij, L
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBD
De Zorzi, G
Dearnaley, W
Debbe, R
Debenedetti, C
Dechenaux, B
Dedovich, DV
Degenhardt, J
Del Peso, J
Del Prete, T
Delemontex, T
Deliyergiyev, M
Dell'Acqua, A
Dell'Asta, L
Della Pietra, M
della Volpe, D
Delmastro, M
Delsart, PA
Deluca, C
Demers, S
Demichev, M
Demirkoz, B
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Devetak, E
Deviveiros, PO
Dewhurst, A
DeWilde, B
Dhaliwal, S
Dhullipudi, R
Di Ciaccio, A
Di Ciaccio, L
Di Donato, C
Di Girolamo, A
Di Girolamo, B
Di Luise, S
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Diaz, MA
Diehl, EB
Dietrich, J
Dietzsch, TA
Diglio, S
Yagci, KD
Dingfelder, J
Dinut, F
Dionisi, C
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
do Vale, MAB
Wemans, AD
Doan, TKO
Dobbs, M
Dobos, D
Dobson, E
Dodd, J
Doglioni, C
Doherty, T
Doi, Y
Dolejsi, J
Dolenc, I
Dolezal, Z
Dolgoshein, BA
Dohmae, T
Donadelli, M
Donini, J
Dopke, J
Doria, A
Dos Anjos, A
Dotti, A
Dova, MT
Doxiadis, AD
Doyle, AT
Dressnandt, N
Dris, M
Dubbert, J
Dube, S
Duchovni, E
Duckeck, G
Duda, D
Dudarev, A
Dudziak, F
Duehrssen, M
Duerdoth, IP
Duflot, L
Dufour, MA
Duguid, L
Dunford, M
Yildiz, HD
Duxfield, R
Dwuznik, M
Dueren, M
Ebenstein, WL
Ebke, J
Eckweiler, S
Edmonds, K
Edson, W
Edwards, CA
Edwards, NC
Ehrenfeld, W
Eifert, T
Eigen, G
Einsweiler, K
Eisenhandler, E
Ekelof, T
El Kacimi, M
Ellert, M
Elles, S
Ellinghaus, F
Ellis, K
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Engelmann, R
Engl, A
Epp, B
Erdmann, J
Ereditato, A
Eriksson, D
Ernst, J
Ernst, M
Ernwein, J
Errede, D
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Curull, XE
Esposito, B
Etienne, F
Etienvre, AI
Etzion, E
Evangelakou, D
Evans, H
Fabbri, L
Fabre, C
Fakhrutdinov, RM
Falciano, S
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farley, J
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassi, F
Fassnacht, P
Fassouliotis, D
Fatholahzadeh, B
Favareto, A
Fayard, L
Fazio, S
Febbraro, R
Federic, P
Fedin, OL
Fedorko, W
Fehling-Kaschek, M
Feligioni, L
Feng, C
Feng, EJ
Fenyuk, AB
Ferencei, J
Fernando, W
Ferrag, S
Ferrando, J
Ferrara, V
Ferrari, A
Ferrari, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filthaut, F
Fincke-Keeler, M
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, G
Fisher, MJ
Flechl, M
Fleck, I
Fleckner, J
Fleischmann, P
Fleischmann, S
Flick, T
Floderus, A
Castillo, LRF
Flowerdew, MJ
Martin, TF
Formica, A
Forti, A
Fortin, D
Fournier, D
Fowler, AJ
Fox, H
Francavilla, P
Franchini, M
Franchino, S
Francis, D
Frank, T
Franklin, M
Franz, S
Fraternali, M
Fratina, S
French, ST
Friedrich, C
Friedrich, F
Froeschl, R
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fulsom, BG
Fuster, J
Gabaldon, C
Gabizon, O
Gadfort, T
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallo, V
Gallop, BJ
Gallus, P
Gan, KK
Gao, YS
Gaponenko, A
Garberson, F
Garcia-Sciveres, M
Garcia, C
Navarro, JEG
Gardner, RW
Garelli, N
Garitaonandia, H
Garonne, V
Gatti, C
Gaudio, G
Gaur, B
Gauthier, L
Gauzzi, P
Gavrilenko, IL
Gay, C
Gaycken, G
Gazis, EN
Ge, P
Gecse, Z
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Gellerstedt, K
Gemme, C
Gemmell, A
Genest, MH
Gentile, S
George, M
George, S
Gerlach, P
Gershon, A
Geweniger, C
Ghazlane, H
Ghodbane, N
Giacobbe, B
Giagu, S
Giakoumopoulou, V
Giangiobbe, V
Gianotti, F
Gibbard, B
Gibson, A
Gibson, SM
Gilchriese, M
Gillberg, D
Gillman, AR
Gingrich, DM
Ginzburg, J
Giokaris, N
Giordani, MP
Giordano, R
Giorgi, FM
Giovannini, P
Giraud, PF
Giugni, D
Giunta, M
Gjelsten, BK
Gladilin, LK
Glasman, C
Glatzer, J
Glazov, A
Glitza, KW
Glonti, GL
Goddard, JR
Godfrey, J
Godlewski, J
Goebel, M
Goepfert, T
Goeringer, C
Goessling, C
Goldfarb, S
Golling, T
Gomes, A
Fajardo, LSG
Goncalo, R
Da Costa, JGPF
Gonella, L
de la Hoz, SG
Parra, GG
Silva, MLG
Gonzalez-Sevilla, S
Goodson, JJ
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorfine, G
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gosselink, M
Gostkin, MI
Eschrich, IG
Gouighri, M
Goujdami, D
Goulette, MP
Goussiou, AG
Goy, C
Gozpinar, S
Grabowska-Bold, I
Grafstrom, P
Grahn, KJ
Gramstad, E
Grancagnolo, F
Grancagnolo, S
Grassi, V
Gratchev, V
Grau, N
Gray, HM
Gray, JA
Graziani, E
Grebenyuk, OG
Greenshaw, T
Greenwood, ZD
Gregersen, K
Gregor, IM
Grenier, P
Griffiths, J
Grigalashvili, N
Grillo, AA
Grinstein, S
Gris, P
Grishkevich, YV
Grivaz, JF
Gross, E
Grosse-Knetter, J
Groth-Jensen, J
Grybel, K
Guest, D
Guicheney, C
Guido, E
Guindon, S
Gul, U
Gunther, J
Guo, B
Guo, J
Gutierrez, P
Guttman, N
Gutzwiller, O
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haas, S
Haber, C
Hadavand, HK
Hadley, DR
Haefner, P
Hahn, F
Hajduk, Z
Hakobyan, H
Hall, D
Hamacher, K
Hamal, P
Hamano, K
Hamer, M
Hamilton, A
Hamilton, S
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Handel, C
Hanke, P
Hansen, JR
Hansen, JB
Hansen, JD
Hansen, PH
Hansson, P
Hara, K
Harenberg, T
Harkusha, S
Harper, D
Harrington, RD
Harris, OM
Hartert, J
Hartjes, F
Haruyama, T
Harvey, A
Hasegawa, S
Hasegawa, Y
Hassani, S
Haug, S
Hauschild, M
Hauser, R
Havranek, M
Hawkes, CM
Hawkings, RJ
Hawkins, AD
Hayakawa, T
Hayashi, T
Hayden, D
Hays, CP
Hayward, HS
Haywood, SJ
Head, SJ
Hedberg, V
Heelan, L
Heim, S
Heinemann, B
Heisterkamp, S
Helary, L
Heller, C
Heller, M
Hellmanab, S
Hellmich, D
Helsens, C
Henderson, RCW
Henke, M
Henrichs, A
Correia, AMH
Henrot-Versille, S
Hensel, C
Henss, T
Hernandez, CM
Jimenez, YH
Herrberg, R
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Higon-Rodriguez, E
Hill, JC
Hiller, KH
Hillert, S
Hillier, SJ
Hinchliffe, I
Hines, E
Hirose, M
Hirsch, F
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoffman, J
Hoffmann, D
Hohlfeld, M
Holder, M
Holmgren, SO
Holy, T
Holzbauer, JL
Hong, TM
Van Huysduynen, LH
Horner, S
Hostachy, JY
Hou, S
Hoummada, A
Howard, J
Howarth, J
Hristova, I
Hrivnac, J
Hryn'ova, T
Hsu, PJ
Hsu, SC
Hu, D
Hubacek, Z
Hubaut, F
Huegging, F
Huettmann, A
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Hurwitz, M
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibbotson, M
Ibragimov, I
Iconomidou-Fayard, L
Idarraga, J
Iengo, P
Igonkina, O
Ikegami, Y
Ikeno, M
Iliadis, D
Ilic, N
Ince, T
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Quiles, AI
Isaksson, C
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ivashin, AV
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jackson, B
Jackson, JN
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakoubek, T
Jakubek, J
Jamin, DO
Jana, DK
Jansen, E
Jansen, H
Janssen, J
Jantsch, A
Janus, M
Jared, RC
Jarlskog, G
Jeanty, L
Jen-La Plante, I
Jennens, D
Jenni, P
Loevschall-Jensen, AE
Jez, P
Jezequel, S
Jha, MK
Ji, H
Ji, W
Jia, J
Jiang, Y
Belenguer, MJ
Jin, S
Jinnouchi, O
Joergensen, MD
Joffe, D
Johansen, M
Johansson, KE
Johansson, P
Johnert, S
Johns, KA
Jon-And, K
Jones, G
Jones, RWL
Jones, TJ
Joram, C
Jorge, PM
Joshi, KD
Jovicevic, J
Jovin, T
Ju, X
Jung, CA
Jungst, RM
Juranek, V
Jussel, P
Rozas, AJ
Kabana, S
Kaci, M
Kaczmarska, A
Kadlecik, P
Kado, M
Kagan, H
Kagan, M
Kajomovitz, E
Kalinin, S
Kalinovskaya, LV
Kama, S
Kanaya, N
Kaneda, M
Kaneti, S
Kanno, T
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kaplon, J
Kar, D
Karagounis, M
Karakostas, K
Karnevskiy, M
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kasieczka, G
Kass, RD
Kastanas, A
Kataoka, M
Kataoka, Y
Katsoufis, E
Katzy, J
Kaushik, V
Kawagoe, K
Kawamoto, T
Kawamura, G
Kayl, MS
Kazama, S
Kazanin, VA
Kazarinov, MY
Keeler, R
Keener, PT
Kehoe, R
Keil, M
Kekelidze, GD
Keller, JS
Kenyon, M
Kepka, O
Kerschen, N
Kersevan, BP
Kersten, S
Kessoku, K
Keung, J
Khalil-zada, F
Khandanyan, H
Khanov, A
Kharchenko, D
Khodinov, A
Khomich, A
Khoo, TJ
Khoriauli, G
Khoroshilov, A
Khovanskiy, V
Khramov, E
Khubua, J
Kim, H
Kim, SH
Kimura, N
Kind, O
King, BT
King, M
King, RSB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kitamura, T
Kittelmann, T
Kiuchi, K
Kladiva, E
Klein, M
Klein, U
Kleinknecht, K
Klemetti, M
Klier, A
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, JA
Klinkby, EB
Klioutchnikova, T
Klok, PF
Klous, S
Kluge, EE
Kluge, T
Kluit, P
Kluth, S
Kneringer, E
Knoops, EBFG
Knue, A
Ko, BR
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koeneke, K
Koenig, AC
Koenig, S
Koepke, L
Koetsveld, F
Koevesarki, P
Koffas, T
Koffeman, E
Kogan, LA
Kohlmann, S
Kohn, F
Kohout, Z
Kohriki, T
Koi, T
Kolachev, GM
Kolanoski, H
Kolesnikov, V
Koletsou, I
Koll, J
Komar, AA
Komori, Y
Kondo, T
Kono, T
Kononov, AI
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Korcyl, K
Kordas, K
Korn, A
Korol, A
Korolkov, I
Korolkova, EV
Korotkov, VA
Kortner, O
Kortner, S
Kostyukhin, VV
Kotov, S
Kotov, VM
Kotwal, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kral, V
Kramarenko, VA
Kramberger, G
Krasny, MW
Krasznahorkay, A
Kraus, JK
Kreiss, S
Krejci, F
Kretzschmar, J
Krieger, N
Krieger, P
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Krueger, H
Kruker, T
Krumnack, N
Krumshteyn, ZV
Kruse, MK
Kubota, T
Kuday, S
Kuehn, S
Kugel, A
Kuhl, T
Kuhn, D
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kummer, C
Kuna, M
Kunkle, J
Kupco, A
Kurashige, H
Kurata, M
Kurochkin, YA
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
Kwee, R
La Rosa, A
La Rotonda, L
Labarga, L
Labbe, J
Lablak, S
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Laisne, E
Lambourne, L
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Lang, VS
Lange, C
Lankford, AJ
Lanni, F
Lantzsch, K
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Larner, A
Lassnig, M
Laurelli, P
Lavorini, V
Lavrijsen, W
Laycock, P
Le Dortz, O
Le Guirriec, E
Le Menedeu, E
LeCompte, T
Ledroit-Guillon, F
Lee, H
Lee, JSH
Lee, SC
Lee, L
Lefebvre, M
Legendre, M
Legger, F
Leggett, C
Lehmacher, M
Miotto, GL
Leister, AG
Leite, MAL
Leitner, R
Lellouch, D
Lemmer, B
Lendermann, V
Leney, KJC
Lenz, T
Lenzen, G
Lenzi, B
Leonhardt, K
Leontsinis, S
Lepold, F
Leroy, C
Lessard, JR
Lester, CG
Lester, CM
Leveque, J
Levin, D
Levinson, LJ
Lewis, A
Lewis, GH
Leyko, AM
Leyton, M
Li, B
Li, B
Li, H
Li, HL
Li, S
Li, X
Liang, Z
Liao, H
Liberti, B
Lichard, P
Lichtnecker, M
Lie, K
Liebig, W
Limbach, C
Limosani, A
Limper, M
Lin, SC
Linde, F
Linnemann, JT
Lipeles, E
Lipniacka, A
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, C
Liu, D
Liu, H
Liu, JB
Liu, L
Liu, M
Liu, Y
Livan, M
Livermore, SSA
Lleres, A
Merino, JL
Lloyd, SL
Lobodzinska, E
Loch, P
Lockman, WS
Loddenkoetter, T
Loebinger, FK
Loginov, A
Loh, CW
Lohse, T
Lohwasser, K
Lokajicek, M
Lombardo, VP
Long, RE
Lopes, L
Mateos, DL
Lorenz, J
Martinez, NL
Losada, M
Loscutoff, P
Lo Sterzo, F
Losty, MJ
Lou, X
Lounis, A
Loureiro, KF
Love, J
Love, PA
Lowe, AJ
Lu, F
Lubatti, HJ
Luci, C
Lucotte, A
Ludwig, A
Ludwig, D
Ludwig, I
Ludwig, J
Luehring, F
Luijckx, G
Lukas, W
Luminari, L
Lund, E
Lund-Jensen, B
Lundberg, B
Lundberg, J
Lundberg, O
Lundquist, J
Lungwitz, M
Lynn, D
Lytken, E
Ma, H
Ma, LL
Maccarrone, G
Macchiolo, A
Macek, B
Miguens, JM
Macina, D
Mackeprang, R
Madaras, RJ
Maddocks, HJ
Mader, WF
Maenner, R
Maeno, T
Maettig, P
Maettig, S
Magnoni, L
Magradze, E
Mahboubi, K
Mahlstedt, J
Mahmoud, S
Mahout, G
Maiani, C
Maidantchik, C
Maio, A
Majewski, S
Makida, Y
Makovec, N
Mal, P
Malaescu, B
Malecki, P
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyshev, V
Malyukov, S
Mameghani, R
Mamuzic, J
Manabe, A
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Manfredini, A
de Andrade, LM
Ramos, JAM
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Mapelli, A
Mapelli, L
March, L
Marchand, JF
Marchese, F
Marchiori, G
Marcisovsky, M
Marino, CP
Marroquim, F
Marshall, Z
Marti, LF
Marti-Garcia, S
Martin, B
Martin, B
Martin, JP
Martin, TA
Martin, VJ
Latour, BMD
Martin-Haugh, S
Martinez, M
Outschoorn, VM
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massaro, G
Massol, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Matricon, P
Matsunaga, H
Matsushita, T
Mattravers, C
Maurer, J
Maxfield, SJ
Maximov, DA
Mayne, A
Mazini, R
Mazur, M
Mazzaferro, L
Mazzanti, M
Mc Donald, J
Mc Kee, S
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
Mchedlidze, G
Mclaughlan, T
McMahon, SJ
McPherson, RA
Meade, A
Mechnich, J
Mechtel, M
Medinnis, M
Meehan, S
Meera-Lebbai, R
Meguro, T
Mehlhase, S
Mehta, A
Meier, K
Meirose, B
Melachrinos, C
Garcia, BRM
Meloni, F
Navas, LM
Meng, Z
Mengarelli, A
Menke, S
Meoni, E
Mercurio, KM
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Merritt, H
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyer, J
Meyer, J
Michal, S
Micu, L
Middleton, RP
Migas, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Miller, DW
Miller, RJ
Mills, WJ
Mills, C
Milov, A
Milstead, DA
Milstein, D
Minaenko, AA
Moya, MM
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mirabelli, G
Mitrevski, J
Mitsou, VA
Mitsui, S
Miyagawa, PS
Mjoernmark, JU
Moa, T
Moeller, V
Moenig, K
Moeser, N
Mohapatra, S
Mohr, W
Moles-Valls, R
Molfetas, A
Monk, J
Monnier, E
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Moorhead, GF
Herrera, CM
Moraes, A
Morange, N
Morel, J
Morello, G
Moreno, D
Llacer, MM
Morettini, P
Morgenstern, M
Morii, M
Morley, AK
Mornacchi, G
Morris, JD
Morvaj, L
Moser, HG
Mosidze, M
Moss, J
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Mueller, F
Mueller, J
Mueller, K
Mueller, TA
Mueller, T
Muenstermann, D
Munwes, Y
Murray, WJ
Mussche, I
Musto, E
Myagkov, AG
Myska, M
Nackenhorst, O
Nadal, J
Nagai, K
Nagai, R
Nagano, K
Nagarkar, A
Nagasaka, Y
Nagel, M
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Nanava, G
Napier, A
Narayan, R
Nash, M
Nattermann, T
Naumann, T
Navarro, G
Neal, HA
Nechaeva, PY
Neep, TJ
Negri, A
Negri, G
Negrini, M
Nektarijevic, S
Nelson, A
Nelson, TK
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Neubauer, MS
Neumann, M
Neusiedl, A
Neves, RM
Nevski, P
Newcomer, FM
Newman, PR
Hong, VNT
Nickerson, RB
Nicolaidou, R
Nicquevert, B
Niedercorn, F
Nielsen, J
Nikiforou, N
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolics, K
Nikolopoulos, K
Nilsen, H
Nilsson, P
Ninomiya, Y
Nisati, A
Nisius, R
Nobe, T
Nodulman, L
Nomachi, M
Nomidis, I
Norberg, S
Nordberg, M
Norton, PR
Novakova, J
Nozaki, M
Nozka, L
Nugent, IM
Nuncio-Quiroz, AE
Hanninger, GN
Nunnemann, T
Nurse, E
O'Brien, BJ
O'Neil, DC
O'Shea, V
Oakes, LB
Oakham, FG
Oberlack, H
Ocariz, J
Ochi, A
Oda, S
Odaka, S
Odier, J
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohshima, T
Okamura, W
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Olchevski, AG
Pino, SAO
Oliveira, M
Damazio, DO
Garcia, EO
Olivito, D
Olszewski, A
Olszowska, J
Onofre, A
Onyisi, PUE
Oram, CJ
Oreglia, MJ
Oren, Y
Orestano, D
Orlando, N
Orlov, I
Barrera, CO
Orr, RS
Osculati, B
Ospanov, R
Osuna, C
Garzon, GOY
Ottersbach, JP
Ouchrif, M
Ouellette, EA
Ould-Saada, F
Ouraou, A
Ouyang, Q
Ovcharova, A
Owen, M
Owen, S
Ozcan, VE
Ozturk, N
Pages, AP
Aranda, CP
Griso, SP
Paganis, E
Pahl, C
Paige, F
Pais, P
Pajchel, K
Palacino, G
Paleari, CP
Palestini, S
Pallin, D
Palma, A
Palmer, JD
Pan, YB
Panagiotopoulou, E
Vazquez, JGP
Pani, P
Panikashvili, N
Panitkin, S
Pantea, D
Papadelis, A
Papadopoulou, TD
Paramonov, A
Hernandez, DP
Park, W
Parker, MA
Parodi, F
Parsons, JA
Parzefall, U
Pashapour, S
Pasqualucci, E
Passaggio, S
Passeri, A
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, N
Pater, JR
Patricelli, S
Pauly, T
Pecsy, M
Lopez, SP
Morales, MIP
Peleganchuk, SV
Pelikan, D
Peng, H
Penning, B
Penson, A
Penwell, J
Perantoni, M
Perez, K
Cavalcanti, TP
Codina, EP
Garcia-Estan, MTP
Reale, VP
Perini, L
Pernegger, H
Perrino, R
Perrodo, P
Peshekhonov, VD
Peters, K
Petersen, BA
Petersen, J
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Petschull, D
Petteni, M
Pezoa, R
Phan, A
Phillips, PW
Piacquadio, G
Picazio, A
Piccaro, E
Piccinini, M
Piec, SM
Piegaia, R
Pignotti, DT
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinder, A
Pinfold, JL
Pinto, B
Pizio, C
Plamondon, M
Pleier, MA
Plotnikova, E
Poblaguev, A
Poddar, S
Podlyski, F
Poggioli, L
Pohl, D
Pohl, M
Polesello, G
Policicchio, A
Polini, A
Poll, J
Polychronakos, V
Pomeroy, D
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Bueso, XP
Pospelov, GE
Pospisil, S
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Prabhu, R
Pralavorio, P
Pranko, A
Prasad, S
Pravahan, R
Prell, S
Pretzl, K
Price, D
Price, J
Price, LE
Prieur, D
Primavera, M
Prokofiev, K
Prokoshin, F
Protopopescu, S
Proudfoot, J
Prudent, X
Przybycien, M
Przysiezniak, H
Psoroulas, S
Ptacek, E
Pueschel, E
Purdham, J
Purohit, M
Puzo, P
Pylypchenko, Y
Qian, J
Quadt, A
Quarrie, DR
Quayle, WB
Quinonez, F
Raas, M
Radeka, V
Radescu, V
Radloff, P
Ragusa, F
Rahal, G
Rahimi, AM
Rahm, D
Rajagopalan, S
Rammensee, M
Rammes, M
Randle-Conde, AS
Randrianarivony, K
Rauscher, F
Rave, TC
Raymond, M
Read, AL
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Reinsch, A
Reisinger, I
Rembser, C
Ren, ZL
Renaud, A
Rescigno, M
Resconi, S
Resende, B
Reznicek, P
Rezvani, R
Richter, R
Richter-Was, E
Ridel, M
Rijpstra, M
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Rios, RR
Riu, I
Rivoltella, G
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robson, A
de Lima, JGR
Roda, C
Dos Santos, DR
Roe, A
Roe, S
Rohne, O
Rolli, S
Romaniouk, A
Romano, M
Romeo, G
Adam, ER
Rompotis, N
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, A
Rose, M
Rosenbaum, GA
Rosenberg, EI
Rosendahl, PL
Rosenthal, O
Rosselet, L
Rossetti, V
Rossi, E
Rossi, LP
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubbo, F
Rubinskiy, I
Ruckstuhl, N
Rud, VI
Rudolph, C
Rudolph, G
Ruehr, F
Ruiz-Martinez, A
Rumyantsev, L
Rurikova, Z
Rusakovich, NA
Ruschke, A
Rutherfoord, JP
Ruzicka, P
Ryabov, YF
Rybar, M
Rybkin, G
Ryder, NC
Saavedra, AF
Sadeh, I
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Sakamoto, H
Salamanna, G
Salamon, A
Saleem, M
Salek, D
Salihagic, D
Salnikov, A
Salt, J
Ferrando, BMS
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sampsonidis, D
Samset, BH
Sanchez, A
Martinez, VS
Sandaker, H
Sander, HG
Sanders, MP
Sandhoff, M
Sandoval, T
Sandoval, C
Sandstroem, R
Sankey, DPC
Sansoni, A
Rios, CS
Santoni, C
Santonico, R
Santos, H
Castillo, IS
Saraiva, JG
Sarangi, T
Sarkisyan-Grinbaum, E
Sarriab, F
Sartisohn, G
Sasaki, O
Sasaki, Y
Sasao, N
Satsounkevitch, I
Sauvage, G
Sauvan, E
Sauvan, JB
Savard, P
Savinov, V
Savu, DO
Sawyer, L
Saxon, DH
Saxon, J
Sbarra, C
Sbrizzi, A
Scannicchio, DA
Scarcella, M
Schaarschmidt, J
Schacht, P
Schaefer, D
Schaefer, U
Schaelicke, A
Schaepe, S
Schaetzel, S
Schaffer, AC
Schaile, D
Schamberger, RD
Schamov, AG
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Scherzer, MI
Schiavi, C
Schieck, J
Schioppa, M
Schlenker, S
Schmidt, E
Schmieden, K
Schmitt, C
Schmitt, S
Schneider, B
Schnoor, U
Schoeffel, L
Schoening, A
Schorlemmer, ALS
Schott, M
Schouten, D
Schovancova, J
Schram, M
Schroeder, C
Schroer, N
Schultens, MJ
Schultes, J
Schultz-Coulon, HC
Schulz, H
Schumacher, M
Schumm, BA
Schune, P
Schwanenberger, C
Schwartzman, A
Schwegler, P
Schwemling, P
Schwienhorst, R
Schwierz, R
Schwindling, J
Schwindt, T
Schwoerer, M
Sciacca, FG
Sciolla, G
Scott, WG
Searcy, J
Sedov, G
Sedykh, E
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Sekula, SJ
Selbach, KE
Seliverstov, DM
Sellden, B
Sellers, G
Seman, M
Semprini-Cesari, N
Serfon, C
Serin, L
Serkin, L
Seuster, R
Severini, H
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shank, JT
Shao, QT
Shapiro, M
Shatalov, PB
Shaw, K
Sherman, D
Sherwood, P
Shimizu, S
Shimojima, M
Shin, T
Shiyakova, M
Shmeleva, A
Shochet, MJ
Short, D
Shrestha, S
Shulga, E
Shupe, MA
Sicho, P
Sidoti, A
Siegert, F
Sijacki, D
Silbert, O
Silva, J
Silver, Y
Silverstein, D
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simioni, E
Simmons, B
Simoniello, R
Simonyan, M
Sinervo, P
Sinev, NB
Sipica, V
Siragusa, G
Sircar, A
Sisakyan, AN
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skinnari, LA
Skottowe, HP
Skovpen, K
Skubic, P
Slater, M
Slavicek, T
Sliwa, K
Smakhtin, V
Smart, BH
Smestad, L
Smirnov, SY
Smirnov, Y
Smirnova, LN
Smirnova, O
Smith, BC
Smith, D
Smith, KM
Smizanska, M
Smolek, K
Snesarev, AA
Snow, SW
Snow, J
Snyder, S
Sobie, R
Sodomka, J
Soffer, A
Solans, CA
Solar, M
Solc, J
Soldatov, EY
Soldevila, U
Camillocci, ES
Solodkov, AA
Solovyanov, OV
Solovyev, V
Soni, N
Sopko, V
Sopko, B
Sosebee, M
Soualah, R
Soukharev, A
Spagnolo, S
Spano, F
Spighi, R
Spigo, G
Spiwoks, R
Spousta, M
Spreitzer, T
Spurlock, B
St Denis, RD
Stahlman, J
Stamen, R
Stanecka, E
Stanek, RW
Stanescu, C
Stanescu-Bellu, M
Stanitzki, MM
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staszewski, R
Staude, A
Stavina, P
Steele, G
Steinbach, P
Steinberg, P
Stekl, I
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stern, S
Stewart, GA
Stillings, JA
Stockton, MC
Stoerig, K
Stoicea, G
Stonjek, S
Strachota, P
Stradling, AR
Straessner, A
Strandberg, J
Strandberg, S
Strandlie, A
Strang, M
Strauss, E
Strauss, M
Strizenec, P
Stroehmer, R
Strom, DM
Strong, JA
Stroynowski, R
Stugu, B
Stumer, I
Stupak, J
Sturm, P
Styles, NA
Soh, DA
Su, D
Subramania, HS
Subramaniam, R
Succurro, A
Sugaya, Y
Suhr, C
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, X
Sundermann, JE
Suruliz, K
Susinno, G
Sutton, MR
Suzuki, Y
Suzuki, Y
Svatos, M
Swedish, S
Sykora, I
Sykora, T
Sanchez, J
Ta, D
Tackmann, K
Taffard, A
Tafirout, R
Taiblum, N
Takahashi, Y
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Takubo, Y
Talby, M
Talyshev, A
Tamsett, MC
Tan, KG
Tanaka, J
Tanaka, R
Tanaka, S
Tanaka, S
Tanasijczuk, AJ
Tani, K
Tannoury, N
Tapprogge, S
Tardif, D
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tassi, E
Tayalati, Y
Taylor, C
Taylor, FE
Taylor, GN
Taylor, W
Teinturier, M
Teischinger, FA
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Terada, S
Terashi, K
Terron, J
Testa, M
Teuscher, RJ
Therhaag, J
Theveneaux-Pelzer, T
Thoma, S
Thomas, JP
Thompson, EN
Thompson, PD
Thompson, PD
Thompson, AS
Thomsen, LA
Thomson, E
Thomson, M
Thong, WM
Thun, RP
Tian, F
Tibbetts, MJ
Tic, T
Tikhomirov, VO
Tikhonov, YA
Timoshenko, S
Tiouchichine, E
Tipton, P
Tisserant, S
Todorov, T
Todorova-Nova, S
Toggerson, B
Tojo, J
Tokar, S
Tokushuku, K
Tollefson, K
Tomoto, M
Tompkins, L
Toms, K
Tonoyan, A
Topfel, C
Topilin, ND
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Trefzger, T
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Tripiana, MF
Triplett, N
Trischuk, W
Trocme, B
Troncon, C
Trottier-McDonald, M
True, P
Trzebinski, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiakiris, M
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsiskaridze, S
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsung, JW
Tsuno, S
Tsybychev, D
Tua, A
Tudorache, A
Tudorache, V
Tuggle, JM
Turala, M
Turecek, D
Cakir, IT
Turlay, E
Turra, R
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Tzanakos, G
Uchida, K
Ueda, I
Ueno, R
Ugland, M
Uhlenbrock, M
Uhrmacher, M
Ukegawa, F
Unal, G
Undrus, A
Unel, G
Unno, Y
Urbaniec, D
Urquijo, P
Usai, G
Uslenghi, M
Vacavant, L
Vacek, V
Vachon, B
Vahsen, S
Valenta, J
Valentinetti, S
Valero, A
Valkar, S
Gallego, EV
Vallecorsa, S
Ferrer, JAV
Van Berg, R
Van Der Deijl, P
van der Geer, R
van der Graaf, H
Van der Leeuw, R
van der Poel, E
van der Ster, D
van Eldik, N
van Gemmeren, P
van Vulpen, I
Vanadia, M
Vandelli, W
Vaniachine, A
Vankov, P
Vannucci, F
Vari, R
Varnes, EW
Varol, T
Varouchas, D
Vartapetian, A
Varvell, KE
Vassilakopoulos, VI
Vazeille, F
Schroeder, TV
Vegni, G
Veillet, JJ
Veloso, F
Veness, R
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Vichou, I
Vickey, T
Boeriu, OEV
Viehhauser, GHA
Viel, S
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinek, E
Vinogradov, VB
Virchaux, M
Virzi, J
Vitells, O
Viti, M
Vivarelli, I
Vaque, FV
Vlachos, S
Vladoiu, D
Vlasak, M
Vogel, A
Vokac, P
Volpi, G
Volpi, M
Volpini, G
von der Schmitt, H
von Radziewski, H
von Toerne, E
Vorobel, V
Vorwerk, V
Vos, M
Voss, R
Voss, TT
Vossebeld, JH
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Anh, TV
Vuillermet, R
Vukotic, I
Wagner, W
Wagner, P
Wahlen, H
Wahrmund, S
Wakabayashi, J
Walch, S
Walder, J
Walker, R
Walkowiak, W
Wall, R
Waller, P
Walsh, B
Wang, C
Wang, H
Wang, H
Wang, J
Wang, J
Wang, R
Wang, SM
Wang, T
Warburton, A
Ward, CP
Wardrope, DR
Warsinsky, M
Washbrook, A
Wasicki, C
Watanabe, I
Watkins, PM
Watson, AT
Watson, IJ
Watson, MF
Watts, G
Watts, S
Waugh, AT
Waugh, BM
Weber, MS
Webster, JS
Weidberg, AR
Weigell, P
Weingarten, J
Weiser, C
Wells, PS
Wenaus, T
Wendland, D
Weng, Z
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Werth, M
Wessels, M
Wetter, J
Weydert, C
Whalen, K
White, A
White, MJ
White, S
Whitehead, SR
Whiteson, D
Whittington, D
Wicek, F
Wicke, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik-Fuchs, LAM
Wijeratne, PA
Wildauer, A
Wildt, MA
Wilhelm, I
Wilkens, HG
Will, JZ
Williams, E
Williams, HH
Willis, W
Willocq, S
Wilson, JA
Wilson, MG
Wilson, A
Wingerter-Seez, I
Winkelmann, S
Winklmeier, F
Wittgen, M
Wollstadt, SJ
Wolter, MW
Wolters, H
Wong, WC
Wooden, G
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wozniak, KW
Wraight, K
Wright, M
Wrona, B
Wu, SL
Wu, X
Wu, Y
Wulf, E
Wynne, BM
Xella, S
Xiao, M
Xie, S
Xu, C
Xu, D
Xu, L
Yabsley, B
Yacoob, S
Yamada, M
Yamaguchi, H
Yamamoto, A
Yamamoto, K
Yamamoto, S
Yamamura, T
Yamanaka, T
Yamazaki, T
Yamazaki, Y
Yan, Z
Yang, H
Yang, UK
Yang, Y
Yang, Z
Yanush, S
Yao, L
Yao, Y
Yasu, Y
Smit, GVY
Ye, J
Ye, S
Yilmaz, M
Yoosoofmiya, R
Yorita, K
Yoshida, R
Yoshihara, K
Young, C
Young, CJ
Youssef, S
Yu, D
Yu, J
Yu, J
Yuan, L
Yurkewicz, A
Zabinski, B
Zaidan, R
Zaitsev, AM
Zajacova, Z
Zanello, L
Zanzi, D
Zaytsev, A
Zeitnitz, C
Zeman, M
Zemla, A
Zendler, C
Zenin, O
Zenis, T
Zinonos, Z
Zerwas, D
della Porta, GZ
Zhang, D
Zhang, H
Zhang, J
Zhang, X
Zhang, Z
Zhao, L
Zhao, Z
Zhemchugov, A
Zhong, J
Zhou, B
Zhou, N
Zhou, Y
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zhuravlov, V
Zibell, A
Zieminska, D
Zimin, NI
Zimmermann, R
Zimmermann, S
Zimmermann, S
Ziolkowski, M
Zitoun, R
Zivkovic, L
Zmouchko, VV
Zobernig, G
Zoccoli, A
zur Nedden, M
Zutshi, V
Zwalinski, L
AF Aad, G.
Abajyan, T.
Abbott, B.
Abdallah, J.
Khalek, S. Abdel
Abdelalim, A. A.
Abdinov, O.
Aben, R.
Abi, B.
Abolins, M.
AbouZeid, O. S.
Abramowicz, H.
Abreu, H.
Acharya, B. S.
Adamczyk, L.
Adams, D. L.
Addy, T. N.
Adelman, J.
Adomeit, S.
Adragna, P.
Adye, T.
Aefsky, S.
Aguilar-Saavedra, J. A.
Agustoni, M.
Aharrouche, M.
Ahlen, S. P.
Ahles, F.
Ahmad, A.
Ahsan, M.
Aielli, G.
Akesson, T. P. A.
Akimoto, G.
Akimov, A. V.
Alam, M. S.
Alam, M. A.
Albert, J.
Albrand, S.
Aleksa, M.
Aleksandrov, I. N.
Alessandria, F.
Alexa, C.
Alexander, G.
Alexandre, G.
Alexopoulos, T.
Alhroob, M.
Aliev, M.
Alimonti, G.
Alison, J.
Allbrooke, B. M. M.
Allport, P. P.
Allwood-Spiers, S. E.
Almond, J.
Aloisio, A.
Alon, R.
Alonso, A.
Alonso, F.
Altheimer, A.
Alvarez Gonzalez, B.
Alviggi, M. G.
Amako, K.
Amelung, C.
Ammosov, V. V.
Amor Dos Santos, S. P.
Amorim, A.
Amram, N.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Andrieux, M. -L.
Anduaga, X. S.
Angelidakis, S.
Anger, P.
Angerami, A.
Anghinolfi, F.
Anisenkov, A.
Anjos, N.
Annovi, A.
Antonaki, A.
Antonelli, M.
Antonov, A.
Antos, J.
Anulli, F.
Aoki, M.
Aoun, S.
Bella, L. Aperio
Apolle, R.
Arabidze, G.
Aracena, I.
Arai, Y.
Arce, A. T. H.
Arfaoui, S.
Arguin, J. -F.
Argyropoulos, S.
Arik, E.
Arik, M.
Armbruster, A. J.
Arnaez, O.
Arnal, V.
Arnault, C.
Artamonov, A.
Artoni, G.
Arutinov, D.
Asai, S.
Ask, S.
Asman, B.
Asquith, L.
Assamagan, K.
Astbury, A.
Atkinson, M.
Aubert, B.
Auge, E.
Augsten, K.
Aurousseau, M.
Avolio, G.
Avramidou, R.
Axen, D.
Azuelos, G.
Azuma, Y.
Baak, M. A.
Baccaglionia, G.
Bacci, C.
Bach, A. M.
Bachacou, H.
Bachas, K.
Backes, M.
Backhaus, M.
Mayes, J. Backus
Badescu, E.
Bagnaia, P.
Bahinipati, S.
Bai, Y.
Bailey, D. C.
Bain, T.
Baines, J. T.
Baker, O. K.
Baker, M. D.
Baker, S.
Balek, P.
Banas, E.
Banerjee, P.
Banerjee, Sw.
Banfi, D.
Bangert, A.
Bansal, V.
Bansil, H. S.
Barak, L.
Baranov, S. P.
Galtieri, A. Barbaro
Barber, T.
Barberio, E. L.
Barberis, D.
Barbero, M.
Bardin, D. Y.
Barillari, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnett, B. M.
Barnett, R. M.
Baroncelli, A.
Barone, G.
Barr, A. J.
Barreiro, F.
Barreiro Guimares da Costa, J.
Barrillon, P.
Bartoldus, R.
Barton, A. E.
Bartsch, V.
Basye, A.
Bates, R. L.
Batkova, L.
Batley, J. R.
Battaglia, A.
Battistin, M.
Bauer, F.
Bawa, H. S.
Beale, S.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Becker, A. K.
Becker, S.
Beckingham, M.
Becks, K. H.
Beddall, A. J.
Beddall, A.
Bedikian, S.
Bednyakov, V. A.
Bee, C. P.
Beemster, L. J.
Begel, M.
Harpaz, S. Behar
Behera, P. K.
Beimforde, M.
Belanger-Champagne, C.
Bell, P. J.
Bell, W. H.
Bella, G.
Bellagamba, L.
Bellomo, M.
Belloni, A.
Beloborodova, O.
Belotskiy, K.
Beltramello, O.
Benary, O.
Benchekroun, D.
Bendtz, K.
Benekos, N.
Benhammou, Y.
Noccioli, E. Benhar
Benitez Garcia, J. A.
Benjamin, D. P.
Benoit, M.
Bensinger, J. R.
Benslama, K.
Bentvelsen, S.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Berglund, E.
Beringer, J.
Bernat, P.
Bernhard, R.
Bernius, C.
Berry, T.
Bertella, C.
Bertin, A.
Bertolucci, F.
Besana, M. I.
Besjes, G. J.
Besson, N.
Bethke, S.
Bhimji, W.
Bianchi, R. M.
Bianchini, L.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Bierwagen, K.
Biesiada, J.
Biglietti, M.
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Biscarat, C.
Bittner, B.
Black, C. W.
Black, K. M.
Blair, R. E.
Blanchard, J. -B.
Blanchot, G.
Blazek, T.
Bloch, I.
Blocker, C.
Blocki, J.
Blondel, A.
Blum, W.
Blumenschein, U.
Bobbink, G. J.
Bobrovnikov, V. B.
Bocchetta, S. S.
Bocci, A.
Boddy, C. R.
Boehler, M.
Boek, J.
Boelaert, N.
Bogaerts, J. A.
Bogdanchikov, A.
Bogouch, A.
Bohm, C.
Bohm, J.
Boisvert, V.
Bold, T.
Boldea, V.
Bolnet, N. M.
Bomben, M.
Bona, M.
Boonekamp, M.
Bordoni, S.
Borer, C.
Borisov, A.
Borissov, G.
Borjanovic, I.
Borri, M.
Borroni, S.
Bortfeldt, J.
Bortolotto, V.
Bos, K.
Boscherini, D.
Bosman, M.
Boterenbrood, H.
Bouchami, J.
Boudreau, J.
Bouhova-Thacker, E. V.
Boumediene, D.
Bourdarios, C.
Bousson, N.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bozovic-Jelisavcic, I.
Bracinik, J.
Branchini, P.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brazzale, S. F.
Brelier, B.
Bremer, J.
Brendlinger, K.
Brenner, R.
Bressler, S.
Britton, D.
Brochu, F. M.
Brock, I.
Brock, R.
Broggi, F.
Bromberg, C.
Bronner, J.
Brooijmans, G.
Brooks, T.
Brooks, W. K.
Brown, G.
Brown, H.
Bruckman de Renstrom, P. A.
Bruncko, D.
Bruneliere, R.
Brunet, S.
Bruni, A.
Bruni, G.
Bruschi, M.
Buanes, T.
Buat, Q.
Bucci, F.
Buchanan, J.
Buchholz, P.
Buckingham, R. M.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Budick, B.
Buescher, V.
Bugge, L.
Bulekov, O.
Bundock, A. C.
Bunse, M.
Buran, T.
Burckhart, H.
Burdin, S.
Burgess, T.
Burke, S.
Busato, E.
Bussey, P.
Buszello, C. P.
Butler, B.
Butler, J. M.
Buttar, C. M.
Butterworth, J. M.
Buttinger, W.
Byszewski, M.
Urban, S. Cabrera
Caforio, D.
Cakir, O.
Calafiura, P.
Calderini, G.
Calfayan, P.
Calkins, R.
Caloba, L. P.
Caloi, R.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camarri, P.
Cameron, D.
Caminada, L. M.
Armadans, R. Caminal
Campana, S.
Campanelli, M.
Canale, V.
Canelli, F.
Canepa, A.
Cantero, J.
Cantrill, R.
Capasso, L.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capriotti, D.
Capua, M.
Caputo, R.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, B.
Caron, S.
Carquin, E.
Carrillo-Montoya, G. D.
Carter, A. A.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Cascella, M.
Caso, C.
Castaneda Hernandez, A. M.
Castaneda-Miranda, E.
Castillo Gimenez, V.
Castro, N. F.
Cataldi, G.
Catastini, P.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Cattani, G.
Caughron, S.
Cavaliere, V.
Cavalleri, P.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Ceradini, F.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cetin, S. A.
Chafaq, A.
Chakraborty, D.
Chalupkova, I.
Chan, K.
Chang, P.
Chapleau, B.
Chapman, J. D.
Chapman, J. W.
Chareyre, E.
Charlton, D. G.
Chavda, V.
Chavez Barajas, C. A.
Cheatham, S.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, S.
Chen, X.
Chen, Y.
Cheng, Y.
Cheplakov, A.
El Moursli, R. Cherkaoui
Chernyatin, V.
Cheu, E.
Cheung, S. L.
Chevalier, L.
Chiefari, G.
Chikovani, L.
Childers, J. T.
Chilingarov, A.
Chiodini, G.
Chisholm, A. S.
Chislett, R. T.
Chitan, A.
Chizhov, M. V.
Choudalakis, G.
Chouridou, S.
Christidi, I. A.
Christov, A.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Ciapetti, G.
Ciftci, A. K.
Ciftci, R.
Cinca, D.
Cindro, V.
Ciocca, C.
Ciocio, A.
Cirilli, M.
Cirkovic, P.
Citron, Z. H.
Citterio, M.
Ciubancan, M.
Clark, A.
Clark, P. J.
Clarke, R. N.
Cleland, W.
Clemens, J. C.
Clement, B.
Clement, C.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coffey, L.
Cogan, J. G.
Coggeshall, J.
Cogneras, E.
Colas, J.
Cole, S.
Colijn, A. P.
Collins, N. J.
Collins-Tooth, C.
Collot, J.
Colombo, T.
Colon, G.
Compostella, G.
Conde Munio, P.
Coniavitis, E.
Conidi, M. C.
Consonni, S. M.
Consorti, V.
Constantinescu, S.
Conta, C.
Conti, G.
Conventi, F.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Copic, K.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Cote, D.
Courneyea, L.
Cowan, G.
Cowden, C.
Cox, B. E.
Cranmer, K.
Crescioli, F.
Cristinziani, M.
Crosetti, G.
Crepe-Renaudin, S.
Cuciuc, C. -M.
Cuenca Almenar, C.
Cuhadar Donszelmann, T.
Cummings, J.
Curatolo, M.
Curtis, C. J.
Cuthbert, C.
Cwetanski, P.
Czirr, H.
Czodrowski, P.
Czyczula, Z.
D'Auria, S.
D'Onofrio, M.
D'Orazio, A.
Da Cunha Sargedas De Sousa, M. J.
Da Via, C.
Dabrowski, W.
Dafinca, A.
Dai, T.
Dallapiccola, C.
Dam, M.
Dameri, M.
Damiani, D. S.
Danielsson, H. O.
Dao, V.
Darbo, G.
Darlea, G. L.
Dassoulas, J. A.
Davey, W.
Davidek, T.
Davidson, N.
Davidson, R.
Davies, E.
Davies, M.
Davignon, O.
Davison, A. R.
Davygora, Y.
Dawe, E.
Dawson, I.
Daya-Ishmukhametova, R. K.
De, K.
de Asmundis, R.
De Castro, S.
De Cecco, S.
de Graat, J.
De Groot, N.
de Jong, P.
De La Taille, C.
De la Torre, H.
De Lorenzi, F.
de Mora, L.
De Nooij, L.
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Vivie De Regie, J. B.
De Zorzi, G.
Dearnaley, W. J.
Debbe, R.
Debenedetti, C.
Dechenaux, B.
Dedovich, D. V.
Degenhardt, J.
Del Peso, J.
Del Prete, T.
Delemontex, T.
Deliyergiyev, M.
Dell'Acqua, A.
Dell'Asta, L.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delsart, P. A.
Deluca, C.
Demers, S.
Demichev, M.
Demirkoz, B.
Denisov, S. P.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Devetak, E.
Deviveiros, P. O.
Dewhurst, A.
DeWilde, B.
Dhaliwal, S.
Dhullipudi, R.
Di Ciaccio, A.
Di Ciaccio, L.
Di Donato, C.
Di Girolamo, A.
Di Girolamo, B.
Di Luise, S.
Di Mattia, A.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Diaz, M. A.
Diehl, E. B.
Dietrich, J.
Dietzsch, T. A.
Diglio, S.
Yagci, K. Dindar
Dingfelder, J.
Dinut, F.
Dionisi, C.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
do Vale, M. A. B.
Do Valle Wemans, A.
Doan, T. K. O.
Dobbs, M.
Dobos, D.
Dobson, E.
Dodd, J.
Doglioni, C.
Doherty, T.
Doi, Y.
Dolejsi, J.
Dolenc, I.
Dolezal, Z.
Dolgoshein, B. A.
Dohmae, T.
Donadelli, M.
Donini, J.
Dopke, J.
Doria, A.
Dos Anjos, A.
Dotti, A.
Dova, M. T.
Doxiadis, A. D.
Doyle, A. T.
Dressnandt, N.
Dris, M.
Dubbert, J.
Dube, S.
Duchovni, E.
Duckeck, G.
Duda, D.
Dudarev, A.
Dudziak, F.
Duehrssen, M.
Duerdoth, I. P.
Duflot, L.
Dufour, M. -A.
Duguid, L.
Dunford, M.
Yildiz, H. Duran
Duxfield, R.
Dwuznik, M.
Dueren, M.
Ebenstein, W. L.
Ebke, J.
Eckweiler, S.
Edmonds, K.
Edson, W.
Edwards, C. A.
Edwards, N. C.
Ehrenfeld, W.
Eifert, T.
Eigen, G.
Einsweiler, K.
Eisenhandler, E.
Ekelof, T.
El Kacimi, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Ellis, K.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Engelmann, R.
Engl, A.
Epp, B.
Erdmann, J.
Ereditato, A.
Eriksson, D.
Ernst, J.
Ernst, M.
Ernwein, J.
Errede, D.
Errede, S.
Ertel, E.
Escalier, M.
Esch, H.
Escobar, C.
Espinal Curull, X.
Esposito, B.
Etienne, F.
Etienvre, A. I.
Etzion, E.
Evangelakou, D.
Evans, H.
Fabbri, L.
Fabre, C.
Fakhrutdinov, R. M.
Falciano, S.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farley, J.
Farooque, T.
Farrell, S.
Farrington, S. M.
Farthouat, P.
Fassi, F.
Fassnacht, P.
Fassouliotis, D.
Fatholahzadeh, B.
Favareto, A.
Fayard, L.
Fazio, S.
Febbraro, R.
Federic, P.
Fedin, O. L.
Fedorko, W.
Fehling-Kaschek, M.
Feligioni, L.
Feng, C.
Feng, E. J.
Fenyuk, A. B.
Ferencei, J.
Fernando, W.
Ferrag, S.
Ferrando, J.
Ferrara, V.
Ferrari, A.
Ferrari, P.
Ferrari, R.
Ferreira de Lima, D. E.
Ferrer, A.
Ferrere, D.
Ferretti, C.
Ferretto Parodi, A.
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filthaut, F.
Fincke-Keeler, M.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, G.
Fisher, M. J.
Flechl, M.
Fleck, I.
Fleckner, J.
Fleischmann, P.
Fleischmann, S.
Flick, T.
Floderus, A.
Flores Castillo, L. R.
Flowerdew, M. J.
Martin, T. Fonseca
Formica, A.
Forti, A.
Fortin, D.
Fournier, D.
Fowler, A. J.
Fox, H.
Francavilla, P.
Franchini, M.
Franchino, S.
Francis, D.
Frank, T.
Franklin, M.
Franz, S.
Fraternali, M.
Fratina, S.
French, S. T.
Friedrich, C.
Friedrich, F.
Froeschl, R.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fulsom, B. G.
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gadfort, T.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Galhardo, B.
Gallas, E. J.
Gallo, V.
Gallop, B. J.
Gallus, P.
Gan, K. K.
Gao, Y. S.
Gaponenko, A.
Garberson, F.
Garcia-Sciveres, M.
Garcia, C.
Garcia Navarro, J. E.
Gardner, R. W.
Garelli, N.
Garitaonandia, H.
Garonne, V.
Gatti, C.
Gaudio, G.
Gaur, B.
Gauthier, L.
Gauzzi, P.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gazis, E. N.
Ge, P.
Gecse, Z.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch.
Gellerstedt, K.
Gemme, C.
Gemmell, A.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerlach, P.
Gershon, A.
Geweniger, C.
Ghazlane, H.
Ghodbane, N.
Giacobbe, B.
Giagu, S.
Giakoumopoulou, V.
Giangiobbe, V.
Gianotti, F.
Gibbard, B.
Gibson, A.
Gibson, S. M.
Gilchriese, M.
Gillberg, D.
Gillman, A. R.
Gingrich, D. M.
Ginzburg, J.
Giokaris, N.
Giordani, M. P.
Giordano, R.
Giorgi, F. M.
Giovannini, P.
Giraud, P. F.
Giugni, D.
Giunta, M.
Gjelsten, B. K.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glazov, A.
Glitza, K. W.
Glonti, G. L.
Goddard, J. R.
Godfrey, J.
Godlewski, J.
Goebel, M.
Goepfert, T.
Goeringer, C.
Goessling, C.
Goldfarb, S.
Golling, T.
Gomes, A.
Gomez Fajardo, L. S.
Goncalo, R.
Goncalves Pinto Firmino Da Costa, J.
Gonella, L.
Gonzalez de la Hoz, S.
Gonzalez Parra, G.
Gonzalez Silva, M. L.
Gonzalez-Sevilla, S.
Goodson, J. J.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorfine, G.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Goshaw, A. T.
Gosselink, M.
Gostkin, M. I.
Gough Eschrich, I.
Gouighri, M.
Goujdami, D.
Goulette, M. P.
Goussiou, A. G.
Goy, C.
Gozpinar, S.
Grabowska-Bold, I.
Grafstrom, P.
Grahn, K. -J.
Gramstad, E.
Grancagnolo, F.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Grau, N.
Gray, H. M.
Gray, J. A.
Graziani, E.
Grebenyuk, O. G.
Greenshaw, T.
Greenwood, Z. D.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Griffiths, J.
Grigalashvili, N.
Grillo, A. A.
Grinstein, S.
Gris, Ph.
Grishkevich, Y. V.
Grivaz, J. -F.
Gross, E.
Grosse-Knetter, J.
Groth-Jensen, J.
Grybel, K.
Guest, D.
Guicheney, C.
Guido, E.
Guindon, S.
Gul, U.
Gunther, J.
Guo, B.
Guo, J.
Gutierrez, P.
Guttman, N.
Gutzwiller, O.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haas, S.
Haber, C.
Hadavand, H. K.
Hadley, D. R.
Haefner, P.
Hahn, F.
Hajduk, Z.
Hakobyan, H.
Hall, D.
Hamacher, K.
Hamal, P.
Hamano, K.
Hamer, M.
Hamilton, A.
Hamilton, S.
Han, L.
Hanagaki, K.
Hanawa, K.
Hance, M.
Handel, C.
Hanke, P.
Hansen, J. R.
Hansen, J. B.
Hansen, J. D.
Hansen, P. H.
Hansson, P.
Hara, K.
Harenberg, T.
Harkusha, S.
Harper, D.
Harrington, R. D.
Harris, O. M.
Hartert, J.
Hartjes, F.
Haruyama, T.
Harvey, A.
Hasegawa, S.
Hasegawa, Y.
Hassani, S.
Haug, S.
Hauschild, M.
Hauser, R.
Havranek, M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, A. D.
Hayakawa, T.
Hayashi, T.
Hayden, D.
Hays, C. P.
Hayward, H. S.
Haywood, S. J.
Head, S. J.
Hedberg, V.
Heelan, L.
Heim, S.
Heinemann, B.
Heisterkamp, S.
Helary, L.
Heller, C.
Heller, M.
Hellmanab, S.
Hellmich, D.
Helsens, C.
Henderson, R. C. W.
Henke, M.
Henrichs, A.
Henriques Correia, A. M.
Henrot-Versille, S.
Hensel, C.
Henss, T.
Hernandez, C. M.
Hernandez Jimenez, Y.
Herrberg, R.
Herten, G.
Hertenberger, R.
Hervas, L.
Hesketh, G. G.
Hessey, N. P.
Higon-Rodriguez, E.
Hill, J. C.
Hiller, K. H.
Hillert, S.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hirose, M.
Hirsch, F.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoffman, J.
Hoffmann, D.
Hohlfeld, M.
Holder, M.
Holmgren, S. O.
Holy, T.
Holzbauer, J. L.
Hong, T. M.
Van Huysduynen, L. Hooft
Horner, S.
Hostachy, J-Y.
Hou, S.
Hoummada, A.
Howard, J.
Howarth, J.
Hristova, I.
Hrivnac, J.
Hryn'ova, T.
Hsu, P. J.
Hsu, S. -C.
Hu, D.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huettmann, A.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Huhtinen, M.
Hurwitz, M.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibbotson, M.
Ibragimov, I.
Iconomidou-Fayard, L.
Idarraga, J.
Iengo, P.
Igonkina, O.
Ikegami, Y.
Ikeno, M.
Iliadis, D.
Ilic, N.
Ince, T.
Ioannou, P.
Iodice, M.
Iordanidou, K.
Ippolito, V.
Irles Quiles, A.
Isaksson, C.
Ishino, M.
Ishitsuka, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ivashin, A. V.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jackson, B.
Jackson, J. N.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakoubek, T.
Jakubek, J.
Jamin, D. O.
Jana, D. K.
Jansen, E.
Jansen, H.
Janssen, J.
Jantsch, A.
Janus, M.
Jared, R. C.
Jarlskog, G.
Jeanty, L.
Jen-La Plante, I.
Jennens, D.
Jenni, P.
Loevschall-Jensen, A. E.
Jez, P.
Jezequel, S.
Jha, M. K.
Ji, H.
Ji, W.
Jia, J.
Jiang, Y.
Jimenez Belenguer, M.
Jin, S.
Jinnouchi, O.
Joergensen, M. D.
Joffe, D.
Johansen, M.
Johansson, K. E.
Johansson, P.
Johnert, S.
Johns, K. A.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, T. J.
Joram, C.
Jorge, P. M.
Joshi, K. D.
Jovicevic, J.
Jovin, T.
Ju, X.
Jung, C. A.
Jungst, R. M.
Juranek, V.
Jussel, P.
Rozas, A. Juste
Kabana, S.
Kaci, M.
Kaczmarska, A.
Kadlecik, P.
Kado, M.
Kagan, H.
Kagan, M.
Kajomovitz, E.
Kalinin, S.
Kalinovskaya, L. V.
Kama, S.
Kanaya, N.
Kaneda, M.
Kaneti, S.
Kanno, T.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kaplon, J.
Kar, D.
Karagounis, M.
Karakostas, K.
Karnevskiy, M.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kasieczka, G.
Kass, R. D.
Kastanas, A.
Kataoka, M.
Kataoka, Y.
Katsoufis, E.
Katzy, J.
Kaushik, V.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kayl, M. S.
Kazama, S.
Kazanin, V. A.
Kazarinov, M. Y.
Keeler, R.
Keener, P. T.
Kehoe, R.
Keil, M.
Kekelidze, G. D.
Keller, J. S.
Kenyon, M.
Kepka, O.
Kerschen, N.
Kersevan, B. P.
Kersten, S.
Kessoku, K.
Keung, J.
Khalil-zada, F.
Khandanyan, H.
Khanov, A.
Kharchenko, D.
Khodinov, A.
Khomich, A.
Khoo, T. J.
Khoriauli, G.
Khoroshilov, A.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kim, H.
Kim, S. H.
Kimura, N.
Kind, O.
King, B. T.
King, M.
King, R. S. B.
Kirk, J.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kitamura, T.
Kittelmann, T.
Kiuchi, K.
Kladiva, E.
Klein, M.
Klein, U.
Kleinknecht, K.
Klemetti, M.
Klier, A.
Klimek, P.
Klimentov, A.
Klingenberg, R.
Klinger, J. A.
Klinkby, E. B.
Klioutchnikova, T.
Klok, P. F.
Klous, S.
Kluge, E. -E.
Kluge, T.
Kluit, P.
Kluth, S.
Kneringer, E.
Knoops, E. B. F. G.
Knue, A.
Ko, B. R.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kodys, P.
Koeneke, K.
Koenig, A. C.
Koenig, S.
Koepke, L.
Koetsveld, F.
Koevesarki, P.
Koffas, T.
Koffeman, E.
Kogan, L. A.
Kohlmann, S.
Kohn, F.
Kohout, Z.
Kohriki, T.
Koi, T.
Kolachev, G. M.
Kolanoski, H.
Kolesnikov, V.
Koletsou, I.
Koll, J.
Komar, A. A.
Komori, Y.
Kondo, T.
Kono, T.
Kononov, A. I.
Konoplich, R.
Konstantinidis, N.
Kopeliansky, R.
Koperny, S.
Korcyl, K.
Kordas, K.
Korn, A.
Korol, A.
Korolkov, I.
Korolkova, E. V.
Korotkov, V. A.
Kortner, O.
Kortner, S.
Kostyukhin, V. V.
Kotov, S.
Kotov, V. M.
Kotwal, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, T. Z.
Kozanecki, W.
Kozhin, A. S.
Kral, V.
Kramarenko, V. A.
Kramberger, G.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J. K.
Kreiss, S.
Krejci, F.
Kretzschmar, J.
Krieger, N.
Krieger, P.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Krueger, H.
Kruker, T.
Krumnack, N.
Krumshteyn, Z. V.
Kruse, M. K.
Kubota, T.
Kuday, S.
Kuehn, S.
Kugel, A.
Kuhl, T.
Kuhn, D.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kummer, C.
Kuna, M.
Kunkle, J.
Kupco, A.
Kurashige, H.
Kurata, M.
Kurochkin, Y. A.
Kus, V.
Kuwertz, E. S.
Kuze, M.
Kvita, J.
Kwee, R.
La Rosa, A.
La Rotonda, L.
Labarga, L.
Labbe, J.
Lablak, S.
Lacasta, C.
Lacava, F.
Lacey, J.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Laisne, E.
Lambourne, L.
Lampen, C. L.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Lang, V. S.
Lange, C.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Larner, A.
Lassnig, M.
Laurelli, P.
Lavorini, V.
Lavrijsen, W.
Laycock, P.
Le Dortz, O.
Le Guirriec, E.
Le Menedeu, E.
LeCompte, T.
Ledroit-Guillon, F.
Lee, H.
Lee, J. S. H.
Lee, S. C.
Lee, L.
Lefebvre, M.
Legendre, M.
Legger, F.
Leggett, C.
Lehmacher, M.
Miotto, G. Lehmann
Leister, A. G.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Lemmer, B.
Lendermann, V.
Leney, K. J. C.
Lenz, T.
Lenzen, G.
Lenzi, B.
Leonhardt, K.
Leontsinis, S.
Lepold, F.
Leroy, C.
Lessard, J-R.
Lester, C. G.
Lester, C. M.
Leveque, J.
Levin, D.
Levinson, L. J.
Lewis, A.
Lewis, G. H.
Leyko, A. M.
Leyton, M.
Li, B.
Li, B.
Li, H.
Li, H. L.
Li, S.
Li, X.
Liang, Z.
Liao, H.
Liberti, B.
Lichard, P.
Lichtnecker, M.
Lie, K.
Liebig, W.
Limbach, C.
Limosani, A.
Limper, M.
Lin, S. C.
Linde, F.
Linnemann, J. T.
Lipeles, E.
Lipniacka, A.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, C.
Liu, D.
Liu, H.
Liu, J. B.
Liu, L.
Liu, M.
Liu, Y.
Livan, M.
Livermore, S. S. A.
Lleres, A.
Merino, J. Llorente
Lloyd, S. L.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Loddenkoetter, T.
Loebinger, F. K.
Loginov, A.
Loh, C. W.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Lombardo, V. P.
Long, R. E.
Lopes, L.
Lopez Mateos, D.
Lorenz, J.
Lorenzo Martinez, N.
Losada, M.
Loscutoff, P.
Lo Sterzo, F.
Losty, M. J.
Lou, X.
Lounis, A.
Loureiro, K. F.
Love, J.
Love, P. A.
Lowe, A. J.
Lu, F.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Ludwig, A.
Ludwig, D.
Ludwig, I.
Ludwig, J.
Luehring, F.
Luijckx, G.
Lukas, W.
Luminari, L.
Lund, E.
Lund-Jensen, B.
Lundberg, B.
Lundberg, J.
Lundberg, O.
Lundquist, J.
Lungwitz, M.
Lynn, D.
Lytken, E.
Ma, H.
Ma, L. L.
Maccarrone, G.
Macchiolo, A.
Macek, B.
Machado Miguens, J.
Macina, D.
Mackeprang, R.
Madaras, R. J.
Maddocks, H. J.
Mader, W. F.
Maenner, R.
Maeno, T.
Maettig, P.
Maettig, S.
Magnoni, L.
Magradze, E.
Mahboubi, K.
Mahlstedt, J.
Mahmoud, S.
Mahout, G.
Maiani, C.
Maidantchik, C.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Mal, P.
Malaescu, B.
Malecki, Pa.
Malecki, P.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Malone, C.
Maltezos, S.
Malyshev, V.
Malyukov, S.
Mameghani, R.
Mamuzic, J.
Manabe, A.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Manfredini, A.
Manhaes de Andrade Filho, L.
Manjarres Ramos, J. A.
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Mapelli, A.
Mapelli, L.
March, L.
Marchand, J. F.
Marchese, F.
Marchiori, G.
Marcisovsky, M.
Marino, C. P.
Marroquim, F.
Marshall, Z.
Marti, L. F.
Marti-Garcia, S.
Martin, B.
Martin, B.
Martin, J. P.
Martin, T. A.
Martin, V. J.
Latour, B. Martin Dit
Martin-Haugh, S.
Martinez, M.
Martinez Outschoorn, V.
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massaro, G.
Massol, N.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Matricon, P.
Matsunaga, H.
Matsushita, T.
Mattravers, C.
Maurer, J.
Maxfield, S. J.
Maximov, D. A.
Mayne, A.
Mazini, R.
Mazur, M.
Mazzaferro, L.
Mazzanti, M.
Mc Donald, J.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McCubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
Mchedlidze, G.
Mclaughlan, T.
McMahon, S. J.
McPherson, R. A.
Meade, A.
Mechnich, J.
Mechtel, M.
Medinnis, M.
Meehan, S.
Meera-Lebbai, R.
Meguro, T.
Mehlhase, S.
Mehta, A.
Meier, K.
Meirose, B.
Melachrinos, C.
Garcia, B. R. Mellado
Meloni, F.
Mendoza Navas, L.
Meng, Z.
Mengarelli, A.
Menke, S.
Meoni, E.
Mercurio, K. M.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Merritt, H.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meyer, C.
Meyer, C.
Meyer, J-P.
Meyer, J.
Meyer, J.
Michal, S.
Micu, L.
Middleton, R. P.
Migas, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Miller, D. W.
Miller, R. J.
Mills, W. J.
Mills, C.
Milov, A.
Milstead, D. A.
Milstein, D.
Minaenko, A. A.
Moya, M. Minano
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mirabelli, G.
Mitrevski, J.
Mitsou, V. A.
Mitsui, S.
Miyagawa, P. S.
Mjoernmark, J. U.
Moa, T.
Moeller, V.
Moenig, K.
Moeser, N.
Mohapatra, S.
Mohr, W.
Moles-Valls, R.
Molfetas, A.
Monk, J.
Monnier, E.
Montejo Berlingen, J.
Monticelli, F.
Monzani, S.
Moore, R. W.
Moorhead, G. F.
Herrera, C. Mora
Moraes, A.
Morange, N.
Morel, J.
Morello, G.
Moreno, D.
Llacer, M. Moreno
Morettini, P.
Morgenstern, M.
Morii, M.
Morley, A. K.
Mornacchi, G.
Morris, J. D.
Morvaj, L.
Moser, H. G.
Mosidze, M.
Moss, J.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Mueller, F.
Mueller, J.
Mueller, K.
Mueller, T. A.
Mueller, T.
Muenstermann, D.
Munwes, Y.
Murray, W. J.
Mussche, I.
Musto, E.
Myagkov, A. G.
Myska, M.
Nackenhorst, O.
Nadal, J.
Nagai, K.
Nagai, R.
Nagano, K.
Nagarkar, A.
Nagasaka, Y.
Nagel, M.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakamura, T.
Nakano, I.
Nanava, G.
Napier, A.
Narayan, R.
Nash, M.
Nattermann, T.
Naumann, T.
Navarro, G.
Neal, H. A.
Nechaeva, P. Yu.
Neep, T. J.
Negri, A.
Negri, G.
Negrini, M.
Nektarijevic, S.
Nelson, A.
Nelson, T. K.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Neubauer, M. S.
Neumann, M.
Neusiedl, A.
Neves, R. M.
Nevski, P.
Newcomer, F. M.
Newman, P. R.
Hong, V. Nguyen Thi
Nickerson, R. B.
Nicolaidou, R.
Nicquevert, B.
Niedercorn, F.
Nielsen, J.
Nikiforou, N.
Nikiforov, A.
Nikolaenko, V.
Nikolic-Audit, I.
Nikolics, K.
Nikolopoulos, K.
Nilsen, H.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nisius, R.
Nobe, T.
Nodulman, L.
Nomachi, M.
Nomidis, I.
Norberg, S.
Nordberg, M.
Norton, P. R.
Novakova, J.
Nozaki, M.
Nozka, L.
Nugent, I. M.
Nuncio-Quiroz, A. -E.
Hanninger, G. Nunes
Nunnemann, T.
Nurse, E.
O'Brien, B. J.
O'Neil, D. C.
O'Shea, V.
Oakes, L. B.
Oakham, F. G.
Oberlack, H.
Ocariz, J.
Ochi, A.
Oda, S.
Odaka, S.
Odier, J.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohshima, T.
Okamura, W.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olariu, A.
Olchevski, A. G.
Pino, S. A. Olivares
Oliveira, M.
Damazio, D. Oliveira
Garcia, E. Oliver
Olivito, D.
Olszewski, A.
Olszowska, J.
Onofre, A.
Onyisi, P. U. E.
Oram, C. J.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlando, N.
Orlov, I.
Barrera, C. Oropeza
Orr, R. S.
Osculati, B.
Ospanov, R.
Osuna, C.
Garzon, G. Otero Y.
Ottersbach, J. P.
Ouchrif, M.
Ouellette, E. A.
Ould-Saada, F.
Ouraou, A.
Ouyang, Q.
Ovcharova, A.
Owen, M.
Owen, S.
Ozcan, V. E.
Ozturk, N.
Pages, A. Pacheco
Aranda, C. Padilla
Griso, S. Pagan
Paganis, E.
Pahl, C.
Paige, F.
Pais, P.
Pajchel, K.
Palacino, G.
Paleari, C. P.
Palestini, S.
Pallin, D.
Palma, A.
Palmer, J. D.
Pan, Y. B.
Panagiotopoulou, E.
Panduro Vazquez, J. G.
Pani, P.
Panikashvili, N.
Panitkin, S.
Pantea, D.
Papadelis, A.
Papadopoulou, Th. D.
Paramonov, A.
Hernandez, D. Paredes
Park, W.
Parker, M. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pashapour, S.
Pasqualucci, E.
Passaggio, S.
Passeri, A.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Patel, N.
Pater, J. R.
Patricelli, S.
Pauly, T.
Pecsy, M.
Pedraza Lopez, S.
Pedraza Morales, M. I.
Peleganchuk, S. V.
Pelikan, D.
Peng, H.
Penning, B.
Penson, A.
Penwell, J.
Perantoni, M.
Perez, K.
Perez Cavalcanti, T.
Perez Codina, E.
Perez Garcia-Estan, M. T.
Perez Reale, V.
Perini, L.
Pernegger, H.
Perrino, R.
Perrodo, P.
Peshekhonov, V. D.
Peters, K.
Petersen, B. A.
Petersen, J.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Petschull, D.
Petteni, M.
Pezoa, R.
Phan, A.
Phillips, P. W.
Piacquadio, G.
Picazio, A.
Piccaro, E.
Piccinini, M.
Piec, S. M.
Piegaia, R.
Pignotti, D. T.
Pilcher, J. E.
Pilkington, A. D.
Pina, J.
Pinamonti, M.
Pinder, A.
Pinfold, J. L.
Pinto, B.
Pizio, C.
Plamondon, M.
Pleier, M. -A.
Plotnikova, E.
Poblaguev, A.
Poddar, S.
Podlyski, F.
Poggioli, L.
Pohl, D.
Pohl, M.
Polesello, G.
Policicchio, A.
Polini, A.
Poll, J.
Polychronakos, V.
Pomeroy, D.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Bueso, X. Portell
Pospelov, G. E.
Pospisil, S.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Pozdnyakov, V.
Prabhu, R.
Pralavorio, P.
Pranko, A.
Prasad, S.
Pravahan, R.
Prell, S.
Pretzl, K.
Price, D.
Price, J.
Price, L. E.
Prieur, D.
Primavera, M.
Prokofiev, K.
Prokoshin, F.
Protopopescu, S.
Proudfoot, J.
Prudent, X.
Przybycien, M.
Przysiezniak, H.
Psoroulas, S.
Ptacek, E.
Pueschel, E.
Purdham, J.
Purohit, M.
Puzo, P.
Pylypchenko, Y.
Qian, J.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Quinonez, F.
Raas, M.
Radeka, V.
Radescu, V.
Radloff, P.
Ragusa, F.
Rahal, G.
Rahimi, A. M.
Rahm, D.
Rajagopalan, S.
Rammensee, M.
Rammes, M.
Randle-Conde, A. S.
Randrianarivony, K.
Rauscher, F.
Rave, T. C.
Raymond, M.
Read, A. L.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Reinsch, A.
Reisinger, I.
Rembser, C.
Ren, Z. L.
Renaud, A.
Rescigno, M.
Resconi, S.
Resende, B.
Reznicek, P.
Rezvani, R.
Richter, R.
Richter-Was, E.
Ridel, M.
Rijpstra, M.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Rios, R. R.
Riu, I.
Rivoltella, G.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robson, A.
Rocha de Lima, J. G.
Roda, C.
Roda Dos Santos, D.
Roe, A.
Roe, S.
Rohne, O.
Rolli, S.
Romaniouk, A.
Romano, M.
Romeo, G.
Adam, E. Romero
Rompotis, N.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, A.
Rose, M.
Rosenbaum, G. A.
Rosenberg, E. I.
Rosendahl, P. L.
Rosenthal, O.
Rosselet, L.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubbo, F.
Rubinskiy, I.
Ruckstuhl, N.
Rud, V. I.
Rudolph, C.
Rudolph, G.
Ruehr, F.
Ruiz-Martinez, A.
Rumyantsev, L.
Rurikova, Z.
Rusakovich, N. A.
Ruschke, A.
Rutherfoord, J. P.
Ruzicka, P.
Ryabov, Y. F.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Saavedra, A. F.
Sadeh, I.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Sakamoto, H.
Salamanna, G.
Salamon, A.
Saleem, M.
Salek, D.
Salihagic, D.
Salnikov, A.
Salt, J.
Ferrando, B. M. Salvachua
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sampsonidis, D.
Samset, B. H.
Sanchez, A.
Sanchez Martinez, V.
Sandaker, H.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandoval, T.
Sandoval, C.
Sandstroem, R.
Sankey, D. P. C.
Sansoni, A.
Rios, C. Santamarina
Santoni, C.
Santonico, R.
Santos, H.
Castillo, I. Santoyo
Saraiva, J. G.
Sarangi, T.
Sarkisyan-Grinbaum, E.
Sarriab, F.
Sartisohn, G.
Sasaki, O.
Sasaki, Y.
Sasao, N.
Satsounkevitch, I.
Sauvage, G.
Sauvan, E.
Sauvan, J. B.
Savard, P.
Savinov, V.
Savu, D. O.
Sawyer, L.
Saxon, D. H.
Saxon, J.
Sbarra, C.
Sbrizzi, A.
Scannicchio, D. A.
Scarcella, M.
Schaarschmidt, J.
Schacht, P.
Schaefer, D.
Schaefer, U.
Schaelicke, A.
Schaepe, S.
Schaetzel, S.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Schamov, A. G.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Scherzer, M. I.
Schiavi, C.
Schieck, J.
Schioppa, M.
Schlenker, S.
Schmidt, E.
Schmieden, K.
Schmitt, C.
Schmitt, S.
Schneider, B.
Schnoor, U.
Schoeffel, L.
Schoening, A.
Schorlemmer, A. L. S.
Schott, M.
Schouten, D.
Schovancova, J.
Schram, M.
Schroeder, C.
Schroer, N.
Schultens, M. J.
Schultes, J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwanenberger, C.
Schwartzman, A.
Schwegler, Ph.
Schwemling, Ph.
Schwienhorst, R.
Schwierz, R.
Schwindling, J.
Schwindt, T.
Schwoerer, M.
Sciacca, F. G.
Sciolla, G.
Scott, W. G.
Searcy, J.
Sedov, G.
Sedykh, E.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Sekula, S. J.
Selbach, K. E.
Seliverstov, D. M.
Sellden, B.
Sellers, G.
Seman, M.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Serkin, L.
Seuster, R.
Severini, H.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shank, J. T.
Shao, Q. T.
Shapiro, M.
Shatalov, P. B.
Shaw, K.
Sherman, D.
Sherwood, P.
Shimizu, S.
Shimojima, M.
Shin, T.
Shiyakova, M.
Shmeleva, A.
Shochet, M. J.
Short, D.
Shrestha, S.
Shulga, E.
Shupe, M. A.
Sicho, P.
Sidoti, A.
Siegert, F.
Sijacki, DJ.
Silbert, O.
Silva, J.
Silver, Y.
Silverstein, D.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simioni, E.
Simmons, B.
Simoniello, R.
Simonyan, M.
Sinervo, P.
Sinev, N. B.
Sipica, V.
Siragusa, G.
Sircar, A.
Sisakyan, A. N.
Sivoklokov, S. Yu.
Sjoelin, J.
Sjursen, T. B.
Skinnari, L. A.
Skottowe, H. P.
Skovpen, K.
Skubic, P.
Slater, M.
Slavicek, T.
Sliwa, K.
Smakhtin, V.
Smart, B. H.
Smestad, L.
Smirnov, S. Yu.
Smirnov, Y.
Smirnova, L. N.
Smirnova, O.
Smith, B. C.
Smith, D.
Smith, K. M.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snow, S. W.
Snow, J.
Snyder, S.
Sobie, R.
Sodomka, J.
Soffer, A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E. Yu.
Soldevila, U.
Camillocci, E. Solfaroli
Solodkov, A. A.
Solovyanov, O. V.
Solovyev, V.
Soni, N.
Sopko, V.
Sopko, B.
Sosebee, M.
Soualah, R.
Soukharev, A.
Spagnolo, S.
Spano, F.
Spighi, R.
Spigo, G.
Spiwoks, R.
Spousta, M.
Spreitzer, T.
Spurlock, B.
St Denis, R. D.
Stahlman, J.
Stamen, R.
Stanecka, E.
Stanek, R. W.
Stanescu, C.
Stanescu-Bellu, M.
Stanitzki, M. M.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staszewski, R.
Staude, A.
Stavina, P.
Steele, G.
Steinbach, P.
Steinberg, P.
Stekl, I.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stern, S.
Stewart, G. A.
Stillings, J. A.
Stockton, M. C.
Stoerig, K.
Stoicea, G.
Stonjek, S.
Strachota, P.
Stradling, A. R.
Straessner, A.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strang, M.
Strauss, E.
Strauss, M.
Strizenec, P.
Stroehmer, R.
Strom, D. M.
Strong, J. A.
Stroynowski, R.
Stugu, B.
Stumer, I.
Stupak, J.
Sturm, P.
Styles, N. A.
Soh, D. A.
Su, D.
Subramania, H. S.
Subramaniam, R.
Succurro, A.
Sugaya, Y.
Suhr, C.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Susinno, G.
Sutton, M. R.
Suzuki, Y.
Suzuki, Y.
Svatos, M.
Swedish, S.
Sykora, I.
Sykora, T.
Sanchez, J.
Ta, D.
Tackmann, K.
Taffard, A.
Tafirout, R.
Taiblum, N.
Takahashi, Y.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Takubo, Y.
Talby, M.
Talyshev, A.
Tamsett, M. C.
Tan, K. G.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tanaka, S.
Tanasijczuk, A. J.
Tani, K.
Tannoury, N.
Tapprogge, S.
Tardif, D.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tassi, E.
Tayalati, Y.
Taylor, C.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Teinturier, M.
Teischinger, F. A.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Terada, S.
Terashi, K.
Terron, J.
Testa, M.
Teuscher, R. J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thoma, S.
Thomas, J. P.
Thompson, E. N.
Thompson, P. D.
Thompson, P. D.
Thompson, A. S.
Thomsen, L. A.
Thomson, E.
Thomson, M.
Thong, W. M.
Thun, R. P.
Tian, F.
Tibbetts, M. J.
Tic, T.
Tikhomirov, V. O.
Tikhonov, Y. A.
Timoshenko, S.
Tiouchichine, E.
Tipton, P.
Tisserant, S.
Todorov, T.
Todorova-Nova, S.
Toggerson, B.
Tojo, J.
Tokar, S.
Tokushuku, K.
Tollefson, K.
Tomoto, M.
Tompkins, L.
Toms, K.
Tonoyan, A.
Topfel, C.
Topilin, N. D.
Torrence, E.
Torres, H.
Pastor, E. Torro
Toth, J.
Touchard, F.
Tovey, D. R.
Trefzger, T.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Tripiana, M. F.
Triplett, N.
Trischuk, W.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
True, P.
Trzebinski, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C-L.
Tsiakiris, M.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsiskaridze, S.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsung, J. -W.
Tsuno, S.
Tsybychev, D.
Tua, A.
Tudorache, A.
Tudorache, V.
Tuggle, J. M.
Turala, M.
Turecek, D.
Cakir, I. Turk
Turlay, E.
Turra, R.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Tzanakos, G.
Uchida, K.
Ueda, I.
Ueno, R.
Ugland, M.
Uhlenbrock, M.
Uhrmacher, M.
Ukegawa, F.
Unal, G.
Undrus, A.
Unel, G.
Unno, Y.
Urbaniec, D.
Urquijo, P.
Usai, G.
Uslenghi, M.
Vacavant, L.
Vacek, V.
Vachon, B.
Vahsen, S.
Valenta, J.
Valentinetti, S.
Valero, A.
Valkar, S.
Gallego, E. Valladolid
Vallecorsa, S.
Ferrer, J. A. Valls
Van Berg, R.
Van Der Deijl, P. C.
van der Geer, R.
van der Graaf, H.
Van der Leeuw, R.
van der Poel, E.
van der Ster, D.
van Eldik, N.
van Gemmeren, P.
van Vulpen, I.
Vanadia, M.
Vandelli, W.
Vaniachine, A.
Vankov, P.
Vannucci, F.
Vari, R.
Varnes, E. W.
Varol, T.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vassilakopoulos, V. I.
Vazeille, F.
Schroeder, T. Vazquez
Vegni, G.
Veillet, J. J.
Veloso, F.
Veness, R.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Vichou, I.
Vickey, T.
Boeriu, O. E. Vickey
Viehhauser, G. H. A.
Viel, S.
Villa, M.
Villaplana Perez, M.
Vilucchi, E.
Vincter, M. G.
Vinek, E.
Vinogradov, V. B.
Virchaux, M.
Virzi, J.
Vitells, O.
Viti, M.
Vivarelli, I.
Vaque, F. Vives
Vlachos, S.
Vladoiu, D.
Vlasak, M.
Vogel, A.
Vokac, P.
Volpi, G.
Volpi, M.
Volpini, G.
von der Schmitt, H.
von Radziewski, H.
von Toerne, E.
Vorobel, V.
Vorwerk, V.
Vos, M.
Voss, R.
Voss, T. T.
Vossebeld, J. H.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Anh, T. Vu
Vuillermet, R.
Vukotic, I.
Wagner, W.
Wagner, P.
Wahlen, H.
Wahrmund, S.
Wakabayashi, J.
Walch, S.
Walder, J.
Walker, R.
Walkowiak, W.
Wall, R.
Waller, P.
Walsh, B.
Wang, C.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, R.
Wang, S. M.
Wang, T.
Warburton, A.
Ward, C. P.
Wardrope, D. R.
Warsinsky, M.
Washbrook, A.
Wasicki, C.
Watanabe, I.
Watkins, P. M.
Watson, A. T.
Watson, I. J.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, A. T.
Waugh, B. M.
Weber, M. S.
Webster, J. S.
Weidberg, A. R.
Weigell, P.
Weingarten, J.
Weiser, C.
Wells, P. S.
Wenaus, T.
Wendland, D.
Weng, Z.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Werth, M.
Wessels, M.
Wetter, J.
Weydert, C.
Whalen, K.
White, A.
White, M. J.
White, S.
Whitehead, S. R.
Whiteson, D.
Whittington, D.
Wicek, F.
Wicke, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik-Fuchs, L. A. M.
Wijeratne, P. A.
Wildauer, A.
Wildt, M. A.
Wilhelm, I.
Wilkens, H. G.
Will, J. Z.
Williams, E.
Williams, H. H.
Willis, W.
Willocq, S.
Wilson, J. A.
Wilson, M. G.
Wilson, A.
Wingerter-Seez, I.
Winkelmann, S.
Winklmeier, F.
Wittgen, M.
Wollstadt, S. J.
Wolter, M. W.
Wolters, H.
Wong, W. C.
Wooden, G.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wozniak, K. W.
Wraight, K.
Wright, M.
Wrona, B.
Wu, S. L.
Wu, X.
Wu, Y.
Wulf, E.
Wynne, B. M.
Xella, S.
Xiao, M.
Xie, S.
Xu, C.
Xu, D.
Xu, L.
Yabsley, B.
Yacoob, S.
Yamada, M.
Yamaguchi, H.
Yamamoto, A.
Yamamoto, K.
Yamamoto, S.
Yamamura, T.
Yamanaka, T.
Yamazaki, T.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, U. K.
Yang, Y.
Yang, Z.
Yanush, S.
Yao, L.
Yao, Y.
Yasu, Y.
Smit, G. V. Ybeles
Ye, J.
Ye, S.
Yilmaz, M.
Yoosoofmiya, R.
Yorita, K.
Yoshida, R.
Yoshihara, K.
Young, C.
Young, C. J.
Youssef, S.
Yu, D.
Yu, J.
Yu, J.
Yuan, L.
Yurkewicz, A.
Zabinski, B.
Zaidan, R.
Zaitsev, A. M.
Zajacova, Z.
Zanello, L.
Zanzi, D.
Zaytsev, A.
Zeitnitz, C.
Zeman, M.
Zemla, A.
Zendler, C.
Zenin, O.
Zenis, T.
Zinonos, Z.
Zerwas, D.
della Porta, G. Zevi
Zhang, D.
Zhang, H.
Zhang, J.
Zhang, X.
Zhang, Z.
Zhao, L.
Zhao, Z.
Zhemchugov, A.
Zhong, J.
Zhou, B.
Zhou, N.
Zhou, Y.
Zhu, C. G.
Zhu, H.
Zhu, J.
Zhu, Y.
Zhuang, X.
Zhuravlov, V.
Zibell, A.
Zieminska, D.
Zimin, N. I.
Zimmermann, R.
Zimmermann, S.
Zimmermann, S.
Ziolkowski, M.
Zitoun, R.
Zivkovic, L.
Zmouchko, V. V.
Zobernig, G.
Zoccoli, A.
zur Nedden, M.
Zutshi, V.
Zwalinski, L.
CA ATLAS Collaboration
TI The differential production cross section of the phi(1020) meson in root
s=7 TeV pp collisions measured with the ATLAS detector
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID FRAGMENTATION
AB A measurement is presented of the phi x BR(phi -> K+ K-) production cross section at root s = 7 TeV using pp collision data corresponding to an integrated luminosity of 383 mu b(-1), collected with the ATLAS experiment at the LHC. Selection of phi(1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section is measured as a function of the transverse momentum, pT, phi, and rapidity, y(phi), of the phi(1020) meson in the fiducial region 500 < pT,phi < 1200MeV, vertical bar y phi| < 0.8, kaon p(T), (K) > 230 MeV and kaon momentum p(K) < 800 MeV. The integrated phi(1020)-meson production cross section in this fiducial range is measured to be sigma(phi) x BR(phi -> K+ K-) = 570 +/- 8 (stat) +/- 66 (syst) +/- 20 (lumi) mu b.
C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia.
[Alam, M. S.; Edson, W.; Ernst, J.] SUNY Albany, Dept Phys, Albany, NY 12222 USA.
[Bahinipati, S.; Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey.
Dumlupinar Univ, Dept Phys, Kutahya, Turkey.
[Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey.
[Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS IN2P3, LAPP, Annecy Le Vieux, France.
[Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France.
[Asquith, L.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Giorgi, F. M.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; Brown, H.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Angelidakis, S.; Antonaki, A.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Avramidou, R.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece.
[Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain.
[Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain.
[Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, DJ.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Aliev, M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany.
[Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey.
[Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey.
Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey.
[Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Grafstrom, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy.
[Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy.
[Abajyan, T.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany.
[Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil.
[Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil.
[do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil.
[Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania.
West Univ Timisoara, Timisoara, Romania.
[Gonzalez Silva, M. L.; Garzon, G. Otero Y.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Gillberg, D.; Koffas, T.; Lacey, J.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Chavez Barajas, C. A.; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Henriques Correia, A. M.; Hervas, L.; Hoecker, A.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Roda Dos Santos, D.; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Sfyrla, A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Diaz, M. A.; Pino, S. A. Olivares; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Han, L.; Jiang, Y.; Li, B.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wu, Y.; Xu, C.; Xu, L.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Feng, C.; Ge, P.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France.
[Altheimer, A.; Andeen, T.; Angerami, A.; Brooijmans, G.; Chen, Y.; Dodd, J.; Grau, N.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Perez Reale, V.; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Loevschall-Jensen, A. E.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Arcavacata Di Rende, Italy.
[Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy.
[Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Banas, E.; Blocki, J.; Bruckman de Renstrom, P. A.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA.
[Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Goncalves Pinto Firmino Da Costa, J.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Jimenez Belenguer, M.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Hamburg, Germany.
[Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Goncalves Pinto Firmino Da Costa, J.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Jimenez Belenguer, M.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany.
[Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland.
[Annovi, A.; Antonelli, M.; Bilokon, H.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Cerutti, F.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany.
[Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Ferretto Parodi, A.; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Barberis, D.; Caso, C.; Dameri, M.; Ferretto Parodi, A.; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia.
[Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia.
[Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany.
[Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Ferreira de Lima, D. E.; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland.
[Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Albrand, S.; Andrieux, M. -L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France.
[Albrand, S.; Andrieux, M. -L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRS IN2P3, Grenoble, France.
[Albrand, S.; Andrieux, M. -L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France.
[Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[Barreiro Guimares da Costa, J.; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Lopez Mateos, D.; Martinez Outschoorn, V.; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany.
[Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Behera, P. K.; Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia.
[Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan.
[Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan.
[Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan.
[Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina.
[Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina.
[Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England.
[Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy.
[Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy.
[Allport, P. P.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia.
[Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England.
[Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Panduro Vazquez, J. G.; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England.
[Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France.
[Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS IN2P3, Paris, France.
[Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden.
[Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain.
[Aharrouche, M.; Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
[Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France.
[Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France.
[Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Robertson, S. H.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Klemetti, M.; Mc Donald, J.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abolins, M.; Alvarez Gonzalez, B.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Alessandria, F.; Alimonti, G.; Andreazza, A.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus.
[Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Arguin, J. -F.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Giunta, M.; Leroy, C.; Martin, J. P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia.
[Artamonov, A.; Baranov, S. P.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia.
[Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany.
[Barillari, T.; Beimforde, M.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany.
[Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Besjes, G. J.; Caron, S.; Chelstowska, M. A.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands.
[Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands.
[Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands.
[Calkins, R.; Chakraborty, D.; Cole, S.; Rocha de Lima, J. G.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia.
[Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; Van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA.
[Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lorenzo Martinez, N.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France.
[Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lorenzo Martinez, N.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France.
[Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England.
[Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy.
[Alison, J.; Brendlinger, K.; Degenhardt, J.; Di Donato, C.; Dressnandt, N.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarriab, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarriab, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy.
[Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Munio, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
[Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Augsten, K.; Holy, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia.
[Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada.
[Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan.
[Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy.
[Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
[Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco.
[Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
[Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco.
[El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco.
[Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Manjarres Ramos, J. A.; Mansoulie, B.; Meyer, J-P.; Mijovic, L.; Morange, N.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.] Commissariat Energie Atom, CEA Saclay, Inst Rech Lois Fondamentales Univers, DSM IRFU, Gif Sur Yvette, France.
[Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Costanzo, D.; Cuhadar Donszelmann, T.; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany.
[Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia.
[Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Carrillo-Montoya, G. D.; Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa.
[Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellmanab, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden.
[Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellmanab, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden.
[Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA.
[Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Astron & Chem, Stony Brook, NY 11794 USA.
[Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Bangert, A.; Black, C. W.; Cuthbert, C.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Harpaz, S. Behar; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Abramowicz, H.; Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Perez Codina, E.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Benitez Garcia, J. A.; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan.
[Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Farrell, S.; Gough Eschrich, I.; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Milan, Italy.
[Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Alhroob, M.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy.
[Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain.
[Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain.
[Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain.
[Axen, D.; Bansal, V.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Ouellette, E. A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Albert, J.; Astbury, A.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.; Wicke, D.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Banerjee, Sw.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Chen, X.; Di Mattia, A.; Dos Anjos, A.; Fang, Y.; Flores Castillo, L. R.; Gutzwiller, O.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Pedraza Morales, M. I.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Fleischmann, P.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys, D-97070 Wurzburg, Germany.
[Barisonzi, M.; Becker, A. K.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Meyer, J.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Siragusa, G.; Sturm, P.; Voss, T. T.; Wagner, W.; Wahlen, H.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany.
[Adelman, J.; Baker, O. K.; Bedikian, S.; Cuenca Almenar, C.; Cummings, J.; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA.
[Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Biscarat, C.; Cogneras, E.; Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France.
LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal.
Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
Univ Lisbon, CFNUL, Lisbon, Portugal.
[Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Castaneda Hernandez, A. M.] UASLP, Dept Phys, San Luis Potosi, Mexico.
[Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey.
[Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Do Valle Wemans, A.] Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal.
[Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal.
[Dobson, E.] UCL, Dept Phys & Astron, London, England.
[Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa.
[Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany.
[Konoplich, R.] Manhattan Coll, New York, NY USA.
[Li, S.] Aix Marseille Univ, CPPM, Marseille, France.
[Li, S.] CNRS IN2P3, Marseille, France.
[Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China.
[Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan.
[Meng, Z.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China.
[Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Mountricha, E.; Xu, C.] Commissariat Energie Atom, CEA Saclay, Inst Rech Lois Fondamentales Univers, DSM IRFU, Gif Sur Yvette, France.
[Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal.
[Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary.
[Perez, K.] CALTECH, Pasadena, CA 91125 USA.
[Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland.
[Ruan, X.] Univ Paris 11, LAL, Orsay, France.
[Ruan, X.] CNRS IN2P3, Orsay, France.
[Spousta, M.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Tsionou, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Vickey, T.] Univ Oxford, Dept Phys, Oxford, England.
[Wu, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa.
[Zhang, D.] Acad Sinica, Inst Phys, Taipei, Taiwan.
RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany.
RI Moorhead, Gareth/B-6634-2009; Bosman, Martine/J-9917-2014; Fazio,
Salvatore /G-5156-2010; Brooks, William/C-8636-2013; Villa,
Mauro/C-9883-2009; Warburton, Andreas/N-8028-2013; Kuday,
Sinan/C-8528-2014; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013;
Peleganchuk, Sergey/J-6722-2014; Ferrando, James/A-9192-2012;
Santamarina Rios, Cibran/K-4686-2014; Alexa, Calin/F-6345-2010;
Kuleshov, Sergey/D-9940-2013; Lokajicek, Milos/G-7800-2014; Castro,
Nuno/D-5260-2011; Staroba, Pavel/G-8850-2014; Doyle,
Anthony/C-5889-2009; de Groot, Nicolo/A-2675-2009; Wemans,
Andre/A-6738-2012; Nemecek, Stanislav/G-5931-2014; Demirkoz,
Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura,
Andrea/A-9544-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu
Mihai/L-2412-2015; Shmeleva, Alevtina/M-6199-2015; Camarri,
Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov,
Vladimir/M-6194-2015; Samset, Bjorn H./B-9248-2012; Chekulaev,
Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin,
Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Livan,
Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou,
Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; Joergensen,
Morten/E-6847-2015; Riu, Imma/L-7385-2014; Garcia, Jose /H-6339-2015;
Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015;
Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer,
Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Carvalho,
Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar,
Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo,
Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton,
Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic,
Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN,
VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Olshevskiy,
Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli
Camillocci, Elena/J-1596-2012; Vanadia, Marco/K-5870-2016; Ippolito,
Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira,
Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin,
Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Canelli,
Florencia/O-9693-2016; Gauzzi, Paolo/D-2615-2009; Fabbri,
Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev,
Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani,
Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015
OI Moorhead, Gareth/0000-0002-9299-9549; Bosman,
Martine/0000-0002-7290-643X; Brooks, William/0000-0001-6161-3570; Villa,
Mauro/0000-0002-9181-8048; Warburton, Andreas/0000-0002-2298-7315;
Kuday, Sinan/0000-0002-0116-5494; Moraes, Arthur/0000-0002-5157-5686;
Boyko, Igor/0000-0002-3355-4662; Peleganchuk,
Sergey/0000-0003-0907-7592; Ferrando, James/0000-0002-1007-7816;
Santamarina Rios, Cibran/0000-0002-9810-1816; Kuleshov,
Sergey/0000-0002-3065-326X; Castro, Nuno/0000-0001-8491-4376; Doyle,
Anthony/0000-0001-6322-6195; Wemans, Andre/0000-0002-9669-9500; Ventura,
Andrea/0000-0002-3368-3413; spagnolo, stefania/0000-0001-7482-6348;
Ciubancan, Liviu Mihai/0000-0003-1837-2841; Camarri,
Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581;
Samset, Bjorn H./0000-0001-8013-1833; Gorelov, Igor/0000-0001-5570-0133;
Gladilin, Leonid/0000-0001-9422-8636; Andreazza,
Attilio/0000-0001-5161-5759; Livan, Michele/0000-0002-5877-0062; De,
Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886;
Smirnova, Oxana/0000-0003-2517-531X; Joergensen,
Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Della Pietra,
Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206;
Negrini, Matteo/0000-0003-0101-6963; Ferrer,
Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304;
Carvalho, Joao/0000-0002-3015-7821; Mashinistov,
Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz,
Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar
Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton,
Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes
Milosavljevic, Marija/0000-0003-4477-9733; Perrino,
Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495;
Olshevskiy, Alexander/0000-0002-8902-1793; Solfaroli Camillocci,
Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito,
Valerio/0000-0001-5126-1620; Mora Herrera, Maria
Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738;
Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV,
ALEKSANDR/0000-0003-3551-5808; Canelli, Florencia/0000-0001-6361-2117;
Gauzzi, Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353;
Solodkov, Alexander/0000-0002-2737-8674; Zaitsev,
Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207;
Grancagnolo, Francesco/0000-0002-9367-3380
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF; FWF, Austria;
ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI,
Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIEN-CIAS,
Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck
Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS;
CEA-DSM/IRFU, France; GNSF, Georgia; BMBF; DFG; HGF; MPG; AvH
Foundation, Germany; GSRT; NSRF, Greece; ISF; MINERVA; GIF; DIP;
Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco;
FOM; NWO, The Netherlands; BRF; RCN, Norway; MNiSW, Poland; GRICES; FCT,
Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation;
JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MIZS, Slovenia; DST/NRF, South
Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF;
Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey;
STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United
States of America
FX We thank CERN for the very successful operation of the LHC, as well as
the support staff from our institutions without whom ATLAS could not be
operated efficiently. We acknowledge the support of ANPCyT, Argentina;
YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS,
Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,
Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS,
Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and
Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union;
IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and
AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP
and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST,
Morocco; FOM and NWO, The Netherlands; BRF and RCN, Norway; MNiSW,
Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and
ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS
and MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and
Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva,
Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and
Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.
The crucial computing support from all WLCG partners is acknowledged
gratefully, in particular from CERN and the ATLAS Tier-1 facilities at
TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France),
KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC
(Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2
facilities worldwide.
NR 24
TC 4
Z9 4
U1 9
U2 111
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD JUL 1
PY 2014
VL 74
IS 7
AR 2895
DI 10.1140/epjc/s10052-014-2895-2
PG 21
WC Physics, Particles & Fields
SC Physics
GA AK9AG
UT WOS:000338719300001
ER
PT J
AU Parks, DA
Tittmann, BR
AF Parks, David A.
Tittmann, Bernhard R.
TI Radiation Tolerance of Piezoelectric Bulk Single-Crystal Aluminum
Nitride
SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL
LA English
DT Article
ID NEUTRON-IRRADIATION; AMORPHIZATION; CERAMICS; REACTOR; DAMAGE
AB For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for non-destructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminum-nitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 x 10(18) neutron/cm(2) and 5.8 x 10(18) neutron/cm(2), respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d(33), which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.
C1 [Parks, David A.] Idaho Natl Lab, NDE Phys Dept, Idaho Falls, ID 83402 USA.
[Tittmann, Bernhard R.] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA.
RP Parks, DA (reprint author), Idaho Natl Lab, NDE Phys Dept, Idaho Falls, ID 83402 USA.
EM brt4@psu.edu
NR 23
TC 10
Z9 10
U1 3
U2 28
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-3010
EI 1525-8955
J9 IEEE T ULTRASON FERR
JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control
PD JUL
PY 2014
VL 61
IS 7
BP 1216
EP 1222
DI 10.1109/TUFFC.2014.3020
PG 7
WC Acoustics; Engineering, Electrical & Electronic
SC Acoustics; Engineering
GA AK8GM
UT WOS:000338665500014
PM 24960710
ER
PT J
AU Eberhart, CJ
Lineberry, DM
Frederick, RA
Kastengren, AL
AF Eberhart, Chad J.
Lineberry, David M.
Frederick, Robert A., Jr.
Kastengren, Alan L.
TI Mechanistic Assessment of Swirl Coaxial Injection by Quantitative X-Ray
Radiography
SO JOURNAL OF PROPULSION AND POWER
LA English
DT Article
ID DYNAMICS; SPRAYS
AB Detailed x-ray radiographic experiments were conducted to evaluate the time-averaged spray characteristics of a liquid rocket swirl injector. Sprays issued from a single liquid-centered swirl coaxial element - with and without coannular gas flow - were exposed to focused, monochromatic x rays produced by a synchrotron light source. Two-dimensional attenuation data are presented at various axial stations and reveal both projected mass distribution of liquid in the injector near field and mass-weighted axial velocity integrated over time. Measurements describing spray morphology are also inferred from the x-ray data and compared with those measured through objective image processing of visible light imagery. The gas flow is observed to reduce spray cone angle up to 50% and increase liquid film thickness up to 20% in the near field. Measurements compare well with those extracted from imagery of the pressure-swirl spray; however, the x-ray technique is more robust in resolving liquid film thickness for the optically dense swirl coaxial spray.
C1 [Eberhart, Chad J.; Frederick, Robert A., Jr.] Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA.
[Lineberry, David M.] Univ Alabama, Prop Res Ctr, Huntsville, AL 35899 USA.
[Kastengren, Alan L.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Eberhart, CJ (reprint author), Univ Alabama, Dept Mech & Aerosp Engn, S225 Technol Hall, Huntsville, AL 35899 USA.
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-O6CH11375]
FX The authors would like to thank Alex Schumaker, Malissa Lightfoot, and
Steve Danczyk of the U.S. Air Force Research Laboratory for facilitating
the opportunity to conduct the x-ray radiographic portion of this work,
for productive discussion, and for guidance with data processing. The
authors would also like to thank Chris Powell of Argonne National
Laboratory, Daniel Duke of Monash University, and William Miller of
Kettering University for assistance with collection of the x-ray
radiography data. Use of the Advanced Photon Source was supported by the
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under contract no. DE-AC02-O6CH11375. This research was
conducted under the University of Alabama in Huntsville's Wernher von
Braun Propulsion Fellowship.
NR 29
TC 2
Z9 2
U1 0
U2 2
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0748-4658
EI 1533-3876
J9 J PROPUL POWER
JI J. Propul. Power
PD JUL-AUG
PY 2014
VL 30
IS 4
BP 1070
EP 1079
DI 10.2514/1.B35007
PG 10
WC Engineering, Aerospace
SC Engineering
GA AK9DD
UT WOS:000338726800020
ER
PT J
AU Liu, XW
Dekker, LJM
Wu, S
Vanduijn, MM
Luider, TM
Tolic, N
Kou, Q
Dvorkin, M
Alexandrova, S
Vyatkina, K
Pasa-Tolic, L
Pevzner, PA
AF Liu, Xiaowen
Dekker, Lennard J. M.
Wu, Si
Vanduijn, Martijn M.
Luider, Theo M.
Tolic, Nikola
Kou, Qiang
Dvorkin, Mikhail
Alexandrova, Sonya
Vyatkina, Kira
Pasa-Tolic, Ljiljana
Pevzner, Pavel A.
TI De Novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem
Mass Spectra
SO JOURNAL OF PROTEOME RESEARCH
LA English
DT Article
ID MONOCLONAL-ANTIBODIES; SPECTROMETRY; IDENTIFICATION; PEPTIDES;
PROTEOMICS; DATABASE; MIXTURES; MS/MS
AB There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy.
C1 [Liu, Xiaowen; Kou, Qiang] Indiana Univ Purdue Univ, Dept BioHlth Informat, Indianapolis, IN 46202 USA.
[Liu, Xiaowen] Indiana Univ Sch Med, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46202 USA.
[Dekker, Lennard J. M.; Vanduijn, Martijn M.; Luider, Theo M.] Erasmus MC, Dept Neurol, NL-3000 CA Rotterdam, Netherlands.
[Wu, Si; Tolic, Nikola; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira] St Petersburg Acad Univ, Algorithm Biol Lab, St Petersburg 194021, Russia.
[Pevzner, Pavel A.] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA 92093 USA.
RP Liu, XW (reprint author), Indiana Univ Purdue Univ, Dept BioHlth Informat, 535 West Michigan St,IT 475, Indianapolis, IN 46202 USA.
EM xwliu@iupui.edu; ppevzner@cs.ucsd.edu
OI van Duijn, Martijn/0000-0002-6654-994X
FU Indiana University-Purdue University Indianapolis; Netherlands
Organization for Scientific Research (NWO), Zenith grant [93511034]; DOE
[DE-AC05-76RLO1830]; Government of the Russian Federation
[11.G34.31.0018]
FX This work was supported by a startup fund provided by Indiana
University-Purdue University Indianapolis. L.J.M.D. and M.M.V. are
financially supported by The Netherlands Organization for Scientific
Research (NWO), Zenith grant no. 93511034. Portions of this work were
performed in the William R. Wiley Environmental Molecular Sciences
Laboratory (EMSL), a Department of Energy, Biological and Environmental
Research (DOE BER) national scientific user facility located on the
campus of Pacific Northwest National Laboratory (PNNL) in Richland,
Washington. PNNL is a multiprogram national laboratory operated by
Battelle for the DOE under Contract DE-AC05-76RLO1830. M.D., S.A, K.V.,
and P.A.P. were partially supported by the Government of the Russian
Federation (grant 11.G34.31.0018).
NR 33
TC 17
Z9 17
U1 4
U2 49
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1535-3893
EI 1535-3907
J9 J PROTEOME RES
JI J. Proteome Res.
PD JUL
PY 2014
VL 13
IS 7
BP 3241
EP 3248
DI 10.1021/pr401300m
PG 8
WC Biochemical Research Methods
SC Biochemistry & Molecular Biology
GA AK8QP
UT WOS:000338693400011
PM 24874765
ER
PT J
AU Aryal, UK
Callister, SJ
McMahon, BH
McCue, LA
Brown, J
Stockel, J
Liberton, M
Mishra, S
Zhang, XH
Nicora, CD
Angel, TE
Koppenaal, DW
Smith, RD
Pakrasi, HB
Sherman, LA
AF Aryal, Uma K.
Callister, Stephen J.
McMahon, Benjamin H.
McCue, Lee-Ann
Brown, Joseph
Stoeckel, Jana
Liberton, Michelle
Mishra, Sujata
Zhang, Xiaohui
Nicora, Carrie D.
Angel, Thomas E.
Koppenaal, David W.
Smith, Richard D.
Pakrasi, Himadri B.
Sherman, Louis A.
TI Proteomic Profiles of Five Strains of Oxygenic Photosynthetic
Cyanobacteria of the Genus Cyanothece
SO JOURNAL OF PROTEOME RESEARCH
LA English
DT Article
DE Cyanobacteria; Cyanothece; orthologues; photosynthesis; N-2 fixation;
H-2 production; proteome
ID MULTIPLE SEQUENCE ALIGNMENT; LIGHT-DARK; ATCC 51142; PHOTOSYSTEM-I;
GENOME; MASS; ATCC-51142; STRATEGY; CULTURES; SPECTRA
AB Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the potential to provide insights on differences among Cyanothece strains. By applying Sequedex, an annotation-independent method for ascribing gene functions, we confirmed significant species-specific differences of functional genes in different Cyanothece strains, particularly in Cyanothece PCC7425. Using a shotgun proteomics approach based on prefractionation and tandem mass spectrometry, we detected similar to 28-48% of the theoretical Cyanothece proteome, depending on the strain. The expression of a total of 642 orthologous proteins was observed in all five Cyanothece strains. These shared orthologous proteins showed considerable correlations in their abundances across different Cyanothece strains. Functional classification indicated that the majority of proteins involved in central metabolic functions such as amino acid, carbohydrate, protein, and RNA metabolism, photosynthesis, respiration, and stress responses were observed to a greater extent in the core proteome, whereas proteins involved in membrane transport, iron acquisition, regulatory functions, flagellar motility, and chemotaxis were observed to a greater extent in the unique proteome. Considerable differences were evident across different Cyanothece strains. Notably, the analysis of Cyanothece PCC7425, which showed the highest number of unique proteins (682), provided direct evidence of evolutionary differences in this strain. We conclude that Cyanothece PCC7425 diverged significantly from the other Cyanothece strains or evolved from a different lineage.
C1 [Aryal, Uma K.; Callister, Stephen J.; McCue, Lee-Ann; Brown, Joseph; Nicora, Carrie D.; Angel, Thomas E.; Koppenaal, David W.; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[McMahon, Benjamin H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Stoeckel, Jana; Liberton, Michelle; Pakrasi, Himadri B.] Washington Univ, Dept Biol, St Louis, MO 63130 USA.
[Mishra, Sujata; Zhang, Xiaohui; Sherman, Louis A.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA.
[Angel, Thomas E.] Kinemed Inc, Emeryville, CA 94608 USA.
[Stoeckel, Jana] MOgene Green Chem LC, St Louis, MO 63132 USA.
RP Sherman, LA (reprint author), Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA.
EM lsherman@purdue.edu
RI Smith, Richard/J-3664-2012;
OI Smith, Richard/0000-0002-2381-2349; McCue, Lee Ann/0000-0003-4456-517X
FU DOE [DE-AC05-76RL01830]; Pan-omics program; DOE Genomics GTL program [DE
09-19 PO 2905402N]; Office of Science (BER), U.S. Department of Energy
FX This work was part of a Membrane Biology Scientific Grand Challenge
(MBGC) project at the W.R. Wiley Environmental Molecular Science
Laboratory (EMSL). The Environmental Molecular Sciences Laboratory is a
U.S. Department of Energy (DOE) Office of Biological and Environmental
Research national scientific user facility on the Pacific Northwest
National Laboratory (PNNL) campus. PNNL is a multiprogram national
laboratory operated by Battelle for the DOE under contract
DE-AC05-76RL01830. This work was supported in part by the Pan-omics
program and a grant from the DOE Genomics GTL program (DE 09-19 PO
2905402N) and by funding from the Office of Science (BER), U.S.
Department of Energy to Drs. Pakrasi and Sherman.
NR 45
TC 4
Z9 5
U1 3
U2 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1535-3893
EI 1535-3907
J9 J PROTEOME RES
JI J. Proteome Res.
PD JUL
PY 2014
VL 13
IS 7
BP 3262
EP 3276
DI 10.1021/pr5000889
PG 15
WC Biochemical Research Methods
SC Biochemistry & Molecular Biology
GA AK8QP
UT WOS:000338693400013
PM 24846609
ER
PT J
AU Wu, GA
Prochnik, S
Jenkins, J
Salse, J
Hellsten, U
Murat, F
Perrier, X
Ruiz, M
Scalabrin, S
Terol, J
Takita, MA
Labadie, K
Poulain, J
Couloux, A
Jabbari, K
Cattonaro, F
Del Fabbro, C
Pinosio, S
Zuccolo, A
Chapman, J
Grimwood, J
Tadeo, FR
Estornell, LH
Munoz-Sanz, JV
Ibanez, V
Herrero-Ortega, A
Aleza, P
Perez-Perez, J
Ramon, D
Brunel, D
Luro, F
Chen, CX
Farmerie, WG
Desany, B
Kodira, C
Mohiuddin, M
Harkins, T
Fredrikson, K
Burns, P
Lomsadze, A
Borodovsky, M
Reforgiato, G
Freitas-Astua, J
Quetier, F
Navarro, L
Roose, M
Wincker, P
Schmutz, J
Morgante, M
Machado, MA
Talon, M
Jaillon, O
Ollitrault, P
Gmitter, F
Rokhsar, D
AF Wu, G. Albert
Prochnik, Simon
Jenkins, Jerry
Salse, Jerome
Hellsten, Uffe
Murat, Florent
Perrier, Xavier
Ruiz, Manuel
Scalabrin, Simone
Terol, Javier
Takita, Marco Aurelio
Labadie, Karine
Poulain, Julie
Couloux, Arnaud
Jabbari, Kamel
Cattonaro, Federica
Del Fabbro, Cristian
Pinosio, Sara
Zuccolo, Andrea
Chapman, Jarrod
Grimwood, Jane
Tadeo, Francisco R.
Estornell, Leandro H.
Munoz-Sanz, Juan V.
Ibanez, Victoria
Herrero-Ortega, Amparo
Aleza, Pablo
Perez-Perez, Julian
Ramon, Daniel
Brunel, Dominique
Luro, Francois
Chen, Chunxian
Farmerie, William G.
Desany, Brian
Kodira, Chinnappa
Mohiuddin, Mohammed
Harkins, Tim
Fredrikson, Karin
Burns, Paul
Lomsadze, Alexandre
Borodovsky, Mark
Reforgiato, Giuseppe
Freitas-Astua, Juliana
Quetier, Francis
Navarro, Luis
Roose, Mikeal
Wincker, Patrick
Schmutz, Jeremy
Morgante, Michele
Machado, Marcos Antonio
Talon, Manuel
Jaillon, Olivier
Ollitrault, Patrick
Gmitter, Frederick
Rokhsar, Daniel
TI Sequencing of diverse mandarin, pummelo and orange genomes reveals
complex history of admixture during citrus domestication
SO NATURE BIOTECHNOLOGY
LA English
DT Article
ID SINENSIS L. OSBECK; HORT. EX TAN.; MOLECULAR MARKERS; ORIGIN;
CLEMENTINA; RUTACEAE; ORGANIZATION; EVOLUTION; SSRS; MAP
AB Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes-a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes- and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement.
C1 [Wu, G. Albert; Prochnik, Simon; Hellsten, Uffe; Chapman, Jarrod; Rokhsar, Daniel] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.
[Jenkins, Jerry; Grimwood, Jane; Schmutz, Jeremy] HudsonAlpha Biotechnol Inst, Huntsville, AL USA.
[Salse, Jerome; Murat, Florent] UBA, INRA, UMR Genet Diversite Ecophysiol Cereales GDEC 1095, Clermont Ferrand, France.
[Perrier, Xavier; Ruiz, Manuel; Ollitrault, Patrick] Ctr Cooperat Int Rech Agronom Dev CIRAD, UMR Arneliorat Genet & Adaptat Plantes Mediterran, Montpellier, France.
[Scalabrin, Simone; Cattonaro, Federica; Del Fabbro, Cristian; Pinosio, Sara; Zuccolo, Andrea; Morgante, Michele] Ist Genom Applicata, Udine, Italy.
[Terol, Javier; Tadeo, Francisco R.; Estornell, Leandro H.; Munoz-Sanz, Juan V.; Ibanez, Victoria; Herrero-Ortega, Amparo; Talon, Manuel] IVIA, Ctr Genom, Valencia, Spain.
[Takita, Marco Aurelio; Freitas-Astua, Juliana; Machado, Marcos Antonio] Inst Agron IAC, Ctr Citricultura Sylvio Moreira, Cordeiropolis, Brazil.
[Labadie, Karine; Poulain, Julie; Couloux, Arnaud; Jabbari, Kamel; Brunel, Dominique; Quetier, Francis; Wincker, Patrick; Jaillon, Olivier] Genoscope, CEA, IG, Evry, France.
[Zuccolo, Andrea] Scuola Super Sant Anna, Inst Life Sci, Pisa, Italy.
[Aleza, Pablo; Navarro, Luis] Inst Valenciano Invest Agr, Ctr Protecc Vegetal & Biotecnol, E-46113 Moncada, Spain.
[Perez-Perez, Julian; Ramon, Daniel] Lifesequencing, Valencia, Spain.
[Perez-Perez, Julian] Secugen, Madrid, Spain.
[Brunel, Dominique] INRA, US Etude Polymorphisme Genomes Vegetaux EPGV 1279, Evry, France.
[Luro, Francois] INRA Genete & Ecophysiol Qualite Agrumes GEQA, San Giuliano, France.
[Chen, Chunxian; Gmitter, Frederick] Univ Florida, CREC, IFAS, Lake Alfred, FL USA.
[Farmerie, William G.] Univ Florida, Interdisciplinary Ctr Biotechnol Res, Gainesville, FL USA.
[Desany, Brian; Kodira, Chinnappa; Mohiuddin, Mohammed; Harkins, Tim; Fredrikson, Karin] Roche, Life Sci 454, Branford, CT USA.
[Burns, Paul; Lomsadze, Alexandre; Borodovsky, Mark] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA.
[Burns, Paul; Lomsadze, Alexandre; Borodovsky, Mark] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA.
[Borodovsky, Mark] Moscow Inst Phys & Technol, Dept Biol & Med Phys, Dolgoprudnyi, Russia.
[Reforgiato, Giuseppe] Consiglio Ric & Sperimentaz Agr CRA ACM, Acireale, Italy.
[Freitas-Astua, Juliana] Embrapa Cassava & Fruits, Cruz Das Almas, Brazil.
[Quetier, Francis; Wincker, Patrick; Jaillon, Olivier] Univ Evry, Dept Biol, Evry, France.
[Roose, Mikeal] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA.
[Wincker, Patrick; Jaillon, Olivier] CNRS, Evry, France.
[Morgante, Michele] Univ Udine, Dept Agr & Environm Sci, I-33100 Udine, Italy.
[Rokhsar, Daniel] Univ Calif Berkeley, Div Genet Genom & Dev, Berkeley, CA 94720 USA.
RP Rokhsar, D (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.
EM fgmitter@ufl.edu; dsrokhsar@gmail.com
RI Del Fabbro, Cristian/C-5523-2014; Navarro, Luis/D-1001-2012; Aleza,
Pablo/M-3710-2014; Tadeo, Francisco/C-8977-2014; Terol,
Javier/H-6401-2013; Talon, Manuel/C-8540-2014; Freitas-Astua,
Juliana/C-5833-2013
OI Del Fabbro, Cristian/0000-0001-8189-6192; Navarro,
Luis/0000-0001-5163-5960; MUNOZ-SANZ, JUAN VICENTE/0000-0002-6752-7398;
Aleza, Pablo/0000-0002-8936-1448; Tadeo, Francisco/0000-0002-5839-4255;
Terol, Javier/0000-0003-3345-0078; Talon, Manuel/0000-0003-4291-9333;
Freitas-Astua, Juliana/0000-0002-0506-6880
FU National Science and Technology Institute of Genomics for Citrus
Breeding, Brazil [FAPESP 08/57909-2, CNPq 573848/08-4]; Brazilian
Agricultural Research Corporation (Embrapa); Embrapa-Monsanto Agreement;
Agence Nationale de la Recherche (ANR) [CITRUSSEQ PCS-08-GENO]; program
ANR Blanc-PAGE [ANR-2011-BSV6-00801]; US National Institutes of Health
[HG00783]; Generalitat Valenciana, Spain [PrometeoII/2013/008]; Ministry
of Economy and Innovation-Fondo Europeo de Desarrollo Regional (FEDER),
Spain [AGL2011-26490]; Conselleria de Agricultura, Pesca, Alimentacion y
Agua from the Generalitat Valenciana; Ministerio de Economia e
Innovacion [PSE-060000-2009-8, IPT-010000-2010-43]; Citruseq-Citrusgenn
consortium company (Anecoop S. Coop., Eurosemillas S.A.);
Citruseq-Citrusgenn consortium company (Fundacion Ruralcaja Valencia);
Citruseq-Citrusgenn consortium company (GCM Variedades Vegetales
A.I.E.); Citruseq-Citrusgenn consortium company ( Investigacion
Citricola Castellon S.A.); Citruseq-Citrusgenn consortium company
(Source Citrus Genesis-Special New Fruit Licensing, Ltd.); Florida
Citrus Production Research Advisory Council (FCPRAC); Florida Department
of Agriculture and Consumer Services [013646]; Florida Department of
Citrus (FDOC); Citrus Research and Development Foundation [71];
Ministero delle Politiche Agricole Alimentari e Forestali, Project
Citrustart; Ministero dell'Istruzione, dell'Universita e della Ricerca
(MIUR), Programma Operativo Nazionale 'Ricerca e Competitivita', Project
IT-Citrus Genomics [PON_01623]; Office of Science of the US Department
of Energy [DE-AC02-05CH11231]
FX The authors acknowledge the following support: National Science and
Technology Institute of Genomics for Citrus Breeding, Brazil, grants
FAPESP 08/57909-2 and CNPq 573848/08-4, and Brazilian Agricultural
Research Corporation (Embrapa) (M. A. T. and M. A. M.) and
Embrapa-Monsanto Agreement (J.F.-A.); Agence Nationale de la Recherche
(ANR) grant CITRUSSEQ PCS-08-GENO (O.J., X. P., M. Ruiz, P.O., F. L., D.
B. and K.J.) and program ANR Blanc-PAGE, ref. ANR-2011-BSV6-00801 (J.
Salse and F. M.); US National Institutes of Health grant HG00783 (M. B.,
P. B. and A. L.); Generalitat Valenciana, Spain grant
PrometeoII/2013/008 and Ministry of Economy and Innovation-Fondo Europeo
de Desarrollo Regional (FEDER), Spain, grant AGL2011-26490 (P. A. and
L.N.); Conselleria de Agricultura, Pesca, Alimentacion y Agua from the
Generalitat Valenciana (J. P.-P. and D. Ramon); Ministerio de Economia e
Innovacion grants PSE-060000-2009-8 and IPT-010000-2010-43 and
Citruseq-Citrusgenn consortium companies (Anecoop S. Coop., Eurosemillas
S.A., Fundacion Ruralcaja Valencia, GCM Variedades Vegetales A.I.E.,
Investigacion Citricola Castellon S.A. and Source Citrus Genesis-Special
New Fruit Licensing, Ltd.) (J. T., F. R. T., L. H. E., J.V.M.-S., V. I.,
A.H.-O. and M. T.); Florida Citrus Production Research Advisory Council
(FCPRAC), Florida Department of Agriculture and Consumer Services grant
no. 013646, Florida Department of Citrus (FDOC) and Citrus Research and
Development Foundation grant no. 71, on behalf of the Florida citrus
growers (F. G., C. C. and W. G. F.); Ministero delle Politiche Agricole
Alimentari e Forestali, Project Citrustart and Ministero
dell'Istruzione, dell'Universita e della Ricerca (MIUR), Programma
Operativo Nazionale 'Ricerca e Competitivita' 2007-2013, Project
IT-Citrus Genomics PON_01623 (M. Morgante, S. S., F. C., C. D. F., S.
Pinozio and A.Z.). Pineapple Ridge sweet-orange sequencing was performed
by 454 Life Sciences, a Roche company. The work conducted by the US
Department of Energy Joint Genome Institute is supported by the Office
of Science of the US Department of Energy under contract no.
DE-AC02-05CH11231.
NR 37
TC 97
Z9 99
U1 10
U2 96
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1087-0156
EI 1546-1696
J9 NAT BIOTECHNOL
JI Nat. Biotechnol.
PD JUL
PY 2014
VL 32
IS 7
BP 656
EP +
DI 10.1038/nbt.2906
PG 8
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA AK8VE
UT WOS:000338705900031
PM 24908277
ER
PT J
AU Meinecke, J
Doyle, HW
Miniati, F
Bell, AR
Bingham, R
Crowston, R
Drake, RP
Fatenejad, M
Koenig, M
Kuramitsu, Y
Kuranz, CC
Lamb, DQ
Lee, D
MacDonald, MJ
Murphy, CD
Park, HS
Pelka, A
Ravasio, A
Sakawa, Y
Schekochihin, AA
Scopatz, A
Tzeferacos, P
Wan, WC
Woolsey, NC
Yurchak, R
Reville, B
Gregori, G
AF Meinecke, J.
Doyle, H. W.
Miniati, F.
Bell, A. R.
Bingham, R.
Crowston, R.
Drake, R. P.
Fatenejad, M.
Koenig, M.
Kuramitsu, Y.
Kuranz, C. C.
Lamb, D. Q.
Lee, D.
MacDonald, M. J.
Murphy, C. D.
Park, H-S.
Pelka, A.
Ravasio, A.
Sakawa, Y.
Schekochihin, A. A.
Scopatz, A.
Tzeferacos, P.
Wan, W. C.
Woolsey, N. C.
Yurchak, R.
Reville, B.
Gregori, G.
TI Turbulent amplification of magnetic fields in laboratory laser-produced
shock waves
SO NATURE PHYSICS
LA English
DT Article
ID REMNANT CASSIOPEIA-A; SUPERNOVA REMNANT; PROPER MOTIONS; X-RAY;
EMISSION; HYDRODYNAMICS; ACCELERATION; SIMULATION; EJECTA; SHELL
AB X-ray(1-3) and radio(4-6) observations of the supernova remnant Cassiopeia A reveal the presence of magnetic fields about 100 times stronger than those in the surrounding interstellar medium. Field coincident with the outer shock probably arises through a nonlinear feedback process involving cosmic rays(2,7,8). The origin of the large magnetic field in the interior of the remnant is less clear but it is presumably stretched and amplified by turbulent motions. Turbulence may be generated by hydrodynamic instability at the contact discontinuity between the supernova ejecta and the circumstellar gas(9). However, optical observations of Cassiopeia A indicate that the ejecta are interacting with a highly inhomogeneous, dense circumstellar cloud bank formed before the supernova explosion(10-12). Herewe investigate the possibility that turbulent amplification is induced when the outer shock overtakes dense clumps in the ambient medium(13-15). We report laboratory experiments that indicate the magnetic field is amplified when the shock interacts with a plastic grid. We show that our experimental results can explain the observed synchrotron emission in the interior of the remnant. The experiment also provides a laboratory example of magnetic field amplification by turbulence in plasmas, a physical process thought to occur in many astrophysical phenomena.
C1 [Meinecke, J.; Doyle, H. W.; Bell, A. R.; Fatenejad, M.; Schekochihin, A. A.; Tzeferacos, P.; Reville, B.; Gregori, G.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England.
[Miniati, F.] ETH, Dept Phys, CH-8093 Zurich, Switzerland.
[Bingham, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Bingham, R.] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland.
[Crowston, R.; Woolsey, N. C.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
[Drake, R. P.; Kuranz, C. C.; MacDonald, M. J.; Wan, W. C.] Univ Michigan, Ann Arbor, MI 48103 USA.
[Fatenejad, M.; Lamb, D. Q.; Lee, D.; Scopatz, A.; Tzeferacos, P.; Gregori, G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Koenig, M.; Pelka, A.; Ravasio, A.; Yurchak, R.] Univ Paris 06, Ecole Polytech, CNRS CEA, Lab Utilisat Lasers Intenses,UMR7605, F-91128 Palaiseau, France.
[Kuramitsu, Y.; Sakawa, Y.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan.
[Murphy, C. D.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH8 9YL, Midlothian, Scotland.
[Park, H-S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Reville, B.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland.
RP Meinecke, J (reprint author), Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, England.
EM jena.meinecke@physics.ox.ac.uk; g.gregori1@physics.ox.ac.uk
RI Sakawa, Youichi/J-5707-2016; Drake, R Paul/I-9218-2012;
OI Sakawa, Youichi/0000-0003-4165-1048; Drake, R Paul/0000-0002-5450-9844;
MacDonald, Michael/0000-0002-6295-6978
FU European Research Council under the European Community's Seventh
Framework Programme (FP7/2007-2013)/ERC [256973, 247039];
LASERLAB-EUROPE [284464]; US Department of Energy [B591485]; USDOE
[DE-NA0001840]
FX We thank the Vulcan technical team at the Central Laser Facility of the
Rutherford Appleton Laboratory for their support during the experiments;
in particular, R. Clarke, M. Notley and R. Heathcote. A. R. B.
acknowledges valuable discussions with H. Li (Los Alamos National
Laboratory). The research leading to these results has received
financial support from the European Research Council under the European
Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant
agreements no. 256973 and 247039, LASERLAB-EUROPE grant agreement No.
284464, the US Department of Energy under Contract No. B591485 to
Lawrence Livermore National Laboratory, and FieldWork Proposal No. 57789
to Argonne National Laboratory. Partial support from the Science and
Technology Facilities Council and the Engineering and Physical Sciences
Research Council of the United Kingdom (Grant No. EP/G007187/1) is also
acknowledged. The work of R. P. D., C. C. K., M. J. M. andW. C. W. was
supported by the USDOE under grant DE-NA0001840.
NR 30
TC 18
Z9 18
U1 1
U2 49
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
EI 1745-2481
J9 NAT PHYS
JI Nat. Phys.
PD JUL
PY 2014
VL 10
IS 7
BP 520
EP 524
DI 10.1038/NPHYS2978
PG 5
WC Physics, Multidisciplinary
SC Physics
GA AL0UT
UT WOS:000338843100020
ER
PT J
AU Childs, KL
Nandety, A
Hirsch, CN
Gongora-Castillo, E
Schmutz, J
Kaeppler, SM
Casler, MD
Buell, CR
AF Childs, Kevin L.
Nandety, Aruna
Hirsch, Candice N.
Gongora-Castillo, Elsa
Schmutz, Jeremy
Kaeppler, Shawn M.
Casler, Michael D.
Buell, C. Robin
TI Generation of Transcript Assemblies and Identification of Single
Nucleotide Polymorphisms from Seven Lowland and Upland Cultivars of
Switchgrass
SO PLANT GENOME
LA English
DT Article
ID GENOME-WIDE ASSOCIATION; PANICUM-VIRGATUM L.; EXPRESSED SEQUENCE TAGS;
NUCLEAR-DNA CONTENT; INFERRING PHYLOGENY; GENETIC DIVERSITY; RNA-SEQ;
MAIZE; MARKERS; POPULATIONS
AB Switchgrass is a North American perennial prairie species that has been used as a rangeland and forage crop and has recently been targeted as a potential biofuel feedstock species. Switchgrass, which occurs as tetraploid and octoploid forms, is classified into lowland or upland ecotypes that differ in growth phenotypes and adaptation to distinct habitats. Using RNA-sequencing (RNA-seq) reads derived from crown, young shoot, and leaf tissues, we generated sequence data from seven switchgrass cultivars, three lowland and four upland, to enable comparative analyses between switchgrass cultivars and to identify single nucleotide polymorphisms (SNPs) for use in breeding and genetic analysis. We also generated individual transcript assemblies for each of the cultivars. Transcript data indicate that subgenomes of octoploid switchgrass are not substantially different from subgenomes of tetraploids as expected for an autopolyploid origin of switchgrass octoploids. Using RNA-seq reads aligned to the switchgrass Release 0 AP13 reference genome, we identified 1,305,976 high-confidence SNPs. Of these SNPs, 438,464 were unique to lowland cultivars, but only 12,002 were found in all lowlands. Conversely, 723,678 SNPs were unique to upland cultivars, with only 34,665 observed in all uplands. Comparison of our high-confidence transcriptome-derived SNPs with SNPs previously identified in a genotyping-by-sequencing (GBS) study of an association panel revealed limited overlap between the two methods, highlighting the utility of transcriptome-based SNP discovery in augmenting genome diversity polymorphism datasets. The transcript and SNP data described here provide a useful resource for switchgrass gene annotation and marker-based analyses of the switchgrass genome.
C1 [Childs, Kevin L.; Hirsch, Candice N.; Buell, C. Robin] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
[Childs, Kevin L.; Hirsch, Candice N.; Gongora-Castillo, Elsa; Buell, C. Robin] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.
[Nandety, Aruna; Kaeppler, Shawn M.; Casler, Michael D.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.
[Nandety, Aruna; Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA.
[Schmutz, Jeremy] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.
[Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA.
[Casler, Michael D.] USDA ARS, US Dairy Forage Res Ctr, Madison, WI 53706 USA.
RP Childs, KL (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
EM kchilds@plantbiology.msu.edu
RI Childs, Kevin/C-9513-2014; Gongora, Elsa/R-8854-2016;
OI Childs, Kevin/0000-0002-3680-062X; Gongora, Elsa/0000-0001-6327-6993;
Kaeppler, Shawn/0000-0002-5964-1668
FU Department of Energy Great Lakes Bioenergy Research Center (DOE BER
Office of Science) [DE-FC02-07ER64494]
FX This work was funded by the Department of Energy Great Lakes Bioenergy
Research Center (DOE BER Office of Science DE-FC02-07ER64494). The
funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
NR 81
TC 1
Z9 1
U1 1
U2 30
PU CROP SCIENCE SOC AMER
PI MADISON
PA 677 S SEGOE ROAD, MADISON, WI 53711 USA
SN 1940-3372
J9 PLANT GENOME-US
JI Plant Genome
PD JUL
PY 2014
VL 7
IS 2
DI 10.3835/plantgenome2013.12.0041
PG 13
WC Plant Sciences; Genetics & Heredity
SC Plant Sciences; Genetics & Heredity
GA AL0RP
UT WOS:000338834700006
ER
PT J
AU Cloet, IC
Roberts, CD
AF Cloet, Ian C.
Roberts, Craig D.
TI Explanation and prediction of observables using continuum strong QCD
SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS
LA English
DT Review
DE Confinement; Dynamical chiral symmetry breaking; Dyson-Schwinger
equations; Hadron physics; In-hadron condensates; Parton distributions
ID DYSON-SCHWINGER EQUATIONS; ELECTROMAGNETIC FORM-FACTORS;
DEEP-INELASTIC-SCATTERING; CHIRAL-SYMMETRY-BREAKING; QUARK-DIQUARK
MODEL; VIRTUAL COMPTON-SCATTERING; JONA-LASINIO MODEL; ANOMALOUS
MAGNETIC-MOMENT; MONTE-CARLO CALCULATIONS; PION LOOP CONTRIBUTION
AB The last five years have brought considerable progress in the study of the bound-state problem in continuum quantum field theory. We highlight a subset of that progress; viz., that made within the context of Dyson-Schwinger equation analyses of cold, sparse hadrons. Our focus is primarily on advances in the reliable computation, explanation and prediction of quantities that are truly measurable; but we also review aspects of a new paradigm that has condensates contained within hadrons, and explain that the asymptotic form of parton distribution amplitudes and functions are practically unreachable with terrestrial facilities. Given the pace of expansion in experiment and improvement in theory, it appears possible that the next five years will bring profound growth in our store of knowledge about hadrons and nuclei. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Cloet, Ian C.; Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Roberts, CD (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
EM cdroberts@anl.gov
FU Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]
FX We acknowledge valuable input from A. Bashir, W. Bentz, S.J. Brodsky, L.
Chang, C. Chen, B. El-Bennich, R. Gothe, R.J. Holt, Y.-x. Liu, V.
Mokeev, M. Pitschmann, S.-x. Qin, H.L.L. Roberts, J. Segovia, S.M.
Schmidt, R. Shrock, P.C. Tandy, A.W. Thomas, K.-I. Wang and D.J. Wilson.
This work was supported by Department of Energy, Office of Nuclear
Physics, contract no. DE-AC02-06CH11357.
NR 499
TC 94
Z9 94
U1 0
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0146-6410
EI 1873-2224
J9 PROG PART NUCL PHYS
JI Prog. Part. Nucl. Phys.
PD JUL
PY 2014
VL 77
BP 1
EP 69
DI 10.1016/j.ppnp.2014.02.001
PG 69
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AK7KW
UT WOS:000338608200001
ER
PT J
AU Roland, G
Safarik, K
Steinberg, P
AF Roland, G.
Safarik, K.
Steinberg, P.
TI Heavy-ion collisions at the LHC
SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS
LA English
DT Review
DE Heavy-ion collisions; Quark-gluon plasma; Quantum chromo-dynamics; LHC
ID PB-PB COLLISIONS; QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS;
TRANSVERSE-MOMENTUM DEPENDENCE; CHARGED-PARTICLE PRODUCTION; COLOR GLASS
CONDENSATE; LEAD-LEAD COLLISIONS; LEE-YANG ZEROS; ROOT-S(NN)=2.76 TEV;
ANISOTROPIC FLOW
AB A new era in the study of high-energy nuclear collisions began when the CERN Large Hadron Collider (LHC) provided the first collisions of lead nuclei in late 2010. In the first three years of operation the ALICE, ATLAS and CMS experiments each collected Pb-Pb data samples of more than 50 mu b(-1) at 3 root S-NN = 2.76 TeV, exceeding the previously studied collision energies by more than an order of magnitude. These data have provided new insights into the properties of QCD matter under extreme conditions, with extensive measurements of soft particle production and newly accessible hard probes of the hot and dense medium. In this review, we provide a comprehensive overview of the results obtained in heavy-ion collisions at the LHC so far, with particular emphasis on the complementary nature of the observations by the three experiments. In particular, the combination of ALICE's strengths at hadron identification, the strengths of ATLAS and CMS to make precise measurements of high pr probes, and the resourceful measurements of collective flow by all of the experiments have provided a rich and diverse dataset in only a few years. While the basic paradigm established at RHIC - that of a hot, dense medium that flows with a viscosity to shear-entropy ratio near the predicted lower bound, and which degrades the energy of probes, such as jets, heavy-flavours and J/psi - is confirmed at the LHC, the new data suggest many new avenues for extracting its properties in detail. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Roland, G.] MIT, Cambridge, MA 02139 USA.
[Safarik, K.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Steinberg, P.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Safarik, K (reprint author), CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
EM Karel.Safarik@cern.ch
NR 277
TC 8
Z9 8
U1 1
U2 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0146-6410
EI 1873-2224
J9 PROG PART NUCL PHYS
JI Prog. Part. Nucl. Phys.
PD JUL
PY 2014
VL 77
BP 70
EP 127
DI 10.1016/j.ppnp.2014.05.001
PG 58
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AK7KW
UT WOS:000338608200002
ER
PT J
AU Rodney, SA
Riess, AG
Strolger, LG
Dahlen, T
Graur, O
Casertano, S
Dickinson, ME
Ferguson, HC
Garnavich, P
Hayden, B
Jha, SW
Jones, DO
Kirshner, RP
Koekemoer, AM
McCully, C
Mobasher, B
Patel, B
Weiner, BJ
Cenko, SB
Clubb, KI
Cooper, M
Filippenko, AV
Frederiksen, TF
Hjorth, J
Leibundgut, B
Matheson, T
Nayyeri, H
Penner, K
Trump, J
Silverman, JM
Vivian, U
Bostroem, KA
Challis, P
Rajan, A
Wolff, S
Faber, SM
Grogin, NA
Kocevski, D
AF Rodney, Steven A.
Riess, Adam G.
Strolger, Louis-Gregory
Dahlen, Tomas
Graur, Or
Casertano, Stefano
Dickinson, Mark E.
Ferguson, Henry C.
Garnavich, Peter
Hayden, Brian
Jha, Saurabh W.
Jones, David O.
Kirshner, Robert P.
Koekemoer, Anton M.
McCully, Curtis
Mobasher, Bahram
Patel, Brandon
Weiner, Benjamin J.
Cenko, S. Bradley
Clubb, Kelsey I.
Cooper, Michael
Filippenko, Alexei V.
Frederiksen, Teddy F.
Hjorth, Jens
Leibundgut, Bruno
Matheson, Thomas
Nayyeri, Hooshang
Penner, Kyle
Trump, Jonathan
Silverman, Jeffrey M.
Vivian, U.
Bostroem, K. Azalee
Challis, Peter
Rajan, Abhijith
Wolff, Schuyler
Faber, S. M.
Grogin, Norman A.
Kocevski, Dale
TI TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS:
SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE infrared: general; supernovae: general; surveys
ID CORE-COLLAPSE SUPERNOVAE; DELAY-TIME DISTRIBUTION; ORIGINS DEEP SURVEY;
DIGITAL SKY SURVEY; EXTRAGALACTIC LEGACY SURVEY; TELESCOPE ADVANCED
CAMERA; GOODS-SOUTH FIELD; GAMMA-RAY BURSTS; II-P SUPERNOVAE;
STAR-FORMATION
AB dThe Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of -0.25 deg2 with -900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z 2.5. We classify -24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z =- 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only -3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is fp = 0.53st=sg.Zc6', consistent with a delay time distribution that follows a simple t-1 power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions-though further analysis and larger samples will be needed to examine that suggestion. Key words: infrared: general - supernovae:
C1 [Rodney, Steven A.; Riess, Adam G.; Graur, Or; Jones, David O.; Wolff, Schuyler] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Riess, Adam G.; Strolger, Louis-Gregory; Dahlen, Tomas; Casertano, Stefano; Ferguson, Henry C.; Koekemoer, Anton M.; Bostroem, K. Azalee; Grogin, Norman A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Graur, Or] Tel Aviv Univ, Dept Astrophys, IL-69978 Tel Aviv, Israel.
[Graur, Or] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA.
[Dickinson, Mark E.; Matheson, Thomas] Natl Opt Astron Observ, Tucson, AZ 85719 USA.
[Garnavich, Peter] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Hayden, Brian] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Jha, Saurabh W.; McCully, Curtis; Patel, Brandon] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Kirshner, Robert P.; Challis, Peter] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Mobasher, Bahram; Nayyeri, Hooshang; Vivian, U.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA.
[Weiner, Benjamin J.; Penner, Kyle] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA.
[Cenko, S. Bradley] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Clubb, Kelsey I.; Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Cooper, Michael] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Frederiksen, Teddy F.; Hjorth, Jens] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark.
[Leibundgut, Bruno] European So Observ, Garching, Germany.
[Leibundgut, Bruno] Tech Univ Munich, D-80290 Munich, Germany.
[Trump, Jonathan] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Silverman, Jeffrey M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
[Rajan, Abhijith] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Faber, S. M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 92064 USA.
[Kocevski, Dale] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA.
RP Rodney, SA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
RI Hjorth, Jens/M-5787-2014;
OI Hjorth, Jens/0000-0002-4571-2306; Graur, Or/0000-0002-4391-6137;
Koekemoer, Anton/0000-0002-6610-2048
NR 117
TC 28
Z9 28
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD JUL
PY 2014
VL 148
IS 1
AR 13
DI 10.1088/0004-6256/148/1/13
PG 28
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK4PF
UT WOS:000338405900013
ER
PT J
AU Schenck, DE
Datta, A
Burns, JO
Skillman, S
AF Schenck, David E.
Datta, Abhirup
Burns, Jack O.
Skillman, Sam
TI X-RAY OBSERVATIONS OF COMPLEX TEMPERATURE STRUCTURE IN THE COOL-CORE
CLUSTER A85
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE galaxies: clusters: individual (Abell 85); shock waves; X-rays:
galaxies: clusters
ID GALAXY CLUSTERS; XMM-NEWTON; RADIO RELICS; SHOCK-WAVES; CHANDRA
OBSERVATIONS; RICH CLUSTER; COSMIC-RAYS; SIMULATIONS; ABELL-85; VIEW
AB X-ray observations were used to examine the complex temperature structure of A85, a cool-core galaxy cluster. Temperature features can provide evidence of merging events which shock heat the intracluster gas. Temperature maps were made from both Chandra and XMM-Newton observations. The combination of a new, long-exposure XMM observation and an improved temperature map binning technique produced the highest fidelity temperature maps of A85 to date. Hot regions were detected near the subclusters to the south and southwest in both the Chandra and XMM temperature maps. The presence of these structures implies A85 is not relaxed. The hot regions may indicate the presence of shocks. The Mach numbers were estimated to be similar to 1.9 at the locations of the hot spots. Observational effects will tend to systematically reduce temperature jumps, so the measured Mach numbers are likely underestimated. Neither temperature map showed evidence for a shock in the vicinity of the presumed radio relic near the southwest subcluster. However, the presence of a weak shock cannot be ruled out. There was tension between the temperatures measured by the two instruments.
C1 [Schenck, David E.; Datta, Abhirup; Burns, Jack O.] Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA.
[Skillman, Sam] SLAC, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA.
RP Schenck, DE (reprint author), Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA.
FU NSF [AST-1106437]; DOE Computational Science Graduate Fellowship
[DE-FG02-97ER25308]
FX The authors thank Eric Hallman, Maxim Markevitch, Alexey Vikhlinin,
Scott Randall, Steve Allen, and Norbert Werner for taking the time to
discuss data reduction and for general advice on interpretation. We also
thank the referee for valuable input. This work was funded by NSF grant
AST-1106437 to J.B. S.W.S. was partially supported by a DOE
Computational Science Graduate Fellowship under grant No.
DE-FG02-97ER25308.
NR 39
TC 7
Z9 7
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
EI 1538-3881
J9 ASTRON J
JI Astron. J.
PD JUL
PY 2014
VL 148
IS 1
AR 23
DI 10.1088/0004-6256/148/1/23
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK4PF
UT WOS:000338405900023
ER
PT J
AU Li, YL
Li, SY
Zhang, TJ
Li, TP
AF Li, Yun-Long
Li, Shi-Yu
Zhang, Tong-Jie
Li, Ti-Pei
TI MODEL-INDEPENDENT DETERMINATION OF CURVATURE PARAMETER USING H(z) AND
D-A (z) DATA PAIRS FROM BAO MEASUREMENTS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE cosmological parameters; cosmology: observations
ID EXPANSION RATE; GALAXIES; GROWTH; Z=0.57; SAMPLE
AB We present a model-independent determination of the curvature parameter Omega(k) using the Hubble parameter H(z) and the angular diameter distance D-A(z) from recent baryon acoustic oscillation (BAO) measurements. Each H(z) and D-A(z) pair from a BAO measurement can constrain a curvature parameter. The accuracy of the curvature measurement improves with increased redshift of H(z) and D-A(z) data. By using the H(z) and D-A(z) pair derived from a BAO Lyman a forest measurement at z = 2.36, the Omega(k) is confined to be -0.05 +/- 0.06, which is consistent with the curvature of -0.037(-0.042) (+0.044) constrained by the nine year Wilkinson Microwave Anisotropy Probe data only. Considering future BAOmeasurements, at least one order of magnitude improvement of this curvature measurement can be expected.
C1 [Li, Yun-Long; Li, Ti-Pei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
[Li, Shi-Yu; Zhang, Tong-Jie] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China.
[Zhang, Tong-Jie] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Zhang, Tong-Jie] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Zhang, Tong-Jie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Li, Ti-Pei] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Astrophys, Beijing 100049, Peoples R China.
RP Li, YL (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
EM tjzhang@bnu.edu.cn
OI Li, Yun-Long/0000-0003-3931-0084
FU National Science Foundation of China [11033003, 11173006]; Ministry of
Science and Technology National Basic Science program (project 973)
[2012CB821804]
FX This work is supported by the National Science Foundation of China
(grant No. 11033003), the National Science Foundation of China (grant
No. 11173006), and the Ministry of Science and Technology National Basic
Science program (project 973) under grant No. 2012CB821804.
NR 22
TC 9
Z9 9
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUL 1
PY 2014
VL 789
IS 1
AR L15
DI 10.1088/2041-8205/789/1/L15
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK6UR
UT WOS:000338563300015
ER
PT J
AU Zhang, XJ
Li, H
Li, ST
Lin, DNC
AF Zhang, Xiaojia
Li, Hui
Li, Shengtai
Lin, Douglas N. C.
TI RESONANCES OF MULTIPLE EXOPLANETS AND IMPLICATIONS FOR THEIR FORMATION
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE planet-disk interactions; planetary systems; protoplanetary disks
ID MEAN MOTION RESONANCES; I PLANETARY MIGRATION; ORBITAL RESONANCES;
TORQUE FORMULA; SUPER-EARTHS; SYSTEMS; DISK; PROTOPLANETS; DYNAMICS;
CANDIDATES
AB Among similar to 160 of the multiple exoplanetary systems confirmed, about 30% of them have neighboring pairs with a period ratio <= 2. A significant fraction of these pairs are around mean motion resonance (MMR), and, more interestingly, peak around 2:1 and 3:2, with a clear absence of more closely packed MMRs with period ratios less than 4: 3, regardless of planet masses. Here, we report numerical simulations demonstrating that such MMR behavior places important constraints on the disk evolution stage out of which the observed planets formed. Multiple massive planets (with mass >= 0.8 M-Jup) tend to end up with a 2:1 MMR mostly independent of the disk masses, but low-mass planets (with mass <= 30 M-circle plus) can have MMRs larger than 4:3 only when the disk mass is quite small, suggesting that the observed dynamical architecture of most low-mass-planet pairs was established late in the disk evolution stage, just before it was dispersed completely.
C1 [Zhang, Xiaojia; Lin, Douglas N. C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Li, Hui; Li, Shengtai] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Lin, Douglas N. C.] Tsinghua Univ, Inst Adv Studies, Beijing 100084, Peoples R China.
RP Zhang, XJ (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
EM xzhang47@ucsc.edu
OI Zhang, Xiaojia/0000-0002-6612-5127; Li, Shengtai/0000-0002-4142-3080
FU LDRD program; IGPP of Los Alamos National Laboratory; UC-fee program of
University of California
FX We thank the referee, Frederic Rasio, for helpful comments that improved
the manuscript. We acknowledge support from the LDRD program and IGPP of
Los Alamos National Laboratory. H.L. and D.N.C.L. also acknowledge
support from the UC-fee program of University of California. Simulations
were carried out using the Institutional Computing resources at LANL.
NR 40
TC 8
Z9 8
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUL 1
PY 2014
VL 789
IS 1
AR L23
DI 10.1088/2041-8205/789/1/L23
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK6UR
UT WOS:000338563300023
ER
PT J
AU Hoover, AN
Tumuluru, JS
Teymouri, F
Moore, J
Gresham, G
AF Hoover, Amber N.
Tumuluru, Jaya Shankar
Teymouri, Farzaneh
Moore, Janette
Gresham, Garold
TI Effect of pelleting process variables on physical properties and sugar
yields of ammonia fiber expansion pretreated corn stover
SO BIORESOURCE TECHNOLOGY
LA English
DT Article
DE Pelletization; Densification; Ammonia fiber expansion (AFEX); Corn
stover; Enzymatic hydrolysis
ID ENZYMATIC-HYDROLYSIS; BIOMASS DENSIFICATION; RICE STRAW; BIOFUELS;
QUALITY; AFEX
AB Pelletization process variables, including grind size (4, 6 mm), die speed (40, 50, 60 Hz), and preheating (none, 70 degrees C), were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also, the durability of the pelletized AFEX corn stover was >97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating or a larger grind size (6 mm) had similar or lower sugar yields. Pellets generated with 4 mm AFEX-treated corn stover, a 60 Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions. (C) 2014 Battelle Energy Alliance, LLC, contract manager for Idaho National Laboratory. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
C1 [Hoover, Amber N.; Tumuluru, Jaya Shankar; Gresham, Garold] Idaho Natl Lab, Biofuels & Renewable Energy Technol, Idaho Falls, ID 83415 USA.
[Teymouri, Farzaneh; Moore, Janette] MBI Int, Lansing, MI 48910 USA.
RP Hoover, AN (reprint author), Idaho Natl Lab, ESL IF 685,MS 3570,1765 N Yellowstone Hwy, Idaho Falls, ID 83401 USA.
EM amber.hoover@inl.gov; jayashankar.tumuluru@inl.gov; teymouri@mbi.org;
moore@mbi.org; garold.gresham@inl.gov
RI Hoover, Amber/B-8373-2017
OI Hoover, Amber/0000-0001-8584-3995
FU US Department of Energy under Department of Energy Idaho Operations
Office [DE-AC07-05ID14517]
FX The authors would like to thank Chandra Nielson and Josh Videto from MBI
for performing the AFEX pretreatment and the following INL colleagues
for their assistance: Ian Bonner, Cynthia Breckenridge, Debra Bruhn,
Karen Delezene-Briggs, Craig Conner, Rachel Emerson, Jeffrey Lacey,
Sabrina Morgan, Manunya Phanphanich, Allison Ray, Tammy Trowbridge, and
Neal Yancey. This research was supported by the US Department of Energy
under Department of Energy Idaho Operations Office Contract No.
DE-AC07-05ID14517.
NR 35
TC 22
Z9 23
U1 2
U2 25
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0960-8524
EI 1873-2976
J9 BIORESOURCE TECHNOL
JI Bioresour. Technol.
PD JUL
PY 2014
VL 164
BP 128
EP 135
DI 10.1016/j.biortech.2014.02.005
PG 8
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA AK8WX
UT WOS:000338710500019
PM 24844167
ER
PT J
AU Sapi, A
Thompson, C
Wang, HL
Michalak, WD
Ralston, WT
Alayoglu, S
Somorjai, GA
AF Sapi, Andras
Thompson, Chris
Wang, Hailiang
Michalak, William D.
Ralston, Walter T.
Alayoglu, Selim
Somorjai, Gabor A.
TI Recovery of Pt Surfaces for Ethylene Hydrogenation-Based Active Site
Determination
SO CATALYSIS LETTERS
LA English
DT Article
DE Heterogeneous catalysis; Ethylene hydrogenation; Platinum; Catalyst
pretreatment
ID SUM-FREQUENCY GENERATION; OXYGEN REDUCTION REACTION; SINGLE-CRYSTAL
SURFACES; PLATINUM NANOPARTICLES; VIBRATIONAL SPECTROSCOPY; METHANOL
OXIDATION; CATALYTIC-REACTIONS; IN-SITU; 7 NM; PT(111)
AB The effect of pretreatment (O-2 or H-2) and catalyst history was investigated through room temperature ethylene hydrogenation reaction over several types of platinum based nanoparticle systems: 1.6 nm Pt/TTAB, 4.1 nm Pt/PVP (with and without UV treatment), 4.1 nm Pt with a silica shell, and e-beam evaporated Pt thin films were tested. The H-2 pretreatment resulted in the absence of activity. However, Pt active sites for the ethylene hydrogenation reaction were recovered after an O-2 pretreatment irrespective of the catalyst history, regardless of the particle size nor the presence, absence or type of capping agent. The calculation of the average TOF resulted in 10.13 +/- A 3.27. This value correlates well with data from the literature. Thus, the ethylene hydrogenation reaction can be used to determine available sites of Pt catalysts if the reaction is following an O-2 pretreatment.
.
C1 [Sapi, Andras; Thompson, Chris; Wang, Hailiang; Michalak, William D.; Ralston, Walter T.; Alayoglu, Selim; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Sapi, Andras; Thompson, Chris; Wang, Hailiang; Michalak, William D.; Ralston, Walter T.; Alayoglu, Selim; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Sapi, Andras; Thompson, Chris; Wang, Hailiang; Michalak, William D.; Ralston, Walter T.; Alayoglu, Selim; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM somorjai@berkeley.edu
RI Sapi, Andras/G-3527-2015
OI Sapi, Andras/0000-0001-6557-0731
FU Office of Basic Energy Sciences, Material Sciences and Engineering
Division U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported the Director, Office of Basic Energy Sciences,
Material Sciences and Engineering Division U.S. Department of Energy,
under Contract DE-AC02-05CH11231.
NR 31
TC 4
Z9 4
U1 2
U2 41
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1011-372X
EI 1572-879X
J9 CATAL LETT
JI Catal. Lett.
PD JUL
PY 2014
VL 144
IS 7
BP 1151
EP 1158
DI 10.1007/s10562-014-1272-y
PG 8
WC Chemistry, Physical
SC Chemistry
GA AK8CA
UT WOS:000338653600007
ER
PT J
AU Moeller, SL
Parvaz, MA
Shumay, E
Wu, SLN
Beebe-Wang, N
Konova, AB
Misyrlis, M
Alia-Klein, N
Goldstein, RZ
AF Moeller, Scott. L.
Parvaz, Muhammad A.
Shumay, Elena
Wu, Salina
Beebe-Wang, Nicasia
Konova, Anna B.
Misyrlis, Michail
Alia-Klein, Nelly
Goldstein, Rita Z.
TI Monoamine polygenic liability in health and cocaine dependence: Imaging
genetics study of aversive processing and associations with depression
symptomatology
SO DRUG AND ALCOHOL DEPENDENCE
LA English
DT Article
DE Cocaine addiction; Imaging genetics; Depression; comorbidity; 5-HTTLPR;
MAOA; Event-related potentials
ID SEROTONIN TRANSPORTER GENE; TRYPTOPHAN DEPLETION; NEURAL RESPONSES;
BIASED ATTENTION; PROMOTER REGION; POPULATION STRATIFICATION; 5-HTTLPR
POLYMORPHISM; MOTIVATED ATTENTION; EMOTION REGULATION; PREFRONTAL CORTEX
AB Background: Gene polymorphisms that affect serotonin signaling modulate reactivity to salient stimuli and risk for emotional disturbances. Here, we hypothesized that these serotonin genes, which have been primarily explored in depressive disorders, could also have important implications for drug addiction, with the potential to reveal important insights into drug symptomatology, severity, and/or possible sequelae such as dysphoria.
Methods: Using an imaging genetics approach, the current study tested in 62 cocaine abusers and 57 healthy controls the separate and combined effects of variations in the serotonin transporter (5-HTTLPR) and monoamine oxidase A (MAOA) genes on processing of aversive information. Reactivity to standardized unpleasant images was indexed by a psychophysiological marker of stimulus salience (i.e., the late positive potential (LPP) component of the event-related potential) during passive picture viewing. Depressive symptomatology was assessed with the Beck Depression Inventory (BDI).
Results: Results showed that, independent of diagnosis, the highest unpleasant LPPs emerged in individuals with MAOA-Low and at least one 'Short' allele of 5-HTTLPR. Uniquely in the cocaine participants with these two risk variants, higher unpleasant LPPs correlated with higher BDI scores.
Conclusions: Taken together, these results suggest that a multilocus genetic composite of monoamine signaling relates to depression symptomatology through brain function associated with the experience of negative emotions. This research lays the groundwork for future studies that can investigate clinical outcomes and/or pharmacogenetic therapies in drug addiction and potentially other psychopathologies of emotion dysregulation. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
C1 [Moeller, Scott. L.; Parvaz, Muhammad A.; Konova, Anna B.; Misyrlis, Michail; Alia-Klein, Nelly; Goldstein, Rita Z.] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY 10029 USA.
[Moeller, Scott. L.; Parvaz, Muhammad A.; Konova, Anna B.; Misyrlis, Michail; Alia-Klein, Nelly; Goldstein, Rita Z.] Icahn Sch Med Mt Sinai, Dept Neurosci, New York, NY 10029 USA.
[Shumay, Elena; Wu, Salina; Beebe-Wang, Nicasia] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA.
[Konova, Anna B.] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA.
[Misyrlis, Michail] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA.
RP Goldstein, RZ (reprint author), One Gustave L Levy Pl,Box 1230, New York, NY 10029 USA.
EM rita.goldstein@mssm.edu
RI Moeller, Scott/L-5549-2016;
OI Moeller, Scott/0000-0002-4449-0844; Parvaz, Muhammad/0000-0002-2671-2327
FU National Institute on Drug Abuse [1R01DA023579, 1F32DA030017-01,
1F32DA033088-01]
FX This study was supported by grants from the National Institute on Drug
Abuse: 1R01DA023579 (RZG), 1F32DA030017-01 (SJM), and 1F32DA033088-01
(MAP). NIDA had no further role in study design; in the collection,
analysis and interpretation of data; in the writing of the report; or in
the decision to submit the paper for publication.
NR 75
TC 2
Z9 2
U1 0
U2 8
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 0376-8716
EI 1879-0046
J9 DRUG ALCOHOL DEPEN
JI Drug Alcohol Depend.
PD JUL 1
PY 2014
VL 140
BP 17
EP 24
DI 10.1016/j.drugalcdep.2014.04.019
PG 8
WC Substance Abuse; Psychiatry
SC Substance Abuse; Psychiatry
GA AK7PD
UT WOS:000338619300003
PM 24837582
ER
PT J
AU Dale, BE
Anderson, JE
Brown, RC
Csonka, S
Dale, VH
Herwick, G
Jackson, RD
Jordan, N
Kaffka, S
Kline, KL
Lynd, LR
Malmstrom, C
Ong, RG
Richard, TL
Taylor, C
Wang, MQ
AF Dale, Bruce E.
Anderson, James E.
Brown, Robert C.
Csonka, Steven
Dale, Virginia H.
Herwick, Gary
Jackson, Randall D.
Jordan, Nicholas
Kaffka, Stephen
Kline, Keith L.
Lynd, Lee R.
Malmstrom, Carolyn
Ong, Rebecca G.
Richard, Tom L.
Taylor, Caroline
Wang, Michael Q.
TI Take a Closer Look: Biofuels Can Support Environmental, Economic and
Social Goals
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Editorial Material
ID ENERGY
C1 [Dale, Bruce E.; Malmstrom, Carolyn; Ong, Rebecca G.] Michigan State Univ, E Lansing, MI 48824 USA.
[Dale, Bruce E.; Jackson, Randall D.; Ong, Rebecca G.] Great Lakes Bioenergy Res Ctr, Madison, WI 53703 USA.
[Anderson, James E.] Ford Motor Co, Dearborn, MI 48126 USA.
[Brown, Robert C.] Iowa State Univ, Ames, IA 50011 USA.
[Csonka, Steven] Commercial Aviat Alternat Fuels Initiat, Lebanon, OH 45036 USA.
[Dale, Virginia H.; Kline, Keith L.] Oak Ridge Natl Lab, Oak Ridge, TN 37849 USA.
[Herwick, Gary] Transportat Fuels Consulting, Milford, MI 48380 USA.
[Jackson, Randall D.] Univ Wisconsin, Madison, WI 53706 USA.
[Jordan, Nicholas] Univ Minnesota, Minneapolis, MN 55455 USA.
[Kaffka, Stephen] Univ Calif Davis, Davis, CA 95616 USA.
[Lynd, Lee R.] Dartmouth Coll, Hanover, NH 03755 USA.
[Richard, Tom L.] Penn State Univ, State Coll, PA 16801 USA.
[Taylor, Caroline] Energy Biosci Inst, Berkeley, CA 94704 USA.
[Wang, Michael Q.] Argonne Natl Lab, Lemont, IL 60439 USA.
RP Dale, BE (reprint author), Michigan State Univ, E Lansing, MI 48824 USA.
EM bdale@egr.msu.edu
OI Kline, Keith/0000-0003-2294-1170; Ong, Rebecca/0000-0001-5020-646X
NR 11
TC 22
Z9 23
U1 5
U2 39
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD JUL 1
PY 2014
VL 48
IS 13
BP 7200
EP 7203
DI 10.1021/es5025433
PG 4
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA AK5TG
UT WOS:000338488700002
PM 24934084
ER
PT J
AU Molins, S
Trebotich, D
Yang, L
Ajo-Franklin, JB
Ligocki, TJ
Shen, CP
Steefel, CI
AF Molins, Sergi
Trebotich, David
Yang, Li
Ajo-Franklin, Jonathan B.
Ligocki, Terry J.
Shen, Chaopeng
Steefel, Carl I.
TI Pore-Scale Controls on Calcite Dissolution Rates from Flow-through
Laboratory and Numerical Experiments
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID CARBONATE PRECIPITATION; REACTIVE TRANSPORT; KINETICS; CO2
AB A combination of experimental, imaging, and modeling techniques were applied to investigate the pore-scale transport and surface reaction controls on calcite dissolution under elevated pCO(2) conditions. The laboratory experiment consisted of the injection of a solution at 4 bar pCO(2) into a capillary tube packed with crushed calcite. A high resolution pore-scale numerical model was used to simulate the experiment based on a computational domain consisting of reactive calcite, pore space, and the capillary wall constructed from volumetric X-ray microtomography images. Simulated pore-scale effluent concentrations were higher than those measured by a factor of 1.8, with the largest component of the discrepancy related to uncertainties in the reaction rate model and its parameters. However, part of the discrepancy was apparently due to mass transport limitations to reactive surfaces, which were most pronounced near the inlet where larger diffusive boundary layers formed around grains and in slow-flowing pore spaces that exchanged mass by diffusion with fast flow paths. Although minor, the difference between pore- and continuum-scale results due to transport controls was discernible with the highly accurate methods employed and is expected to be more significant where heterogeneity is greater, as in natural subsurface materials.
C1 [Molins, Sergi; Yang, Li; Ajo-Franklin, Jonathan B.; Steefel, Carl I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Trebotich, David; Ligocki, Terry J.; Shen, Chaopeng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Molins, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM smolins@lbl.gov
RI Molins, Sergi/A-9097-2012; Steefel, Carl/B-7758-2010; YANG,
LI/F-9392-2010; Ajo-Franklin, Jonathan/G-7169-2015;
OI Molins, Sergi/0000-0001-7675-3218; Ajo-Franklin,
Jonathan/0000-0002-6666-4702; Shen, Chaopeng/0000-0002-0685-1901
FU Center for Nanoscale Control of Geologic CO2, an Energy Frontier
Research Center - U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences, and the Office of Advanced Scientific
Computing Research [DE-AC02-05CH11231]; U.S. DOE Office of Science
[DE-AC02-05CH11231]; U.S. DOE Office of Science, Office of Basic Energy
Sciences [DE-AC02-05CH11231]
FX This material is based upon work supported as part of the Center for
Nanoscale Control of Geologic CO2, an Energy Frontier
Research Center funded by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, and the Office of Advanced
Scientific Computing Research (D.T., T.L., and C.S.), under contract
number DE-AC02-05CH11231. This research also used resources of the
National Energy Research Scientific Computing Center, supported by the
U.S. DOE Office of Science (DE-AC02-05CH11231). XCMT imaging was
performed with the assistance of Alastair MacDowell and Dula Parkinson
at the Advanced Light Source, Beamline 8.3.2, supported by the U.S. DOE
Office of Science, Office of Basic Energy Sciences (DE-AC02-05CH11231).
The work presented in this manuscript has greatly benefitted from
discussion of the results with members of the Center.
NR 36
TC 24
Z9 25
U1 2
U2 40
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD JUL 1
PY 2014
VL 48
IS 13
BP 7453
EP 7460
DI 10.1021/es5013438
PG 8
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA AK5TG
UT WOS:000338488700033
PM 24865463
ER
PT J
AU Gaspar, FW
Castorina, R
Maddalena, RL
Nishioka, MG
McKone, TE
Bradman, A
AF Gaspar, Fraser W.
Castorina, Rosemary
Maddalena, Randy L.
Nishioka, Marcia G.
McKone, Thomas E.
Bradman, Asa
TI Phthalate Exposure and Risk Assessment in California Child Care
Facilities
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID EXPERT PANEL REPORT; ENDOCRINE-DISRUPTING COMPOUNDS; IN-HOUSE DUST;
DI(2-ETHYLHEXYL) PHTHALATE; DEVELOPMENTAL TOXICITY; HUMAN-REPRODUCTION;
INDOOR AIR; NTP CENTER; PRESCHOOL-CHILDREN; DANISH CHILDREN
AB Approximately 13 million U.S. children less than 6 years old spend some time in early childhood education (ECE) facilities where they may be exposed to potentially harmful chemicals during critical periods of development. We measured five phthalate esters in indoor dust (n = 39) and indoor and outdoor air (n = 40 and 14, respectively) at ECE facilities in Northern California. Dust and airborne concentrations were used to perform a probabilistic health risk assessment to compare estimated exposures with risk levels established for chemicals causing reproductive toxicity and cancer under California's Proposition 65. Di(2-ethylhexyl) phthalate (DEHP) and butyl benzyl phthalate (BBzP) were the dominant phthalates present in floor dust (medians = 172.2 and 46.8 mu g/g, respectively), and dibutyl phthalate (DBP), diethyl phthalate (DEP), and diisobutyl phthalate (DIBP) were the dominant phthalates in indoor air (medians = 0.52, 0.21, and 0.10 mu g/m(3), respectively). The risk assessment results indicate that 82-89% of children in California ECE had DBP exposure estimates exceeding reproductive health benchmarks. Further, 8-11% of children less than 2 years old had DEHP exposure estimates exceeding cancer benchmarks. This is the largest study to measure phthalate exposure in U.S. ECE facilities and findings indicate wide phthalate contamination and potential risk to developing children.
C1 [Gaspar, Fraser W.; Castorina, Rosemary; McKone, Thomas E.; Bradman, Asa] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA.
[Maddalena, Randy L.; McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Nishioka, Marcia G.] Battelle Mem Inst, Columbus, OH 43201 USA.
RP Bradman, A (reprint author), 1995 Univ Ave,Suite 265, Berkeley, CA 94704 USA.
EM ABradman@berkeley.edu
OI Gaspar, Fraser/0000-0002-0782-5721
FU California Air Resource Board [08305]
FX We thank the ECE programs that participated in this study. We thank Dr.
Martha Sandy of the Office of Environmental Health Hazard Assessment
(OEHHA) for reviewing risk evaluation methods and approaches to
incorporate age-specific sensitivity factors when evaluating OEHHA NSRLs
and MADLs. We also thank Dr. William Nazaroff for advice on strategies
to measure air exchange rates. We thank individuals at the Community
Child Care Council of Alameda County and Monterey County Child Care
Resource and Referral for help with participant recruitment. Finally, we
thank the anonymous reviewers of this manuscript for their insightful
comments. This research was supported by the California Air Resource
Board, Agreement 08305.
NR 74
TC 23
Z9 24
U1 5
U2 72
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD JUL 1
PY 2014
VL 48
IS 13
BP 7593
EP 7601
DI 10.1021/es501189t
PG 9
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA AK5TG
UT WOS:000338488700050
PM 24870214
ER
PT J
AU Elgowainy, A
Han, J
Cai, H
Wang, M
Forman, GS
DiVita, VB
AF Elgowainy, Amgad
Han, Jeongwoo
Cai, Hao
Wang, Michael
Forman, Grant S.
DiVita, Vincent B.
TI Energy Efficiency and Greenhouse Gas Emission Intensity of Petroleum
Products at US Refineries
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
AB This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming.
C1 [Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael] Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, Argonne, IL 60439 USA.
[Forman, Grant S.] Sasol Synfuels Int, Houston, TX 77079 USA.
[DiVita, Vincent B.] Jacobs Consultancy Inc, Houston, TX 77072 USA.
RP Forman, GS (reprint author), Sasol Synfuels Int, 900 Threadneedle,Suite 100, Houston, TX 77079 USA.
EM aelgowainy@anl.gov
RI Cai, Hao/A-1975-2016
FU Bioenergy Technologies Office of the U.S. Department of Energy's Office
of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]; Vehicle
Technologies Office of the U.S. Department of Energy's Office of Energy
Efficiency and Renewable Energy [DE-AC02-06CH11357]
FX This research effort by Argonne National Laboratory was supported by the
Bioenergy Technologies Office and the Vehicle Technologies Office of the
U.S. Department of Energy's Office of Energy Efficiency and Renewable
Energy under Contract DE-AC02-06CH11357.
NR 19
TC 22
Z9 22
U1 2
U2 24
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD JUL 1
PY 2014
VL 48
IS 13
BP 7612
EP 7624
DI 10.1021/es5010347
PG 13
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA AK5TG
UT WOS:000338488700052
PM 24869918
ER
PT J
AU Forman, GS
Divita, VB
Han, J
Cai, H
Elgowainy, A
Wang, M
AF Forman, Grant S.
Divita, Vincent B.
Han, Jeongwoo
Cai, Hao
Elgowainy, Amgad
Wang, Michael
TI US Refinery Efficiency: Impacts Analysis and Implications for Fuel
Carbon Policy Implementation
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID ENERGY
AB In the next two decades, the U.S. refining industry will face significant changes resulting from a rapidly evolving domestic petroleum energy landscape. The rapid influx of domestically sourced tight light oil and relative demand shifts for gasoline and diesel will impose challenges on the ability of the U.S. refining industry to satisfy both demand and quality requirements. This study uses results from Linear Programming (LP) modeling data to examine the potential impacts of these changes on refinery, process unit, and product-specific efficiencies, focusing on current baseline efficiency values across 43 existing large U.S. refineries that are operating today. These results suggest that refinery and product-specific efficiency values are sensitive to crude quality, seasonal and regional factors, and refinery configuration and complexity, which are determined by final fuel specification requirements. Additional processing of domestically sourced tight light oil could marginally increase refinery efficiency, but these benefits could be offset by crude rebalancing. The dynamic relationship between efficiency and key parameters such as crude API gravity, sulfur content, heavy products, residual upgrading, and complexity are key to understanding possible future changes in refinery efficiency. Relative to gasoline, the efficiency of diesel production is highly variable, and is influenced by the number and severity of units required to produce diesel. To respond to future demand requirements, refiners will need to reduce the gasoline/diesel (G/D) production ratio, which will likely result in greater volumes of diesel being produced through less efficient pathways resulting in reduced efficiency, particularly on the marginal barrel of diesel. This decline in diesel efficiency could be offset by blending of Gas to Liquids (GTL) diesel, which could allow refiners to uplift intermediate fuel streams into more efficient diesel production pathways, thereby allowing for the efficient production of incremental barrels of diesel without added capital investment for the refiner. Given the current wide range of refinery carbon intensity values of baseline transportation fuels in LCA models, this study has shown that the determination of refinery, unit, and product efficiency values requires careful consideration in the context of specific transportation fuel GHG policy objectives.
C1 [Forman, Grant S.] Sasol Synfuels Int, Houston, TX 77079 USA.
[Divita, Vincent B.] Jacobs Consultancy Inc, Houston, TX 77072 USA.
[Han, Jeongwoo; Cai, Hao; Elgowainy, Amgad; Wang, Michael] Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, Argonne, IL 60439 USA.
RP Forman, GS (reprint author), Sasol Synfuels Int, 900 Threadneedle,Suite 100, Houston, TX 77079 USA.
EM grant.forman@us.sasol.com
RI Cai, Hao/A-1975-2016
FU Biomass Energy Technology Office of the U.S. Department of Energy's
Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357];
Vehicle Technology Office of the U.S. Department of Energy's Office of
Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]
FX We gratefully acknowledge the support of Sasol Synfuels International
and Jacobs Consultancy by providing data and giving permission to
publish this manuscript. This research effort by Argonne National
Laboratory was supported by the Biomass Energy Technology Office and the
Vehicle Technology Office of the U.S. Department of Energy's Office of
Energy Efficiency and Renewable Energy under Contract DE-AC02-06CH11357.
NR 34
TC 7
Z9 7
U1 0
U2 14
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD JUL 1
PY 2014
VL 48
IS 13
BP 7625
EP 7633
DI 10.1021/es501035a
PG 9
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA AK5TG
UT WOS:000338488700053
PM 24870020
ER
PT J
AU Sun, RY
Sonke, JE
Heimburger, LE
Belkin, HE
Liu, GJ
Shome, D
Cukrowska, E
Liousse, C
Pokrovsky, OS
Streets, DG
AF Sun, Ruoyu
Sonke, Jeroen E.
Heimbuerger, Lars-Eric
Belkin, Harvey E.
Liu, Guijian
Shome, Debasish
Cukrowska, Ewa
Liousse, Catherine
Pokrovsky, Oleg S.
Streets, David G.
TI Mercury Stable Isotope Signatures of World Coal Deposits and Historical
Coal Combustion Emissions
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID MASS-INDEPENDENT FRACTIONATION; FIRED POWER-PLANTS; ATMOSPHERE; CHINA;
HG
AB Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7 parts per thousand range in delta Hg-202 (-3.9 to 0.8 parts per thousand) and a 1 parts per thousand range in Delta Hg-199 (-0.6 to 0.4 parts per thousand) are observed. Fourteen (p < 0.05) to 17 (p < 0.1) of the 28 pairwise comparisons between eight global regions are statistically distinguishable on the basis of delta Hg-202, Delta Hg-199 or both, highlighting the potential application of Hg isotope signatures to coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published delta Hg-202 observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean delta Hg-202 and Delta Hg-199 values for bulk coal emissions of -1.2 +/- 0.5 parts per thousand (1SD) and 0.05 +/- 0.06 parts per thousand (1SD).
C1 [Sun, Ruoyu; Sonke, Jeroen E.; Heimbuerger, Lars-Eric; Pokrovsky, Oleg S.] Univ Toulouse, Observ Midi Pyrenees, Lab Geosci Environm Toulouse, CNRS,IRD, F-31400 Toulouse, France.
[Sun, Ruoyu; Liu, Guijian] Univ Sci & Technol China, Sch Earth & Space Sci, CAS Key Lab Crust Mantle Mat & Environm, Hefei 230026, Anhui, Peoples R China.
[Belkin, Harvey E.] US Geol Survey, Natl Ctr 956, Reston, VA 20192 USA.
[Shome, Debasish] Jadavpur Univ, Dept Geol, Kolkata 700032, India.
[Cukrowska, Ewa] Univ Witwatersrand, Sch Chem, Inst Mol Sci, ZA-2050 Johannesburg, South Africa.
[Liousse, Catherine] Univ Toulouse, Observ Midi Pyrenees, Lab Aerol Toulouse, CNRS, F-31400 Toulouse, France.
[Pokrovsky, Oleg S.] Tomsk State Univ, BIOGEOCLIM Lab, Tomsk 634050, Russia.
[Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA.
RP Sun, RY (reprint author), Univ Toulouse, Observ Midi Pyrenees, Lab Geosci Environm Toulouse, CNRS,IRD, 14 Ave Edouard Belin, F-31400 Toulouse, France.
EM roysun1986@gmail.com; sonke@get.obs-mip.fr
RI Liu, Guijian/M-9597-2014; 若愚, 孙/F-3823-2010;
OI 若愚, 孙/0000-0001-7261-8377; Heimburger, Lars-Eric/0000-0003-0632-5183;
Belkin, Harvey/0000-0001-7879-6529
FU French Agence Nationale de Recherche [ANR-09-JCJC-0035-01]; European
Research Council [ERC-2010-StG_20091028]; Midi-Pyrenees Observatory BQR
grant; Chinese Scholarship Council; Fundamental Research Funds for the
Central Universities [WK2080000062]; National Basic Research Program of
China (973 Program) [2014CB238903]; National Natural Science Foundation
of China [41173032, 41373110]; Tomsk State University [14.B25.31.0001]
FX This work is supported by research grants ANR-09-JCJC-0035-01 from the
French Agence Nationale de Recherche and ERC-2010-StG_20091028 from the
European Research Council to JES, and a Midi-Pyrenees Observatory BQR
grant to CL and JES. RS thank Chinese Scholarship Council for his PhD
scholarship and support by the Fundamental Research Funds for the
Central Universities (WK2080000062). GL acknowledges support from the
National Basic Research Program of China (973 Program, 2014CB238903) and
the National Natural Science Foundation of China (No. 41173032 and
41373110). Partial support from grant No. 14.B25.31.0001 of Tomsk State
University is also acknowledged. We thank Reshmi Das for help with coal
from India, Andrey Bychkov and Boris Pokrovsky for some coal samples
from the USSR, Clinton Scott for help with USGS coal samples and Jerome
Chmeleff for maintaining the OMP Neptune. We thank Nicholas Geboy and
three anonymous reviewers for thoughtful comments. Any use of trade,
product, or firm names is for descriptive purposes only and does not
imply endorsement by the United States government.
NR 39
TC 26
Z9 31
U1 9
U2 98
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD JUL 1
PY 2014
VL 48
IS 13
BP 7660
EP 7668
DI 10.1021/es501208a
PG 9
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA AK5TG
UT WOS:000338488700057
PM 24905585
ER
PT J
AU Clausen, H
Nudelman, E
Hakomori, SI
AF Clausen, Henrik
Nudelman, Edward
Hakomori, Sen-itiroh
TI Obituary: Steven Bruce Levery (1949-2014)
SO GLYCOCONJUGATE JOURNAL
LA English
DT Biographical-Item
C1 [Clausen, Henrik; Nudelman, Edward] Univ Copenhagen, Dept Cellular & Mol Med, Copenhagen, Denmark.
[Hakomori, Sen-itiroh] Univ Washington, Pacific Northwest Res Inst, Div Biomembrane Res, Seattle, WA 98195 USA.
[Hakomori, Sen-itiroh] Univ Washington, Dept Pathobiol, Seattle, WA 98195 USA.
[Hakomori, Sen-itiroh] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA.
RP Clausen, H (reprint author), Univ Copenhagen, Dept Cellular & Mol Med, Copenhagen, Denmark.
EM hclau@sund.ku.dk; edward.nudelman@yahoo.com; hakomori@u.washington.edu
NR 1
TC 0
Z9 0
U1 1
U2 4
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0282-0080
EI 1573-4986
J9 GLYCOCONJUGATE J
JI Glycoconjugate J.
PD JUL
PY 2014
VL 31
IS 5
BP 339
EP 340
DI 10.1007/s10719-014-9531-0
PG 2
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA AK7XO
UT WOS:000338641200002
PM 25105190
ER
PT J
AU Liu, ZK
Jiang, J
Zhou, B
Wang, ZJ
Zhang, Y
Weng, HM
Prabhakaran, D
Mo, SK
Peng, H
Dudin, P
Kim, T
Hoesch, M
Fang, Z
Dai, X
Shen, ZX
Feng, DL
Hussain, Z
Chen, YL
AF Liu, Z. K.
Jiang, J.
Zhou, B.
Wang, Z. J.
Zhang, Y.
Weng, H. M.
Prabhakaran, D.
Mo, S-K.
Peng, H.
Dudin, P.
Kim, T.
Hoesch, M.
Fang, Z.
Dai, X.
Shen, Z. X.
Feng, D. L.
Hussain, Z.
Chen, Y. L.
TI A stable three-dimensional topological Dirac semimetal Cd3As2
SO NATURE MATERIALS
LA English
DT Article
ID INSULATORS; SUPERCONDUCTORS; PHASE
AB Three-dimensional (3D) topological Dirac semimetals (TDSs) are a recently proposed state of quantum matter(1-6) that have attracted increasing attention in physics and materials science. A 3D TDS is not only a bulk analogue of graphene; it also exhibits non-trivial topology in its electronic structure that shares similarities with topological insulators. Moreover, a TDS can potentially be driven into other exotic phases (such as Weyl semimetals(1,7), axion insulators(1,4) and topological superconductors(8,9)), making it a unique parent compound for the study of these states and the phase transitions between them. Here, by performing angle-resolved photoemission spectroscopy, we directly observe a pair of 3D Dirac fermions in Cd3As2, proving that it is a model 3D TDS. Compared with other 3D TDSs, for example, beta-cristobalite BiO2 (ref. 3) and Na3Bi (refs 4,5), Cd3As2 is stable and has much higher Fermi velocities. Furthermore, by in situ doping we have been able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena.
C1 [Liu, Z. K.; Zhang, Y.; Shen, Z. X.; Chen, Y. L.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Jiang, J.; Zhou, B.; Prabhakaran, D.; Peng, H.; Chen, Y. L.] Univ Oxford, Clarendon Lab, Phys Dept, Oxford OX1 3PU, England.
[Jiang, J.; Feng, D. L.] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China.
[Jiang, J.; Feng, D. L.] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China.
[Zhou, B.; Zhang, Y.; Mo, S-K.; Hussain, Z.; Chen, Y. L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Wang, Z. J.; Weng, H. M.; Fang, Z.; Dai, X.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.
[Wang, Z. J.; Weng, H. M.; Fang, Z.; Dai, X.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
[Dudin, P.; Kim, T.; Hoesch, M.; Chen, Y. L.] Diamond Light Source, Didcot OX11 0DE, Oxon, England.
RP Chen, YL (reprint author), Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
EM Yulin.Chen@physics.ox.ac.uk
RI Zhang, Yi/J-9025-2013; Peng, Han/I-4944-2013; Weng,
Hongming/F-2948-2011; Dai, Xi/C-4236-2008; Mo, Sung-Kwan/F-3489-2013;
Wang, Zhijun/O-8015-2014; Fang, Zhong/D-4132-2009
OI Zhang, Yi/0000-0003-1204-8717; Weng, Hongming/0000-0001-8021-9413; Dai,
Xi/0000-0003-0538-1829; Mo, Sung-Kwan/0000-0003-0711-8514; Wang,
Zhijun/0000-0003-2169-8068;
FU EPSRC (UK) [EP/K04074X/1]; DARPA (US) MESO project [N66001-11-1-4105];
Department of Energy, Office of Basic Energy Science [DE-AC02-76SF00515,
DE-AC02-05CH11231]; NSF of China; National Basic Research Program of
China; International Science and Technology Cooperation Program of
China; National Basic Research Program of China [2012CB921402]; China
Scholarship Council
FX Y.L.C. and B.Z. acknowledge the support from the EPSRC (UK) grant
EP/K04074X/1 and a DARPA (US) MESO project (no. N66001-11-1-4105).
Z.K.L. and Z.X.S. acknowledge support from the Department of Energy,
Office of Basic Energy Science (contract DE-AC02-76SF00515). The
Advanced Light Source is operated by the Department of Energy, Office of
Basic Energy Science (contract DE-AC02-05CH11231). Z.F., X.D. and H.M.W.
acknowledge the support by the NSF of China, the National Basic Research
Program of China, and the International Science and Technology
Cooperation Program of China. J.J. and D.L.F. acknowledge the support by
the NSF of China, the National Basic Research Program of China under
grant no. 2012CB921402. J.J. acknowledges the support from the China
Scholarship Council.
NR 30
TC 266
Z9 268
U1 53
U2 370
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
EI 1476-4660
J9 NAT MATER
JI Nat. Mater.
PD JUL
PY 2014
VL 13
IS 7
BP 677
EP 681
DI 10.1038/NMAT3990
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA AK5QY
UT WOS:000338482300013
PM 24859642
ER
PT J
AU Mefford, JT
Hardin, WG
Dai, S
Johnston, KP
Stevenson, KJ
AF Mefford, J. Tyler
Hardin, William G.
Dai, Sheng
Johnston, Keith P.
Stevenson, Keith J.
TI Anion charge storage through oxygen intercalation in LaMnO3 perovskite
pseudocapacitor electrodes
SO NATURE MATERIALS
LA English
DT Article
ID ELECTROCHEMICAL ENERGY-STORAGE; REDUCTION ACTIVITY; ELECTROCATALYSTS;
SUPERCAPACITORS; NANOPARTICLES; PRINCIPLES; BATTERIES; EVOLUTION;
SURFACES; BEHAVIOR
AB Perovskite oxides have attracted significant attention as energy conversion materials for metal-air battery and solid-oxide fuel-cell electrodes owing to their unique physical and electronic properties. Amongst these unique properties is the structural stability of the cation array in perovskites that can accommodate mobile oxygen ions under electrical polarization. Despite oxygen ion mobility and vacancies having been shown to play an important role in catalysis, their role in charge storage has yet to be explored. Herein we investigate the mechanism of oxygen-vacancy-mediated redox pseudocapacitance for a nanostructured lanthanum-based perovskite, LaMnO3. This is the first example of anion-based intercalation pseudocapacitance as well as the first time oxygen intercalation has been exploited for fast energy storage. Whereas previous pseudocapacitor and rechargeable battery charge storage studies have focused on cation intercalation, the anion-based mechanism presented here offers a new paradigm for electrochemical energy storage.
C1 [Mefford, J. Tyler; Stevenson, Keith J.] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA.
[Hardin, William G.; Johnston, Keith P.; Stevenson, Keith J.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA.
[Dai, Sheng] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA.
[Johnston, Keith P.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA.
[Johnston, Keith P.; Stevenson, Keith J.] Univ Texas Austin, Ctr Electrochem, Austin, TX 78712 USA.
RP Johnston, KP (reprint author), Univ Texas Austin, Texas Mat Inst, 1 Univ Stn, Austin, TX 78712 USA.
EM kpj@che.utexas.edu; stevenson@cm.utexas.edu
RI Dai, Sheng/K-8411-2015
OI Dai, Sheng/0000-0002-8046-3931
FU R. A. Welch Foundation [F-1529, F-1319]; Fluid Interface Reactions,
Structures and Transport (FIRST) Center, an Energy Frontier Research
Center - US Department of Energy, Office of Science; Fluid Interface
Reactions, Structures and Transport (FIRST) Center, an Energy Frontier
Research Center - US Department of Energy, Office of Basic Energy
Sciences
FX Financial support for this work was provided by the R. A. Welch
Foundation (grants F-1529 and F-1319). S.D. was supported as part of the
Fluid Interface Reactions, Structures and Transport (FIRST) Center, an
Energy Frontier Research Center funded by the US Department of Energy,
Office of Science, and Office of Basic Energy Sciences.
NR 37
TC 72
Z9 73
U1 38
U2 313
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
EI 1476-4660
J9 NAT MATER
JI Nat. Mater.
PD JUL
PY 2014
VL 13
IS 7
BP 726
EP 732
DI 10.1038/NMAT4000
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA AK5QY
UT WOS:000338482300021
PM 24880729
ER
PT J
AU McAndrews, HJ
Thomsen, MF
Arridge, CS
Jackman, CM
Wilson, RJ
Henderson, MG
Tokar, RL
Khurana, KK
Sittler, EC
Coates, AJ
Dougherty, MK
AF McAndrews, H. J.
Thomsen, M. F.
Arridge, C. S.
Jackman, C. M.
Wilson, R. J.
Henderson, M. G.
Tokar, R. L.
Khurana, K. K.
Sittler, E. C.
Coates, A. J.
Dougherty, M. K.
TI Plasma in Saturn's nightside magnetosphere and the implications for
global circulation (vol 57, pg 1714, 2009)
SO PLANETARY AND SPACE SCIENCE
LA English
DT Correction
C1 [Thomsen, M. F.; Tokar, R. L.] Planetary Sci Inst, Tucson, AZ 85719 USA.
[Arridge, C. S.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Arridge, C. S.; Coates, A. J.] UCL Birkbeck, Ctr Planetary Sci, London WC1E 6BT, England.
[Jackman, C. M.] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Wilson, R. J.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA.
[Henderson, M. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Khurana, K. K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA.
[Sittler, E. C.] NASA, Heliophys Sci Div, Geospace Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, London SW7 2BW, England.
RP Thomsen, MF (reprint author), Planetary Sci Inst, Tucson, AZ 85719 USA.
EM mthomsen@psi.edu
RI Wilson, Rob/C-2689-2009; Arridge, Christopher/A-2894-2009; Coates,
Andrew/C-2396-2008; Henderson, Michael/A-3948-2011
OI Wilson, Rob/0000-0001-9276-2368; Arridge,
Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125;
Henderson, Michael/0000-0003-4975-9029
NR 1
TC 4
Z9 4
U1 0
U2 3
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0032-0633
J9 PLANET SPACE SCI
JI Planet Space Sci.
PD JUL
PY 2014
VL 97
BP 86
EP 87
DI 10.1016/j.pss.2014.05.011
PG 2
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK7OS
UT WOS:000338618200009
ER
PT J
AU Lin, F
Montano, M
Tian, CX
Ji, YZ
Nordlund, D
Weng, TC
Moore, RG
Gillaspie, DT
Jones, KM
Dillon, AC
Richards, RM
Engtrakul, C
AF Lin, Feng
Montano, Manuel
Tian, Chixia
Ji, Yazhou
Nordlund, Dennis
Weng, Tsu-Chien
Moore, Rob G.
Gillaspie, Dane T.
Jones, Kim M.
Dillon, Anne C.
Richards, Ryan M.
Engtrakul, Chaiwat
TI Electrochromic performance of nanocomposite nickel oxide counter
electrodes containing lithium and zirconium
SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
LA English
DT Article; Proceedings Paper
CT 10th International Meeting on Electrochromism (IME)
CY AUG 12-16, 2012
CL Holland, MI
SP Sage Electrochrom, Pleotint LLC, Gentex Corp
DE Nickel oxide; Nanocomposite; Oxidation state; Electrochromic; Li
stoichiometry
ID ULTRASONIC SPRAY DEPOSITION; RAY ABSORPTION-SPECTROSCOPY; THIN-FILMS;
DEVICES; NI; WINDOWS; AL
AB Nickel oxide materials are suitable for counter electrodes in complementary electrochromic devices. The state-of-the-art nickel oxide counter electrode materials are typically prepared with multiple additives to enhance peformance. Herein, nanocomposite nickel oxide counter electrodes were fabricated via RF magnetron co-sputtering from Ni-Zr alloy and Li2O ceramic targets. The as-deposited nanocomposite counter electrodes were characterized with inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). It was found that the stoichiometry, crystal structure and electronic structure of the nickel oxide-based materials could be readily tuned by varying the Li2O sputter deposition power level. Comprehensive electrochromic evaluation demonstrated that the performance of the nickel oxide-based materials was dependent on the overall Li stoichiometry. Overall, the nanocomposite nickel oxide counter electrode containing lithium and zirconium synthesized with a Li2O deposition power of 45 W exhibited the optimal performance with an optical modulation of 71% and coloration efficiency of 30 cm(2)/C at 670 nm in Li-ion electrolyte. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Lin, Feng; Gillaspie, Dane T.; Jones, Kim M.; Dillon, Anne C.; Engtrakul, Chaiwat] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Lin, Feng; Ji, Yazhou; Richards, Ryan M.] Colorado Sch Mines, Mat Sci Program, Golden, CO 80401 USA.
[Montano, Manuel; Tian, Chixia; Richards, Ryan M.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA.
[Nordlund, Dennis; Weng, Tsu-Chien] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Moore, Rob G.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.
RP Engtrakul, C (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM chaiwat.engtrakul@nrel.gov
RI Nordlund, Dennis/A-8902-2008; Richards, Ryan/B-3513-2008
OI Nordlund, Dennis/0000-0001-9524-6908;
NR 26
TC 4
Z9 4
U1 2
U2 38
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0248
EI 1879-3398
J9 SOL ENERG MAT SOL C
JI Sol. Energy Mater. Sol. Cells
PD JUL
PY 2014
VL 126
SI SI
BP 206
EP 212
DI 10.1016/j.solmat.2013.11.023
PG 7
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA AK4LB
UT WOS:000338395100030
ER
PT J
AU Pehlivan, IB
Marsal, R
Pehlivan, E
Runnerstrom, EL
Milliron, DJ
Granqvist, CG
Niklasson, GA
AF Pehlivan, Ilknur Bayrak
Marsal, Roser
Pehlivan, Esat
Runnerstrom, Evan L.
Milliron, Delia J.
Granqvist, Claes G.
Niklasson, Gunnar A.
TI Electrochromic devices with polymer electrolytes functionalized by SiO2
and In2O3:Sn nanoparticles: Rapid coloring/bleaching dynamics and strong
near-infrared absorption
SO SOLAR ENERGY MATERIALS AND SOLAR CELLS
LA English
DT Article; Proceedings Paper
CT 10th International Meeting on Electrochromism (IME)
CY AUG 12-16, 2012
CL Holland, MI
SP Sage Electrochrom, Pleotint LLC, Gentex Corp
DE Smart windows; Polymer electrolytes; Nanoparticles; Coloring/bleaching
dynamics; Near-infrared absorption
ID TUNGSTEN-OXIDE; OPTICAL-PROPERTIES; ION CONDUCTION; SMART WINDOWS;
NICKEL-OXIDE; THIN-FILMS
AB We studied the optical properties and coloring/bleaching dynamics of electrochromic devices based on tungsten oxide and nickel oxide and incorporating polymer electrolytes functionalized by adding about one percent of nanoparticles of SiO2 (fumed silica) or In2O3:Sn. SiO2 improved the coloring/bleaching dynamics and In2O3:Sn quenched the near-infrared transmittance. Both of these effects can be important in electrochromic smart windows, and our results point at the advantage of a polymer laminated construction over a monolithic one. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Pehlivan, Ilknur Bayrak; Granqvist, Claes G.; Niklasson, Gunnar A.] Uppsala Univ, Angstrom Lab, Dept Engn Sci, SE-75121 Uppsala, Sweden.
[Marsal, Roser; Pehlivan, Esat] ChromoGenics AB, SE-75323 Uppsala, Sweden.
[Runnerstrom, Evan L.; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Runnerstrom, Evan L.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Pehlivan, IB (reprint author), Uppsala Univ, Angstrom Lab, Dept Engn Sci, POB 534, SE-75121 Uppsala, Sweden.
EM ilknur.pehlivan@angstrom.uu.se
RI Foundry, Molecular/G-9968-2014; Milliron, Delia/D-6002-2012;
OI Niklasson, Gunnar/0000-0002-8279-5163
NR 28
TC 10
Z9 10
U1 5
U2 37
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0248
EI 1879-3398
J9 SOL ENERG MAT SOL C
JI Sol. Energy Mater. Sol. Cells
PD JUL
PY 2014
VL 126
SI SI
BP 241
EP 247
DI 10.1016/j.solmat.2013.06.010
PG 7
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA AK4LB
UT WOS:000338395100035
ER
PT J
AU Kronewitter, SR
Slysz, GW
Marginean, I
Hagler, CD
LaMarche, BL
Zhao, R
Harris, MY
Monroe, ME
Polyukh, CA
Crowell, KL
Fillmore, TL
Carlson, TS
Camp, DG
Moore, RJ
Payne, SH
Anderson, GA
Smith, RD
AF Kronewitter, Scott R.
Slysz, Gordon W.
Marginean, Ioan
Hagler, Clay D.
LaMarche, Brian L.
Zhao, Rui
Harris, Myanna Y.
Monroe, Matthew E.
Polyukh, Christina A.
Crowell, Kevin L.
Fillmore, Thomas L.
Carlson, Timothy S.
Camp, David G., II
Moore, Ronald J.
Payne, Samuel H.
Anderson, Gordon A.
Smith, Richard D.
TI GlyQ-IQ: Glycomics Quintavariate-Informed Quantification with
High-Performance Computing and GlycoGrid 4D Visualization
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID MASS-SPECTROMETRY DATA; ELECTROSPRAY-IONIZATION; ANNOTATION; MS;
SOFTWARE; SPECTRA; FRAGMENTATION; GLYCOSYLATION; HETEROGENEITY; GLYCANS
AB Glycomics quintavariate-informed quantification (GlyQIQ) is a biologically guided glycomics analysis tool for identifying N-glycans in liquid chromatography-mass spectrometry (LC-MS) data. Glycomics LC-MS data sets have convoluted extracted ion chromatograms that are challenging to deconvolve with existing software tools. LC deconvolution into constituent pieces is critical in glycomics data sets because chromatographic peaks correspond to different intact glycan structural isomers. The biological targeted analysis approach offers several key advantages to traditional LC-MS data processing. A priori glycan information about the individual target's elemental composition allows for improved sensitivity by utilizing the exact isotope profile information to focus chromatogram generation and LC peak fitting on the isotopic species having the highest intensity. Glycan target annotation utilizes glycan family relationships and in source fragmentation in addition to high specificity feature LC-MS detection to improve the specificity of the analysis. The GlyQ-IQ software was developed in this work and evaluated in the context of profiling the N-glycan compositions from human serum LC-MS data sets. A case study is presented to demonstrate how GlyQ-IQ identifies and removes confounding chromatographic peaks from high mannose glycan isomers from human blood serum. In addition, GlyQ-IQ was used to generate a broad human serum N-glycan profile from a high resolution nanoelectrospray-liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS) data set. A total of 156 glycan compositions and 640 glycan isomers were detected from a single sample. Over 99% of the GlyQ-IQ glycan-feature assignments passed manual validation and are backed with high-resolution mass spectra.
C1 [Kronewitter, Scott R.; Slysz, Gordon W.; Marginean, Ioan; Hagler, Clay D.; LaMarche, Brian L.; Zhao, Rui; Harris, Myanna Y.; Monroe, Matthew E.; Polyukh, Christina A.; Crowell, Kevin L.; Fillmore, Thomas L.; Carlson, Timothy S.; Camp, David G., II; Moore, Ronald J.; Payne, Samuel H.; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA.
EM rds@pnnl.gov
RI Marginean, Ioan/A-4183-2008; Smith, Richard/J-3664-2012;
OI Marginean, Ioan/0000-0002-6693-0361; Smith, Richard/0000-0002-2381-2349;
Payne, Samuel/0000-0002-8351-1994
FU U.S. DOE office of Biological and Environmental Research Pan-omics
project of the Genome Sciences Program; NIH GMS [P41 GM103493-11];
Microsoft Windows Azure Cloud Deployment; DOE [DE-AC05-76RLO 1830]
FX Portions of this work were supported by the U.S. DOE office of
Biological and Environmental Research Pan-omics project of the Genome
Sciences Program, as well as by the NIH GMS Grant P41 GM103493-11. Work
was performed in the EMSL, a DOE-BER national scientific user facility
PNNL. High-performance computing research was performed using PNNL
Institutional Computing at Pacific Northwest National Laboratory. The
Microsoft Azure Research was made possible by a Windows Azure Research
Pass Grant. We also acknowledge Daniel Fay and Wen-ming Ye from
Microsoft Research (http://azure4research.com, Redmond, WA), Magnus
Martensson from Martensson Consulting (Malmo, Sweden), and Alan Smith
from Active Solutions (Stockholm, Sweden) for their expertise and
support with the Microsoft Windows Azure Cloud Deployment. PNNL is a
multiprogram national laboratory operated by Battelle Memorial Institute
for the DOE under Contract DE-AC05-76RLO 1830.
NR 26
TC 4
Z9 4
U1 0
U2 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
EI 1520-6882
J9 ANAL CHEM
JI Anal. Chem.
PD JUL 1
PY 2014
VL 86
IS 13
BP 6268
EP 6276
DI 10.1021/ac501492f
PG 9
WC Chemistry, Analytical
SC Chemistry
GA AK5TH
UT WOS:000338488800017
PM 24881670
ER
PT J
AU Kelly, RT
Wang, CC
Rausch, SJ
Lee, CS
Tang, KQ
AF Kelly, Ryan T.
Wang, Chenchen
Rausch, Sarah J.
Lee, Cheng S.
Tang, Keqi
TI Pneumatic Microvalve-Based Hydrodynamic Sample Injection for
High-Throughput, Quantitative Zone Electrophoresis in Capillaries
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID SINGLE-CELL ANALYSIS; MICROCHIP ELECTROPHORESIS; MASS-SPECTROMETRY;
MICROFLUIDIC DEVICES; FLOW; SENSITIVITY; INTERFACE; DESIGN; CHIP
AB A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused-silica capillary separation column. Analytes are rapidly separated in the fused-silica capillary, and following separation, high-sensitivity MS detection is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high-throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates, and CE separation voltages.
C1 [Kelly, Ryan T.; Rausch, Sarah J.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Tang, Keqi] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Wang, Chenchen; Lee, Cheng S.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
RP Kelly, RT (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA.
EM ryan.kelly@pnnl.gov
RI wang, chenchen/B-5838-2015; Kelly, Ryan/B-2999-2008
OI Kelly, Ryan/0000-0002-3339-4443
FU NIH National Cancer Institute [1R33CA155252, R21 CA143177]; Department
of Energy's Office of Biological and Environmental Research
FX We thank Brandon Kelly for assistance with microfluidic device
fabrication. The research described in this paper was conducted under
the Laboratory Directed Research and Development Program at Pacific
Northwest National Laboratory (PNNL), a multiprogram national laboratory
operated by Battelle for the U.S. Department of Energy, and grants from
the NIH National Cancer Institute (1R33CA155252 and R21 CA143177). The
research was performed using EMSL, a national scientific user facility
sponsored by the Department of Energy's Office of Biological and
Environmental Research and located at PNNL.
NR 34
TC 8
Z9 8
U1 3
U2 54
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
EI 1520-6882
J9 ANAL CHEM
JI Anal. Chem.
PD JUL 1
PY 2014
VL 86
IS 13
BP 6723
EP 6729
DI 10.1021/ac501910p
PG 7
WC Chemistry, Analytical
SC Chemistry
GA AK5TH
UT WOS:000338488800077
PM 24865952
ER
PT J
AU Xu, ZJ
AF Xu, Zhijie
TI A stochastic analysis of steady and transient heat conduction in random
media using a homogenization approach
SO APPLIED MATHEMATICAL MODELLING
LA English
DT Article
DE Stochastic; Heat conduction; Homogenization; Random field; Uncertainty
ID FINITE-ELEMENT-ANALYSIS; HETEROGENEOUS MATERIALS
AB We present a new stochastic analysis for steady and transient one-dimensional heat conduction problem based on the homogenization approach. Thermal conductivity is assumed to be a random field K consisting of random variables of a total number N. Both steady and transient solutions Tare expressed in terms of the homogenized solution (T) over tilde and its spatial derivatives T(x,t) = (T) over tilde + Sigma L-infinity(n=1)n(x)partial derivative(n)(T) over tilde/partial derivative x(n), where homogenized solution (T) over tilde is obtained by solving the homogenized equation with effective thermal conductivity. Both mean and variance of stochastic solutions can be obtained analytically for K field consisting of independent identically distributed (i.i.d) random variables. The mean and variance of T are shown to be dependent only on the mean and variance of these i.i.d variables, not the particular form of probability distribution function of i.i.d variables. Variance of temperature field T can be separated into two contributions: the ensemble contribution (through the homogenized temperature (T) over tilde); and the configurational contribution (through the random variable L-n(x)). The configurational contribution is shown to be proportional to the local gradient of (T) over tilde. Large uncertainty of T field was found at locations with large gradient of (T) over tilde due to the significant configurational contributions at these locations. Numerical simulations were implemented based on a direct Monte Carlo method and good agreement is obtained between numerical Monte Carlo results and the proposed stochastic analysis. (C) 2013 Elsevier Inc. All rights reserved.
C1 [Xu, Zhijie] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Xu, ZJ (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Computat Math Grp, Richland, WA 99352 USA.
EM zhijiexu@hotmail.com
RI Xu, Zhijie/A-1627-2009
OI Xu, Zhijie/0000-0003-0459-4531
NR 16
TC 1
Z9 1
U1 2
U2 11
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0307-904X
EI 1872-8480
J9 APPL MATH MODEL
JI Appl. Math. Model.
PD JUL 1
PY 2014
VL 38
IS 13
BP 3233
EP 3243
DI 10.1016/j.apm.2013.11.044
PG 11
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications; Mechanics
SC Engineering; Mathematics; Mechanics
GA AK1MT
UT WOS:000338179900014
ER
PT J
AU Riquelme, F
Northrup, P
Ruvalcaba-Sil, JL
Stojanoff, V
Siddons, DP
Alvarado-Ortega, J
AF Riquelme, Francisco
Northrup, Paul
Luis Ruvalcaba-Sil, Jose
Stojanoff, Vivian
Siddons, D. Peter
Alvarado-Ortega, Jesus
TI Insights into molecular chemistry of Chiapas amber using infrared-light
microscopy, PIXE/RBS, and sulfur K-edge XANES spectroscopy
SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
LA English
DT Article
ID HUMIC SUBSTANCES; ORGANIC-MATTER; SPECIATION; MEXICO; CLASSIFICATION;
SOIL; SAMPLES; ORIGIN
AB Chiapas amber is a natural occurring fossil resin structurally composed of long macromolecule chains with semicrystalline phases associated with both fossil and polymerization process. The most conspicuous characteristic of this fossil polymer is that it preserves ancient organic inclusions. In the present work, PIXE/RBS spectrometry (particle-induced X-ray emission/Rutherford backscattering) were combined with complementary K-edge XANES spectroscopy (X-ray absorption near-edge structure) to identify the amount of sulfur in Chiapas amber. Initially, the amber samples were examined using infrared reflected photomicrography. Amber is transparent to infrared light and so embedded plants and animals are easily visible, showing them in extraordinary detail, as if they were immersed in a water-like solution. The PIXE/RBS data show that the proportion of sulfur in amber is significantly higher than that found in recently formed resins, consistent with the biogeochemical process that transforms the resin into amber during long-term burial in geological deposits. The sulfur K-edge XANES spectra from amber confirm the sulfur abundance and reveal sulfur species in the reduced and intermediate oxidation states in amber. Almost no oxidized sulfur was found, whereas the recent resins show mostly oxidized sulfur fractions. This indicates that labile oxidized sulfur decays during fossilization and resin maturation must occur under conditions of oxygen depletion. The implications of the presence of sulfur in amber for organic preservation is also discussed here. Sulfur compounds work as a polymer additive that promotes intense resin solidification. This restricts the early oxidant-specific biodegradation of the embedded biomatter and, over geological time, provides greater stability against chemical changes.
C1 [Riquelme, Francisco; Luis Ruvalcaba-Sil, Jose] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 20364, DF, Mexico.
[Northrup, Paul] SUNY Stony Brook, Dept Geosci, Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY USA.
[Stojanoff, Vivian; Siddons, D. Peter] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA.
[Alvarado-Ortega, Jesus] Univ Nacl Autonoma Mexico, Inst Geol, Mexico City 04510, DF, Mexico.
RP Riquelme, F (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 20364, DF, Mexico.
EM riquelme.fc@gmail.com
OI Ruvalcaba-Sil, Jose Luis/0000-0003-1431-3019
FU CONACYT [131944 MOVIL II]; UNAM-PAPIIT [IN106011, IN403210]
FX We thank Karim Lopez, Francisco Jaimes, and Mauricio Escobar, for their
technical support during the experimental runs at the Pelletron
Accelerator Laboratory, IF-UNAM. We also thank Dr. Lauro Bucio from
IF-UNAM, for the valuable comments that enriched the manuscript
discussion. We thank Biol. Gerardo Carbot and Biol. Marco A. Coutino,
from the Museo de Paleontologia 'Eliseo Palacios Aguilera', Chiapas,
they facilitated the holotype of H. allendis and sample T2. The editor
and referees provided useful suggestions that improved the manuscript.
This research is part of the PhD-granting program in Biological Sciences
at the UNAM, financially supported by CONACYT, also partially supported
by UNAM-PAPIIT IN106011 and IN403210 grants, as well as CONACYT 131944
MOVIL II endowment.
NR 47
TC 9
Z9 9
U1 2
U2 22
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0947-8396
EI 1432-0630
J9 APPL PHYS A-MATER
JI Appl. Phys. A-Mater. Sci. Process.
PD JUL
PY 2014
VL 116
IS 1
BP 97
EP 109
DI 10.1007/s00339-013-8185-2
PG 13
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA AK1YC
UT WOS:000338214300014
ER
PT J
AU Webster, KD
Ng, WP
Fletcher, DA
AF Webster, Kevin D.
Ng, Win Pin
Fletcher, Daniel A.
TI Tensional Homeostasis in Single Fibroblasts
SO BIOPHYSICAL JOURNAL
LA English
DT Article
ID ACTIN-FILAMENTS; CELLULAR STIFFNESS; MECHANICAL FORCE; ALPHA-ACTININ;
LIVING CELLS; DYNAMICS; STRESS; MECHANOTRANSDUCTION; MECHANOBIOLOGY;
CONTRACTILITY
AB Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micro-patterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This' response is influenced by overexpression of the actin crosslinker alpha-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury.
C1 [Webster, Kevin D.; Fletcher, Daniel A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA.
[Webster, Kevin D.; Ng, Win Pin; Fletcher, Daniel A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
[Ng, Win Pin; Fletcher, Daniel A.] Univ Calif Berkeley Univ Calif San Francisco Grad, Berkeley, CA USA.
[Fletcher, Daniel A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Fletcher, DA (reprint author), Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA.
EM fletch@berkeley.edu
FU National Science Foundation Biomechanics & Mechanobiology program
[1235569]; National Institutes of Health Bay Area Physical Sciences
Oncology Center
FX This work was supported by the National Science Foundation Biomechanics
& Mechanobiology program (grant No. 1235569) and the National Institutes
of Health Bay Area Physical Sciences Oncology Center.
NR 53
TC 14
Z9 14
U1 1
U2 14
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0006-3495
EI 1542-0086
J9 BIOPHYS J
JI Biophys. J.
PD JUL 1
PY 2014
VL 107
IS 1
BP 146
EP 155
DI 10.1016/j.bpj.2014.04.051
PG 10
WC Biophysics
SC Biophysics
GA AK4RK
UT WOS:000338411600018
PM 24988349
ER
PT J
AU Alam, TM
Liao, ZL
Zakharov, LN
Nyman, M
AF Alam, Todd M.
Liao, Zuolei
Zakharov, Lev N.
Nyman, May
TI Solid-State Dynamics of Uranyl Polyoxometalates
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE ion-exchange; polyoxometalate; proton MAS NMR; solid-state NMR; uranyl
ID DIAMAGNETIC URANIUM-COMPOUNDS; SHIELDING CALCULATIONS; PEROXIDE
NANOCAPSULES; PERIODIC-TABLE; METAL; NMR; NANOPARTICLES; NANOCLUSTERS;
MONOLAYER; CATIONS
AB Understanding fundamental uranyl polyoxometalate (POM) chemistry in solution and the solid state is the first step to defining its future role in the development of new actinide materials and separation processes that are vital to every step of the nuclear fuel cycle. Many solid-state geometries of uranyl POMs have been described, but we are only beginning to understand their chemical behavior, which thus far includes the role of templates in their self-assembly, and the dynamics of encapsulated species in solution. This study provides unprecedented detail into the exchange dynamics of the encapsulated species in the solid state through Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy. Although it was previously recognized that capsule-like molybdate and uranyl POMs exchange encapsulated species when dissolved in water, analogous exchange in the solid state has not been documented, or even considered. Here, we observe the extremely high rate of transport of Li+ and aqua species across the uranyl shell in the solid state, a process that is affected by both temperature and pore blocking by larger species. These results highlight the untapped potential of emergent f-block element materials and vesicle-like POMs.
C1 [Alam, Todd M.] Sandia Natl Labs, Dept Elect Opt & Nanostruct Mat, Albuquerque, NM 87185 USA.
[Liao, Zuolei; Zakharov, Lev N.; Nyman, May] Oregon State Univ, Frontier Res Ctr, Dept Chem & Mat Sci Actinides, Corvallis, OR 97331 USA.
RP Alam, TM (reprint author), Sandia Natl Labs, Dept Elect Opt & Nanostruct Mat, POB 5800, Albuquerque, NM 87185 USA.
EM tmalam@sandia.gov; May.Nyman@oregonstate.edu
FU Materials Science of Actinides, an Energy Frontier Research Center -
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-SC0001089]; U. S. Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX This work was supported as part of the Materials Science of Actinides,
an Energy Frontier Research Center funded by the Department of Energy,
Office of Science, Office of Basic Energy Sciences under award number
DE-SC0001089. The NMR component of the work (T.M.A.) was performed at
Sandia National Laboratories, which is a multiprogram laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin company, for the U. S. Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000.
NR 24
TC 8
Z9 8
U1 6
U2 46
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0947-6539
EI 1521-3765
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD JUL 1
PY 2014
VL 20
IS 27
BP 8302
EP 8307
DI 10.1002/chem.201402351
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA AJ9HO
UT WOS:000338019300011
PM 24889825
ER
PT J
AU Chylek, P
Dubey, MK
Lesins, G
Li, JN
Hengartner, N
AF Chylek, Petr
Dubey, Manvendra K.
Lesins, Glen
Li, Jiangnan
Hengartner, Nicolas
TI Imprint of the Atlantic multi-decadal oscillation and Pacific decadal
oscillation on southwestern US climate: past, present, and future
SO CLIMATE DYNAMICS
LA English
DT Article
ID SURFACE AIR-TEMPERATURE; NORTH-ATLANTIC; MULTIDECADAL OSCILLATION;
THERMOHALINE CIRCULATION; 21ST-CENTURY DROUGHT; VARIABILITY; MODEL;
HOLOCENE; AMERICA; SYSTEM
AB The surface air temperature increase in the southwestern United States was much larger during the last few decades than the increase in the global mean. While the global temperature increased by about 0.5 A degrees C from 1975 to 2000, the southwestern US temperature increased by about 2 A degrees C. If such an enhanced warming persisted for the next few decades, the southwestern US would suffer devastating consequences. To identify major drivers of southwestern climate change we perform a multiple-linear regression of the past 100 years of the southwestern US temperature and precipitation. We find that in the early twentieth century the warming was dominated by a positive phase of the Atlantic multi-decadal oscillation (AMO) with minor contributions from increasing solar irradiance and concentration of greenhouse gases. The late twentieth century warming was about equally influenced by increasing concentration of atmospheric greenhouse gases (GHGs) and a positive phase of the AMO. The current southwestern US drought is associated with a near maximum AMO index occurring nearly simultaneously with a minimum in the Pacific decadal oscillation (PDO) index. A similar situation occurred in mid-1950s when precipitation reached its minimum within the instrumental records. If future atmospheric concentrations of GHGs increase according to the IPCC scenarios (Solomon et al. in Climate change 2007: working group I. The Physical Science Basis, Cambridge, 996 pp, 2007), climate models project a fast rate of southwestern warming accompanied by devastating droughts (Seager et al. in Science 316:1181-1184, 2007; Williams et al. in Nat Clim Chang, 2012). However, the current climate models have not been able to predict the behavior of the AMO and PDO indices. The regression model does support the climate models (CMIP3 and CMIP5 AOGCMs) projections of a much warmer and drier southwestern US only if the AMO changes its 1,000 years cyclic behavior and instead continues to rise close to its 1975-2000 rate. If the AMO continues its quasi-cyclic behavior the US SW temperature should remain stable and the precipitation should significantly increase during the next few decades.
C1 [Chylek, Petr; Dubey, Manvendra K.; Hengartner, Nicolas] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Lesins, Glen] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada.
[Li, Jiangnan] Environm Canada, Canadian Ctr Climate Modeling & Anal, Victoria, BC, Canada.
RP Chylek, P (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM chylek@lanl.gov
RI Dubey, Manvendra/E-3949-2010; Li, Jiangnan/J-6262-2016
OI Dubey, Manvendra/0000-0002-3492-790X;
FU Los Alamos National Laboratory Institute of Geophysics, Planetary
Physics, and Signatures [LA-UR-12-25073]
FX Reported research (LA-UR-12-25073) was supported in part by the Los
Alamos National Laboratory Institute of Geophysics, Planetary Physics,
and Signatures.
NR 59
TC 14
Z9 14
U1 6
U2 56
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0930-7575
EI 1432-0894
J9 CLIM DYNAM
JI Clim. Dyn.
PD JUL
PY 2014
VL 43
IS 1-2
BP 119
EP 129
DI 10.1007/s00382-013-1933-3
PG 11
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AK3PS
UT WOS:000338337700008
ER
PT J
AU MacMartin, DG
Kravitz, B
Keith, DW
Jarvis, A
AF MacMartin, Douglas G.
Kravitz, Ben
Keith, David W.
Jarvis, Andrew
TI Dynamics of the coupled human-climate system resulting from closed-loop
control of solar geoengineering
SO CLIMATE DYNAMICS
LA English
DT Article
DE Geoengineering; Solar radiation management; Dynamics; Feedback; Control
ID CONTROL PERSPECTIVE; MODEL; OCEAN
AB If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM in order to compensate for uncertainty in either the forcing or the climate response. Feedback might also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. However, in addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a box-diffusion dynamic model of the climate system to understand how changing the properties of the feedback control affect the emergent dynamics of this coupled human-climate system, and evaluate these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain). This is a challenge for policy as a delayed response is needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification of natural variability, results in a limit on how rapidly SRM could respond to changes in the observed state of the climate system.
C1 [MacMartin, Douglas G.] CALTECH, Pasadena, CA 91125 USA.
[Kravitz, Ben] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Keith, David W.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Keith, David W.] Harvard Univ, Kennedy Sch Govt, Cambridge, MA 02138 USA.
[Jarvis, Andrew] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England.
RP MacMartin, DG (reprint author), CALTECH, 1200 E Calif Blvd,M-C 107-81, Pasadena, CA 91125 USA.
EM macmardg@cds.caltech.edu
RI Kravitz, Ben/P-7925-2014; MacMartin, Douglas/A-6333-2016
OI Kravitz, Ben/0000-0001-6318-1150; MacMartin, Douglas/0000-0003-1987-9417
FU Fund for Innovative Climate and Energy Research; U S. Department of
Energy by Battelle Memorial Institute [DE-AC05-76RLO1830]
FX Ben Kravitz is supported by the Fund for Innovative Climate and Energy
Research. The Pacific Northwest National Laboratory is operated for the
U S. Department of Energy by Battelle Memorial Institute under contract
DE-AC05-76RLO1830. Peter Thompson of Systems Technology Inc. provided
assistance with the content of Appendix 2.
NR 33
TC 17
Z9 17
U1 2
U2 20
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0930-7575
EI 1432-0894
J9 CLIM DYNAM
JI Clim. Dyn.
PD JUL
PY 2014
VL 43
IS 1-2
BP 243
EP 258
DI 10.1007/s00382-013-1822-9
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AK3PS
UT WOS:000338337700016
ER
PT J
AU He, L
Cornelius, CJ
Perahia, D
AF He, Lliin
Cornelius, Chris J.
Perahia, Dvora
TI Water dynamics within a highly rigid sulfonated polyphenylene
SO EUROPEAN POLYMER JOURNAL
LA English
DT Article
DE Water molecules; Polyphenylene ionomers; Pulse field gradient (PFG) NMR;
FFIR
ID STUDYING TRANSLATIONAL DIFFUSION; POLYMER-ELECTROLYTE MEMBRANES;
NUCLEAR-MAGNETIC-RESONANCE; FUEL-CELLS; FIELD GRADIENT; IONOMER
MEMBRANES; TRANSPORT; NAFION; ION; MECHANISMS
AB Complex water molecule interactions within the confined environments of a sulfonated polyphenylene (sPP) ionomer were studied using H-1 nuclear magnetic resonance (NMR), and Fourier transform infrared (FTIR) spectroscopy. Multiple water environments were observed due to variations in hydrophilicity created by its structure, and chemical composition. Confined water properties are strongly dependent upon water content, degree of ionization, and temperature. Increasing the degree of sulfonation (DS) results in the creation of more water states and sites. The chemical shifts of water depend upon its environment with a smaller dependence on temperature. Confined water relaxation time T-1 is than significantly lower bulk water and increases with temperature. Pulse field gradient (PFG) NMR studies reveals that water self-diffusion coefficients increase with. Water molecules diffuse faster in sPP than Nafion, which implies that diffusion is facilitated by bundled hydrophilic pathways. Time-dependent FTIR reveals that bound water evaporates slower than unbound water during drying, which illustrates the difference of bulk and confined water within sPP ionomers. Hindered water evaporation is due to a reduction in the degrees of freedom for ion containing domains and mass transfer limitations at interfacial boundaries between hydrophobic and hydrophilic domains. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [He, Lliin] Oak Ridge Natl Lab, Neutron Scattering Directorate, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.
[Cornelius, Chris J.] Univ Nebraska, Dept Chem & Biomol Engn, Lincoln, NE 68588 USA.
[He, Lliin; Perahia, Dvora] Clemson Univ, Dept Chem, Clemson, SC 29634 USA.
RP Perahia, D (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA.
EM ccornelius2@unl.edu; dperahi@clemson.edu
OI He, Lilin/0000-0002-9560-8101
FU DOE [DE-FG02-12ER46843]; Sharp Corporation
FX The authors gratefully acknowledge financial support from DOE Grant No.
DE-FG02-12ER46843, and support from Sharp Corporation.
NR 34
TC 1
Z9 1
U1 4
U2 24
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0014-3057
EI 1873-1945
J9 EUR POLYM J
JI Eur. Polym. J.
PD JUL
PY 2014
VL 56
BP 168
EP 173
DI 10.1016/j.eurpolymj.2014.03.035
PG 6
WC Polymer Science
SC Polymer Science
GA AK4JW
UT WOS:000338392000016
ER
PT J
AU Arthur, RK
Ma, LJ
Slattery, M
Spokony, RF
Ostapenko, A
Negre, N
White, KP
AF Arthur, Robert K.
Ma, Lijia
Slattery, Matthew
Spokony, Rebecca F.
Ostapenko, Alexander
Negre, Nicolas
White, Kevin P.
TI Evolution of H3K27me3-marked chromatin is linked to gene expression
evolution and to patterns of gene duplication and diversification
SO GENOME RESEARCH
LA English
DT Article
ID TRANSCRIPTION FACTOR-BINDING; FUNCTIONAL-ORGANIZATION; HISTONE
MODIFICATIONS; DROSOPHILA GENOME; DIVERGENCE; CONSERVATION; POLYCOMB;
SEQUENCES; PROTEINS; INSIGHTS
AB Histone modifications are critical for the regulation of gene expression, cell type specification, and differentiation. However, evolutionary patterns of key modifications that regulate gene expression in differentiating organisms have not been examined. Here we mapped the genomic locations of the repressive mark histone 3 lysine 27 trimethylation (H3K27me3) in four species of Drosophila, and compared these patterns to those in C. elegans. We found that patterns of H3K27me3 are highly conserved across species, but conservation is substantially weaker among duplicated genes. We further discovered that retropositions are associated with greater evolutionary changes in H3K27me3 and gene expression than tandem duplications, indicating that local chromatin constraints influence duplicated gene evolution. These changes are also associated with concomitant evolution of gene expression. Our findings reveal the strong conservation of genomic architecture governed by an epigenetic mark across distantly related species and the importance of gene duplication in generating novel H3K27me3 profiles.
C1 [Arthur, Robert K.; White, Kevin P.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA.
[Arthur, Robert K.; Ma, Lijia; Slattery, Matthew; Spokony, Rebecca F.; Ostapenko, Alexander; Negre, Nicolas; White, Kevin P.] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA.
[Arthur, Robert K.; Ma, Lijia; Slattery, Matthew; Spokony, Rebecca F.; Ostapenko, Alexander; Negre, Nicolas; White, Kevin P.] Argonne Natl Lab, Chicago, IL 60637 USA.
[Ma, Lijia; Slattery, Matthew; Spokony, Rebecca F.; Ostapenko, Alexander; Negre, Nicolas; White, Kevin P.] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA.
[Slattery, Matthew] Univ Minnesota, Sch Med, Dept Biomed Sci, Duluth, MN 55455 USA.
[Spokony, Rebecca F.] CUNY, Baruch Coll, Dept Nat Sci, New York, NY 10010 USA.
[Negre, Nicolas] Univ Montpellier 2, F-34095 Montpellier, France.
[Negre, Nicolas] INRA, DGIMI, UMR1333, F-34095 Montpellier, France.
RP White, KP (reprint author), Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA.
EM kpwhite@uchicago.edu
OI Negre, Nicolas/0000-0001-9727-3416
FU NIH [U01HG004264, T32GM007197]; NSF
FX The modENCODE Project was supported by NIH grant U01HG004264 awarded to
K. P. W. R. K. A. was supported by an NSF Graduate Research Fellowship
and an NIH training grant (T32GM007197). We thank Jason Lieb and his
laboratory for use of the C. elegans H3K27me3 ChIP-seq data. We are
grateful to Benjamin Krinsky and Manyuan Long for interesting
discussions on gene duplication. We thank Kacy Gordon, Aashish Jha, and
Xiaochun Ni for helpful comments and critical review of our manuscript.
We are indebted to many members of the White and Ruvinsky laboratories
for useful criticism, wonderful discussions, and technical help.
Finally, we appreciate the comments of three anonymous reviewers whose
feedback greatly improved the paper.
NR 54
TC 5
Z9 5
U1 0
U2 13
PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
PI COLD SPRING HARBOR
PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA
SN 1088-9051
EI 1549-5469
J9 GENOME RES
JI Genome Res.
PD JUL
PY 2014
VL 24
IS 7
BP 1115
EP 1124
DI 10.1101/gr.162008.113
PG 10
WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Genetics & Heredity
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Genetics & Heredity
GA AK1OS
UT WOS:000338185000006
PM 24985914
ER
PT J
AU Chen, ZX
Sturgill, D
Qu, JX
Jiang, HY
Park, S
Boley, N
Suzuki, AM
Fletcher, AR
Plachetzki, DC
FitzGerald, PC
Artieri, CG
Atallah, J
Barmina, O
Brown, JB
Blankenburg, KP
Clough, E
Dasgupta, A
Gubbala, S
Han, Y
Jayaseelan, JC
Kalra, D
Kim, YA
Kovar, CL
Lee, SL
Li, MM
Malley, JD
Malone, JH
Mathew, T
Mattiuzzo, NR
Munidasa, M
Muzny, DM
Ongeri, F
Perales, L
Przytycka, TM
Pu, LL
Robinson, G
Thornton, RL
Saada, N
Scherer, SE
Smith, HE
Vinson, C
Warner, CB
Worley, KC
Wu, YQ
Zou, XY
Cherbas, P
Kellis, M
Eisen, MB
Piano, F
Kionte, K
Fitch, DH
Sternberg, PW
Cutter, AD
Duff, MO
Hoskins, RA
Graveley, BR
Gibbs, RA
Bickel, PJ
Kopp, A
Carninci, P
Celniker, SE
Oliver, B
Richards, S
AF Chen, Zhen-Xia
Sturgill, David
Qu, Jiaxin
Jiang, Huaiyang
Park, Soo
Boley, Nathan
Suzuki, Ana Maria
Fletcher, Anthony R.
Plachetzki, David C.
FitzGerald, Peter C.
Artieri, Carlo G.
Atallah, Joel
Barmina, Olga
Brown, James B.
Blankenburg, Kerstin P.
Clough, Emily
Dasgupta, Abhijit
Gubbala, Sai
Han, Yi
Jayaseelan, Joy C.
Kalra, Divya
Kim, Yoo-Ah
Kovar, Christie L.
Lee, Sandra L.
Li, Mingmei
Malley, James D.
Malone, John H.
Mathew, Tittu
Mattiuzzo, Nicolas R.
Munidasa, Mala
Muzny, Donna M.
Ongeri, Fiona
Perales, Lora
Przytycka, Teresa M.
Pu, Ling-Ling
Robinson, Garrett
Thornton, Rebecca L.
Saada, Nehad
Scherer, Steven E.
Smith, Harold E.
Vinson, Charles
Warner, Crystal B.
Worley, Kim C.
Wu, Yuan-Qing
Zou, Xiaoyan
Cherbas, Peter
Kellis, Manolis
Eisen, Michael B.
Piano, Fabio
Kionte, Karin
Fitch, David H.
Sternberg, Paul W.
Cutter, Asher D.
Duff, Michael O.
Hoskins, Roger A.
Graveley, Brenton R.
Gibbs, Richard A.
Bickel, Peter J.
Kopp, Artyom
Carninci, Piero
Celniker, Susan E.
Oliver, Brian
Richards, Stephen
TI Comparative validation of the D. melanogaster modENCODE transcriptome
annotation
SO GENOME RESEARCH
LA English
DT Article
ID DROSOPHILA-MELANOGASTER; GENE-EXPRESSION; HUMAN GENOME; JUNK DNA;
EVOLUTIONARY DYNAMICS; RNA-POLYMERASE; CAP-ANALYSIS; START SITE; ENCODE;
SEQUENCE
AB Accurate gene model annotation of reference genomes is critical for making them useful. The modENCODE project has improved the D. melanogaster genome annotation by using deep and diverse high-throughput data. Since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function, we have performed large-scale interspecific comparisons to increase confidence in predicted annotations. To support comparative genomics, we filled in divergence gaps in the Drosophila phylogeny by generating draft genomes for eight new species. For comparative transcriptome analysis, we generated mRNA expression profiles on 81 samples from multiple tissues and developmental stages of 15 Drosophila species, and we performed cap analysis of gene expression in D. melanogaster and D. pseudoobscura. We also describe conservation of four distinct core promoter structures composed of combinations of elements at three positions. Overall, each type of genomic feature shows a characteristic divergence rate relative to neutral models, highlighting the value of multispecies alignment in annotating a target genome that should prove useful in the annotation of other high priority genomes, especially human and other mammalian genomes that are rich in noncoding sequences. We report that the vast majority of elements in the annotation are evolutionarily conserved, indicating that the annotation will be an important springboard for functional genetic testing by the Drosophila community.
C1 [Chen, Zhen-Xia; Sturgill, David; Artieri, Carlo G.; Clough, Emily; Malone, John H.; Mattiuzzo, Nicolas R.; Smith, Harold E.; Oliver, Brian] NIDDK, NIH, Bethesda, MD 20892 USA.
[Qu, Jiaxin; Jiang, Huaiyang; Blankenburg, Kerstin P.; Gubbala, Sai; Han, Yi; Jayaseelan, Joy C.; Kalra, Divya; Kovar, Christie L.; Lee, Sandra L.; Li, Mingmei; Mathew, Tittu; Munidasa, Mala; Muzny, Donna M.; Ongeri, Fiona; Perales, Lora; Pu, Ling-Ling; Thornton, Rebecca L.; Saada, Nehad; Scherer, Steven E.; Warner, Crystal B.; Worley, Kim C.; Wu, Yuan-Qing; Zou, Xiaoyan; Gibbs, Richard A.; Richards, Stephen] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA.
[Park, Soo; Hoskins, Roger A.; Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Genome Dynam, Div Life Sci, Berkeley, CA 94720 USA.
[Boley, Nathan; Brown, James B.; Robinson, Garrett; Bickel, Peter J.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA.
[Suzuki, Ana Maria; Carninci, Piero] RIKEN Omics Sci Ctr, Technol Dev Grp, Yokohama, Kanagawa 2300045, Japan.
[Suzuki, Ana Maria; Carninci, Piero] RIKEN Ctr Life Sci Technol, Div Genom Technol, Yokohama, Kanagawa 2300045, Japan.
[Fletcher, Anthony R.; Malley, James D.] NIH, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20814 USA.
[Plachetzki, David C.; Atallah, Joel; Barmina, Olga; Kopp, Artyom] Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA.
[FitzGerald, Peter C.; Vinson, Charles] NCI, NIH, Bethesda, MD 20892 USA.
[Dasgupta, Abhijit] NIAMSD, Clin Trials & Outcomes Branch, NIH, Bethesda, MD 20892 USA.
[Kim, Yoo-Ah; Przytycka, Teresa M.] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA.
[Cherbas, Peter] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA.
[Kellis, Manolis] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA.
[Eisen, Michael B.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Piano, Fabio; Kionte, Karin; Fitch, David H.] New York Univ, Dept Biol, New York, NY 10003 USA.
[Sternberg, Paul W.] CALTECH, HHMI, Pasadena, CA 91125 USA.
[Sternberg, Paul W.] CALTECH, Div Biol, Pasadena, CA 91125 USA.
[Cutter, Asher D.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada.
[Duff, Michael O.; Graveley, Brenton R.] Univ Connecticut, Inst Syst Genom, Dept Genet & Dev Biol, Ctr Hlth, Farmington, CT 06030 USA.
RP Oliver, B (reprint author), NIDDK, NIH, Bethesda, MD 20892 USA.
EM briano@helix.nih.gov
RI Cutter, Asher/A-5647-2009; Carninci, Piero/K-1568-2014; Kalra,
Divya/N-5453-2014; JAYASEELAN, JOY CHRISTINA/F-9824-2015; Brown,
James/H-2971-2015;
OI Carninci, Piero/0000-0001-7202-7243; JAYASEELAN, JOY
CHRISTINA/0000-0002-7759-0139; Graveley, Brenton/0000-0001-5777-5892
FU Intramural Research Programs of the National Institutes of Health, NIDDK
[DK015600-18]; extramural National Institutes of Health program
[1ROIGM082843, U01HB004271]
FX We thank modENCODE and laboratory members for discussion. This research
was supported by the Intramural Research Programs of the National
Institutes of Health, NIDDK (DK015600-18 to B.O.) and by the extramural
National Institutes of Health program (1ROIGM082843 to A. K.;
U01HB004271 to S. E. C.). This study utilized the high-performance
computational capabilities of the Biowulf Linux cluster at the National
Institutes of Health, Bethesda, Maryland (http://biowulf.nih.gov).
NR 65
TC 33
Z9 33
U1 1
U2 18
PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
PI COLD SPRING HARBOR
PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA
SN 1088-9051
EI 1549-5469
J9 GENOME RES
JI Genome Res.
PD JUL
PY 2014
VL 24
IS 7
BP 1209
EP 1223
DI 10.1101/gr.159384.113
PG 15
WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Genetics & Heredity
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Genetics & Heredity
GA AK1OS
UT WOS:000338185000014
PM 24985915
ER
PT J
AU Lin, F
Fardad, M
Jovanovic, MR
AF Lin, Fu
Fardad, Makan
Jovanovic, Mihailo R.
TI Algorithms for Leader Selection in Stochastically Forced Consensus
Networks
SO IEEE TRANSACTIONS ON AUTOMATIC CONTROL
LA English
DT Article
DE Alternating direction method of multipliers (ADMMs); consensus networks;
convex optimization; convex relaxations; greedy algorithm; leader
selection; performance bounds; semidefinite programming (SDP); sensor
selection; variance amplification
ID SEMIDEFINITE RELAXATION; RELATIVE MEASUREMENTS; MULTIAGENT SYSTEMS;
AVERAGE CONSENSUS; GRAPH; CONTROLLABILITY; OPTIMIZATION; PERFORMANCE;
COHERENCE
AB We are interested in assigning a pre-specified number of nodes as leaders in order to minimize the mean-square deviation from consensus in stochastically forced networks. This problem arises in several applications including control of vehicular formations and localization in sensor networks. For networks with leaders subject to noise, we show that the Boolean constraints (which indicate whether a node is a leader) are the only source of nonconvexity. By relaxing these constraints to their convex hull we obtain a lower bound on the global optimal value. We also use a simple but efficient greedy algorithm to identify leaders and to compute an upper bound. For networks with leaders that perfectly follow their desired trajectories, we identify an additional source of nonconvexity in the form of a rank constraint. Removal of the rank constraint and relaxation of the Boolean constraints yields a semidefinite program for which we develop a customized algorithm well-suited for large networks. Several examples ranging from regular lattices to random graphs are provided to illustrate the effectiveness of the developed algorithms.
C1 [Lin, Fu] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
[Fardad, Makan] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA.
[Jovanovic, Mihailo R.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA.
RP Lin, F (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM fulin@mcs.anl.gov; makan@syr.edu; mihailo@umn.edu
FU National Science Foundation under CAREER [CMMI-06-44793, CMMI-09-27720,
CMMI-0927509]
FX This work was supported by the National Science Foundation under CAREER
Award CMMI-06-44793 and under awards CMMI-09-27720 and CMMI-0927509.
Recommended by Associate Editor D. Bauso.
NR 53
TC 32
Z9 32
U1 3
U2 19
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9286
EI 1558-2523
J9 IEEE T AUTOMAT CONTR
JI IEEE Trans. Autom. Control
PD JUL
PY 2014
VL 59
IS 7
BP 1789
EP 1802
DI 10.1109/TAC.2014.2314223
PG 14
WC Automation & Control Systems; Engineering, Electrical & Electronic
SC Automation & Control Systems; Engineering
GA AK3VO
UT WOS:000338353300008
ER
PT J
AU Schneider, KP
Weaver, TF
AF Schneider, K. P.
Weaver, T. F.
TI A Method for Evaluating Volt-VAR Optimization Field Demonstrations
SO IEEE TRANSACTIONS ON SMART GRID
LA English
DT Article
DE Distribution system analysis; power system control; voltage control;
voltage optimization
ID REDUCTION CVR
AB In a regulated business environment, a utility must be able to validate that deployed technologies provide quantifiable benefits to the end-use customers. While there are well established procedures for determining the benefits derived from the deployment of traditional technologies, the same procedures do not exist for many emerging technologies. Volt-VAR Optimization is an example of an emerging technology that is being deployed across the nation without a standardized method for determining system performance and benefits. This paper will present a method for the evaluation, and quantification of benefits, for field deployments of Volt-VAR Optimization technologies. In addition to presenting the methodology, the paper will present a summary of results, and observations, from two separate Volt-VAR Optimization field evaluations using the presented method.
C1 [Schneider, K. P.] Pacific NW Natl Lab, Battelle Seattle Res Ctr, Seattle, WA 98109 USA.
[Weaver, T. F.] Amer Elect Power Co, Columbus, OH 43201 USA.
RP Schneider, KP (reprint author), Pacific NW Natl Lab, Battelle Seattle Res Ctr, Seattle, WA 98109 USA.
EM kevin.schneider@pnnl.gov; tfweaver@aep.com
FU U.S. Department of Energy [DE-AC06-76RL01830]
FX This work was supported by Battelle for the U.S. Department of Energy
under Contract DE-AC06-76RL01830.
NR 18
TC 11
Z9 11
U1 0
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1949-3053
J9 IEEE T SMART GRID
JI IEEE Trans. Smart Grid
PD JUL
PY 2014
VL 5
IS 4
BP 1696
EP 1703
DI 10.1109/TSG.2014.2308872
PG 8
WC Engineering, Electrical & Electronic
SC Engineering
GA AK1QS
UT WOS:000338191200016
ER
PT J
AU Su, WC
Wang, JH
Roh, J
AF Su, Wencong
Wang, Jianhui
Roh, Jaehyung
TI Stochastic Energy Scheduling in Microgrids With Intermittent Renewable
Energy Resources
SO IEEE TRANSACTIONS ON SMART GRID
LA English
DT Article
DE Microgrid; plug-in electric vehicle (PEV); renewable energy; smart grid;
stochastic programming
ID WIND POWER; DEMAND RESPONSE; UNIT COMMITMENT; MANAGEMENT; SYSTEMS
AB Renewable energy resources such as wind and solar are an important component of a microgrid. However, the inherent intermittency and variability of such resources complicates microgrid operations. Meanwhile, more controllable loads (e.g., plug-in electric vehicles), distributed generators (e.g., micro gas turbines and diesel generators), and distributed energy storage devices (e.g., battery banks) are being integrated into the microgrid operation. To address the operational challenges associated with these technologies and energy resources, this paper formulates a stochastic problem for microgrid energy scheduling. The proposed problem formulation minimizes the expected operational cost of the microgrid and power losses while accommodating the intermittent nature of renewable energy resources. Case studies are performed on a modified IEEE 37-bus test feeder. The simulation results demonstrate the effectiveness and accuracy of the proposed stochastic microgrid energy scheduling model.
C1 [Su, Wencong] Univ Michigan, Dept Elect & Comp Engn, Dearborn, MI 48128 USA.
[Wang, Jianhui] Argonne Natl Lab, Argonne, IL 60439 USA.
[Roh, Jaehyung] Konkuk Univ, Dept Elect Engn, Seoul, South Korea.
RP Su, WC (reprint author), Univ Michigan, Dept Elect & Comp Engn, Dearborn, MI 48128 USA.
EM wencong@umich.edu; jianhui.wang@anl.gov; jhroh@konkuk.ac.kr
FU U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]; KETEP [2001T100100424]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U. S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license to reproduce, prepare derivative works, distribute
copies to the public, and perform publicly and display publicly, by or
on behalf of the Government.; Jaehyung Roh's work is sponsored by
KETEP(2001T100100424).
NR 31
TC 64
Z9 67
U1 9
U2 49
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1949-3053
J9 IEEE T SMART GRID
JI IEEE Trans. Smart Grid
PD JUL
PY 2014
VL 5
IS 4
BP 1876
EP 1883
DI 10.1109/TSG.2013.2280645
PG 8
WC Engineering, Electrical & Electronic
SC Engineering
GA AK1QS
UT WOS:000338191200034
ER
PT J
AU Goddard, G
Klose, J
Backhaus, S
AF Goddard, Gary
Klose, Joseph
Backhaus, Scott
TI Model Development and Identification for Fast Demand Response in
Commercial HVAC Systems
SO IEEE TRANSACTIONS ON SMART GRID
LA English
DT Article
DE Demand response (DR)
ID LOADS
AB Large commercial HVAC systems are attractive targets for fast demand response (DR) applications, e.g., integrating time-intermittent renewable generation. By leveraging the communications in the building automation system (BAS) already present in most buildings, large commercial HVAC systems provide easier access to a large controllable resource than aggregating a large number of small residential loads. However, large commercial HVAC systems are complex with many variables, many end point controllers, and several internal control loops that interact with each other. In addition, the existing fleet of large commercial buildings is diverse with many different HVAC configurations and BAS architectures. Capturing these buildings as DR resources requires a method to greatly reduce the complexity of the HVAC DR control and is general and flexible enough that it can be easily deployed across the diverse fleet of existing buildings. We create such a DR control by developing a system model that uses a single state variable instead of the several hundred variables in a commercial HVAC system. The model includes a small number of system parameters, and we demonstrate how their values can be determined via system identification measurements. Finally, we test our model on a large commercial HVAC system to investigate its control performance.
C1 [Goddard, Gary; Klose, Joseph] Los Alamos Natl Los Alamos, Util & Infrastruct Div, Los Alamos, NM 87544 USA.
[Backhaus, Scott] Los Alamos Natl Lab, MPA Div, Los Alamos, NM 87545 USA.
RP Goddard, G (reprint author), Los Alamos Natl Los Alamos, Util & Infrastruct Div, Los Alamos, NM 87544 USA.
EM goddard@lanl.gov; klose@lanl.gov; backhaus@lanl.gov
OI Backhaus, Scott/0000-0002-0344-6791
FU Microgrid Program of the Office of Electricity within the U.S.
Department of Energy
FX This work was supported by the Microgrid Program of the Office of
Electricity within the U.S. Department of Energy.
NR 14
TC 13
Z9 13
U1 1
U2 6
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1949-3053
J9 IEEE T SMART GRID
JI IEEE Trans. Smart Grid
PD JUL
PY 2014
VL 5
IS 4
BP 2084
EP 2092
DI 10.1109/TSG.2014.2312430
PG 9
WC Engineering, Electrical & Electronic
SC Engineering
GA AK1QS
UT WOS:000338191200056
ER
PT J
AU Thrash, JC
Temperton, B
Swan, BK
Landry, ZC
Woyke, T
DeLong, EF
Stepanauskas, R
Giovannoni, SJ
AF Thrash, J. Cameron
Temperton, Ben
Swan, Brandon K.
Landry, Zachary C.
Woyke, Tanja
DeLong, Edward F.
Stepanauskas, Ramunas
Giovannoni, Stephan J.
TI Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype
SO ISME JOURNAL
LA English
DT Article
DE bathytype; ecotype; metagenomics; SAR11; single-cell genomics; deep
ocean
ID MULTIPLE SEQUENCE ALIGNMENT; RIBOSOMAL-RNA GENES; MICROBIAL ASSEMBLAGES;
METAGENOMIC ANALYSIS; PROTEIN EVOLUTION; MESOPELAGIC ZONE; SARGASSO SEA;
LIFE-STYLES; ATLANTIC; BACTERIA
AB Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%-86%, were isolated from 770m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size.
C1 [Thrash, J. Cameron; Temperton, Ben; Landry, Zachary C.; Giovannoni, Stephan J.] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA.
[Thrash, J. Cameron] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA.
[Swan, Brandon K.; Stepanauskas, Ramunas] Bigelow Lab Ocean Sci, East Boothbay, ME USA.
[Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA USA.
[DeLong, Edward F.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA.
[DeLong, Edward F.] Ctr Microbial Ecol Res & Educ, Honolulu, HI USA.
RP Thrash, JC (reprint author), Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA.
EM thrashc@lsu.edu
OI Thrash, Cameron/0000-0003-0896-9986; Stepanauskas,
Ramunas/0000-0003-4458-3108
FU Gordon and Betty Moore Foundation; US Department of Energy Joint Genome
Institute (JGI) Community Supported Program [2011-387]; National Science
Foundation (NSF) Science and Technology Center [EF0424599]; NSF
[EF-826924, OCE-821374, OCE-1232982, DBI-1003269]; Office of Science of
the US Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Gordon and Betty Moore Foundation (SJG
and EFD), the US Department of Energy Joint Genome Institute (JGI)
Community Supported Program grant 2011-387 (RS, BKS, EFD, SJG), National
Science Foundation (NSF) Science and Technology Center Award EF0424599
(EFD), NSF awards EF-826924 (RS), OCE-821374 (RS) and OCE-1232982 (RS
and BKS), and is based on work supported by the NSF under Award no.
DBI-1003269 (JCT). Sequencing was conducted by JGI and supported by the
Office of Science of the US Department of Energy under Contract No.
DE-AC02-05CH11231. We thank Christopher M Sullivan and the Oregon State
University Center for Genome Research and Biocomputing, as well as the
Louisiana State University Center for Computation and Technology for
vital computational resources. We also thank Kelly C Wrighton and Laura
A Hug for critical discussions about single-cell genomics, metagenomics
and metabolic reconstruction.
NR 79
TC 17
Z9 18
U1 5
U2 30
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1751-7362
EI 1751-7370
J9 ISME J
JI ISME J.
PD JUL
PY 2014
VL 8
IS 7
BP 1440
EP 1451
DI 10.1038/ismej.2013.243
PG 12
WC Ecology; Microbiology
SC Environmental Sciences & Ecology; Microbiology
GA AK1XZ
UT WOS:000338213900009
PM 24451205
ER
PT J
AU Wrighton, KC
Castelle, CJ
Wilkins, MJ
Hug, LA
Sharon, I
Thomas, BC
Handley, KM
Mullin, SW
Nicora, CD
Singh, A
Lipton, MS
Long, PE
Williams, KH
Banfield, JF
AF Wrighton, Kelly C.
Castelle, Cindy J.
Wilkins, Michael J.
Hug, Laura A.
Sharon, Itai
Thomas, Brian C.
Handley, Kim M.
Mullin, Sean W.
Nicora, Carrie D.
Singh, Andrea
Lipton, Mary S.
Long, Philip E.
Williams, Kenneth H.
Banfield, Jillian F.
TI Metabolic interdependencies between phylogenetically novel fermenters
and respiratory organisms in an unconfined aquifer
SO ISME JOURNAL
LA English
DT Article
DE metagenomics; proteomics; candidate phylum; hydrogenase; fermentation;
sulfate reduction; microbial diversity
ID GENOME SEQUENCE; SP-NOV; DESULFOTALEA-PSYCHROPHILA; MICROBIAL
COMMUNITIES; REDUCING BACTERIA; ELEMENTAL SULFUR; GENE DIVERSITY;
OXIDATION; REDUCTION; SEDIMENT
AB Fermentation-based metabolism is an important ecosystem function often associated with environments rich in organic carbon, such as wetlands, sewage sludge and the mammalian gut. The diversity of microorganisms and pathways involved in carbon and hydrogen cycling in sediments and aquifers and the impacts of these processes on other biogeochemical cycles remain poorly understood. Here we used metagenomics and proteomics to characterize microbial communities sampled from an aquifer adjacent to the Colorado River at Rifle, CO, USA, and document interlinked microbial roles in geochemical cycling. The organic carbon content in the aquifer was elevated via acetate amendment of the groundwater occurring over 2 successive years. Samples were collected at three time points, with the objective of extensive genome recovery to enable metabolic reconstruction of the community. Fermentative community members include organisms from a new phylum, Melainabacteria, most closely related to Cyanobacteria, phylogenetically novel members of the Chloroflexi and Bacteroidales, as well as candidate phyla genomes (OD1, BD1-5, SR1, WWE3, ACD58, TM6, PER and OP11). These organisms have the capacity to produce hydrogen, acetate, formate, ethanol, butyrate and lactate, activities supported by proteomic data. The diversity and expression of hydrogenases suggests the importance of hydrogen metabolism in the subsurface. Our proteogenomic data further indicate the consumption of fermentation intermediates by Proteobacteria can be coupled to nitrate, sulfate and iron reduction. Thus, fermentation carried out by previously unknown members of sediment microbial communities may be an important driver of nitrogen, hydrogen, sulfur, carbon and iron cycling.
C1 [Wrighton, Kelly C.; Wilkins, Michael J.] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA.
[Castelle, Cindy J.; Hug, Laura A.; Sharon, Itai; Thomas, Brian C.; Mullin, Sean W.; Singh, Andrea; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Wilkins, Michael J.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
[Handley, Kim M.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA.
[Nicora, Carrie D.; Lipton, Mary S.; Banfield, Jillian F.] Pacific NW Natl Lab, Dept Energy, Dept Biol Sci, Richland, WA 99352 USA.
[Long, Philip E.; Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Energy, Berkeley, CA 94720 USA.
RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Dept Environm Sci Policy & Management, 369 McCone Hall, Berkeley, CA 94720 USA.
EM jbanfield@berkeley.edu
RI Williams, Kenneth/O-5181-2014; Wilkins, Michael/A-9358-2013; Long,
Philip/F-5728-2013; Lipton, Mary/H-3913-2012;
OI Williams, Kenneth/0000-0002-3568-1155; Long, Philip/0000-0003-4152-5682;
Sharon, Itai/0000-0003-0705-2316; Handley, Kim/0000-0003-0531-3009
FU Integrated Field Research Challenge Site (IFRC) at Rifle, Colorado; US
Department of Energy (DOE), Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231]
FX This material is based upon work supported through the Integrated Field
Research Challenge Site (IFRC) at Rifle, Colorado, the US Department of
Energy (DOE), Office of Science, Office of Biological and Environmental
Research funded the work under contract DE-AC02-05CH11231 (Lawrence
Berkeley National Laboratory; operated by the University of California).
NR 56
TC 47
Z9 47
U1 10
U2 75
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1751-7362
EI 1751-7370
J9 ISME J
JI ISME J.
PD JUL
PY 2014
VL 8
IS 7
BP 1452
EP 1463
DI 10.1038/ismej.2013.249
PG 12
WC Ecology; Microbiology
SC Environmental Sciences & Ecology; Microbiology
GA AK1XZ
UT WOS:000338213900010
PM 24621521
ER
PT J
AU Mason, OU
Scott, NM
Gonzalez, A
Robbins-Pianka, A
Baelum, J
Kimbrel, J
Bouskill, NJ
Prestat, E
Borglin, S
Joyner, DC
Fortney, JL
Jurelevicius, D
Stringfellow, WT
Alvarez-Cohen, L
Hazen, TC
Knight, R
Gilbert, JA
Jansson, JK
AF Mason, Olivia U.
Scott, Nicole M.
Gonzalez, Antonio
Robbins-Pianka, Adam
Baelum, Jacob
Kimbrel, Jeffrey
Bouskill, Nicholas J.
Prestat, Emmanuel
Borglin, Sharon
Joyner, Dominique C.
Fortney, Julian L.
Jurelevicius, Diogo
Stringfellow, William T.
Alvarez-Cohen, Lisa
Hazen, Terry C.
Knight, Rob
Gilbert, Jack A.
Jansson, Janet K.
TI Metagenomics reveals sediment microbial community response to Deepwater
Horizon oil spill
SO ISME JOURNAL
LA English
DT Article
DE DWH oil spill; hydrocarbons; iTag/Metagenomics; microbial community
structure; sediments
ID GULF-OF-MEXICO; DEGRADING BACTERIA; SEQUENCES; DIVERSITY; TAXONOMY;
METHANE; GROWTH
AB The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of similar to 4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities in surface sediments collected at 64 sites by targeted sequencing of 16S rRNA genes, shotgun metagenomic sequencing of 14 of these samples and mineralization experiments using C-14-labeled model substrates. The 16S rRNA gene data indicated that the most heavily oil-impacted sediments were enriched in an uncultured Gammaproteobacterium and a Colwellia species, both of which were highly similar to sequences in the DWH deep-sea hydrocarbon plume. The primary drivers in structuring the microbial community were nitrogen and hydrocarbons. Annotation of unassembled metagenomic data revealed the most abundant hydrocarbon degradation pathway encoded genes involved in degrading aliphatic and simple aromatics via butane monooxygenase. The activity of key hydrocarbon degradation pathways by sediment microbes was confirmed by determining the mineralization of C-14-labeled model substrates in the following order: propylene glycol, dodecane, toluene and phenanthrene. Further, analysis of metagenomic sequence data revealed an increase in abundance of genes involved in denitrification pathways in samples that exceeded the Environmental Protection Agency (EPA)'s benchmarks for polycyclic aromatic hydrocarbons (PAHs) compared with those that did not. Importantly, these data demonstrate that the indigenous sediment microbiota contributed an important ecosystem service for remediation of oil in the Gulf. However, PAHs were more recalcitrant to degradation, and their persistence could have deleterious impacts on the sediment ecosystem.
C1 [Mason, Olivia U.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA.
[Mason, Olivia U.; Baelum, Jacob; Kimbrel, Jeffrey; Bouskill, Nicholas J.; Prestat, Emmanuel; Borglin, Sharon; Joyner, Dominique C.; Fortney, Julian L.; Jurelevicius, Diogo; Stringfellow, William T.; Alvarez-Cohen, Lisa; Hazen, Terry C.; Jansson, Janet K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Scott, Nicole M.; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Lemont, IL USA.
[Scott, Nicole M.; Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA.
[Gonzalez, Antonio] Univ Colorado, Biofrontiers Inst, Boulder, CO 80309 USA.
[Robbins-Pianka, Adam] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA.
[Baelum, Jacob] Tech Univ Denmark, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark.
[Kimbrel, Jeffrey; Jansson, Janet K.] Joint Bioenergy Inst JBEI, Deconstruct Div, Emeryville, CA USA.
[Joyner, Dominique C.; Fortney, Julian L.; Hazen, Terry C.] Univ Tennessee, Civil & Environm Engn Dept, Knoxville, TN USA.
[Jurelevicius, Diogo] Univ Fed Rio de Janeiro, Lab Genet Microbiana, Inst Microbiol Paulo de Goes, Rio De Janeiro, Brazil.
[Stringfellow, William T.] Univ Pacific, Sch Engn & Comp Sci, Ecol Engn Res Program, Stockton, CA 95211 USA.
[Alvarez-Cohen, Lisa] Univ Calif Berkeley, Civil & Environm Engn Dept, Berkeley, CA 94720 USA.
[Hazen, Terry C.] Oak Ridge Natl Lab, Div Biol Sci, Oak Ridge, TN USA.
[Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA.
[Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Jansson, Janet K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
RP Mason, OU (reprint author), Florida State Univ, Dept Earth Ocean & Atmospher Sci, Room 307 OSB,117 North Woodward Ave, Tallahassee, FL 32306 USA.
EM omason@fsu.edu; jrjansson@lbl.gov
RI Balum, Jacob/I-2353-2013; Stringfellow, William/O-4389-2015; Bouskill,
Nick/G-2390-2015; Borglin, Sharon/I-1013-2016; Knight, Rob/D-1299-2010;
Hazen, Terry/C-1076-2012
OI Balum, Jacob/0000-0002-1022-6586; Stringfellow,
William/0000-0003-3189-5604; Hazen, Terry/0000-0002-2536-9993
FU University of California at Berkeley, Energy Biosciences Institute (EBI)
[DE-AC02-05CH11231]; Interdisciplinary Quantitative (IQ Biology) program
at the Biofrontiers Institute, University of Colorado, Boulder; NSF
IGERT [1144807]; National Institutes of Health; Howard Hughes Medical
Institute
FX This work was supported by a subcontract from the University of
California at Berkeley, Energy Biosciences Institute (EBI) to Lawrence
Berkeley National Laboratory under its U.S. Department of Energy
contract DE-AC02-05CH11231. In addition, we acknowledge support from the
Interdisciplinary Quantitative (IQ Biology) program at the Biofrontiers
Institute, University of Colorado, Boulder, NSF IGERT grant number
1144807, by the National Institutes of Health, and by the Howard Hughes
Medical Institute. We are thankful for the help of Yvette Piceno and
Francine Reid with sampling and sample sectioning. We thank Theresa
Pollard for handling shipping, ordering and transportation of supplies
and people to and from the field. We also thank the captain and crew of
the R/V Gyre.
NR 39
TC 52
Z9 53
U1 21
U2 201
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1751-7362
EI 1751-7370
J9 ISME J
JI ISME J.
PD JUL
PY 2014
VL 8
IS 7
BP 1464
EP 1475
DI 10.1038/ismej.2013.254
PG 12
WC Ecology; Microbiology
SC Environmental Sciences & Ecology; Microbiology
GA AK1XZ
UT WOS:000338213900011
PM 24451203
ER
PT J
AU Shilova, IN
Robidart, JC
Tripp, HJ
Turk-Kubo, K
Wawrik, B
Post, AF
Thompson, AW
Ward, B
Hollibaugh, JT
Millard, A
Ostrowski, M
Scanlan, DJ
Paerl, RW
Stuart, R
Zehr, JP
AF Shilova, Irina N.
Robidart, Julie C.
Tripp, H. James
Turk-Kubo, Kendra
Wawrik, Boris
Post, Anton F.
Thompson, Anne W.
Ward, Bess
Hollibaugh, James T.
Millard, Andy
Ostrowski, Martin
Scanlan, David J.
Paerl, Ryan W.
Stuart, Rhona
Zehr, Jonathan P.
TI A microarray for assessing transcription from pelagic marine microbial
taxa
SO ISME JOURNAL
LA English
DT Article
DE marine; microbial; microarray; transcription; molecular
ID FUNCTIONAL GENE MICROARRAY; PACIFIC SUBTROPICAL GYRE; HIGH-THROUGHPUT
TOOL; NITROGEN-FIXATION; OPEN-OCEAN; OLIGONUCLEOTIDE MICROARRAY;
COMMUNITY COMPOSITION; RED-SEA; PROCHLOROCOCCUS ECOTYPES; TEMPORAL
VARIABILITY
AB Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world's oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions.
C1 [Shilova, Irina N.; Robidart, Julie C.; Turk-Kubo, Kendra; Zehr, Jonathan P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA.
[Tripp, H. James] DOE Joint Genome Inst, Walnut Creek, CA USA.
[Wawrik, Boris] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
[Post, Anton F.] Marine Biol Lab, Woods Hole, MA 02543 USA.
[Thompson, Anne W.] BD Biosci, Adv Cytometry Grp, Seattle, WA USA.
[Ward, Bess] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA.
[Hollibaugh, James T.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA.
[Millard, Andy; Ostrowski, Martin; Scanlan, David J.] Univ Warwick, Dept Marine Microbiol, Coventry CV4 7AL, W Midlands, England.
[Paerl, Ryan W.] Univ Calif San Diego, Marine Biol Res Div, San Diego, CA 92103 USA.
[Stuart, Rhona] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP Shilova, IN (reprint author), Univ Calif Santa Cruz, Dept Ocean Sci, 1156 High St, Santa Cruz, CA 95064 USA.
EM iirina@ucsc.edu
RI Zehr, Jonathan/B-3513-2014; Paerl, Ryan/E-7380-2015; Scanlan,
David/G-4080-2016
OI Zehr, Jonathan/0000-0002-5691-5408; Paerl, Ryan/0000-0003-1237-9882;
Scanlan, David/0000-0003-3093-4245
FU Gordon and Betty Moore Foundation (the MEGAMER facility); Gordon and
Betty Moore Foundation Marine Investigator grant; NSF Center for
Microbial Oceanography (C-MORE) [NSF EF0424599]; Moore foundation
FX This work resulted from two workshops, and the design of the microarray
was partially supported by the Gordon and Betty Moore Foundation (the
MEGAMER facility), by a Gordon and Betty Moore Foundation Marine
Investigator grant (JPZ) and by the NSF Center for Microbial
Oceanography (C-MORE, NSF EF0424599). We thank all the participants of
the October 2010 MicroTOOLs workshop sponsored by the Moore foundation.
Particularly, we thank those who provided sequences for the design of
microarray: Mahdi Belcaid, Dreux Chappell, Jackie Collier, Chris
Francis, Scott Gifford, Jana Grote, Bethany Jenkins, Julie LaRoche, Pia
Moisander, Annika Mosier, Micaela Parker, Holly Simon, Mariya Smit, Jody
Wright, and Louie Wurch. We thank Shulei Sun and the team at CAMERA for
support during microarray design. We also thank the Hawaii Ocean
Time-series (HOT) program and C-MORE, specifically the captain and crew
of R/V Kilo Moana and chief scientist of KM1016 cruise, Matt Church, for
their expertise and for providing the opportunity and support for
conducting experiments at sea. We thank Philip Heller and Jonathan
Magasin for developing Java scripts for the microarray design and for
computational support during the MicroTOOLs workshop in October 2010.
Finally, we thank Nicole Pereira for help in running the incubation
experiment, Sasha Tozzi for FRRF measurements, Rob Tibshirani for a
consultation on microarray data normalization and analysis and the JPZ
laboratory members for constructive discussions.
NR 116
TC 8
Z9 8
U1 4
U2 36
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1751-7362
EI 1751-7370
J9 ISME J
JI ISME J.
PD JUL
PY 2014
VL 8
IS 7
BP 1476
EP 1491
DI 10.1038/ismej.2014.1
PG 16
WC Ecology; Microbiology
SC Environmental Sciences & Ecology; Microbiology
GA AK1XZ
UT WOS:000338213900012
PM 24477198
ER
PT J
AU Mueller, RC
Paula, FS
Mirza, BS
Rodrigues, JLM
Nusslein, K
Bohannan, BJM
AF Mueller, Rebecca C.
Paula, Fabiana S.
Mirza, Babur S.
Rodrigues, Jorge L. M.
Nuesslein, Klaus
Bohannan, Brendan J. M.
TI Links between plant and fungal communities across a deforestation
chronosequence in the Amazon rainforest
SO ISME JOURNAL
LA English
DT Article
DE beta diversity; land-use change; tropical biodiversity
ID LAND-USE; SOIL; DIVERSITY; BIODIVERSITY; BACTERIAL; DNA
AB Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.
C1 [Mueller, Rebecca C.; Bohannan, Brendan J. M.] Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 USA.
[Paula, Fabiana S.] Univ Sao Paulo, Inst Oceanog, Sao Paulo, Brazil.
[Mirza, Babur S.; Rodrigues, Jorge L. M.] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA.
[Nuesslein, Klaus] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA.
RP Mueller, RC (reprint author), Los Alamos Natl Lab, Biosci Div M888, POB 1663, Los Alamos, NM 87545 USA.
EM beckymueller@gmail.com
FU USDA Agriculture and Food Research Initiative Competitive Grant
[2009-35319-05186]; APS Lewis and Clark Fund for Exploration and
Research grant
FX We thank the owners of the Fazenda Nova Vida for providing field site
access, Vivian Pellizari for logistical support, Wagner Piccinini for
field sampling, Jonas Frankel-Bricker and Roo Vandegrift for root
amplification, and the helpful suggestions of two anonymous reviewers.
Funding was provided by USDA Agriculture and Food Research Initiative
Competitive Grant 2009-35319-05186 and by an APS Lewis and Clark Fund
for Exploration and Research grant.
NR 19
TC 17
Z9 19
U1 11
U2 93
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1751-7362
EI 1751-7370
J9 ISME J
JI ISME J.
PD JUL
PY 2014
VL 8
IS 7
BP 1548
EP 1550
DI 10.1038/ismej.2013.253
PG 3
WC Ecology; Microbiology
SC Environmental Sciences & Ecology; Microbiology
GA AK1XZ
UT WOS:000338213900019
PM 24451208
ER
PT J
AU Skomski, R
Manchanda, P
Takeuchi, I
Cui, J
AF Skomski, Ralph
Manchanda, Priyanka
Takeuchi, Ichiro
Cui, Jun
TI Geometry Dependence of Magnetization Reversal in Nanocomposite Alloys
SO JOM
LA English
DT Article
ID PERMANENT-MAGNETS; INTERACTION DOMAINS; NUCLEATION FIELDS; ENERGY
PRODUCT; HIGH-REMANENCE; MODEL; MULTILAYERS; HYSTERESIS
AB The geometrical optimization of aligned hard-soft permanent-magnet nanocomposites is investigated by model calculations. Considered criteria are the shapes of the soft and c-axis-aligned hard phases, the packing fraction of the soft phase, and magnetostatic interactions. Taking into account that the energy product is enhanced via the volume fraction of the soft phase, subject to maintaining coercivity, we find that the best structures are soft-magnetic cubes as well as long rods with a square cross section. Comparing embedded soft cubes with embedded soft spheres of the same size, our nucleation-field analysis shows that the volume fraction of the soft phase is enhanced by 91%, with a coercivity reduction of only 25%. Magnetostatic interactions often but not always deteriorate the permanent-magnet performance, as exemplified by the example of MnBi:FeCo bilayers and multilayers.
C1 [Skomski, Ralph; Manchanda, Priyanka] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA.
[Skomski, Ralph; Manchanda, Priyanka] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA.
[Takeuchi, Ichiro] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
[Cui, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
RP Skomski, R (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA.
EM rskomski@neb.rr.com
FU PNNL ARPA-E; NSF MRSEC [DMR-0820521]; ARO [W911NF-10-2-0099]
FX The research is supported primarily by PNNL ARPA-E (to J.C., I. T., P.
M., and R. S.) and partially by NSF MRSEC DMR-0820521 and ARO
W911NF-10-2-0099 (to R.S. and P.M.).
NR 44
TC 2
Z9 2
U1 4
U2 41
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD JUL
PY 2014
VL 66
IS 7
BP 1144
EP 1150
DI 10.1007/s11837-014-1005-0
PG 7
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA AK6KI
UT WOS:000338536100010
ER
PT J
AU Cardani, L
Gironi, L
Iachellini, NF
Pattavina, L
Beeman, JW
Bellini, F
Casali, N
Cremonesi, O
Dafinei, I
Di Domizio, S
Ferroni, F
Galashov, E
Gotti, C
Nagorny, S
Orio, F
Pessina, G
Piperno, G
Pirro, S
Previtali, E
Rusconi, C
Tomei, C
Vignati, M
AF Cardani, L.
Gironi, L.
Iachellini, N. Ferreiro
Pattavina, L.
Beeman, J. W.
Bellini, F.
Casali, N.
Cremonesi, O.
Dafinei, I.
Di Domizio, S.
Ferroni, F.
Galashov, E.
Gotti, C.
Nagorny, S.
Orio, F.
Pessina, G.
Piperno, G.
Pirro, S.
Previtali, E.
Rusconi, C.
Tomei, C.
Vignati, M.
TI First bolometric measurement of the two neutrino double beta decay of
Mo-100 with a ZnMoO4 crystals array
SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
LA English
DT Article
DE two neutrino double beta decay; cryogenic detectors; Monte Carlo
simulation
ID NUCLEAR-MATRIX ELEMENTS; SCINTILLATING BOLOMETER; CONTAMINATION;
DETECTORS; PHYSICS; TABLES
AB The large statistics collected during the operation of a ZnMoO4 array, for a total exposure of 1.3 kg day of Mo-100, allowed the first bolometric observation of the two neutrino double beta decay of Mo-100. The observed spectrum of each crystal was reconstructed taking into account the different background contributions due to environmental radioactivity and internal contamination. The analysis of coincidences between the crystals allowed the assignment of constraints to the intensity of the different background sources, resulting in a reconstruction of the measured spectrum down to an energy of similar to 300 keV. The half-life extracted from the data is T-1/2(2 nu) = [7.15 +/- 0.37 (stat) +/- 0.66 (syst)] x 10(18) y.
C1 [Cardani, L.; Bellini, F.; Ferroni, F.; Piperno, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Cardani, L.; Bellini, F.; Dafinei, I.; Ferroni, F.; Orio, F.; Piperno, G.; Tomei, C.; Vignati, M.] INFN, Sez Roma, I-00185 Rome, Italy.
[Gironi, L.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy.
[Gironi, L.; Iachellini, N. Ferreiro; Cremonesi, O.; Gotti, C.; Pessina, G.; Pirro, S.; Previtali, E.; Rusconi, C.] INFN, Sez Milano Bicocca, I-20126 Milan, Italy.
[Pattavina, L.; Casali, N.; Nagorny, S.] INFN, Lab Nazl Gran Sasso, I-67010 Laquila, Italy.
[Beeman, J. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Di Domizio, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Di Domizio, S.] INFN, Sez Genova, I-16146 Genoa, Italy.
[Galashov, E.] Novosibirsk State Univ, Dept Appl Phys, Novosibirsk 630090, Russia.
RP Cardani, L (reprint author), Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
EM luca.gironi@mib.infn.it
RI Bellini, Fabio/D-1055-2009; Di Domizio, Sergio/L-6378-2014; Pattavina,
Luca/I-7498-2015; Vignati, Marco/H-1684-2013; Gironi, Luca/P-2860-2016;
Casali, Nicola/C-9475-2017;
OI Gotti, Claudio/0000-0003-2501-9608; Pessina, Gianluigi
Ezio/0000-0003-3700-9757; Bellini, Fabio/0000-0002-2936-660X; Di
Domizio, Sergio/0000-0003-2863-5895; Pattavina,
Luca/0000-0003-4192-849X; Cardani, Laura/0000-0001-5410-118X; Vignati,
Marco/0000-0002-8945-1128; Gironi, Luca/0000-0003-2019-0967; Casali,
Nicola/0000-0003-3669-8247; Nahornyi, Serhii/0000-0002-8679-3747
FU European Research Council [247115]; ISOTTA project; ASPERA 2nd Common
Call for RD Activities
FX Part of the work was carried out thanks to LUCIFER Project, funded by
the European Research Council (FP7/2007-2013) grant agreement no 247115.
This work was also supported by the ISOTTA project, funded within the
ASPERA 2nd Common Call for R&D Activities. Thanks are due to F Iachello
and J Kotila for fruitful discussions and for providing us precise
numerical calculation of the electron distributions for the 2 nu DBD of
100Mo. We wish to express our gratitude to the LNGS
mechanical workshop and in particular to E Tatananni, A Rotilio, A
Corsi, and B Romualdi for continuous and constructive help in the
overall set-up construction. Finally, we are especially grateful to M
Perego and M Guetti for their invaluable help.
NR 24
TC 6
Z9 6
U1 2
U2 27
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0954-3899
EI 1361-6471
J9 J PHYS G NUCL PARTIC
JI J. Phys. G-Nucl. Part. Phys.
PD JUL
PY 2014
VL 41
IS 7
AR 075204
DI 10.1088/0954-3899/41/7/075204
PG 8
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AK4WS
UT WOS:000338425600025
ER
PT J
AU Casali, N
Nagorny, SS
Orio, F
Pattavina, L
Beeman, JW
Bellini, F
Cardani, L
Dafinei, I
Di Domizio, S
Di Vacri, ML
Gironi, L
Kosmyna, MB
Nazarenko, BP
Nisi, S
Pessina, G
Piperno, G
Pirro, S
Rusconi, C
Shekhovtsov, AN
Tomei, C
Vignati, M
AF Casali, N.
Nagorny, S. S.
Orio, F.
Pattavina, L.
Beeman, J. W.
Bellini, F.
Cardani, L.
Dafinei, I.
Di Domizio, S.
Di Vacri, M. L.
Gironi, L.
Kosmyna, M. B.
Nazarenko, B. P.
Nisi, S.
Pessina, G.
Piperno, G.
Pirro, S.
Rusconi, C.
Shekhovtsov, A. N.
Tomei, C.
Vignati, M.
TI Discovery of the Eu-151 alpha decay
SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
LA English
DT Article
DE alpha decay; scintillation detectors; bolometers
AB We report on the first compelling observation of a decay of Eu-151 to the ground state of Pm-147. The measurement was performed using a 6.15 g Li6Eu(BO3)(3) crystal operated as a scintillating bolometer. The Q-value and half-life measured are: Q = 1948.9 +/- 6.9(stat.) +/- 5.1(syst.) keV, and T-1/2 = (4.62 +/- 0.95(stat.) +/- 0.68(syst.)) x 10(18) y. The half-life prediction of nuclear theory using the Coulomb and proximity potentialmodel are in good agreement with this experimental result.
C1 [Casali, N.; Nagorny, S. S.; Pattavina, L.; Di Vacri, M. L.; Nisi, S.] INFN, Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy.
[Casali, N.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Coppito, AQ, Italy.
[Nagorny, S. S.] Natl Acad Sci Ukraine, Inst Nucl Res, UA-03680 Kiev, Ukraine.
[Orio, F.; Bellini, F.; Cardani, L.; Dafinei, I.; Piperno, G.; Tomei, C.; Vignati, M.] INFN, Sez Roma, I-00185 Rome, Italy.
[Beeman, J. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Bellini, F.; Cardani, L.; Piperno, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Di Domizio, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Di Domizio, S.] INFN, Sez Genova, I-16146 Genoa, Italy.
[Gironi, L.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy.
[Gironi, L.; Pessina, G.; Pirro, S.; Rusconi, C.] INFN, Sez Milano Bicocca, I-20126 Milan, Italy.
[Kosmyna, M. B.; Nazarenko, B. P.; Shekhovtsov, A. N.] Natl Acad Sci Ukraine, Inst Single Crystals, UA-61001 Kharkov, Ukraine.
RP Casali, N (reprint author), INFN, Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy.
EM luca.pattavina@lngs.infn.it
RI Bellini, Fabio/D-1055-2009; Di Domizio, Sergio/L-6378-2014; Pattavina,
Luca/I-7498-2015; Vignati, Marco/H-1684-2013; Gironi, Luca/P-2860-2016;
Casali, Nicola/C-9475-2017;
OI Bellini, Fabio/0000-0002-2936-660X; Di Domizio,
Sergio/0000-0003-2863-5895; Pattavina, Luca/0000-0003-4192-849X;
Vignati, Marco/0000-0002-8945-1128; Gironi, Luca/0000-0003-2019-0967;
Casali, Nicola/0000-0003-3669-8247; Nahornyi, Serhii/0000-0002-8679-3747
FU Italian Ministry of Research [PRIN 2010ZXAZK9 2010-2011]; ISOTTA
project; ASPERA 2nd Common Call for RD Activities; European Research
Council [247115]
FX This project was supported by the Italian Ministry of Research under the
PRIN 2010ZXAZK9 2010-2011 grant. This work was also supported by the
ISOTTA project, funded within the ASPERA 2nd Common Call for R&D
Activities. Part of the work was carried out thanks to LUCIFER Project,
funded by the European Research Council (FP7/2007-2013) grant agreement
no 247115.
NR 25
TC 4
Z9 4
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0954-3899
EI 1361-6471
J9 J PHYS G NUCL PARTIC
JI J. Phys. G-Nucl. Part. Phys.
PD JUL
PY 2014
VL 41
IS 7
AR 075101
DI 10.1088/0954-3899/41/7/075101
PG 8
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AK4WS
UT WOS:000338425600013
ER
PT J
AU Dobaczewski, J
Nazarewicz, W
Reinhard, PG
AF Dobaczewski, J.
Nazarewicz, W.
Reinhard, P-G
TI Error estimates of theoretical models: a guide
SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
LA English
DT Article
DE nuclear models; error estimates; error propagation; uncertainty
quantification; systematic and statistical errors; correlation analysis;
model-based extrapolations; regression analysis
ID EQUATION-OF-STATE; MASSES
AB This guide offers suggestions/insights on uncertainty quantification of nuclear structure models. We discuss a simple approach to statistical-error estimates, strategies to assess systematic errors, and show how to uncover inter-dependences by correlation analysis. The basic concepts are illustrated through simple examples. By providing theoretical error bars on predicted quantities and using statistical methods to study correlations between observables, theory can significantly enhance the feedback between experiment and nuclear modeling.
C1 [Dobaczewski, J.; Nazarewicz, W.] Univ Warsaw, Fac Phys, Inst Theoret Phys, PL-00681 Warsaw, Poland.
[Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland.
[Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Reinhard, P-G] Univ Erlangen Nurnberg, Inst Theoret Phys 2, D-91058 Erlangen, Germany.
RP Dobaczewski, J (reprint author), Univ Warsaw, Fac Phys, Inst Theoret Phys, Ul Hoza 69, PL-00681 Warsaw, Poland.
EM Jacek.Dobaczewski@fuw.edu.pl; witek@utk.edu;
Paul-Gerhard.Reinhard@physik.uni-erlangen.de
FU US Department of Energy (University of Tennessee) [DE-FG02-96ER40963];
Stewardship Science Academic Alliances program [DE-FG52-09NA29461];
NUCLEI SciDAC Collaboration [DE-SC0008499]; Academy of Finland and
University of Jyvaskyla within the FIDIPRO programme; Polish National
Science Center [2012/07/B/ST2/03907]; Bundesministerium fur Bildung und
Forschung (BMBF) [05P09RFFTB]
FX This work was finalized during the Program INT-13-3 'Quantitative Large
Amplitude Shape Dynamics: fission and heavy ion fusion' at the National
Institute for Nuclear Theory in Seattle; it was supported by the US
Department of Energy under Contract no. DE-FG02-96ER40963 (University of
Tennessee), no. DE-FG52-09NA29461 (the Stewardship Science Academic
Alliances program), no. DE-SC0008499 (NUCLEI SciDAC Collaboration); by
the Academy of Finland and University of Jyvaskyla within the FIDIPRO
programme; by the Polish National Science Center under Contract no.
2012/07/B/ST2/03907; and by the Bundesministerium fur Bildung und
Forschung (BMBF) under contract number 05P09RFFTB.
NR 49
TC 75
Z9 76
U1 0
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0954-3899
EI 1361-6471
J9 J PHYS G NUCL PARTIC
JI J. Phys. G-Nucl. Part. Phys.
PD JUL
PY 2014
VL 41
IS 7
AR 074001
DI 10.1088/0954-3899/41/7/074001
PG 20
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA AK4WS
UT WOS:000338425600001
ER
PT J
AU Kujala, N
Marathe, S
Shu, DM
Shi, B
Qian, J
Maxey, E
Finney, L
Macrander, A
Assoufid, L
AF Kujala, Naresh
Marathe, Shashidhara
Shu, Deming
Shi, Bing
Qian, Jun
Maxey, Evan
Finney, Lydia
Macrander, Albert
Assoufid, Lahsen
TI Kirkpatrick-Baez mirrors to focus hard X-rays in two dimensions as
fabricated, tested and installed at the Advanced Photon Source
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE hard X-ray micro-focusing optics; fixed elliptical geometry K-B mirrors;
optics and detector beamline
ID SUBMICROMETER-RESOLUTION; REFRACTIVE LENS; OPTICS; MICROSCOPY
AB The micro-focusing performance for hard X-rays of a fixed-geometry elliptical Kirkpatrick-Baez (K-B) mirrors assembly fabricated, tested and finally implemented at the micro-probe beamline 8-BM of the Advanced Photon Source is reported. Testing of the K-B mirror system was performed at the optics and detector test beamline 1-BM. K-B mirrors of length 80 mm and 60 mm were fabricated by profile coating with Pt metal to produce focal lengths of 250 mm and 155 mm for 3 mrad incident angle. For the critical angle of Pt, a broad bandwidth of energies up to 20 keV applies. The classical K-B sequential mirror geometry was used, and mirrors were mounted on micro-translation stages. The beam intensity profiles were measured by differentiating the curves of intensity data measured using a wire-scanning method. A beam size of 1.3 mu m (V) and 1.2 mu m (H) was measured with monochromatic X-rays of 18 keV at 1-BM. After installation at 8-BM the measured focus met the design requirements. In this paper the fabrication and metrology of the K-B mirrors are reported, as well as the focusing performances of the full mirrors-plus-mount set-up at both beamlines.
C1 [Kujala, Naresh; Marathe, Shashidhara; Shu, Deming; Shi, Bing; Qian, Jun; Maxey, Evan; Finney, Lydia; Macrander, Albert; Assoufid, Lahsen] Argonne Natl Lab, Lemont, IL 60439 USA.
RP Kujala, N (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
EM kujala@aps.anl.gov
RI ID, MRCAT/G-7586-2011
FU US DOE [DE-AC02-06CH11357]
FX The authors would like to thank Kurtz Goetze from the BCDA group for
helping with the software motor controls and Chris Jacobsen for his
support. Scientists at beamline 10-ID (MR-CAT) at the APS provided the
tungsten wire sample. Use of the Advanced Photon Source, an Office of
Science User Facility operated for the US Department of Energy (DOE)
Office of Science by Argonne National Laboratory, was supported by the
US DOE under Contract No. DE-AC02-06CH11357.
NR 29
TC 2
Z9 2
U1 0
U2 8
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0909-0495
EI 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD JUL
PY 2014
VL 21
BP 662
EP 668
DI 10.1107/S1600577514006493
PN 4
PG 7
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA AK0SD
UT WOS:000338124300003
PM 24971959
ER
PT J
AU Shi, XB
Reininger, R
del Rio, MS
Assoufid, L
AF Shi, Xianbo
Reininger, Ruben
del Rio, Manuel Sanchez
Assoufid, Lahsen
TI A hybrid method for X-ray optics simulation: combining geometric
ray-tracing and wavefront propagation
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE hybrid method; beamline design; X-ray optics simulation; ray-tracing;
wavefront propagation; partial coherence
ID SYNCHROTRON-RADIATION; BESSY-II; GRATING MONOCHROMATOR; UNDULATOR
BEAMLINE; ELLIPTIC MIRRORS; DESIGN; PERFORMANCE; SYSTEM; SHADOW;
OPTIMIZATION
AB A new method for beamline simulation combining ray-tracing and wavefront propagation is described. The 'Hybrid Method' computes diffraction effects when the beam is clipped by an aperture or mirror length and can also simulate the effect of figure errors in the optical elements when diffraction is present. The effect of different spatial frequencies of figure errors on the image is compared with SHADOW results pointing to the limitations of the latter. The code has been benchmarked against the multi-electron version of SRW in one dimension to show its validity in the case of fully, partially and non-coherent beams. The results demonstrate that the code is considerably faster than the multi-electron version of SRW and is therefore a useful tool for beamline design and optimization.
C1 [Shi, Xianbo; Reininger, Ruben; Assoufid, Lahsen] Argonne Natl Lab, Argonne, IL 60439 USA.
[del Rio, Manuel Sanchez] European Synchrotron Radiat Facil, F-38000 Grenoble, France.
RP Shi, XB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM xshi@aps.anl.gov
FU US Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX This work was supported by the US Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. The authors would like to thank Dr Oleg Chubar and Mr
Niccolo Canestrari (Brookhaven National Laboratory) for the SRW support
and helpful discussions about this work.
NR 71
TC 11
Z9 11
U1 3
U2 20
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0909-0495
EI 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD JUL
PY 2014
VL 21
BP 669
EP 678
DI 10.1107/S160057751400650X
PN 4
PG 10
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA AK0SD
UT WOS:000338124300004
PM 24971960
ER
PT J
AU Gupta, S
Celestre, R
Petzold, CJ
Chance, MR
Ralston, C
AF Gupta, Sayan
Celestre, Richard
Petzold, Christopher J.
Chance, Mark R.
Ralston, Corie
TI Development of a microsecond X-ray protein footprinting facility at the
Advanced Light Source
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE microsecond irradiation; radiolytic labeling; mass spectrometry; protein
structure
ID STRUCTURAL MASS-SPECTROMETRY; RADICAL PROBE; IN-VIVO; PHOTOCHEMICAL
OXIDATION; ELECTROSPRAY-IONIZATION; HYDROGEN-PEROXIDE; DNA-BINDING;
ACTIVATION; DYNAMICS; SURFACE
AB X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale.
C1 [Gupta, Sayan; Ralston, Corie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA.
[Celestre, Richard] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA.
[Petzold, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint BioEnergy Inst, Berkeley, CA 94720 USA.
[Chance, Mark R.] Case Western Reserve Univ, Sch Med, Ctr Prote & Bioinformat, Ctr Synchrotron Biosci, Cleveland, OH 44106 USA.
RP Ralston, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley Ctr Struct Biol, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM cyralston@lbl.gov
FU LBNL Laboratory Directed Research and Development (LDRD); Office of
Science, Office of Basic Energy Sciences, US Department of Energy
[DE-AC02-05CH11231]; US Department of Energy, Office of Science, Office
of Basic Energy Sciences [DE-AC02-98CH10886]; NIBIB [P30-EB0966]
FX The authors would like to thank Jun Hamamoto for assistance on beamline
3.2.1, Kurt Krueger for technical advice and fabrication of the
microfluidic capillary cell, Simon Morton for advice and design of a
focusing mirror for build-out of beamline 3.3.1, and Rhijuta D'Mello for
assisting in beamline experiments at X28C at the NSLS. Funding for this
research was provided by an LBNL Laboratory Directed Research and
Development (LDRD) grant awarded to CR. The Advanced Light Source is
supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the US Department of Energy under contract No.
DE-AC02-05CH11231. Use of the National Synchrotron Light Source,
Brookhaven National Laboratory, was supported by the US Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
contract No. DE-AC02-98CH10886. The Center for Synchrotron Biosciences
at the National Synchrotron Light Sources is supported by NIBIB under
P30-EB0966.
NR 57
TC 6
Z9 6
U1 1
U2 11
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0909-0495
EI 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD JUL
PY 2014
VL 21
BP 690
EP 699
DI 10.1107/S1600577514007000
PN 4
PG 10
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA AK0SD
UT WOS:000338124300006
PM 24971962
ER
PT J
AU Warwick, T
Chuang, YD
Voronov, DL
Padmore, HA
AF Warwick, Tony
Chuang, Yi-De
Voronov, Dmitriy L.
Padmore, Howard A.
TI A multiplexed high-resolution imaging spectrometer for resonant
inelastic soft X-ray scattering spectroscopy
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE soft X-ray; scattering; spectrometer
ID MONOCHROMATOR; MICROSCOPE
AB The optical design of a two-dimensional imaging soft X-ray spectrometer is described. A monochromator will produce a dispersed spectrum in a narrow vertical illuminated stripe (similar to 2 mu m wide by similar to 2 mm tall) on a sample. The spectrometer will use inelastically scattered X-rays to image the extended field on the sample in the incident photon energy direction (vertical), resolving the incident photon energy. At the same time it will image and disperse the scattered photons in the orthogonal (horizontal) direction, resolving the scattered photon energy. The principal challenge is to design a system that images from the flat-field illumination of the sample to the flat field of the detector and to achieve sufficiently high spectral resolution. This spectrometer provides a completely parallel resonant inelastic X-ray scattering measurement at high spectral resolution (similar to 30000) over the energy bandwidth (similar to 5 eV) of a soft X-ray absorption resonance.
C1 [Warwick, Tony; Chuang, Yi-De; Voronov, Dmitriy L.; Padmore, Howard A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Warwick, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM warwick@lbl.gov
RI Foundry, Molecular/G-9968-2014
FU Office of Science, Office of Basic Energy Sciences, of the US Department
of Energy [DE-AC02-05CH11231]
FX The Advanced Light Source is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the US Department of Energy
under contract No. DE-AC02-05CH11231.
NR 20
TC 12
Z9 12
U1 0
U2 18
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0909-0495
EI 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD JUL
PY 2014
VL 21
BP 736
EP 743
DI 10.1107/S1600577514009692
PN 4
PG 8
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA AK0SD
UT WOS:000338124300012
PM 24971968
ER
PT J
AU Bogdanov, B
Zhao, XN
Robinson, DB
Ren, JH
AF Bogdanov, Bogdan
Zhao, Xiaoning
Robinson, David B.
Ren, Jianhua
TI Electron Capture Dissociation Studies of the Fragmentation Patterns of
Doubly Protonated and Mixed Protonated-Sodiated Peptoids
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
DE ECD; Radical assisted fragmentation; Odd-electron negative ion;
Peptide-mimicking oligomer; Poly(N-substituted glycine)
ID MASS-SPECTROMETRIC CHARACTERISTICS; PEPTIDE CATION-RADICALS; AROMATIC
SIDE-CHAINS; GAS-PHASE; NONBIOLOGICAL POLYMER; CASCADE DISSOCIATIONS;
SECONDARY STRUCTURE; PROTEIN-STRUCTURE; BOND-CLEAVAGE; AMINO-ACID
AB The fragmentation patterns of a group of doubly protonated ([P + 2H](2+)) and mixed protonated-sodiated ([P + H + Na](2+)) peptide-mimicking oligomers, known as peptoids, have been studied using electron capturing dissociation (ECD) tandem mass spectrometry techniques. For all the peptoids studied, the primary backbone fragmentation occurred at the N-C-alpha bonds. The N-terminal fragment ions, the C-ions (protonated) and the C'-ions (sodiated) were observed universally for all the peptoids regardless of the types of charge carrier. The C-terminal ions varied depending on the type of charge carrier. The doubly protonated peptoids with at least one basic residue located at a position other than the N-terminus fragmented by producing the Z(aEuro cent)-series of ions. In addition, most doubly protonated peptoids also produced the Y-series of ions with notable abundances. The mixed protonated-sodiated peptoids fragmented by yielding the Z(aEuro cent)'-series of ions in addition to the C'-series. Chelation between the sodium cation and the amide groups of the peptoid chain might be an important factor that could stabilize both the N-terminal and the C-terminal fragment ions. Regardless of the types of the charge carrier, one notable fragmentation for all the peptoids was the elimination of a benzylic radical from the odd-electron positive ions of the protonated peptoids ([P + 2H](aEuro cent+)) and the sodiated peptoids ([P + H + Na](aEuro cent+)). The study showed potential utility of using the ECD technique for sequencing of peptoid libraries generated by combinatorial chemistry.
C1 [Bogdanov, Bogdan; Zhao, Xiaoning; Ren, Jianhua] Univ Pacific, Dept Chem, Stockton, CA 95211 USA.
[Robinson, David B.] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Ren, JH (reprint author), Univ Pacific, Dept Chem, Stockton, CA 95211 USA.
EM jren@pacific.edu
RI Foundry, Molecular/G-9968-2014
FU National Science Foundation [CHE-0749737, CHE-1301505];
Laboratory-Directed Research and Development program at Sandia National
Laboratories [DE-AC04-94AL85000]; Office of Science, Office of Basic
Energy Sciences, US Department of Energy [DE-AC02-05CH11231]
FX The authors thank Dr. Kiran Morishetti (University of the Pacific,
currently at Abon Pharmaceuticals LLC) for helping to interpret some of
the spectra data, and Dr. Ronald Zuckermann (The Molecular Foundry,
Lawrence Berkeley National Laboratory) for providing peptoid-10. J.R.
acknowledges the support from the National Science Foundation
[CHE-0749737 (prior) and CHE-1301505 (current)]. D. R. acknowledges the
support from the Laboratory-Directed Research and Development program at
Sandia National Laboratories (DE-AC04-94AL85000). Peptoid synthesis at
the Molecular Foundry was supported by the Office of Science, Office of
Basic Energy Sciences, US Department of Energy (DE-AC02-05CH11231). All
ECD experiments were conducted at the Center for Regulatory and
Environmental Analytical Metabolomics (CREAM) of the University of
Louisville. The authors thank Dr. Shenheng Guan for assisting with the
ETD experiments at the mass spectrometry facility of the University of
California at San Francisco. They are also thankful for performing some
of the ETD experiments in Dr. Joseph Loo's laboratory at the University
of California at Los Angeles.
NR 72
TC 5
Z9 5
U1 0
U2 23
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1044-0305
EI 1879-1123
J9 J AM SOC MASS SPECTR
JI J. Am. Soc. Mass Spectrom.
PD JUL
PY 2014
VL 25
IS 7
BP 1202
EP 1216
DI 10.1007/s13361-014-0869-0
PG 15
WC Biochemical Research Methods; Chemistry, Analytical; Chemistry,
Physical; Spectroscopy
SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy
GA AK1RG
UT WOS:000338192700012
PM 24845348
ER
PT J
AU Li, YZ
Kessler, MR
AF Li, Yuzhan
Kessler, Michael R.
TI Cure kinetics of liquid crystalline epoxy resins based on biphenyl
mesogen
SO JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
LA English
DT Article
DE Liquid crystalline epoxy resins (LCERs); Cure kinetics; Activation
energy; Thermosets
ID MAGNETIC-FIELD ORIENTATION; CURING KINETICS; RIGID-ROD;
FRACTURE-TOUGHNESS; THERMOSETS; POLYDOMAIN; MECHANISM; POLYMERS;
BEHAVIOR
AB The cure kinetics of a biphenyl-based liquid crystalline (LC) epoxy resin (LCER) was studied using differential scanning calorimetry (DSC) and polarized optical microscopy. The effects of LC phase formation on the cure kinetics were investigated. Both a model-free isoconversional method and a model-fitting method were used to analyze the DSC data. Results from the isoconversional analysis were applied to develop tentative multi-step kinetic models describing the curing reaction. Kinetic analysis showed that compared to the resins cured in amorphous phase, LCERs exhibited higher values of reaction enthalpy and a complex dependence of activation energy on the degree of cure. The formation of the LC phase resulted in a decrease in activation energy, leading to higher degree of reaction.
C1 [Li, Yuzhan; Kessler, Michael R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA USA.
[Li, Yuzhan; Kessler, Michael R.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.
[Kessler, Michael R.] US DOE, Ames Lab, Ames, IA 50011 USA.
RP Kessler, MR (reprint author), Washington State Univ, Sch Mech & Mat Engn, POB 642920, Pullman, WA 99164 USA.
EM MichaelR.Kessler@wsu.edu
RI Kessler, Michael/C-3153-2008
OI Kessler, Michael/0000-0001-8436-3447
FU Air Force Office of Scientific Research (AFOSR) [FA9550-12-1-0108]
FX The authors would like to thank Dr. Elena Moukhina for her technical
support and helpful discussion. Support under Air Force Office of
Scientific Research (AFOSR) Award No. FA9550-12-1-0108 is gratefully
acknowledged.
NR 29
TC 2
Z9 3
U1 1
U2 22
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1388-6150
EI 1572-8943
J9 J THERM ANAL CALORIM
JI J. Therm. Anal. Calorim.
PD JUL
PY 2014
VL 117
IS 1
BP 481
EP 488
DI 10.1007/s10973-014-3647-0
PG 8
WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical
SC Thermodynamics; Chemistry
GA AK0QS
UT WOS:000338120100056
ER
PT J
AU Yeddu, HK
Lookman, T
Borgenstam, A
Agren, J
Saxena, A
AF Yeddu, Hemantha Kumar
Lookman, Turab
Borgenstam, Annika
Agren, John
Saxena, Avadh
TI Martensite formation in stainless steels under transient loading
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Martensite; Phase-field model; Microstructure; Transient loading; Steels
ID 3-DIMENSIONAL PHASE-FIELD; MICROSTRUCTURE EVOLUTION;
PLASTIC-ACCOMMODATION; LATH MARTENSITE; TRANSFORMATIONS; MODEL;
CRYSTALLOGRAPHY; MORPHOLOGY; SIMULATION; AUSTENITE
AB We present a 3D elastoplastic phase-field model to study the martensite formation in stainless steels under transient loading. Linear isotropic strain hardening is considered. Our results show that various combinations of martensite variants, which minimize the mechanical energy and maximize the net available driving force, are favored under different transient loading directions. The mechanical properties of steels under transient loading depend on the direction of loading. The areas where the load is applied, i.e. the grain boundaries, become favorable martensite nucleation sites. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Yeddu, Hemantha Kumar; Lookman, Turab; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Borgenstam, Annika; Agren, John] KTH Royal Inst Technol, Dept Mat Sci & Engn, S-10044 Stockholm, Sweden.
RP Yeddu, HK (reprint author), Los Alamos Natl Lab, Div Theoret, MS-B262, Los Alamos, NM 87545 USA.
EM hemu23@gmail.com
FU US Department of Energy
FX This work was supported by the US Department of Energy. Computer
resources were provided by the National Supercomputer Center (NSC),
Linkoping, Sweden.
NR 25
TC 2
Z9 2
U1 0
U2 13
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
EI 1873-4936
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD JUL 1
PY 2014
VL 608
BP 101
EP 105
DI 10.1016/j.msea.2014.04.063
PG 5
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA AK4OU
UT WOS:000338404800014
ER
PT J
AU Galan, J
Verleysen, P
Lebensohn, RA
AF Galan, J.
Verleysen, P.
Lebensohn, R. A.
TI An improved algorithm for the polycrystal viscoplastic self-consistent
model and its integration with implicit finite element schemes
SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING
LA English
DT Article
DE vpsc; polycrystal; fem; viscoplastic; elasto-viscoplastic;
finite-element
ID TEXTURE DEVELOPMENT; MECHANICAL ANISOTROPY; CRYSTAL PLASTICITY; FIELD
FLUCTUATIONS; GRAIN-INTERACTION; ZIRCONIUM ALLOYS; DEFORMATION;
PREDICTION; SIMULATION; BEHAVIOR
AB A new algorithm for the solution of the deformation of a polycrystalline material using a self-consistent scheme, and its integration as part of the finite element software Abaqus/Standard are presented. The method is based on the original VPSC formulation by Lebensohn and Tome and its integration with Abaqus/Standard by Segurado et al. The new algorithm has been implemented as a set of Fortran 90 modules, to be used either from a standalone program or from Abaqus subroutines. The new implementation yields the same results as VPSC7, but with a significantly better performance, especially when used in multicore computers.
C1 [Galan, J.; Verleysen, P.] Univ Ghent, Dept Mat Sci & Engn, Fac Engn & Architecture, B-9052 Ghent, Belgium.
[Lebensohn, R. A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Mat Sci Radiat & Dynam Extremes MST 8, Los Alamos, NM 87845 USA.
RP Galan, J (reprint author), Univ Ghent, Dept Mat Sci & Engn, Fac Engn & Architecture, Technol Pk 903, B-9052 Ghent, Belgium.
EM Jesus.GalanLopez@UGent.be
RI Lebensohn, Ricardo/A-2494-2008
OI Lebensohn, Ricardo/0000-0002-3152-9105
NR 39
TC 2
Z9 2
U1 1
U2 15
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0965-0393
EI 1361-651X
J9 MODEL SIMUL MATER SC
JI Model. Simul. Mater. Sci. Eng.
PD JUL
PY 2014
VL 22
IS 5
AR 055023
DI 10.1088/0965-0393/22/5/055023
PG 18
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA AK5CL
UT WOS:000338441700024
ER
PT J
AU Xiao, DJ
Bloch, ED
Mason, JA
Queen, WL
Hudson, MR
Planas, N
Borycz, J
Dzubak, AL
Verma, P
Lee, K
Bonino, F
Crocella, V
Yano, J
Bordiga, S
Truhlar, DG
Gagliardi, L
Brown, CM
Long, JR
AF Xiao, Dianne J.
Bloch, Eric D.
Mason, Jarad A.
Queen, Wendy L.
Hudson, Matthew R.
Planas, Nora
Borycz, Joshua
Dzubak, Allison L.
Verma, Pragya
Lee, Kyuho
Bonino, Francesca
Crocella, Valentina
Yano, Junko
Bordiga, Silvia
Truhlar, Donald G.
Gagliardi, Laura
Brown, Craig M.
Long, Jeffrey R.
TI Oxidation of ethane to ethanol by N2O in a metal-organic framework with
coordinatively unsaturated iron(II) sites
SO NATURE CHEMISTRY
LA English
DT Article
ID 2ND-ORDER PERTURBATION-THEORY; SPIN OXOIRON(IV) COMPLEX; NITROUS-OXIDE;
DIOXYGEN ACTIVATION; DINITROGEN OXIDE; ACTIVE-SITES; ENZYMES; OXO;
REACTIVITY; BINDING
AB Enzymatic haem and non-haem high-valent iron-oxo species are known to activate strong C-H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron-oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, although nature's non-haem iron(IV)-oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal-organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal-organic framework Fe-2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C-H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)-oxo species.
C1 [Xiao, Dianne J.; Bloch, Eric D.; Mason, Jarad A.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Queen, Wendy L.; Lee, Kyuho] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Hudson, Matthew R.; Brown, Craig M.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Planas, Nora; Borycz, Joshua; Dzubak, Allison L.; Verma, Pragya; Truhlar, Donald G.; Gagliardi, Laura] Univ Minnesota, Dept Chem, Chem Theory Ctr, Minneapolis, MN 55455 USA.
[Planas, Nora; Borycz, Joshua; Dzubak, Allison L.; Verma, Pragya; Truhlar, Donald G.; Gagliardi, Laura] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA.
[Bonino, Francesca; Crocella, Valentina; Bordiga, Silvia] Univ Turin, Dept Chem, NIS Ctr, I-10135 Turin, Italy.
[Bonino, Francesca; Crocella, Valentina; Bordiga, Silvia] Univ Turin, INSTM Reference Ctr, I-10135 Turin, Italy.
[Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Brown, Craig M.] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA.
[Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Xiao, DJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM jrlong@berkeley.edu
RI Bordiga, Silvia/M-3875-2014; Brown, Craig/B-5430-2009; Truhlar,
Donald/G-7076-2015; Foundry, Molecular/G-9968-2014; Crocella,
Valentina/E-5203-2016; Bonino, Francesca/G-8234-2016
OI Bordiga, Silvia/0000-0003-2371-4156; Queen, Wendy/0000-0002-8375-2341;
Brown, Craig/0000-0002-9637-9355; Truhlar, Donald/0000-0002-7742-7294;
Crocella, Valentina/0000-0002-3606-8424; Bonino,
Francesca/0000-0002-6822-6685
FU US Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences, and Biosciences [DE-FG02-12ER16362];
Laboratory Directed Research and Development Program of Lawrence
Berkeley National Laboratory under US Department of Energy
[DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences,
of the US Department of Energy [DE-AC02-05CH11231]; US Department of
Energy (DOE) Office of Science by Argonne National Laboratory; US DOE
[DE-AC02-06CH11357]; Ateneo Project [2011 ORTO11RRT5]
FX Synthesis, basic characterization experiments and all of the theoretical
work were supported by the US Department of Energy, Office of Basic
Energy Sciences, Division of Chemical Sciences, Geosciences, and
Biosciences under award DE-FG02-12ER16362. Reactivity studies were
supported by the Laboratory Directed Research and Development Program of
Lawrence Berkeley National Laboratory under US Department of Energy
Contract No. DE-AC02-05CH11231. Work at the Molecular Foundry, and XAS
experiments performed at the Advanced Light Source (BL 10.3.2),
Berkeley, were supported by the Office of Science, Office of Basic
Energy Sciences, of the US Department of Energy under Contract No.
DE-AC02-05CH11231. X-ray diffraction experiments were performed at the
Advanced Photon Source at Argonne National Laboratory (17-BM-B). Use of
the Advanced Photon Source, an Office of Science User Facility operated
for the US Department of Energy (DOE) Office of Science by Argonne
National Laboratory, was supported by the US DOE under Contract No.
DE-AC02-06CH11357. S. B., F. B. and V. C. acknowledge financial support
from the Ateneo Project 2011 ORTO11RRT5. We also thank the National
Science Foundation for providing graduate fellowship support (D. J. X.
and J. A. M.). In addition, we are grateful for the support of E. D. B.
through a Gerald K. Branch fellowship in chemistry, P. V. through a
Phillips 66 Excellence Fellowship and M. R. H. through the National
Institute of Standards and Technology/National Research Council
Fellowship Program. We thank S. Chavan for help with the infrared
spectroscopy experiments and fruitful discussion.
NR 50
TC 83
Z9 84
U1 20
U2 168
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1755-4330
EI 1755-4349
J9 NAT CHEM
JI Nat. Chem.
PD JUL
PY 2014
VL 6
IS 7
BP 590
EP 595
DI 10.1038/NCHEM.1956
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA AK5DM
UT WOS:000338444600010
PM 24950328
ER
PT J
AU Shapiro, MG
Ramirez, RM
Sperling, LJ
Sun, G
Sun, J
Pines, A
Schaffer, DV
Bajaj, VS
AF Shapiro, Mikhail G.
Ramirez, R. Matthew
Sperling, Lindsay J.
Sun, George
Sun, Jinny
Pines, Alexander
Schaffer, David V.
Bajaj, Vikram S.
TI Genetically encoded reporters for hyperpolarized xenon magnetic
resonance imaging
SO NATURE CHEMISTRY
LA English
DT Article
ID LASER-POLARIZED XE-129; GAS VESICLES; CONTRAST AGENTS; PICOMOLAR
SENSITIVITY; FUNCTIONALIZED XENON; FLUORESCENT PROTEIN; MRI; NMR;
EXCHANGE; BIOSENSOR
AB Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional H-1 MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized Xe-129 MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for H-1 MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells.
C1 [Shapiro, Mikhail G.] Univ Calif Berkeley, Miller Res Inst, Berkeley, CA 94720 USA.
[Shapiro, Mikhail G.; Sun, Jinny; Schaffer, David V.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
[Shapiro, Mikhail G.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Shapiro, Mikhail G.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA.
[Ramirez, R. Matthew; Sun, Jinny; Pines, Alexander; Bajaj, Vikram S.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Ramirez, R. Matthew; Sperling, Lindsay J.; Pines, Alexander; Bajaj, Vikram S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Schaffer, David V.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Shapiro, MG (reprint author), Univ Calif Berkeley, Miller Res Inst, Berkeley, CA 94720 USA.
EM mikhail@caltech.edu; vikbajaj@gmail.com
FU Miller Research Fellowship; Burroughs Wellcome Career Award at the
Scientific Interface (M.G.S.); California Institute For Regenerative
Medicine [RT2-02022]; Department of Energy [DE-AC02-05CH11231]
FX We thank P. Dao for assistance with NMR measurements, M. Cannon for
providing the pNL29 plasmid and R. Zalpuri and K. McDonald for
assistance with electron microscopy. This work was supported by the
Miller Research Fellowship and Burroughs Wellcome Career Award at the
Scientific Interface (M.G.S.), California Institute For Regenerative
Medicine grant RT2-02022 (D.V.S.) and Department of Energy contract
DE-AC02-05CH11231 (A.P., V.S.B).
NR 50
TC 42
Z9 43
U1 11
U2 60
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1755-4330
EI 1755-4349
J9 NAT CHEM
JI Nat. Chem.
PD JUL
PY 2014
VL 6
IS 7
BP 630
EP 635
DI 10.1038/NCHEM.1934
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA AK5DM
UT WOS:000338444600016
PM 24950334
ER
PT J
AU Mortimer, SA
Kidwell, MA
Doudna, JA
AF Mortimer, Stefanie A.
Kidwell, Mary Anne
Doudna, Jennifer A.
TI Insights into RNA structure and function from genome-wide studies
SO NATURE REVIEWS GENETICS
LA English
DT Review
ID SELECTIVE 2'-HYDROXYL ACYLATION; LONG NONCODING RNAS; MESSENGER-RNA;
SECONDARY STRUCTURE; IN-VIVO; GLOBAL ANALYSIS; SACCHAROMYCES-CEREVISIAE;
NUCLEOTIDE RESOLUTION; TARGET RECOGNITION; PROTEIN EXPRESSION
AB A comprehensive understanding of RNA structure will provide fundamental insights into the cellular function of both coding and non-coding RNAs. Although many RNA structures have been analysed by traditional biophysical and biochemical methods, the low-throughput nature of these approaches has prevented investigation of the vast majority of cellular transcripts. Triggered by advances in sequencing technology, genome-wide approaches for probing the transcriptome are beginning to reveal how RNA structure affects each step of protein expression and RNA stability. In this Review, we discuss the emerging relationships between RNA structure and the regulation of gene expression.
C1 [Mortimer, Stefanie A.; Kidwell, Mary Anne; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.
[Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Doudna, JA (reprint author), Guardant Hlth Inc, 2686 Middlefield Rd, Redwood City, CA 94063 USA.
EM doudna@berkeley.edu
FU US National Institutes of Health
FX The authors apologize to colleagues whose work was not cited owing to
space limitation. They thank Y. Bai, R. Wilson, S. Floor, M. Hammond and
members of J.A.D.'s laboratory for discussions; K Weeks for sharing
HIV-1 SHAPE data; and J. Ji for reading the manuscript. This work was
supported in part by a grant from the US National Institutes of Health
(to J.A.D.). J.A.D. is a Howard Hughes Medical Institute Investigator.
NR 103
TC 89
Z9 90
U1 6
U2 71
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1471-0056
EI 1471-0064
J9 NAT REV GENET
JI Nat. Rev. Genet.
PD JUL
PY 2014
VL 15
IS 7
BP 469
EP 479
DI 10.1038/nrg3681
PG 11
WC Genetics & Heredity
SC Genetics & Heredity
GA AK4KT
UT WOS:000338394300010
PM 24821474
ER
PT J
AU Balden, M
Endstrasser, N
Humrickhouse, PW
Rohde, V
Rasinski, M
von Toussaint, U
Elgeti, S
Neu, R
AF Balden, M.
Endstrasser, N.
Humrickhouse, P. W.
Rohde, V.
Rasinski, M.
von Toussaint, U.
Elgeti, S.
Neu, R.
CA ASDEX Upgrade Team
TI Collection strategy, inner morphology, and size distribution of dust
particles in ASDEX Upgrade
SO NUCLEAR FUSION
LA English
DT Article
DE dust; particles size distribution; tungsten; tokamak; SEM
ID FUSION DEVICES; PLASMA PERFORMANCE; TUNGSTEN LAYERS; CARBON DUST; VACUUM
ARCS; DIII-D; TOKAMAK; DEPOSITION; DISCHARGE; DIVERTOR
AB The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007-2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e. g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the similar to 50 000 analysed particles on the Si collectors of campaign 2009 contain tungsten-the plasma-facing material in AUG-and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B-C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 mu m only for the W-dominated spheroids, at around 1 mu m. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG.
C1 [Balden, M.; Endstrasser, N.; Rohde, V.; Rasinski, M.; von Toussaint, U.; Elgeti, S.; Neu, R.; ASDEX Upgrade Team] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany.
[Humrickhouse, P. W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Rasinski, M.] Warsaw Univ Technol, Fac Mat Sci & Engn, PL-02507 Warsaw, Poland.
RP Balden, M (reprint author), Max Planck Inst Plasma Phys, EURATOM Assoc, Boltzmannstr 2, D-85748 Garching, Germany.
EM Martin.Balden@ipp.mpg.de
RI Neu, Rudolf /B-4438-2010;
OI Neu, Rudolf /0000-0002-6062-1955; Rasinski, Marcin/0000-0001-6277-4421
FU European Community
FX This work, supported by the European Community under the contract of the
EURATOM Association, was partly carried out within the framework of the
EFDA Task Force on Plasma Wall Interactions. The views and opinions
expressed herein do not necessarily reflect those of the European
Commission.
NR 77
TC 14
Z9 14
U1 1
U2 18
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2014
VL 54
IS 7
AR 073010
DI 10.1088/0029-5515/54/7/073010
PG 16
WC Physics, Fluids & Plasmas
SC Physics
GA AK3SE
UT WOS:000338344200016
ER
PT J
AU Futatani, S
Huijsmans, G
Loarte, A
Baylor, LR
Commaux, N
Jernigan, TC
Fenstermacher, ME
Lasnier, C
Osborne, TH
Pegourie, B
AF Futatani, S.
Huijsmans, G.
Loarte, A.
Baylor, L. R.
Commaux, N.
Jernigan, T. C.
Fenstermacher, M. E.
Lasnier, C.
Osborne, T. H.
Pegourie, B.
TI Non-linear MHD modelling of ELM triggering by pellet injection in DIII-D
and implications for ITER
SO NUCLEAR FUSION
LA English
DT Article
DE ELM; ITER; ELM control; pellet pacing; ELM triggering; non-linear MHD
AB Edge localized mode (ELM) triggering by pellet injection in the DIII-D tokamak has been simulated with the non-linear MHD code JOREK with a view to validating its physics models. JOREK has been subsequently applied to evaluate the requirements for ELM control by pellet injection in ITER. JOREK modelling results for DIII-D show that the key parameter for the triggering of ELMs by pellets is the value of the localized pressure perturbation caused by pellet injection which leads to a threshold minimum pellet size for a given injection velocity, injection geometry and H-mode plasma characteristics. The minimum pellet size for ELM triggering is found to depend on injection geometry with the largest value being required for injection at the outer midplane, intermediate for injection near the X-point and the smallest one for injection at the high-field side. The first results of studies for ELM triggering by pellet injection in ITER 15 MA Q = 10 plasmas with the foreseen injection geometry in ITER are presented.
C1 [Futatani, S.; Huijsmans, G.; Loarte, A.] ITER Org, F-13115 St Paul Les Durance, France.
[Baylor, L. R.; Commaux, N.; Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Fenstermacher, M. E.; Lasnier, C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Fenstermacher, M. E.; Lasnier, C.; Osborne, T. H.] Gen Atom Co, San Diego, CA 92186 USA.
[Pegourie, B.] CEA IRFM, F-13108 St Paul Les Durance, France.
RP Futatani, S (reprint author), ITER Org, F-13115 St Paul Les Durance, France.
EM alberto.loarte@iter.org
OI Futatani, Shimpei/0000-0001-5742-5454
FU US DOE [DE-AC05-00OR22725, DE-AC52-07NA27344, DE-FC02-04ER54698]
FX This work was supported in part by the US DOE under DE-AC05-00OR22725,
DE-AC52-07NA27344, and DE-FC02-04ER54698. Part of this work was carried
out using the HELIOS supercomputer system at Computational Situational
Centre of International Fusion Energy Research Centre (IFERC-CSC),
Aomori, Japan, under the Broader Approach collaboration between Euratom
and Japan, implemented by Fusion for Energy and JAEA.
NR 19
TC 12
Z9 12
U1 2
U2 21
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2014
VL 54
IS 7
AR 073008
DI 10.1088/0029-5515/54/7/073008
PG 20
WC Physics, Fluids & Plasmas
SC Physics
GA AK3SE
UT WOS:000338344200014
ER
PT J
AU Garofalo, AM
Chan, VS
Canik, JM
Sawan, ME
Choi, M
Humphreys, DA
Lao, LL
Prater, R
Stangeby, PC
St John, HE
Taylor, TS
Turnbull, AD
Wong, CPC
AF Garofalo, A. M.
Chan, V. S.
Canik, J. M.
Sawan, M. E.
Choi, M.
Humphreys, D. A.
Lao, L. L.
Prater, R.
Stangeby, P. C.
St John, H. E.
Taylor, T. S.
Turnbull, A. D.
Wong, C. P. C.
TI Progress in the physics basis of a Fusion Nuclear Science Facility based
on the Advanced Tokamak concept
SO NUCLEAR FUSION
LA English
DT Article
DE fusion reactor design; steady-state scenario simulation; divertor
analysis
ID DIII-D; PLASMAS; PERFORMANCE; GEOMETRY; DIVERTOR
AB Physics based integrated modelling of the baseline scenario for a Fusion Nuclear Science Facility based on the Advanced Tokamak concept (FNSF-AT) (Chan et al 2010 Fusion Sci. Technol. 57 66) has found steady-state equilibria with good stability and controllability properties at the fusion performance required to accomplish FNSF's nuclear science mission with margin. 2D divertor analysis for this baseline scenario predicts that peak heat flux <10 MW m(-2) can be obtained even with scrape-off layer power width similar to 1 mm. Using this baseline fusion performance, high fidelity and high-resolution 3D neutronics calculations show acceptable cumulative end-of-life organic insulator dose levels in all the device coils, and TBR > 1. Two current drive scenarios, two divertor configurations, and two blanket concepts have been analysed. FNSF-AT would complement ITER in addressing science and technology gaps to a commercially attractive DEMO, and could enable a DEMO construction decision triggered by the achievement of Q = 10 in ITER.
C1 [Garofalo, A. M.; Chan, V. S.; Choi, M.; Humphreys, D. A.; Lao, L. L.; Prater, R.; St John, H. E.; Taylor, T. S.; Turnbull, A. D.; Wong, C. P. C.] Gen Atom Co, San Diego, CA 92186 USA.
[Canik, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
[Sawan, M. E.] Univ Wisconsin, Fus Technol Inst, Madison, WI 53706 USA.
[Stangeby, P. C.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada.
RP Garofalo, AM (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
EM garofalo@fusion.gat.com
OI Canik, John/0000-0001-6934-6681
FU General Atomics IRD; US Department of Energy [DE-FC02-04ER54698,
DE-FG02-95ER54309, DE AC05 00OR22725, DE-FG02-09ER54513]
FX This work was supported in part by General Atomics IR&D funding, and the
US Department of Energy under DE-FC02-04ER54698, DE-FG02-95ER54309, DE
AC05 00OR22725 and DE-FG02-09ER54513.
NR 37
TC 4
Z9 4
U1 2
U2 19
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2014
VL 54
IS 7
AR 073015
DI 10.1088/0029-5515/54/7/073015
PG 13
WC Physics, Fluids & Plasmas
SC Physics
GA AK3SE
UT WOS:000338344200021
ER
PT J
AU Gerasimov, SN
Hender, TC
Morris, J
Riccardo, V
Zakharov, LE
AF Gerasimov, S. N.
Hender, T. C.
Morris, J.
Riccardo, V.
Zakharov, L. E.
CA JET EFDA Contributors
TI Plasma current asymmetries during disruptions in JET
SO NUCLEAR FUSION
LA English
DT Article
DE tokamak; disruption; VDE; kink instability; plasma current asymmetries
ID ALCATOR C-MOD; MITIGATION; STABILITY
AB A key feature of disruptions during vertical displacement events, discovered in JET in 1996, is the toroidal variation in the measured plasma current I-p, i.e. the plasma current asymmetries, lasting for almost the entire current quench. The unique magnetic diagnostics at JET (full set of poloidal coils and saddle loops recorded either from two toroidally opposite or from four toroidally orthogonal locations) allow for a comprehensive analysis of asymmetrical disruptions with a large scale database. This paper presents an analysis of 4854 disruptions over an 18 year period that includes both the JET carbon (C) wall and the ITER-like (IL) wall (a mixed beryllium/tungsten first wall). In spite of the I-p quench time significantly increasing for the IL-wall compared to C-wall disruptions, the observed toroidal asymmetry time integral (similar to sideways force impulse), did not increase for IL-wall disruptions. The I-p asymmetry has a dominantly n = 1 structure. Its motion in the toroidal direction has a sporadic behaviour, in general. The distributions of the number of rotation periods are found to be very similar for both C-and IL-wall disruptions, and multi-turn rotation was sometimes observed. The I-p asymmetry amplitude has no degradation with rotation frequency for either the C-or IL-wall disruption. Therefore dynamic amplification remains a potentially serious issue for ITER due to possible mechanical resonance of the machine components with the rotating asymmetry.
C1 JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
[Gerasimov, S. N.; Hender, T. C.; Morris, J.; Riccardo, V.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
[Zakharov, L. E.] Princeton Univ, PPPL, Princeton, NJ 08543 USA.
RP Gerasimov, SN (reprint author), Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
EM Sengei.Gerasimov@ccfe.ac.uk
RI Gerasimov, Sergei/O-4881-2015;
OI Gerasimov, Sergei/0000-0002-6249-2931; riccardo,
valeria/0000-0003-2535-5257
FU European Communities; RCUK Energy Programme [EP/I501045]; US DoE
[DE-AC02-09-CH11466]
FX The authors would like to acknowledge M. F. Johnson for initial
development of the JET disruption database and P. Noll for helpful
discussions. This work, part-funded by the European Communities under
the contract of Association between EURATOM/CCFE was carried out within
the framework of the European Fusion Development Agreement. For further
information on the contents of this paper please contact
publications-officer@jet.efda.org. The views and opinions expressed
herein do not necessarily reflect those of the European Commission. This
work was also partially funded by the RCUK Energy Programme (grant
number EP/I501045) and by the US DoE contract No DE-AC02-09-CH11466.
NR 37
TC 17
Z9 17
U1 2
U2 33
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2014
VL 54
IS 7
AR 073009
DI 10.1088/0029-5515/54/7/073009
PG 14
WC Physics, Fluids & Plasmas
SC Physics
GA AK3SE
UT WOS:000338344200015
ER
PT J
AU Kim, K
Park, JK
Boozer, AH
Menard, JE
Gerhardt, SP
Logan, NC
Wang, ZR
Kramer, GJ
Burrell, KH
Garofalo, AM
AF Kim, K.
Park, J. -K.
Boozer, A. H.
Menard, J. E.
Gerhardt, S. P.
Logan, N. C.
Wang, Z. R.
Kramer, G. J.
Burrell, K. H.
Garofalo, A. M.
TI Calculation of neoclassical toroidal viscosity with a particle
simulation in the tokamak magnetic braking experiments
SO NUCLEAR FUSION
LA English
DT Article
DE tokamak; NTV; magnetic breaking; 3D field; drift-kinetic particle
simulation
ID BANANA-DRIFT TRANSPORT; MOMENTUM DISSIPATION; PLASMAS; RIPPLE
AB Accurate calculation of perturbed distribution function delta f and perturbed magnetic field delta B is essential to achieve prediction of non-ambipolar transport and neoclassical toroidal viscosity (NTV) in perturbed tokamaks. This paper reports a study of the NTV with a delta f particle code (POCA) and improved understanding of magnetic braking in tokamak experiments. POCA calculates the NTV by computing delta f with guiding-centre orbit motion and using delta B from the ideal perturbed equilibrium code (IPEC). Theories of NTV for magnetic field resonance, collisionality dependency, and toroidal mode coupling are tested in the simple configurations using the particle simulations. The POCA simulations are also compared with experimental estimations for NTV, which are measured from angular momentum balance (DIII-D) and toroidal rotational damping rate (NSTX). The calculation shows reasonable agreement in total NTV torque for the DIII-D discharge with weak rotational resonances in the nu(-) root nu. regime. In NSTX discharges where the bounce-harmonic resonances dominantly appear, the POCA simulation gives total NTV torques comparable to the measurements, however large discrepancies are found in the detailed damping and NTV profiles. It is discussed that a self-consistent calculation of delta B using general perturbed equilibria is eventually necessary since a non-ideal plasma response can change the perturbed field and thereby the NTV torque.
C1 [Kim, K.; Park, J. -K.; Menard, J. E.; Gerhardt, S. P.; Logan, N. C.; Wang, Z. R.; Kramer, G. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Boozer, A. H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Burrell, K. H.; Garofalo, A. M.] Gen Atom Co, San Diego, CA 92186 USA.
RP Kim, K (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM kkim@pppl.gov
OI Menard, Jonathan/0000-0003-1292-3286
FU DOE [DE-AC02-09CH11466, DE-FC02-04ER54698]
FX This work was supported by DOE Contract No DE-AC02-09CH11466 (PPPL) and
No DE-FC02-04ER54698 (GA).
NR 39
TC 7
Z9 7
U1 1
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2014
VL 54
IS 7
AR 073014
DI 10.1088/0029-5515/54/7/073014
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA AK3SE
UT WOS:000338344200020
ER
PT J
AU Kolemen, E
Welander, AS
La Haye, RJ
Eidietis, NW
Humphreys, DA
Lohr, J
Noraky, V
Penaflor, BG
Prater, R
Turco, F
AF Kolemen, E.
Welander, A. S.
La Haye, R. J.
Eidietis, N. W.
Humphreys, D. A.
Lohr, J.
Noraky, V.
Penaflor, B. G.
Prater, R.
Turco, F.
TI State-of-the-art neoclassical tearing mode control in DIII-D using
real-time steerable electron cyclotron current drive launchers
SO NUCLEAR FUSION
LA English
DT Article
DE spherical tokamaks; macroinstabilities; plasma diagnostic techniques;
current drive; helicity injection
ID D TOKAMAK; STABILIZATION; SYSTEM; JT-60U
AB Real-time steerable electron cyclotron current drive (ECCD) has been demonstrated to reduce the power requirements and time needed to remove 3/2 and 2/1 neoclassical tearing modes (NTMs) in the DIII-D tokamak. In a world first demonstration of the techniques required in ITER, the island formation onset is detected automatically, gyrotrons are turned on and the real-time steerable ECCD launcher mirrors are moved promptly to drive current at the location of the islands. This shrinks and suppresses the modes well before saturation using real-time motional Stark effect constrained equilibria reconstruction with advanced feedback and search algorithms to target the deposition. In ITER, this method will reduce the ECCD energy requirement and so raise Q by keeping the EC system off when the NTM is not present. Further, in the experiments with accurate tracking of pre-emptive ECCD to resonant surfaces, both 3/2 and 2/1 modes are prevented from appearing with much lower ECCD peak power than required for removal of a saturated mode.
C1 [Kolemen, E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Welander, A. S.; La Haye, R. J.; Eidietis, N. W.; Humphreys, D. A.; Lohr, J.; Noraky, V.; Penaflor, B. G.; Prater, R.] Gen Atom Co, San Diego, CA 92186 USA.
[Turco, F.] Columbia Univ, New York, NY 10027 USA.
RP Kolemen, E (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
FU US Department of Energy [DE-AC02-09CH11466, DE-FC02-04ER54698,
DE-FG0204ER54761]
FX This work is supported by the US Department of Energy under
DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-FG0204ER54761.
NR 16
TC 12
Z9 12
U1 2
U2 17
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2014
VL 54
IS 7
AR 073020
DI 10.1088/0029-5515/54/7/073020
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA AK3SE
UT WOS:000338344200026
ER
PT J
AU Paz-Soldan, C
Buttery, RJ
Garofalo, AM
Hanson, JM
La Haye, RJ
Lanctot, MJ
Park, JK
Solomon, WM
Strait, EJ
AF Paz-Soldan, C.
Buttery, R. J.
Garofalo, A. M.
Hanson, J. M.
La Haye, R. J.
Lanctot, M. J.
Park, J. K.
Solomon, W. M.
Strait, E. J.
TI The spectral basis of optimal error field correction on DIII-D
SO NUCLEAR FUSION
LA English
DT Article
DE error field correction; plasma response; resistive wall mode; kink mode;
tokamak
ID D TOKAMAK; MODES; PLASMAS
AB Experimental optimum error field correction (EFC) currents found in a wide breadth of dedicated experiments on DIII-D are shown to be consistent with the currents required to null the poloidal harmonics of the vacuum field which drive the kink mode near the plasma edge. This allows the identification of empirical metrics which predict optimal EFC currents with accuracy comparable to that of first-principles modelling which includes the ideal plasma response. While further metric refinements are desirable, this work suggests optimal EFC currents can be effectively fed-forward based purely on knowledge of the vacuum error field and basic equilibrium properties which are routinely calculated in real-time.
C1 [Paz-Soldan, C.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA.
[Buttery, R. J.; Garofalo, A. M.; La Haye, R. J.; Lanctot, M. J.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA.
[Hanson, J. M.] Columbia Univ, New York, NY 10027 USA.
[Park, J. K.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Paz-Soldan, C (reprint author), Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA.
EM paz-soldan@fusion.gat.com
RI Lanctot, Matthew J/O-4979-2016;
OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon,
Wayne/0000-0002-0902-9876
FU US Department of Energy [DE-AC05-06OR23100, DE-FC02-04ER54698,
DE-FG02-04ER54761, DE-AC02-09CH11466]
FX This work is supported by the US Department of Energy under
DE-AC05-06OR23100, DE-FC02-04ER54698, DE-FG02-04ER54761, and
DE-AC02-09CH11466. The authors would like to acknowledge all individuals
involved with the execution of the dedicated experiments presented
herein. Individuals such as D. Shiraki, Y. In, M. Okabayashi, J.T.
Scoville, M.J. Schaffer, and H. Reimerdes, have contributed to the
measurement of the experimental Iopt here presented. The
authors also thank M.J. Schaffer, T. E. Evans, and D. M. Orlov for
developing and maintaining the SURFMN code which was used extensively
for this study.
NR 38
TC 18
Z9 18
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2014
VL 54
IS 7
AR 073013
DI 10.1088/0029-5515/54/7/073013
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA AK3SE
UT WOS:000338344200019
ER
PT J
AU Poli, FM
Kessel, CE
Bonoli, PT
Batchelor, DB
Harvey, RW
Snyder, PB
AF Poli, F. M.
Kessel, C. E.
Bonoli, P. T.
Batchelor, D. B.
Harvey, R. W.
Snyder, P. B.
TI External heating and current drive source requirements towards
steady-state operation in ITER
SO NUCLEAR FUSION
LA English
DT Article
DE steady-state; heating; internal barriers; tokamak; reactor; current
drive
ID INTERNAL TRANSPORT BARRIERS; H-MODE PLASMAS; JET; TOKAMAKS; SIMULATION;
ISSUES
AB Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E x B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H-98 = 1.6 and fusion gain Q = 5.
C1 [Poli, F. M.; Kessel, C. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Bonoli, P. T.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
[Batchelor, D. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Harvey, R. W.] CompX, Del Mar, CA 92014 USA.
[Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA.
RP Poli, FM (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RI poli, francesca/C-2226-2008
OI poli, francesca/0000-0003-3959-4371
FU TRANSP; IPS; US Department of Energy [DE-AC02-CH0911466,
DE-AC05-00OR22725]; Scientific Discovery through Advanced Computing
(SciDAC) program - US Department of Energy, Office of Science, Fusion
Energy Sciences; Office of Science of the US Department of Energy
[DE-AC02-05CH11231]
FX We acknowledge R. Andre, M. Gorelenkova, X. Xuan and T. Ludescher-Furth
for support with TRANSP, W. Elwasiv for support with the IPS, N.
Bertelli for helpful discussion. This work was supported by the US
Department of Energy under contract DE-AC02-CH0911466. ORNL is managed
by UT-Battelle, LLC for the US Department of Energy under Contract
DE-AC05-00OR22725. Partial support for this work was provided through
the Scientific Discovery through Advanced Computing (SciDAC) program,
funded by US Department of Energy, Office of Science, Fusion Energy
Sciences. This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of Science
of the US Department of Energy under Contract No DE-AC02-05CH11231.
NR 47
TC 7
Z9 7
U1 1
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2014
VL 54
IS 7
AR 073007
DI 10.1088/0029-5515/54/7/073007
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA AK3SE
UT WOS:000338344200013
ER
PT J
AU Rack, M
Sieglin, B
Eich, T
Pearson, J
Liang, Y
Balboa, I
Jachmich, S
Wingen, A
Pamela, SJP
AF Rack, M.
Sieglin, B.
Eich, T.
Pearson, J.
Liang, Y.
Balboa, I.
Jachmich, S.
Wingen, A.
Pamela, S. J. P.
CA JET EFDA Contributors
TI Findings of pre-ELM structures through the observation of divertor heat
load patterns at JET with applied n=2 perturbation fields
SO NUCLEAR FUSION
LA English
DT Article
DE edge-localized modes; resonant magnetic perturbations; divertor heat
loads
ID CONFINEMENT; DISCHARGES; TOKAMAK
AB Resonant magnetic perturbation experiments at JET with the ITER-like wall have shown the formation of radially propagating pre-ELM structures in the heat flux profile on the outer divertor. These appear a few milliseconds before the major divertor heat load, caused by type-I edge-localized modes (ELMs). The formation of the pre-ELM structures is accompanied by an increase in the D-alpha emission. For some pronounced examples, the propagation appears to end at the positions where an increased heat load is seen during the ELM crash a few milliseconds later. These observations are presented and discussed along with a comparison of a thermoelectric edge currents model.
C1 JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
[Rack, M.; Pearson, J.; Liang, Y.] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, EURATOM Assoc, D-52425 Julich, Germany.
[Sieglin, B.; Eich, T.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany.
[Balboa, I.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
[Jachmich, S.] Ecole Royale Mil, Partner Trilateral Euregio Cluster, Assoc Euratom Belgian State, Plasma Phys Lab, B-1000 Brussels, Belgium.
[Wingen, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Pamela, S. J. P.] Aix Marseille Univ, CNRS, IIFS PIIM, F-13397 Marseille 20, France.
RP Rack, M (reprint author), Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, EURATOM Assoc, D-52425 Julich, Germany.
EM m.rack@fz-juelich.de
OI Wingen, Andreas/0000-0001-8855-1349
FU European Communities; Helmholtz Association in frame of the
Helmholtz-University [VH-NG-410]
FX Valuable discussions with Peter de Vries and Sebastijan Brezinsek are
gratefully acknowledged. M R is thankful for the support of Evgenij
Bleile and Gotz Lehmann. This work, supported by the European
Communities under the contract of Association between EURATOM and FZJ,
was carried out within the framework of the European Fusion Development
Agreement. The views and opinions expressed herein do not necessarily
reflect those of the European Commission. Additional support from the
Helmholtz Association in frame of the Helmholtz-University Young
Investigators Group VH-NG-410 is gratefully acknowledged.
NR 33
TC 1
Z9 1
U1 2
U2 17
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2014
VL 54
IS 7
AR 072004
DI 10.1088/0029-5515/54/7/072004
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA AK3SE
UT WOS:000338344200004
ER
PT J
AU Schmitz, L
Zeng, L
Rhodes, TL
Hillesheim, JC
Peebles, WA
Groebner, RJ
Burrell, KH
McKee, GR
Yan, Z
Tynan, GR
Diamond, PH
Boedo, JA
Doyle, EJ
Grierson, BA
Chrystal, C
Austin, ME
Solomon, WM
Wang, G
AF Schmitz, L.
Zeng, L.
Rhodes, T. L.
Hillesheim, J. C.
Peebles, W. A.
Groebner, R. J.
Burrell, K. H.
McKee, G. R.
Yan, Z.
Tynan, G. R.
Diamond, P. H.
Boedo, J. A.
Doyle, E. J.
Grierson, B. A.
Chrystal, C.
Austin, M. E.
Solomon, W. M.
Wang, G.
TI The role of zonal flows and predator-prey oscillations in triggering the
formation of edge and core transport barriers
SO NUCLEAR FUSION
LA English
DT Article
DE tokamak; DIII-D; L-H transition; zonal flows; internal transport
barriers; predator-prey oscillations
ID DIII-D TOKAMAK; TURBULENCE; PLASMAS; SHEAR
AB We present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator-prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E x B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E x B shearing rate, omega(ExB), in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90 degrees, transitioning to anti-correlation (180 degrees) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180 degrees out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H-L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field) beta(theta) = 2 mu(0)n(T-e + T-i)/B-theta(2) in ITER.
C1 [Schmitz, L.; Zeng, L.; Rhodes, T. L.; Peebles, W. A.; Doyle, E. J.; Wang, G.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Hillesheim, J. C.] EURATOM CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England.
[Groebner, R. J.; Burrell, K. H.] Gen Atom Co, San Diego, CA 92186 USA.
[McKee, G. R.; Yan, Z.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA.
[Tynan, G. R.; Diamond, P. H.; Boedo, J. A.] Univ Calif San Diego, Ctr Momentum Transport & Flow Org, La Jolla, CA 92093 USA.
[Diamond, P. H.] NFRI, WCI Ctr Fus Theory, Taejon 305333, South Korea.
[Grierson, B. A.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Chrystal, C.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Austin, M. E.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA.
RP Schmitz, L (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
EM lschmitz@ucla.edu
OI Solomon, Wayne/0000-0002-0902-9876
FU US Department of Energy [DE-FG03-01ER54615, DE-FG02-08ER54984,
DE-FC02-04ER54698, DE-FG02-89ER53296, DE-FG02-08ER54999,
DE-FG02-07ER54917, DE-AC02-09CH11466, DE-FG03-97ER54415]
FX This work was supported in part by the US Department of Energy under
DE-FG03-01ER54615, DE-FG02-08ER54984, DE-FC02-04ER54698,
DE-FG02-89ER53296, DE-FG02-08ER54999, DE-FG02-07ER54917,
DE-AC02-09CH11466 and DE-FG03-97ER54415.
NR 35
TC 14
Z9 14
U1 2
U2 33
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2014
VL 54
IS 7
AR 073012
DI 10.1088/0029-5515/54/7/073012
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA AK3SE
UT WOS:000338344200018
ER
PT J
AU Stacey, WM
Grierson, BA
AF Stacey, Weston M.
Grierson, Brian A.
TI Interpretation of rotation and momentum transport in the DIII-D edge
plasma and comparison with neoclassical theory
SO NUCLEAR FUSION
LA English
DT Article
DE rotation; intrinsic rotation; momentum transport
ID TOKAMAK PLASMA; TOROIDAL ROTATION; ELECTRIC-FIELD
AB A low-confinement mode discharge which optimizes the capability of the new main-ion charge-exchange-recombination spectroscopy system on DIII-D (Luxon 2002 Nucl. Fusion 42 614) to measure deuterium toroidal velocity is interpretted in comparison with the predictions of neoclassical theory, with an emphasis on the plasma edge region. The observed peaking in the deuterium toroidal velocity near the separatrix is shown to be consistent with intrinsic co-rotation due to ion orbit loss. In general, the standard neoclassical toroidal and poloidal momentum transport rates are found to be smaller than those inferred from experiment.
C1 [Stacey, Weston M.] Georgia Inst Technol, Atlanta, GA 30332 USA.
[Grierson, Brian A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Stacey, WM (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA.
FU DOE [DE-FG02-ER54538, DE-AC02-09CH11466]; Georgia Tech Research
Corporation; Princeton Plasma Physics Laboratory; General Atomics
[DE-AC03-99ER54463]
FX The authors acknowledge their gratitude to other members of the DIII-D
Team whose efforts have made these measurements possible, and in
particular to Colin Chrystal for reducing the carbon spectroscopic data.
The first author expresses his appreciation to General Atomics for their
hospitality during part of this work. The work was supported by DOE
grant DE-FG02-ER54538 with the Georgia Tech Research Corporation and by
DOE contracts DE-AC02-09CH11466 with the Princeton Plasma Physics
Laboratory and DE-AC03-99ER54463 with General Atomics.
NR 37
TC 12
Z9 12
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2014
VL 54
IS 7
AR 073021
DI 10.1088/0029-5515/54/7/073021
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA AK3SE
UT WOS:000338344200027
ER
PT J
AU Umeda, T
Ueno, S
Nakamura, TKM
AF Umeda, Takayuki
Ueno, Satoshi
Nakamura, Takuma K. M.
TI Ion kinetic effects on nonlinear processes of the Kelvin-Helmholtz
instability
SO PLASMA PHYSICS AND CONTROLLED FUSION
LA English
DT Article
DE Kelvin-Helmholtz instability; Vlasov equation; hydrodynamic instability;
plasma turbulence
ID SOLAR-WIND; SIMULATION; BOUNDARY; MAGNETOPAUSE; RECONNECTION; TRANSPORT;
VORTICES; EQUATION; SCHEME; FIELDS
AB The nonlinear evolution of the Kelvin-Helmholtz (KH) instability at a transverse velocity shear layer in an inhomogeneous space plasma is investigated by means of a four-dimensional (two spatial and two velocity dimensions) electromagnetic Vlasov simulation. When the rotation direction of the primary KH vortex and the direction of ion gyro motion are the same (i.e., the inner product between the vorticity of the primary velocity shear and the magnetic field vector is negative) there exists a strong ion cyclotron damping. In this case, spatial inhomogeneity inside the primary KH vortex is smoothed and the secondary Rayleigh-Taylor/KH instabilities are suppressed. It is also found that another secondary instability on the electron inertial scale is simultaneously generated at secondary shear layers for both cases, but at different locations. The small-scale secondary instability takes place only when the inner product between the vorticity of the secondary shear layer and the magnetic field vector is positive, suggesting the damping of small-scale processes by ion gyro motion. These results indicate that secondary instabilities occurring in the nonlinear stage of the primary KHI show different evolutions depending on the sign of the inner product between the magnetic field and the vorticity of the velocity shear layer.
C1 [Umeda, Takayuki; Ueno, Satoshi] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
[Nakamura, Takuma K. M.] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM 87545 USA.
RP Umeda, T (reprint author), Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
EM umeda@stelab.nagoya-u.ac.jp
FU MEXT/JSPS [23740367, 25610144]; JHPCN program at Joint Usage/Research
Center for Interdisciplinary Large-Scale Information Infrastructures
[jh130005-NA03]; HPCI Systems Research Project [hp120092]
FX The authors thank Yosuke Matsumoto and Tatsuki Ogino for their
discussions. This work was supported by MEXT/JSPS under Grant-in-Aid for
Young Scientists (B) No 23740367 and Grant-in-Aid for Challenging
Exploratory Research No 25610144. The computer simulations were
performed on the DELL PowerEdge R815 supercomputer system at the
Solar-Terrestrial Environment Laboratory (STEL), the Fujitsu FX1 and
HX600 supercomputer systems at the Information Technology Center, Nagoya
University, the Fujitsu CX400 supercomputer system at the Research
Institute for Information Technology, Kyushu University, and the Fujitsu
FX10 supercomputer system at the Information Technology Center,
University of Tokyo, and the K computer at the RIKEN Advanced Institute
for Computational Science. The computational resources are provided as a
STEL computational joint research program, a Nagoya University HPC
program, a JHPCN program at Joint Usage/Research Center for
Interdisciplinary Large-Scale Information Infrastructures (No
jh130005-NA03), and the HPCI Systems Research Project (No hp120092).
NR 45
TC 5
Z9 5
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0741-3335
EI 1361-6587
J9 PLASMA PHYS CONTR F
JI Plasma Phys. Control. Fusion
PD JUL
PY 2014
VL 56
IS 7
AR 075006
DI 10.1088/0741-3335/56/7/075006
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA AK6CL
UT WOS:000338515300007
ER
PT J
AU Ellison, PA
McLaughlin, JP
Stavsetra, L
Gregorich, KE
Nitsche, H
AF Ellison, Paul A.
McLaughlin, Joseph P.
Stavsetra, Liv
Gregorich, Kenneth E.
Nitsche, Heino
TI Measurement of the Am-240 production cross section via proton
irradiation of Pu-242
SO RADIOCHIMICA ACTA
LA English
DT Article
DE Am-240; Production cross section; Proton irradiation
ID EXCITATION-FUNCTIONS; ACTINIDE PRODUCTION; HEAVIEST ELEMENTS; NATURAL
NICKEL; ENERGY-RANGE; FISSION; NP-237; PURPOSES; TARGETS; NUCLEI
AB A new nuclear reaction for the production of Am-240 was experimentally investigated. Targets of 150-500 mu g/cm(2) Pu-242 on 2 mu mTi were produced through molecular deposition. Five irradiations, in which Pu-242, Ti-nat, and Ni-nat targets were jointly activated with protons from the Lawrence Berkeley National Laboratory 88-Inch Cyclotron produced Am-240, V-48, and Ni-57, respectively. The radioactive decay of these nuclides was monitored using high-purity Ge gamma ray detectors in the weeks following irradiation. A maximum Pu-242(p, 3n)Am-240 nuclear reaction cross section was measured to be 45 +/- 13 mb with 23 MeV protons. While this value is lower than theoretical predictions, it is high enough to be the most viable nuclear reaction for the large-scale production of Am-240.
C1 [Ellison, Paul A.; McLaughlin, Joseph P.; Nitsche, Heino] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Ellison, Paul A.; McLaughlin, Joseph P.; Gregorich, Kenneth E.; Nitsche, Heino] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Stavsetra, Liv] Inst Energy Technol, N-2007 Kjeller, Norway.
RP Nitsche, H (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM HNitsche@berkeley.edu
FU U.S. Department of Energy (DOE), National Nuclear Security
Administration (NNSA) Steawardship Science Academic Alliance program
[DE-FG52-06NA27480, DE-FG52-10NA29652]; DOE NNSA Stewardship Science
Graduate Fellowship [DE-FC52-08NA28752]
FX The authors would like to thank the LBNL staff, operators of the 88-Inch
Cyclotron, Jan Dvorak, Zuzana Dvorakova, and Jacklyn Gates for their
kind assistance during and following the 242Pu irradiations
and Nicholas Esker for helpful editorial comments. Financial support was
provided by U.S. Department of Energy (DOE), National Nuclear Security
Administration (NNSA) Steawardship Science Academic Alliance program
under Contracts No. DE-FG52-06NA27480 and DE-FG52-10NA29652. P.A.E. was
supported by a DOE NNSA Stewardship Science Graduate Fellowship under
Contract No. DE-FC52-08NA28752.
NR 40
TC 1
Z9 1
U1 0
U2 6
PU WALTER DE GRUYTER GMBH
PI BERLIN
PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
SN 0033-8230
J9 RADIOCHIM ACTA
JI Radiochim. Acta
PD JUL
PY 2014
VL 102
IS 7
BP 561
EP 568
DI 10.1515/ract-2014-2219
PG 8
WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology
SC Chemistry; Nuclear Science & Technology
GA AK5UD
UT WOS:000338491000001
ER
PT J
AU Engle, JW
Weidner, JW
Ballard, BD
Fassbender, ME
Hudston, LA
Jackman, KR
Dry, DE
Wolfsberg, LE
Bitteker, LJ
Ullmann, JL
Gulley, MS
Pillai, C
Goff, G
Birnbaum, ER
John, KD
Mashnik, SG
Nortier, FM
AF Engle, Jonathan W.
Weidner, John W.
Ballard, Beau D.
Fassbender, Michael E.
Hudston, Lisa A.
Jackman, Kevin R.
Dry, Donald E.
Wolfsberg, Laura E.
Bitteker, Leo J.
Ullmann, John L.
Gulley, Mark S.
Pillai, Chandra
Goff, George
Birnbaum, Eva R.
John, Kevin D.
Mashnik, Stepan G.
Nortier, Francois M.
TI Ac, La, and Ce radioimpurities in Ac-225 produced in 40-200 MeV proton
irradiations of thorium
SO RADIOCHIMICA ACTA
LA English
DT Article
DE Ac-225; Ac-227; Ce-139; Ce-141; Ce-143; La-140; Ba-140; Alpha-emitting;
Radionuclides; Radiotherapy; Proton irradiation; Thorium
ID CROSS-SECTIONS; RADIOIMMUNOTHERAPY; ACTINIUM; ISOTOPES; THERAPY; SPECTRA
AB Accelerator production of Ac-225 addresses the global supply deficiency currently inhibiting clinical trials fromestablishing Ac-225's therapeutic utility, provided that the accelerator product is of sufficient radionuclidic purity for patient use. Two proton activation experiments utilizing the stacked foil technique between 40 and 200MeV were employed to study the likely co-formation of radionuclides expected to be especially challenging to separate from Ac-225. Foils were assayed by nondestructive gamma-spectroscopy and by alpha-spectroscopy of chemically processed target material. Nuclear formation cross sections for the radionuclides Ac-226 and Ac-227 as well as lower lanthanide radioisotopes Ce-139, Ce-141, Ce-143, and La-140 whose elemental ionic radii closely match that of actinium were measured and are reported. The predictions of the latest MCNP6 event generators are compared with measured data, as they permit estimation of the formation rates of other radionuclides whose decay emissions are not clearly discerned in the complex spectra collected from Th-232(p,x) fission product mixtures.
C1 [Engle, Jonathan W.; Ballard, Beau D.; Fassbender, Michael E.; Hudston, Lisa A.; Jackman, Kevin R.; Dry, Donald E.; Wolfsberg, Laura E.; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; Goff, George; Birnbaum, Eva R.; John, Kevin D.; Mashnik, Stepan G.; Nortier, Francois M.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Weidner, John W.] Air Force Inst Technol, Wright Patterson AFB, OH USA.
RP Engle, JW (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
EM jwengle@lanl.gov
RI Ballard, Beau/E-2925-2017;
OI Ballard, Beau/0000-0003-1206-9358; John, Kevin/0000-0002-6181-9330
FU National Nuclear Security Administration of the U.S. Department of
Energy at Los Alamos National Laboratory [DE-AC52-06NA253996]; US DOE
Office of Science via award from The Isotope Development and Production
for Research and Applications subprogram in the Office of Nuclear
Physics
FX We are grateful for technical assistance from LANL C-NR, C-IIAC,
AOT-OPS, and LANSCEWNR groups' staff. This study was carried out under
the auspices of the National Nuclear Security Administration of the U.S.
Department of Energy at Los Alamos National Laboratory under Contract
No. DE-AC52-06NA253996 with partial funding by the US DOE Office of
Science via an award from The Isotope Development and Production for
Research and Applications subprogram in the Office of Nuclear Physics.
NR 34
TC 9
Z9 9
U1 1
U2 17
PU WALTER DE GRUYTER GMBH
PI BERLIN
PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
SN 0033-8230
J9 RADIOCHIM ACTA
JI Radiochim. Acta
PD JUL
PY 2014
VL 102
IS 7
BP 569
EP 581
DI 10.1515/ract-2013-2179
PG 13
WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology
SC Chemistry; Nuclear Science & Technology
GA AK5UD
UT WOS:000338491000002
ER
PT J
AU Zimmerman, T
Zavarin, M
Powell, BA
AF Zimmerman, Trevor
Zavarin, Mavrik
Powell, Brian A.
TI Influence of humic acid on plutonium sorption to gibbsite: Determination
of Pu-humic acid complexation constants and ternary sorption studies
SO RADIOCHIMICA ACTA
LA English
DT Article
DE Plutonium; Humic acid; Sorption; Ternary complex; Gibbsite
ID METAL-IONS; SUBSTANCES; REDUCTION; ADSORPTION; TETRAVALENT; KAOLINITE;
GOETHITE; SYSTEMS; PU(V); PH
AB In this work stability constants describing Pu(IV), Th(IV), and Np(V) binding to Leonardite humic acid (HA) were determined using a discrete pK(a). model. A hybrid ultra-filtration/equilibrium dialysis, ligand exchange technique was used to generate the partitioning data. Ethylenediaminetetraacetic acid (EDTA) was used as a reference ligand to allow the aqueous chemistry of the Pu(IV)-HA system to be examined over a range of pH values, while minimizing the possibility of precipitation of Pu(IV). The conditional stability constant for Pu(IV) complexation with HA determined as part of this work is log beta(112) = 6.76 +/- 0.14 based on the equation: Pu4+ + HL3 + 2H(2)O <-> Pu(OH)(2)L3(+) + 3H(+) where HA is represented by HL3 (a binding site on the HA with a pK(a) value of 7). This value is three orders of magnitude higher than the Th(IV)-HA constant and between six and eight orders of magnitude higher than the Np(V)-HA complex. The magnitude of the stability constants and the general trend of increasing complexation strength with increasing pH is consistent with previous observations.
The Pu(IV)-HA stability constants were used to model sorption of Pu(IV) to gibbsite in the presence of HA. Assuming only aqueous Pu-HA complexes and AlOH-Pu surface complexes, the model was unable to predict the observed data which exhibited greater sorption at pH 4 relative to pH 6; a phenomenon which does not occur in the absence of HA. Therefore, this study demonstrates that ternary Pu-HA-gibbsite complexes may form under low pH conditions and exhibit greater sorption than that observed in the absence of HA. Although the presence of HA may increase the solubility/aqueous concentrations of Pu in the absence of a solid phase, formation of ternary complexes may indeed retard the subsurface migration of Pu. The corollary to this finding is that increased mobility may occur if the ternary surface complex forms on a mobile colloid rather than part of the subsurface matrix
C1 [Zimmerman, Trevor; Powell, Brian A.] Clemson Univ, Anderson, SC 29625 USA.
[Zavarin, Mavrik] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Glenn T Seaborg Inst, Livermore, CA 94551 USA.
RP Powell, BA (reprint author), Clemson Univ, Anderson, SC 29625 USA.
EM bpowell@clemson.edu
RI Powell, Brian /C-7640-2011
OI Powell, Brian /0000-0003-0423-0180
FU Subsurface Biogeochemical Research Program of the U.S. Department of
Energy's Office of Biological and Environmental Research
FX The authors wish to thank Dr. Annie B. Kersting of Lawrence Livermore
National Laboratory and Dr. Ruth Tinnacher of Lawrence Berkeley National
Laboratory for helpful discussions regarding this work. This work was
supported by the Subsurface Biogeochemical Research Program of the U. S.
Department of Energy's Office of Biological and Environmental Research.
NR 44
TC 7
Z9 7
U1 2
U2 43
PU WALTER DE GRUYTER GMBH
PI BERLIN
PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
SN 0033-8230
J9 RADIOCHIM ACTA
JI Radiochim. Acta
PD JUL
PY 2014
VL 102
IS 7
BP 629
EP 643
DI 10.1515/ract-2014-2163
PG 15
WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology
SC Chemistry; Nuclear Science & Technology
GA AK5UD
UT WOS:000338491000008
ER
PT J
AU Chakrabarty, RK
Beres, ND
Moosmuller, H
China, S
Mazzoleni, C
Dubey, MK
Liu, L
Mishchenko, MI
AF Chakrabarty, Rajan K.
Beres, Nicholas D.
Moosmueller, Hans
China, Swarup
Mazzoleni, Claudio
Dubey, Manvendra K.
Liu, Li
Mishchenko, Michael I.
TI Soot superaggregates from flaming wildfires and their direct radiative
forcing
SO SCIENTIFIC REPORTS
LA English
DT Article
ID INDIVIDUAL AEROSOL-PARTICLES; BIOMASS BURNING PARTICLES; SOUTHERN
AFRICA; CARBONACEOUS PARTICLES; FRACTAL DIMENSION; LIGHT-SCATTERING;
BROWN CARBON; MEXICO-CITY; T-MATRIX; ABSORPTION
AB Wildfires contribute significantly to global soot emissions, yet their aerosol formation mechanisms and resulting particle properties are poorly understood and parameterized in climate models. The conventional view holds that soot is formed via the cluster-dilute aggregation mechanism in wildfires and emitted as aggregates with fractal dimension D-f approximate to 1.8 mobility diameter D-m <= 1 mu m, and aerodynamic diameter D-a <= 300 nm. Here we report the ubiquitous presence of soot superaggregates (SAs) in the outflow from a major wildfire in India. SAs are porous, low-density aggregates of cluster-dilute aggregates with characteristic D-f approximate to 2.6, D-m > 1 mu m, and D-a <= 300 nm that form via the cluster-dense aggregation mechanism. We present additional observations of soot SAs in wildfire smoke-laden air masses over Northern California, New Mexico, and Mexico City. We estimate that SAs contribute, per unit optical depth, up to 35% less atmospheric warming than freshly-emitted (Df approximate to 1.8) aggregates, and approximate to 90% more warming than the volume-equivalent spherical soot particles simulated in climate models.
C1 [Chakrabarty, Rajan K.] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA.
[Chakrabarty, Rajan K.; Beres, Nicholas D.; Moosmueller, Hans] Nevada Syst Higher Educ, Desert Res Inst, Reno, NV USA.
[China, Swarup; Mazzoleni, Claudio] Michigan Technol Univ, Atmospher Sci Program, Houghton, MI 49931 USA.
[Dubey, Manvendra K.] Los Alamos Natl Lab, Earth Syst Observat, Los Alamos, NM USA.
[Liu, Li; Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
RP Chakrabarty, RK (reprint author), Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA.
EM rajan.chakrabarty@gmail.com
RI Dubey, Manvendra/E-3949-2010; Mishchenko, Michael/D-4426-2012;
OI Dubey, Manvendra/0000-0002-3492-790X; Moosmuller,
Hans/0000-0002-1021-8877
FU NASA [NNX10AR89A, NNX11AB79G, NNX12AN97H]; U.S. Department of Energy
Atmospheric System Research(PI-MKD) [DE-SC0010019, F265-LANL]; Desert
Research Institute; U. S. National Science Foundation Division of
Atmospheric and Geospace Sciences [ATM07-21142]
FX This material is based upon work supported by NASA (NNX10AR89A,
NNX11AB79G and NNX12AN97H), the U.S. Department of Energy Atmospheric
System Research (DE-SC0010019 and F265-LANL(PI-MKD)), the U. S. National
Science Foundation Division of Atmospheric and Geospace Sciences
(ATM07-21142), and the Desert Research Institute. We thank V. Ramanathan
for facilitating our participation in the field campaign at Maldives; K.
Gorkowski for his help with sampling aerosols during CARES and the Las
Conchas fire; O. Gustafsson for providing quartz fiber filter samples;
B. Zielinska and her laboratory for performing mass spectrometry
analyses of quartz fiber filters; M. Ahmadian for assisting with
microscopy analysis; L. Wable for illustrations; R. Kreidberg for help
with editing the manuscript; and C. M. Sorensen for insightful
discussions.
NR 56
TC 24
Z9 24
U1 3
U2 54
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD JUL 1
PY 2014
VL 4
AR 5508
DI 10.1038/srep05508
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AK4UR
UT WOS:000338420100005
PM 24981204
ER
PT J
AU MacCarthy, JK
Rowe, CA
AF MacCarthy, Jonathan K.
Rowe, Charlotte A.
TI Pisces: A Practical Seismological Database Library in Python
SO SEISMOLOGICAL RESEARCH LETTERS
LA English
DT Editorial Material
ID MANAGEMENT; OBSPY; TOOL
C1 [MacCarthy, Jonathan K.; Rowe, Charlotte A.] Los Alamos Natl Lab, Geophys Grp EES 17, Los Alamos, NM 87545 USA.
RP MacCarthy, JK (reprint author), Los Alamos Natl Lab, Geophys Grp EES 17, MS DF665, Los Alamos, NM 87545 USA.
EM jkmacc@lanl.gov
OI Rowe, Charlotte/0000-0001-5803-0147
NR 23
TC 0
Z9 0
U1 0
U2 3
PU SEISMOLOGICAL SOC AMER
PI ALBANY
PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA
SN 0895-0695
J9 SEISMOL RES LETT
JI Seismol. Res. Lett.
PD JUL-AUG
PY 2014
VL 85
IS 4
BP 905
EP 911
DI 10.1785/0220140013
PG 7
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AK1NO
UT WOS:000338182000017
ER
PT J
AU Ray, D
Reichhardt, C
Reichhardt, CJO
AF Ray, D.
Reichhardt, C.
Reichhardt, C. J. Olson
TI Vortex states in Archimedean tiling pinning arrays
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article
DE periodic pinning; magnetization; vortex configurations
ID SUPERCONDUCTING FILMS; CRITICAL CURRENTS; REGULAR ARRAY; MAGNETIC DOTS;
FLUX; LATTICE; COMMENSURATE; DYNAMICS; DEFECTS
AB We numerically study vortex ordering and pinning in Archimedean tiling substrates composed of square and triangular plaquettes. The two different plaquettes become occupied at different vortex densities, producing commensurate peaks in the magnetization at non-integer matching fields. We find that as the field increases, in some cases the fraction of occupied pins can decrease due to the competition between fillings of the different plaquette types. We also identify a number of different types of vortex orderings as a function of the field at integer and non-integer commensurate fillings.
C1 [Ray, D.; Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Ray, D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Ray, D (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM cjrx@lanl.gov
OI Reichhardt, Cynthia/0000-0002-3487-5089
FU NNSA of the US DoE at LANL [DE-AC52-06NA25396]
FX This work was carried out under the auspices of the NNSA of the US DoE
at LANL under contract no. DE-AC52-06NA25396.
NR 37
TC 4
Z9 4
U1 1
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
EI 1361-6668
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD JUL
PY 2014
VL 27
IS 7
AR 075006
DI 10.1088/0953-2048/27/7/075006
PG 9
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA AK6KL
UT WOS:000338536400009
ER
PT J
AU Susner, MA
Sumption, MD
Takase, A
Collings, EW
AF Susner, M. A.
Sumption, M. D.
Takase, A.
Collings, E. W.
TI Evidence for Zr site-substitution for Mg in PLD-deposited MgB2 thin
films
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article
DE magnesium diboride; pulsed laser deposition; thin films; superconducting
critical fields
ID CRITICAL-CURRENT DENSITY; UPPER CRITICAL-FIELD; IRREVERSIBILITY FIELD;
SINGLE-CRYSTALS; SUPERCONDUCTIVITY; TRANSITION; NA
AB In an investigation of possible atomic substitution for the Mg site in MgB2, superconducting thin films were deposited by pulsed laser deposition using MgB2 and ZrB2 targets. The resulting c-axis- oriented thin films contained various concentrations of Zr. The structural, chemical, and superconductive properties of these films were investigated. ZrB2 additions were found to increase the a lattice parameter; STEM-based chemical analysis showed Zr to be present within the grains. The superconducting critical temperature was suppressed for the heavily-doped samples. These observations are strong evidence for the substitution of Zr for Mg in the Mg sublattice of MgB2.
C1 [Susner, M. A.; Sumption, M. D.; Collings, E. W.] Ohio State Univ, Dept Mat Sci & Engn, Ctr Superconducting & Magnet Mat, Columbus, OH 43210 USA.
[Takase, A.] Rigaku Amer, The Woodlands, TX 77381 USA.
RP Susner, MA (reprint author), ORNL, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RI Susner, Michael/G-3275-2015; Susner, Michael/B-1666-2013; Sumption,
Mike/N-5913-2016
OI Susner, Michael/0000-0002-1211-8749; Susner,
Michael/0000-0002-1211-8749; Sumption, Mike/0000-0002-4243-8380
FU United States Department of Energy, Office of High Energy Physics
[DE-FG02-95ER40900]; National Science Foundation Cooperative Agreement
[DMR-0654118]; State of Florida; US Department of Energy; Ohio State
University NanoSystems Laboratory and Denis Pelekhov
FX This work was supported by the United States Department of Energy,
Office of High Energy Physics under grant DE-FG02-95ER40900.
Additionally, a portion of this work was performed at the National High
Magnetic Field Laboratory, which is supported by National Science
Foundation Cooperative Agreement no. DMR-0654118, the State of Florida,
and the US Department of Energy. We also acknowledge the support of the
Ohio State University NanoSystems Laboratory and Denis Pelekhov for use
of their PPMS. Finally, the authors of this work would like to
acknowledge Hendrik O Colijn and Daniel E Huber of the Ohio State
CEOF/CEMAS facility for their assistance in electron microscopy
characterization and training.
NR 28
TC 1
Z9 1
U1 3
U2 18
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
EI 1361-6668
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD JUL
PY 2014
VL 27
IS 7
AR 075009
DI 10.1088/0953-2048/27/7/075009
PG 7
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA AK6KL
UT WOS:000338536400012
ER
PT J
AU Takahashi, M
Herendeen, PS
Xiao, XH
Crane, PR
AF Takahashi, Masamichi
Herendeen, Patrick S.
Xiao, Xianghui
Crane, Peter R.
TI Lauraceous Fossil Flowers from the Kamikitaba Assemblage (Coniacian,
Late Cretaceous) of Northeastern Japan (Lauraceae)
SO SYSTEMATIC BOTANY
LA English
DT Article
DE Cretaceous; mesofossils; Microlaterus; SRXTM; Synchrotron-radiation
X-Ray microtomography
ID EASTERN NORTH-AMERICA; SP-NOV; POTOMAC GROUP; ANGIOSPERM RADIATION;
FLORAL EVIDENCE; PHYLOGENY; GEN.; INFLORESCENCES; DIVERSITY; SEQUENCES
AB A new genus and species of Lauraceae, Microlaurus perigynus gen. et sp. nov. is described based on fossil charcoalified flower buds recovered from the Kamikitaba assemblage (early Coniacian, Late Cretaceous; ca. 89 million years before present (myr BP)) in the Ashizawa Formation (Asamigawa Member) of the Futaba Group in northeastern Japan. Analysis of the internal structure of the fossil buds using synchrotron-radiation X-ray microtomography (SRXTM) at the 2-BM-B beamline of the Advanced Photon Source (APS), Argonne National Laboratory, shows that the flowers are small, pedicellate, bisexual, trimerous, and actinomorphic, with small outer tepals, larger inner tepals, three whorls of stamens, an innermost androecial whorl composed of staminodia, and a unicarpellate gynoecium containing a single ovule. Microlaurus perigynus is assigned to the Lauraceae based on the regular trimerous floral organization and other details of floral structure, but it is distinguished from most previously described lauraceous fossil flowers by the poorly differentiated filament and anther in the stamens of the third whorl and the marked size difference between the small outer tepals and the large inner tepals. Also unusual are the paired glandular appendages that appear to be associated with the first (outermost) whorl of stamens, rather than the stamens of the third whorl, although the precise position is not fully clear. The same feature occurs in Hernandiaceae, the sister group of Lauraceae, as well as in PowhaMnia connata, an earlier but fragmentary lauralean fossil flower from the Early to Middle Albian of Virginia. Microlaurus perigynus adds to the floral diversity of Lauraceae known from the Late Cretaceous, and its presence in the Kamikitaba assemblage from Japan underlines the broad geographic distribution and floristic significance of lauraceous plants during the Late Cretaceous.
C1 [Takahashi, Masamichi] Niigata Univ, Fac Sci, Dept Environm Sci, Nishi Ku, Niigata 9502181, Japan.
[Herendeen, Patrick S.] Chicago Bot Garden, Glencoe, IL 60022 USA.
[Xiao, Xianghui] Adv Photon Source, Argonne, IL 60439 USA.
[Crane, Peter R.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA.
RP Takahashi, M (reprint author), Niigata Univ, Fac Sci, Dept Environm Sci, Nishi Ku, Niigata 9502181, Japan.
EM masamichi@env.sc.niigata-u.ac.jp
FU Japan Society for the Promotion of Science [18570083, 21570092,
24570092]; U.S. DOE [DE-AC02-06CH11357]
FX We thank Drs. Hank van der Werff and Jens Rohwer for comments on the
fossils and comparisons with extant Lauraceae, and two anonymous
reviewers for helpful comments on the manuscript. The study was funded
by Grants-in-Aid for Scientific Research (18570083, 21570092, and
24570092) from Japan Society for the Promotion of Science to M.
Takahashi. Use of the Advanced Photon Source, an Office of Science User
Facility, operated for the U. S. Department of Energy (DOE) Office of
Science by Argonne National Laboratory, was supported by the U.S. DOE
under Contract no. DE-AC02-06CH11357.
NR 57
TC 4
Z9 4
U1 4
U2 17
PU AMER SOC PLANT TAXONOMISTS
PI LARAMIE
PA UNIV WYOMING, DEPT BOTANY 3165, 1000 E UNIVERSITY AVE, LARAMIE, WY 82071
USA
SN 0363-6445
EI 1548-2324
J9 SYST BOT
JI Syst. Bot.
PD JUL-SEP
PY 2014
VL 39
IS 3
BP 715
EP 724
DI 10.1600/036364414X681464
PG 10
WC Plant Sciences; Evolutionary Biology
SC Plant Sciences; Evolutionary Biology
GA AK4OY
UT WOS:000338405200004
ER
PT J
AU Provino, A
Manfrinetti, P
Gschneidner, KA
Dhar, SK
Schlagel, DL
Lograsso, TA
Miller, GJ
Thimmaiah, S
Wang, H
Russell, AM
Becker, A
Mudryk, Y
AF Provino, Alessia
Manfrinetti, Pietro
Gschneidner, Karl A., Jr.
Dhar, Sudesh K.
Schlagel, Deborah L.
Lograsso, Thomas A.
Miller, Gordon J.
Thimmaiah, Srinivasa
Wang, Hui
Russell, Alan M.
Becker, Andrew
Mudryk, Yaroslav
TI Self-assembled nano- to micron-size fibers from molten R11Ni4In9
intemietallics
SO ACTA MATERIALIA
LA English
DT Article
DE Rare-earth intermetallics; Nanocrystalline metals; Fibers; Anisotropic
properties; Ferrimagnetism
AB A study of the formation of Gd11M4In9 (M = Ni, Pd, Pt) and R11Ni4In9 (R = rare earth) compounds revealed a unique and peculiar property, which is to naturally crystallize in a bundle of self-assembled fibers when cooled from the melt. The fibers, which are nano- to millimeters in cross-section and approximate to 11-40 mm long, grow unidirectionally along a temperature gradient. These compounds adopt the orthorhombic Nd11Pd4In9 structure type (oC48-Cmmm). This structure is layered, with slabs of R atoms alternating with slabs of Ni/In atoms along a short c-axis (much shorter than either the a- or b-axis). The growth direction of the fibers is along the crystallographic c-axis, orthogonal to the a-b plane. Two strong and short In In bonds lie in the a-b plane, which are even shorter than in In metal. Integrated crystal orbital Hamilton population calculations show that the In In bonds create isolated "R8Ni4In9" rods growing along the c-axis, with the In In bonds being part of the rods. This appears to be an important factor explaining the microfibrous nature of these phases. Some physical properties have been measured on the Gd11Ni4In9 homolog. The compound orders ferrimagnetically at T-c approximate to 88 K, and at lower temperatures (46 and 10 K), two other magnetic anomalies were observed, probably due to spin reorientations. As expected from the bonding features, the mechanical, magnetic and electrical properties are strongly anisotropic. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Provino, Alessia; Manfrinetti, Pietro] Univ Genoa, Dept Chem, I-16146 Genoa, Italy.
[Provino, Alessia; Manfrinetti, Pietro; Gschneidner, Karl A., Jr.; Schlagel, Deborah L.; Lograsso, Thomas A.; Miller, Gordon J.; Thimmaiah, Srinivasa; Wang, Hui; Mudryk, Yaroslav] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA.
[Gschneidner, Karl A., Jr.; Russell, Alan M.; Becker, Andrew] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Miller, Gordon J.; Wang, Hui] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
RP Gschneidner, KA (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM cagey@ameslab.gov
FU U.S. Department of Energy, Office of Basic Energy Science, Division of
Materials Sciences and Engineering; U.S. Department of Energy by Iowa
State University [DE-AC02-07CH11358]; [NSF-DMR 10-05765]
FX The research carried out at the Ames Laboratory was supported by the
U.S. Department of Energy, Office of Basic Energy Science, Division of
Materials Sciences and Engineering. The Ames Laboratory is operated for
the U.S. Department of Energy by Iowa State University under Contract
No. DE-AC02-07CH11358. A.P. is grateful to Prof. L. Banfi (Director of
the PhD School in Sciences and Technologies of Chemistry and Materials,
University of Genova, Italy) for support of a one-year fellowship
abroad. A.P. and P.M. thank Mr. Roger Rink for technical support
provided during measurements, and Mrs. Carol Smith for preparing the
manuscript. Theoretical calculations (G.J.M. and H.W.) were supported by
NSF-DMR 10-05765. The authors wish to thank Prof. M.E. Glicksman,
Florida Institute of Technology for his useful comments.
NR 24
TC 4
Z9 4
U1 2
U2 9
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD JUL
PY 2014
VL 73
BP 27
EP 36
DI 10.1016/j.actamat.2014.03.061
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA AJ7BV
UT WOS:000337853100004
ER
PT J
AU Senninger, O
Martinez, E
Soisson, F
Nastar, M
Brechet, Y
AF Senninger, Oriane
Martinez, Enrique
Soisson, Frederic
Nastar, Maylise
Brechet, Yves
TI Atomistic simulations of the decomposition kinetics in Fe-Cr alloys:
Influence of magnetism
SO ACTA MATERIALIA
LA English
DT Article
DE Fe-Cr alloys; Precipitation kinetics; Monte Carlo simulations; Magnetic
transitions; Diffusion
ID SMALL-ANGLE SCATTERING; SPINODAL DECOMPOSITION; ALPHA-IRON; DIFFUSION;
CHROMIUM; MOSSBAUER; SYSTEM
AB Magnetism plays a crucial role in the thermodynamic and kinetic properties of ferritic alloys. In fact, magnetism increases the solubility limit of Cr in Fe, inducing an asymmetrical phase diagram. Moreover, the phase transition from ferromagnetic to paramagnetic (F/P) iron alloys modifies to a large extent the system response to different environmental conditions by modification of the alloy diffusion properties. Indeed, experimental tracer diffusion coefficients deviate from an Arrhenius law during the F/P magnetic transition, leading to a large increase in the paramagnetic regime compared to the extrapolated value from the ferromagnetic domain. Furthermore, as the Curie temperature decreases with the Cr concentration, this evolution of the diffusion properties affects the decomposition kinetics in different ways depending on the alloy composition. An atomic diffusion model, with pair interactions that depend on the local composition and on temperature, has been developed to take into account this magnetic transition effect. The interaction model has been implemented in an atomistic kinetic Monte Carlo algorithm to study the diffusion coefficients and precipitation kinetics of the Fe Cr alloys. This model has been successfully compared to decomposition kinetic experiments for a wide range of concentrations and temperatures. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Senninger, Oriane; Soisson, Frederic; Nastar, Maylise] CEA, DEN, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France.
[Martinez, Enrique] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Brechet, Yves] CNRS UJF, INP Grenoble, SIMAP, St Martin Dheres, France.
RP Soisson, F (reprint author), CEA, DEN, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France.
EM frederic.soisson@cea.fr
OI Martinez Saez, Enrique/0000-0002-2690-2622
FU European fusion materials modeling program; European Atomic Energy
Community 7th Framework Program [212175]; US Department of Energy
through the LANL/LDRD Program
FX We thank C.-C. Fu and E. Clouet for many fruitful discussions. This
research has received partial funding from the European fusion materials
modeling program and from the European Atomic Energy Community 7th
Framework Program (FP7/2007-2011), under Grant Agreement No. 212175
(GetMat project). E.M. gratefully acknowledges the support of the US
Department of Energy through the LANL/LDRD Program for this work.
NR 46
TC 12
Z9 12
U1 2
U2 37
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD JUL
PY 2014
VL 73
BP 97
EP 106
DI 10.1016/j.actamat.2014.03.019
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA AJ7BV
UT WOS:000337853100010
ER
PT J
AU Lee, SY
Wang, H
Gharghouri, MA
Nayyeri, G
Woo, W
Shin, E
Wu, PD
Poole, WJ
Wu, W
An, K
AF Lee, S. Y.
Wang, H.
Gharghouri, M. A.
Nayyeri, G.
Woo, W.
Shin, E.
Wu, P. D.
Poole, W. J.
Wu, W.
An, K.
TI Deformation behavior of solid-solution-strengthened Mg-9 wt.% Al alloy:
In situ neutron diffraction and elastic-viscoplastic self-consistent
modeling
SO ACTA MATERIALIA
LA English
DT Article
DE Magnesium; Deformation; In situ neutron diffraction; EVPSC model;
Lattice strain
ID WROUGHT MAGNESIUM ALLOY; TWINNING-DETWINNING BEHAVIOR; LATTICE STRAIN
EVOLUTION; FINITE-ELEMENT-METHOD; MECHANICAL-BEHAVIOR; TEXTURE
DEVELOPMENT; AZ31B SHEET; STRESS-RELAXATION; STAINLESS-STEEL; INTERNAL
STRAIN
AB In situ neutron diffraction and elastic-viscoplastic self-consistent (EVPSC) modeling have been employed to understand the deformation mechanisms of the loading-unloading process under uniaxial tension in a solid-solution-strengthened extruded Mg-9 wt.% Al alloy. The initial texture measured by neutron diffraction shows that the {00.2} basal planes in most grains are tilted around 20-30 from the extrusion axis, indicating that basal slip should be easily activated in a majority of grains under tension. Non-linear stress strain responses are observed during unloading and reloading after the material is fully plastically deformed under tension. In situ neutron diffraction measurements have also demonstrated the non-linear behavior of lattice strains during unloading and reloading, revealing that load redistribution continuously occurs between soft and hard grain orientations. The predicted macroscopic stress-strain curve and the lattice strain evolution by the EVPSC model are in good agreement with the experimental data. The EVPSC model provides the relative activities of the available slip and twinning modes, as well as the elastic and plastic strains of the various grain families. It is suggested that the non-linear phenomena in the macroscopic stress-strain responses and microscopic lattice strains during unloading and reloading are due to plastic deformation by the operation of basal (a) slip in the soft grain orientations (e.g. {10.1}, {11.2} and {10.2} grain families). (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Lee, S. Y.] Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, South Korea.
[Wang, H.; Wu, P. D.] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada.
[Gharghouri, M. A.] AECL Res, Chalk River Labs, Canadian Neutron Beam Ctr, Chalk River, ON K0J 1J0, Canada.
[Nayyeri, G.; Poole, W. J.] Univ British Columbia, Dept Mat Engn, Vancouver, BC V6T 1Z4, Canada.
[Woo, W.; Shin, E.] Korea Atom Energy Res Inst, Div Neutron Sci, Taejon 305353, South Korea.
[Wu, W.; An, K.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
RP Lee, SY (reprint author), Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, South Korea.
EM sylee2012@cnu.ac.kr
RI An, Ke/G-5226-2011; Wang, Huamiao/F-7693-2010; Wu, Wei/G-3204-2014; Wu,
Peidong/A-7009-2008;
OI An, Ke/0000-0002-6093-429X; Wang, Huamiao/0000-0002-7167-2483; Wu,
Wei/0000-0002-8596-9253; WOO, Wanchuck/0000-0003-0350-5357
FU National Research Foundation of Korea (NRF) - Korean government (MSIP)
[2012M2B2A4029572, 2013R1A4A1069528]; NSERC Magnesium Strategic Research
Network (MagNET); Chungnam National University; Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy
FX This work was supported by the National Research Foundation of Korea
(NRF) Grant funded by the Korean government (MSIP) (Nos.
2012M2B2A4029572 and 2013R1A4A1069528). This work was also supported by
funding from the NSERC Magnesium Strategic Research Network (MagNET) and
the Chungnam National University. This research at ORNL's Spallation
Neutron Source was sponsored by the Scientific User Facilities Division,
Office of Basic Energy Sciences, U.S. Department of Energy.
NR 69
TC 24
Z9 24
U1 4
U2 38
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD JUL
PY 2014
VL 73
BP 139
EP 148
DI 10.1016/j.actamat.2014.03.038
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA AJ7BV
UT WOS:000337853100014
ER
PT J
AU Hunter, SD
Bloser, PF
Depaola, GO
Dion, MP
DeNolfo, GA
Hanu, A
Iparraguirre, M
Legere, J
Longo, F
McConnell, ML
Nowicki, SF
Ryan, JM
Son, S
Stecker, FW
AF Hunter, Stanley D.
Bloser, Peter F.
Depaola, Gerardo O.
Dion, Michael P.
DeNolfo, Georgia A.
Hanu, Andrei
Iparraguirre, Marcos
Legere, Jason
Longo, Francesco
McConnell, Mark L.
Nowicki, Suzanne F.
Ryan, James M.
Son, Seunghee
Stecker, Floyd W.
TI A pair production telescope for medium-energy gamma-ray polarimetry
SO ASTROPARTICLE PHYSICS
LA English
DT Article
DE Gamma rays; Pair production; Angular resolution; Polarimetry;
Sensitivity; Time projection chamber
ID DOUBLE RADIO-SOURCES; CARBON-DISULFIDE; LONGITUDINAL DIFFUSION;
PROPORTIONAL-COUNTERS; MULTIPLE-SCATTERING; LINEAR-POLARIZATION; EGRET
OBSERVATIONS; CRAB PULSAR; DETECTORS; EMISSION
AB We describe the science motivation and development of a pair production telescope for medium-energy (similar to 5-200 MeV) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (similar to 0.6 degrees at 70 MeV), continuum sensitivity comparable with the Fermi-LAT front detector (<3 x 10(-6) MeV cm(-2) s(-1) 70 MeV), and minimum detectable polarization less than 10% for a 10 mCrab source in 10(6) s. Published by Elsevier B.V.
C1 [Hunter, Stanley D.; DeNolfo, Georgia A.; Hanu, Andrei; Nowicki, Suzanne F.; Son, Seunghee; Stecker, Floyd W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bloser, Peter F.; Legere, Jason; McConnell, Mark L.; Ryan, James M.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Depaola, Gerardo O.; Iparraguirre, Marcos] Univ Cordoba, Fac Matemat Astron & Fis, RA-5008 Cordoba, Argentina.
[Dion, Michael P.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Longo, Francesco] Univ Trieste, Dipartimento Fis, Treste, Italy.
[Nowicki, Suzanne F.; Son, Seunghee] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
RP Hunter, SD (reprint author), NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA.
EM stanley.d.hunter@nasa.gov
OI Dion, Michael/0000-0002-3030-0050
NR 89
TC 12
Z9 12
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-6505
EI 1873-2852
J9 ASTROPART PHYS
JI Astropart Phys.
PD JUL-AUG
PY 2014
VL 59
BP 18
EP 28
DI 10.1016/j.astropartphys.2014.04.002
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA AJ7MT
UT WOS:000337881500004
ER
PT J
AU Ajello, M
Albert, A
Allafort, A
Baldini, L
Barbiellini, G
Bastieri, D
Bellazzini, R
Bissaldi, E
Bonamente, E
Brandt, TJ
Bregeon, J
Brigida, M
Bruel, P
Buehler, R
Buson, S
Caliandro, GA
Cameron, RA
Caraveo, PA
Cecchi, C
Charles, E
Chekhtman, A
Chiang, J
Chiaro, G
Ciprini, S
Claus, R
Cohen-Tanugi, J
Cominsky, LR
Conrad, J
Cutini, S
D'Ammando, F
de Palma, F
Dermer, CD
Desiante, R
Digel, SW
Silva, EDE
Drell, PS
Drlica-Wagner, A
Favuzzi, C
Focke, WB
Franckowiak, A
Fukazawa, Y
Fusco, P
Gargano, F
Gasparrini, D
Germani, S
Giglietto, N
Giommi, P
Giordano, F
Giroletti, M
Glanzman, T
Godfrey, G
Grenier, IA
Grove, JE
Guiriec, S
Hadasch, D
Hayashida, M
Hays, E
Horan, D
Hou, X
Hughes, RE
Inoue, Y
Jackson, MS
Jogler, T
Johannesson, G
Johnson, AS
Johnson, WN
Kamae, T
Knodlseder, J
Kocevski, D
Kuss, M
Lande, J
Larsson, S
Latronico, L
Longo, F
Loparco, F
Lott, B
Lovellette, MN
Lubrano, P
Mayer, M
Mazziotta, MN
McEnery, JE
Michelson, PF
Mizuno, T
Moiseev, AA
Monte, C
Monzani, ME
Morselli, A
Moskalenko, IV
Murgia, S
Murphy, R
Nakamori, T
Nemmen, R
Nuss, E
Ohno, M
Ohsugi, T
Omodei, N
Orienti, M
Orlando, E
Ormes, JF
Paneque, D
Panetta, JH
Perkins, JS
Pesce-Rollins, M
Petrosian, V
Piron, F
Pivato, G
Porter, TA
Raino, S
Rando, R
Razzano, M
Reimer, A
Reimer, O
Roth, M
Schulz, A
Sgro, C
Siskind, EJ
Spandre, G
Spinelli, P
Takahashi, H
Thayer, JG
Thayer, JB
Thompson, DJ
Tibaldo, L
Tinivella, M
Tosti, G
Troja, E
Usher, TL
Vandenbroucke, J
Vasileiou, V
Vianello, G
Vitale, V
Werner, M
Winer, BL
Wood, DL
Wood, KS
Yang, Z
AF Ajello, M.
Albert, A.
Allafort, A.
Baldini, L.
Barbiellini, G.
Bastieri, D.
Bellazzini, R.
Bissaldi, E.
Bonamente, E.
Brandt, T. J.
Bregeon, J.
Brigida, M.
Bruel, P.
Buehler, R.
Buson, S.
Caliandro, G. A.
Cameron, R. A.
Caraveo, P. A.
Cecchi, C.
Charles, E.
Chekhtman, A.
Chiang, J.
Chiaro, G.
Ciprini, S.
Claus, R.
Cohen-Tanugi, J.
Cominsky, L. R.
Conrad, J.
Cutini, S.
D'Ammando, F.
de Palma, F.
Dermer, C. D.
Desiante, R.
Digel, S. W.
do Couto e Silva, E.
Drell, P. S.
Drlica-Wagner, A.
Favuzzi, C.
Focke, W. B.
Franckowiak, A.
Fukazawa, Y.
Fusco, P.
Gargano, F.
Gasparrini, D.
Germani, S.
Giglietto, N.
Giommi, P.
Giordano, F.
Giroletti, M.
Glanzman, T.
Godfrey, G.
Grenier, I. A.
Grove, J. E.
Guiriec, S.
Hadasch, D.
Hayashida, M.
Hays, E.
Horan, D.
Hou, X.
Hughes, R. E.
Inoue, Y.
Jackson, M. S.
Jogler, T.
Johannesson, G.
Johnson, A. S.
Johnson, W. N.
Kamae, T.
Knoedlseder, J.
Kocevski, D.
Kuss, M.
Lande, J.
Larsson, S.
Latronico, L.
Longo, F.
Loparco, F.
Lott, B.
Lovellette, M. N.
Lubrano, P.
Mayer, M.
Mazziotta, M. N.
McEnery, J. E.
Michelson, P. F.
Mizuno, T.
Moiseev, A. A.
Monte, C.
Monzani, M. E.
Morselli, A.
Moskalenko, I. V.
Murgia, S.
Murphy, R.
Nakamori, T.
Nemmen, R.
Nuss, E.
Ohno, M.
Ohsugi, T.
Omodei, N.
Orienti, M.
Orlando, E.
Ormes, J. F.
Paneque, D.
Panetta, J. H.
Perkins, J. S.
Pesce-Rollins, M.
Petrosian, V.
Piron, F.
Pivato, G.
Porter, T. A.
Raino, S.
Rando, R.
Razzano, M.
Reimer, A.
Reimer, O.
Roth, M.
Schulz, A.
Sgro, C.
Siskind, E. J.
Spandre, G.
Spinelli, P.
Takahashi, H.
Thayer, J. G.
Thayer, J. B.
Thompson, D. J.
Tibaldo, L.
Tinivella, M.
Tosti, G.
Troja, E.
Usher, T. L.
Vandenbroucke, J.
Vasileiou, V.
Vianello, G.
Vitale, V.
Werner, M.
Winer, B. L.
Wood, D. L.
Wood, K. S.
Yang, Z.
TI IMPULSIVE AND LONG DURATION HIGH-ENERGY GAMMA-RAY EMISSION FROM THE VERY
BRIGHT 2012 MARCH 7 SOLAR FLARES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE Sun: flares; Sun: X-rays, gamma rays
ID LARGE-AREA TELESCOPE; STOCHASTIC ACCELERATION; X-RAY; VELA PULSAR;
ELECTRON ACCELERATION; EGRET; CALIBRATION; PARTICLES; COMPTON;
DIRECTIVITY
AB The Fermi Large Area Telescope (LAT) detected gamma-rays up to 4 GeV from two bright X-class solar flares on 2012 March 7, showing both an impulsive and temporally extended emission phases. The gamma-rays appear to originate from the same active region as the X-rays associated with these flares. The >100 MeV gamma-ray flux decreases monotonically during the first hour (impulsive phase) followed by a slower decrease for the next 20 hr. A power law with a high-energy exponential cutoff can adequately describe the photon spectrum. Assuming that the gamma rays result from the decay of pions produced by accelerated protons and ions with a power-law spectrum, we find that the index of that spectrum is similar to 3, with minor variations during the impulsive phase. During the extended phase the photon spectrum softens monotonically, requiring the proton index varying from similar to 4 to >5. The >30 MeV proton flux observed by the GOES satellites also shows a flux decrease and spectral softening, but with a harder spectrum (index similar to 2-3). Based on these observations, we explore the relative merits of prompt or continuous acceleration scenarios, hadronic or leptonic emission processes, and acceleration at the solar corona or by the fast coronal mass ejections. We conclude that the most likely scenario is continuous acceleration of protons in the solar corona that penetrate the lower solar atmosphere and produce pions that decay into gamma rays. However, acceleration in the downstream of the shock cannot be definitely ruled out.
C1 [Ajello, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Albert, A.; Allafort, A.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Inoue, Y.; Jogler, T.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.
[Albert, A.; Allafort, A.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Inoue, Y.; Jogler, T.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Baldini, L.] Univ Pisa, I-56127 Pisa, Italy.
[Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Barbiellini, G.; Bissaldi, E.; Desiante, R.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bastieri, D.; Buson, S.; Chiaro, G.; Pivato, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[Bissaldi, E.] Univ Trieste, I-34127 Trieste, Italy.
[Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy.
[Brandt, T. J.; Guiriec, S.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Nemmen, R.; Perkins, J. S.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.
[Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy.
[Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Bruel, P.; Horan, D.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, Palaiseau, France.
[Buehler, R.; Mayer, M.; Schulz, A.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany.
[Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy.
[Chekhtman, A.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA.
[Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy.
[Ciprini, S.; Cutini, S.; Gasparrini, D.] Ist Nazl Astrofis Osservatorio Astron Roma, I-00040 Rome, Italy.
[Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS IN2P3, Lab Univers & Particules Montpellier, Montpellier, France.
[Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA.
[Conrad, J.; Larsson, S.; Yang, Z.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden.
[Conrad, J.; Jackson, M. S.; Larsson, S.; Yang, Z.] Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, SE-10691 Stockholm, Sweden.
[Conrad, J.] Royal Swedish Acad Sci, SE-10405 Stockholm, Sweden.
[D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Murphy, R.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Drlica-Wagner, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Fukazawa, Y.; Ohno, M.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan.
[Grenier, I. A.] CEA IRFU CNRS Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM, F-91191 Gif Sur Yvette, France.
[Hadasch, D.; Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.
[Hadasch, D.; Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria.
[Hayashida, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan.
[Hou, X.; Lott, B.] Univ Bordeaux 1, CNRS IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France.
[Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Jackson, M. S.] Royal Inst Technol KTH, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden.
[Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland.
[Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France.
[Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden.
[Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[McEnery, J. E.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[McEnery, J. E.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan.
[Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA.
[Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Murgia, S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA.
[Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA.
[Vianello, G.] CIFS, I-10133 Turin, Italy.
[Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy.
[Wood, D. L.] Praxis Inc, Alexandria, VA 22303 USA.
RP Ajello, M (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA.
EM nicola.omodei@stanford.edu; melissa.pesce.rollins@pi.infn.it;
vahep@stanford.edu
RI Bissaldi, Elisabetta/K-7911-2016; Reimer, Olaf/A-3117-2013; Morselli,
Aldo/G-6769-2011; Nemmen, Rodrigo/O-6841-2014; Johannesson,
Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Orlando,
E/R-5594-2016; Mazziotta, Mario /O-8867-2015; Gargano,
Fabio/O-8934-2015; giglietto, nicola/I-8951-2012; Moskalenko,
Igor/A-1301-2007; Sgro, Carmelo/K-3395-2016
OI giommi, paolo/0000-0002-2265-5003; Caraveo,
Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214;
SPINELLI, Paolo/0000-0001-6688-8864; Rando,
Riccardo/0000-0001-6992-818X; Inoue, Yoshiyuki/0000-0002-7272-1136;
Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins,
Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094;
Giroletti, Marcello/0000-0002-8657-8852; Gasparrini,
Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Larsson,
Stefan/0000-0003-0716-107X; Bissaldi, Elisabetta/0000-0001-9935-8106;
Reimer, Olaf/0000-0001-6953-1385; Morselli, Aldo/0000-0002-7704-9553;
Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco,
Francesco/0000-0002-1173-5673; Giordano, Francesco/0000-0002-8651-2394;
Mazziotta, Mario /0000-0001-9325-4672; Gargano,
Fabio/0000-0002-5055-6395; giglietto, nicola/0000-0002-9021-2888;
Moskalenko, Igor/0000-0001-6141-458X;
NR 56
TC 25
Z9 25
U1 1
U2 19
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 20
DI 10.1088/0004-637X/789/1/20
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400020
ER
PT J
AU Firestone, RB
AF Firestone, R. B.
TI OBSERVATION OF 23 SUPERNOVAE THAT EXPLODED <300 pc FROM EARTH DURING THE
PAST 300 kyr
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmic rays; Earth; ISM: supernova remnants; supernovae: general
ID RADIOCARBON AGE CALIBRATION; NEARBY OB ASSOCIATIONS; VELA SUPERNOVA;
COSMIC-RAYS; CLIMATE-CHANGE; CARBON-CYCLE; GAMMA-RAYS; HALF-LIFE; ICE
CORE; REMNANTS
AB Four supernovae (SNe), exploding <= 300 pc from Earth, were recorded 44, 37, 32, and 22 kyr ago in the radiocarbon (C-14) record during the past 50 kyr. Each SN left a nearly identical signature in the record, beginning with an initial sudden increase in atmospheric radiocarbon, when the SN exploded, followed by a hiatus of 1500 yr, and concluding with a sustained 2000 yr increase in global radiocarbon due to gamma-rays produced by diffusive shock in the SN remnant (SNR). For the past 18 kyr excess radiocarbon has decayed with the C-14 half-life. SN22kyrBP, is identified as the Vela SN that exploded 250 +/- 30 pc from Earth. These SN are confirmed in the Be-10, Al-26, Cl-36, and NO3- geologic records. The rate of near-Earth SNe is consistent with the observed rate of historical SNe giving a galactic rate of 14 +/- 3 kyr(-1) assuming the Chandra Galactic Catalog SNR distribution. The Earth has been used as a calorimeter to determine that approximate to 2 x 10(49) erg were released as gamma-rays at the time of each SN explosion and approximate to 10(50) erg in gamma-rays following each SN. The background rate of C-14 production by cosmic rays has been determined as 1.61 atoms cm(-2) s(-1). Approximately 1/3 of the cosmic ray energy produced by diffusive shock in the SNR was observed to be emitted as high-energy gamma-rays. Analysis of the Be-10/Be-9 ratio in marine sediment identified 19 additional near-Earth SNe that exploded 50-300 kyr ago. Comparison of the radiocarbon record with global temperature variations indicated that each SN explosion is correlated with a concurrent global warming of approximate to 3 degrees C-4 degrees C.
C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Firestone, RB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM rbfirestone@lbl.gov
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported, in part, by the U.S. Department of Energy
Contract DE-AC02-05CH11231. The author is especially grateful for
helpful discussions and suggestions by Allen West (Geoscience
Consulting, Dewey, AZ), Jon Hagstrum (USGS, Menlo Park, CA), Spencer
Klein (LBNL, Berkeley, CA), Christopher McKee (University of California,
Berkeley, Department of Physics), and Mary Firestone (University of
California, Berkeley, Department of Environmental Science Policy and
Management.
NR 65
TC 5
Z9 5
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 29
DI 10.1088/0004-637X/789/1/29
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400029
ER
PT J
AU Nynka, M
Hailey, CJ
Reynolds, SP
An, HJ
Baganoff, FK
Boggs, SE
Christensen, FE
Craig, WW
Gotthelf, EV
Grefenstette, BW
Harrison, FA
Krivonos, R
Madsen, KK
Mori, K
Perez, K
Stern, D
Wik, DR
Zhang, WW
Zoglauer, A
AF Nynka, Melania
Hailey, Charles J.
Reynolds, Stephen P.
An, Hongjun
Baganoff, Frederick K.
Boggs, Steven E.
Christensen, Finn E.
Craig, William W.
Gotthelf, Eric V.
Grefenstette, Brian W.
Harrison, Fiona A.
Krivonos, Roman
Madsen, Kristin K.
Mori, Kaya
Perez, Kerstin
Stern, Daniel
Wik, Daniel R.
Zhang, William W.
Zoglauer, Andreas
TI NuSTAR STUDY OF HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF PWN G21.5-0.9
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE ISM: individual objects (G21.5-0.9); ISM: supernova remnants; radiation
mechanisms: general; stars: neutron; X-rays: ISM
ID SUPERNOVA REMNANT G21.5-0.9; PULSAR-WIND NEBULAE; XMM-NEWTON;
CRAB-NEBULA; RELATIVISTIC ELECTRONS; INTERSTELLAR-MEDIUM; DUST
SCATTERING; PSR J1833-1034; YOUNG PULSAR; HALO
AB We present NuSTAR high-energy X-ray observations of the pulsar wind nebula (PWN)/supernova remnant G21.5-0.9. We detect integrated emission from the nebula up to similar to 40 keV, and resolve individual spatial features over a broad X-ray band for the first time. The morphology seen by NuSTAR agrees well with that seen by XMM-Newton and Chandra below 10 keV. At high energies, NuSTAR clearly detects non-thermal emission up to similar to 20 keV that extends along the eastern and northern rim of the supernova shell. The broadband images clearly demonstrate that X-ray emission from the North Spur and Eastern Limb results predominantly from non-thermal processes. We detect a break in the spatially integrated X-ray spectrum at similar to 9 keV that cannot be reproduced by current spectral energy distribution models, implying either a more complex electron injection spectrum or an additional process such as diffusion compared to what has been considered in previous work. We use spatially resolved maps to derive an energy-dependent cooling length scale, L(E) proportional to E-m with m = -0.21 +/- 0.01. We find this to be inconsistent with the model for the morphological evolution with energy described by Kennel & Coroniti. This value, along with the observed steepening in power-law index between radio and X-ray, can be quantitatively explained as an energy-loss spectral break in the simple scaling model of Reynolds, assuming particle advection dominates over diffusion. This interpretation requires a substantial departure from spherical magnetohydrodynamic, magnetic-flux-conserving outflow, most plausibly in the form of turbulent magnetic-field amplification.
C1 [Nynka, Melania; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Perez, Kerstin] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Reynolds, Stephen P.] NC State Univ, Dept Phys, Raleigh, NC 27695 USA.
[An, Hongjun] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Baganoff, Frederick K.] MIT, Ctr Space Res, Cambridge, MA 02139 USA.
[Boggs, Steven E.; Craig, William W.; Krivonos, Roman; Zoglauer, Andreas] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark.
[Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
[Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Wik, Daniel R.; Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Nynka, M (reprint author), Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA.
RI Boggs, Steven/E-4170-2015;
OI Boggs, Steven/0000-0001-9567-4224; An, Hongjun/0000-0002-6389-9012;
Madsen, Kristin/0000-0003-1252-4891
FU NASA [NNG08FD60C]
FX This work was supported under NASA Contract No. NNG08FD60C, and made use
of data from the NuSTAR mission, a project led by the California
Institute of Technology, managed by the Jet Propulsion Laboratory, and
funded by the National Aeronautics and Space Administration. We thank
the NuSTAR Operations, Software, and Calibration teams for support with
the execution and analysis of these observations. This research has made
use of the NuSTAR Data Analysis Software (NuSTAR-DAS) jointly developed
by the ASI Science Data Center (ASDC, Italy) and the California
Institute of Technology (USA).
NR 52
TC 10
Z9 10
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 72
DI 10.1088/0004-637X/789/1/72
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400072
ER
PT J
AU Vogel, JK
Hascoet, R
Kaspi, VM
An, HJ
Archibald, R
Beloborodov, AM
Boggs, SE
Christensen, FE
Craig, WW
Gotthelf, EV
Grefenstette, BW
Hailey, CJ
Harrison, FA
Kennea, JA
Madsen, KK
Pivovaroff, MJ
Stern, D
Zhang, WW
AF Vogel, Julia K.
Hascoet, Romain
Kaspi, Victoria M.
An, Hongjun
Archibald, Robert
Beloborodov, Andrei M.
Boggs, Steven E.
Christensen, Finn E.
Craig, William W.
Gotthelf, Eric V.
Grefenstette, Brian W.
Hailey, Charles J.
Harrison, Fiona A.
Kennea, Jamie A.
Madsen, Kristin K.
Pivovaroff, Michael J.
Stern, Daniel
Zhang, William W.
TI NuSTAR OBSERVATIONS OF THE MAGNETAR 1E 2259+586
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE pulsars: individual (1E 2259+586); stars: magnetars; stars: neutron;
X-rays: bursts
ID X-RAY PULSAR; SOFT GAMMA REPEATERS; NEUTRON-STARS; 2002 OUTBURST; 4U
0142+61; EMISSION; SPECTRA; RXTE; ABSORPTION; G109.1-1.0
AB We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggest that an additional component, such as a power law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.
C1 [Vogel, Julia K.; Craig, William W.; Pivovaroff, Michael J.] Lawrence Livermore Natl Lab, Div Phys, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Hascoet, Romain; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hailey, Charles J.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Hascoet, Romain; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Kaspi, Victoria M.; An, Hongjun; Archibald, Robert] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark.
[Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
[Kennea, Jamie A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Vogel, JK (reprint author), Lawrence Livermore Natl Lab, Div Phys, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
RI Pivovaroff, Michael/M-7998-2014; Boggs, Steven/E-4170-2015;
OI Pivovaroff, Michael/0000-0001-6780-6816; Boggs,
Steven/0000-0001-9567-4224; An, Hongjun/0000-0002-6389-9012; Madsen,
Kristin/0000-0003-1252-4891
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; LDRD program [13-ERD-033]; NASA [NNG08FD60C];
National Aeronautics and Space Administration; NSERC; Centre de
Recherche en Astrophysique du Quebec; Canadian Institute for Advanced
Study; Canada Research Chairs Program; Lorne Trottier Chair in
Astrophysics and Cosmology; NASA ATP [NNX 13AI34G]
FX Part of this work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 with support from the LDRD program through
grant 13-ERD-033. This work was supported under NASA Contract No.
NNG08FD60C, and made use of data from the NuSTAR mission, a project led
by the California Institute of Technology, managed by the Jet Propulsion
Laboratory, and funded by the National Aeronautics and Space
Administration. We thank the NuSTAR Operations, Software, and
Calibration teams for support with the execution and analysis of these
observations. This research has made use of the NuSTAR Data Analysis
Software (NuSTARDAS) jointly developed by the ASI Science Data Center
(ASDC, Italy) and the California Institute of Technology (USA). V. M. K.
receives support from an NSERC Discovery Grant and Accelerator
Supplement, from the Centre de Recherche en Astrophysique du Quebec, an
R. Howard Webster Foundation Fellowship from the Canadian Institute for
Advanced Study, the Canada Research Chairs Program, and the Lorne
Trottier Chair in Astrophysics and Cosmology. A. M. B. is supported by
the NASA ATP grant NNX 13AI34G. This work made use of data supplied by
the UK Swift Science Data Centre at the University of Leicester. We also
thank Dr. A. M. Archibald for helpful discussions.
NR 38
TC 9
Z9 9
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 75
DI 10.1088/0004-637X/789/1/75
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400075
ER
PT J
AU Zhang, HC
Chen, XH
Bottcher, M
AF Zhang, Haocheng
Chen, Xuhui
Boettcher, Markus
TI SYNCHROTRON POLARIZATION IN BLAZARS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: jets; gamma rays: galaxies; radiation
mechanisms: non-thermal; relativistic processes
ID TIME-DEPENDENT SIMULATIONS; GAMMA-RAY ACTIVITY; PKS 1510-089;
MULTIWAVELENGTH OBSERVATIONS; INNER JET; VARIABILITY; EMISSION; MODELS;
MARCH; FLARE
AB We present a detailed analysis of time-and energy-dependent synchrotron polarization signatures in a shock-in-jet model for gamma-ray blazars. Our calculations employ a full three-dimensional radiation transfer code, assuming a helical magnetic field throughout the jet. The code considers synchrotron emission from an ordered magnetic field, and takes into account all light-travel-time and other relevant geometric effects, while the relevant synchrotron self-Compton and external Compton effects are handled with the two-dimensional Monte-Carlo/Fokker-Planck (MCFP) code. We consider several possible mechanisms through which a relativistic shock propagating through the jet may affect the jet plasma to produce a synchrotron and high-energy flare. Most plausibly, the shock is expected to lead to a compression of the magnetic field, increasing the toroidal field component and thereby changing the direction of the magnetic field in the region affected by the shock. We find that such a scenario leads to correlated synchrotron + synchrotron-self-Compton flaring, associated with substantial variability in the synchrotron polarization percentage and position angle. Most importantly, this scenario naturally explains large polarization angle rotations by greater than or similar to 180 degrees, as observed in connection with gamma-ray flares in several blazars, without the need for bent or helical jet trajectories or other nonaxisymmetric jet features.
C1 [Zhang, Haocheng; Boettcher, Markus] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA.
[Zhang, Haocheng] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Chen, Xuhui] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany.
[Chen, Xuhui] DESY, D-15738 Zeuthen, Germany.
[Boettcher, Markus] North West Univ, Ctr Space Res, ZA-2531 Potchefstroom, South Africa.
RP Zhang, HC (reprint author), Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA.
OI Chen, Xuhui/0000-0002-9745-0248
FU NASA [NNX12AP20G]; LANL/LDRD program; DoE/Office of Fusion Energy
Science through CMSO; Helmholtz Alliance for Astroparticle Physics HAP -
Initiative and Networking Fund of the Helmholtz Association; South
African Research Chairs Initiative of the Department of Science and
Technology; National Research Foundation of South Africa
FX We thank the anonymous referee for a careful review of the paper and
helpful suggestions to improve the clarity of the manuscript, and Alan
Marscher for valuable discussions and comments. This work was supported
by NASA through Fermi Guest Investigator Grant no. NNX12AP20G. H.Z. is
supported by the LANL/LDRD program and by DoE/Office of Fusion Energy
Science through CMSO. X.C. acknowledges support by the Helmholtz
Alliance for Astroparticle Physics HAP funded by the Initiative and
Networking Fund of the Helmholtz Association. X.C. gratefully
acknowledges the support during his visit to LANL when this work was
started. M.B. acknowledges support by the South African Research Chairs
Initiative of the Department of Science and Technology and the National
Research Foundation of South Africa. Simulations were conducted on
LANL's Institutional Computing machines.
NR 26
TC 16
Z9 16
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUL 1
PY 2014
VL 789
IS 1
AR 66
DI 10.1088/0004-637X/789/1/66
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AK0LD
UT WOS:000338103400066
ER
PT J
AU Vinokur, JM
Korman, TP
Cao, Z
Bowie, JU
AF Vinokur, Jeffrey M.
Korman, Tyler P.
Cao, Zheng
Bowie, James U.
TI Evidence of a Novel Mevalonate Pathway in Archaea
SO BIOCHEMISTRY
LA English
DT Article
ID DIPHOSPHATE DECARBOXYLASE; PHYSIOLOGICAL-ASPECTS; CRYSTAL-STRUCTURES;
BIOSYNTHESIS; ISOPRENOIDS; MECHANISM; EVOLUTION; BINDING; ORIGINS; SITE
AB Isoprenoids make up a remarkably diverse class of more than 25000 biomolecules that include familiar compounds such as cholesterol, chlorophyll, vitamin A, ubiquinone, and natural rubber. The two essential building blocks of all isoprenoids, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), are ubiquitous in the three domains of life. In most eukaryotes and archaea, IPP and DMAPP are generated through the mevalonate pathway. We have identified two novel enzymes, mevalonate-3-kinase and mevalonate-3-phosphate-5-kinase from Thermoplasma acidophilum, which act sequentially in a putative alternate mevalonate pathway. We propose that a yet unidentified ATP-independent decarboxylase acts upon mevalonate 3,5-bisphosphate, yielding isopentenyl phosphate, which is subsequently phosphorylated by the known isopentenyl phosphate kinase from T. acidophilum to generate the universal isoprenoid precursor, IPP.
C1 [Vinokur, Jeffrey M.; Korman, Tyler P.; Cao, Zheng; Bowie, James U.] Univ Calif Los Angeles, Dept Chem & Biochem, Inst Mol Biol, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.
RP Bowie, JU (reprint author), Univ Calif Los Angeles, 659 Boyer Hall,611 Charles E Young Dr East, Los Angeles, CA 90095 USA.
EM bowie@mbi.ucla.edu
OI Cao, Zheng/0000-0002-9147-5540
FU U.S. Department of Energy [DE-FC02-02ER63421]; National Institutes of
Health Chemistry Biology Interface Training Program (National Institute
of General Medical Sciences) [5T32GM008496]; National Center for
Research Resources [S10-RR025631]; National Science Foundation
[CHE-1048804]
FX The work was supported by U.S. Department of Energy Grant
DE-FC02-02ER63421 to J.U.B., and J.M.V. received support from the
National Institutes of Health Chemistry Biology Interface Training
Program (National Institute of General Medical Sciences Grant
5T32GM008496). Use of the Waters LCT Premier XE time-of-flight
instrument was supported by Grant S10-RR025631 from the National Center
for Research Resources. NMR experiments were supported by the National
Science Foundation via Equipment Grant CHE-1048804.
NR 34
TC 8
Z9 10
U1 1
U2 20
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0006-2960
J9 BIOCHEMISTRY-US
JI Biochemistry
PD JUL 1
PY 2014
VL 53
IS 25
BP 4161
EP 4168
DI 10.1021/bi500566q
PG 8
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA AK0GA
UT WOS:000338089700010
PM 24914732
ER
PT J
AU Lindedam, J
Bruun, S
Jorgensen, H
Decker, SR
Turner, GB
DeMartini, JD
Wyman, CE
Felby, C
AF Lindedam, Jane
Bruun, Sander
Jorgensen, Henning
Decker, Stephen R.
Turner, Geoffrey B.
DeMartini, Jaclyn D.
Wyman, Charles E.
Felby, Claus
TI Evaluation of high throughput screening methods in picking up
differences between cultivars of lignocellulosic biomass for ethanol
production
SO BIOMASS & BIOENERGY
LA English
DT Article
DE High throughput screening; Lignocellulosic ethanol; Wheat straw; Genetic
selection; Microscale pretreatment
ID WHEAT-STRAW; PRETREATMENT TECHNOLOGIES; ENZYMATIC-HYDROLYSIS; CELLULOSIC
ETHANOL; CORN STOVER; IMPACT
AB We present a unique evaluation of three advanced high throughput pretreatment and enzymatic hydrolysis systems (HTPH-systems) for screening of lignocellulosic biomass for enzymatic saccharification. Straw from 20 cultivars of winter wheat from two sites in Denmark was hydrothermally pretreated and enzymatically processed in each of the separately engineered HTPH-systems at 1) University of California, Riverside, 2) National Renewable Energy Laboratory (NREL), Colorado, and 3) University of Copenhagen (CPH). All three systems were able to detect significant differences between the cultivars in the release of fermentable sugars, with average cellulose conversions of 57%, 64%, and 71% from Riverside, NREL and CPH, respectively. The best correlation of glucose yields was found between the Riverside and NREL systems (R-2 = 0.2139), and the best correlation for xylose yields was found between Riverside and CPH (R-2 = 0.4269). All three systems identified Flair as the highest yielding cultivar and Dinosor, Glasgow, and Robigus as low yielding cultivars. Despite different conditions in the three HTPH-systems, the approach of microscale screening for phenotypically less recalcitrant feedstock seems sufficiently robust to be used as a generic analytical platform. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Lindedam, Jane; Jorgensen, Henning; Felby, Claus] Univ Copenhagen, Dept Geosci & Nat Resource Management, DK-1958 Frederiksberg C, Denmark.
[Lindedam, Jane; Bruun, Sander] Univ Copenhagen, Dept Plant & Environm Sci, DK-1871 Frederiksberg C, Denmark.
[Decker, Stephen R.; Turner, Geoffrey B.] Natl Renewable Energy Lab, Prot Biochem Biosci Ctr, Golden, CO 80401 USA.
[DeMartini, Jaclyn D.; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA.
RP Lindedam, J (reprint author), Dept Plant & Environm Sci, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
EM lindedam@life.ku.dk; sab@life.ku.dk; hnjoe@kt.dtu.dk;
steve.decker@nrel.gov; geoffrey.turner@nrel.gov; jddemartini@gmail.com;
cewyman@engr.ucr.edu; cf@life.ku.dk
RI Bruun, Sander/G-3555-2014; Jorgensen, Henning/E-1728-2011; Lindedam,
Jane/I-3523-2014;
OI Bruun, Sander/0000-0002-2233-5122; Jorgensen,
Henning/0000-0003-1220-6893; Lindedam, Jane/0000-0002-7063-7395; Felby,
Claus/0000-0002-6537-0155
FU Danish Strategic Research Council [2117-05-0064]; BioEnergy Science
Center, a U.S. Department of Energy Bioenergy Research Center - Office
of Biological and Environmental Research in the DOE Office of Science
FX The collection of straw was funded through the OPUS project funded by
the Danish Strategic Research Council (grant no. 2117-05-0064). Work at
NREL and UCR was funded through the BioEnergy Science Center, a U.S.
Department of Energy Bioenergy Research Center supported by the Office
of Biological and Environmental Research in the DOE Office of Science.
NR 19
TC 3
Z9 3
U1 2
U2 38
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0961-9534
EI 1873-2909
J9 BIOMASS BIOENERG
JI Biomass Bioenerg.
PD JUL
PY 2014
VL 66
BP 261
EP 267
DI 10.1016/j.biombioe.2014.03.006
PG 7
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA AJ7LB
UT WOS:000337877100028
ER
PT J
AU Iroba, KL
Tabil, LG
Sokhansanj, S
Dumonceaux, T
AF Iroba, Kingsley L.
Tabil, Lope G.
Sokhansanj, Shahab
Dumonceaux, Tim
TI Pretreatment and fractionation of barley straw using steam explosion at
low severity factor
SO BIOMASS & BIOENERGY
LA English
DT Article
DE Biomass straw; Steam explosion; Severity factor; Chemical composition;
Higher heating value; Carbon content
ID LIGNOCELLULOSIC BIOMASS; HEATING VALUE; LIGNIN; FUELS; WOOD;
TORREFACTION; COMPONENTS; CONVERSION; CELLULOSE; SOFTWOOD
AB Agricultural residues represent an abundant, readily available, and inexpensive source of renewable lignocellulosic biomass. However, biomass has complex structural formation that binds cellulose and hemicellulose. This necessitates the initial breakdown of the lignocellulosic matrix. Steam explosion pretreatment was performed on barley straw grind to assist in the deconstruction and disaggregation of the matrix, so as to have access to the cellulose and hemicellulose. The following process and material variables were used: temperature (140-180 degrees C), corresponding saturated pressure (500-1100 kPa), retention time (5-10 min), and mass fraction of water 8-50%. The effect of the pretreatment was assessed through chemical composition analysis. The severity factor R-o, which combines the temperature and time of the hydrolytic process into a single reaction ordinate was determined. To further provide detailed chemical composition of the steam exploded and non-treated biomass, ultimate analysis was performed to quantify the elemental components. Data show that steam explosion resulted in the breakdown of biomass matrix with increase in acid soluble lignin. However, there was a considerable thermal degradation of cellulose and hemicellulose with increase in acid insoluble lignin content. The high degradation of the hemicellulose can be accounted for by its amorphous nature which is easily disrupted by external influences unlike the well-arranged crystalline cellulose. The carbon content of the solid steam exploded product increased at higher temperature and longer residence time, while the hydrogen and oxygen content decreased, and the higher heating value (HHV) increased. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Iroba, Kingsley L.; Tabil, Lope G.] Univ Saskatchewan, Dept Chem & Biol Engn, Saskatoon, SK S7N 5A9, Canada.
[Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada.
[Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Dumonceaux, Tim] Agr & Agri Food Canada, Saskatoon Res Ctr, Saskatoon, SK S7N 0X2, Canada.
RP Tabil, LG (reprint author), Univ Saskatchewan, Dept Chem & Biol Engn, 57 Campus Dr, Saskatoon, SK S7N 5A9, Canada.
EM lope.tabil@usask.ca
OI Dumonceaux, Tim/0000-0001-5165-0343
FU Natural Sciences and Engineering Research Council of Canada; Agriculture
and Agri-Food Canada through the Agricultural Bioproduct Innovation
Program
FX The authors acknowledge the financial support of the Natural Sciences
and Engineering Research Council of Canada and Agriculture and Agri-Food
Canada through the Agricultural Bioproduct Innovation Program.
Acknowledgment goes to Dr. Thomas Canam and Ms. Jennifer Town at
Agriculture and AgriFood Canada for their technical assistance. The
support from Zahra Tooyserkani and Bahman Ghiasi of the Department of
Chemical and Biological Engineering, University of British Columbia and
the technical support unit (Blondin Richard and Bill Crerar) of Chemical
and Biological Engineering Department, University of Saskatchewan is
highly appreciated.
NR 46
TC 14
Z9 15
U1 4
U2 43
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0961-9534
EI 1873-2909
J9 BIOMASS BIOENERG
JI Biomass Bioenerg.
PD JUL
PY 2014
VL 66
BP 286
EP 300
DI 10.1016/j.biombioe.2014.02.002
PG 15
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA AJ7LB
UT WOS:000337877100031
ER
PT J
AU Moon, M
Kim, CW
Farooq, W
Suh, WI
Shrivastav, A
Park, MS
Mishra, SK
Yang, JW
AF Moon, Myounghoon
Kim, Chul Woong
Farooq, Wasif
Suh, William I.
Shrivastav, Anupama
Park, Min S.
Mishra, Sanjiv K.
Yang, Ji-Won
TI Utilization of lipid extracted algal biomass and sugar factory
wastewater for algal growth and lipid enhancement of Ettlia sp.
SO BIORESOURCE TECHNOLOGY
LA English
DT Article
DE Microalgae; Ettlia sp.; Lipid extracted algal biomass (LEA); Sugar
factory; FAME yield
ID BIODIESEL PRODUCTION; CHLORELLA-PROTOTHECOIDES; OIL PRODUCTION;
CULTIVATION; MICROALGAE; HYDROLYSATE; VULGARIS; SORGHUM
AB The present study assessed the use of hydrolysate of lipid extracted algal biomass (LEA) combined with the sugar factory wastewater (SFW) as a low cost nutrient and a carbon source, respectively for microalgal cultivation. Microalgal strain Ettlia sp. was both mixotrophically and heterotrophically cultivated using various amounts of hydrolysate and SFW. The culture which was grown in medium containing 50% LEA hydrolysate showed highest growth, achieving 5.26 +/- 0.14 g L-1 after 12 days of cultivation. The addition of SFW increased the lipid productivity substantially from 5.8 to 95.5 mg L-1 d(-1) when the culture medium was fortified with 20% SFW. Gas chromatography analysis indicated a noticeable increase of 20% in C16 and C18 fraction in FAME distribution under above condition. Therefore, it can be concluded that the combination of LEA hydrolysate and sugar factory waste water can be a powerful growth medium for economical algal cultivation. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Moon, Myounghoon; Kim, Chul Woong; Farooq, Wasif; Yang, Ji-Won] Korea Adv Inst Sci & Technol, Dept Biomol & Chem Engn, Taejon 305701, South Korea.
[Suh, William I.; Shrivastav, Anupama; Park, Min S.; Mishra, Sanjiv K.; Yang, Ji-Won] Korea Adv Inst Sci & Technol, Adv Biomass R&D Ctr, Taejon 305701, South Korea.
[Park, Min S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
RP Mishra, SK (reprint author), Korea Adv Inst Sci & Technol, Adv Biomass R&D Ctr, 291 Daehak Ro, Taejon 305701, South Korea.
EM sanjivkm@kaist.ac.kr
RI Yang, Ji-Won/C-1933-2011; Mishra, Sanjiv/I-4156-2014
OI Mishra, Sanjiv/0000-0002-0403-6575
FU Advanced Biomass R&D Center (ABC) of Korea - Ministry of Science, ICT
and Future Planning [ABC-2010-0029728]
FX This work was supported by the Advanced Biomass R&D Center (ABC) of
Korea Grant funded by the Ministry of Science, ICT and Future Planning
(ABC-2010-0029728).
NR 32
TC 7
Z9 7
U1 0
U2 23
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0960-8524
EI 1873-2976
J9 BIORESOURCE TECHNOL
JI Bioresour. Technol.
PD JUL
PY 2014
VL 163
BP 180
EP 185
DI 10.1016/j.biortech.2014.04.033
PG 6
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA AJ7KK
UT WOS:000337875400025
PM 24811446
ER
PT J
AU Rouet-Leduc, B
Barros, K
Cieren, E
Elango, V
Junghans, C
Lookman, T
Mohd-Yusof, J
Pavel, RS
Rivera, AY
Roehm, D
McPherson, AL
Germann, TC
AF Rouet-Leduc, Bertrand
Barros, Kipton
Cieren, Emmanuel
Elango, Venmugil
Junghans, Christoph
Lookman, Turab
Mohd-Yusof, Jamaludin
Pavel, Robert S.
Rivera, Axel Y.
Roehm, Dominic
McPherson, Allen L.
Germann, Timothy C.
TI Spatial adaptive sampling in multiscale simulation
SO COMPUTER PHYSICS COMMUNICATIONS
LA English
DT Article
DE Multiscale; Adaptive sampling
ID HYPERBOLIC CONSERVATION-LAWS; GRAINED MOLECULAR-DYNAMICS; VIRIAL STRESS;
CONTINUUM MODELS; MESH REFINEMENT; SOLIDS; DEFORMATION; MECHANICS;
COMPUTATION; ALGORITHMS
AB In a common approach to multiscale simulation, an incomplete set of macroscale equations must be supplemented with constitutive data provided by fine-scale simulation. Collecting statistics from these fine-scale simulations is typically the overwhelming computational cost. We reduce this cost by interpolating the results of fine-scale simulation over the spatial domain of the macro-solver. Unlike previous adaptive sampling strategies, we do not interpolate on the potentially very high dimensional space of inputs to the fine-scale simulation. Our approach is local in space and time, avoids the need for a central database, and is designed to parallelize well on large computer clusters. To demonstrate our method, we simulate one-dimensional elastodynamic shock propagation using the Heterogeneous Multiscale Method (HMM); we find that spatial adaptive sampling requires only approximate to 50 x N-0.14 fine-scale simulations to reconstruct the stress field at all N grid points. Related multiscale approaches, such as Equation Free methods, may also benefit from spatial adaptive sampling. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Rouet-Leduc, Bertrand; Barros, Kipton; Cieren, Emmanuel; Junghans, Christoph; Lookman, Turab; Roehm, Dominic; Germann, Timothy C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Elango, Venmugil; Mohd-Yusof, Jamaludin; Pavel, Robert S.; Rivera, Axel Y.; McPherson, Allen L.] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA.
[Rouet-Leduc, Bertrand] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England.
[Cieren, Emmanuel] CEA, DAM, DIF, F-91297 Arpajon, France.
[Pavel, Robert S.] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA.
[Rivera, Axel Y.] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA.
[Roehm, Dominic] Univ Stuttgart, Inst Computat Phys, D-70569 Stuttgart, Germany.
[Elango, Venmugil] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA.
RP Barros, K (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM kbarros@lanl.gov; tcg@lanl.gov
RI Junghans, Christoph/G-4238-2010;
OI Junghans, Christoph/0000-0003-0925-1458; Elango,
Venmugil/0000-0002-7031-9020; Mohd Yusof, Jamaludin/0000-0002-9844-689X;
Germann, Timothy/0000-0002-6813-238X; Barros, Kipton/0000-0002-1333-5972
FU Los Alamos Information Science & Technology Center (IS&T) Co-Design
Summer School; US Department of Energy (DOE), Office of Advanced
Scientific Computing Research (ASCR) through the Exascale Co-Design
Center for Materials in Extreme Environments (ExMatEx, exmatex.org);
Center for Nonlinear Studies (CNLS); Los Alamos National Laboratory
Director's Fellowship; Los Alamos National Security, LLC, for the
National Nuclear Security Administration of the US Department of Energy
[DE-AC52-06NA25396]
FX This work was supported by the Los Alamos Information Science &
Technology Center (IS&T) Co-Design Summer School, the US Department of
Energy (DOE), Office of Advanced Scientific Computing Research (ASCR)
through the Exascale Co-Design Center for Materials in Extreme
Environments (ExMatEx, exmatex.org), and the Center for Nonlinear
Studies (CNLS). C.J. acknowledges funding by a Los Alamos National
Laboratory Director's Fellowship. Assigned: LA-UR 13-29626. Los Alamos
National Laboratory, an affirmative action/equal opportunity employer,
is operated by Los Alamos National Security, LLC, for the National
Nuclear Security Administration of the US Department of Energy under
contract DE-AC52-06NA25396.
NR 53
TC 4
Z9 5
U1 4
U2 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0010-4655
EI 1879-2944
J9 COMPUT PHYS COMMUN
JI Comput. Phys. Commun.
PD JUL
PY 2014
VL 185
IS 7
BP 1857
EP 1864
DI 10.1016/j.cpc.2014.03.011
PG 8
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA AJ5ZF
UT WOS:000337768700001
ER
PT J
AU Hu, LB
Amine, K
Zhang, ZC
AF Hu, Libo
Amine, Khalil
Zhang, Zhengcheng
TI Fluorinated electrolytes for 5-V Li-ion chemistry: Dramatic enhancement
of LiNi0.5Mn1.5O4/graphite cell performance by a lithium reservoir
SO ELECTROCHEMISTRY COMMUNICATIONS
LA English
DT Article
DE Fluorinated solvents; High voltage electrolyte; Lithium reservoir; 5-V
LiNi0.5Mn1.5O4 cathode; Lithium-ion batteries
ID HIGH-VOLTAGE; BATTERIES; PRELITHIATION; STABILITY; CAPACITY; SURFACE;
ANODE; SLMP
AB A fluorinated electrolyte was galvanostatically charged and discharged for 100 cycles at an elevated temperature (55 degrees C) with a LiNi0.5Mn1.5O4 cathode coupled with a graphite anode in the presence of a lithium reservoir. The incorporation of the lithium reservoir was able to compensate for the loss of the active lithium from the LiNi0.5Mn1.5O4 cathode due to the electrolyte oxidative decomposition. Our experimental data demonstrate for the first time that lithium compensation is an efficient way to enhance the performance of high voltage LiNi0.5Mn1.5O4/graphite cell at a high temperature (55 degrees C). 2014 Elsevier B.V. All rights reserved.
C1 [Hu, Libo; Amine, Khalil; Zhang, Zhengcheng] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Zhang, ZC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM zzhang@anl.gov
RI Hu, Libo/A-5911-2012
FU Advanced Battery Research (ABR) for Transportation, Vehicle Technologies
Program; Office of Energy Efficiency and Renewable Energy, U.S.
Department of Energy; UChicago Argonne, LLC [DE-AC02-06CH11357]
FX This research is supported by the Advanced Battery Research (ABR) for
Transportation, Vehicle Technologies Program, and the Office of Energy
Efficiency and Renewable Energy, U.S. Department of Energy. Argonne
National Laboratory is operated for the U.S. Department of Energy by
UChicago Argonne, LLC, under contract DE-AC02-06CH11357.
NR 19
TC 18
Z9 18
U1 10
U2 102
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1388-2481
EI 1873-1902
J9 ELECTROCHEM COMMUN
JI Electrochem. Commun.
PD JUL
PY 2014
VL 44
BP 34
EP 37
DI 10.1016/j.elecom.2014.04.006
PG 4
WC Electrochemistry
SC Electrochemistry
GA AJ8ZU
UT WOS:000337997400010
ER
PT J
AU Guo, BK
Yu, XQ
Sun, XG
Chi, MF
Qiao, ZA
Liu, J
Hu, YS
Yang, XQ
Goodenough, JB
Dai, S
AF Guo, Bingkun
Yu, Xiqian
Sun, Xiao-Guang
Chi, Miaofang
Qiao, Zhen-An
Liu, Jue
Hu, Yong-Sheng
Yang, Xiao-Qing
Goodenough, John B.
Dai, Sheng
TI A long-life lithium-ion battery with a highly porous TiNb2O7 anode for
large-scale electrical energy storage
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID PERFORMANCE; ELECTROLYTE; FRAMEWORK; SILICON; LINI0.5MN1.5O4;
COMPOSITES; LITHIATION; NANOWIRES; NANOTUBES; CHEMISTRY
AB A high performance TiNb2O7 anode material with a nanoporous nature, which was prepared by a facile approach, exhibits an average storage voltage of 1.66 V, a reversible capacity of 281mA h g(-1), and an 84% capacity retention after 1000 cycles, and may be suitable for long-life stationary lithium-ion batteries.
C1 [Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhen-An; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Yu, Xiqian; Liu, Jue; Yang, Xiao-Qing] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Chi, Miaofang] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Hu, Yong-Sheng] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.
[Goodenough, John B.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA.
[Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
RP Guo, BK (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM guobkun@hotmail.com; yshu@aphy.iphy.ac.cn; dais@ornl.gov
RI Guo, Bingkun/J-5774-2014; Hu, Yong-Sheng/H-1177-2011; Chi,
Miaofang/Q-2489-2015; Yu, Xiqian/B-5574-2014; LIU, JUE/I-8631-2016; Dai,
Sheng/K-8411-2015
OI Qiao, Zhen-An/0000-0001-6064-9360; Goodenough, John
Bannister/0000-0001-9350-3034; Hu, Yong-Sheng/0000-0002-8430-6474; Chi,
Miaofang/0000-0003-0764-1567; Yu, Xiqian/0000-0001-8513-518X; LIU,
JUE/0000-0002-4453-910X; Dai, Sheng/0000-0002-8046-3931
FU U.S. Department of Energy's office of Basic Energy Science, Division of
Materials Sciences Engineering; U.S. Department of Energy, the Assistant
Secretary for Energy Efficiency and Renewable Energy, and the Office of
Vehicle Technologies [DEAC02-98CH10886]; NSFC [51222210]; One Hundred
Talent Project of the Chinese Academy of Sciences
FX The research at Oak Ridge National Laboratory and the University of
Texas at Austin was supported by the U.S. Department of Energy's office
of Basic Energy Science, Division of Materials Sciences Engineering. The
work at Brookhaven National Laboratory was supported by the U.S.
Department of Energy, the Assistant Secretary for Energy Efficiency and
Renewable Energy, and the Office of Vehicle Technologies under Contract
Number DEAC02-98CH10886. The authors thank the technical support from
scientists at beamlines X14A, X18a, and X18B of the National Synchrotron
Light Source (NSLS). Y.- S. H. thanks the funding support from NSFC
(51222210) and the One Hundred Talent Project of the Chinese Academy of
Sciences.
NR 40
TC 62
Z9 63
U1 19
U2 186
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
EI 1754-5706
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PD JUL
PY 2014
VL 7
IS 7
BP 2220
EP 2226
DI 10.1039/c4ee00508b
PG 7
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA AJ8SL
UT WOS:000337977600010
ER
PT J
AU Quadros, WR
AF Quadros, William Roshan
TI Guest editorial: 20th international meshing roundtable special issue
SO ENGINEERING WITH COMPUTERS
LA English
DT Editorial Material
C1 Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Quadros, WR (reprint author), Sandia Natl Labs, POB 5800,MS 0897, Albuquerque, NM 87185 USA.
EM wrquadr@sandia.gov
NR 0
TC 0
Z9 0
U1 1
U2 2
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0177-0667
EI 1435-5663
J9 ENG COMPUT-GERMANY
JI Eng. Comput.
PD JUL
PY 2014
VL 30
IS 3
SI SI
BP 287
EP 287
DI 10.1007/s00366-014-0365-y
PG 1
WC Computer Science, Interdisciplinary Applications; Engineering,
Mechanical
SC Computer Science; Engineering
GA AJ9JV
UT WOS:000338026900001
ER
PT J
AU Owen, SJ
Staten, ML
Sorensen, MC
AF Owen, Steven J.
Staten, Matthew L.
Sorensen, Marguerite C.
TI Parallel hexahedral meshing from volume fractions
SO ENGINEERING WITH COMPUTERS
LA English
DT Article
DE Grid-based; Overlay grid; Hexahedral mesh generation; Parallel meshing
ID GENERATION
AB In this work, we introduce a new method for generating Lagrangian computational meshes from Eulerian-based data. We focus specifically on shock physics problems that are relevant to Eulerian-based codes that generate volume fraction data on a Cartesian grid. A step-by-step procedure for generating an all-hexahedral mesh is presented. We focus specifically on the challenges of developing a parallel implementation using the message passing interface to ensure a continuous, conformal and good quality hex mesh.
C1 [Owen, Steven J.; Staten, Matthew L.; Sorensen, Marguerite C.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Owen, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM sjowen@sandia.gov; mlstate@sandia.gov; mcsoren@sandia.gov
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company for the United States Department of Energy's
National Nuclear Security Administration under contract
DE-AC04-94AL85000.
NR 15
TC 1
Z9 1
U1 2
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0177-0667
EI 1435-5663
J9 ENG COMPUT-GERMANY
JI Eng. Comput.
PD JUL
PY 2014
VL 30
IS 3
SI SI
BP 301
EP 313
DI 10.1007/s00366-012-0292-8
PG 13
WC Computer Science, Interdisciplinary Applications; Engineering,
Mechanical
SC Computer Science; Engineering
GA AJ9JV
UT WOS:000338026900003
ER
PT J
AU Harris, JB
Eldridge, ML
Sayler, G
Menn, FM
Layton, AC
Baudry, J
AF Harris, Jason B.
Eldridge, Melanie L.
Sayler, Gary
Menn, Fu-Min
Layton, Alice C.
Baudry, Jerome
TI A COMPUTATIONAL APPROACH PREDICTING CYP450 METABOLISM AND ESTROGENIC
ACTIVITY OF AN ENDOCRINE DISRUPTING COMPOUND (PCB-30)
SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
LA English
DT Article
DE Endocrine disrupting compound; Cytochrome P450 2D6 (CYP2D6); Cytochrome
P450 3A4 (CYP3A4); Polychlorinated biphenyl 30 (PCB-30);
2,4,6-trichlorobiphenyl (TCBP)
ID POLYCYCLIC AROMATIC-HYDROCARBONS; RECOMBINANT YEAST ASSAY;
POLYCHLORINATED-BIPHENYLS; CYTOCHROME-P450 2D6; IN-VITRO; MOLECULAR
DOCKING; HYDROXYLATED METABOLITES; ANDROGENIC ACTIVITY; RECEPTOR
BINDING; LIGAND-BINDING
AB Endocrine disrupting chemicals influence growth and development through interactions with the hormone system, often through binding to hormone receptors such as the estrogen receptor. Computational methods can predict endocrine disrupting chemical activity of unmodified compounds, but approaches predicting activity following metabolism are lacking. The present study uses a well-known environmental contaminant, PCB-30 (2,4,6-trichlorobiphenyl), as a prototype endocrine disrupting chemical and integrates predictive (computational) and experimental methods to determine its metabolic transformation by cytochrome P450 3A4 (CYP3A4) and cytochrome P450 2D6 (CYP2D6) into estrogenic byproducts. Computational predictions suggest that hydroxylation of PCB-30 occurs at the 3- or 4-phenol positions and leads to metabolites that bind more strongly than the parent molecule to the human estrogen receptor alpha (hER-alpha). Gas chromatography-mass spectrometry experiments confirmed that the primary metabolite for CYP3A4 and CYP2D6 is 4-hydroxy-PCB-30, and the secondary metabolite is 3-hydroxy-PCB-30. Cell-based bioassays (bioluminescent yeast expressing hER-alpha) confirmed that hydroxylated metabolites are more estrogenic than PCB-30. These experimental results support the applied model's ability to predict the metabolic and estrogenic fate of PCB-30, which could be used to identify other endocrine disrupting chemicals involved in similar pathways. (C) 2014 SETAC
C1 [Harris, Jason B.] Univ Tennessee, Genome Sci & Technol Grad Sch, Knoxville, TN USA.
[Harris, Jason B.; Baudry, Jerome] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA.
[Eldridge, Melanie L.; Sayler, Gary; Menn, Fu-Min; Layton, Alice C.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA.
[Sayler, Gary; Menn, Fu-Min] Univ Tennessee, Oak Ridge Natl Lab, Joint Inst Biol Sci, Oak Ridge, TN USA.
[Sayler, Gary] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
[Baudry, Jerome] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN USA.
RP Baudry, J (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA.
EM jbaudry@utk.edu
FU University of Tennessee; Genome Science and Technology graduate school;
IGERT: SCALE-IT fellowship (NSF) [0801540]
FX J.B. Harris and M.L. Eldridge contributed equally to this work. A. C.
Layton and J. Baudry contributed equally to supervision and expertise.
This work was supported financially by a start-up grant from the
University of Tennessee to J. Baudry. J. Harris acknowledges support by
the Genome Science and Technology graduate school and the IGERT:
SCALE-IT fellowship (NSF Award 0801540).
NR 62
TC 5
Z9 5
U1 6
U2 29
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0730-7268
EI 1552-8618
J9 ENVIRON TOXICOL CHEM
JI Environ. Toxicol. Chem.
PD JUL
PY 2014
VL 33
IS 7
BP 1615
EP 1623
DI 10.1002/etc.2595
PG 9
WC Environmental Sciences; Toxicology
SC Environmental Sciences & Ecology; Toxicology
GA AJ6FD
UT WOS:000337784500024
PM 24687371
ER
PT J
AU Soteropoulos, DL
Lance, SL
Flynn, RW
Scott, DE
AF Soteropoulos, Diana L.
Lance, Stacey L.
Flynn, R. Wesley
Scott, David E.
TI EFFECTS OF COPPER EXPOSURE ON HATCHING SUCCESS AND EARLY LARVAL SURVIVAL
IN MARBLED SALAMANDERS, AMBYSTOMA OPACUM
SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
LA English
DT Article
DE Amphibian; Created wetland; Ecotoxicology; Metal toxicity; Treatment
wetlands
ID COAL-COMBUSTION WASTES; AMPHIBIAN EMBRYOS; CHRONIC TOXICITY; SOUTHERN
TOADS; RANA-PIPIENS; FROG; TADPOLES; WETLANDS; RUNOFF; GROWTH
AB The creation of wetlands, such as urban and industrial ponds, has increased in recent decades, and these wetlands often become enriched in pollutants over time. One metal contaminant trapped in created wetlands is copper (Cu2+). Copper concentrations in sediments and overlying water may affect amphibian species that breed in created wetlands. The authors analyzed the Cu concentration in dried sediments from a contaminated wetland and the levels of aqueous Cu released after flooding the sediments with different volumes of water, mimicking low, medium, and high pond-filling events. Eggs and larvae of Ambystoma opacum Gravenhorst, a salamander that lays eggs on the sediments in dry pond beds that hatch on pond-filling, were exposed to a range of Cu concentrations that bracketed potential aqueous Cu levels in created wetlands. Embryo survival varied among clutches, but increased Cu levels did not affect embryo survival. At Cu concentrations of 500 mu g/L or greater, however, embryos hatched earlier, and the aquatic larvae died shortly after hatching. Because Cu concentrations in sediments increase over time in created wetlands, even relatively tolerant species such as A. opacum may be affected by Cu levels in the posthatching environment. (C) 2014 SETAC
C1 [Soteropoulos, Diana L.; Lance, Stacey L.; Flynn, R. Wesley; Scott, David E.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
RP Scott, DE (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
EM scott@srel.uga.edu
RI Lance, Stacey/K-9203-2013
OI Lance, Stacey/0000-0003-2686-1733
FU US Department of Energy [DE-FC09-07SR22506]; Department of Energy
National Nuclear Security Administration
FX We thank J. Seaman for assistance with metals analysis. This research
was partially supported by US Department of Energy under award number
DE-FC09-07SR22506 to the University of Georgia Research Foundation.
Project funding was provided by the Department of Energy National
Nuclear Security Administration. Animals were collected under SCDNR
permit #G-09-03 following IACUC procedures (AUP A2009 10-175-Y2-A0) from
the University of Georgia. This manuscript was improved by comments from
members of the Lance Lab-R. Beasley, C. Love, C. Rumrill, and M.
Winzeler.
NR 54
TC 1
Z9 1
U1 3
U2 29
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0730-7268
EI 1552-8618
J9 ENVIRON TOXICOL CHEM
JI Environ. Toxicol. Chem.
PD JUL
PY 2014
VL 33
IS 7
BP 1631
EP 1637
DI 10.1002/etc.2601
PG 7
WC Environmental Sciences; Toxicology
SC Environmental Sciences & Ecology; Toxicology
GA AJ6FD
UT WOS:000337784500026
PM 24729474
ER
PT J
AU Dong, B
Li, XQ
Xiao, LM
Ruan, L
AF Dong, Bin
Li, Xiuqiao
Xiao, Limin
Ruan, Li
TI Towards minimizing disk I/O contention: A partitioned file assignment
approach
SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
LA English
DT Article
DE Parallel I/O system; Partitioned file; File assignment algorithm; I/O
contention probability; Distributed resource management
ID PARALLEL I/O; HIGH-PERFORMANCE; SYSTEMS; ISSUES; TIME; WORKLOADS;
STORAGE; ARRAYS; RAID
AB One problem with data-intensive computing facilitating is how to effectively manage massive amounts of data stored in a parallel I/O system. The file assignment method plays a significant role in data management. However, in the context of a parallel I/O system, most existing file assignment approaches share the following two limitations. First, most existing methods are designed for a non-partitioned file, while the file in a parallel I/O system is generally partitioned to provide aggregated bandwidth. Second, the file allocation metric, e.g. service time, of most existing methods is difficult to determine in practice, and also these metrics only reflect the static property of the file. In this paper, a new metric, namely file access density is proposed to capture the dynamic property of file access, i.e. disk contention property. Based on file access density definition, this paper introduces a new static file assignment algorithm named MinCPP and its dynamic version DMinCPP, both of which aim at minimizing the disk contention property. Furthermore MinCPP and DMinCPP take the file partition property into consideration by trying to allocate the partitions belonging to the same file onto different disks. By assuming file request arrival follows the Poisson process, we prove the effectiveness of the proposed schemes both analytically and experimentally. The MinCPP presented in this study can be applied to reorganize the files stored in a large-scale parallel I/O system and the DMinCPP can be integrated into file systems which dynamically allocate files in a batch. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Dong, Bin; Li, Xiuqiao; Xiao, Limin; Ruan, Li] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China.
[Dong, Bin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Dong, B (reprint author), Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China.
EM Bdong@cse.buaa.edu.cn
FU National Natural Science Foundation of China [61370059, 61232009];
Doctoral Fund of Ministry of Education of China [20101102110018]
FX The work described in this paper is supported by the National Natural
Science Foundation of China under Grant No. 61370059, supported by the
National Natural Science Foundation of China under Grant No. 61232009,
and supported by the Doctoral Fund of Ministry of Education of China
under Grant No. 20101102110018.
NR 53
TC 4
Z9 4
U1 0
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-739X
EI 1872-7115
J9 FUTURE GENER COMP SY
JI Futur. Gener. Comp. Syst.
PD JUL
PY 2014
VL 37
BP 178
EP 190
DI 10.1016/j.future.2013.12.022
PG 13
WC Computer Science, Theory & Methods
SC Computer Science
GA AJ8CV
UT WOS:000337931200017
ER
PT J
AU Okoro, C
Levine, LE
Xu, RQ
Hummler, K
Obeng, YS
AF Okoro, Chukwudi
Levine, Lyle E.
Xu, Ruqing
Hummler, Klaus
Obeng, Yaw S.
TI Nondestructive Measurement of the Residual Stresses in Copper
Through-Silicon Vias Using Synchrotron-Based Microbeam X-Ray Diffraction
SO IEEE TRANSACTIONS ON ELECTRON DEVICES
LA English
DT Article
DE Interconnect; keep-out-zone (KOZ); stress measurement; synchrotron;
three-dimensional integrated circuits (3DIC); through-silicon via (TSV);
X-ray diffraction
ID FAILURE ANALYSIS; CU-TSV; DEFORMATION
AB In this paper, we report a new method for achieving depth resolved determination of the full stress tensor in buried Cu through-silicon vias (TSVs), using a synchrotron-based X-ray microdiffraction technique. Two adjacent Cu TSVs were analyzed; one capped with SiO2 (0.17 mu m) and the other without. The uncapped Cu TSV was found to have higher stresses with an average hydrostatic stress value of 145 +/- 37 MPa, as compared with the capped Cu TSV, which had a value of 89 +/- 28 MPa. Finite element-based parametric analyses of the effect of cap thickness on TSV stress were also performed. The differences in the stresses in the adjacent Cu TSVs were attributed to their microstructural differences and not to the presence of a cap layer. Based on the experimentally determined stresses, the stresses in the surrounding Si for both Cu TSVs were calculated and the FinFET keep-out-zone (KOZ) from the Cu TSV was estimated. The FinFET KOZ is influenced by the microstructural variations in their neighboring Cu TSVs, thus, it should be accounted for in KOZ design rules.
C1 [Okoro, Chukwudi; Obeng, Yaw S.] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA.
[Levine, Lyle E.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
[Xu, Ruqing] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Hummler, Klaus] SEMATECH, Albany, NY 12203 USA.
RP Okoro, C (reprint author), NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA.
EM chukwudi.okoro@nist.gov; lyle.levine@nist.gov; ruqingxu@anl.gov;
klaus.hummler@sematech.org; yaw.obeng@nist.gov
RI Xu, Ruqing/K-3586-2012
OI Xu, Ruqing/0000-0003-1037-0059
FU U.S Department of Energy's (DOE) Office of Science [DE-AC02-06CH11357]
FX The XOR/UNI facilities on Sector 34 at the Advanced Photon Source (APS)
is supported by the U.S Department of Energy's (DOE) Office of Science,
under Contract No. DE-AC02-06CH11357. The review of this paper was
arranged by Editor R. Venkatasubramanian.
NR 17
TC 11
Z9 11
U1 1
U2 22
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9383
EI 1557-9646
J9 IEEE T ELECTRON DEV
JI IEEE Trans. Electron Devices
PD JUL
PY 2014
VL 61
IS 7
BP 2473
EP 2479
DI 10.1109/TED.2014.2321736
PG 7
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA AJ9JY
UT WOS:000338027200036
ER
PT J
AU Santoso, S
Lwin, M
Ramos, J
Singh, M
Muljadi, E
Jonkman, J
AF Santoso, Surya
Lwin, Min
Ramos, Jaime
Singh, Mohit
Muljadi, Eduard
Jonkman, Jason
TI Designing and Integrating Wind Power Laboratory Experiments in Power and
Energy Systems Courses
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Power engineering education; power system simulation; reactive power
control; student experiments; wind power generation
ID ELECTRONICS; CONVERSION
AB The goal of this paper is to describe the approach in designing and constructing wind power laboratory experiments for undergraduate- and graduate-level courses in power and energy systems. These are separated into basic hands-on laboratory and advanced simulation-based experiments. The basic experiments are integrated into an undergraduate course that includes topics such as the steady-state operation of induction machines, fixed-speed, and variable-speed wind turbines. Advanced experiments are integrated into a stand-alone course dedicated to wind energy and power systems. Topics include the modeling of aerodynamic, mechanical, and electrical components for each type of wind turbine along with their steady-state and dynamic operations. The experiments were originally designed at the University of Texas at Austin. Their transferability to a different laboratory platform at the University of Texas Pan American is also discussed.
C1 [Santoso, Surya; Lwin, Min] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA.
[Ramos, Jaime] Univ Texas Pan Amer, Dept Elect Engn, Edinburg, TX 78539 USA.
[Singh, Mohit; Muljadi, Eduard; Jonkman, Jason] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Santoso, S (reprint author), Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA.
EM ssantoso@mail.utexas.edu; m.lwin@utexas.edu; jramos8@utpa.edu;
Mohit.Singh@nrel.gov; Eduard.Muljadi@nrel.gov; Jason.Jonkman@nrel.gov
FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable
Energy Laboratory; National Science Foundation [DUE-0736974,
DUE-0737051]
FX This work was supported in part by the U.S. Department of Energy under
Contract No. DE-AC36-08-GO28308 with the National Renewable Energy
Laboratory and the National Science Foundationunder grants DUE-0736974
and DUE-0737051. Paper no. TPWRS-00712-2013.
NR 16
TC 1
Z9 1
U1 1
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD JUL
PY 2014
VL 29
IS 4
BP 1944
EP 1951
DI 10.1109/TPWRS.2014.2307324
PG 8
WC Engineering, Electrical & Electronic
SC Engineering
GA AK1QF
UT WOS:000338189600051
ER
PT J
AU Soong, Y
Hedges, SW
Howard, BH
Dilmore, RM
Allen, DE
AF Soong, Yee
Hedges, Sheila W.
Howard, Bret H.
Dilmore, Robert M.
Allen, Douglas E.
TI Effect of contaminants from flue gas on CO2 sequestration in saline
formation
SO INTERNATIONAL JOURNAL OF ENERGY RESEARCH
LA English
DT Article
DE CO2 sequestration; flue gas; saline aquifers
ID CARBON SEQUESTRATION; SO2; INJECTION; WATER
AB Deep saline aquifers are reported to have the largest estimated capacity for CO2 sequestration. Most geochemical studies on CO2 storage in saline formations are focused on the interactions of pure CO2 and do not consider the potential impacts of contaminants such as SO2 found in typical post-composition flue gas streams. This paper reports on results of a combined CO2-co-contaminant-brine-rock experimental and a simple modeling study of the potential impact of flue gas contaminants on saline formations. Chemical reactions of the sandstone from Mount Simon formation exposed to CO2 mixed with other gas species under sequestration conditions were studied (i.e. solid material-representative Mount Simon sandstone; liquid - synthetic Illinois Basin brine; T and P - 50 degrees C, 110 bar; gas composition - 1% SO2, 4% O-2, 95% CO2). The experimental study indicates that the co-injection of 1% SO2 would lead to substantially reduced brine pH due to the formation of sulfuric acid and the formation of bassanite (major) and anhydrites. Preliminary equilibrium computational modeling yielded similar results. Copyright (C) 2013 John Wiley & Sons, Ltd.
C1 [Soong, Yee; Hedges, Sheila W.; Howard, Bret H.; Dilmore, Robert M.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Allen, Douglas E.] Salem State Univ, Salem, MA 01970 USA.
RP Soong, Y (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA.
EM soong@netl.doe.gov
FU Department of Energy, National Energy Technology Laboratory, an agency
of the United States Government; URS Energy & Construction, Inc.
FX This project was funded in part by the Department of Energy, National
Energy Technology Laboratory, an agency of the United States Government,
through a support contract with URS Energy & Construction, Inc. Neither
the United States Government nor any agency thereof, nor any of their
employees, nor URS Energy & Construction, Inc., nor any of their
employees, makes any warranty, expressed or implied; or assumes any
legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed;
or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.
NR 20
TC 3
Z9 3
U1 2
U2 13
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0363-907X
EI 1099-114X
J9 INT J ENERG RES
JI Int. J. Energy Res.
PD JUL
PY 2014
VL 38
IS 9
BP 1224
EP 1232
DI 10.1002/er.3140
PG 9
WC Energy & Fuels; Nuclear Science & Technology
SC Energy & Fuels; Nuclear Science & Technology
GA AJ6KF
UT WOS:000337801900012
ER
PT J
AU Hasanbeigi, A
Jiang, ZY
Price, L
AF Hasanbeigi, Ali
Jiang, Zeyi
Price, Lynn
TI Retrospective and prospective analysis of the trends of energy use in
Chinese iron and steel industry
SO JOURNAL OF CLEANER PRODUCTION
LA English
DT Article
DE Energy intensity forecast; Decomposition analysis; Chinese steel
industry; Structural change
ID DECOMPOSITION ANALYSIS; CO2 EMISSIONS; EFFICIENCY; INTENSITY; SECTOR
AB The iron and steel industry accounted for approximately 27% of China's primary energy use for the manufacturing industry in 2010. This study aims to analyze influential factors that affected the energy use of steel industry in the past in order to quantify the likely effect of those factors in the future. This study analyzes the energy use trends of China's key medium- and large-sized steel enterprises during 2000-2030. In addition, the study uses a refined Logarithmic Mean Divisia Index decomposition analysis to quantify the effects of various factors in shaping energy consumption trends in the past and in the future. The result of our forecast shows the final energy use of the key steel enterprises peaks in year 2020 under scenario 1 and 2 (low and medium scrap usage) and in 2015 under scenario 3 (high scrap usage). The three scenarios produced for the forward-looking decomposition analysis for 2010-2030 show that contrary to the experience during 2000-2010, the structural (activity share of each process route) effect and the pig iron ratio (the ratio of pig iron used as feedstock in each process route) effect plays an important role in reducing final energy use during 2010-2030. Published by Elsevier Ltd.
C1 [Hasanbeigi, Ali; Jiang, Zeyi; Price, Lynn] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, China Energy Grp,Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Jiang, Zeyi] Univ Sci & Technol Beijing, Sch Mech Engn, Beijing, Peoples R China.
RP Hasanbeigi, A (reprint author), 1 Cyclotron Rd MS 90R2002, Berkeley, CA 94720 USA.
EM AHasanbeigi@lbl.gov
FU China Sustainable Energy Program of the Energy Foundation through the
U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the China Sustainable Energy Program of the
Energy Foundation through the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. We would like to thank David Fridley, Nina
Khanna, and Ryan Triolo of the China Energy Group of Lawrence Berkeley
National Laboratory for their contributions to this study. We are also
thankful to Peng Wang and Fushan Tian of the School of Mechanical
Engineering, University of Science and Technology Beijing, China for
their research assistance in this study. We are grateful to Zhang
Chunxia and Li Xiuping of the China Iron 82 Steel Research Institute for
their valuable comments on an earlier version of the paper.
NR 38
TC 8
Z9 8
U1 0
U2 26
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0959-6526
EI 1879-1786
J9 J CLEAN PROD
JI J. Clean Prod.
PD JUL 1
PY 2014
VL 74
BP 105
EP 118
DI 10.1016/j.jclepro.2014.03.065
PG 14
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental;
Environmental Sciences
SC Science & Technology - Other Topics; Engineering; Environmental Sciences
& Ecology
GA AJ6AV
UT WOS:000337773000011
ER
PT J
AU English, JM
Kay, JE
Gettelman, A
Liu, XH
Wang, Y
Zhang, YY
Chepfer, H
AF English, Jason M.
Kay, Jennifer E.
Gettelman, Andrew
Liu, Xiaohong
Wang, Yong
Zhang, Yuying
Chepfer, Helene
TI Contributions of Clouds, Surface Albedos, and Mixed-Phase Ice Nucleation
Schemes to Arctic Radiation Biases in CAM5
SO JOURNAL OF CLIMATE
LA English
DT Article
ID COMMUNITY ATMOSPHERE MODEL; GLOBAL CLIMATE MODEL; ENERGY SYSTEM CERES;
STRATIFORM CLOUDS; PARAMETERIZATION; MICROPHYSICS; SIMULATIONS;
INSTRUMENT; REPRESENTATION; DISTRIBUTIONS
AB The Arctic radiation balance is strongly affected by clouds and surface albedo. Prior work has identified Arctic cloud liquid water path (LWP) and surface radiative flux biases in the Community Atmosphere Model, version 5 (CAMS), and reductions to these biases with improved mixed-phase ice nucleation schemes. Here, CAMS net top-of-atmosphere (TOA) Arctic radiative flux biases are quantified along with the contributions of clouds, surface albedos, and new mixed-phase ice nucleation schemes to these biases. CAMS net TOA all-sky shortwave (SW) and outgoing longwave radiation (OLR) fluxes are generally within 10W m(-2) of Clouds and the Earth's Radiant Energy System Energy Balanced and Filled (CERES-EBAF) observations. However, CAMS has compensating SW errors: Surface albedos over snow are too high while cloud amount and LWP are too low. Use of a new CAMS Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar simulator that corrects an error in the treatment of snow crystal size confirms insufficient cloud amount in CAMS year-round. CAMS OLR is too low because of low surface temperature in winter, excessive atmospheric water vapor in summer, and excessive cloud heights year-round. Simulations with two new mixed-phase ice nucleation schemes-one based on an empirical fit to ice nuclei observations and one based on classical nucleation theory with prognostic ice nuclei improve surface climate in winter by increasing cloud amount and LWP. However, net TOA and surface radiation biases remain because of increases in midlevel clouds and a persistent deficit in cloud LWP. These findings highlight challenges with evaluating and modeling Arctic cloud, radiation, and climate processes.
C1 [English, Jason M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA.
[Kay, Jennifer E.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80303 USA.
[Gettelman, Andrew] Natl Ctr Atmospher Res, Earth Syst Lab, Boulder, CO 80307 USA.
[Liu, Xiaohong; Wang, Yong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA.
[Wang, Yong] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China.
[Zhang, Yuying] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Chepfer, Helene] Univ Paris 06, LMD IPSL, Paris, France.
RP English, JM (reprint author), Univ Colorado, Lab Atmospher & Space Phys, 3665 Discovery Dr,600 UCB, Boulder, CO 80303 USA.
EM jayenglish@gmail.com
RI Liu, Xiaohong/E-9304-2011; Zhang, Yuying/H-5011-2012; English,
Jason/E-9365-2015; Kay, Jennifer/C-6042-2012
OI Liu, Xiaohong/0000-0002-3994-5955; English, Jason/0000-0001-9700-6860;
FU NASA [NNX09AJ05G]; DOE Office of Science Atmospheric System Research
(ASR) Program and Earth System Modeling Program; Earth System Modeling
program of the U.S. Department of Energy; DOE by Battelle Memorial
Institute [DE-AC06-76RLO 1830]; U.S. Department of Energy by LLNL
[DE-AC52-07NA27344]
FX Support for J. M. English was provided by NASA Award NNX09AJ05G. Support
for X. Liu was provided by the DOE Office of Science Atmospheric System
Research (ASR) Program and Earth System Modeling Program. Support for Y.
Zhang was provided by the Earth System Modeling program of the U.S.
Department of Energy. Thanks to NOAA and Rutgers for snow-cover data and
to Mark Flanner for providing them in a convenient format. Thanks to
Gijs de Boer for providing SHEBA data in a convenient format, to David
Bailey for insightful conversations regarding the sea ice model, to Dave
Lawrence for insightful conversations regarding the land model, and to
Neil Barton for providing new cloud plots using the new lidar code.
Thanks to NASA and CNES for CALIOP and CERES data. The Pacific Northwest
National Laboratory (PNNL) is operated for the DOE by Battelle Memorial
Institute under Contract DE-AC06-76RLO 1830. Work at LLNL was performed
under the auspices of the U.S. Department of Energy by LLNL under
Contract DE-AC52-07NA27344.
NR 68
TC 13
Z9 13
U1 5
U2 44
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD JUL 1
PY 2014
VL 27
IS 13
BP 5174
EP 5197
DI 10.1175/JCLI-D-13-00608.1
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AJ8WG
UT WOS:000337988200025
ER
PT J
AU Angleby, H
Oskarsson, M
Pang, JF
Zhang, YP
Leitner, T
Braham, C
Arvestad, L
Lundeberg, J
Webb, KM
Savolainen, P
AF Angleby, Helen
Oskarsson, Mattias
Pang, Junfeng
Zhang, Ya-ping
Leitner, Thomas
Braham, Caitlyn
Arvestad, Lars
Lundeberg, Joakim
Webb, Kristen M.
Savolainen, Peter
TI Forensic Informativity of similar to 3000bp of Coding Sequence of
Domestic Dog mtDNA
SO JOURNAL OF FORENSIC SCIENCES
LA English
DT Article
DE forensic science; domestic dog; mitochondrial DNA; coding region;
control region; exclusion capacity
ID CANINE MICROSATELLITE POLYMORPHISMS; MITOCHONDRIAL GENOME; CONTROL
REGION; WOLF HYBRIDIZATION; DNA; POPULATION; IDENTIFICATION; ORIGIN;
HAIRS; AMPLIFICATION
AB The discriminatory power of the noncoding control region (CR) of domestic dog mitochondrial DNA alone is relatively low. The extent to which the discriminatory power could be increased by analyzing additional highly variable coding regions of the mitochondrial genome (mtGenome) was therefore investigated. Genetic variability across the mtGenome was evaluated by phylogenetic analysis, and the three most variable similar to 1kb coding regions identified. We then sampled 100 Swedish dogs to represent breeds in accordance with their frequency in the Swedish population. A previously published dataset of 59 dog mtGenomes collected in the United States was also analyzed. Inclusion of the three coding regions increased the exclusion capacity considerably for the Swedish sample, from 0.920 for the CR alone to 0.964 for all four regions. The number of mtDNA types among all 159 dogs increased from 41 to 72, the four most frequent CR haplotypes being resolved into 22 different haplotypes.
C1 [Angleby, Helen; Oskarsson, Mattias; Lundeberg, Joakim; Savolainen, Peter] KTH Royal Inst Technol, Sch Biotechnol, Div Gene Technol, Sci Life Lab, SE-17165 Solna, Sweden.
[Pang, Junfeng; Zhang, Ya-ping] Chinese Acad Sci, Kunming Inst Zool, State Key Lab Genet Resources & Evolut, Kunming 650223, Yunnan, Peoples R China.
[Leitner, Thomas] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Braham, Caitlyn; Webb, Kristen M.] Allegheny Coll, Dept Biol, Meadville, PA 16335 USA.
[Arvestad, Lars] Stockholm Univ, Dept Numer Anal & Comp Sci, Swedish E Sci Res Ctr, SE-17121 Stockholm, Sweden.
[Arvestad, Lars] KTH Royal Inst Technol, Sch Comp Sci & Commun, Dept Computat Biol, Sci Life Lab, SE-17165 Solna, Sweden.
RP Webb, KM (reprint author), Allegheny Coll, Dept Biol, 520 North Main St,Box 10, Meadville, PA 16335 USA.
EM kwebb@allegheny.edu
RI Pang, Junfeng/I-9148-2014;
OI Arvestad, Lars/0000-0001-5341-1733
FU Knut and Alice Wallenberg Foundation
FX Co-author Peter Savolainen is a Royal Swedish Academy of Sciences
Research Fellow supported by a grant from the Knut and Alice Wallenberg
Foundation.
NR 38
TC 1
Z9 1
U1 0
U2 10
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-1198
EI 1556-4029
J9 J FORENSIC SCI
JI J. Forensic Sci.
PD JUL
PY 2014
VL 59
IS 4
BP 898
EP 908
DI 10.1111/1556-4029.12504
PG 11
WC Medicine, Legal
SC Legal Medicine
GA AJ9NL
UT WOS:000338038300003
PM 24814664
ER
PT J
AU Ekstrand, L
Zhang, S
Grieve, T
Chumbley, LS
Kreiser, MJ
AF Ekstrand, Laura
Zhang, Song
Grieve, Taylor
Chumbley, L. Scott
Kreiser, M. James
TI Virtual Tool Mark Generation for Efficient Striation Analysis
SO JOURNAL OF FORENSIC SCIENCES
LA English
DT Article
DE forensic science; tool mark comparison; computer simulation;
screwdriver; statistics; striae
AB This study introduces a tool mark analysis approach based upon 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. An open-source 3D graphics software package is utilized to simulate the marking process as the projection of the tip's geometry in the direction of tool travel. The edge of this projection becomes a virtual tool mark that is compared to cross-sections of the marked plate geometry using the statistical likelihood algorithm introduced by Chumbley etal. In a study with both sides of six screwdriver tips and 34 corresponding marks, the method distinguished known matches from known nonmatches with zero false-positive matches and two false-negative matches. For matches, it could predict the correct marking angle within +/- 5-10 degrees. Individual comparisons could be made in seconds on a desktop computer, suggesting that the method could save time for examiners.
C1 [Ekstrand, Laura; Zhang, Song; Grieve, Taylor; Chumbley, L. Scott] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RP Zhang, S (reprint author), Iowa State Univ, Dept Mech Engn, 2096 Black Engn, Ames, IA 50011 USA.
EM song@iastate.edu
RI Zhang, Song/C-5294-2012
OI Zhang, Song/0000-0001-8452-4837
FU National Institute of Justice [2009-DN-R-119]; U.S. Department of Energy
[DE-AC02-07CH11358]
FX Supported by Award No. 2009-DN-R-119 from the National Institute of
Justice and performed at the Ames Laboratory, which is operated by Iowa
State University under contract number DE-AC02-07CH11358 with the U.S.
Department of Energy.
NR 10
TC 4
Z9 4
U1 0
U2 10
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-1198
EI 1556-4029
J9 J FORENSIC SCI
JI J. Forensic Sci.
PD JUL
PY 2014
VL 59
IS 4
BP 950
EP 959
DI 10.1111/1556-4029.12435
PG 10
WC Medicine, Legal
SC Legal Medicine
GA AJ9NL
UT WOS:000338038300009
PM 24502818
ER
PT J
AU McClintock, DA
Vevera, BJ
Riemer, BW
Gallmeier, FX
Hyres, JW
Ferguson, PD
AF McClintock, David A.
Vevera, Bradley J.
Riemer, Bernard W.
Gallmeier, Franz X.
Hyres, James W.
Ferguson, Phillip D.
TI Post-irradiation tensile properties of the first and second operational
target modules at the Spallation Neutron Source
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article; Proceedings Paper
CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11)
CY NOV 04-09, 2012
CL Ghent, BELGIUM
ID SOURCE MERCURY TARGET; AUSTENITIC STAINLESS-STEELS;
RESEARCH-AND-DEVELOPMENT; MECHANICAL-PROPERTIES; CONTAINER MATERIALS;
PROTON; IRRADIATION; SNS; DEFORMATION; WAVES
AB During neutron production the target module at the Spallation Neutron Source (SNS) is damaged by cavitation-induced erosion and the mechanical properties of the AISI 316L vessel material are altered by high-energy proton and neutron. radiation. Recently the first and second operational target modules at the SNS reached the end of their useful lifetime, and disk shaped specimens were sampled from the beam entrance region of both targets. Tensile specimens ranging in dose from 3 to 7 displacements per atom (dpa) were fabricated from the disk specimens using wire electrical discharge machining and tested at room temperature. This paper presents the tensile properties of the irradiated 316L vessel material removed from the first and second operational SNS target modules. Results show an increase in tensile strength and decrease in elongation values similar to previous spallation irradiated 316L results. Abnormally large elongation, 57% total elongation, was observed in a specimen irradiated to 5.4 dpa and considerable scatter was observed in the uniform and total elongation data. One possible explanation for the abnormally large elongations and scatter observed in tensile test results is the so-called deformation wave phase transformation-induced plasticity effect. Microscopy characterization revealed the presence of large nonmetallic inclusions rich in Al, S, Ca, O, and Mg on the fracture surface, which may have also contributed to the scatter in the tensile elongation results. While all specimens exhibited radiation-induced hardening and a decrease in ductility, the predominate topographical morphology on all specimen fracture surfaces examined was ductile microvoid coalescence and all specimens experienced appreciable necking prior to fracture. These findings indicate that 316L retains sufficient ductility (10-20% total elongation) and fractures in a ductile manor after irradiation to approximately 6-7 dpa in the mixed proton/neutron radiation environment at the SNS. (C) 2014 Elsevier B.V. All rights reserved.
C1 [McClintock, David A.; Riemer, Bernard W.; Gallmeier, Franz X.; Ferguson, Phillip D.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA.
[Vevera, Bradley J.; Hyres, James W.] Babcock & Wilcox Tech Serv Grp Inc, Lynchburg, VA USA.
RP McClintock, DA (reprint author), Oak Ridge Natl Lab, Instrument & Source Design Div, POB 2008,Bldg 8600,MS 6476, Oak Ridge, TN 37831 USA.
EM mcclintockda@oml.gov
OI Ferguson, Phillip/0000-0002-7661-4223; McClintock,
David/0000-0002-9292-8951; Riemer, Bernard/0000-0002-6922-3056
FU Office of Science, U.S. Department of Energy; UT-Battelle, LLC for the
U.S. Department of Energy [DE-AC05-00OR22725]
FX The authors would like to thank Justin Carmichael for assistance with
figures presented in this paper. The SNS is sponsored by the Office of
Science, U.S. Department of Energy, and managed by UT-Battelle, LLC for
the U.S. Department of Energy under Contract DE-AC05-00OR22725.
NR 26
TC 2
Z9 2
U1 0
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2014
VL 450
IS 1-3
BP 130
EP 140
DI 10.1016/j.jnucmat.2014.02.037
PG 11
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA AJ7FM
UT WOS:000337862600021
ER
PT J
AU Vevera, BJ
McClintock, DA
Hyres, JW
Riemer, BW
AF Vevera, Bradley J.
McClintock, David A.
Hyres, James W.
Riemer, Bernard W.
TI Characterization of irradiated AISI 316L stainless steel disks removed
from the Spallation Neutron Source
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article; Proceedings Paper
CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11)
CY NOV 04-09, 2012
CL Ghent, BELGIUM
ID TARGET; SNS
AB Disk-shaped samples were removed from the first and second operational target modules at the Spallation Neutron Source for post-irradiation examination to assess the extent of radiation-induced changes in mechanical properties and the amount of cavitation-induced erosion to the AISI 316L stainless steel target vessel. Characterization techniques performed include: high-resolution photography of the disk specimens, ultrasonic cleaning to remove mercury residue and surface oxides, surface profile mapping of cavitation pits using high frequency ultrasonic testing, high-resolution surface replication, and scanning electron microscopy accompanied by energy dispersive spectroscopy. The target disk samples were machined using wire electrical discharge machining to produce microstructural and mechanical test specimens for tensile testing, Rockwell Superficial hardness testing, and Vickers microhardness testing. The effectiveness of the cleaning procedure was evident in the pre- and post-cleaning photography, and provided accurate photographs of areas on each disk that facilitated the creation of detailed machining maps. Due to the limited amount of material available and the unique geometry of the disks, test specimen design and development of fixturing for machining operations were critical aspects of this work; multiple designs were considered and refined during mock-up testing on unirradiated disks. The techniques used to successfully machine and test the various specimens will be presented along with a summary of important findings from the laboratory characterizations. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Vevera, Bradley J.; Hyres, James W.] Babcock & Wilcox Tech Serv Grp Inc, Lynchburg, VA USA.
[McClintock, David A.; Riemer, Bernard W.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA.
RP McClintock, DA (reprint author), Oak Ridge Natl Lab, Instrument & Source Design Div, POB 2008,Bldg 8600,MS 6466, Oak Ridge, TN 37831 USA.
EM mcclintockda@ornl.gov
OI McClintock, David/0000-0002-9292-8951; Riemer,
Bernard/0000-0002-6922-3056
FU Office of Science, U.S. Department of Energy; UT-Battelle, LLC for the
U.S. Department of Energy [DE-AC05-00OR22725]
FX The SNS is sponsored by the Office of Science, U.S. Department of
Energy, and managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract DE-AC05-00OR22725.
NR 8
TC 2
Z9 2
U1 0
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2014
VL 450
IS 1-3
BP 147
EP 162
DI 10.1016/j.jnucmat.2014.02.035
PG 16
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA AJ7FM
UT WOS:000337862600023
ER
PT J
AU McClintock, DA
Janney, JG
Parish, CM
AF McClintock, David A.
Janney, Jim G.
Parish, Chad M.
TI Characterization of an explosively bonded aluminum proton beam window
for the Spallation Neutron Source
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article; Proceedings Paper
CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11)
CY NOV 04-09, 2012
CL Ghent, BELGIUM
ID MECHANICAL-PROPERTIES; TENSILE PROPERTIES; STEEL; IRRADIATION; ALLOY;
MICROSTRUCTURE; ENVIRONMENT; PLATES; FLOW
AB effort is underway at the Spallation Neutron Source (SNS) to redesign the 1st Generation high-nickel alloy proton beam window (PEW) to a 2nd Generation design that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel shielding structure of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design and a testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in an aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with an niobium interlayer after repeated thermal-shock cycles, which was attributed to an extensive crack network that formed in an interfacial layer of a niobium-rich constituent phase located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, an explosively formed bond with a titanium interlayer was selected for the aluminum PEW design at the SNS. (C) 2014 Elsevier B.V. All rights reserved.
C1 [McClintock, David A.; Janney, Jim G.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA.
[Parish, Chad M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP McClintock, DA (reprint author), Oak Ridge Natl Lab, Instrument & Source Design Div, POB 2008,Bldg 8600,MS 6466, Oak Ridge, TN 37831 USA.
EM mcclintockda@ornl.gov
RI Parish, Chad/J-8381-2013;
OI McClintock, David/0000-0002-9292-8951
FU Office of Science, U.S. Department of Energy; UT-Battelle, LLC for the
U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National
Laboratory's Shared Research Equipment (ShaRE) User Program; Office of
Basic Energy Sciences, U.S. Department of Energy
FX The SNS is sponsored by the Office of Science, U.S. Department of
Energy, and managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract DE-AC05-00OR22725.; Research sponsored by Oak
Ridge National Laboratory's Shared Research Equipment (ShaRE) User
Program, which is sponsored by the Office of Basic Energy Sciences, U.S.
Department of Energy.
NR 28
TC 0
Z9 0
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2014
VL 450
IS 1-3
BP 163
EP 175
DI 10.1016/j.jnucmat.2014.02.016
PG 13
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA AJ7FM
UT WOS:000337862600024
ER
PT J
AU McClintock, DA
Hyres, JW
Vevera, BJ
AF McClintock, David A.
Hyres, James W.
Vevera, Bradley J.
TI Hardness and stability of a carburized surface layer on AISI 316L
stainless steel after irradiation in a spallation neutron environment
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article; Proceedings Paper
CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11)
CY NOV 04-09, 2012
CL Ghent, BELGIUM
ID SNS TARGET TESTS; CAVITATION-EROSION; MERCURY TARGET; LANSCE-WNR;
PRESSURE WAVES; DAMAGE; RESISTANCE; VESSELS; POWER
AB The inner surfaces of mercury target vessels at the Spallation Neutron Source (SNS) experience material erosion caused by proton-beam induced cavitation of the liquid mercury. One approach developed and deployed to inhibit erosion of the target vessel material was surface hardening via a proprietary low-temperature carburization treatment, called Kolsterising, to the target surfaces most susceptible to cavitation-induced erosion. Previous testing has shown that the hardened surface produced by the Kolsterising treatment can delay the onset of erosion and inhibit erosion once initiated. But the stability of the carbon atmosphere in the treated surface layer after radiation to doses prototypic to the SNS target was unknown. Therefore, as part of the target Post Irradiation Examination program at the SNS, optical microscopy and microhardness testing were performed on material sampled from the first and second operational SNS target vessels. Optical micrographs contained no noticeable precipitation in the supersaturated carbon layer extending into the base material and several micrographs contained evidence of a proposed mechanism for mass wastage from the vessel surface. The hardened layer was characterized using Vickers microhardness testing and results show that the shape of hardness profile of the treated layer corresponded well with known pre-irradiation hardness values, though the microhardness results show some hardening occurred during irradiation. The results suggest that the hardened surface layer produced by the Kolsterising treatment is stable at the operational temperatures and dose levels experienced by the first and second operational SNS target modules. (C) 2014 Elsevier B.V. All rights reserved.
C1 [McClintock, David A.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA.
[Hyres, James W.; Vevera, Bradley J.] Babcock & Wilcox Tech Serv Grp Inc, Lynchburg, VA USA.
RP McClintock, DA (reprint author), Oak Ridge Natl Lab, Instrument & Source Design Div, POB 2008,Bldg 8600,MS 6476, Oak Ridge, TN 37831 USA.
EM mcclintockda@ornl.gov
OI McClintock, David/0000-0002-9292-8951
FU Office of Science, U.S. Department of Energy; UT-Battelle, LLC for the
U.S. Department of Energy [DE-AC05-00OR22725]
FX The authors would like to thank Genevieve Martin for her assistance with
figures presented in this paper. The SNS is sponsored by the Office of
Science, U.S. Department of Energy, and managed by UT-Battelle, LLC for
the U.S. Department of Energy under Contract DE-AC05-00OR22725.
NR 15
TC 1
Z9 1
U1 0
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2014
VL 450
IS 1-3
BP 176
EP 182
DI 10.1016/j.jnucmat.2014.01.005
PG 7
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA AJ7FM
UT WOS:000337862600025
ER
PT J
AU Riemer, BW
McClintock, DA
Kaminskas, S
Abdou, AA
AF Riemer, B. W.
McClintock, D. A.
Kaminskas, S.
Abdou, A. A.
TI Correlation between simulations and cavitation-induced erosion damage in
Spallation Neutron Source target modules after operation
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article; Proceedings Paper
CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11)
CY NOV 04-09, 2012
CL Ghent, BELGIUM
ID VESSELS
AB An explicit finite element (FE) technique developed for estimating dynamic strain in the Spallation Neutron Source (SNS) mercury target module vessel is now providing insight into cavitation-induced erosion patterns observed on interior surfaces of SNS targets during post-irradiation examination. The technique uses an empirically developed material model for the mercury that describes its volumetric stiffness combined with a tensile pressure cut-off limit to approximate the threshold and effect of cavitation. The longest period each point in the mercury is at the tensile cut-off threshold is denoted as "saturation time". Patterns of saturation time can be obtained from the FE simulations and are being positively correlated with observed damage patterns as a qualitative measure of damage potential. Saturation time has been advocated by collaborators at the Japan Proton Accelerator Research Complex (J-PARC) as a factor in predicting bubble nuclei growth and collapse intensity. Larger ratios of maximum bubble-size-to-nucleus result in greater bubble collapse intensity; longer saturation times correlate to greater ratios. With the recent development of a user subroutine for the FE solver, saturation time is now provided over the entire mercury domain. Saturation time contour maps agree with patterns of damage seen on the SNS inner vessel beam window and elsewhere. The other simulation result which seems to correlate with observed damage patterns is the local mercury velocity. Related R&D has provided evidence that damage is mitigated by flow velocity. Surfaces which are near regions of low mercury velocity appear to be more vulnerable to damage than those where the mercury flow is strong and sustained. By combining the patterns of saturation time and velocity a viable explanation for observed damage patterns is presented. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Riemer, B. W.; McClintock, D. A.; Kaminskas, S.; Abdou, A. A.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA.
RP Riemer, BW (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, POB 2008,Bldg 8600,MS 6476, Oak Ridge, TN 37831 USA.
EM riemerbw@ornl.gov
OI McClintock, David/0000-0002-9292-8951; Riemer,
Bernard/0000-0002-6922-3056
NR 14
TC 2
Z9 2
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2014
VL 450
IS 1-3
BP 183
EP 191
DI 10.1016/j.jnucmat.2013.10.057
PG 9
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA AJ7FM
UT WOS:000337862600026
ER
PT J
AU Riemer, BW
Wendel, MW
Felde, DK
Sangrey, RL
Abdou, A
West, DL
Shea, TJ
Hasegawa, S
Kogawa, H
Naoe, T
Farny, CH
Kaminsky, AL
AF Riemer, B. W.
Wendel, M. W.
Felde, D. K.
Sangrey, R. L.
Abdou, A.
West, D. L.
Shea, T. J.
Hasegawa, S.
Kogawa, H.
Naoe, T.
Farny, C. H.
Kaminsky, A. L.
TI Small gas bubble experiment for mitigation of cavitation damage and
pressure waves in short-pulse mercury spallation targets
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article; Proceedings Paper
CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11)
CY NOV 04-09, 2012
CL Ghent, BELGIUM
ID VESSELS
AB Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center-Weapons Neutron Research (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated small bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (j-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 pm in radius with achieved gas volume fractions in the 10(-5)-10(-4) range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was pitting damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was to one-third that of stagnant mercury. Other data collected included surface motion tracking by three Laser Doppler Vibrometers (LDV), test loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Riemer, B. W.; Wendel, M. W.; Felde, D. K.; Sangrey, R. L.; Abdou, A.; West, D. L.; Shea, T. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Hasegawa, S.; Kogawa, H.; Naoe, T.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan.
[Farny, C. H.] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA.
[Kaminsky, A. L.] Univ Tennessee, Knoxville, TN 37996 USA.
RP Riemer, BW (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA.
EM riemerbw@ornl.gov
RI West, David/A-3414-2009;
OI West, David/0000-0002-1265-9350; Riemer, Bernard/0000-0002-6922-3056
FU US Department of Energy
FX This work has benefited from the use of the Los Alamos Neutron Science
Center at the Los Alamos National Laboratory. This facility is funded by
the US Department of Energy.
NR 15
TC 3
Z9 3
U1 0
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2014
VL 450
IS 1-3
BP 192
EP 203
DI 10.1016/j.Mucmat.2013.10.011
PG 12
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA AJ7FM
UT WOS:000337862600027
ER
PT J
AU Marino, A
Lim, J
Keijers, S
Van den Bosch, J
Deconinck, J
Rubio, F
Woloshun, K
Caro, M
Maloy, SA
AF Marino, A.
Lim, J.
Keijers, S.
Van den Bosch, J.
Deconinck, J.
Rubio, F.
Woloshun, K.
Caro, M.
Maloy, S. A.
TI Temperature dependence of dissolution rate of a lead oxide mass
exchanger in lead-bismuth eutectic
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article; Proceedings Paper
CT 11th International Workshop on Spallation MaterialsTechnology (IWSMT-11)
CY NOV 04-09, 2012
CL Ghent, BELGIUM
ID TO-FLUID MASS; OXYGEN; SYSTEMS; COOLANT; LBE
AB A Computational Fluid Dynamic (CFD) model of a lead oxide mass exchanger (MO MX) was developed. The mass exchanger consisted of a packed bed of PbO spheres. The geometry was created using Discrete Elements Method (DEM) software while the meshing, the solving and the post-processing were done by the commercial CFD package CFX. The dissolution process was modeled by implementing in the code oxygen mass transfer through the boundary layer. The dissolution rate was then predicted for different temperatures. Experiments were also performed at the LBE material test loop known as the DELTA loop. Oxygen concentration at the outlet of the PbO MX was measured for different conditions using a potentiometric oxygen sensor and the dissolution rate was determined for five different temperatures. The experimental data were compared with the numerical model. The temperature dependence of the dissolution rate was then determined in terms of Sherwood number by fitting the simulation results while keeping constant Reynolds number. The results showed that the Sherwood number for PbO MX in flowing LBE varies with Sc-0.323. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Marino, A.; Lim, J.; Keijers, S.; Van den Bosch, J.] SCK CEN, B-2400 Mol, Belgium.
[Marino, A.; Deconinck, J.] Vrije Univ Brussel, B-1050 Elsene, Belgium.
[Rubio, F.; Woloshun, K.; Caro, M.; Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
RP Marino, A (reprint author), SCK CEN, Nucl Syst Res Conditioning & Chem Programme, Boeretang 200, B-2400 Mol, Belgium.
EM amarino@sckcen.be
RI Maloy, Stuart/A-8672-2009
OI Maloy, Stuart/0000-0001-8037-1319
FU US DOE-NE program on Advanced Small Modular Reactor Development
FX The research at the DELTA loop was supported by the US DOE-NE program on
Advanced Small Modular Reactor Development. The technical assistance of
Frank Romero and Kenneth Hurtle is greatly appreciated. We also thank
Simon Vanmaercke for his contribution on DEM.
NR 17
TC 4
Z9 4
U1 1
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2014
VL 450
IS 1-3
BP 270
EP 277
DI 10.1016/j.jnucmat.2013.12.023
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA AJ7FM
UT WOS:000337862600036
ER
PT J
AU Sugita, T
Bacon, J
Ban, Y
Borozdin, K
Izumi, M
Karino, Y
Kume, N
Miyadera, H
Mizokami, S
Morris, CL
Nakayama, K
Otsuka, Y
Perry, JO
Ramsey, J
Sano, Y
Yamada, D
Yoshida, N
Yoshioka, K
AF Sugita, Tsukasa
Bacon, Jeffery
Ban, Yuichiro
Borozdin, Konstantin
Izumi, Mikio
Karino, Yoshiji
Kume, Naoto
Miyadera, Haruo
Mizokami, Shinya
Morris, Christopher L.
Nakayama, Kohichi
Otsuka, Yasuyuki
Perry, John O.
Ramsey, John
Sano, Yuji
Yamada, Daichi
Yoshida, Noriyuki
Yoshioka, Kenichi
TI Cosmic-ray muon radiography of UO2 fuel assembly
SO JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY
LA English
DT Article
DE fuel assembly; MonteCarlo; decommissioning; muon radiography; cosmic-ray
muon; Geant4; NCA
ID INNER-STRUCTURE
AB A technical demonstration of cosmic-ray muon radiography of a UO2 fuel assembly was performed at Toshiba Nuclear Critical Assembly (NCA). The fuel assembly in the NCA was imaged through obstacles such as steel and concrete. The result suggested that the method can be applicable to assess the damage to the reactors at the Fukushima Daiichi nuclear power plant. Here, both scattering and displacement methods are presented, and the results are shown to agree with Monte Carlo simulations. In addition, detailed Monte Carlo simulations of the Fukushima Daiichi reactor were performed, which showed capability of muon radiography to locate the fuel in the damaged reactors.
C1 [Sugita, Tsukasa; Yoshioka, Kenichi] Toshiba Co Ltd, Kawasaki, Kanagawa 2100862, Japan.
[Ban, Yuichiro; Izumi, Mikio; Karino, Yoshiji; Kume, Naoto; Miyadera, Haruo; Nakayama, Kohichi; Sano, Yuji; Yoshida, Noriyuki] Toshiba Co Ltd, Isogo Ku, Yokohama, Kanagawa 2358523, Japan.
[Bacon, Jeffery; Borozdin, Konstantin; Morris, Christopher L.; Perry, John O.; Ramsey, John] Los Alamos Natl Lab, Subat Phys Grp, Los Alamos, NM 87545 USA.
[Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi] Tokyo Elect Power Co Ltd, Chiyoda Ku, Tokyo 1008560, Japan.
RP Miyadera, H (reprint author), Toshiba Co Ltd, Isogo Ku, 8 Shinsugita Cho, Yokohama, Kanagawa 2358523, Japan.
EM haruo.miyadera@toshiba.co.jp
OI Morris, Christopher/0000-0003-2141-0255; Perry, John/0000-0003-3639-5617
FU Tokyo Electric Power Company; Toshiba Corporation
FX We thank staffs at Toshiba NCA for their support during the reactor
imaging demonstration. This work has been supported by Tokyo Electric
Power Company and by Toshiba Corporation.
NR 15
TC 6
Z9 6
U1 0
U2 7
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0022-3131
EI 1881-1248
J9 J NUCL SCI TECHNOL
JI J. Nucl. Sci. Technol.
PD JUL-AUG
PY 2014
VL 51
IS 7-8
SI SI
BP 1024
EP 1031
DI 10.1080/00223131.2014.919884
PG 8
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA AJ8OQ
UT WOS:000337966000017
ER
PT J
AU Edman, JP
Romps, DM
AF Edman, Jacob P.
Romps, David M.
TI An Improved Weak Pressure Gradient Scheme for Single-Column Modeling
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID CLOUD-RESOLVING MODEL; GRAVITY-WAVES; APPROXIMATION; CONVECTION;
INSTABILITY; TROPOSPHERE
AB A new formulation of the weak pressure gradient approximation (WPG) is introduced for parameterizing large-scale dynamics in limited-domain atmospheric models. This new WPG is developed in the context of the one-dimensional, linearized, damped, shallow-water equations and then extended to Boussinesq and compressible fluids. Unlike previous supradomain-scale parameterizations, this formulation of WPG correctly reproduces both steady-state solutions and first baroclinic gravity waves. In so doing, this scheme eliminates the undesirable gravity wave resonance in previous versions of WPG. In addition, this scheme can be extended to accurately model the emission of gravity waves with arbitrary vertical wavenumber.
C1 [Edman, Jacob P.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Edman, JP (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 449 McCone Hall, Berkeley, CA 94720 USA.
EM jedman@berkeley.edu
RI Romps, David/F-8285-2011; Edman, Jacob/J-5522-2014
OI Edman, Jacob/0000-0001-9130-7128
FU U.S. Department of Energy's Earth System Modeling, an Office of Science,
Office of Biological and Environmental Research program
[DE-AC02-05CH11231]
FX This work was supported by the U.S. Department of Energy's Earth System
Modeling, an Office of Science, Office of Biological and Environmental
Research program under Contract DE-AC02-05CH11231. Thanks are due to
Adam Sobel, David Raymond, and an anonymous reviewer for their helpful
suggestions that improved this paper.
NR 25
TC 7
Z9 7
U1 0
U2 5
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
EI 1520-0469
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD JUL
PY 2014
VL 71
IS 7
BP 2415
EP 2429
DI 10.1175/JAS-D-13-0327.1
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AJ7ZF
UT WOS:000337920200008
ER
PT J
AU Zhou, BW
Simon, JS
Chow, FK
AF Zhou, Bowen
Simon, Jason S.
Chow, Fotini K.
TI The Convective Boundary Layer in the Terra Incognita
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID LARGE-EDDY-SIMULATION; NONHYDROSTATIC ATMOSPHERIC SIMULATION; PREDICTION
SYSTEM ARPS; VERTICAL DIFFUSION; MODEL; INSTABILITY; RESOLUTION;
DYNAMICS; FLOW
AB Numerical simulations of a convective boundary layer (CBL) are performed to investigate model behavior in the terra incognita, also known as the gray zone. The terra incognita of the CBL refers to a range of model grid spacing that is comparable to the size of the most energetic convective eddies, which are on the order of the boundary layer depth. Using the Rayleigh-Benard thermal instability as reference, a set of idealized simulations is used to show that gray zone modeling is not only a numerical challenge, but also poses dynamical difficulties. When the grid spacing falls within the CBL gray zone, grid-dependent convection can occur. The size of the initial instability structures is set by the grid spacing rather than the natural state of the flow. This changes higher-order flow statistics and poses fundamental difficulties for gray zone modeling applications.
C1 [Zhou, Bowen] Nanjing Univ, MOE, Key Lab Mesoscale Severe Weather, Nanjing 210008, Jiangsu, Peoples R China.
[Zhou, Bowen] Nanjing Univ, Sch Atmospher Sci, Nanjing 210008, Jiangsu, Peoples R China.
[Zhou, Bowen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Simon, Jason S.; Chow, Fotini K.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.
RP Chow, FK (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 621 Davis Hall, Berkeley, CA 94720 USA.
EM tinakc@berkeley.edu
FU National Science Foundation [ATM-0645784, OCI-1053575]
FX We gratefully acknowledge the comments and suggestions on the manuscript
from Prof. Bob Street. We also thank Prof. David Romps for insightful
discussions. We are grateful for the support from National Science
Foundation Grant ATM-0645784 (Physical and Dynamic Meteorology Program).
This work used the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation Grant
OCI-1053575.
NR 41
TC 16
Z9 16
U1 2
U2 14
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
EI 1520-0469
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD JUL
PY 2014
VL 71
IS 7
BP 2545
EP 2563
DI 10.1175/JAS-D-13-0356.1
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA AJ7ZF
UT WOS:000337920200016
ER
PT J
AU Latch, EK
Reding, DM
Heffelfinger, JR
Alcala-Galvan, CH
Rhodes, OE
AF Latch, Emily K.
Reding, Dawn M.
Heffelfinger, James R.
Alcala-Galvan, Carlos H.
Rhodes, Olin E.
TI Range-wide analysis of genetic structure in a widespread, highly mobile
species (Odocoileus hemionus) reveals the importance of historical
biogeography
SO MOLECULAR ECOLOGY
LA English
DT Review
DE gene flow; isolation by distance; landscape genetics; Odocoileus
hemionus; phylogeography; spatial genetic structure
ID WHITE-TAILED DEER; MULTILOCUS GENOTYPE DATA; WESTERN NORTH-AMERICA; MULE
DEER; POPULATION-STRUCTURE; MITOCHONDRIAL-DNA; INTROGRESSIVE
HYBRIDIZATION; EVOLUTIONARY HISTORY; LANDSCAPE GENETICS;
PLANT-POPULATIONS
AB Highly mobile species that thrive in a wide range of habitats are expected to show little genetic differentiation across their range. A limited but growing number of studies have revealed that patterns of broad-scale genetic differentiation can and do emerge in vagile, continuously distributed species. However, these patterns are complex and often shaped by both historical and ecological factors. Comprehensive surveys of genetic variation at a broad scale and at high resolution are useful for detecting cryptic spatial genetic structure and for investigating the relative roles of historical and ecological processes in structuring widespread, highly mobile species. In this study, we analysed 10 microsatellite loci from over 1900 samples collected across the full range of mule deer (Odocoileus hemionus), one of the most widely distributed and abundant of all large mammal species in North America. Through both individual- and population-based analyses, we found evidence for three main genetic lineages, one corresponding to the mule deer' morphological type and two to the black-tailed deer' type. Historical biogeographic events likely are the primary drivers of genetic divergence in this species; boundaries of the three lineages correspond well with predictions based on Pleistocene glacial cycles, and substructure within each lineage demonstrates island vicariance. However, across large geographic areas, including the entire mule deer lineage, we found that genetic variation fit an isolation-by-distance pattern rather than discrete clusters. A lack of genetic structure across wide geographic areas of the continental west indicates that ecological processes have not resulted in restrictions to gene flow sufficient for spatial genetic structure to emerge. Our results have important implications for our understanding of evolutionary mechanisms of divergence, as well as for taxonomy, conservation and management.
C1 [Latch, Emily K.] Univ Wisconsin, Behav & Mol Ecol Res Grp, Dept Biol Sci, Milwaukee, WI 53211 USA.
[Reding, Dawn M.] Luther Coll, Dept Biol, Decorah, IA 52101 USA.
[Reding, Dawn M.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA.
[Heffelfinger, James R.] Arizona Game & Fish Dept, Tucson, AZ 85745 USA.
[Alcala-Galvan, Carlos H.] DICTUS Univ Sonora, Hermosillo 83100, Sonora, Mexico.
[Rhodes, Olin E.] Savannah River Ecol Lab, Aiken, SC 29802 USA.
RP Latch, EK (reprint author), Univ Wisconsin, Behav & Mol Ecol Res Grp, Dept Biol Sci, 3209 N Maryland Ave, Milwaukee, WI 53211 USA.
EM latch@uwm.edu
FU Boone Crockett Club; Pope and Young Club; Campfire Conservation Fund of
the Camp Fire Club; National Fish and Wildlife Foundation; University of
Wisconsin-Milwaukee; Purdue University; University of Arizona; Arizona
Game and Fish Department; California Deer Association; Dallas Safari
Club; Safari Club International (National and Seattle Chapter)
FX We appreciate the support provided by the Boone & Crockett Club, Pope
and Young Club, Campfire Conservation Fund of the Camp Fire Club,
National Fish and Wildlife Foundation, University of
Wisconsin-Milwaukee, Purdue University, University of Arizona, Arizona
Game and Fish Department, California Deer Association, Dallas Safari
Club, Safari Club International (National and Seattle Chapter), Eldon
'Buck' Buckner, James deVos, Scott Fitkin, Richard Green, Jeff Gronauer,
Winifred Kessler, Paul Krausman, Mike Schlegel and Don Whittaker.
Samples from the entire range were collected by more than 150
volunteers, which, regrettably, are too numerous to mention
individually. Francisco Abarca was instrumental in helping with
international coordination. We appreciate helpful comments provided by
Lisette Waits and anonymous reviewers on an earlier draft of the
manuscript.
NR 104
TC 10
Z9 10
U1 9
U2 87
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0962-1083
EI 1365-294X
J9 MOL ECOL
JI Mol. Ecol.
PD JUL
PY 2014
VL 23
IS 13
BP 3171
EP 3190
DI 10.1111/mec.12803
PG 20
WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology
SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology;
Evolutionary Biology
GA AJ9GE
UT WOS:000338014900005
PM 24863151
ER
PT J
AU Bonito, G
Reynolds, H
Robeson, MS
Nelson, J
Hodkinson, BP
Tuskan, G
Schadt, CW
Vilgalys, R
AF Bonito, Gregory
Reynolds, Hannah
Robeson, Michael S.
Nelson, Jessica
Hodkinson, Brendan P.
Tuskan, Gerald
Schadt, Christopher W.
Vilgalys, Rytas
TI Plant host and soil origin influence fungal and bacterial assemblages in
the roots of woody plants
SO MOLECULAR ECOLOGY
LA English
DT Article
DE 454 pyrosequencing; bacterial communities; fungal communities;
Glomeromycota; phylotyping; Pinus; Populus; Quercus; root endophytes
ID ARBUSCULAR MYCORRHIZAL FUNGI; ECTOMYCORRHIZAL FUNGI; MICROBIAL
COMMUNITIES; ROCKY-MOUNTAINS; POPULUS; DIVERSITY; IDENTIFICATION;
FOREST; ASPEN; RHIZOSPHERE
AB Microbial communities in plant roots provide critical links between above- and belowground processes in terrestrial ecosystems. Variation in root communities has been attributed to plant host effects and microbial host preferences, as well as to factors pertaining to soil conditions, microbial biogeography and the presence of viable microbial propagules. To address hypotheses regarding the influence of plant host and soil biogeography on root fungal and bacterial communities, we designed a trap-plant bioassay experiment. Replicate Populus, Quercus and Pinus plants were grown in three soils originating from alternate field sites. Fungal and bacterial community profiles in the root of each replicate were assessed through multiplex 454 amplicon sequencing of four loci (i.e., 16S, SSU, ITS, LSU rDNA). Soil origin had a larger effect on fungal community composition than did host species, but the opposite was true for bacterial communities. Populus hosted the highest diversity of rhizospheric fungi and bacteria. Root communities on Quercus and Pinus were more similar to each other than to Populus. Overall, fungal root symbionts appear to be more constrained by dispersal and biogeography than by host availability.
C1 [Bonito, Gregory] Royal Bot Gardens, Melbourne, Vic 3141, Australia.
[Bonito, Gregory; Reynolds, Hannah; Nelson, Jessica; Hodkinson, Brendan P.; Vilgalys, Rytas] Duke Univ, Dept Biol, Durham, NC 27708 USA.
[Robeson, Michael S.; Tuskan, Gerald; Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
RP Bonito, G (reprint author), Royal Bot Gardens, Melbourne, Vic 3141, Australia.
EM Gregory.Bonito@rbg.vic.gov.au
RI Schadt, Christopher/B-7143-2008; Tuskan, Gerald/A-6225-2011;
OI Schadt, Christopher/0000-0001-8759-2448; Tuskan,
Gerald/0000-0003-0106-1289; Robeson, Michael/0000-0001-7119-6301;
Vilgalys, Rytas/0000-0001-8299-3605
FU Genomic Science Program, U.S. Department of Energy, Office of Science -
Biological and Environmental Research as part of the Plant Microbe
Interfaces Scientific Focus Area; National Science Foundation
[EF-0832858, DEB-1011504, DEB-1145511]; U.S. Department of Energy
[DE-AC05-00OR22725]
FX This research was sponsored by the Genomic Science Program, U.S.
Department of Energy, Office of Science - Biological and Environmental
Research as part of the Plant Microbe Interfaces Scientific Focus Area
(http://pmi.ornl.gov). Support for B.P.H. was provided in part by the
National Science Foundation under awards EF-0832858, DEB-1011504 and
DEB-1145511. We thank Lee Gunter, Jud Isebrands, Zachary Moore, Paul
Bloese and Bernard McMahon for supplying Populus cuttings, Joshua
Steiger and Steve Mckeand from the NC State University's Forest
Improvement Center for pine seed, Anthony Amend for helpful discussions
regarding 454 primer design, and Victor Bonito for advice on ecological
community statistics. Oak Ridge National Laboratory is managed by
UT-Battelle, LLC, for the U.S. Department of Energy under contract
DE-AC05-00OR22725.
NR 76
TC 28
Z9 29
U1 7
U2 153
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0962-1083
EI 1365-294X
J9 MOL ECOL
JI Mol. Ecol.
PD JUL
PY 2014
VL 23
IS 13
BP 3356
EP 3370
DI 10.1111/mec.12821
PG 15
WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology
SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology;
Evolutionary Biology
GA AJ9GE
UT WOS:000338014900017
PM 24894495
ER
PT J
AU Schmutz, J
McClean, PE
Mamidi, S
Wu, GA
Cannon, SB
Grimwood, J
Jenkins, J
Shu, SQ
Song, QJ
Chavarro, C
Torres-Torres, M
Geffroy, V
Moghaddam, SM
Gao, DY
Abernathy, B
Barry, K
Blair, M
Brick, MA
Chovatia, M
Gepts, P
Goodstein, DM
Gonzales, M
Hellsten, U
Hyten, DL
Jia, GF
Kelly, JD
Kudrna, D
Lee, R
Richard, MMS
Miklas, PN
Osorno, JM
Rodrigues, J
Thareau, V
Urrea, CA
Wang, M
Yu, Y
Zhang, M
Wing, RA
Cregan, PB
Rokhsar, DS
Jackson, SA
AF Schmutz, Jeremy
McClean, Phillip E.
Mamidi, Sujan
Wu, G. Albert
Cannon, Steven B.
Grimwood, Jane
Jenkins, Jerry
Shu, Shengqiang
Song, Qijian
Chavarro, Carolina
Torres-Torres, Mirayda
Geffroy, Valerie
Moghaddam, Samira Mafi
Gao, Dongying
Abernathy, Brian
Barry, Kerrie
Blair, Matthew
Brick, Mark A.
Chovatia, Mansi
Gepts, Paul
Goodstein, David M.
Gonzales, Michael
Hellsten, Uffe
Hyten, David L.
Jia, Gaofeng
Kelly, James D.
Kudrna, Dave
Lee, Rian
Richard, Manon M. S.
Miklas, Phillip N.
Osorno, Juan M.
Rodrigues, Josiane
Thareau, Vincent
Urrea, Carlos A.
Wang, Mei
Yu, Yeisoo
Zhang, Ming
Wing, Rod A.
Cregan, Perry B.
Rokhsar, Daniel S.
Jackson, Scott A.
TI A reference genome for common bean and genome-wide analysis of dual
domestications
SO NATURE GENETICS
LA English
DT Article
ID DISEASE RESISTANCE GENES; PHASEOLUS-VULGARIS L.; ARABIDOPSIS-THALIANA;
SEQUENCE DATA; DIVERSIFICATION; REVEALS; SELECTION; CLUSTER; ORIGIN;
LOCI
AB Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.
C1 [Schmutz, Jeremy; Wu, G. Albert; Shu, Shengqiang; Barry, Kerrie; Chovatia, Mansi; Goodstein, David M.; Hellsten, Uffe; Wang, Mei; Zhang, Ming; Rokhsar, Daniel S.] US DOE, Joint Genome Inst, Walnut Creek, CA USA.
[Schmutz, Jeremy; Grimwood, Jane; Jenkins, Jerry] HudsonAlpha Inst Biotechnol, Huntsville, AL USA.
[McClean, Phillip E.; Mamidi, Sujan; Moghaddam, Samira Mafi; Lee, Rian; Osorno, Juan M.] N Dakota State Univ, Dept Plant Sci, Fargo, ND 58105 USA.
[Cannon, Steven B.] USDA ARS, Corn Insects & Crop Genet Res Unit, Ames, IA USA.
[Song, Qijian; Hyten, David L.; Jia, Gaofeng; Rodrigues, Josiane; Cregan, Perry B.] USDA ARS, Soybean Genom & Improvement Lab, Beltsville, MD USA.
[Chavarro, Carolina; Torres-Torres, Mirayda; Gao, Dongying; Abernathy, Brian; Gonzales, Michael; Jackson, Scott A.] Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA.
[Geffroy, Valerie; Richard, Manon M. S.; Thareau, Vincent] Univ Paris 11, CNRS, Inst Biol Plantes, UMR 8618, F-91405 Orsay, France.
[Geffroy, Valerie] Univ Paris 11, INRA, Unite Mixte Rech Genet Vegetale, Gif Sur Yvette, France.
[Blair, Matthew] Tennessee State Univ, Dept Agr & Nat Sci, Nashville, TN 37203 USA.
[Brick, Mark A.] Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA.
[Gepts, Paul] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA.
[Kelly, James D.] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA.
[Kudrna, Dave; Yu, Yeisoo; Wing, Rod A.] Univ Arizona, Arizona Genom Inst, Tucson, AZ USA.
[Miklas, Phillip N.] USDA ARS, Vegetable & Forage Crop Res Unit, Prosser, WA 99350 USA.
[Urrea, Carlos A.] Univ Nebraska, Panhandle Res & Extens Ctr, Scottsbluff, NE USA.
RP Jackson, SA (reprint author), Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA.
EM jschmutz@hudsonalpha.org; phillip.mcclean@ndsu.edu; sjackson@uga.edu
OI Cannon, Steven/0000-0003-2777-8034; Hyten, David/0000-0001-6324-9389;
mamidi, sujan/0000-0002-3837-6121; Wing, Rod/0000-0001-6633-6226
FU Office of Science of the US Department of Energy - US Department of
Agriculture National Institute for Food and Agriculture
[DE-AC02-05CH11231, 2006-35300-17266]; National Science Foundation [DBI
0822258]; US Department of Agriculture Cooperative State Research,
Education and Extension Service [2009-01860, 2009-01929]
FX The work conducted by the US Department of Energy Joint Genome Institute
is supported by the Office of Science of the US Department of Energy
under contract DE-AC02-05CH11231. This research was funded by grants
from the US Department of Agriculture National Institute for Food and
Agriculture (2006-35300-17266) and the National Science Foundation (DBI
0822258) to S.A.J. and from the US Department of Agriculture Cooperative
State Research, Education and Extension Service (2009-01860 and
2009-01929) to S.A.J. and P.E.M., respectively.
NR 45
TC 210
Z9 213
U1 17
U2 125
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1061-4036
EI 1546-1718
J9 NAT GENET
JI Nature Genet.
PD JUL
PY 2014
VL 46
IS 7
BP 707
EP 713
DI 10.1038/ng.3008
PG 7
WC Genetics & Heredity
SC Genetics & Heredity
GA AK0HP
UT WOS:000338093800011
PM 24908249
ER
PT J
AU Ilas, G
Gauld, IC
Liljenfeldt, H
AF Ilas, Germina
Gauld, Ian C.
Liljenfeldt, Henrik
TI Validation of ORIGEN for LWR used fuel decay heat analysis with SCALE
SO NUCLEAR ENGINEERING AND DESIGN
LA English
DT Article
ID ANALYSIS CAPABILITIES; SPENT FUEL; DEPLETION
AB The energy release rate from the decay of radionuclides can be a critical design parameter for used nuclear fuel storage, transportation, and repository engineered systems. Validation of the SCALE nuclear analysis code system capabilities in predicting decay heat for commercial used fuel applications has been performed using decay heat measurements for fuel assemblies irradiated in pressurized and boiling water reactors. The experimental data used for validation include a large number of full-length-assembly decay heat measurements that were performed between 2003 and 2010 at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel, Clab, operated by the Swedish Nuclear Fuel and Waste Management Company, SKB. The measured fuel assemblies cover the burnup range 14-51 GWd/MTU and cooling times between 12 and 27 years, which are times of interest to used fuel transportation and storage applications. The validation results indicate good agreement between calculated and measured decay heat values, generally within the reported measurement uncertainty. The effects of key modeling assumptions and data used in the calculations are presented and discussed. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Ilas, Germina; Gauld, Ian C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Liljenfeldt, Henrik] Swedish Nucl Fuel & Waste Management Co AB SKB, S-10124 Stockholm, Sweden.
RP Ilas, G (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA.
EM ilasg@ornl.gov; gauldi@ornl.gov; Henrik.Liljenfeldt@skb.se
OI Gauld, Ian/0000-0002-3893-7515
FU UT-Battelle LLC [DE-AC05-000R22725]; US Department of Energy
FX This manuscript has been authored by UT-Battelle LLC under contract
DE-AC05-000R22725 with the US Department of Energy. The United States
Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes.
NR 18
TC 4
Z9 4
U1 0
U2 5
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0029-5493
J9 NUCL ENG DES
JI Nucl. Eng. Des.
PD JUL 1
PY 2014
VL 273
BP 58
EP 67
DI 10.1016/j.nucengdes.2014.02.026
PG 10
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA AJ7DD
UT WOS:000337856500006
ER
PT J
AU Craft, AE
O'Brien, RC
Howe, SD
King, JC
AF Craft, A. E.
O'Brien, R. C.
Howe, S. D.
King, J. C.
TI Submersion criticality safety of tungsten-rhenium urania cermet fuel for
space propulsion and power applications
SO NUCLEAR ENGINEERING AND DESIGN
LA English
DT Article
ID REACTORS; SYSTEM
AB Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten-uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores. (c) 2014 Elsevier B.V. All rights reserved.
C1 [Craft, A. E.; O'Brien, R. C.; Howe, S. D.] INL, Ctr Space Nucl Res, Idaho Falls, ID USA.
[King, J. C.] Colorado Sch Mines, Dept Met & Mat Engn, Nucl Sci & Engn Program, Golden, CO 80401 USA.
RP Craft, AE (reprint author), 995 Univ Blvd, Idaho Falls, ID 83402 USA.
EM aaron.craft@inl.gov; Robert.OBrien@inl.gov; Steven.Howe@inl.gov;
kingjc@mines.edu
RI O'Brien, Robert/C-3355-2017; Craft, Aaron/B-7579-2017
OI O'Brien, Robert/0000-0002-7479-6764; Craft, Aaron/0000-0002-7092-3826
NR 25
TC 0
Z9 0
U1 0
U2 16
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0029-5493
J9 NUCL ENG DES
JI Nucl. Eng. Des.
PD JUL 1
PY 2014
VL 273
BP 143
EP 149
DI 10.1016/j.nucengdes.2014.01.028
PG 7
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA AJ7DD
UT WOS:000337856500014
ER
PT J
AU Kryukov, A
Nanstad, RK
Brumovsky, M
AF Kryukov, A.
Nanstad, R. K.
Brumovsky, M.
TI Common comparison of the irradiation embrittlement of WWER/PWR reactor
pressure vessel steels
SO NUCLEAR ENGINEERING AND DESIGN
LA English
DT Article
ID ATOM-PROBE TOMOGRAPHY; SURVEILLANCE PROGRAM; EVOLUTION
AB The paper presents the immediate comparison of Tk shifts due to neutron irradiation for WWER and PWR RPV materials and common experimental data analysis. The PWR and WWER RPV steels were irradiated at both the same temperature and neutron fluence range. For both PWR and WWER RPV material types, there is a similar degradation in mechanical properties. The comparison of "high sensitive" welds with "clean" welds reveals an expected influence of three main chemical elements (copper, nickel and phosphorus) on RPV steels irradiation embrittlement. The synergistic influence of these three elements is observed. Because the peak neutron fluence in WWER RPVs is significantly higher than for PWRs, the most part of WWER irradiation embrittlement data correspond to high fluence values. These additional data will greatly support the development of embrittlement correlations and embrittlement trend curves valid for long irradiation times. (C) 2014 Elsevier BM. All rights reserved.
C1 [Kryukov, A.] Nucl Res Ee Consultancy Grp NRG, NL-1755 ZG Petten, Netherlands.
[Nanstad, R. K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Brumovsky, M.] Nucl Res Inst, CZ-25068 Rez, Czech Republic.
RP Kryukov, A (reprint author), Nucl Res Ee Consultancy Grp NRG, POB 25, NL-1755 ZG Petten, Netherlands.
EM al.kryukov2013@yandex.ru
NR 19
TC 2
Z9 2
U1 3
U2 10
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0029-5493
J9 NUCL ENG DES
JI Nucl. Eng. Des.
PD JUL 1
PY 2014
VL 273
BP 175
EP 180
DI 10.1016/j.nucengdes.2014.03.018
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA AJ7DD
UT WOS:000337856500018
ER
PT J
AU Seaver, SMD
Gerdes, S
Frelin, O
Lerma-Ortiz, C
Bradbury, LMT
Zallot, R
Hasnain, G
Niehaus, TD
El Yacoubi, B
Pasternak, S
Olson, R
Pusch, G
Overbeek, R
Stevens, R
de Crecy-Lagard, V
Ware, D
Hanson, AD
Henry, CS
AF Seaver, Samuel M. D.
Gerdes, Svetlana
Frelin, Oceane
Lerma-Ortiz, Claudia
Bradbury, Louis M. T.
Zallot, Remi
Hasnain, Ghulam
Niehaus, Thomas D.
El Yacoubi, Basma
Pasternak, Shiran
Olson, Robert
Pusch, Gordon
Overbeek, Ross
Stevens, Rick
de Crecy-Lagard, Valerie
Ware, Doreen
Hanson, Andrew D.
Henry, Christopher S.
TI High-throughput comparison, functional annotation, and metabolic
modeling of plant genomes using the PlantSEED resource
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE systems biology; computational biochemistry; plant metabolism; plant
genomics
ID ESCHERICHIA-COLI; METACYC DATABASE; PATHWAY DATABASE; ARABIDOPSIS;
NETWORK; RECONSTRUCTION; GENERATION; PROTEOMICS; BIOSYNTHESIS;
OPTIMIZATION
AB The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed.
C1 [Seaver, Samuel M. D.; Gerdes, Svetlana; Olson, Robert; Henry, Christopher S.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
[Pusch, Gordon; Stevens, Rick] Argonne Natl Lab, Argonne, IL 60439 USA.
[Seaver, Samuel M. D.; Olson, Robert; Pusch, Gordon; Stevens, Rick; Henry, Christopher S.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA.
[Frelin, Oceane; Bradbury, Louis M. T.; Hasnain, Ghulam; Niehaus, Thomas D.] Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA.
[Lerma-Ortiz, Claudia; Zallot, Remi; El Yacoubi, Basma; de Crecy-Lagard, Valerie] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA.
[Pasternak, Shiran; Ware, Doreen] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA.
[Ware, Doreen] Cornell Univ, USDA ARS, North Atlantic Area Plant Soil & Nutr Lab Res Uni, Ithaca, NY 14853 USA.
RP Henry, CS (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM chenry@mcs.anl.gov
RI ZALLOT, Remi/D-3933-2014
OI ZALLOT, Remi/0000-0002-7317-1578
FU National Science Foundation [IOS-1025398]; C V Griffin Sr Foundation;
Office of Science, Office of Biological and Environmental Research, of
the US Department of Energy (DOE) as part of the DOE Systems Biology
Knowledgebase [DE-ACO2-06CH11357]
FX We thank Kate Dreher for extensive discussions and support in the use of
the AraCyc database and Joshua Stein for support in the use of the
genomes and protein families. This work was supported by National
Science Foundation Grant IOS-1025398, by an endowment from the C V
Griffin Sr Foundation, and by the Office of Science, Office of
Biological and Environmental Research, of the US Department of Energy
(DOE) under Contract DE-ACO2-06CH11357, as part of the DOE Systems
Biology Knowledgebase.
NR 53
TC 21
Z9 21
U1 1
U2 23
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUL 1
PY 2014
VL 111
IS 26
BP 9645
EP 9650
DI 10.1073/pnas.1401329111
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AK0QG
UT WOS:000338118900071
PM 24927599
ER
PT J
AU Guan, DB
Lin, JT
Davis, SJ
Pan, D
He, KB
Wang, C
Wuebbles, DJ
Streets, DG
Zhang, Q
AF Guan, Dabo
Lin, Jintai
Davis, Steven J.
Pan, Da
He, Kebin
Wang, Can
Wuebbles, Donald J.
Streets, David G.
Zhang, Qiang
TI Reply to Lopez et al.: Consumption-based accounting helps mitigate
global air pollution
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Letter
ID EMISSIONS
C1 [Guan, Dabo; He, Kebin; Wang, Can; Zhang, Qiang] Tsinghua Univ, Minist Educ, Key Lab Earth Syst Modeling, Ctr Earth Syst Sci, Beijing 100084, Peoples R China.
[Guan, Dabo] Univ Leeds, Sch Earth & Environm, Water Leeds, Leeds LS2 9JT, W Yorkshire, England.
[Lin, Jintai] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China.
[Davis, Steven J.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.
[Pan, Da] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA.
[He, Kebin] Collaborat Innovat Ctr Reg Environm Qual, Beijing 100084, Peoples R China.
[Wang, Can] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China.
[Wuebbles, Donald J.] Univ Illinois, Sch Earth Soc & Environm, Dept Atmospher Sci, Urbana, IL 61801 USA.
[Streets, David G.] Argonne Natl Lab, Lemont, IL 60439 USA.
RP Lin, JT (reprint author), Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China.
EM linjt@pku.edu.cn
RI Lin, Jintai/A-8872-2012; Zhang, Qiang/D-9034-2012; Chem,
GEOS/C-5595-2014;
OI Lin, Jintai/0000-0002-2362-2940; Davis, Steven/0000-0002-9338-0844;
Guan, Dabo/0000-0003-3773-3403
NR 5
TC 7
Z9 7
U1 1
U2 18
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUL 1
PY 2014
VL 111
IS 26
BP E2631
EP E2631
DI 10.1073/pnas.1407383111
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AK0QG
UT WOS:000338118900002
PM 25115000
ER
PT J
AU Green, MA
Emery, K
Hishikawa, Y
Warta, W
Dunlop, ED
AF Green, Martin A.
Emery, Keith
Hishikawa, Yoshihiro
Warta, Wilhelm
Dunlop, Ewan D.
TI Solar cell efficiency tables (version 44)
SO PROGRESS IN PHOTOVOLTAICS
LA English
DT Article
DE solar cell efficiency; photovoltaic efficiency; energy conversion
efficiency
ID CONCENTRATOR; MULTICRYSTALLINE; STABILITY; MODULE
AB Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since January 2014 are reviewed. Copyright (c) 2014 John Wiley & Sons, Ltd.
C1 [Green, Martin A.] Univ New S Wales, Australian Ctr Adv Photovolta, Sydney, NSW 2052, Australia.
[Emery, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Hishikawa, Yoshihiro] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta Technol RCPVT, Tsukuba, Ibaraki 3058568, Japan.
[Warta, Wilhelm] Fraunhofer Inst Solar Energy Syst, Dept Mat & Technol, D-79110 Freiburg, Germany.
[Dunlop, Ewan D.] Commiss European Communities, Joint Res Ctr, Renewable Energy Unit, Inst Energy, IT-21027 Ispra, VA, Italy.
RP Green, MA (reprint author), Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia.
EM m.green@unsw.edu.au
FU Australian Government through the Australian Renewable Energy Agency
(ARENA)
FX The Australian Centre for Advanced Photovoltaics commenced operation in
February 2013 with support from the Australian Government through the
Australian Renewable Energy Agency (ARENA). Responsibility for the
views, information or advice expressed herein is not accepted by the
Australian Government.
NR 47
TC 355
Z9 364
U1 7
U2 250
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1062-7995
EI 1099-159X
J9 PROG PHOTOVOLTAICS
JI Prog. Photovoltaics
PD JUL
PY 2014
VL 22
IS 7
BP 701
EP 710
DI 10.1002/pip.2525
PG 10
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA AJ8KS
UT WOS:000337953300001
ER
PT J
AU Hacke, P
Smith, R
Terwilliger, K
Perrin, G
Sekulic, B
Kurtz, S
AF Hacke, Peter
Smith, Ryan
Terwilliger, Kent
Perrin, Greg
Sekulic, Bill
Kurtz, Sarah
TI Development of an IEC test for crystalline silicon modules to qualify
their resistance to system voltage stress
SO PROGRESS IN PHOTOVOLTAICS
LA English
DT Article
DE Energy conversion; Silicon
ID POTENTIAL-INDUCED DEGRADATION; SOLAR-CELLS
AB IEC 62804 Ed. 1, System voltage durability qualification test for crystalline silicon modules, is being developed. First, two module designs are compared in chamber and in the natural environment of Florida (USA). From these results, a stress level of 60 degrees C, 85% relative humidity, a bias of nameplate system voltage, 96h dwell, and a pass/fail limit of 5% relative power degradation at 25 degrees C and 1000W/m2 irradiance is initially proposed for the draft protocol. This paper next focuses on one of the main controversies within the development of this standardthe use of damp heat in an environmental chamber versus a conductive foil to complete the circuit to ground during the test. Conventional 60-cell multicrystalline silicon modules with (i) a standard aluminum frame, (ii) a modified frame, and (iii) a rear rail design were tested for potential-induced degradation (PID). These three module designs were stressed at the draft protocol conditions stated above and outdoors, applying negative system voltage bias during hours of daylight to simulate array voltage. The damp heat environmental chamber tests run according to the protocol distinguish the relative resistance of five module designs to PID in the field and correctly rank-order the durability in the field to the extent tested (up to 28months). Finally, the degradation rate is determined at 25 degrees C using a foil to ground the module face on a subset of modules susceptible to PID, and the results with respect to measured field performance of the modules are discussed. Copyright (c) 2013 John Wiley & Sons, Ltd.
C1 [Hacke, Peter; Terwilliger, Kent; Perrin, Greg; Sekulic, Bill; Kurtz, Sarah] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Smith, Ryan] Pordis LLC, Austin, TX 78729 USA.
RP Hacke, P (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM peter.hacke@nrel.gov
FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy
Laboratory
FX The authors thank Bill Marion for helpful discussions; Steve Rummel and
Allen Anderberg, Keith Emery, Showalter, Donard Metzger, and Stephen
Barkaszi for module measurements; and Antonio Bonucci for providing
module edge tape. This work was supported by the US Department of Energy
under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy
Laboratory.
NR 27
TC 12
Z9 12
U1 0
U2 11
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1062-7995
EI 1099-159X
J9 PROG PHOTOVOLTAICS
JI Prog. Photovoltaics
PD JUL
PY 2014
VL 22
IS 7
BP 775
EP 783
DI 10.1002/pip.2434
PG 9
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA AJ8KS
UT WOS:000337953300008
ER
PT J
AU Feng, YZ
Grogan, P
Caporaso, JG
Zhang, HY
Lin, XG
Knight, R
Chu, HY
AF Feng, Youzhi
Grogan, Paul
Caporaso, J. Gregory
Zhang, Huayong
Lin, Xiangui
Knight, Rob
Chu, Haiyan
TI pH is a good predictor of the distribution of anoxygenic purple
phototrophic bacteria in Arctic soils
SO SOIL BIOLOGY & BIOCHEMISTRY
LA English
DT Article
DE Anoxygenic purple phototrophic bacteria; Arctic soils; Pyrosequencing;
Spatial distribution; Soil pH
ID MOLECULAR EVIDENCE; DIVERSITY; COMMUNITIES; EVOLUTION; PHOTOSYNTHESIS;
MICROBES; LIGHT; OCEAN; PROKARYOTES; ECOSYSTEMS
AB Anoxygenic purple phototrophic bacteria (AnPPB) are ecologically important microorganisms that are sensitive to shifts in environmental variables. However, there is little information about the composition and distribution of AnPPB in the Arctic. Here we present the first study of the spatial distribution of soil AnPPB in Arctic soils using pyrosequencing and quantitative real-time PCR. We show that the AnPPB community in Arctic soils is as diverse and abundant as that in lower latitudes. The phylum Alphaproteobacteria accounted for 54.1% of the total sequences; about one third of total sequences were identified as novel phylotypes. Consistent with their anaerobic niche, AnPPB abundances were positively correlated with soil moisture content. Furthermore, the relative and absolute abundances of several dominant AnPPB taxa were significantly correlated with soil pH. AnPPB phylogenetic community structure was correlated with soil pH, as was alpha diversity, with a minimum around pH 6.0. Previous research has shown that pH is a good predictor of the structure of soil bacterial communities. Our results here suggest that pH could be a key factor driving phylogenetic diversity of not just overall bacterial communities but also of discrete functional guilds of bacteria in terrestrial ecosystems. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Feng, Youzhi; Zhang, Huayong; Lin, Xiangui; Chu, Haiyan] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China.
[Grogan, Paul] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada.
[Caporaso, J. Gregory] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA.
[Caporaso, J. Gregory] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA.
[Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA.
RP Chu, HY (reprint author), Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China.
EM xglin@issas.ac.cn; hychu@issas.ac.cn
RI Knight, Rob/D-1299-2010
FU National Natural Science Foundation of China [_501100001809, 41071167,
41371254, 41001142, 41271256]; Hundred Talents Program of the Chinese
Academy of Sciences [_501100002367]; AWS in Education researcher's
grant; Howard Hughes Medical Institute [_100000011]
FX We sincerely thank our many colleagues who collected soil samples across
the Arctic. We also thank Linda Cameron and several undergraduate
students for help with soil processing and lab analyses. This work was
supported by National Natural Science Foundation of China
(_501100001809) to H. Chu (41071167, 41371254) and to Y. Feng (41001142,
41271256), the Hundred Talents Program of the Chinese Academy of
Sciences (_501100002367) to H. Chu, and NSERC as part of the
International Polar Year Project: Climate Change Impacts on Canadian
Arctic Tundra (P. Grogan), Amazon Web Services (AWS in Education
researcher's grant to JG. Caporaso and R. Knight) and the Howard Hughes
Medical Institute (_100000011) (R. Knight).
NR 53
TC 9
Z9 13
U1 4
U2 57
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-0717
J9 SOIL BIOL BIOCHEM
JI Soil Biol. Biochem.
PD JUL
PY 2014
VL 74
BP 193
EP 200
DI 10.1016/j.soilbio.2014.03.014
PG 8
WC Soil Science
SC Agriculture
GA AJ7BZ
UT WOS:000337853500022
ER
PT J
AU Singh, D
Timofeeva, EV
Moravek, MR
Cingarapu, S
Yu, WH
Fischer, T
Mathur, S
AF Singh, Dileep
Timofeeva, Elena V.
Moravek, Michael R.
Cingarapu, Sreeram
Yu, Wenhua
Fischer, Thomas
Mathur, Sanjay
TI Use of metallic nanoparticles to improve the thermophysical properties
of organic heat transfer fluids used in concentrated solar power
SO SOLAR ENERGY
LA English
DT Article
DE Copper nanoparticles; Nanofluids; Thermophysical properties; Heat
transfer
ID ENHANCED THERMAL-CONDUCTIVITY; ETHYLENE-GLYCOL; COPPER NANOPARTICLES;
BROWNIAN-MOTION; NANOFLUIDS
AB One of the approaches to enhance the efficiency, and consequently, reduce costs to produce electricity from concentrated solar power (CSP) is by the development of advanced high temperature heat transfer fluids (HTFs). Incorporation of metallic nanoparticles into conventional heat transfer fluids could significantly improve the thermal transport properties of the HTFs. This study reports on the synthesis and investigation of copper nanoparticles synthesized in-house and dispersed in two synthetic HTFs Therminol 59 (TH59) and Therminol 66 (TH66). Liquid phase reduction of a copper salt was used to produce copper nanoparticles. Suspensions with various copper nanoparticle loadings (0.5-2 vol.%) were prepared. Characterizations such as the thermal conductivity, dynamic viscosity, mass specific heat capacity, and fluid stability were performed on the suspensions. Thermal conductivity enhancements over the base fluids were as high as approximately 20% at a 2 vol.% particle loading. These enhancements in the thermal conductivity are higher than the predictions based on the Effective Medium Theory (EMT). Dynamic viscosity measurements showed that if good dispersion of nanoparticles is achieved, the composite fluids behave in a Newtonian manner and the dynamic viscosity increases over the base fluid are minor at temperatures 125 C and above. Stability of the suspensions with time was also investigated. Based on the measured properties of the suspensions, a figure of merit for heat transfer was calculated to evaluate the viability of the suspensions. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Singh, Dileep; Moravek, Michael R.; Cingarapu, Sreeram] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
[Timofeeva, Elena V.; Yu, Wenhua] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Fischer, Thomas; Mathur, Sanjay] Univ Cologne, Inst Inorgan Chem, D-50923 Cologne, Germany.
RP Singh, D (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM dsingh@anl.gov
RI Timofeeva, Elena/E-6391-2010;
OI Timofeeva, Elena V./0000-0001-7839-2727
FU US Department of Energy's EERE Solar Energy Technology Program ARRA
funding
FX This work was supported by US Department of Energy's EERE Solar Energy
Technology Program ARRA funding. Discussions with DOE project managers,
Mr. Joe Stekli and Dr. Levi Irwin are much appreciated. The EMS was
accomplished at the Electron Microscopy Center for Materials Research at
Argonne National Laboratory, a US Department of Energy Office of Science
Laboratory operated under Contract No. DE-AC02-06CH11357 by
UChicago-Argonne, LLC. Assistance from Dr. Y. Yusufoglu is appreciated.
NR 32
TC 11
Z9 11
U1 3
U2 29
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-092X
J9 SOL ENERGY
JI Sol. Energy
PD JUL
PY 2014
VL 105
BP 468
EP 478
DI 10.1016/j.solener.2014.02.036
PG 11
WC Energy & Fuels
SC Energy & Fuels
GA AJ8VJ
UT WOS:000337985700045
ER
PT J
AU Yue, DJ
You, FQ
Darling, SB
AF Yue, Dajun
You, Fengqi
Darling, Seth B.
TI Domestic and overseas manufacturing scenarios of silicon-based
photovoltaics: Life cycle energy and environmental comparative analysis
SO SOLAR ENERGY
LA English
DT Article
DE Life cycle assessment; Silicon-based photovoltaics; Manufacturing;
Renewable energy
ID SOLAR-CELLS; EMISSIONS; IMPACTS
AB While life cycle assessment (LCA) has been recognized as an invaluable tool to assess the energy and environmental profiles of a photovoltaic (PV) system, current LCA studies are limited to Europe and North America. However, today most PV modules are outsourced to and manufactured in non-OECD countries (e.g., China), which have a substantially different degree of industrialization and environmental restriction. To investigate this issue, we perform a comparative LCA between domestic and overseas manufacturing scenarios illustrated by three kinds of silicon-based PV technologies, namely mono-crystalline silicon, multi-crystalline silicon and ribbon silicon. We take into account geographic diversity by utilizing localized inventory data for processes and materials. The energy payback time, energy return on investment and greenhouse gas (GHG) emissions for both scenarios are calculated and analyzed. Compared to the domestic manufacturing scenario, the energy use efficiency is generally 30% lower and the carbon footprint is almost doubled in the overseas manufacturing scenario. Moreover, based on the LCA results, we propose a break-even carbon tariff model for the international trade of silicon-based PV modules, indicating an appropriate carbon tariff in the range of is an element of 105-is an element of 129/ton CO2. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Yue, Dajun; You, Fengqi] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA.
[Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.
RP You, FQ (reprint author), Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM you@northwestern.edu
RI You, Fengqi/F-6894-2011; You, Fengqi/B-5040-2011
OI You, Fengqi/0000-0001-9609-4299
FU Institute for Sustainability and Energy at Northwestern (ISEN); Center
for Nanoscale Materials, a U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]
FX The authors gratefully acknowledge the financial support from the
Institute for Sustainability and Energy at Northwestern (ISEN). This
work was performed, in part, at the Center for Nanoscale Materials, a
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences User Facility under Contract no. DE-AC02-06CH11357. We are also
grateful to IKE Environmental Technology Co. Ltd. for providing part of
the life cycle inventory data from the Chinese Life Cycle Database
(CLCD) for the life cycle energy and environmental analysis of the
overseas manufacturing scenario.
NR 42
TC 29
Z9 29
U1 5
U2 54
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-092X
J9 SOL ENERGY
JI Sol. Energy
PD JUL
PY 2014
VL 105
BP 669
EP 678
DI 10.1016/j.solener.2014.04.008
PG 10
WC Energy & Fuels
SC Energy & Fuels
GA AJ8VJ
UT WOS:000337985700061
ER
PT J
AU Liu, RL
Bohac, DL
Gundel, LA
Hewett, MJ
Apte, MG
Hammond, SK
AF Liu, Ruiling
Bohac, David L.
Gundel, Lara A.
Hewett, Martha J.
Apte, Michael G.
Hammond, S. Katharine
TI Assessment of risk for asthma initiation and cancer and heart disease
deaths among patrons and servers due to secondhand smoke exposure in
restaurants and bars
SO TOBACCO CONTROL
LA English
DT Article
DE Secondhand smoke; Smoking Caused Disease; Public policy; Priority;
special populations; Environment
ID ENVIRONMENTAL TOBACCO-SMOKE; PASSIVE SMOKING; LUNG-CANCER; MORTALITY
RISK; PUBLIC PLACES; UNITED-STATES; EXCESS; WORKERS; NONSMOKERS;
POPULATION
AB Background Despite efforts to reduce exposure to secondhand smoke (SHS), only 5% of the world's population enjoy smoke-free restaurants and bars.
Methods Lifetime excess risk (LER) of cancer death, ischaemic heart disease (IHD) death and asthma initiation among non-smoking restaurant and bar servers and patrons in Minnesota and the US were estimated using weighted field measurements of SHS constituents in Minnesota, existing data on tobacco use and multiple dose-response models.
Results A continuous approach estimated a LER of lung cancer death (LCD) of 18x10(-6)(95% CI 13 to 23x10(-6)) for patrons visiting only designated non-smoking sections, 80x10(-6)(95% CI 66 to 95x10(-6)) for patrons visiting only smoking venues/sections and 802x10(-6)(95% CI 658 to 936x10(-6)) for servers in smoking-permitted venues. An attributable-risk (exposed/non-exposed) approach estimated a similar LER of LCD, a LER of IHD death about 10(-2) for non-smokers with average SHS exposure from all sources and a LER of asthma initiation about 5% for servers with SHS exposure at work only. These risks correspond to 214 LCDs and 3001 IHD deaths among the general non-smoking population and 1420 new asthma cases among non-smoking servers in the US each year due to SHS exposure in restaurants and bars alone.
Conclusions Health risks for patrons and servers from SHS exposure in restaurants and bars alone are well above the acceptable level. Restaurants and bars should be a priority for governments' effort to create smoke-free environments and should not be exempt from smoking bans.
C1 [Liu, Ruiling; Hammond, S. Katharine] Univ Calif Berkeley, Sch Publ Hlth, Dept Environm Hlth Sci, Berkeley, CA 94720 USA.
[Bohac, David L.; Hewett, Martha J.] Ctr Energy & Environm, Minneapolis, MN USA.
[Gundel, Lara A.; Apte, Michael G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Indoor Environm, Berkeley, CA 94720 USA.
RP Hammond, SK (reprint author), Univ Calif Berkeley, Sch Publ Hlth, Dept Environm Hlth Sci, 50 Univ Hall 7360, Berkeley, CA 94720 USA.
EM hammondk@berkeley.edu
FU ClearWay Minnesota [RC 2006-0050]; Flight Attendants Medical Research
Institute
FX This research project was funded in part by ClearWay Minnesota through
Grant Number RC 2006-0050 and in part by Dr William Cahan Distinguished
Professor Award to SKH from the Flight Attendants Medical Research
Institute.
NR 49
TC 3
Z9 3
U1 1
U2 5
PU BMJ PUBLISHING GROUP
PI LONDON
PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND
SN 0964-4563
EI 1468-3318
J9 TOB CONTROL
JI Tob. Control
PD JUL
PY 2014
VL 23
IS 4
BP 332
EP 338
DI 10.1136/tobaccocontrol-2012-050831
PG 7
WC Public, Environmental & Occupational Health
SC Public, Environmental & Occupational Health
GA AJ7ZE
UT WOS:000337920100019
PM 23407112
ER
PT J
AU Liu, XY
Afzal, W
He, MG
Prausnitz, JM
AF Liu, Xiangyang
Afzal, Waheed
He, Maogang
Prausnitz, John M.
TI Solubilities of small hydrocarbons, viscosities of diluted
tetraalkylphosphonium bis(2,4,4-trimethylpentyl) phosphinates
SO AICHE JOURNAL
LA English
DT Article
DE solubility; density; viscosity; phosphonium-based ionic liquids;
diluent; mixtures of ionic liquids
ID TEMPERATURE IONIC LIQUIDS; PHOSPHONIUM CATION; GASES; IMIDAZOLIUM;
DENSITIES; WATER; BIS(TRIFLUOROMETHYLSULFONYL)IMIDE;
HEXAFLUOROPHOSPHATE; DIFFUSIVITY
AB Tetraalkylphosphonium bis(2,4,4-trimethylpentyl)phosphinates show large solubilities for methane, ethane, ethylene, and propane. In these ionic liquids, solubilities of ethane are larger than those of ethylene. Therefore, these ionic liquids may be useful solvents for separation of ethane and ethylene; because the vapor pressure of ethylene is higher than that of ethane, the relative volatility ethylene/ethane is enhanced. However, the viscosities of these ionic liquids are too high for an industrial process. Low-viscosity 1-butyl-3-H-imidazolium acetate([BHMIM][AC]) is a suitable diluent for reducing the large viscosities of trihexyl tetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate ([P(14)666][TMPP]) and tetrabutylphosphonium bis(2,4,4-trimethylpentyl) phosphinate ([P4444][TMPP]). Addition of 20 wt % [BHMIM][AC] gives a dramatic drop in the viscosities of these ionic liquids. Mixtures of [P(14)666][TMPP] or [P4444][TMPP] with 20 or 50 wt % [BHMIM][AC] show high solubilities for the four solutes when compared with those in other ionic liquids. In these mixtures, the solubility for ethane is higher than that for ethylene. (c) 2014 American Institute of Chemical Engineers
C1 [Liu, Xiangyang; Afzal, Waheed; Prausnitz, John M.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Liu, Xiangyang; He, Maogang] Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China.
[Afzal, Waheed; Prausnitz, John M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Afzal, Waheed] Univ Punjab, Inst Chem Engn & Technol, Lahore 54590, Pakistan.
RP Prausnitz, JM (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
EM prausnit@cchem.berkeley.edu
OI Afzal, Waheed/0000-0002-2927-0114
FU Environmental Energy Technologies Division of the Lawrence Berkeley
National Laboratory
FX The authors are grateful to the Environmental Energy Technologies
Division of the Lawrence Berkeley National Laboratory for financial
support, and to Profs. Alexis Bell and Scott Lynn and coworkers for
general assistance. They are grateful to Prof. Michael Manga (Dept. of
Earth and Planetary Sciences, University of California, Berkeley) for
providing his density meter.
NR 27
TC 8
Z9 9
U1 11
U2 40
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0001-1541
EI 1547-5905
J9 AICHE J
JI AICHE J.
PD JUL
PY 2014
VL 60
IS 7
BP 2607
EP 2612
DI 10.1002/aic.14453
PG 6
WC Engineering, Chemical
SC Engineering
GA AJ5BL
UT WOS:000337695500020
ER
PT J
AU Kang, MK
Lee, J
Um, Y
Lee, TS
Bott, M
Park, SJ
Woo, HM
AF Kang, Min-Kyoung
Lee, Jungseok
Um, Youngsoon
Lee, Taek Soon
Bott, Michael
Park, Si Jae
Woo, Han Min
TI Synthetic biology platform of CoryneBrick vectors for gene expression in
Corynebacterium glutamicum and its application to xylose utilization
SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
LA English
DT Article
DE Corynebacterium glutamicum; Synthetic biology; Metabolic engineering;
BglBrick
ID ESCHERICHIA-COLI; ORGANIC-ACIDS; AMINO-ACIDS; PRECURSOR; PATHWAY; DNA;
AMORPHA-4,11-DIENE; OVERPRODUCTION; OPTIMIZATION; PROMOTERS
AB Currently, the majority of tools in synthetic biology have been designed and constructed for model organisms such as Escherichia coli and Saccharomyces cerevisiae. In order to broaden the spectrum of organisms accessible to such tools, we established a synthetic biological platform, called CoryneBrick, for gene expression in Corynebacterium glutamicum as a set of E. coli-C. glutamicum shuttle vectors whose elements are interchangeable with BglBrick standard parts. C. glutamicum is an established industrial microorganism for the production of amino acids, proteins, and commercially promising chemicals. Using the CoryneBrick vectors, we showed various time-dependent expression profiles of a red fluorescent protein. This CoryneBrick platform was also applicable for two-plasmid expression systems with a conventional C. glutamicum expression vector. In order to demonstrate the practical application of the CoryneBrick vectors, we successfully reconstructed the xylose utilization pathway in the xylose-negative C. glutamicum wild type by fast BglBrick cloning methods using multiple genes encoding for xylose isomerase and xylulose kinase, resulting in a growth rate of 0.11 +/- 0.004 h(-1) and a xylose uptake rate of 3.35 mmol/gDW/h when 1 % xylose was used as sole carbon source. Thus, CoryneBrick vectors were shown to be useful engineering tools in order to exploit Corynebacterium as a synthetic platform for the production of chemicals by controllable expression of the genes of interest.
C1 [Kang, Min-Kyoung; Lee, Jungseok; Um, Youngsoon; Woo, Han Min] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 136791, South Korea.
[Lee, Jungseok] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea.
[Woo, Han Min] Korea Univ, Green Sch, Seoul 136701, South Korea.
[Um, Youngsoon; Woo, Han Min] Univ Sci & Technol, Dept Clean Energy & Chem Engn, Taejon 305350, South Korea.
[Lee, Taek Soon] Joint BioEnergy Inst, Emeryville, CA 94608 USA.
[Lee, Taek Soon] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Bott, Michael] Forschungszentrum Julich, Inst Bio & Geosci, IBG Biotechnol 1, D-52425 Julich, Germany.
[Park, Si Jae] Myongji Univ, Dept Environm Engn & Energy, Yongin 449728, Gyeonggido, South Korea.
RP Woo, HM (reprint author), Korea Inst Sci & Technol, Clean Energy Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea.
EM hmwoo@kist.re.kr
RI Woo, Han Min/J-1847-2015; Bott, Michael/E-8004-2011
OI Woo, Han Min/0000-0002-8797-0477; Bott, Michael/0000-0002-4701-8254
FU National Research Foundation of Korea - Korean Government (Ministry of
Science, ICT & Future Planning); Creative Allied Program (CAP) of the
Korea Research Council of Fundamental Science and Technology
(KRCF)/Korea Institute of Science and Technology (KIST) [2E24832]
FX The authors thank Prof. Anthony J. Sinskey for the kind gift of pZ8-1
and M. S. Jae Hee Jung for technical assistant. This work was supported
by the National Research Foundation of Korea Grant funded by the Korean
Government (Ministry of Science, ICT & Future Planning) (2014,
University-Institute cooperation program) and Creative Allied Program
(CAP) of the Korea Research Council of Fundamental Science and
Technology (KRCF)/Korea Institute of Science and Technology (KIST)
(project no. 2E24832).
NR 46
TC 14
Z9 14
U1 3
U2 31
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0175-7598
EI 1432-0614
J9 APPL MICROBIOL BIOT
JI Appl. Microbiol. Biotechnol.
PD JUL
PY 2014
VL 98
IS 13
BP 5991
EP 6002
DI 10.1007/s00253-014-5714-7
PG 12
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA AJ5SL
UT WOS:000337747900018
PM 24706215
ER
PT J
AU Wecker, MSA
Ghirardi, ML
AF Wecker, Matt S. A.
Ghirardi, Maria L.
TI High-throughput biosensor discriminates between different algal
H-2-photoproducing strains
SO BIOTECHNOLOGY AND BIOENGINEERING
LA English
DT Article
DE Rhodobacter capsulatus; H-2 sensor; high-throughput screening;
photobiohydrogen; Chlamydomonas reinhardtii; H-2 production
ID HARVESTING CHLOROPHYLL ANTENNA; CYCLIC ELECTRON FLOW;
CHLAMYDOMONAS-REINHARDTII; HYDROGEN-PRODUCTION; ESCHERICHIA-COLI; H-2
PRODUCTION; GENE; PHOTOPRODUCTION; EXPRESSION; PROTEIN
AB A number of species of microalgae and cyanobacteria photosynthetically produce H2 gas by coupling water oxidation with the reduction of protons to molecular hydrogen, generating renewable energy from sunlight and water. Photosynthetic H2 production, however, is transitory, and there is considerable interest in increasing and extending it for commercial applications. Here we report a Petri-plate version of our previous, microplate-based assay that detects photosynthetic H2 production by algae. The assay consists of an agar overlay of H2-sensing Rhodobacter capsulatus bacteria carrying a green fluorescent protein that responds to H2 produced by single algal colonies in the bottom agar layer. The assay distinguishes between algal strains that photoproduce H2 at different levels under high light intensities, and it does so in a simple, inexpensive, and high-throughput manner. The assay will be useful for screening both natural populations and mutant libraries for strains having increased H2 production, and useful for identifying various genetic factors that physiologically or genetically alter algal hydrogen production. Biotechnol. Bioeng. 2014;111: 1332-1340. (c) 2014 Wiley Periodicals, Inc.
C1 [Wecker, Matt S. A.] GeneBiologics LLC, Boulder, CO USA.
[Ghirardi, Maria L.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Ghirardi, ML (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM maria.ghirardi@nrel.gov
FU Department of Energy, Office of Biological and Environmental Research;
National Renewable Energy Laboratory [DE-AC36-08GC28308z]
FX Contract grant sponsor: Funded by the Department of Energy, Office of
Biological and Environmental Research; Grant numbers: with the National
Renewable Energy Laboratory: DE-AC36-08GC28308z
NR 37
TC 9
Z9 9
U1 0
U2 33
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0006-3592
EI 1097-0290
J9 BIOTECHNOL BIOENG
JI Biotechnol. Bioeng.
PD JUL
PY 2014
VL 111
IS 7
BP 1332
EP 1340
DI 10.1002/bit.25206
PG 9
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA AJ3PU
UT WOS:000337580000007
PM 24578287
ER
PT J
AU Kumar, R
Wyman, CE
AF Kumar, Rajeev
Wyman, Charles E.
TI Strong cellulase inhibition by Mannan polysaccharides in cellulose
conversion to sugars
SO BIOTECHNOLOGY AND BIOENGINEERING
LA English
DT Article
DE cellulase; inhibition; heteromannans; glucomannan; galactomannan;
oligomers; xylan
ID SOLIDS ENZYMATIC-HYDROLYSIS; LIGNOCELLULOSIC BIOMASS; LEADING
TECHNOLOGIES; TRICHODERMA-REESEI; CLOSTRIDIUM-CELLULOVORANS;
HYDROTHERMAL PRETREATMENT; PRODUCT INHIBITION; WHEAT-STRAW; XYLANASE;
ETHANOL
AB Cellulase enzymes contribute a major fraction of the total cost for biological conversion of lignocellulosic biomass to fuels and chemicals. Although a several fold reduction in cellulase production costs and enhancement of cellulase activity and stability have been reported in recent years, sugar yields are still lower at low enzyme doses than desired commercially. We recently reported that hemicellulose xylan and its oligomers strongly inhibit cellulase and that supplementation of cellulase with xylanase and -xylosidase would significantly reduce such inhibition. In this study, mannan polysaccharides and their enzymatically prepared hydrolyzates were discovered to be strongly inhibitory to fungal cellulase in cellulose conversion (>50% drop in % relative conversion), even at a small concentration of 0.1g/L, and inhibition was much greater than experienced by other known inhibitors such as cellobiose, xylooligomers, and furfural. Furthermore, cellulase inhibition dramatically increased with heteromannan loading and mannan substitution with galactose side units. In general, enzymatically prepared hydrolyzates were less inhibitory than their respective mannan polysaccharides except highly substituted ones. Supplementation of cellulase with commercial accessory enzymes such as xylanase, pectinase, and -glucosidase was effective in greatly relieving inhibition but only for less substituted heteromannans. However, cellulase supplementation with purified heteromannan specific enzymes relieved inhibition by these more substituted heteromannans as well, suggesting that commercial preparations need to have higher amounts of such activities to realize high sugar yields at the low enzyme protein loadings needed for low cost fuels production. Biotechnol. Bioeng. 2014;111: 1341-1353. (c) 2014 Wiley Periodicals, Inc.
C1 [Kumar, Rajeev; Wyman, Charles E.] Univ Calif Riverside, Ctr Environm Res & Technol CE CERT, Bourns Coll Engn, Riverside, CA 92507 USA.
[Kumar, Rajeev; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA.
[Wyman, Charles E.] Univ Calif Riverside, Dept Chem & Environm Engn, Bourns Coll Engn, Riverside, CA 92507 USA.
RP Kumar, R (reprint author), Univ Calif Riverside, Ctr Environm Res & Technol CE CERT, Bourns Coll Engn, 1084 Columbia Ave, Riverside, CA 92507 USA.
EM rkumar@cert.ucr.edu
OI Kumar, Rajeev/0000-0001-7523-0108
FU Office of Biological and Environmental Research in the DOE Office of
Science through the BioEnergy Science Center (BESC)
FX Contract grant sponsor: Office of Biological and Environmental Research
in the DOE Office of Science through the BioEnergy Science Center (BESC)
NR 72
TC 13
Z9 13
U1 2
U2 55
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0006-3592
EI 1097-0290
J9 BIOTECHNOL BIOENG
JI Biotechnol. Bioeng.
PD JUL
PY 2014
VL 111
IS 7
BP 1341
EP 1353
DI 10.1002/bit.25218
PG 13
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA AJ3PU
UT WOS:000337580000008
PM 24522973
ER
PT J
AU Liu, CZ
Greene, DL
Bunch, DS
AF Liu, Changzheng
Greene, David L.
Bunch, David S.
TI Vehicle Manufacturer Technology Adoption and Pricing Strategies under
Fuel Economy/Emissions Standards and Feebates
SO ENERGY JOURNAL
LA English
DT Article
DE CAFE; Emissions standards; Manufacturer pricing; Technology adoption
ID ENERGY EFFICIENCY; ECONOMY; TAXES
AB New post-2010 Corporate Average Fuel Economy (CAFE) standards and carbon dioxide (CO2) emissions standards have significantly increased the stringency of requirements for new light-duty vehicle fuel efficiency. This study investigates the role of technology adoption and pricing strategies in meeting the new standards, and the impact of possible feebate policies. The analysis simulates manufacturer decision making over the period (2011-2020) using a dynamic optimization model of the new vehicle market that maximizes social surplus while meeting the standards. Consumer surplus is determined from consumer demand, which is represented by a nested multinomial logit model, and the model is conservative in its assumptions on available technology. Results indicate that technology adoption will likely play a much larger role than pricing strategies in meeting the new standards (consistent with the intent of the policy). Feebates, when implemented along with the standards, can bring additional fuel economy improvement and emissions reduction, but the impact of feebates diminishes with the increasing stringency of the standards. Results also show that the impact of the policy on consumers could be relatively limited. In the long run the policy requires increasing up-front technology costs to consumers that outweigh the perceived benefit of fuel savings, and there is some loss in total new vehicle sales. However, the net effect is limited, and the full value of fuel savings to society is substantial. Results also show a small decrease in average vehicle footprint size, indicating that efficiency improvements are primarily distributed across all vehicle sizes, consistent with the intent of the policy.
C1 [Liu, Changzheng; Greene, David L.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA.
[Bunch, David S.] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA.
RP Liu, CZ (reprint author), Oak Ridge Natl Lab, 2360 Cherahala Blvd, Knoxville, TN 37932 USA.
EM linc2@ornl.gov
RI Liu, Changzheng/J-4268-2014
OI Liu, Changzheng/0000-0003-0052-4552
FU California Air Resources Board; U.S. Department of Energy
FX The study reported in this paper was sponsored in part by the California
Air Resources Board and the U.S. Department of Energy. Opinions and
views expressed are those of the authors and do not necessarily reflect
those of either agency.
NR 20
TC 2
Z9 2
U1 1
U2 15
PU INT ASSOC ENERGY ECONOMICS
PI CLEVELAND
PA 28790 CHAGRIN BLVD, STE 210, CLEVELAND, OH 44122 USA
SN 0195-6574
EI 1944-9089
J9 ENERG J
JI Energy J.
PD JUL
PY 2014
VL 35
IS 3
BP 71
EP 90
DI 10.5547/01956574.35.3.4
PG 20
WC Economics; Energy & Fuels; Environmental Studies
SC Business & Economics; Energy & Fuels; Environmental Sciences & Ecology
GA AJ4PC
UT WOS:000337657300004
ER
PT J
AU Ma, TH
Li, CJ
Lu, ZM
Wang, BX
AF Ma, Tuhua
Li, Changjiang
Lu, Zhiming
Wang, Baoxin
TI An effective antecedent precipitation model derived from the power-law
relationship between landslide occurrence and rainfall level
SO GEOMORPHOLOGY
LA English
DT Article
DE Landslides; Effective antecedent precipitation; Lower bound rainfall
threshold determination; Power-law distributions; Fractals
ID THRESHOLDS; SHALLOW
AB Antecedent rainfall is an important predisposing factor in triggering landslides because it reduces soil suction and increases the pore-water pressure in soils. The existing approaches to quantify the antecedent rainfall were derived from empirical methods used to develop rainfall-runoff models in which the daily decays of rainfall within a given period preceding a given day are considered as independent processes. In this study, a methodology accounting for the effective antecedent rainfall that influences landslide occurrence is developed from a power-law relationship between the frequency of landslide occurrence and the landslide-triggering rainfall level. In this model, the decay rate of the daily rainfall is related to a scaling exponent defined by the power-law relationship, the decay process of daily rainfall within a given period preceding a given day is not independent but is interrelated, and the impact of rainfall in the preceding k days on soil moisture is associated with the precipitation from the preceding (k - 1) days. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Ma, Tuhua; Li, Changjiang] Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China.
[Lu, Zhiming] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA.
[Wang, Baoxin] Zhejiang Bur Geol & Mineral Resource Explorat & D, Hydrogeol Sect, Ningbo 315000, Peoples R China.
RP Li, CJ (reprint author), Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China.
EM zjigmr@mail.hz.zj.cn; zhiming@lanl.gov
OI Lu, Zhiming/0000-0001-5800-3368
FU Special Fund for Land and Resources Research in the Public Interest of
P.R. China [201211055]
FX This study was partially funded by the Special Fund for Land and
Resources Research in the Public Interest of P.R. China (No. 201211055).
We would like to thank the Editor Dr. Richard A. Marston and the three
anonymous reviewers for their valuable comments and suggestions, which
have improved the paper.
NR 27
TC 8
Z9 11
U1 0
U2 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-555X
EI 1872-695X
J9 GEOMORPHOLOGY
JI Geomorphology
PD JUL 1
PY 2014
VL 216
BP 187
EP 192
DI 10.1016/j.geomorph.2014.03.033
PG 6
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA AJ6CG
UT WOS:000337776700015
ER
PT J
AU Bassu, S
Brisson, N
Durand, JL
Boote, K
Lizaso, J
Jones, JW
Rosenzweig, C
Ruane, AC
Adam, M
Baron, C
Basso, B
Biernath, C
Boogaard, H
Conijn, S
Corbeels, M
Deryng, D
De Sanctis, G
Gayler, S
Grassini, P
Hatfield, J
Hoek, S
Izaurralde, C
Jongschaap, R
Kemanian, AR
Kersebaum, KC
Kim, SH
Kumar, NS
Makowski, D
Muller, C
Nendel, C
Priesack, E
Pravia, MV
Sau, F
Shcherbak, I
Tao, F
Teixeira, E
Timlin, D
Waha, K
AF Bassu, Simona
Brisson, Nadine
Durand, Jean-Louis
Boote, Kenneth
Lizaso, Jon
Jones, James W.
Rosenzweig, Cynthia
Ruane, Alex C.
Adam, Myriam
Baron, Christian
Basso, Bruno
Biernath, Christian
Boogaard, Hendrik
Conijn, Sjaak
Corbeels, Marc
Deryng, Delphine
De Sanctis, Giacomo
Gayler, Sebastian
Grassini, Patricio
Hatfield, Jerry
Hoek, Steven
Izaurralde, Cesar
Jongschaap, Raymond
Kemanian, Armen R.
Kersebaum, K. Christian
Kim, Soo-Hyung
Kumar, Naresh S.
Makowski, David
Mueller, Christoph
Nendel, Claas
Priesack, Eckart
Pravia, Maria Virginia
Sau, Federico
Shcherbak, Iurii
Tao, Fulu
Teixeira, Edmar
Timlin, Dennis
Waha, Katharina
TI How do various maize crop models vary in their responses to climate
change factors?
SO GLOBAL CHANGE BIOLOGY
LA English
DT Article
DE [CO2]; AgMIP; climate; maize; model intercomparison; simulation;
temperature; uncertainty
ID WATER-USE EFFICIENCY; AIR CO2 ENRICHMENT; SIMULATION-MODEL; ELEVATED
CO2; SYSTEMS SIMULATION; NITROGEN DYNAMICS; CARBON-DIOXIDE; YIELD;
WHEAT; AGRICULTURE
AB Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per degrees C. Doubling [CO2] from 360 to 720 mu mol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
C1 [Bassu, Simona; Brisson, Nadine; Makowski, David] INRA AgroParisTech, Unite Agron, F-78850 Thiverval Grignon, France.
[Durand, Jean-Louis] INRA, Unite Rech Pluridisciplinaire Prairie & Plantes F, F-86600 Lusignan, France.
[Boote, Kenneth] Univ Florida, Dept Agron, Gainesville, FL 32611 USA.
[Lizaso, Jon; Sau, Federico] Univ Politecn Madrid, Dept Prod Vegetal, E-28040 Madrid, Spain.
[Jones, James W.] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32611 USA.
[Rosenzweig, Cynthia; Ruane, Alex C.] NASA, Goddard Inst Space Studies, Climate Impacts Grp, New York, NY 10025 USA.
[Adam, Myriam] CIRAD, UMR AGAP PAM, Montpellier, France.
[Baron, Christian] CIRAD, UMR TETIS, F-34093 Montpellier, France.
[Basso, Bruno; Shcherbak, Iurii] Michigan State Univ, Dept Geol Sci, E Lansing, MI 48824 USA.
[Basso, Bruno; Shcherbak, Iurii] Univ Basilicata, Dept Crop Syst Forestry & Environm Sci, I-85100 Potenza, Italy.
[Biernath, Christian; Priesack, Eckart] Helmholtz Zentrum Munchen, Inst Bodenokol, D-85764 Neuherberg, Germany.
[Boogaard, Hendrik; Hoek, Steven] Alterra, Ctr Geoinformat, NL-6700 AA Wageningen, Netherlands.
[Conijn, Sjaak; Jongschaap, Raymond] Univ Wageningen & Res Ctr, WUR Plant Res Int, NL-6700 AA Wageningen, Netherlands.
[Corbeels, Marc] CIRAD Annual Cropping Syst, BR-73310970 Planaltina, DF, Brazil.
[Deryng, Delphine] Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England.
[Deryng, Delphine] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England.
[De Sanctis, Giacomo] INRA, Unite AGROCLIM, F-84914 Avignon 9, France.
[Gayler, Sebastian] Univ Tubingen, Water & Earth Syst Sci WESS Competence Cluster, D-72074 Tubingen, Germany.
[Grassini, Patricio] Univ Nebraska, Dept Agron & Hort, Lincoln, NE 68503 USA.
[Hatfield, Jerry] USDA ARS, Natl Soil Tilth Lab Agr & Environm, Ames, IA 50011 USA.
[Izaurralde, Cesar] Pacific NW Natl Lab, College Pk, MD 20740 USA.
[Izaurralde, Cesar] Univ Maryland, College Pk, MD 20740 USA.
[Kemanian, Armen R.; Pravia, Maria Virginia] Penn State Univ, Dept Plant Sci, University Pk, PA 16802 USA.
[Kersebaum, K. Christian; Nendel, Claas] Leibniz Ctr Agr Landscape Res, ZALF, Inst Landscape Syst Anal, D-15374 Muencheberg, Germany.
[Kim, Soo-Hyung] Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA.
[Kumar, Naresh S.; Waha, Katharina] Indian Agr Res Inst, Ctr Environm Sci & Climate Resilient Agr, New Delhi 110012, India.
[Mueller, Christoph] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany.
[Tao, Fulu] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China.
[Teixeira, Edmar] New Zealand Inst Plant & Food Res Ltd, Sustainable Prod, Canterbury, New Zealand.
[Timlin, Dennis] USDA ARS, Crop Syst & Global Change Lab, Beltsville, MD 20705 USA.
RP Durand, JL (reprint author), INRA, Unite Rech Pluridisciplinaire Prairie & Plantes F, BP 80006, F-86600 Lusignan, France.
EM jean-louis.durand@lusignan.inra.fr
RI Kim, Soo-Hyung/A-3012-2009; Priesack, Eckart/M-7341-2014; Deryng,
Delphine/F-7417-2010; Nendel, Claas/C-8844-2013; Basso,
Bruno/A-3128-2012; Teixeira, Edmar/K-1238-2016; Mueller,
Christoph/E-4812-2016; De Sanctis, Giacomo/F-3498-2017;
OI Priesack, Eckart/0000-0002-5088-9528; Kim,
Soo-Hyung/0000-0003-3879-4080; Deryng, Delphine/0000-0001-6214-7241;
Nendel, Claas/0000-0001-7608-9097; Basso, Bruno/0000-0003-2090-4616;
Teixeira, Edmar/0000-0002-4835-0590; Mueller,
Christoph/0000-0002-9491-3550; De Sanctis, Giacomo/0000-0002-3527-8091;
Shcherbak@qut.edu.au, Iurii/0000-0003-4153-3770; Boote,
Kenneth/0000-0002-1358-5496; Kersebaum, Kurt
Christian/0000-0002-3679-8427
NR 72
TC 96
Z9 97
U1 17
U2 175
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1354-1013
EI 1365-2486
J9 GLOBAL CHANGE BIOL
JI Glob. Change Biol.
PD JUL
PY 2014
VL 20
IS 7
BP 2301
EP 2320
DI 10.1111/gcb.12520
PG 20
WC Biodiversity Conservation; Ecology; Environmental Sciences
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA AJ4WU
UT WOS:000337680700025
PM 24395589
ER
PT J
AU White, JA
AF White, Joshua A.
TI Anisotropic damage of rock joints during cyclic loading: constitutive
framework and numerical integration
SO INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN
GEOMECHANICS
LA English
DT Article
DE joints; fractures; anisotropy; damage; implicit integration
ID ASPERITY DEGRADATION; SHEAR; MODEL; PLASTICITY; FRICTION; BEHAVIOR
AB This work describes a constitutive framework for modeling the behavior of rough joints under cyclic loading. Particular attention is paid to the intrinsic links between dilatancy, surface degradation, and mobilized shear strength. The framework also accounts for the important effect of shear-induced anisotropy. The resulting approach is fully three-dimensional and is not restricted to plane-displacement kinematics. Both the governing formulation and an algorithm for implicit numerical integration are presented. While the proposed methods are general, we also postulate a specific model that is compared with experimental data. It employs relatively few free parameters but shows good agreement with laboratory tests. Copyright (c) 2013 John Wiley & Sons, Ltd.
C1 Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA.
RP White, JA (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA.
EM jawhite@llnl.gov
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. The author is grateful to Ronaldo Borja, Eric
Herbold, and two anonymous reviewers for helpful comments.
NR 28
TC 1
Z9 1
U1 1
U2 13
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0363-9061
EI 1096-9853
J9 INT J NUMER ANAL MET
JI Int. J. Numer. Anal. Methods Geomech.
PD JUL
PY 2014
VL 38
IS 10
BP 1036
EP 1057
DI 10.1002/nag.2247
PG 22
WC Engineering, Geological; Materials Science, Multidisciplinary; Mechanics
SC Engineering; Materials Science; Mechanics
GA AJ3WR
UT WOS:000337599100003
ER
PT J
AU Koissin, V
Demcenko, A
Korneev, VA
AF Koissin, V.
Demcenko, A.
Korneev, V. A.
TI Isothermal epoxy-cure monitoring using nonlinear ultrasonics
SO INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES
LA English
DT Article
DE Epoxy; Cure kinetics; Nonlinear ultrasonics; Calorimetry; Rheometry;
Glass transition; Vitrification
ID DIFFERENTIAL SCANNING CALORIMETRY; VELOCITY-MEASUREMENTS; REAL-TIME;
RESIN; WAVES; SHEAR; COMPRESSION; ADHESIVES; POLYMERIZATION;
VITRIFICATION
AB Isothermal curing of LY 1564SP resin in an aluminium-adhesive-aluminium laminate is investigated, using a nonlinear ultrasonic immersion technique, to prove its applicability for this type of dynamic material transformation. For verification and comparison, epoxy-cure kinetics and theological behavior are measured using differential scanning calorimetery (DSC) and dynamic mechanical analysis (DMA). Results reveal that the nonlinear ultrasonics, based on noncollinear wave mixing, can successfully be applied to in situ epoxy-cure monitoring-for example, to adhesive bonds-with reliable detection of gelation and vitrification time instants. (C) 2014 Published by Elsevier Ltd.
C1 [Koissin, V.; Demcenko, A.] Univ Twente, Fac Engn Technol, NL-7500 AE Enschede, Netherlands.
[Korneev, V. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Demcenko, A (reprint author), Univ Twente, Fac Engn Technol, NL-7500 AE Enschede, Netherlands.
EM andriejus.demcenko@gmail.com
OI Koissin, Vitaly/0000-0001-9639-6537
FU Office of Energy Research, Office of Basic Energy Sciences, Engineering
and Geosciences Division, of the U.S. Department of Energy
[DE-ACO2-05CH11231]
FX Dr. Ir. Roy Visser and Mr. Bert Vos (University of Twente) are
gratefully acknowledged for their help with DMA and DSC tests. This work
was partially supported by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Engineering and Geosciences Division,
of the U.S. Department of Energy under Contract No. DE-ACO2-05CH11231.
NR 38
TC 4
Z9 6
U1 3
U2 14
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0143-7496
EI 1879-0127
J9 INT J ADHES ADHES
JI Int. J. Adhes. Adhes.
PD JUL
PY 2014
VL 52
BP 11
EP 18
DI 10.1016/j.ijadhadh.2014.01.003
PG 8
WC Engineering, Chemical; Materials Science, Multidisciplinary
SC Engineering; Materials Science
GA AJ4NJ
UT WOS:000337652800002
ER
PT J
AU McCauley, SJ
Davis, CJ
Werner, EE
Robeson, MS
AF McCauley, Shannon J.
Davis, Christopher J.
Werner, Earl E.
Robeson, Michael S., II
TI Dispersal, niche breadth and population extinction: colonization ratios
predict range size in North American dragonflies
SO JOURNAL OF ANIMAL ECOLOGY
LA English
DT Article
DE dispersal limitation; extinction-colonization; freshwater connectivity;
geographic distribution; niche breadth; Odonata; range limits; range
size
ID GEOGRAPHIC RANGE; REGIONAL PROCESSES; CLIMATE-CHANGE; BODY-SIZE; TRAITS;
OCCUPANCY; ABUNDANCE; SHIFTS; LIMITS; WATER
AB Species' range sizes are shaped by fundamental differences in species' ecological and evolutionary characteristics, and understanding the mechanisms determining range size can shed light on the factors responsible for generating and structuring biological diversity. Moreover, because geographic range size is associated with a species' risk of extinction and their ability to respond to global changes in climate and land use, understanding these mechanisms has important conservation implications. Despite the hypotheses that dispersal behaviour is a strong determinant of species range areas, few data are available to directly compare the relationship between dispersal behaviour and range size. Here, we overcome this limitation by combining data from a multispecies dispersal experiment with additional species-level trait data that are commonly hypothesized to affect range size (e.g. niche breadth, local abundance and body size.). This enables us to examine the relationship between these species-level traits and range size across North America for fifteen dragonfly species. Ten models based on a priori predictions about the relationship between species traits and range size were evaluated and two models were identified as good predictors of species range size. These models indicated that only two species' level traits, dispersal behaviour and niche breadth were strongly related to range size. The evidence from these two models indicated that dragonfly species that disperse more often and further had larger North American ranges. Extinction and colonization dynamics are expected to be a key linkage between dispersal behaviour and range size in dragonflies. To evaluate how extinction and colonization dynamics among dragonflies were related to range size we used an independent data set of extinction and colonization rates for eleven dragonfly species and assessed the relationship between these populations rates and North American range areas for these species. We found a negative relationship between North American range size and species' extinction-to-colonization ratios. Our results indicate that metapopulation dynamics act to shape the extent of species' continental distributions. These population dynamics are likely to interact with dispersal behaviour, particularly at species range margins, to determine range limits and ultimately species range sizes.
C1 [McCauley, Shannon J.] Univ Toronto, Dept Biol, Mississauga, ON L5L 1C6, Canada.
[McCauley, Shannon J.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada.
[Davis, Christopher J.; Werner, Earl E.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA.
[Robeson, Michael S., II] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA.
RP McCauley, SJ (reprint author), Univ Toronto, Dept Biol, 3359 Mississauga Rd North, Mississauga, ON L5L 1C6, Canada.
EM shannon.mccauley@utoronto.ca
OI Robeson, Michael/0000-0001-7119-6301; McCauley,
Shannon/0000-0001-9649-6693
FU Natural Science and Engineering Research Council; NSF LTREB
[DEB-9727014, DEB-0454519]
FX We thank M. Benard, M-J. Fortin, L. Rowe, and two anonymous reviewers
for comments and discussion on the manuscript. S.J.M. was supported by
Natural Science and Engineering Research Council grants to L. Rowe and
M-J. Fortin while conducting this research and initial preparation of
this manuscript. We are grateful to M. Benard, J. Hovermann, R. Relyea,
D. Skelly, K. Yurewicz and the numerous research assistants and
volunteers who have conducting surveys of habitats on the E.S. George
Reserve. We also thank J. Abbott for compiling the distributional data
for North American odonates and making species distribution maps
accessible through OdonataCentral. The Museum of Zoology provided access
to and logistical support at E. S. George Reserve where data on
dispersal behaviour and species niche breadth were collected. This work
was supported by NSF LTREB Grants DEB-9727014 and DEB-0454519.
NR 42
TC 6
Z9 7
U1 7
U2 70
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0021-8790
EI 1365-2656
J9 J ANIM ECOL
JI J. Anim. Ecol.
PD JUL
PY 2014
VL 83
IS 4
BP 858
EP 865
DI 10.1111/1365-2656.12181
PG 8
WC Ecology; Zoology
SC Environmental Sciences & Ecology; Zoology
GA AJ4CO
UT WOS:000337618100012
PM 24237364
ER
PT J
AU Craig, EA
Wang, NC
Zhao, QJ
AF Craig, Evisabel A.
Wang, Nina Ching
Zhao, Q. Jay
TI Using quantitative structure-activity relationship modeling to
quantitatively predict the developmental toxicity of halogenated azole
compounds
SO JOURNAL OF APPLIED TOXICOLOGY
LA English
DT Article
DE QSAR; developmental toxicity; halogenated compounds; azoles
ID VALIDATION; ACCEPTANCE; RISK
AB Developmental toxicity is a relevant endpoint for the comprehensive assessment of human health risk from chemical exposure. However, animal developmental toxicity data remain unavailable for many environmental contaminants due to the complexity and cost of these types of analyses. Here we describe an approach that uses quantitative structure-activity relationship modeling as an alternative methodology to fill data gaps in the developmental toxicity profile of certain halogenated compounds. Chemical information was obtained and curated using the OECD Quantitative Structure-Activity Relationship Toolbox, version 3.0. Data from 35 curated compounds were analyzed via linear regression to build the predictive model, which has an R2 of 0.79 and a Q2 of 0.77. The applicability domain (AD) was defined by chemical category and structural similarity. Seven halogenated chemicals that fit the AD but are not part of the training set were employed for external validation purposes. Our model predicted lowest observed adverse effect level values with a maximal threefold deviation from the observed experimental values for all chemicals that fit the AD. The good predictability of our model suggests that this method may be applicable to the analysis of qualifying compounds whenever developmental toxicity information is lacking or incomplete for risk assessment considerations. Copyright (c) 2013 John Wiley & Sons, Ltd.
C1 [Craig, Evisabel A.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA.
[Craig, Evisabel A.; Wang, Nina Ching; Zhao, Q. Jay] US EPA, Natl Ctr Environm Assessment, Off Res Dev, Cincinnati, OH 45268 USA.
RP Zhao, QJ (reprint author), US EPA, Natl Ctr Environm Assessment, Off Res Dev, Cincinnati, OH 45268 USA.
EM zhao.jay@epa.gov
FU U.S. Department of Energy; EPA
FX The authors wish to thank Drs. Scott Wesselkamper and Dan Petersen for
their critical review of this manuscript. The views expressed in this
report are those of the authors and do not necessarily represent the
views or policies of the U.S. Environmental Protection Agency. Mention
of trade names or commercial products does not constitute endorsement.
This study was supported in part by the research participation program
administered by the Oak Ridge Institute for Science and Education
through an interagency agreement between the U.S. Department of Energy
and EPA.
NR 21
TC 0
Z9 0
U1 0
U2 8
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0260-437X
EI 1099-1263
J9 J APPL TOXICOL
JI J. Appl. Toxicol.
PD JUL
PY 2014
VL 34
IS 7
BP 787
EP 794
DI 10.1002/jat.2940
PG 8
WC Toxicology
SC Toxicology
GA AJ3PJ
UT WOS:000337578900006
PM 24122872
ER
PT J
AU Miller, A
Wang, YF
AF Miller, Andrew
Wang, Yifeng
TI Al-O-F materials as novel adsorbents for gaseous radioiodine capture
SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY
LA English
DT Article
DE Re-processing; Waste treatment; Iodine; Nanoporosity; Nanoporous
materials
ID SOL-GEL SYNTHESIS; METAL FLUORIDES; IODINE
AB Re-processing used nuclear fuel requires a method to effectively capture and dispose of gaseous radioiodine. Previous work has shown that nanoporous Al-O materials are effective at capturing gaseous iodine; molecular dynamics simulations have shown that the addition of fluoride to the Al-O surface should increase the amount of iodine capture. Twelve different materials with different ratios of F:Al were created. These materials were chemically characterized and functionally characterized with respect to gaseous iodine uptake. The addition of fluoride does in fact lead to a substantial (10-100x) increase in iodine uptake per unit surface area. However, the amount of uptake does not appear to be directly related to the total fluoride content of the solid phase material. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Miller, Andrew; Wang, Yifeng] Sandia Natl Labs, Albuquerque, NM 87123 USA.
RP Miller, A (reprint author), Sandia Natl Labs, 1515 Eubank Dr SE, Albuquerque, NM 87123 USA.
EM andmill@sandia.gov
FU Sandia Corporation; Lockheed Martin Company; United States Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000]
FX Sandia is a multi-program laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration, under contract
DE-AC04-94AL85000. The synthesis and analytical work was greatly aided
by Jessica Kruichak and Melissa Mills.
NR 13
TC 3
Z9 3
U1 2
U2 15
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0265-931X
EI 1879-1700
J9 J ENVIRON RADIOACTIV
JI J. Environ. Radioact.
PD JUL
PY 2014
VL 133
SI SI
BP 35
EP 39
DI 10.1016/j.jenvrad.2013.02.018
PG 5
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA AJ3GU
UT WOS:000337555300007
PM 23582500
ER
PT J
AU Kochersberger, K
Kroeger, K
Krawiec, B
Brewer, E
Weber, T
AF Kochersberger, Kevin
Kroeger, Kenneth
Krawiec, Bryan
Brewer, Eric
Weber, Thomas
TI Post-disaster Remote Sensing and Sampling via an Autonomous Helicopter
SO JOURNAL OF FIELD ROBOTICS
LA English
DT Article
ID SEARCH
AB An unmanned remote sensing and sampling system has been developed to aid first responders in urban disaster assessment and recovery. The system design is based on a 90 kg autonomous helicopter platform with interchangeable payloads ranging from radiation detection to tethered robot deployment. A typical response would begin with three-dimensional terrain mapping using the stereovision system and a survey of radiation levels with an onboard spectrometer. From this initial survey, amore targeted flight is planned at a lower altitude with the option to localize radioactive sources in the event that radiation is present. Finally, a robot can be tether-deployed into the area of interest to collect samples. It is teleoperated from the ground control station, and after collection is finished the robot is retracted back to the helicopter for retrieval. The terrain mapping, radiation detection, radiation localization, and robot deployment and retrieval have all been flight-tested. Results of these tests indicate that the systems functioned successfully in the context of a prototype demonstrator. (C) 2014 Wiley Periodicals, Inc.
C1 [Kochersberger, Kevin] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA.
[Kroeger, Kenneth] Virginia Tech, Blacksburg, VA 24061 USA.
[Krawiec, Bryan; Brewer, Eric] Rockwell Collin, Warrenton, VA 20187 USA.
[Weber, Thomas] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Kochersberger, K (reprint author), Virginia Tech, Dept Mech Engn, 114 Randolph Hall, Blacksburg, VA 24061 USA.
EM kbk@vt.edu; k609041@vt.edu; bmkrawie@rockwellcollins.com;
etbrewer@rockwellcollins.com; tmweber@sandia.gov
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX Sandia National Laboratories is a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 22
TC 2
Z9 2
U1 1
U2 16
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1556-4959
EI 1556-4967
J9 J FIELD ROBOT
JI J. Field Robot.
PD JUL-AUG
PY 2014
VL 31
IS 4
SI SI
BP 510
EP 521
DI 10.1002/rob.21502
PG 12
WC Robotics
SC Robotics
GA AJ4WI
UT WOS:000337679200003
ER
PT J
AU Xia, GG
Chen, BW
Zhang, R
Zhang, ZC
AF Xia, Guan-Guang
Chen, Baowei
Zhang, Rui
Zhang, Z. Conrad
TI Catalytic hydrolytic cleavage and oxy-cleavage of lignin linkages
SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL
LA English
DT Article
DE Lignin depolymerisation; Organic base; Catalyst; Hydrolytic cleavage;
Oxy-cleavage
ID ORGANIC MEDIA; DEGRADATION; DEPOLYMERIZATION; SPECTROMETRY; CHEMICALS;
BIOMASS; WATER; WOOD
AB In this work, new strategies involving organic bases were evaluated to depolymerize lignin to reduced molecular fragments in aqueous medium. NaOH as an inorganic base was also investigated as a reference. Full nature lignin samples were used for the study. As research tools to unravel the complexity of the macro lignin structure and bulky molecular size under this study, size exclusion chromatography and high resolution mass spectrometric analysis, typically used for protein characterizations, were used to follow the progress of lignin depolymerisation by measuring the molecular weight distribution of the products and determining the key molecular mass fingerprints, respectively. The results show that sodium phenoxide and guanidine carbonate are effective catalysts for lignin depolymerization. It is observed that the organic bases enhance the oxy-cleavage effect of H2O2, which is strongest with guanidine carbonate. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Xia, Guan-Guang; Chen, Baowei; Zhang, Rui; Zhang, Z. Conrad] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Zhang, Z. Conrad] Dalian Inst Chem Physcis, Dalian Natl Lab Clean Energy, State Key Lab Catalysis, Dalian, Peoples R China.
RP Zhang, ZC (reprint author), Dalian Natl Lab Clean Energy, 457 Zhongshan Rd, Dalian 116023, Peoples R China.
EM zczhang@yahoo.com
FU Laboratory Directed Research and Development Program at the PNNL;
Battelle for the U.S. DOE [AC06-76RL01830]
FX This work was supported by the Laboratory Directed Research and
Development Program at the PNNL, a multiprogram national laboratory
operated by Battelle for the U.S. DOE under contract no.
DE-AC06-76RL01830. Part of the research described in this paper was
performed at the Environmental Molecular Science Laboratory, a national
scientific user facility located at PNNL.
NR 18
TC 5
Z9 5
U1 3
U2 42
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1381-1169
EI 1873-314X
J9 J MOL CATAL A-CHEM
JI J. Mol. Catal. A-Chem.
PD JUL
PY 2014
VL 388
SI SI
BP 35
EP 40
DI 10.1016/j.molcata.2013.08.016
PG 6
WC Chemistry, Physical
SC Chemistry
GA AJ3FL
UT WOS:000337551800003
ER
PT J
AU Shatsky, M
Arbelaez, P
Han, BG
Typke, D
Brenner, SE
Malik, J
Glaeser, RM
AF Shatsky, Maxim
Arbelaez, Pablo
Han, Bong-Gyoon
Typke, Dieter
Brenner, Steven E.
Malik, Jitendra
Glaeser, Robert M.
TI Automated particle correspondence and accurate tilt-axis detection in
tilted-image pairs
SO JOURNAL OF STRUCTURAL BIOLOGY
LA English
DT Article
DE Particle correspondence; Tilted pairs; Tilt-axis detection
ID RANDOM CONICAL TILT; ELECTRON-MICROSCOPY; BIOLOGICAL MACROMOLECULES;
RECONSTRUCTION METHOD; 3-D RECONSTRUCTION; SPECIMEN; CRYOMICROSCOPY;
ORIENTATION; HANDEDNESS; RESOLUTION
AB Tilted electron microscope images are routinely collected for an ab initio structure reconstruction as a part of the Random Conical Tilt (RCT) or Orthogonal Tilt Reconstruction (OTR) methods, as well as for various applications using the "free-hand" procedure. These procedures all require identification of particle pairs in two corresponding images as well as accurate estimation of the tilt-axis used to rotate the electron microscope (EM) grid. Here we present a computational approach, PCT (particle correspondence from tilted pairs), based on tilt-invariant context and projection matching that addresses both problems. The method benefits from treating the two problems as a single optimization task. It automatically finds corresponding particle pairs and accurately computes tilt-axis direction even in the cases when EM grid is not perfectly planar. (C) 2014 The Authors. Published by Elsevier Inc.
C1 [Shatsky, Maxim; Brenner, Steven E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Arbelaez, Pablo; Malik, Jitendra] Univ Calif Berkeley, Elect Engn & Comp Sci Div, Berkeley, CA 94720 USA.
[Han, Bong-Gyoon; Typke, Dieter; Glaeser, Robert M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Brenner, Steven E.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
RP Shatsky, M (reprint author), Univ Calif Berkeley, 461 Koshland Hall, Berkeley, CA 94720 USA.
EM max.shatsky@gmail.com
RI Brenner, Steven/A-8729-2008;
OI Brenner, Steven/0000-0001-7559-6185; Arbelaez, Pablo/0000-0001-5244-2407
FU Office of Science, Office of Biological and Environmental Research, of
the US Department of Energy [DE-ACO2-05CH11231]
FX We thank Florian Hauer and Holger Strak for providing program Maverick
Tilt. This work conducted by ENIGMA - Ecosystems and Networks Integrated
with Genes and Molecular Assemblies (http://enigma.lbl.gov), a
Scientific Focus Area Program at Lawrence Berkeley National Laboratory,
was supported by the Office of Science, Office of Biological and
Environmental Research, of the US Department of Energy under Contract
No. DE-ACO2-05CH11231.
NR 29
TC 3
Z9 3
U1 2
U2 7
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1047-8477
EI 1095-8657
J9 J STRUCT BIOL
JI J. Struct. Biol.
PD JUL
PY 2014
VL 187
IS 1
BP 66
EP 75
DI 10.1016/j.jsb.2014.03.017
PG 10
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA AJ6DD
UT WOS:000337779000008
PM 24694675
ER
PT J
AU Labbe, J
Uehling, J
Payen, T
Plett, J
AF Labbe, Jessy
Uehling, Jessie
Payen, Thibaut
Plett, Jonathan
TI Fungal biology: compiling genomes and exploiting them
SO NEW PHYTOLOGIST
LA English
DT Editorial Material
DE effectors; fungal evolution; fungal genetics and genomics; mycorrhizal
fungi; pathogenic and mutualistic interactions; saprotrophs; symbiosis
C1 [Labbe, Jessy] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Uehling, Jessie] Duke Univ, Dept Biol, Durham, NC 27708 USA.
[Payen, Thibaut] Lorraine Univ, Lab Excellence ARBRE, INRA, UMR 1136, F-54280 Nancy, Champenoux, France.
[Plett, Jonathan] Univ Western Sydney, Hawkesbury Inst Environm, Richmond, NSW, Australia.
RP Labbe, J (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008, Oak Ridge, TN 37831 USA.
EM labbejj@ornl.gov
RI Labbe, Jessy/G-9532-2011;
OI Labbe, Jessy/0000-0003-0368-2054; Plett, Jonathan/0000-0003-0514-8146
FU Genomic Science Program (project 'Plant-Microbe Interactions'), US
Department of Energy, Office of Science, Biological and Environmental
Research [DE-AC05-00OR22725]
FX Many thanks to Krista Plett and Francis Martin for helpful comments on
the manuscript. Thanks also to all who attended and gave freely of their
data, thoughts and opinions. The authors acknowledge the Genomic Science
Program (project 'Plant-Microbe Interactions'), US Department of Energy,
Office of Science, Biological and Environmental Research, for supporting
the authors' participation to this meeting, under the contract
DE-AC05-00OR22725.
NR 7
TC 1
Z9 1
U1 0
U2 20
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0028-646X
EI 1469-8137
J9 NEW PHYTOL
JI New Phytol.
PD JUL
PY 2014
VL 203
IS 2
BP 359
EP 361
DI 10.1111/nph.12891
PG 3
WC Plant Sciences
SC Plant Sciences
GA AJ4IW
UT WOS:000337639800004
PM 24942153
ER
PT J
AU McKown, AD
Klapste, J
Guy, RD
Geraldes, A
Porth, I
Hannemann, J
Friedmann, M
Muchero, W
Tuskan, GA
Ehlting, J
Cronk, QCB
El-Kassaby, YA
Mansfield, SD
Douglas, CJ
AF McKown, Athena D.
Klapste, Jaroslav
Guy, Robert D.
Geraldes, Armando
Porth, Ilga
Hannemann, Jan
Friedmann, Michael
Muchero, Wellington
Tuskan, Gerald A.
Ehlting, Juergen
Cronk, Quentin C. B.
El-Kassaby, Yousry A.
Mansfield, Shawn D.
Douglas, Carl J.
TI Genome-wide association implicates numerous genes underlying ecological
trait variation in natural populations of Populus trichocarpa
SO NEW PHYTOLOGIST
LA English
DT Article
DE biomass; ecophysiology; genome-wide association study (GWAS); phenology;
pleiotropy; poplar; single nucleotide polymorphisms (SNP) array; Unified
Mixed Model
ID CARBON-ISOTOPE DISCRIMINATION; MULTILOCUS GENOTYPE DATA; SPRUCE
PICEA-SITCHENSIS; PINE PINUS-TAEDA; LOCAL ADAPTATION; BLACK COTTONWOOD;
BALSAMIFERA L.; COMPLEX TRAITS; PHENOTYPIC ASSOCIATIONS;
ARABIDOPSIS-THALIANA
AB In order to uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa) from much of its range in western North America. Extensive data from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34K Populus single nucleotide polymorphism (SNP) array) of all accessions were used for gene discovery in a genome-wide association study (GWAS). We performed GWAS with 40 biomass, ecophysiology and phenology traits and 29355 filtered SNPs representing 3518 genes. The association analyses were carried out using a Unified Mixed Model accounting for population structure effects among accessions. We uncovered 410 significant SNPs using a Bonferroni-corrected threshold (P<1.7x10-6). Markers were found across 19 chromosomes, explained 1-13% of trait variation, and implicated 275 unique genes in trait associations. Phenology had the largest number of associated genes (240 genes), followed by biomass (53 genes) and ecophysiology traits (25 genes). The GWAS results propose numerous loci for further investigation. Many traits had significant associations with multiple genes, underscoring their genetic complexity. Genes were also identified with multiple trait associations within and/or across trait categories. In some cases, traits were genetically correlated while in others they were not.
C1 [McKown, Athena D.; Klapste, Jaroslav; Guy, Robert D.; Porth, Ilga; El-Kassaby, Yousry A.] Univ British Columbia, Forest Sci Ctr, Fac Forestry, Dept Forest & Conservat Sci, Vancouver, BC V6T 1Z4, Canada.
[Klapste, Jaroslav] Czech Univ Life Sci, Fac Forestry & Wood Sci, Dept Dendrol & Forest Tree Breeding, Prague 16521, Czech Republic.
[Geraldes, Armando; Friedmann, Michael; Cronk, Quentin C. B.; Douglas, Carl J.] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada.
[Porth, Ilga; Mansfield, Shawn D.] Univ British Columbia, Forest Sci Ctr, Fac Forestry, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada.
[Hannemann, Jan; Ehlting, Juergen] Univ Victoria, Dept Biol, Victoria, BC V8W 3N5, Canada.
[Hannemann, Jan; Ehlting, Juergen] Univ Victoria, Ctr Forest Biol, Victoria, BC V8W 3N5, Canada.
[Muchero, Wellington; Tuskan, Gerald A.] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA.
RP McKown, AD (reprint author), Univ British Columbia, Forest Sci Ctr, Fac Forestry, Dept Forest & Conservat Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
EM admckown@gmail.com
RI Klapste, Jaroslav/B-6668-2016; Porth, Ilga/N-4862-2015; El-Kassaby,
Yousry/K-9856-2016; Tuskan, Gerald/A-6225-2011;
OI Klapste, Jaroslav/0000-0001-5504-3735; Porth, Ilga/0000-0002-9344-6348;
El-Kassaby, Yousry/0000-0002-4887-8977; Tuskan,
Gerald/0000-0003-0106-1289; McKown, Athena/0000-0002-7402-9952; Cronk,
Quentin/0000-0002-4027-7368
FU Genome British Columbia Applied Genomics Innovation Program [103BIO];
Genome Canada Large-Scale Applied Research Project [168BIO]; US
Department of Energy Bioenergy Research Facility [DE-AC05-00OR22725]
FX We thank L. E. Gunter, M. S. Azam, E. Drewes, N. Farzaneh, L. Liao, E.
Moreno, L. Muenter and L. Quamme for data monitoring, collection and
image presentation. We also thank anonymous reviewers for their
suggestions and revisions in improving the manuscript. This work was
supported by the Genome British Columbia Applied Genomics Innovation
Program (Project 103BIO) and Genome Canada Large-Scale Applied Research
Project (Project 168BIO) funds to R. D. G., J.E., Q. C. B. C., Y.A.E-K.,
S. D. M. and C.J.D. and by funds within the BioEnergy Science Center, a
US Department of Energy Bioenergy Research Facility under contract
DE-AC05-00OR22725.
NR 89
TC 40
Z9 40
U1 11
U2 93
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0028-646X
EI 1469-8137
J9 NEW PHYTOL
JI New Phytol.
PD JUL
PY 2014
VL 203
IS 2
BP 535
EP 553
DI 10.1111/nph.12815
PG 19
WC Plant Sciences
SC Plant Sciences
GA AJ4IW
UT WOS:000337639800019
PM 24750093
ER
PT J
AU Kim, TN
AF Kim, Tania N.
TI Plant damage and herbivore performance change with latitude for two
old-field plant species, but rarely as predicted
SO OIKOS
LA English
DT Article
ID SOLANUM-CAROLINENSE; SOLIDAGO-ALTISSIMA; INSECT HERBIVORES; PROTEASE
INHIBITORS; FLORAL HERBIVORY; SALT MARSHES; RESISTANCE; TOLERANCE;
TRAITS; COMPETITION
AB A long standing hypothesis in biogeography is that latitudinal gradients in plant defenses (LGPD) should arise because selection for plant defenses is greater in the tropics compared to temperate areas. Previous studies have focused on plant traits thought to confer resistance, yet many traits may not actually confer resistance (putative resistance) or interact to influence herbivore performance. In this study, I used a multi-trophic approach to examine relationships between latitude, herbivore pressure, and plant resistance (measured as the growth rates of herbivores) of two old-field plant species (Solanum carolinense and Solidago altissima) using a field survey across a 12 degree gradient in the eastern US combined with laboratory bioassays measuring the performance of generalist and specialist herbivores. I used structural equation modeling to examine the direct and indirect pathways by which latitude influences herbivore pressure and plant resistance. A latitudinal gradient in plant damage was observed in the expected direction for S. caroliense (damage decreased with latitude), but the opposite relationship was observed for S. altissima. Damage to both plant species was mediated by herbivore abundances, which was in turn influenced by predator abundances. Resistance to herbivores also varied with latitude but the form of the relationship was dependent on herbivore and plant species. There were direct, non-linear relationships between latitude and resistance (for Spodoptera exigua and Schistocerca americana feeding on S. altissima; S. exigua and Manduca sexta feeding on S. carolinense). Herbivore growth rates were also mediated by the density of S. carolinense for Leptinotarsa juncta and S. americana feeding on S. carolinense. There was no relationship between plant resistance and herbivore pressure and no indication of feedbacks. Results from this study indicate that latitudinal variation in plant resistance is complex, possibly constrained by resource availability and tradeoffs in plant defenses.
C1 [Kim, Tania N.] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA.
RP Kim, TN (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA.
EM tkim@glbrc.wisc.edu
FU Florida State Univ., Florida, USA
FX I gratefully acknowledge M. Cipollini (Berry College, Georgia, USA), G.
Crutsinger and L. Souza (Univ. of Tennessee, Tennessee, USA), M. Wise
and D. Carr (Blandy Experimental Farm, Virginia, USA), and S. Campbell
(Cornell Univ., New York, USA) for logistical support during latitudinal
field surveys. I thank J. Capinera (Univ. of Florida, Florida, USA) for
providing grasshoppers for bioassays. I thank J. Stanford for lab and
greenhouse assistance. This manuscript was greatly improved by comments
from N. Underwood, B. Spiesman, J. Grinath and A. Hakes. The Robert K.
Godfrey Endowment Award for the Study of Botany (Florida State Univ.,
Florida, USA) helped fund this research.
NR 54
TC 7
Z9 7
U1 13
U2 50
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0030-1299
EI 1600-0706
J9 OIKOS
JI Oikos
PD JUL
PY 2014
VL 123
IS 7
BP 886
EP 896
DI 10.1111/j.1600-0706.2013.00946.x
PG 11
WC Ecology
SC Environmental Sciences & Ecology
GA AJ5RP
UT WOS:000337744900014
ER
PT J
AU Su, CC
Radhakrishnan, A
Kumar, N
Long, F
Bolla, JR
Lei, HT
Delmar, JA
Do, SV
Chou, TH
Rajashankar, KR
Zhang, QJ
Yu, EW
AF Su, Chih-Chia
Radhakrishnan, Abhijith
Kumar, Nitin
Long, Feng
Bolla, Jani Reddy
Lei, Hsiang-Ting
Delmar, Jared A.
Do, Sylvia V.
Chou, Tsung-Han
Rajashankar, Kanagalaghatta R.
Zhang, Qijing
Yu, Edward W.
TI Crystal structure of the Campylobacter jejuni CmeC outer membrane
channel
SO PROTEIN SCIENCE
LA English
DT Article
DE efflux channel; multidrug resistance; resistance-nodulation-cell
division; Campylobacter jejuni; membrane protein
ID MULTIDRUG EFFLUX PUMP; PSEUDOMONAS-AERUGINOSA; FLUOROQUINOLONE
RESISTANCE; MACROLIDE RESISTANCE; ACRB; PROTEIN; CMEABC; TRANSPORTER;
SOFTWARE; SYSTEM
AB As one of the world's most prevalent enteric pathogens, Campylobacter jejuni is a major causative agent of human enterocolitis and is responsible for more than 400 million cases of diarrhea each year. The impact of this pathogen on children is of particular significance. Campylobacter has developed resistance to many antimicrobial agents via multidrug efflux machinery. The CmeABC tripartite multidrug efflux pump, belonging to the resistance-nodulation-cell division (RND) superfamily, plays a major role in drug resistant phenotypes of C. jejuni. This efflux complex spans the entire cell envelop of C. jejuni and mediates resistance to various antibiotics and toxic compounds. We here report the crystal structure of C. jejuni CmeC, the outer membrane component of the CmeABC tripartite multidrug efflux system. The structure reveals a possible mechanism for substrate export.
C1 [Su, Chih-Chia; Long, Feng; Delmar, Jared A.; Chou, Tsung-Han; Yu, Edward W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Radhakrishnan, Abhijith; Kumar, Nitin; Bolla, Jani Reddy; Lei, Hsiang-Ting; Yu, Edward W.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Do, Sylvia V.; Yu, Edward W.] Iowa State Univ, Bioinformat & Computat Biol Interdept Grad Progra, Ames, IA 50011 USA.
[Rajashankar, Kanagalaghatta R.] Cornell Univ, Argonne Natl Lab, NE CAT, Argonne, IL 60439 USA.
[Rajashankar, Kanagalaghatta R.] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, Argonne, IL 60439 USA.
[Zhang, Qijing] Iowa State Univ, Coll Vet Med, Dept Vet Microbiol, Ames, IA 50011 USA.
RP Yu, EW (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
EM ewyu@iastate.edu
RI Long, Feng/F-5475-2011
OI Long, Feng/0000-0001-6313-8558
FU NIH [R01DK063008, R01GM086431]
FX Grant sponsor: NIH; Grant numbers: R01DK063008 (Q.Z.) and R01GM086431
(E.W.Y.).
NR 38
TC 9
Z9 10
U1 2
U2 13
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0961-8368
EI 1469-896X
J9 PROTEIN SCI
JI Protein Sci.
PD JUL
PY 2014
VL 23
IS 7
BP 954
EP 961
DI 10.1002/pro.2478
PG 8
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA AJ4TS
UT WOS:000337669800011
PM 24753291
ER
PT J
AU Lohman, JR
Ma, M
Cuff, ME
Bigelow, L
Bearden, J
Babnigg, G
Joachimiak, A
Phillips, GN
Shen, B
AF Lohman, Jeremy R.
Ma, Ming
Cuff, Marianne E.
Bigelow, Lance
Bearden, Jessica
Babnigg, Gyorgy
Joachimiak, Andrzej
Phillips, George N., Jr.
Shen, Ben
TI The crystal structure of BlmI as a model for nonribosomal peptide
synthetase peptidyl carrier proteins
SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
LA English
DT Article
DE protein-protein interaction; natural product; biosynthesis;
phylogenetics; structural genomics; reductive methylation
ID BIOSYNTHETIC GENE-CLUSTER; HIGH-THROUGHPUT; COMBINATORIAL MUTAGENESIS;
SURFACTIN SYNTHETASE; SEQUENCE ALIGNMENTS; MAXIMUM-LIKELIHOOD;
ADENYLATION; DOMAINS; CLONING; PURIFICATION
AB Carrier proteins (CPs) play a critical role in the biosynthesis of various natural products, especially in nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymology, where the CPs are referred to as peptidyl-carrier proteins (PCPs) or acyl-carrier proteins (ACPs), respectively. CPs can either be a domain in large multifunctional polypeptides or standalone proteins, termed Type I and Type II, respectively. There have been many biochemical studies of the Type I PKS and NRPS CPs, and of Type II ACPs. However, recently a number of Type II PCPs have been found and biochemically characterized. In order to understand the possible interaction surfaces for combinatorial biosynthetic efforts we crystallized the first characterized and representative Type II PCP member, BlmI, from the bleomycin biosynthetic pathway from Streptomyces verticillus ATCC 15003. The structure is similar to CPs in general but most closely resembles PCPs. Comparisons with previously determined PCP structures in complex with catalytic domains reveals a common interaction surface. This surface is highly variable in charge and shape, which likely confers specificity for interactions. Previous nuclear magnetic resonance (NMR) analysis of a prototypical Type I PCP excised from the multimodular context revealed three conformational states. Comparison of the states with the structure of BlmI and other PCPs reveals that only one of the NMR states is found in other studies, suggesting the other two states may not be relevant. The state represented by the BlmI crystal structure can therefore serve as a model for both Type I and Type II PCPs. Proteins 2014; 82:1210-1218. (c) 2013 Wiley Periodicals, Inc.
C1 [Lohman, Jeremy R.; Ma, Ming; Shen, Ben] Scripps Res Inst, Dept Chem, Jupiter, FL 33458 USA.
[Cuff, Marianne E.; Bigelow, Lance; Bearden, Jessica; Babnigg, Gyorgy; Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Midwest Ctr Struct Genom, Argonne, IL 60439 USA.
[Cuff, Marianne E.; Bigelow, Lance; Bearden, Jessica; Babnigg, Gyorgy; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA.
[Phillips, George N., Jr.] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77251 USA.
[Shen, Ben] Scripps Res Inst, Dept Mol Therapeut, Jupiter, FL 33458 USA.
[Shen, Ben] Scripps Res Inst, Nat Prod Lib Initiat, Jupiter, FL 33458 USA.
RP Shen, B (reprint author), Scripps Res Inst, 130 Scripps Way,3A1, Jupiter, FL 33458 USA.
EM shenb@scripps.edu
RI Lohman, Jeremy/M-1111-2015
OI Lohman, Jeremy/0000-0001-8199-2344
FU National Institute of General Medical Sciences Protein Structure
Initiative [GM094596, GM094585]; National Institutes of Health
[AI40475]; U.S. Department of Energy, Office of Biological and
Environmental Research [DE-AC02-06CH11357]
FX Grant sponsor: National Institute of General Medical Sciences Protein
Structure Initiative (to GNP and BS); Grant number: GM094596; Grant
sponsor: National Institute of General Medical Sciences Protein
Structure Initiative (to MC, LB, JB, GB, and AJ); Grant number:
GM094585; Grant sponsor: National Institutes of Health (to BS); Grant
number: AI40475; Grant sponsor: U.S. Department of Energy, Office of
Biological and Environmental Research (to MC and AJ); Grant number:
DE-AC02-06CH11357.
NR 45
TC 16
Z9 16
U1 3
U2 20
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0887-3585
EI 1097-0134
J9 PROTEINS
JI Proteins
PD JUL
PY 2014
VL 82
IS 7
BP 1210
EP 1218
DI 10.1002/prot.24485
PG 9
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA AJ2GV
UT WOS:000337474700009
PM 25050442
ER
PT J
AU Takasuka, TE
Bianchetti, CM
Tobimatsu, Y
Bergeman, LF
Ralph, J
Fox, BG
AF Takasuka, Taichi E.
Bianchetti, Christopher M.
Tobimatsu, Yuki
Bergeman, Lai F.
Ralph, John
Fox, Brian G.
TI Structure-guided analysis of catalytic specificity of the abundantly
secreted chitosanase SACTE_ 5457 from Streptomyces sp SirexAA-E
SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
LA English
DT Article
DE Streptomyces; chitosanase; chitosan; biomass degradation; X-ray
structure; GH46
ID BACILLUS-CIRCULANS MH-K1; RECALCITRANT POLYSACCHARIDES;
CRYSTAL-STRUCTURE; COELICOLOR A3(2); SP N174; PURIFICATION; SEQUENCE;
CLONING; CHITIN; GENE
AB SACTE_5457 is secreted by Streptomyces sp. SirexAA-E, a highly cellulolytic actinobacterium isolated from a symbiotic community composed of insects, fungi, and bacteria. Here we report the 1.84 angstrom resolution crystal structure and functional characterization of SACTE_5457. This enzyme is a member of the glycosyl hydrolase family 46 and is composed of two -helical domains that are connected by an -helical linker. The catalytic residues (Glu74 and Asp92) are separated by 10.3 angstrom, matching the distance predicted for an inverting hydrolysis reaction. Normal mode analysis suggests that the connecting -helix is flexible and allows the domain motion needed to place active site residues into an appropriate configuration for catalysis. SACTE_5457 does not react with chitin, but hydrolyzes chitosan substrates with an approximate to 4-fold improvement in k(cat)/K-M as the percentage of acetylation and the molecular weights decrease. Analysis of the time dependence of product formation shows that oligosaccharides with degree of polymerization <4 are not hydrolyzed. By combining the results of substrate docking to the X-ray structure and end-product analysis, we deduce that SACTE_5457 preferentially binds substrates spanning the -2 to +2 sugar binding subsites, and that steric hindrance prevents binding of N-acetyl-d-glucosamine in the +2 subsite and may weakly interfere with binding of N-acetyl-d-glucosamine in the +1 subsites. A proposal for how these constraints account for the observed product distributions is provided. Proteins 2014; 82:1245-1257. (c) 2013 Wiley Periodicals, Inc.
C1 [Takasuka, Taichi E.; Bianchetti, Christopher M.; Tobimatsu, Yuki; Bergeman, Lai F.; Ralph, John; Fox, Brian G.] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA.
[Takasuka, Taichi E.; Bianchetti, Christopher M.; Tobimatsu, Yuki; Bergeman, Lai F.; Ralph, John; Fox, Brian G.] Univ Wisconsin, Coll Engn, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA.
RP Fox, BG (reprint author), Univ Wisconsin, Dept Biochem, 420 Henry Mall, Madison, WI 53705 USA.
EM bgfox@biochem.wisc.edu
FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER
DE-FC02-07ER64494]; US Department of Energy, Basic Energy Sciences,
Office of Science [W 31 109 ENG-38]; College of Agricultural and Life
Sciences, Department of Biochemistry, the Graduate School of the
University of Wisconsin; Michigan Economic Development Corporation;
Michigan Technology Tri-Corridor [085P1000817]
FX Grant sponsor: DOE Great Lakes Bioenergy Research Center (DOE Office of
Science); Grant number: BER DE-FC02-07ER64494; Grant sponsor: US
Department of Energy, Basic Energy Sciences, Office of Science; Grant
number: W 31 109 ENG-38; Grant sponsor: College of Agricultural and Life
Sciences, Department of Biochemistry, the Graduate School of the
University of Wisconsin, the Michigan Economic Development Corporation,
and the Michigan Technology Tri-Corridor; Grant number: 085P1000817.
NR 63
TC 2
Z9 2
U1 1
U2 6
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0887-3585
EI 1097-0134
J9 PROTEINS
JI Proteins
PD JUL
PY 2014
VL 82
IS 7
BP 1245
EP 1257
DI 10.1002/prot.24491
PG 13
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA AJ2GV
UT WOS:000337474700012
PM 24338856
ER
PT J
AU Jungels, AM
Brown, MA
Stombler, M
Yasumoto, S
AF Jungels, Amanda M.
Brown, Marni A.
Stombler, Mindy
Yasumoto, Saori
TI Teaching Associates: Bridging Informal and Formal Mechanisms of Support
for Graduate Student Instructors
SO TEACHING SOCIOLOGY
LA English
DT Article
DE formal networks; informal networks; bridging networks; teaching
associate; graduate student instructors; director of instruction;
graduate teacher training
ID NETWORKS
AB Faculty members and graduate student instructors (GSIs) spend a significant portion of their time in the classroom. Much of the literature calls for formal training for graduate students in pedagogy and teaching techniques (DeCesare 2003), and increasing attention has been paid to the benefits of informal supports for GSIs, such as peer networks. But scholars have paid far less attention to examining how formal and informal mechanisms of support might be bridged, thus strengthening support for GSIs. In this article, we explore and demonstrate the importance of bridging available support systems for GSIs, specifically through a position occupied by an advanced GSI, called the Teaching Associate. Using focus groups, semistructured interviews, and surveys, we argue that the Teaching Associate offers formal and informal forms of support for graduate student instructors and their departments and we advocate their use in teacher training.
C1 [Jungels, Amanda M.] Oak Ridge Inst Sci & Educ, Baltimore, MD USA.
[Brown, Marni A.] Georgia Gwinnett Coll, Lawrenceville, NJ USA.
[Stombler, Mindy] Georgia State Univ, Dept Sociol, Atlanta, GA 30303 USA.
[Yasumoto, Saori] Osaka Univ, Dept Human Sci, Program G30, Osaka, Japan.
RP Stombler, M (reprint author), 38 Peachtree Ctr Ave,Langdale Hall Room 1041, Atlanta, GA 30303 USA.
EM stombler@gsu.edu
NR 17
TC 0
Z9 0
U1 2
U2 5
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0092-055X
EI 1939-862X
J9 TEACH SOCIOL
JI Teach. Sociol.
PD JUL
PY 2014
VL 42
IS 3
BP 220
EP 230
DI 10.1177/0092055X14527423
PG 11
WC Education & Educational Research; Sociology
SC Education & Educational Research; Sociology
GA AJ4CZ
UT WOS:000337619400005
ER
PT J
AU Bhagatwala, A
Chen, JH
Lu, TF
AF Bhagatwala, Ankit
Chen, Jacqueline H.
Lu, Tianfeng
TI Direct numerical simulations of HCCl/SACI with ethanol
SO COMBUSTION AND FLAME
LA English
DT Article
DE HCCI; SACI; Thermal stratification; Mixture stratification; Premixed
flame; Autoignition
ID IGNITION FRONT PROPAGATION; EXPLOSIVE MODE ANALYSIS; TEMPERATURE
INHOMOGENEITIES; CONSTANT VOLUME; DIAGNOSTICS; FLAMES; JET
AB Two and three dimensional direct numerical simulations (DNS) of an autoignitive premixture of air and ethanol in Homogeneous Charge Compression Ignition (HCCI) mode have been conducted. A special feature of these simulations is the use of compression heating through mass source/sink terms to emulate the compression and expansion due to piston motion. Furthermore, combustion phasing is adjusted such that peak heat release occurs after Top Dead Center (TDC) during the expansion stroke, as in a real engine. Zero dimensional simulations were first conducted to identify important parameters for the higher dimensional simulations. They showed that for ethanol, temperature and dilution are the parameters the problem is most sensitive to. One set of two dimensional simulations were conducted with a uniform mixture composition and different levels of temperature stratification, both with and without compression heating. Another set of simulations varied the mixture stratification with constant temperature stratification. Both sets showed considerable differences in ignition delay, heat release and peak temperature and peak pressure. Compression heating was also found to have a significant effect on the heat release profile. A three dimensional simulation was conducted for Spark-Assisted HCCI (SACI). It was initiated with a small spark kernel, which evolved into a premixed flame. The entire mixture eventually underwent autoignition. Distance function based analysis showed a strongly attenuating flame. Analysis of scalar mixing frequencies shows that differential diffusion and reaction induced mixing play an important role in predicting the mixing of reactive scalars. This has significant implications for mixing models for reactive flows. Chemical explosive mode analysis (CEMA) was applied to the 3D simulation and showed promise in identifying the transition from flame propagation to autoignition. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
C1 [Bhagatwala, Ankit; Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA.
[Lu, Tianfeng] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA.
RP Bhagatwala, A (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA.
EM abhagat@sandia.gov
RI Lu, Tianfeng/D-7455-2014
OI Lu, Tianfeng/0000-0001-7536-1976
FU Combustion Energy Frontier Research Center (CEFRC), an Energy Frontier
Research Center - U.S. Department of Energy (DOE), Office of Science,
Office of Basic Energy Sciences (BES) [DE-SC0001198]; United States
Department of Energy [DE-AC04-94AL85000]; Office of Basic Energy
Sciences, Office of Science, U.S. Department of Energy [DE-SC0008622];
Department of Energy's Advanced Leadership Computing Challenge (ALCC) at
the National Energy Research Scientific Computing Center (NERSC)
FX This research is supported by the Combustion Energy Frontier Research
Center (CEFRC), an Energy Frontier Research Center funded by the U.S.
Department of Energy (DOE), Office of Science, Office of Basic Energy
Sciences (BES) under Award No. DE-SC0001198. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under Contract
DE-AC04-94AL85000. The work at University of Connecticut was supported
by the Office of Basic Energy Sciences, Office of Science, U.S.
Department of Energy under Grant DE-SC0008622. Computer allocations were
awarded by the Department of Energy's Advanced Leadership Computing
Challenge (ALCC) at the National Energy Research Scientific Computing
Center (NERSC).
NR 35
TC 16
Z9 16
U1 5
U2 28
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0010-2180
EI 1556-2921
J9 COMBUST FLAME
JI Combust. Flame
PD JUL
PY 2014
VL 161
IS 7
BP 1826
EP 1841
DI 10.1016/j.combustflame.2013.12.027
PG 16
WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary;
Engineering, Chemical; Engineering, Mechanical
SC Thermodynamics; Energy & Fuels; Engineering
GA AI8TU
UT WOS:000337200700013
ER
PT J
AU Anderson, EK
Aslam, TD
Jackson, SI
AF Anderson, Eric K.
Aslam, Tariq D.
Jackson, Scott I.
TI Transverse initiation of an insensitive explosive in a layered slab
geometry: Front shapes and post-shock flow measurements
SO COMBUSTION AND FLAME
LA English
DT Article
DE Detonation; Shock; Explosive
AB Experiments are presented that explore the shock initiating layer dynamics in an insensitive high explosive. Tests were conducted with a PBX 9502 slab bonded on one side to a PBX 9501 slab. For each test, a detonation in the PBX 9501 was generated to drive an oblique shock intended to initiate the PBX 9502. Shocks of sufficient strength generated an initiating layer, or region of delayed reaction (relative to typical PBX 9502 detonation reaction timescales) in the PBX 9502 immediately adjacent to the PBX 9501. These reactions result in a transition to detonation away from the 9501/9502 interface in a process analogous to the shock-to-detonation transition in shocked one-dimensional (1D) explosive configurations. The thickness of the PBX 9501 layer was varied from 0.5-2.5 mm to control the strength and duration of the transmitted shock into the 8 mm thick PBX 9502. Phase velocities at the explosive outer surfaces, wave front breakout shapes, and post shock particle velocity histories associated with the detonating and initiating zones in the two explosives are reported and discussed. The initiating layer thickness decreased with increasing PBX 9501 thickness for tests with PBX 9501 thicknesses larger than 1.0 mm. A 1.0 mm thick PBX 9501 slab was not able to initiate detonation in the 8.0 mm thick PBX 9502 slab. Further decreasing the PBX 9501 thickness to 0.5 mm resulted in detonation throughout both slabs, with no initiating layer due to the intersection of each explosive's thickness effect curve at this condition. Initiating layers exhibited particle velocity profiles characteristic of non-detonating shocks. Measured phase velocities are in good agreement with Detonation Shock Dynamics (DSD) predictions for PBX 9501. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
C1 [Anderson, Eric K.; Aslam, Tariq D.; Jackson, Scott I.] LANL, Shock & Detonat Phys Grp, Los Alamos, NM 87545 USA.
RP Anderson, EK (reprint author), LANL, Shock & Detonat Phys Grp, WX-9, Los Alamos, NM 87545 USA.
EM eanderson@lanl.gov
OI Jackson, Scott/0000-0002-6814-3468; Aslam, Tariq/0000-0002-4263-0401;
Anderson, Eric/0000-0002-5309-5686
FU US Department of Energy Campaign 2: "Dynamic Material Properties."
FX This effort was funded by the US Department of Energy Campaign 2:
"Dynamic Material Properties." Experiments were assembled and fielded
with assistance provided by Sam Vincent and Tim Tucker.
NR 19
TC 1
Z9 1
U1 0
U2 15
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0010-2180
EI 1556-2921
J9 COMBUST FLAME
JI Combust. Flame
PD JUL
PY 2014
VL 161
IS 7
BP 1944
EP 1954
DI 10.1016/j.combustflame.2013.12.023
PG 11
WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary;
Engineering, Chemical; Engineering, Mechanical
SC Thermodynamics; Energy & Fuels; Engineering
GA AI8TU
UT WOS:000337200700022
ER
PT J
AU Dale, VH
AF Dale, Virginia H.
TI Environmental Management: Past and Future Communications
SO ENVIRONMENTAL MANAGEMENT
LA English
DT Editorial Material
C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
RP Dale, VH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM dalevh@ornl.gov
NR 3
TC 0
Z9 0
U1 1
U2 7
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0364-152X
EI 1432-1009
J9 ENVIRON MANAGE
JI Environ. Manage.
PD JUL
PY 2014
VL 54
IS 1
BP 1
EP 2
DI 10.1007/s00267-014-0298-7
PG 2
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA AI9UP
UT WOS:000337285900001
ER
PT J
AU Grahame, TJ
AF Grahame, Thomas J.
TI PM2.5 Species Importance of Accurate Measurement
SO EPIDEMIOLOGY
LA English
DT Letter
ID AIR-POLLUTION; HEART-RATE; ERROR
C1 US DOE, Washington, DC 20585 USA.
RP Grahame, TJ (reprint author), US DOE, Washington, DC 20585 USA.
EM Thomas.grahame@hq.doe.gov
NR 4
TC 1
Z9 1
U1 0
U2 9
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 1044-3983
EI 1531-5487
J9 EPIDEMIOLOGY
JI Epidemiology
PD JUL
PY 2014
VL 25
IS 4
BP 615
EP 615
DI 10.1097/EDE.0000000000000112
PG 1
WC Public, Environmental & Occupational Health
SC Public, Environmental & Occupational Health
GA AJ0CM
UT WOS:000337316700021
PM 24887164
ER
PT J
AU Landau, SM
Thomas, BA
Thurfjell, L
Schmidt, M
Margolin, R
Mintun, M
Pontecorvo, M
Baker, SL
Jagust, WJ
AF Landau, S. M.
Thomas, B. A.
Thurfjell, L.
Schmidt, M.
Margolin, R.
Mintun, M.
Pontecorvo, M.
Baker, S. L.
Jagust, W. J.
CA Alzheimer's Dis Neuroimaging Initi
TI Amyloid PET imaging in Alzheimer's disease: a comparison of three
radiotracers
SO EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
LA English
DT Article
DE Amyloid; Alzheimer's disease; PET imaging; Neurology
ID PITTSBURGH COMPOUND-B; MILD COGNITIVE IMPAIRMENT; F 18; BETA;
FLORBETAPIR; F-18-FLUTEMETAMOL; DEPOSITION; RADIOLIGAND; VALIDATION;
DEMENTIA
AB Purpose The increasing use of amyloid PET in Alzheimer's disease research and clinical trials has motivated efforts to standardize methodology. We compared retention of the C-11 radiotracer Pittsburgh Compound B (PiB) and that of two F-18 amyloid radiotracers (florbetapir and flutemetamol) using two study populations. We also examined the feasibility of converting between tracer-specific measures, using PiB as the common link between the two F-18 tracers.
Methods One group of 40 subjects underwent PiB and flutemetamol imaging sessions and a separate group of 32 subjects underwent PiB and florbetapir imaging sessions. We compared cortical and white matter retention for each F-18 tracer relative to that of PiB, as well as retention in several reference regions and image analysis methods. Correlations between tracer pairs were used to convert tracer-specific threshold values for amyloid positivity between tracers.
Results Cortical retention for each pair of tracers was strongly correlated regardless of reference region (PiB-flutemetamol, rho = 0.84-0.99; PiB-florbetapir, rho = 0.83-0.97) and analysis method (rho = 0.90-0.99). Compared to PiB, flutemetamol had higher white matter retention, while florbetapir had lower cortical retention. Two previously established independent thresholds for amyloid positivity were highly consistent when values were converted between tracer pairs.
Conclusion Despite differing white and grey matter retention characteristics, cortical retention for each F-18 tracer was highly correlated with that of PiB, enabling conversion of thresholds across tracer measurement scales with a high level of internal consistency. Standardization of analysis methods and measurement scales may facilitate the comparison of amyloid PET data obtained using different tracers.
C1 [Landau, S. M.; Jagust, W. J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA.
[Landau, S. M.; Baker, S. L.; Jagust, W. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Thomas, B. A.] UCL, Inst Nucl Med, London, England.
[Thurfjell, L.] GE Healthcare, Uppsala, Sweden.
[Schmidt, M.] Janssen Pharmaceut NV, Beerse, Belgium.
[Margolin, R.] Janssen Alzheimer Immunotherapy, San Francisco, CA USA.
[Mintun, M.; Pontecorvo, M.] Avid Radiopharmaceut Inc, Philadelphia, PA USA.
RP Landau, SM (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 118 Barker Hall MC 3190, Berkeley, CA 94720 USA.
EM slandau@berkeley.edu; Benjamin_Thomas@circ.a-star.edu.sg;
lennart.thurfjell@ge.com; mschmid4@its.jnj.com; rmargoli@its.jnj.com;
mintun@avidrp.com; pontecorvo@avidrp.com; slbaker@lbl.gov;
jagust@berkeley.edu
RI Schmidt, Mark/I-5052-2016;
OI Schmidt, Mark/0000-0003-3417-8977; Thomas, Benjamin/0000-0002-9784-1177
FU GlaxoSmithKline (GSK); UCL/UCLH from the UK Department of Health
Biomedical Research Centre; ADNI (National Institutes of Health) [U01
AG024904]; National Institute on Aging; National Institute of Biomedical
Imaging and Bioengineering; Canadian Institutes of Health Research; NIH
[P30 AG010129, K01 AG030514]
FX B. T. acknowledges the support of GlaxoSmithKline (GSK) and also that
UCL/UCLH receives a portion of its research funding from the UK
Department of Health Biomedical Research Centre's funding scheme.; Data
collection and sharing for this project was funded by the ADNI (National
Institutes of Health grant U01 AG024904). ADNI is funded by the National
Institute on Aging, and the National Institute of Biomedical Imaging and
Bioengineering, and through generous contributions from the following:
Abbott; Alzheimer's Association; Alzheimer's Drug Discovery Foundation;
Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica,
Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan
Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd
and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics,
N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research &
Development, LLC.; Johnson & Johnson Pharmaceutical Research &
Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale
Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.;
Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian
Institutes of Health Research provides funds to support ADNI clinical
sites in Canada. Private sector contributions are facilitated by the
Foundation for the National Institutes of Health (www.fnih.org). The
grantee organization is the Northern California Institute for Research
and Education, and the study is coordinated by the Alzheimer's Disease
Cooperative Study at the University of California, San Diego. ADNI data
are disseminated by the Laboratory for Neuro Imaging at the University
of California, Los Angeles. This research was also supported by NIH
grants P30 AG010129 and K01 AG030514.
NR 21
TC 47
Z9 47
U1 1
U2 16
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1619-7070
EI 1619-7089
J9 EUR J NUCL MED MOL I
JI Eur. J. Nucl. Med. Mol. Imaging
PD JUL
PY 2014
VL 41
IS 7
BP 1398
EP 1407
DI 10.1007/s00259-014-2753-3
PG 10
WC Radiology, Nuclear Medicine & Medical Imaging
SC Radiology, Nuclear Medicine & Medical Imaging
GA AI9UR
UT WOS:000337286200016
PM 24647577
ER
PT J
AU Schaefer, JD
Werner, BT
Daniel, IM
AF Schaefer, J. D.
Werner, B. T.
Daniel, I. M.
TI Strain-Rate-Dependent Failure of a Toughened Matrix Composite
SO EXPERIMENTAL MECHANICS
LA English
DT Article
DE Composites; Toughened matrix; Strain rate dependence; Failure
prediction; Dynamic testing
ID SHEET WRINKLE DEFECTS; WIND TURBINE-BLADES; EPOXY COMPOSITES; PREDICTIVE
CAPABILITIES; PROGRESSIVE FAILURE; NONLINEAR RESPONSE; FIBER COMPOSITES;
FATIGUE FAILURE; PART-B; BEHAVIOR
AB The strain-rate-dependent behavior of a toughened matrix composite (IM7/8552) was characterized under quasi-static and dynamic loading conditions. Unidirectional and off-axis composite specimens were tested at strain rates ranging from 10(-4) to 10(3) s(-1) using a servo-hydraulic testing machine and split Hopkinson pressure bar apparatus. The nonlinear response and failure were analyzed and evaluated based on classical failure criteria and the Northwestern (NU) failure theory. The predictive NU theory was shown to be in excellent agreement with experimental results and to accurately predict the strain-rate-dependent failure of the composite system based on measured average lamina properties.
C1 [Schaefer, J. D.; Daniel, I. M.] Northwestern Univ, Ctr Intelligent Proc Composites, Evanston, IL 60208 USA.
[Werner, B. T.] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Daniel, IM (reprint author), Northwestern Univ, Ctr Intelligent Proc Composites, Evanston, IL 60208 USA.
EM imdaniel@northwestern.edu
RI Daniel, Isaac/B-6932-2009
FU Office of Naval Research (ONR)
FX The work described in this paper was sponsored by the Office of Naval
Research (ONR). The authors are grateful to Dr. Y.D.S. Rajapakse of ONR
for his encouragement and cooperation.
NR 43
TC 6
Z9 6
U1 0
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0014-4851
EI 1741-2765
J9 EXP MECH
JI Exp. Mech.
PD JUL
PY 2014
VL 54
IS 6
BP 1111
EP 1120
DI 10.1007/s11340-014-9876-0
PG 10
WC Materials Science, Multidisciplinary; Mechanics; Materials Science,
Characterization & Testing
SC Materials Science; Mechanics
GA AI8JJ
UT WOS:000337159200015
ER
PT J
AU Wang, LF
AF Wang, Li-Fang
TI Meshfree-enriched electromagnetic finite element formulation using nodal
integration
SO INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES
AND FIELDS
LA English
DT Article
DE finite element; meshfree; electromagnetics; nodal integration
ID MESHLESS METHOD; PARTICLE METHODS; SHAPE FUNCTION; COMPUTATIONS; FIELDS
AB This paper presents a meshfree-enriched finite element formulation using nodal integration for electrostatic analysis. The meshfree-enriched finite element method, originally proposed to solve the incompressible constraint in mechanical problem, is revisited in this paper and applied to the analysis of electrostatic problems to improve the solution accuracy of conventional finite element method. A novel nodal integration scheme based on the meshfree-enriched finite element mesh is developed for the integration of discrete equation and is shown to pass the linear exactness in the Galerkin approximation. To demonstrate the accuracy of the proposed formulation, two numerical examples are studied and comparisons are made to several other finite element formulations. Copyright (c) 2014 John Wiley & Sons, Ltd.
C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Wang, LF (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
EM wang22@llnl.gov
NR 23
TC 1
Z9 1
U1 0
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0894-3370
EI 1099-1204
J9 INT J NUMER MODEL EL
JI Int. J. Numer. Model.-Electron. Netw. Device Fields
PD JUL-AUG
PY 2014
VL 27
IS 4
BP 669
EP 681
DI 10.1002/jnm.1940
PG 13
WC Engineering, Electrical & Electronic; Mathematics, Interdisciplinary
Applications
SC Engineering; Mathematics
GA AJ4EG
UT WOS:000337623900004
ER
PT J
AU Barlat, F
Vincze, G
Gracio, JJ
Lee, MG
Rauch, EF
Tome, CN
AF Barlat, F.
Vincze, G.
Gracio, J. J.
Lee, M. -G.
Rauch, E. F.
Tome, C. N.
TI Enhancements of homogenous anisotropic hardening model and application
to mild and dual-phase steels
SO INTERNATIONAL JOURNAL OF PLASTICITY
LA English
DT Article
DE Yield condition; Constitutive behavior; Metallic material; Mechanical
testing; Cross-loading
ID LOW-CARBON STEEL; CHANGING STRAIN PATHS; ELASTIC-PLASTIC BEHAVIOR;
SPRING-BACK PREDICTION; ALUMINUM-ALLOY SHEETS; STRESS YIELD FUNCTION;
METAL PLASTICITY; PLANE-STRESS; CYCLIC PLASTICITY; PART-I
AB The formulation of the so-called homogeneous anisotropic hardening (HAH) model, which was originally proposed in Barlat et al. (2011), is refined. With the new features, this distortional plasticity-based constitutive model predicts the mechanical response of metals subjected to non-proportional loading with improved accuracy, in particular for cross-loading. In that case, applications to two different steels are provided for illustration purposes. For mild steel, the stress overshoot of the monotonic flow curve observed during a double load change is well reproduced by the model. In addition, for a dual-phase steel deformed in a two-step tension test with axes at 450 from each other, the new features allow the reloading yield stress to be lower than the unloading flow stress, in good agreement with experimental observations. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Barlat, F.; Lee, M. -G.] Pohang Univ Sci & Technol POSTECH, GIFT, Pohang 790784, Gyeongbuk, South Korea.
[Barlat, F.; Vincze, G.; Gracio, J. J.] Univ Aveiro, Ctr Mech Technol & Automat, Dept Mech Engn, P-3810 Aveiro, Portugal.
[Rauch, E. F.] INPG UJF, CNRS, Grp GPM2, UMR 5266, F-38402 St Martin Dheres, France.
[Tome, C. N.] Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA.
RP Lee, MG (reprint author), Pohang Univ Sci & Technol POSTECH, GIFT, San 31 Hyoja Dong, Pohang 790784, Gyeongbuk, South Korea.
EM f.barlat@postech.ac.kr; mglee@postech.ac.kr
RI RAUCH, Edgar/C-9852-2011; Tome, Carlos/D-5058-2013; Group,
GAME/B-3464-2014; Vincze, Gabriela/D-2383-2013;
OI Vincze, Gabriela/0000-0002-0338-3911; Barlat,
Frederic/0000-0002-4463-3454
FU POSCO; National Research Foundation of Korea (NRF) - Korean government
(MSIP) [2012R1A5A1048294]; Foundation of Science and Technology of
Portugal [PTDC/EME-PME/116683/2010]
FX The supports of POSCO, the National Research Foundation of Korea (NRF),
through the Grant No. 2012R1A5A1048294 funded by the Korean government
(MSIP), and the Foundation of Science and Technology of Portugal through
the Grant PTDC/EME-PME/116683/2010, are gratefully acknowledged. The
comments and suggestions of Mr. Jinwoo Lee (GIFT) about this work are
greatly appreciated.
NR 84
TC 21
Z9 22
U1 1
U2 31
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0749-6419
EI 1879-2154
J9 INT J PLASTICITY
JI Int. J. Plast.
PD JUL
PY 2014
VL 58
SI SI
BP 201
EP 218
DI 10.1016/j.ijplas.2013.11.002
PG 18
WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics
SC Engineering; Materials Science; Mechanics
GA AI9OM
UT WOS:000337261900010
ER
PT J
AU Luszczek, P
Kurzak, J
Dongarra, J
AF Luszczek, Piotr
Kurzak, Jakub
Dongarra, Jack
TI Looking back at dense linear algebra software
SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
LA English
DT Article
DE Decompositional approach; Parallel algorithms; Dense linear algebra
ID MODEL IMPLEMENTATION; PROGRAM PARAGAUSS; EXTENDED SET; SUBPROGRAMS;
COMPUTATION; ALGORITHMS; PLASMAS; FORTRAN
AB Over the years, computational physics and chemistry served as an ongoing source of problems that demanded the ever increasing performance from hardware as well as the software that ran on top of it. Most of these problems could be translated into solutions for systems of linear equations: the very topic of numerical linear algebra. Seemingly then, a set of efficient linear solvers could be solving important scientific problems for years to come. We argue that dramatic changes in hardware designs precipitated by the shifting nature of the marketplace of computer hardware had a continuous effect on the software for numerical linear algebra. The extraction of high percentages of peak performance continues to require adaptation of software. If the past history of this adaptive nature of linear algebra software is any guide then the future theme will feature changes as well - changes aimed at harnessing the incredible advances of the evolving hardware infrastructure. Published by Elsevier Inc.
C1 [Luszczek, Piotr] Univ Tennessee, Knoxville, TN USA.
[Kurzak, Jakub] Univ Tennessee, Dept Elect Engn & Comp Sci, Innovat Comp Lab, Knoxville, TN USA.
[Dongarra, Jack] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
[Dongarra, Jack] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
[Dongarra, Jack] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England.
[Dongarra, Jack] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England.
RP Dongarra, J (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
EM luszczek@eecs.utk.edu; kurzak@eecs.utk.edu; dongarra@cs.utk.edu
NR 36
TC 1
Z9 1
U1 1
U2 3
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0743-7315
EI 1096-0848
J9 J PARALLEL DISTR COM
JI J. Parallel Distrib. Comput.
PD JUL
PY 2014
VL 74
IS 7
BP 2548
EP 2560
DI 10.1016/j.jpdc.2013.10.005
PG 13
WC Computer Science, Theory & Methods
SC Computer Science
GA AI9OD
UT WOS:000337261000003
ER
PT J
AU Smith, KA
Stewart, B
Yager, KG
Strzalka, J
Verduzco, R
AF Smith, Kendall A.
Stewart, Bridget
Yager, Kevin G.
Strzalka, Joseph
Verduzco, Rafael
TI Control of all-conjugated block copolymer crystallization via thermal
and solvent annealing
SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS
LA English
DT Article
DE block copolymers; conducting polymers; crystallization; films; organic
photovoltaics; poly(3-alkylthiophene); poly(9; 9-dioctylfluorene);
poly(3-dodecylthiophene); rod-rod polymers
ID MICROPHASE SEPARATION; CLICK CHEMISTRY; POLY(3-ALKYLTHIOPHENES);
POLY(3-HEXYLTHIOPHENE); CRYSTALLINITY; EMISSION
AB Control of the crystallization of conjugated polymers is of critical importance to the performance of organic electronics, such as organic photovoltaic devices, due to the effect on charge separation and transport, particularly for all-polymer devices. The block copolymer poly(3-dodecylthiophene)-block-poly(9,9-dioctylfluorene) (P3DDT-b-PF), which has matched crystallization temperatures for each block, is used to study the effects of processing history on resulting crystallization. For longer annealing times and rapid quenching to room temperature, P3DDT crystals are preferred whereas for shorter annealing times and slower quenching, PF crystals are preferred. Both crystal forms are evidenced for long annealing time and slow quenching. Additionally, for room temperature annealing in the presence of a chloroform vapor, PF crystals are found in the PF phase with the predominant crystal peak oriented perpendicular to the thermally annealed case. These results will provide guidance for optimizing annealing strategies for future donor/acceptor block copolymer photovoltaic devices. (c) 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 900-906
C1 [Smith, Kendall A.; Stewart, Bridget; Verduzco, Rafael] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA.
[Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Strzalka, Joseph] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Verduzco, R (reprint author), Rice Univ, Dept Chem & Biomol Engn, 6100 Main MS 362 St, Houston, TX 77005 USA.
EM rafaelv@rice.edu
RI Yager, Kevin/F-9804-2011
OI Yager, Kevin/0000-0001-7745-2513
FU National Science Foundation [CBET-1264703]; Shell Center for
Sustainability; Louis and Peaches Owen; Department of Homeland Security,
Science, and Technology Division [2009-ST-062-000031]; US DOE
[DE-AC02-06CH11357]; US Department of Energy, Office of Science, Office
of Basic Energy Sciences [DE-AC02-98CH10886]
FX This work was supported by the National Science Foundation under Grant
No. CBET-1264703, the Shell Center for Sustainability, and Louis and
Peaches Owen. B. Stewart acknowledges the Department of Homeland
Security, Science, and Technology Division, Award #2009-ST-062-000031.
K. A. Smith acknowledges Aditya Mohite, Gautam Gupta, Hsing-LinWang, and
Hsinhan Tsai of Los Alamos National Laboratory for useful discussion
during the preparation of this manuscript. Use of the Advanced Photon
Source, an Office of Science User Facility operated for the US
Department of Energy (DOE) Office of Science by Argonne National
Laboratory, was supported by the US DOE under Contract No.
DE-AC02-06CH11357. Use of the National Synchrotron Light Source and
Center for Functional Nanomaterials, Brookhaven National Laboratory,
were supported by the US Department of Energy, Office of Science, Office
of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.
NR 24
TC 6
Z9 6
U1 6
U2 51
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0887-6266
EI 1099-0488
J9 J POLYM SCI POL PHYS
JI J. Polym. Sci. Pt. B-Polym. Phys.
PD JUL 1
PY 2014
VL 52
IS 13
BP 900
EP 906
DI 10.1002/polb.23506
PG 7
WC Polymer Science
SC Polymer Science
GA AJ3OR
UT WOS:000337576900007
ER
PT J
AU Luo, HB
Beckles, GLA
Zhang, XZ
Sotnikov, S
Thompson, T
Bardenheier, B
AF Luo, Huabin
Beckles, Gloria L. A.
Zhang, Xinzhi
Sotnikov, Sergey
Thompson, Ted
Bardenheier, Barbara
TI The Relationship Between County-Level Contextual Characteristics and Use
of Diabetes Care Services
SO JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE
LA English
DT Article
DE Andersen's model; multilevel models; preventive diabetes care; social
determinants
ID SELF-MANAGEMENT EDUCATION; SAFETY-NET; GLYCEMIC CONTROL; UNITED-STATES;
ACCESS; HEALTH; METAANALYSIS; COMPLICATIONS; COMMUNITIES; DISPARITIES
AB Objectives: To examine the relationship between county-level measures of social determinants and use of preventive care among US adults with diagnosed diabetes. To inform future diabetes prevention strategies. Methods: Data are from the Behavioral Risk Factor Surveillance System (BRFSS) 2004 and 2005 surveys, the National Diabetes Surveillance System, and the Area Resource File. Use of diabetes care services was defined by self-reported receipt of 7 preventive care services. Our study sample included 46 806 respondents with self-reported diagnosed diabetes. Multilevel models were run to assess the association between county-level characteristics and receipt of each of the 7 preventive diabetes care service after controlling for characteristics of individuals. Results were considered significant if P < .05. Results: Controlling for individual-level characteristics, our analyses showed that 7 of the 8 county-level factors examined were significantly associated with use of 1 or more preventive diabetes care services. For example, people with diabetes living in a county with a high uninsurance rate were less likely to have an influenza vaccination, visit a doctor for diabetes care, have an A1c test, or a foot examination; people with diabetes living in a county with a high physician density were more likely to have an A1c test, foot examination, or an eye examination; and people with diabetes living in a county with more people with less than high-school education were less likely to have influenza vaccination, pneumococcal vaccination, or self-care education (all P < .05). Conclusions: Many of the county-level factors examined in this study were found to be significantly associated with use of preventive diabetes care services. County policy makers may need to consider local circumstances to address the disparities in use of these services.
C1 [Luo, Huabin] Ctr Dis Control & Prevent, ORISE, OSTLTS, Atlanta, GA 30333 USA.
[Sotnikov, Sergey] CDC, OSTLTS, Atlanta, GA 30333 USA.
[Beckles, Gloria L. A.; Zhang, Xinzhi; Thompson, Ted; Bardenheier, Barbara] CDC, Div Diabet Translat, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30333 USA.
RP Luo, HB (reprint author), Ctr Dis Control & Prevent, Off State Tribal Local & Territorial Support, 1600 Clifton Rd M-S E-70, Atlanta, GA 30333 USA.
EM vbz7@CDC.gov
FU Intramural CDC HHS [CC999999]
NR 44
TC 1
Z9 1
U1 2
U2 10
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA
SN 1078-4659
EI 1550-5022
J9 J PUBLIC HEALTH MAN
JI J. Public Health Manag. Pract.
PD JUL-AUG
PY 2014
VL 20
IS 4
BP 401
EP 410
DI 10.1097/PHH.0b013e31829bfa60
PG 10
WC Public, Environmental & Occupational Health
SC Public, Environmental & Occupational Health
GA AI8DV
UT WOS:000337137700012
PM 23963254
ER
PT J
AU Roan, NR
Liu, HC
Usmani, SM
Neidleman, J
Muller, JA
Avila-Herrera, A
Gawanbacht, A
Zirafi, O
Chu, S
Dong, M
Kumar, ST
Smith, JF
Pollard, KS
Fandrich, M
Kirchhoff, F
Munch, J
Witkowska, HE
Greene, WC
AF Roan, Nadia R.
Liu, Haichuan
Usmani, Shariq M.
Neidleman, Jason
Mueller, Janis A.
Avila-Herrera, Aram
Gawanbacht, Ali
Zirafi, Onofrio
Chu, Simon
Dong, Ming
Kumar, Senthil T.
Smith, James F.
Pollard, Katherine S.
Faendrich, Marcus
Kirchhoff, Frank
Muench, Jan
Witkowska, H. Ewa
Greene, Warner C.
TI Liquefaction of Semen Generates and Later Degrades a Conserved
Semenogelin Peptide That Enhances HIV Infection
SO JOURNAL OF VIROLOGY
LA English
DT Article
ID PROSTATE-SPECIFIC ANTIGEN; SPERM MOTILITY INHIBITOR; MEDIATED
ENHANCEMENT; AMYLOID FIBRILS; PROTEIN; CELLS; COAGULUM; ASSAY
AB Semen enhances HIV infection in vitro, but how long it retains this activity has not been carefully examined. Immediately postejaculation, semen exists as a semisolid coagulum, which then converts to a more liquid form in a process termed liquefaction. We demonstrate that early during liquefaction, semen exhibits maximal HIV-enhancing activity that gradually declines upon further incubation. The decline in HIV-enhancing activity parallels the degradation of peptide fragments derived from the semenogelins (SEMs), the major components of the coagulum that are cleaved in a site-specific and progressive manner upon initiation of liquefaction. Because amyloid fibrils generated from SEM fragments were recently demonstrated to enhance HIV infection, we set out to determine whether any of the liquefaction-generated SEM fragments associate with the presence of HIVenhancing activity. We identify SEM1 from amino acids 86 to 107 [ SEM1(86-107)] to be a short, cationic, amyloidogenic SEM peptide that is generated early in the process of liquefaction but that, conversely, is lost during prolonged liquefaction due to the activity of serine proteases. Synthetic SEM1(86-107) amyloids directly bind HIV-1 virions and are sufficient to enhance HIV infection of permissive cells. Furthermore, endogenous seminal levels of SEM1(86-107) correlate with donor-dependent variations in viral enhancement activity, and antibodies generated against SEM1(86-107) recognize endogenous amyloids in human semen. The amyloidogenic potential of SEM1(86-107) and its virus-enhancing properties are conserved among great apes, suggesting an evolutionarily conserved function. These studies identify SEM1(86-107) to be a key, HIV-enhancing amyloid species in human semen and underscore the dynamic nature of semen's HIV-enhancing activity.
C1 [Roan, Nadia R.; Neidleman, Jason; Chu, Simon; Greene, Warner C.] Univ Calif San Francisco, Gladstone Inst Virol & Immunol, San Francisco, CA 94143 USA.
[Roan, Nadia R.; Smith, James F.] Univ Calif San Francisco, Dept Urol, San Francisco, CA USA.
[Liu, Haichuan; Witkowska, H. Ewa] Univ Calif San Francisco, Dept Obstet Gynecol & Reprod Sci, San Francisco, CA USA.
[Liu, Haichuan; Witkowska, H. Ewa] Univ Calif San Francisco, Sandler Moore Mass Spectrometry Core Facil, San Francisco, CA 94143 USA.
[Avila-Herrera, Aram; Pollard, Katherine S.] Univ Calif San Francisco, Gladstone Inst Cardiovasc Dis, San Francisco, CA USA.
[Pollard, Katherine S.] Univ Calif San Francisco, Dept Epidemiol & Biostat, Inst Human Genet, San Francisco, CA 94143 USA.
[Greene, Warner C.] Univ Calif San Francisco, Dept Med, San Francisco, CA USA.
[Greene, Warner C.] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94143 USA.
[Usmani, Shariq M.; Mueller, Janis A.; Gawanbacht, Ali; Zirafi, Onofrio; Kirchhoff, Frank; Muench, Jan] Univ Ulm, Inst Mol Virol, Med Ctr, D-89069 Ulm, Germany.
[Dong, Ming] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Kumar, Senthil T.; Faendrich, Marcus] Univ Ulm, Inst Pharmaceut Biotechnol, D-89069 Ulm, Germany.
RP Roan, NR (reprint author), Univ Calif San Francisco, Gladstone Inst Virol & Immunol, San Francisco, CA 94143 USA.
EM roann@urology.ucsf.edu
OI Usmani, Shariq/0000-0002-6462-1098
FU Hellman Family Awards [1PO1 AI083050 PPG]; U.S. Department of Defense
[W81XWH-11-1-0562, R01HD074511]; DFG; Ministry of Science; VW Stiftung;
San Simeon Fund; Sandler Family Foundation; Gordon and Betty Moore
Foundation; NIH/NCI Cancer Center [P30 CA082103]; CFAR [P30 AI027763,
P30-AI027763]; [5K12 DK083021-04 KURe]; [K99/R00 1K99AI104262]; [DFG
FA 456/10-1]; [DFG US116/1]
FX This work was supported, in whole or in part, by grant 5K12 DK083021-04
KURe, grant K99/R00 1K99AI104262, and Hellman Family Awards grants (to
N.R.R.), grant 1PO1 AI083050 PPG and U.S. Department of Defense grant
W81XWH-11-1-0562 (to W.C.G.), grant R01HD074511 (to N.R.R. and W.C.G.),
the DFG and the Ministry of Science (to J.M.), the VW Stiftung (to J.M.
and F.K.), DFG FA 456/10-1 (to M.F.), DFG US116/1-funding (to S. M.U., a
fellow of the DFG Junior Research Academy OFFSPRing), and institutional
funds from the Gladstone Institutes and a gift from the San Simeon Fund
(to K.S.P.). The UCSF Sandler-Moore Mass Spectrometry Core Facility
acknowledges support from the Sandler Family Foundation, the Gordon and
Betty Moore Foundation, and NIH/NCI Cancer Center support grant P30
CA082103. We also acknowledge CFAR for funding for the Flow Core (P30
AI027763) and for H.L. (P30-AI027763).
NR 32
TC 12
Z9 12
U1 1
U2 4
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0022-538X
EI 1098-5514
J9 J VIROL
JI J. Virol.
PD JUL
PY 2014
VL 88
IS 13
BP 7221
EP 7234
DI 10.1128/JVI.00269-14
PG 14
WC Virology
SC Virology
GA AI9GN
UT WOS:000337240700010
PM 24741080
ER
PT J
AU Bailey, DH
Borwein, JM
Crandall, RE
AF Bailey, David H.
Borwein, Jonathan M.
Crandall, Richard E.
TI COMPUTATION AND THEORY OF EXTENDED MORDELL-TORNHEIM-WITTEN SUMS
SO MATHEMATICS OF COMPUTATION
LA English
DT Article
ID RIEMANN ZETA-FUNCTION; VALUES; DERIVATIVES; INTEGRALS
AB We consider some fundamental generalized Mordell-TornheimWitten (MTW) zeta-function values along with their derivatives, and explore connections with multiple-zeta values (MZVs). To achieve this, we make use of symbolic integration, high precision numerical integration, and some interesting combinatorics and special-function theory. Our original motivation was to represent unresolved constructs such as Eulerian log-gamma integrals. We are able to resolve all such integrals in terms of an MTW basis. We also present, for a substantial subset of MTW values, explicit closed-form expressions. In the process, we significantly extend methods for high-precision numerical computation of polylogarithms and their derivatives with respect to order.
C1 [Bailey, David H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Borwein, Jonathan M.] Univ Newcastle, CARMA, Callaghan, NSW 2308, Australia.
[Borwein, Jonathan M.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia.
[Crandall, Richard E.] Reed Coll, Ctr Adv Computat, Portland, OR 97202 USA.
RP Bailey, DH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM DHBailey@lbl.gov; jonathan.borwein@newcastle.edu.au; crandall@reed.edu
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX LBNL authored documents are sponsored by the U.S. Department of Energy
under Contract DE-AC02-05CH11231. Accordingly, the U.S. Government
retains a nonexclusive, royalty- free license to publish or reproduce
these documents, or allow others to do so, for U.S. Government purposes.
The documents may be freely distributed and used for noncommercial,
scientific and educational purposes.
NR 35
TC 5
Z9 5
U1 1
U2 1
PU AMER MATHEMATICAL SOC
PI PROVIDENCE
PA 201 CHARLES ST, PROVIDENCE, RI 02940-2213 USA
SN 0025-5718
EI 1088-6842
J9 MATH COMPUT
JI Math. Comput.
PD JUL
PY 2014
VL 83
IS 288
BP 1795
EP 1821
AR PII S 0025-5718(2014)02768-3
PG 27
WC Mathematics, Applied
SC Mathematics
GA AI9DT
UT WOS:000337230000010
ER
PT J
AU Tafrova, JI
Tafrov, ST
AF Tafrova, Juliana I.
Tafrov, Stefan T.
TI Human histone acetyltransferase 1 (Hat1) acetylates lysine 5 of histone
H2A in vivo
SO MOLECULAR AND CELLULAR BIOCHEMISTRY
LA English
DT Article
DE Hat1; Histone Acetylation; H2A; H4; Insoluble nuclear proteins; Gamma
radiation
ID STRAND BREAK REPAIR; DNA-DAMAGE; CHROMATIN; TIP60; REPLICATION; COMPLEX;
YEAST; INVOLVEMENT; CHAPERONES; EXPRESSION
AB The primary structure of Histone Acetyltransferase 1 (Hat1) has been conserved throughout evolution; however, despite its ubiquity, its cellular function is not well characterized. To study its in vivo acetylation pattern and function, we utilized shRNAmir against Hat1 expressed in the well-substantiated HeLa (human cervical cancer) cell line. To reduce the interference by enzymes with similar HAT specificity, we used HeLa cells expressing histone acetyltransferase Tip60 with mutated acetyl-CoA binding site that abrogates its enzyme activity (mutant HeLa-tip60). Two shRNAmir were identified that reduced the expression of the cytoplasmic and nuclear forms of Hat1. Cytosolic protein preparations from these two clones showed decreased levels of acetylation of lysine 5 (K5) and K12 on histone H4, with the concomitant loss of the acetylation of histone H2A at K5. This pattern of decreased acetylation of H2AK5 was well defined in preparations of histone protein and insoluble nuclear-protein (INP) fractions as well. Abrogating the Hat1 expression caused a 74 % decrease in colony-forming efficiency of mutant HeLa-tip60 cells, reduced the size of the colonies by 50 %, and decreased the amounts of proteins with molecular weights below 35 kDa in the INP fractions.
C1 [Tafrova, Juliana I.] SUNY Stony Brook, Dept Oral Biol & Pathol, Stony Brook, NY 11794 USA.
[Tafrova, Juliana I.] Genet Ctr, Smithtown, NY 11787 USA.
[Tafrov, Stefan T.] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA.
[Tafrov, Stefan T.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
RP Tafrov, ST (reprint author), Brookhaven Natl Lab, Dept Biol, 50 Bell Ave,Bldg 463, Upton, NY 11973 USA.
EM tafrov@bnl.gov
FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department
of Energy; National Aeronautics and Space Administration under
Department of Energy [DE-AC02-98CH10886, NNJ08HB63I]; Brookhaven
National Laboratory
FX We would like to thank Dr. Avril Woodhead for her critical help with the
manuscript preparation and Dr. Rolf Sternglanz for the invaluable
support, discussions, and comments throughout the years. We would like
to thank Dr. David Schlyer, Dr. John Shanklin, and the entire
Biosciences Department for the support; and Dr. Tsuyoshi Ikura for
providing the HeLa-TIP60 and HeLa-tip60 cell lines. This article has
been authored by Brookhaven Science Associates, LLC under contract
number DE-AC02-98CH10886 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains
a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes. This work was supported by a
grant from the National Aeronautics and Space Administration NNJ08HB63I
under Department of Energy Prime Contract DE-AC02-98CH10886 with the
Brookhaven National Laboratory (to STT).
NR 42
TC 2
Z9 2
U1 0
U2 14
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0300-8177
EI 1573-4919
J9 MOL CELL BIOCHEM
JI Mol. Cell. Biochem.
PD JUL
PY 2014
VL 392
IS 1-2
BP 259
EP 272
DI 10.1007/s11010-014-2036-0
PG 14
WC Cell Biology
SC Cell Biology
GA AI9EW
UT WOS:000337233900024
PM 24682716
ER
PT J
AU Karpinets, TV
Park, BH
Syed, MH
Klotz, MG
Uberbacher, EC
AF Karpinets, Tatiana V.
Park, Byung H.
Syed, Mustafa H.
Klotz, Martin G.
Uberbacher, Edward C.
TI Metabolic Environments and Genomic Features Associated with Pathogenic
and Mutualistic Interactions Between Bacteria and Plants
SO MOLECULAR PLANT-MICROBE INTERACTIONS
LA English
DT Article
ID SOYBEAN ROOT-NODULES; EXPRESSION PROFILES; NITROGEN-FIXATION; PROTEIN
FAMILIES; DATABASE; NETWORK; SYSTEM; RECONSTRUCTION; SPECIFICITY;
SALMONELLA
AB Genomic characteristics discriminating parasitic and mutualistic relationship of bacterial symbionts with plants are poorly understood. This study comparatively analyzed the genomes of 54 mutualists and pathogens to discover genomic markers associated with the different phenotypes. Using metabolic network models, we predict external environments associated with free-living and symbiotic lifestyles and quantify dependences of symbionts on the host in terms of the consumed metabolites. We show that specific differences between the phenotypes are pronounced at the levels of metabolic enzymes, especially carbohydrate active, and protein functions. Overall, biosynthetic functions are enriched and more diverse in plant mutualists whereas processes and functions involved in degradation and host invasion are enriched and more diverse in pathogens. A distinctive characteristic of plant pathogens is a putative novel secretion system with a circadian rhythm regulator. A specific marker of plant mutualists is the co-residence of genes encoding nitrogenase and ribulose bisphosphate carboxylase/oxygenase (RuBisCO). We predict that RuBisCO is likely used in a putative metabolic pathway to supplement carbon obtained heterotrophically with low-cost assimilation of carbon from CO2. We validate results of the comparative analysis by predicting correct phenotype, pathogenic or mutualistic, for 20 symbionts in an independent set of 30 pathogens, mutualists, and commensals.
C1 [Karpinets, Tatiana V.; Syed, Mustafa H.; Uberbacher, Edward C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Park, Byung H.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
[Klotz, Martin G.] Univ N Carolina, Dept Biol Sci, Charlotte, NC 28223 USA.
RP Karpinets, TV (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
EM karpinetstv@ornl.gov
RI Klotz, Martin/D-2091-2009
OI Klotz, Martin/0000-0002-1783-375X
FU Plant Microbe Interface Project of the Genomic Science Program, U.S.
Department of Energy (DOE), Office of Science, Biological, and
Environmental Research; U.S. DOE [DE-AC05-00OR22725]; Office of
Biological and Environmental Research in the DOE Office of Science;
University of North Carolina at Charlotte
FX This research was sponsored by the Plant Microbe Interface Project of
the Genomic Science Program, U.S. Department of Energy (DOE), Office of
Science, Biological, and Environmental Research. Oak Ridge National
Laboratory is managed by UT-Battelle, LLC, for the U.S. DOE under
contract DE-AC05-00OR22725. The work of M. H. Syed to adapt certain
tools was supported by The BioEnergy Science Center (BESC). BESC is a
U.S. DOE Bioenergy Research Center supported by the Office of Biological
and Environmental Research in the DOE Office of Science. M. G. Klotz was
supported by incentive funds from the University of North Carolina at
Charlotte. We thank anonymous reviewers of the manuscript for thoughtful
suggestions and comments on the study.
NR 67
TC 2
Z9 2
U1 2
U2 20
PU AMER PHYTOPATHOLOGICAL SOC
PI ST PAUL
PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA
SN 0894-0282
EI 1943-7706
J9 MOL PLANT MICROBE IN
JI Mol. Plant-Microbe Interact.
PD JUL
PY 2014
VL 27
IS 7
BP 664
EP 677
DI 10.1094/MPMI-12-13-0368-R
PG 14
WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Plant Sciences
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Plant Sciences
GA AI9FW
UT WOS:000337238200006
PM 24580106
ER
PT J
AU Desai, S
Naik, D
Cumming, JR
AF Desai, Shalaka
Naik, Dhiraj
Cumming, Jonathan R.
TI The influence of phosphorus availability and Laccaria bicolor symbiosis
on phosphate acquisition, antioxidant enzyme activity, and rhizospheric
carbon flux in Populus tremuloides
SO MYCORRHIZA
LA English
DT Article
DE Ectomycorrhizal fungi; Environmental stress; Exudation; Organic acids;
Poplar; Trembling aspen
ID ORGANIC-ACID EXUDATION; ARBUSCULAR MYCORRHIZAL FUNGI; PINUS-SYLVESTRIS
SEEDLINGS; LATERAL ROOT DEVELOPMENT; ECTOMYCORRHIZAL FUNGI;
PHOSPHOENOLPYRUVATE CARBOXYLASE; ALUMINUM TOLERANCE; FOREST SOILS; WHITE
LUPIN; DEFICIENCY
AB Many forest tree species are dependent on their symbiotic interaction with ectomycorrhizal (ECM) fungi for phosphorus (P) uptake from forest soils where P availability is often limited. The ECM fungal association benefits the host plant under P limitation through enhanced soil exploration and increased P acquisition by mycorrhizas. To study the P starvation response (PSR) and its modification by ECM fungi in Populus tremuloides, a comparison was made between nonmycorrhizal (NM) and mycorrhizal with Laccaria bicolor (Myc) seedlings grown under different concentrations of phosphate (Pi) in sand culture. Although differences in growth between NM and Myc plants were small, Myc plants were more effective at acquiring P from low Pi treatments, with significantly lower k (m) values for root and leaf P accumulation. Pi limitation significantly increased the activity of catalase, ascorbate peroxidase, and guaiacol-dependent peroxidase in leaves and roots to greater extents in NM than Myc P. tremuloides. Phosphoenolpyruvate carboxylase activity also increased in NM plants under P limitation, but was unchanged in Myc plants. Formate, citrate, malonate, lactate, malate, and oxalate and total organic carbon exudation by roots was stimulated by P limitation to a greater extent in NM than Myc plants. Colonization by L. bicolor reduced the solution Pi concentration thresholds where PSR physiological changes occurred, indicating that enhanced Pi acquisition by P. tremuloides colonized by L. bicolor altered host P homeostasis and plant stress responses to P limitation. Understanding these plant-symbiont interactions facilitates the selection of more P-efficient forest trees and strategies for tree plantation production on marginal soils.
C1 [Desai, Shalaka; Naik, Dhiraj; Cumming, Jonathan R.] W Virginia Univ, Dept Biol, Morgantown, WV 26506 USA.
[Desai, Shalaka] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
[Naik, Dhiraj] Indian Inst Adv Res, Dept Environm Sci, Koba Inst Area, Gandhinagar 382007, Gujarat, India.
RP Cumming, JR (reprint author), W Virginia Univ, Dept Biol, POB 6057, Morgantown, WV 26506 USA.
EM jcumming@wvu.edu
OI Naik, Dhiraj/0000-0002-1226-2337
FU United States Department of Energy [FG02-06ER64148]; West Virginia
University Eberly College of Arts and Sciences
FX We thank Joshua Smith and Nathaniel Chapman for their excellent
technical support. The West Virginia University Eberly College of Arts
and Sciences and the United States Department of Energy (FG02-06ER64148)
provided financial support for this work.
NR 88
TC 8
Z9 8
U1 7
U2 50
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0940-6360
EI 1432-1890
J9 MYCORRHIZA
JI Mycorrhiza
PD JUL
PY 2014
VL 24
IS 5
BP 369
EP 382
DI 10.1007/s00572-013-0548-1
PG 14
WC Mycology
SC Mycology
GA AI9FC
UT WOS:000337235000005
PM 24338046
ER
PT J
AU Li, L
Huang, C
Huang, HY
Wang, YJ
Yan, RS
Zhang, GF
Zhou, M
Lou, SR
Tao, SK
Wang, HL
Qiao, LP
Chen, CH
Streets, DG
Fu, JS
AF Li, L.
Huang, C.
Huang, H. Y.
Wang, Y. J.
Yan, R. S.
Zhang, G. F.
Zhou, M.
Lou, S. R.
Tao, S. K.
Wang, H. L.
Qiao, L. P.
Chen, C. H.
Streets, D. G.
Fu, J. S.
TI An integrated process rate analysis of a regional fine particulate
matter episode over Yangtze River Delta in 2010
SO ATMOSPHERIC ENVIRONMENT
LA English
DT Article
DE Integrated process rate; PM2.5; CMAQ; Yangtze River Delta
ID QUALITY MODELING SYSTEM; AIR-QUALITY; PART II; PERFORMANCE EVALUATION;
SECONDARY FORMATION; MASS-SPECTROMETRY; CHINA; AEROSOL; CMAQ; POLLUTION
AB A high PM2.5 pollution episode was detected in Shanghai in November 2010. The integrated process rate method, an advanced diagnostic tool, was applied to account for the contribution of different atmospheric processes during the high pollution episode in the Yangtze River Delta region (YRD). The PM2.5 process analysis indicates that the emission of fine particles is the dominant source of high surface PM2.5 concentrations in the major cities of the YRD like Shanghai, Nanjing, and Hangzhou, following horizontal transportation and aerosols. The PM2.5 concentration could be reduced due to vertical advection and diffusion from lower levels to the upper air. The aerosols process such as homogeneous nucleation and condensation producing PM2.5 occurs throughout the PBL layer in urban areas, causing vertical transport from upper levels down to the surface layer. The aerosols process is much more significant in a downwind rural and coastal site like Zhoushan than in the urban areas. The PM2.5 change initiated by both horizontal transport and vertical transport is much stronger at 40-2000 m height than in the surface layer, while the PM2.5 change caused by horizontal diffusion is very small. Dry deposition can significantly reduce concentration of the particulates in the surface level of the atmosphere, and wet deposition can remove the particles in the planetary boundary layer (PBL). The cloud processes can either increase PM2.5 due to the aqueous-phase oxidation of SO2 and NO2 or remove PM2.5 due to cloud scavenging. Solar radiation and humidity are more important to secondary pollution, and they are the significant external factors affecting the chemical reactions among sulfur dioxide, nitrogen oxides, ammonia, volatile compounds and fine particles. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Li, L.; Huang, C.; Huang, H. Y.; Yan, R. S.; Zhang, G. F.; Zhou, M.; Lou, S. R.; Tao, S. K.; Wang, H. L.; Qiao, L. P.; Chen, C. H.] Sate Environm Protect Key Lab Cause & Prevent Urb, Shanghai 200233, Peoples R China.
[Li, L.; Huang, C.; Huang, H. Y.; Yan, R. S.; Zhang, G. F.; Zhou, M.; Lou, S. R.; Tao, S. K.; Wang, H. L.; Qiao, L. P.; Chen, C. H.] Shanghai Acad Environm Sci, Shanghai 200233, Peoples R China.
[Wang, Y. J.] Shanghai Univ, Sch Environm & Chem Engn, Inst Environm Pollut & Hlth, Shanghai 200444, Peoples R China.
[Streets, D. G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA.
[Fu, J. S.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA.
RP Li, L (reprint author), Sate Environm Protect Key Lab Cause & Prevent Urb, Shanghai 200233, Peoples R China.
EM lili@saes.sh.cn
RI Huang, Cheng/I-7099-2015
FU National Natural Science Foundation of China (NSFC) [41205122,
41105102]; Science and Technology Commission of Shanghai Municipality
Fund Project [11231200500]; National Non-profit Scientific Research
Program for Environmental Protection [201409008]
FX This study was supported by the National Natural Science Foundation of
China (NSFC) via grant No. 41205122 and No. 41105102, the Science and
Technology Commission of Shanghai Municipality Fund Project via grant
No. 11231200500, and the National Non-profit Scientific Research Program
for Environmental Protection via grant No. 201409008.
NR 50
TC 3
Z9 5
U1 1
U2 74
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1352-2310
EI 1873-2844
J9 ATMOS ENVIRON
JI Atmos. Environ.
PD JUL
PY 2014
VL 91
BP 60
EP 70
DI 10.1016/j.atmosenv.2014.03.053
PG 11
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA AI6AP
UT WOS:000336952500007
ER
PT J
AU Yoon, H
Leibeling, S
Zhang, CY
Muller, RH
Werth, CJ
Zilles, JL
AF Yoon, Hongkyu
Leibeling, Sabine
Zhang, Changyong
Mueller, Roland H.
Werth, Charles J.
Zilles, Julie L.
TI Adaptation of Delftia acidovorans for degradation of
2,4-dichlorophenoxyacetate in a microfluidic porous medium
SO BIODEGRADATION
LA English
DT Article
DE 2,4-D; Adaptation; Chlorinated phenoxyalkanoates; Delftia acidovorans;
Porous media; Micromodel
ID TRANSVERSE MIXING ZONE; ALPHA-KETOGLUTARATE; ADAPTIVE RADIATION;
MICROBIAL-GROWTH; BACTERIAL-GROWTH; VISUALIZATION; POPULATIONS;
CHEMOTAXIS; HERBICIDES; MIGRATION
AB Delftia acidovorans MC1071 can productively degrade R-2-(2,4-dichlorophenoxy)propionate (R-2,4-DP) but not 2,4-dichlorophenoxyacetate (2,4-D) herbicides. This work demonstrates adaptation of MC1071 to degrade 2,4-D in a model two-dimensional porous medium (referred to here as a micromodel). Adaptation for 2,4-D degradation in the 2 cm-long micromodel occurred within 35 days of exposure to 2,4-D, as documented by substrate removal. The amount of 2,4-D degradation in the adapted cultures in two replicate micromodels (similar to 10 and 20 % over 142 days) was higher than a theoretical maximum (4 %) predicted using published numerical simulation methods, assuming instantaneous biodegradation and a transverse dispersion coefficient obtained for the same pore structure without biomass present. This suggests that the presence of biomass enhances substrate mixing. Additional evidence for adaptation was provided by operation without R-2,4-DP, where degradation of 2,4-D slowly decreased over 20 days, but was restored almost immediately when R-2,4-DP was again provided. Compared to suspended growth systems, the micromodel system retained the ability to degrade 2,4-D longer in the absence of R-2,4-DP, suggesting slower responses and greater resilience to fluctuations in substrates might be expected in the soil environment than in a chemostat.
C1 [Yoon, Hongkyu; Werth, Charles J.; Zilles, Julie L.] Univ Illinois, Dept Civil & Environm Engn, Newmark Civil Engn Lab 3230C MC 250, Urbana, IL 61801 USA.
[Leibeling, Sabine; Mueller, Roland H.] UFZ Helmholtz Ctr Environm Res, Dept Environm Microbiol, D-04318 Leipzig, Germany.
[Zhang, Changyong] Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Zilles, JL (reprint author), Univ Illinois, Dept Civil & Environm Engn, Newmark Civil Engn Lab 3230C MC 250, 205 N Mathews Ave, Urbana, IL 61801 USA.
EM jzilles@illinois.edu
RI Zhang, Changyong/A-8012-2013;
OI Zilles, Julie/0000-0001-8684-4519
FU United States Department of Agriculture National Institute of Food and
Agriculture [2007-35107-17817]; German Academic Exchange Service (DAAD)
fellowship; U.S. Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]; U.S. Department of Energy Office of
Biological and Environmental Research, Subsurface Biogeochemistry
Research Program Scientific Focus Area at the Pacific Northwest National
Laboratory
FX This work was supported by the National Research Initiative Grant
2007-35107-17817 from the United States Department of Agriculture
National Institute of Food and Agriculture and a German Academic
Exchange Service (DAAD) fellowship to SL. Sandia National Laboratories
is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000. CYZ also acknowledges
financial support from the U.S. Department of Energy Office of
Biological and Environmental Research, Subsurface Biogeochemistry
Research Program Scientific Focus Area at the Pacific Northwest National
Laboratory.
NR 32
TC 3
Z9 3
U1 2
U2 24
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0923-9820
EI 1572-9729
J9 BIODEGRADATION
JI Biodegradation
PD JUL
PY 2014
VL 25
IS 4
BP 595
EP 604
DI 10.1007/s10532-014-9684-3
PG 10
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA AI7JI
UT WOS:000337064200010
PM 24519176
ER
PT J
AU Goldberg, N
Kim, Y
Leyffer, S
Veselka, TD
AF Goldberg, Noam
Kim, Youngdae
Leyffer, Sven
Veselka, Thomas D.
TI Adaptively refined dynamic program for linear spline regression
SO COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
LA English
DT Article
DE Piecewise regression; Least squares; Change point detection; Dynamic
programming; Mixed-integer programming
AB The linear spline regression problem is to determine a piecewise linear function for estimating a set of given points while minimizing a given measure of misfit or error. This is a classical problem in computational statistics and operations research; dynamic programming was proposed as a solution technique more than 40 years ago by Bellman and Roth (J Am Stat Assoc 64:1079-1084, 1969). The algorithm requires a discretization of the solution space to define a grid of candidate breakpoints. This paper proposes an adaptive refinement scheme for the grid of candidate breakpoints in order to allow the dynamic programming method to scale for larger instances of the problem. We evaluate the quality of solutions found on small instances compared with optimal solutions determined by a novel integer programming formulation of the problem. We also consider a generalization of the linear spline regression problem to fit multiple curves that share breakpoint horizontal coordinates, and we extend our method to solve the generalized problem. Computational experiments verify that our nonuniform grid construction schemes are useful for computing high-quality solutions for both the single-curve and two-curve linear spline regression problem.
C1 [Goldberg, Noam] Bar Ilan Univ, Dept Management, IL-52900 Ramat Gan, Israel.
[Kim, Youngdae] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA.
[Leyffer, Sven] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
[Veselka, Thomas D.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Goldberg, N (reprint author), Bar Ilan Univ, Dept Management, IL-52900 Ramat Gan, Israel.
EM noam.goldberg@biu.ac.il; youngdae@cs.wisc.edu; leyffer@mcs.anl.gov;
tdveselka@anl.gov
FU Argonne, a U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.
NR 11
TC 0
Z9 0
U1 1
U2 7
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0926-6003
EI 1573-2894
J9 COMPUT OPTIM APPL
JI Comput. Optim. Appl.
PD JUL
PY 2014
VL 58
IS 3
BP 523
EP 541
DI 10.1007/s10589-014-9647-y
PG 19
WC Operations Research & Management Science; Mathematics, Applied
SC Operations Research & Management Science; Mathematics
GA AI7PB
UT WOS:000337084900001
ER
PT J
AU Li, Q
Wu, G
Johnston, CM
Zelenay, P
AF Li, Qing
Wu, Gang
Johnston, Christina M.
Zelenay, Piotr
TI Direct Dimethyl Ether Fuel Cell with Much Improved Performance
SO ELECTROCATALYSIS
LA English
DT Article
DE Dimethyl ether; DME; Electrooxidation; PtRu catalysts; Direct dimethyl
ether fuel cell
ID METHANOL ELECTROOXIDATION; ACID-SOLUTIONS; ANODE; CATALYSTS; ELECTRODE;
DME; OXIDATION; CROSSOVER; MECHANISM
AB Due to several apparent advantages over methanol, dimethyl ether (DME) has been viewed as a promising alternative fuel for direct fuel cell technology. Similar to methanol, DME oxidation requires a surface oxidant, such as OH, for the removal of adsorbed CO. Consequently, the reaction occurs at much faster rates on binary PtRu catalysts than Pt alone. In this work, PtRu catalysts with a wide variety of Pt-to-Ru ratios were systematically studied in the direct DME fuel cell (DDMEFC) operating at 80 degrees C. A Pt50Ru50 catalyst was found to perform the best at high and middle voltages, while a Pt80Ru20 catalyst performed best at low voltages. DDMEFC operation conditions, such as DME flow rate, anode back pressure, DME-to-water molar ratio, and membrane thickness, were also studied in order to maximize the cell performance. A maximum power density of 0.12 W cm(-2) obtained in this work exceeds the highest reported DME performance. In comparison with the direct methanol fuel cell (DMFC), the optimized DDMEFC performs better at cell voltages higher than 0.55 and 0.49 V with feed concentrations of methanol of 0.5 and 1.0 M, respectively.
C1 [Li, Qing; Wu, Gang; Johnston, Christina M.; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
RP Zelenay, P (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
EM zelenay@lanl.gov
RI Wu, Gang/E-8536-2010; Li, Qing/G-4502-2011
OI Wu, Gang/0000-0003-4956-5208; Li, Qing/0000-0003-4807-030X
FU DOE-EERE Fuel Cell Technologies Program [FC091]
FX Financial support from the DOE-EERE Fuel Cell Technologies Program
(project ID: FC091) is gratefully acknowledged.
NR 22
TC 3
Z9 3
U1 4
U2 51
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1868-2529
EI 1868-5994
J9 ELECTROCATALYSIS-US
JI Electrocatalysis
PD JUL
PY 2014
VL 5
IS 3
BP 310
EP 317
DI 10.1007/s12678-014-0196-z
PG 8
WC Chemistry, Physical; Electrochemistry
SC Chemistry; Electrochemistry
GA AI7DF
UT WOS:000337041700013
ER
PT J
AU VandeVoort, AR
Tappero, R
Arai, Y
AF VandeVoort, Allison Rick
Tappero, Ryan
Arai, Yuji
TI Residence time effects on phase transformation of nanosilver in reduced
soils
SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
LA English
DT Article
DE Silver nanoparticles; Silver; Fate; Soils; X-ray microprobe; XANES
ID SILVER NANOPARTICLES; SPECIATION; EXPOSURE; DISSOLUTION; ENVIRONMENT;
INTERFACE; CHEMISTRY; KINETICS; RELEASE; SULFIDE
AB Residence time effects on phase transformation of silver nanoparticles (AgNPs) (15-50 nm, with and without polyvinylpyrrolidone (PVP) coating) were investigated in reducing soils using experimental geochemistry and synchrotron-based x-ray techniques. After 30 days of anaerobic incubation, a substantial fraction of PVP-coated AgNPs (15 nm) were transformed into Ag2S and or humic acid (HA) complexed Ag(I), whereas only the HA fraction was dominant in uncoated AgNPs (50 nm). Several investigations recently reported that sulfidation of AgNPs to Ag2S was the predominant mechanism controlling the fate of AgNP in soil-water environments. However, this investigation showed each AgNP underwent particle-specific chemical transformations to different end compounds after 30 days. Considering the small contribution of Ag(I) dissolution from all AgNPs (less than 5%), we concluded that changes in solid-state chemical speciation of sorbed AgNPs was promoted by particle-specific interactions of NPs in soil chemical constituents, suggesting a critical role of soil absorbents in predicting the fate of AgNPs in terrestrial environments.
C1 [VandeVoort, Allison Rick] Georgia Coll & State Univ, Dept Biol & Environm Sci, Milledgeville, GA 31061 USA.
[Tappero, Ryan] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Arai, Yuji] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA.
RP Arai, Y (reprint author), Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA.
EM yarai@illinois.edu
FU AFRI Competitive Grants Program, Nanotechnology for Agriculture and Food
systems [2011-03580]; US DOE-Geosciences [DE-FG02-92ER14244];
BNL-Department of Environmental Sciences; US DOE, Office of Science,
Office of BES [DE-AC02-98CH10886]
FX This research was supported by the 2011 AFRI Competitive Grants Program,
Nanotechnology for Agriculture and Food systems (#2011-03580). Portions
of this work were performed at BLX27A, NSLS, Brookhaven National
Laboratory. X27A is supported in part by the US DOE-Geosciences
(DE-FG02-92ER14244 to The University of Chicago - CARS) and
BNL-Department of Environmental Sciences. Use of the NSLS was supported
by the US DOE, Office of Science, Office of BES, under Contract No.
DE-AC02-98CH10886.
NR 35
TC 4
Z9 4
U1 5
U2 45
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0944-1344
EI 1614-7499
J9 ENVIRON SCI POLLUT R
JI Environ. Sci. Pollut. Res.
PD JUL
PY 2014
VL 21
IS 13
BP 7828
EP 7837
DI 10.1007/s11356-014-2743-9
PG 10
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA AI7PO
UT WOS:000337086600005
ER
PT J
AU McFarland, JA
Greenough, JA
Ranjan, D
AF McFarland, Jacob A.
Greenough, Jeffrey A.
Ranjan, Devesh
TI Simulations and Analysis of the Reshocked Inclined Interface
Richtmyer-Meshkov Instability for Linear and Nonlinear Interface
Perturbations
SO JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME
LA English
DT Article
ID SHOCK-WAVES; HYDRODYNAMIC ISSUES; AIR/SF6 INTERFACE; GAS INTERFACE;
TUBE; REFINEMENT; DEPOSITION; GROWTH; FLOW
AB A computational study of the Richtmyer-Meshkov instability (RMI) is presented for an inclined interface perturbation in support of experiments being performed at the Texas A&M shock tube facility. The study is comprised of 2D, viscous, diffusive, compressible simulations performed using the arbitrary Lagrange Eulerian code, ARES, developed at Lawrence Livermore National Laboratory. These simulations were performed to late times after reshock with two initial interface perturbations, in the linear and nonlinear regimes each, prescribed by the interface inclination angle. The interaction of the interface with the reshock wave produced a complex 2D set of compressible wave interactions including expansion waves, which also interacted with the interface. Distinct differences in the interface growth rates prior to reshock were found in previous work. The current work provides in-depth analysis of the vorticity and enstrophy fields to elucidate the physics of reshock for the inclined interface RMI. After reshock, the two cases exhibit some similarities in integral measurements despite their disparate initial conditions but also show different vorticity decay trends, power law decay for the nonlinear and linear decay for the linear perturbation case.
C1 [McFarland, Jacob A.; Ranjan, Devesh] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
[Greenough, Jeffrey A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Ranjan, D (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
EM jacmcfar@tamu.edu; greenough1@llnl.gov; dranjan@tamu.edu
OI Ranjan, Devesh/0000-0002-1231-9313
FU U.S. Department of Energy, Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; CAREER NSF [1254760]
FX The authors would like to thank the HEDP summer student program at LLNL.
The authors would like to thank the scientists and staff of LLNL that
helped make this work possible. This work was performed under the
auspices of the U.S. Department of Energy, Lawrence Livermore National
Laboratory, under Contract No. DE-AC52-07NA27344. D. R. would like to
acknowledge the support of CAREER NSF Award 1254760.
NR 55
TC 4
Z9 4
U1 0
U2 8
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0098-2202
EI 1528-901X
J9 J FLUID ENG-T ASME
JI J. Fluids Eng.-Trans. ASME
PD JUL
PY 2014
VL 136
IS 7
AR 071203
DI 10.1115/1.4026858
PG 11
WC Engineering, Mechanical
SC Engineering
GA AI7EL
UT WOS:000337045900008
ER
PT J
AU Xie, ZL
Graule, M
Orlovskaya, N
Payzant, EA
Cullen, DA
Blair, RG
AF Xie, Zhilin
Graule, Moritz
Orlovskaya, Nina
Payzant, E. Andrew
Cullen, David A.
Blair, Richard G.
TI Novel high pressure hexagonal OsB2 by mechanochemistry
SO JOURNAL OF SOLID STATE CHEMISTRY
LA English
DT Article
DE Osmium; Boron; Mechanochemistry; Ceramic
ID OSMIUM DIBORIDE; SUPERHARD MATERIAL; CRYSTAL STRUCTURE; RHENIUM
DIBORIDE; HARD MATERIAL; BORIDES; PHASE; RUB2; TRANSITION; IRIDIUM
AB Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 angstrom and c=7.376 angstrom. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling, in situ X-ray diffraction experiments showed that the phase is stable from 225 degrees C to 1050 degrees C. The hexagonal OsB2 powder was annealed at 1050 degrees C for 6 days in vacua to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 degrees C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA.
[Payzant, E. Andrew] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Cullen, David A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Blair, Richard G.] Univ Cent Florida, Dept Chem, Orlando, FL 32816 USA.
RP Orlovskaya, N (reprint author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA.
EM Nina.Orlovskaya@ucf.edu
RI Payzant, Edward/B-5449-2009; Cullen, David/A-2918-2015
OI Payzant, Edward/0000-0002-3447-2060; Cullen, David/0000-0002-2593-7866
FU Center for Nanophase Material Sciences, Oak Ridge National Laboratory;
Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User
Program - Office of Basic Energy Sciences, U.S. Department of Energy;
U.S. DOE [DE-AC02-06CH11357]
FX This work was supported by NSF projects- DMR-0748364. High and low
temperature X-ray diffraction studies were supported by Center for
Nanophase Material Sciences, Oak Ridge National Laboratory; STEM studies
were supported by Oak Ridge National Laboratory's Shared Research
Equipment (ShaRE) User Program, which is sponsored by the Office of
Basic Energy Sciences, U.S. Department of Energy. We gratefully
acknowledge the use of WebEMAPS for generating simulated diffraction
patterns, available online at http://emaps.mrl.uiuc.edu/. We acknowledge
Prof. Miladin Radovic and Mr. Huili Gao, Texas A&M University, College
Station, Texas for the help with SPS, and Dr. Yan Chen, Spallation
Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee for
the help with Rietveld refinement Use of the Advanced Photon Source was
supported by the Use of the Advanced Photon Source, an Office of Science
User Facility operated for the U.S. Department of Energy (DOE) Office of
Science by Argonne National Laboratory, was supported by the U.S. DOE
under Contract no. DE-AC02-06CH11357.
NR 30
TC 8
Z9 8
U1 2
U2 33
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-4596
EI 1095-726X
J9 J SOLID STATE CHEM
JI J. Solid State Chem.
PD JUL
PY 2014
VL 215
BP 16
EP 21
DI 10.1016/j.jssc.2014.03.020
PG 6
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical
SC Chemistry
GA AI5FR
UT WOS:000336891300003
ER
PT J
AU Dera, P
Manghnani, MH
Hushur, A
Hu, Y
Tkachev, S
AF Dera, Przemyslaw
Manghnani, Murli H.
Hushur, Anwar
Hu, Yi
Tkachev, Sergey
TI New insights into the enigma of boron carbide inverse molecular behavior
SO JOURNAL OF SOLID STATE CHEMISTRY
LA English
DT Article
DE High pressure; Superhard materials; Boron carbide; Icosahedral boron
compounds; Elastic properties; Phase transitions
ID ALPHA-RHOMBOHEDRAL BORON; DEFORMATION DENSITIES; FORCE-CONSTANTS; B13C2;
PRESSURE; CHAINS; B4C
AB Equation of state and compression mechanism of nearly stoichiometric boron carbide B4C were investigated using diamond anvil cell single crystal synchrotron X-ray diffraction technique up to a maximum quasi-hydrostatic pressure of 74.0(1) GPa in neon pressure transmitting medium at ambient temperature. No signatures of structural phase transitions were observed on compression. Crystal structure refinements indicate that the icosahedral units are less compressible (13% volume reduction at 60 GPa) than the unit cell volume (18% volume reduction at 60 GPa), contrary to expectations based on the inverse molecular behavior hypothesis, but consistent with spectroscopic evidence and first principles calculations. The high-pressure crystallographic refinements reveal that the nature of the chemical bonds (two, versus three centered character) has marginal effect on the bond compressibility and the compression of the crystal is mainly governed by the force transfer between the rigid icosahedral structural units. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Dera, Przemyslaw; Manghnani, Murli H.; Hushur, Anwar; Hu, Yi] Univ Hawaii, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
[Tkachev, Sergey] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL 60439 USA.
RP Dera, P (reprint author), Univ Hawaii, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, 1680 East West Rd,POST Bldg, Honolulu, HI 96822 USA.
EM pdera@hawaii.edu
FU Carnegie - Department of Energy Alliance Center (CDAC); National Science
Foundation - Earth Sciences [EAR-1128799]; U.S. Department of Energy -
Geosciences [DE-FG02-94ER14466]; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX We would like or express our thanks to all three anonymous reviewers for
their valuable and constructive comments and suggestions. PD and YH were
supported by a grant from Carnegie - Department of Energy Alliance
Center (CDAC). This work was performed at GeoSoilEnviroCARS (Sector 13),
Advanced Photon Source (APS), Argonne National Laboratory.
GeoSoilEnviroCARS is supported by the National Science Foundation -
Earth Sciences (EAR-1128799) and U.S. Department of Energy - Geosciences
(DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by
the U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract no. DE-AC02-06CH11357.
NR 40
TC 9
Z9 9
U1 5
U2 36
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-4596
EI 1095-726X
J9 J SOLID STATE CHEM
JI J. Solid State Chem.
PD JUL
PY 2014
VL 215
BP 85
EP 93
DI 10.1016/j.jssc.2014.03.018
PG 9
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical
SC Chemistry
GA AI5FR
UT WOS:000336891300013
ER
PT J
AU Zhang, HK
Yao, ZW
Kirk, MA
Daymond, MR
AF Zhang, He K.
Yao, Zhongwen
Kirk, Marquis A.
Daymond, Mark R.
TI Stability of Ni-3(Al, Ti) Gamma Prime Precipitates in a Nickel-Based
Superalloy Inconel X-750 Under Heavy Ion Irradiation
SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
MATERIALS SCIENCE
LA English
DT Article
ID NEUTRON DAMAGE; ALLOYS; AL; DISSOLUTION; MECHANISMS; EVOLUTION;
KINETICS; HELIUM; ORDER; IRON
AB Phase stability of Ni-3(Al, Ti) precipitates in Inconel X-750 under cascade damage was studied using heavy ion irradiation with transmission electron microscope (TEM) in situ observations. From 333 K to 673 K (60 A degrees C to 400 A degrees C), ordered Ni-3(Al, Ti) precipitates became completely disordered at low irradiation dose of 0.06 displacement per atom (dpa). At higher dose, a trend of precipitate dissolution occurring under disordered state was observed, which is due to the ballistic mixing effect by irradiation. However, at temperatures greater than 773 K (500 A degrees C), the precipitates stayed ordered up to 5.4 dpa, supporting the view that irradiation-induced disordering/dissolution and thermal recovery reach a balance between 673 K and 773 K (400 A degrees C and 500 A degrees C). Effects of Ti/Al ratio and irradiation dose rate are also discussed. (C) The Minerals, Metals & Materials Society and ASM International 2014
C1 [Zhang, He K.; Yao, Zhongwen; Daymond, Mark R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada.
[Kirk, Marquis A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Yao, ZW (reprint author), Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada.
EM yaoz@me.queensu.ca
OI Daymond, Mark/0000-0001-6242-7489
FU Canada UNENE-CRD Project; National Science and Engineering Research
Council (NSERC); Industry Research Chair of Nuclear Program; US
Department of Energy Office of Science
FX The current study is funded by the Canada UNENE-CRD Project, National
Science and Engineering Research Council (NSERC) and Industry Research
Chair of Nuclear Program. Electron microscopy was accomplished at the
Electron Microscopy Centre for Materials Research at Argonne National
Laboratory, supported by the US Department of Energy Office of Science.
The authors thank Mr. Pete Boldo and Mr. Ed Ryan of Argonne National Lab
for their help with the microscopy and ion beam facility. The authors
also thank Prof Rick Holt of Queen's University and Dr. Malcolm
Griffiths of AECL Chalk River Laboratories for their insightful
discussions.
NR 29
TC 5
Z9 5
U1 2
U2 13
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1073-5623
EI 1543-1940
J9 METALL MATER TRANS A
JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
PD JUL
PY 2014
VL 45A
IS 8
BP 3422
EP 3428
DI 10.1007/s11661-014-2309-y
PG 7
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA AI7MX
UT WOS:000337076900025
ER
PT J
AU Heo, TW
Shih, DS
Chen, LQ
AF Heo, Tae Wook
Shih, Donald S.
Chen, Long-Qing
TI Kinetic Pathways of Phase Transformations in Two-Phase Ti Alloys
SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
MATERIALS SCIENCE
LA English
DT Article
ID TITANIUM-ALLOYS; BETA-PHASE; V ALLOYS; MARTENSITIC TRANSFORMATIONS;
SPINODAL DECOMPOSITION; NB ALLOYS; MICROSTRUCTURE; TI-6AL-4V; OMEGA; MO
AB Possible phase transformation kinetic pathways from the high temperature beta phase to the low temperature (alpha + beta) two-phase Ti alloys were analyzed using the graphical thermodynamic method and the assumption that diffusionless and displacive transformations take place much faster than phase separation which requires long-range diffusion. It is shown that depending on the composition of a beta-stabilizing element, many transformation mechanisms are possible, involving competing continuous and discontinuous displacive/diffusional transformations. We discuss the proposed phase transformation sequences employing existing experimental microstructures.
C1 [Heo, Tae Wook; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Shih, Donald S.] Boeing Res & Technol, St Louis, MO 63166 USA.
RP Heo, TW (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA.
EM heo1@llnl.gov
FU Center for Computational Materials Design (CCMD); National Science
Foundation (NSF) Industry/University Cooperative Research Center at Penn
State [IIP-1034965]; Georgia Tech [IIP-1034968]
FX This work is funded by the Center for Computational Materials Design
(CCMD), a joint National Science Foundation (NSF) Industry/University
Cooperative Research Center at Penn State (IIP-1034965) and Georgia Tech
(IIP-1034968).
NR 31
TC 3
Z9 3
U1 0
U2 18
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1073-5623
EI 1543-1940
J9 METALL MATER TRANS A
JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
PD JUL
PY 2014
VL 45A
IS 8
BP 3438
EP 3445
DI 10.1007/s11661-014-2269-2
PG 8
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA AI7MX
UT WOS:000337076900027
ER
PT J
AU Cordero, ZC
Huskins, EL
Park, M
Livers, S
Frary, M
Schuster, BE
Schuh, CA
AF Cordero, Zachary C.
Huskins, Emily L.
Park, Mansoo
Livers, Steven
Frary, Megan
Schuster, Brian E.
Schuh, Christopher A.
TI Powder-Route Synthesis and Mechanical Testing of Ultrafine Grain
Tungsten Alloys
SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
MATERIALS SCIENCE
LA English
DT Article
ID PLASMA PRESSURE COMPACTION; NI-W ALLOYS; REFRACTORY-METALS; HIGH-STRAIN;
NANOCRYSTALLINE; SIZE; BEHAVIOR; HARDNESS; COMPRESSION; DRAWN
AB We report a W-rich alloy (W-7Cr-9Fe, at. pct) produced by high-energy ball milling, with alloying additions that both lower the densification temperature and retard grain growth. The alloy's consolidation behavior and the resultant compacts' microstructure and mechanical properties are explored. Under one condition, a 98 pct dense compact with a mean grain size of 130 nm was achieved, and exhibited a hardness of 13.5 GPa, a dynamic uniaxial yield strength of 4.14 GPa in Kolsky bar experiments, and signs of structural shear localization during deformation.
C1 [Cordero, Zachary C.; Park, Mansoo; Schuh, Christopher A.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
[Huskins, Emily L.] Army Res Lab, Oak Ridge Inst Sci & Educ, Postdoctoral Fellowship Program, Aberdeen Proving Ground, MD 21005 USA.
[Livers, Steven; Frary, Megan] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA.
[Schuster, Brian E.] Army Res Laboratory, Expt & Computat Penetrat Mech Team, Weap & Mat Res Directorate, Adelphi, MD USA.
RP Cordero, ZC (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
EM schuh@mit.edu
FU US Defense Threat Reduction Agency [HDTRA1-11-1-0062]; Department of
Defense through the NDSEG fellowship program; US Army Research
Laboratory through the Oak Ridge Institute for Space and Education
(ORISE) Program [1120-1120-99]; [11-24]
FX This study was supported by the US Defense Threat Reduction Agency under
Grant No. HDTRA1-11-1-0062. ZCC acknowledges support from the Department
of Defense through the NDSEG fellowship program. ELH acknowledges
support from the US Army Research Laboratory through the Oak Ridge
Institute for Space and Education (ORISE) Program # 1120-1120-99. BES
would like to acknowledge support work from the Cooperative Research and
Development Agreement #11-24. We would like to thank Ms. Alexandria
Will-Cole for her indentation work on the intermetallic phase, Dr. Kisub
Cho for performing the THERMOCALC calculations, and Dr. Daniel T. Casem
for his assistance with the Kolsky bar tests.
NR 58
TC 3
Z9 3
U1 5
U2 34
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1073-5623
EI 1543-1940
J9 METALL MATER TRANS A
JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
PD JUL
PY 2014
VL 45A
IS 8
BP 3609
EP 3618
DI 10.1007/s11661-014-2286-1
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA AI7MX
UT WOS:000337076900043
ER
PT J
AU Morris, CL
Bacon, J
Borozdin, K
Fabritius, J
Miyadera, H
Perry, J
Sugita, T
AF Morris, Christopher L.
Bacon, Jeffrey
Borozdin, Konstantin
Fabritius, Joseph
Miyadera, Haruo
Perry, John
Sugita, Tsukasa
TI Horizontal cosmic ray muon radiography for imaging nuclear threats
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article
DE Muon tomography; Coulomb scattering cosmic ray tracking detectors;
Imaging with near horizontal muons; Imaging with near vertical muons
ID TOMOGRAPHY; RECONSTRUCTION; SCATTERING; SYSTEM
AB Muon tomography is a technique that uses information contained in the Coulomb scattering of cosmic ray muons to generate three dimension images of volumes between tracking detectors. Advantages of this technique are the muons ability to penetrate significant overburden and the absence of any additional dose beyond the natural cosmic ray flux. Disadvantages include the long exposure times and limited resolution because of the low flux. Here we compare the times needed to image objects using both vertically and horizontally mounted tracking detectors and we develop a predictive model for other geometries. (C) 2014 The Authors. Published by Elsevier B.V.
C1 [Morris, Christopher L.; Bacon, Jeffrey; Borozdin, Konstantin; Fabritius, Joseph; Miyadera, Haruo; Perry, John] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Sugita, Tsukasa] Toshiba Co Ltd, Power Syst Co, Kawasaki Ku, Kawasaki, Kanagawa, Japan.
RP Morris, CL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM cmorris@lanl.gov
OI Morris, Christopher/0000-0003-2141-0255; Perry, John/0000-0003-3639-5617
FU Toshiba Corporation Power Systems Company; Tokyo Electric Power Company;
United States Department of Energy
FX This work was supported in part by Toshiba Corporation Power Systems
Company, Tokyo Electric Power Company and by the United States
Department of Energy.
NR 29
TC 6
Z9 7
U1 2
U2 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
EI 1872-9584
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD JUL 1
PY 2014
VL 330
BP 42
EP 46
DI 10.1016/j.nimb.2014.03.017
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AI6WD
UT WOS:000337016800007
ER
PT J
AU He, LF
Pakarinen, J
Kirk, MA
Gan, J
Nelson, AT
Bai, XM
El-Azab, A
Allen, TR
AF He, L. F.
Pakarinen, J.
Kirk, M. A.
Gan, J.
Nelson, A. T.
Bai, X. -M.
El-Azab, A.
Allen, T. R.
TI Microstructure evolution in Xe-irradiated UO2 at room temperature
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article
DE Nuclear fuel; TEM; Irradiation; Dislocation; Inert gas bubble
ID HIGH-RESOLUTION TEM; IN-SITU TEM; URANIUM-DIOXIDE; RADIATION-DAMAGE;
BUBBLES; PRECIPITATION; KRYPTON; XENON; FUELS
AB In situ Transmission Electron Microscopy was conducted for single crystal UO2 to understand the microstructure evolution during 300 key Xe irradiation at room temperature. The dislocation microstructure evolution was shown to occur as nucleation and growth of dislocation loops at low irradiation doses, followed by transformation to extended dislocation segments and tangles at higher doses. Xe bubbles with dimensions of 1-2 nm were observed after room-temperature irradiation. Electron Energy Loss Spectroscopy indicated that UO2 remained stoichiometric under room temperature Xe irradiation. Published by Elsevier B.V.
C1 [He, L. F.; Pakarinen, J.; Allen, T. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA.
[Kirk, M. A.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Gan, J.; Bai, X. -M.; Allen, T. R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Nelson, A. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[El-Azab, A.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA.
[El-Azab, A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA.
RP He, LF (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA.
EM lhe33@wisc.edu
RI Bai, Xianming/E-2376-2017;
OI Bai, Xianming/0000-0002-4609-6576; Allen, Todd/0000-0002-2372-7259; He,
Lingfeng/0000-0003-2763-1462
FU Center for Materials Science of Nuclear Fuel, an Energy Frontier
Research Center - U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences; U.S. Department of Energy, Office of Nuclear
Energy under DOE Idaho Operations Office [DE-AC07-051D14517]; Electron
Microscopy Center for Materials Research at Argonne National Laboratory,
a U.S. Department of Energy Office of Science Laboratory
[DE-AC02-06CH11357]
FX This work was supported as part of the Center for Materials Science of
Nuclear Fuel, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences. A portion of this research was supported by the U.S.
Department of Energy, Office of Nuclear Energy under DOE Idaho
Operations Office Contract DE-AC07-051D14517. The in situ electron
microscopy observation was accomplished at the Electron Microscopy
Center for Materials Research at Argonne National Laboratory, a U.S.
Department of Energy Office of Science Laboratory operated under
Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. We thank Peter
M. Baldo of Argonne National Lab for his help in performing the
irradiations.
NR 23
TC 5
Z9 5
U1 0
U2 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
EI 1872-9584
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD JUL 1
PY 2014
VL 330
BP 55
EP 60
DI 10.1016/j.nimb.2014.03.018
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AI6WD
UT WOS:000337016800009
ER
PT J
AU Yoon, SJ
Sabharwall, P
AF Yoon, Su-Jong
Sabharwall, Piyush
TI Parametric study on maximum transportable distance and cost for thermal
energy transportation using various coolants
SO PROGRESS IN NUCLEAR ENERGY
LA English
DT Article
DE Advanced nuclear reactor; Thermal energy transportation; Maximum
transportable distance; Cost estimation; Molten-salts; Helium
AB The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors, and thermal energy from advanced nuclear reactor can be used for various purposes, such as district heating, desalination, hydrogen production and other process heat applications. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor must be transported a fair distance. In this study, the analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium, and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium, and water.
Fluoride salts are superior because of better heat transport characteristics, but chloride salts are most economical for higher temperature transportation purposes. For lower temperature, the water is a possible alternative when compared with helium because low-pressure helium requires extremely high pumping power, which makes the process very inefficient and economically not viable for both low and high-temperature application. Published by Elsevier Ltd.
C1 [Yoon, Su-Jong; Sabharwall, Piyush] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Yoon, SJ (reprint author), Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA.
EM sujong.yoon@inl.gov
FU agency of the U.S. Government
FX This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately owned rights. References herein to any specific
commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the U.S. Government or any
agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the U.S. Government or any
agency thereof.
NR 12
TC 0
Z9 0
U1 0
U2 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0149-1970
J9 PROG NUCL ENERG
JI Prog. Nucl. Energy
PD JUL
PY 2014
VL 74
BP 110
EP 119
DI 10.1016/j.pnucene.2014.02.016
PG 10
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA AI6VU
UT WOS:000337015900010
ER
PT J
AU Hernandez-Garcia, MR
Masri, SF
Ghanem, R
Figueiredo, E
Farrar, CR
AF Hernandez-Garcia, Miguel R.
Masri, Sami F.
Ghanem, Roger
Figueiredo, Eloi
Farrar, Charles R.
TI An Evaluation of a Methodology for Detection, Localization, and
Quantification of Changes in Nonlinear Systems Based on Experimental
Measurements
SO INGEGNERIA SISMICA
LA English
DT Article
DE Structural Health Monitoring; reduced-order models; structural changes;
restoring forces
ID CHAIN-LIKE SYSTEMS; NONPARAMETRIC IDENTIFICATION; BUILDINGS; DYNAMICS
AB Experimental data from a test-bed structure tested is used to evaluate and validate a methodology for detecting, localizing, and quantifying structural changes in nonlinear structures using chain-like reduced-order models estimated from measurements. This study showed that variations in the mathematical representation (i.e., two-dimensional polynomial expansion) of the restoring forces in the estimated chain-like reduced-order models could be employed to confidently detect the presence of physical structural changes introduced into the test-bed structure, accurately locate the structural section where the changes occurred, and provide an estimate of the severity or magnitude of the structural changes.
C1 [Hernandez-Garcia, Miguel R.] Alta Vista Solut, Richmond, CA 94806 USA.
[Hernandez-Garcia, Miguel R.; Masri, Sami F.; Ghanem, Roger] Univ So Calif, Viterbi Sch Engn, Los Angeles, CA 90089 USA.
[Figueiredo, Eloi] Univ Lusfona, Fac Engn, Dept Civil Engn, Lisbon, Portugal.
[Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA.
RP Hernandez-Garcia, MR (reprint author), Alta Vista Solut, 3260 Blume Dr,Suite 500, Richmond, CA 94806 USA.
RI Ghanem, Roger/B-8570-2008
OI Ghanem, Roger/0000-0002-1890-920X
FU National Science Foundation
FX This study was supported in part by a grant from the National Science
Foundation.
NR 24
TC 0
Z9 0
U1 0
U2 0
PU PATRON EDITORE S R L
PI BOLOGNA
PA VIA BADINI 12, QUARTO INFERIORE, BOLOGNA, 00000, ITALY
SN 0393-1420
J9 ING SISMICA-ITAL
JI Ing. Sismica
PD JUL-DEC
PY 2014
VL 31
IS 3-4
BP 72
EP 86
PG 15
WC Engineering, Civil; Engineering, Geological
SC Engineering
GA CP6AO
UT WOS:000359966900007
ER
PT J
AU Zhang, JS
Cui, LS
Yu, C
Shao, Y
Wang, ZQ
Ru, YD
Zhang, G
Jiang, DQ
Huan, Y
Ren, Y
AF Zhang, J. S.
Cui, L. S.
Yu, C.
Shao, Y.
Wang, Z. Q.
Ru, Y. D.
Zhang, G.
Jiang, D. Q.
Huan, Y.
Ren, Y.
TI Novel Ti3Sn based high damping material with high strength
SO MATERIALS RESEARCH INNOVATIONS
LA English
DT Article
DE Damping; Ti3Sn; Synchrotron
ID METAL-MATRIX COMPOSITES; ALLOY; BEHAVIOR; CAPACITY
AB In this paper, ductile beta-Ti was selected to toughen brittle high damping intermetallic compound Ti3Sn. An in situ Ti3Sn/beta-Ti composite with a composition of Ti77Mo3Sn20 was prepared by arc melting. The composite simultaneously exhibited high yield strength (500 MPa), large plasticity (35%) and high damping capacity (tan delta>0.06). In situ synchrotron high energy X-ray diffraction compression testing revealed that the beta-Ti mainly accounts for the plasticity, while Ti3Sn provided the strength of the composite.
C1 [Zhang, J. S.; Cui, L. S.; Yu, C.; Shao, Y.; Wang, Z. Q.; Ru, Y. D.; Zhang, G.; Jiang, D. Q.] China Univ Petr, Dept Mat Sci & Engn, Beijing 102200, Peoples R China.
[Huan, Y.] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China.
[Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Cui, LS (reprint author), China Univ Petr, Dept Mat Sci & Engn, Beijing 102200, Peoples R China.
EM lishancui63@126.com
RI Jiang, Daqiang /G-5511-2014;
OI Yu, Cun/0000-0003-0084-6746
FU National Natural Science Foundation of China (NSFC) [51071175]; Key (key
grant) Project of Chinese Ministry of Education [313055]; US Department
of Energy, Office of Science and Office of Basic Energy Science
[DE-AC02-06CH11357]
FX This work was financially supported by the National Natural Science
Foundation of China (NSFC) (Grant No. 51071175) and the Key (key grant)
Project of Chinese Ministry of Education (Grant No. 313055). The use of
the Advanced Photon Source was supported by the US Department of Energy,
Office of Science and Office of Basic Energy Science under contract no.
DE-AC02-06CH11357.
NR 12
TC 0
Z9 0
U1 1
U2 1
PU MANEY PUBLISHING
PI LEEDS
PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND
SN 1432-8917
EI 1433-075X
J9 MATER RES INNOV
JI Mater. Res. Innov.
PD JUL
PY 2014
VL 18
SU 4
BP 584
EP 587
DI 10.1179/1432891714Z.000000000750
PG 4
WC Materials Science, Multidisciplinary
SC Materials Science
GA AW3HZ
UT WOS:000346178400118
ER
PT J
AU Khanna, N
Fridley, D
Hong, LX
AF Khanna, Nina
Fridley, David
Hong, Lixuan
TI China's pilot low-carbon city initiative: A comparative assessment of
national goals and local plans
SO SUSTAINABLE CITIES AND SOCIETY
LA English
DT Article
DE China; Low carbon city; Energy consumption
AB In the past decade, China's unprecedented urbanization has paralleled a 250% growth in primary energy demand and urban areas have emerged as the crux of energy and CO2 emissions reduction in China. In recognition of cities' importance in mitigating future energy and CO2 emissions growth, the Chinese government launched a demonstration program of 5 low-carbon pilot provinces and 8 pilot cities in 2010 to promote low-carbon urban development. As one of the first national programs to promote low-carbon urban development, the recent plans and policies adopted by these 8 pilot low-carbon cities can shed light on if and how low-carbon cities can shape China's future energy and emission trajectories. This paper reviews the historical development and context for low-carbon urban development in China and then presents an ex-ante comparative assessment of the low-carbon development plans and supporting measures formulated for each of China's 8 pilot low-carbon cities. We find that while the 8 pilot cities have made progress in establishing low-carbon plans, key barriers such as a lack of explicit definition for low-carbon city, complexity and confusion resulting from several parallel programs, and insufficient supporting policies and market-based instruments may hinder urban development that is truly low carbon. Published by Elsevier B.V.
C1 [Khanna, Nina; Fridley, David; Hong, Lixuan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Energy Anal & Environm Impacts Dept, Berkeley, CA 94720 USA.
RP Khanna, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, MS 90R2002, Berkeley, CA 94720 USA.
EM xzheng@lbl.gov
FU U.S, Department of Energy [DE-AC02-05CH11231]
FX This work was supported through the U.S, Department of Energy under
Contract No, DE-AC02-05CH11231, We are grateful to He Gang of LBNL for
reviewing an earlier draft of this paper, and to the two anonymous
reviewers for their valuable feedback and suggestions.
NR 35
TC 12
Z9 12
U1 5
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2210-6715
J9 SUSTAIN CITIES SOC
JI Sust. Cities Soc.
PD JUL
PY 2014
VL 12
BP 110
EP 121
DI 10.1016/j.scs.2014.03.005
PG 12
WC Construction & Building Technology; GREEN & SUSTAINABLE SCIENCE &
TECHNOLOGY; Energy & Fuels
SC Construction & Building Technology; Science & Technology - Other Topics;
Energy & Fuels
GA V41OE
UT WOS:000209554700013
ER
PT J
AU Callejo, A
Narayanan, SHK
de Jalon, JG
Norris, B
AF Callejo, Alfonso
Narayanan, Sri Hari Krishna
Garcia de Jalon, Javier
Norris, Boyana
TI Performance of automatic differentiation tools in the dynamic simulation
of multibody systems
SO ADVANCES IN ENGINEERING SOFTWARE
LA English
DT Article
DE Multibody dynamics; Semi-recursive penalty formulation; Automatic
differentiation; Operator overloading; Source-to-source transformation;
ADOL-C; ADIC2
ID ALGORITHMS
AB Within the multibody systems literature, few attempts have been made to use automatic differentiation for solving forward multibody dynamics and evaluating its computational efficiency. The most relevant implementations are found in the sensitivity analysis field, but they rarely address automatic differentiation issues in depth. This paper presents a thorough analysis of automatic differentiation tools in the time integration of multibody systems. To that end, a penalty formulation is implemented. First, open-chain generalized positions and velocities are computed recursively, while using Cartesian coordinates to define local geometry. Second, the equations of motion are implicitly integrated by using the trapezoidal rule and a Newton-Raphson iteration. Third, velocity and acceleration projections are carried out to enforce kinematic constraints. For the computation of Newton-Raphson's tangent matrix, instead of using numerical or analytical differentiation, automatic differentiation is implemented here. Specifically, the source-to-source transformation tool ADIC2 and the operator overloading tool ADOL-C are employed, in both dense and sparse modes. The theoretical approach is backed with the numerical analysis of a 1-DOF spatial four-bar mechanism, three different configurations of a 15-DOF multiple four-bar linkage, and a 16-DOF coach maneuver. Numerical and automatic differentiation are compared in terms of their computational efficiency and accuracy. Overall, we provide a global perspective of the efficiency of automatic differentiation in the field of multibody system dynamics. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Callejo, Alfonso; Garcia de Jalon, Javier] Univ Politecn Madrid, Inst Univ Invest Automovil, Madrid, Spain.
[Narayanan, Sri Hari Krishna; Norris, Boyana] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA.
RP Callejo, A (reprint author), Univ Politecn Madrid, Inst Univ Invest Automovil, Madrid, Spain.
EM a.callejo@upm.es
OI Norris, Boyana/0000-0001-5811-9731
FU U.S. Dept. of Energy Office of Science Applied Mathematics Program
[DE-ACO2-06CH11357]; Spanish Ministry of Science and Innovation
[TRA2009-14513CO2-01]; Government of Navarra
FX This work was supported by the U.S. Dept. of Energy Office of Science
Applied Mathematics Program (DE-ACO2-06CH11357), the Spanish Ministry of
Science and Innovation (TRA2009-14513CO2-01) and the Government of
Navarra.
NR 26
TC 3
Z9 3
U1 1
U2 9
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0965-9978
EI 1873-5339
J9 ADV ENG SOFTW
JI Adv. Eng. Softw.
PD JUL
PY 2014
VL 73
BP 35
EP 44
DI 10.1016/j.advengsoft.2014.03.002
PG 10
WC Computer Science, Interdisciplinary Applications; Computer Science,
Software Engineering; Engineering, Multidisciplinary
SC Computer Science; Engineering
GA AI4GF
UT WOS:000336823000004
ER
PT J
AU Dorcioman, G
Socol, G
Craciun, D
Argibay, N
Lambers, E
Hanna, M
Taylor, CR
Craciun, V
AF Dorcioman, G.
Socol, G.
Craciun, D.
Argibay, N.
Lambers, E.
Hanna, M.
Taylor, C. R.
Craciun, V.
TI Wear tests of ZrC and ZrN thin films grown by pulsed laser deposition
SO APPLIED SURFACE SCIENCE
LA English
DT Article; Proceedings Paper
CT European-Materials-Research-Society Fall Meeting / Symposium B on
Stress, Dtructure and Dtoichiometry Rffects on the Properties of
Nanomaterials II
CY SEP 16-20, 2013
CL Warsaw, POLAND
SP European Mat Res Soc
DE ZrC; ZrN; Hard coatings; Pulsed laser deposition
ID COATINGS; CORROSION; INDENTATION; EVAPORATION; BEHAVIOR
AB Very thin ZrC and ZrN films (<500 nm) were grown on (1 0 0) Si substrates at 500 degrees C by the pulsed laser deposition (PLD) technique using a KrF excimer laser. X-ray reflectivity investigations showed that films exhibited mass densities similar to bulk values. X-ray diffraction investigations found that films were nanocristalline, exhibited a (1 1 1) texture and high micro-strain values. Auger electron spectroscopy investigations indicated that films contained in bulk a relatively low oxygen concentration, usually below 2.0%. Atomic force microscopy found that ZrN films deposited under 2 X 10(-2) Pa of N-2 exhibited a very smooth surface, with an rms value of only 3 angstrom, while wear tests found a low wear rate of only 4.5 X 10(-6) mm(3)/N m. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Dorcioman, G.; Socol, G.; Craciun, D.; Craciun, V.] Natl Inst Lasers Plasma & Radiat Phys, Laser Dept, Bucharest, Romania.
[Argibay, N.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87123 USA.
[Lambers, E.] Univ Florida, Coll Engn, Major Analyt Instrumentat Ctr, Gainesville, FL 32611 USA.
[Hanna, M.; Taylor, C. R.] Univ Florida, Gainesville, FL 32611 USA.
RP Craciun, D (reprint author), Natl Inst Lasers Plasma & Radiat Phys, 409 Atomistilor, RO-077125 Magurele, Romania.
EM doina.craciun@inflpr.ro
RI Socol, Gabriel/A-5405-2011
OI Socol, Gabriel/0000-0002-1992-7346
FU Romanian Ministry of Education; CNCS-UEFISCDI [PN-II-ID 337/2011,
PN-II-RU-2012-3-0346]; project Nucleu 2013; Sandia National
Laboratories; U.S. Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX We would like to thank the Major Analytical Instrumentation
Center-University of Florida for help with samples characterization.
This work was supported by grants of the Romanian Ministry of Education,
CNCS-UEFISCDI, project number PN-II-ID 337/2011 and
PN-II-RU-2012-3-0346, and project Nucleu 2013. This work was partially
funded by the Sandia National Laboratories, a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract
DE-AC04-94AL85000.
NR 21
TC 11
Z9 12
U1 7
U2 36
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-4332
EI 1873-5584
J9 APPL SURF SCI
JI Appl. Surf. Sci.
PD JUL 1
PY 2014
VL 306
BP 33
EP 36
DI 10.1016/j.apsusc.2013.12.048
PG 4
WC Chemistry, Physical; Materials Science, Coatings & Films; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA AI1DX
UT WOS:000336591500007
ER
PT J
AU Hale, LM
Zimmerman, JA
Weinberger, CR
AF Hale, Lucas M.
Zimmerman, Jonathan A.
Weinberger, Christopher R.
TI Simulations of bcc tantalum screw dislocations: Why classical
inter-atomic potentials predict {112} slip
SO COMPUTATIONAL MATERIALS SCIENCE
LA English
DT Article
DE Molecular dynamic simulation; Dislocation structures; Tantalum;
Plasticity of metals
ID MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; TRANSITION-METALS; CORE
STRUCTURE; PLASTIC-DEFORMATION; ANISOTROPIC ELASTICITY; SINGLE-CRYSTALS;
SADDLE-POINTS; ALPHA-FE; GLIDE
AB A thorough molecular dynamics study is performed to investigate the predicted {112} yield behavior associated with the slip of a single screw dislocation using classical atomistic potentials of body-centered cubic metals. Previous works have drawn an association between the structure of the stable screw dislocation core and the resulting slip nature showing that a polarized core can lead to {112} slip, while a non-polarized core is expected to slip on {110} planes. Here, results from five different potentials for tantalum are presented as they all show slip to be primarily active along {112} planes even though the stable core structure is non-polar. This {112} slip occurs through dislocation glide on two different {110} planes due to the presence of a metastable split core structure, and regardless of the relative magnitudes of resolved shear stresses for the two {110} planes. Further investigations shows that the split core structure, an artifact of the atomic potentials used, also influences slip behavior associated with dynamic motion of kinked dislocations in ambient temperature simulations. (C) 2014 Elsevier B. V. All rights reserved.
C1 [Hale, Lucas M.; Zimmerman, Jonathan A.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94551 USA.
[Weinberger, Christopher R.] Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87125 USA.
[Weinberger, Christopher R.] Drexel Univ, Philadelphia, PA 19104 USA.
RP Hale, LM (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94551 USA.
EM lmhale99@gmail.com
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 47
TC 5
Z9 5
U1 2
U2 34
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0256
EI 1879-0801
J9 COMP MATER SCI
JI Comput. Mater. Sci.
PD JUL
PY 2014
VL 90
BP 106
EP 115
DI 10.1016/j.commatsci.2014.03.064
PG 10
WC Materials Science, Multidisciplinary
SC Materials Science
GA AI1ZX
UT WOS:000336656200014
ER
PT J
AU Zhao, Y
Ke, J
Ni, CC
McNeil, M
Khanna, NZ
Zhou, N
Fridley, D
Li, QQ
AF Zhao, Yue
Ke, Jing
Ni, Chun Chun
McNeil, Michael
Khanna, Nina Zheng
Zhou, Nan
Fridley, David
Li, Qiqiang
TI A comparative study of energy consumption and efficiency of Japanese and
Chinese manufacturing industry
SO ENERGY POLICY
LA English
DT Article
DE Industry; Energy efficiency; Energy policies
ID INDEX DECOMPOSITION APPROACH; PERSPECTIVE
AB The industrial sector consumes about 50% of the world's delivered energy and thus has a large impact on the world's energy production and consumption. Japan is one of the leading countries in industrial efficiency while China is the world's largest industrial energy consumer. This study analyzes the energy consumption and efficiency of the Japanese and Chinese manufacturing industry Analysis shows that the energy intensity of both Japanese and Chinese manufacturing industry has decreased significantly. Decomposition analysis shows that the efficiency effect played an important role in reducing energy intensity; improvement of the energy efficiency of both Japanese and Chinese manufacturing industry showed a trend of exponential decay. Structural effect significantly reduced the energy intensity of the Japanese manufacturing industry while having a relatively small influence on the energy intensity of the Chinese manufacturing industry. Our analysis also shows a strong association of industrial energy efficiency improvement with energy policies, highlighting that energy efficiency policies can play an important role in the reduction of industrial energy intensity. The results of this study also underscore the important, yet very challenging, task of achieving structural change to further improve efficiency. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Zhao, Yue] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China.
[Ke, Jing; Ni, Chun Chun; McNeil, Michael; Khanna, Nina Zheng; Zhou, Nan; Fridley, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Li, Qiqiang] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China.
RP Ke, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, MS 90R2002,1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM Jke@lbl.gov
RI Ke, Jing/H-4816-2016
OI Ke, Jing/0000-0002-5972-8042
FU Energy Foundation through the Department of Energy [DE-AC02-05CH11231];
Natural Science Foundation of Shandong Province of China [ZR2010FZ001]
FX This work was supported by the Energy Foundation through the Department
of Energy under Contract no. DE-AC02-05CH11231, the Key Project of
Natural Science Foundation of Shandong Province of China under Grant no.
ZR2010FZ001. The authors thank the anonymous reviewers for their
valuable comments and suggestions.
NR 49
TC 10
Z9 10
U1 3
U2 38
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0301-4215
EI 1873-6777
J9 ENERG POLICY
JI Energy Policy
PD JUL
PY 2014
VL 70
BP 45
EP 56
DI 10.1016/j.enpol.2014.02.034
PG 12
WC Energy & Fuels; Environmental Sciences; Environmental Studies
SC Energy & Fuels; Environmental Sciences & Ecology
GA AI2OS
UT WOS:000336698500004
ER
PT J
AU Dagle, RA
Lizarazo-Adarme, JA
Dagle, VL
Gray, MJ
White, JF
King, DL
Palo, DR
AF Dagle, Robert A.
Lizarazo-Adarme, Jair A.
Dagle, Vanessa Lebarbier
Gray, Michel J.
White, James F.
King, David L.
Palo, Daniel R.
TI Syngas conversion to gasoline-range hydrocarbons over Pd/ZnO/Al2O3 and
ZSM-5 composite catalyst system
SO FUEL PROCESSING TECHNOLOGY
LA English
DT Article
DE Syngas; Methanol; Methanol-to-hydrocarbons; Methanol-to-gasoline (MTG);
Gas-to-liquid; PdZn catalyst
ID BIOMASS-DERIVED SYNGAS; ZEOLITE
AB A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al = 40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. A bifunctional catalyst comprising PdZn metal and zeolitic acid sites provides the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and dimethyl ether-to-gasoline reactions. Using a molar syngas H-2/CO feed ratio of 2, the effects of temperature (310-375 degrees C), pressure (300-1000 psig), and gas hourly space velocity (740-2970h(-1)) were investigated. The liquid hydrocarbon product provided by the Pd/ZnO/Al2O3 + ZSM-5 composite catalyst is aromatic-rich, and contains a significant amount of methylated benzenes. Catalytic stability was favorable due to the presence of hydrogen in the syngas, thus mitigating coke formation within the zeolite. When ZSM-5 is replaced by zeolite-Y (Si/Al = 15), the aromatic content of the hydrocarbon liquid markedly decreased while branched and cyclic hydrocarbons increased. The Pd/Zn/Al2O3 catalyst was found to be highly stable and resistant to sintering under the conditions of the testing, in contrast to the industry standard Cu/ZnO/Al2O3 methanol catalyst. Yield to C-5(+) liquid hydrocarbon product was limited by alternative syngas conversion pathways (water gas shift, methanation) and by hydrogenation of light olefins that would otherwise convert to a liquid hydrocarbon product. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Dagle, Robert A.; Dagle, Vanessa Lebarbier; Gray, Michel J.; White, James F.; King, David L.; Palo, Daniel R.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA.
[Lizarazo-Adarme, Jair A.; Palo, Daniel R.] Pacific NW Natl Lab, Microprod Breakthrough Inst Corvallis, Corvallis, OR 97330 USA.
[White, James F.] 3 Rivers Catalysis LLC, Richland, WA USA.
RP Dagle, RA (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA.
EM robert.dagle@pnnl.gov
FU Energy Conversion Initiative at Pacific Northwest National Laboratory;
National Advanced Biofuels Consortium - Department of Energy's Office of
Biomass Program; U.S. Department of Energy [DEAC05-76RL01830]
FX The authors would like to kindly thank the following either current or
former colleagues: Yong Wang, Jianli (John) Hu, Ya-Huei (Cathy) Chin,
Chunshe (James) Cao, Alex Platon, Jamie Holladay, and Guan-Guang
(Gordon) Xia. Their previous efforts on development of the high
temperature PdZn-based methanol catalyst were foundational. The authors
also acknowledge that initial work on this concept was funded through
the Energy Conversion Initiative at Pacific Northwest National
Laboratory. The bulk of this work was supported by the National Advanced
Biofuels Consortium which is funded by the Department of Energy's Office
of Biomass Program with recovery act funds. PNNL work was conducted
under U.S. Department of Energy contract DE-AC05-76RL01830. The
facilities of the Microproducts Breakthrough Institute in Corvallis, OR
were utilized for the mixed catalyst bed experiments. Finally, the
authors would like to acknowledge that a portion of this work was done
in the Environmental Molecular Sciences Laboratory (EMSL), a DOE
sponsored user facility located in Richland, WA at the Pacific Northwest
National Laboratory.
NR 21
TC 13
Z9 15
U1 17
U2 105
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-3820
EI 1873-7188
J9 FUEL PROCESS TECHNOL
JI Fuel Process. Technol.
PD JUL
PY 2014
VL 123
BP 65
EP 74
DI 10.1016/j.fuproc.2014.01.041
PG 10
WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical
SC Chemistry; Energy & Fuels; Engineering
GA AH9NM
UT WOS:000336469100009
ER
PT J
AU Katz, DS
Zhang, Z
AF Katz, Daniel S.
Zhang, Zhao
TI Special issue on eScience infrastructure and applications
SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
LA English
DT Editorial Material
DE eScience; eResearch; eInfrastructure; Cyberinfrastructure; CDS&E
ID MAPREDUCE; WORKFLOW; ACCESS
AB This special issue contains extensions of work presented at the 2012 IEEE International Conference on eScience, held in Chicago, IL in October 2012. For eScience to be successful, simultaneous advances in infrastructure and applications are required, which in turn requires research teams with widely varying expertise, from computer science to Earth sciences and biological sciences, as well as fora for different teams to interact and share knowledge and lessons learned, such as the eScience series of conferences. The papers in this special issue represent advances in both infrastructure and applications and how they can influence each other. (C) 2014 Published by Elsevier B.V.
C1 [Katz, Daniel S.] Univ Chicago, Chicago, IL 60637 USA.
[Zhang, Zhao] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA.
[Katz, Daniel S.] Argonne Natl Lab, Chicago, IL USA.
RP Katz, DS (reprint author), Univ Chicago, Chicago, IL 60637 USA.
EM d.katz@ieee.org; zhaozhang@uchicago.edu
NR 18
TC 2
Z9 2
U1 1
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-739X
EI 1872-7115
J9 FUTURE GENER COMP SY
JI Futur. Gener. Comp. Syst.
PD JUL
PY 2014
VL 36
BP 335
EP 337
DI 10.1016/j.future.2014.03.007
PG 3
WC Computer Science, Theory & Methods
SC Computer Science
GA AI3OB
UT WOS:000336770700029
ER
PT J
AU Fadika, Z
Dede, E
Govindaraju, M
Ramakrishnan, L
AF Fadika, Zacharia
Dede, Elif
Govindaraju, Madhusudhan
Ramakrishnan, Lavanya
TI MARIANE: Using MApReduce in HPC environments
SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
LA English
DT Article
DE Hadoop; MapReduce; Data intensive; Scientific computing
AB MapReduce is increasingly becoming a popular programming model. However, the widely used implementation, Apache Hadoop, uses the Hadoop Distributed File System (HDFS), which is currently not directly applicable to a majority of existing HPC environments such as Teragrid and NERSC that support other distributed file systems. On such resourceful High Performance Computing (HPC) infrastructures, the MapReduce model can rarely make use of full resources, as special circumstances must be created for its adoption, or simply limited resources must be isolated to the same end. This paper not only presents a MapReduce implementation directly suitable for such environments, but also exposes the design choices for better performance gains in those settings. By leveraging inherent distributed file systems' functions, and abstracting them away from its MapReduce framework, MARIANE (MApReduce Implementation Adapted for HPC Environments) not only allows for the use of the model in an expanding number of HPC environments, but also shows better performance in such settings. This paper identifies the components and trade-offs necessary for this model, and quantifies the performance gains exhibited by our approach in HPC environments over Apache Hadoop in a data intensive setting at the National Energy Research Scientific Computing Center (NERSC). (C) 2014 Elsevier B.V. All rights reserved.
C1 [Fadika, Zacharia; Dede, Elif; Govindaraju, Madhusudhan] SUNY Binghamton, Dept Comp Sci, Grid & Cloud Comp Res Lab, Vestal, NY 13902 USA.
[Ramakrishnan, Lavanya] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Govindaraju, M (reprint author), SUNY Binghamton, Dept Comp Sci, Grid & Cloud Comp Res Lab, Vestal, NY 13902 USA.
EM zfadika@cs.binghamton.edu; edede1@cs.binghamton.edu;
mgovinda@cs.binghamton.edu; lramakrishnan@lbl.gov
NR 22
TC 3
Z9 3
U1 0
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-739X
EI 1872-7115
J9 FUTURE GENER COMP SY
JI Futur. Gener. Comp. Syst.
PD JUL
PY 2014
VL 36
BP 379
EP 388
DI 10.1016/j.future.2013.12.007
PG 10
WC Computer Science, Theory & Methods
SC Computer Science
GA AI3OB
UT WOS:000336770700033
ER
PT J
AU Dede, E
Fadika, Z
Govindaraju, M
Ramakrishnan, L
AF Dede, Elif
Fadika, Zacharia
Govindaraju, Madhusudhan
Ramakrishnan, Lavanya
TI Benchmarking MapReduce implementations under different application
scenarios
SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID
COMPUTING AND ESCIENCE
LA English
DT Article
DE Distributed Computing; MapReduce; Hadoop; Benchmarking
AB The MapReduce paradigm provides a scalable model for large scale data intensive computing and associated fault-tolerance. Data volumes generated and processed by scientific applications are growing rapidly. Several MapReduce implementations, with various degrees of conformance to the key tenets of the model, are available today. Each of these implementations is optimized for specific features. To make the right decisions, HPC application and middleware developers must thus understand the complex dependences between MapReduce features and their application. We present a set of benchmarks for quantifying, comparing, and contrasting the performance of MapReduce implementations under a wide range of representative use cases. To demonstrate the utility of the benchmarks and to provide a snapshot of the current implementation landscape, we report the performance of three different MapReduce implementations, and draw conclusions about their current performance characteristics. The three implementations we chose for evaluation are the widely used Hadoop implementation, Twister, which has been widely discussed in the literature in the context of scientific applications, and LEMO-MR which is our own implementation. We present the performance of these three implementations and draw conclusions about their performance characteristics. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Dede, Elif; Fadika, Zacharia; Govindaraju, Madhusudhan] SUNY Binghamton, Dept Comp Sci, Grid & Cloud Comp Res Lab, Vestal, NY 13902 USA.
[Ramakrishnan, Lavanya] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Govindaraju, M (reprint author), SUNY Binghamton, Dept Comp Sci, Grid & Cloud Comp Res Lab, Vestal, NY 13902 USA.
EM edede1@cs.binghamton.edu; zfadika@cs.binghamton.edu;
mgovinda@cs.binghamton.edu; lramakrishnan@lbl.gov
FU NSF [0958501]; Office of Science, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX This work was supported in part by NSF grant 0958501 and also in part by
the Director, Office of Science, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 25
TC 4
Z9 4
U1 0
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-739X
EI 1872-7115
J9 FUTURE GENER COMP SY
JI Futur. Gener. Comp. Syst.
PD JUL
PY 2014
VL 36
BP 389
EP 399
DI 10.1016/j.future.2014.01.001
PG 11
WC Computer Science, Theory & Methods
SC Computer Science
GA AI3OB
UT WOS:000336770700034
ER
PT J
AU Cinquini, L
Crichton, D
Mattmann, C
Harney, J
Shipman, G
Wang, FY
Ananthakrishnan, R
Miller, N
Denvil, S
Morgan, M
Pobre, Z
Bell, GM
Doutriaux, C
Drach, R
Williams, D
Kershaw, P
Pascoe, S
Gonzalez, E
Fiore, S
Schweitzer, R
AF Cinquini, Luca
Crichton, Daniel
Mattmann, Chris
Harney, John
Shipman, Galen
Wang, Feiyi
Ananthakrishnan, Rachana
Miller, Neill
Denvil, Sebastian
Morgan, Mark
Pobre, Zed
Bell, Gavin M.
Doutriaux, Charles
Drach, Robert
Williams, Dean
Kershaw, Philip
Pascoe, Stephen
Gonzalez, Estanislao
Fiore, Sandro
Schweitzer, Roland
TI The Earth System Grid Federation: An open infrastructure for access to
distributed geospatial data
SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID
COMPUTING AND ESCIENCE
LA English
DT Article
DE Climate science; Federation; Search; Discovery; Peer-to-peer; CMIP5
AB The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF's architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software stack integrates custom components (for data publishing, searching, user interface, security and messaging), developed collaboratively by the team, with popular application engines (Tomcat, Solr) available from the open source community. The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire Fifth Coupled Model Intercomparison Project (CMIP5) output used by the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs). This paper presents ESGF as a successful example of integration of disparate open source technologies into a cohesive, wide functional system, and describes our experience in building and operating a distributed and federated infrastructure to serve the needs of the global climate science community. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Cinquini, Luca; Crichton, Daniel; Mattmann, Chris] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Cinquini, Luca; Crichton, Daniel; Mattmann, Chris] CALTECH, Pasadena, CA 91106 USA.
[Harney, John; Wang, Feiyi] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Shipman, Galen] Oak Ridge Natl Lab, Comp & Computat Sci Directorate, Oak Ridge, TN USA.
[Ananthakrishnan, Rachana] Univ Chicago, Computat Inst, Chicago, IL 60637 USA.
[Miller, Neill] Univ Chicago, Chicago, IL 60637 USA.
[Ananthakrishnan, Rachana; Miller, Neill] Argonne Natl Lab, Argonne, IL 60439 USA.
[Denvil, Sebastian] Inst Pierre Simon Laplace, Climate Modeling Grp, Paris, France.
[Morgan, Mark] Inst Pierre Simon Laplace, Earth Syst Modeling Platform, Paris, France.
[Pobre, Zed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bell, Gavin M.; Doutriaux, Charles; Drach, Robert; Williams, Dean] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Kershaw, Philip] STEC Rutherford Appleton Lab, RAL Space, Ctr Environm Data Archival, Didcot, Oxon, England.
[Pascoe, Stephen] STEC Rutherford Appleton Lab, Didcot, Oxon, England.
[Kershaw, Philip; Pascoe, Stephen] NCAS BADC, Didcot, Oxon, England.
[Gonzalez, Estanislao] German Climate Comp Ctr DKRZ, Hamburg, Germany.
[Fiore, Sandro] Euromediterranean Ctr Climate Change CMCC, Lecce, Italy.
[Schweitzer, Roland] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
RP Cinquini, L (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM luca.cinquini@jpl.nasa.gov; daniel.j.crichton@jpl.nasa.gov;
chris.a.mattmann@jpl.nasa.gov; harneyjf@ornl.gov; gshipman@ornl.gov;
fwang2@ornl.gov; ranantha@mcs.anl.gov; neillm@mcs.anl.gov;
sebastien.denvil@ipsl.jussieu.fr; momipsl@ipsl.jussieu.fr;
zed.pobre@nasa.gov; gavin@llnl.gov; doutriaux1@llnl.gov;
drach1@llnl.gov; williams13@llnl.gov; philip.kershaw@stfc.ac.uk;
stephen.pascoe@stfc.ac.uk; estanislao.gonzalez@met.fu-berlin.de;
sandro.fiore@unisalento.it; Roland.Schweitzer@noaa.gov
OI Kershaw, Philip/0000-0002-7646-291X
FU U.S. Department of Energy; National Atmospheric and Space Administration
(NASA); European Infrastructure for the European Network for Earth
System Modeling (IS-ENES)
FX The development and operation of ESGF is supported by the efforts of
principal investigators, software engineers, data managers and system
administrators from many agencies and institutions worldwide. Primary
contributors include ANL, ANU, BADC, CMCC, DKRZ, ESRL, GFDL, GSFC, JPL,
IPSL, NCAR, ORNL, LBNL, LLNL (leading institution), PMEL, PNNL and SNL.
Major funding provided by the U.S. Department of Energy, the National
Atmospheric and Space Administration (NASA), and the European
Infrastructure for the European Network for Earth System Modeling
(IS-ENES).
NR 18
TC 16
Z9 16
U1 2
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-739X
EI 1872-7115
J9 FUTURE GENER COMP SY
JI Futur. Gener. Comp. Syst.
PD JUL
PY 2014
VL 36
BP 400
EP 417
DI 10.1016/j.future.2013.07.002
PG 18
WC Computer Science, Theory & Methods
SC Computer Science
GA AI3OB
UT WOS:000336770700035
ER
PT J
AU Hendrix, V
Ramakrishnan, L
Ryu, Y
van Ingen, C
Jackson, KR
Agarwal, D
AF Hendrix, Valerie
Ramakrishnan, Lavanya
Ryu, Youngryel
van Ingen, Catharine
Jackson, Keith R.
Agarwal, Deborah
TI CAMP: Community Access MODIS Pipeline
SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID
COMPUTING AND ESCIENCE
LA English
DT Article
DE MODIS; Data-intensive; High Performance computing
ID LIFE SCIENCES
AB The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's land and atmosphere data are important to many scientific analyses that study processes at both local and global scales. The Terra and Aqua MODIS satellites acquire data of the entire Earth's surface every one or two days in 36 spectral bands. MODIS data provide information to complement many of the ground-based observations but are extremely critical when studying global phenomena such as gross photosynthesis and evapotranspiration. However, data procurement and processing can be challenging and cumbersome due to difficulties in volume, size of data and scale of analyses. For example, the very first step in MODIS data processing is to ensure that all products are in the same resolution and coordinate system. The reprojection step involves a complex inverse gridding algorithm and involves downloading tens of thousands of files for a single year that is often infeasible to perform on a scientist's desktop. Thus, use of large-scale resource environments such as high performance computing (HPC) environments are becoming crucial for processing of MODIS data. However, HPC environments have traditionally been used for tightly coupled applications and present several challenges for managing data-intensive pipelines. We have developed a data-processing pipeline that downloads the MODIS swath products and reprojects the data to a sinusoidal system on an HPC system. The 10 year archive of the reprojected data generated using the pipeline is made available through a web portal. In this paper, we detail a system architecture (CAMP) to manage the lifecycle of MODIS data that includes procurement, storage, processing and dissemination. Our system architecture was developed in the context of the MODIS reprojection pipeline but is extensible to other analyses of MODIS data. Additionally, our work provides a framework and valuable experiences for future developments and deployments of data-intensive pipelines from other scientific domains on HPC systems. (C) 2014 Published by Elsevier B.V.
C1 [Hendrix, Valerie; Ramakrishnan, Lavanya; Jackson, Keith R.; Agarwal, Deborah] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Ryu, Youngryel] Seoul Natl Univ, Dept Landscape Architecture & Rural Syst Engn, Seoul 151, South Korea.
[van Ingen, Catharine] Microsoft Res, Redmond, WA USA.
RP Hendrix, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM vchendrix@lbl.gov; lramakrishnan@lbl.gov; yryu@snu.ac.kr;
vaningen@microsoft.com; KRJackson@lbl.gov; daagarwal@lbl.gov
RI Ryu, Youngryel/C-3072-2008
OI Ryu, Youngryel/0000-0001-6238-2479
FU Office of Science, Office of Advanced Scientific Computing, of the US
Department of Energy [DEAC02-05CH11231]; Microsoft Research; Office of
Science of the US Department of Energy [DEAC02-05CH11231]
FX This work is supported in part by the Director, Office of Science,
Office of Advanced Scientific Computing, of the US Department of Energy
under Contract No. DEAC02-05CH11231 and Microsoft Research. This
research used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the US
Department of Energy under Contract No. DEAC02-05CH11231. The authors
would also like to thank Jie Li, and Christine Morin.
NR 27
TC 3
Z9 3
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-739X
EI 1872-7115
J9 FUTURE GENER COMP SY
JI Futur. Gener. Comp. Syst.
PD JUL
PY 2014
VL 36
BP 418
EP 429
DI 10.1016/j.future.2013.09.023
PG 12
WC Computer Science, Theory & Methods
SC Computer Science
GA AI3OB
UT WOS:000336770700036
ER
PT J
AU Pandey, SN
Chaudhuri, A
Kelkar, S
Sandeep, VR
Rajaram, H
AF Pandey, S. N.
Chaudhuri, A.
Kelkar, S.
Sandeep, V. R.
Rajaram, H.
TI Investigation of permeability alteration of fractured limestone
reservoir due to geothermal heat extraction using three-dimensional
thermo-hydro-chemical (THC) model
SO GEOTHERMICS
LA English
DT Article
DE Geothermal reservoir; Renewable energy; Thermo-hydro-chemical model;
Aperture alteration; Calcite; Dissolution/precipitation; Reactive
transport
ID GEOLOGICALLY RELEVANT SITUATIONS; COLD-WATER INJECTION;
SOULTZ-SOUS-FORETS; CALCITE DISSOLUTION; CO2-WATER SYSTEMS; KARST AREAS;
FLUID-FLOW; PRECIPITATION; KINETICS; ROCK
AB Heat extraction by cold water circulation disturbs the thermo-chemical equilibrium of a geothermal reservoir, activating the dissolution/precipitation of minerals in the fractures. Calcite being a more reactive mineral than other rock minerals composing the earth curst, we investigate the permeability alteration during geothermal heat production from carbonate reservoirs. In this study the simulations are performed using the code FEHM with coupled thermo-hydro-chemical (THC) capabilities for a three dimensional domain. The computational domain consists of a single fracture connecting the injection and production wells. For reactive alteration of aperture, the model considers that the kinetics of dissolution/precipitation is coupled to the equilibrium interactions among the aqueous species/ions. The reaction rate predominantly depends on the temperature dependent solubility and advective-dispersive solute transport in the fracture. Due to the nonuniform flow fields resulting from injection and production, the coupled thermo-hydro-chemical processes initiate significant variation of the aperture alteration rate over the fracture. We have considered different operating conditions such as different mass injection rate, injection temperature and concentration of minerals. Our simulations show that dissolution and precipitation can occur simultaneously at different locations in fracture. Furthermore the reaction rate varies with time and the reaction rate can also switch between dissolution and precipitation. To illustrate this interesting behavior, the variations of shape and size of zero reaction rate contours with time are shown. An interesting outcome is a non-monotonic evolution of the overall transmissivity between the wells. The alteration of overall transmissivity largely depends on the concentration of mineral in the injected water. with respect to the solubility at the initial fracture temperature. For both dissolution and precipitation controlled cases, the rapid changes in transmissivity provide challenges for maintaining circulation of water at constant mass flow rate. (c) 2013 Elsevier Ltd. All rights reserved.
C1 [Pandey, S. N.; Chaudhuri, A.; Sandeep, V. R.] Indian Inst Technol, Dept Appl Mech, Madras 600036, Tamil Nadu, India.
[Kelkar, S.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
[Rajaram, H.] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA.
RP Chaudhuri, A (reprint author), Indian Inst Technol, Dept Appl Mech, Madras 600036, Tamil Nadu, India.
EM abhijit.chaudhuri@iitm.ac.in
NR 53
TC 13
Z9 13
U1 1
U2 22
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD JUL
PY 2014
VL 51
BP 46
EP 62
DI 10.1016/j.geothermics.2013.11.004
PG 17
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA AI3RD
UT WOS:000336778700005
ER
PT J
AU Spycher, N
Peiffer, L
Sonnenthal, EL
Saldi, G
Reed, MH
Kennedy, BM
AF Spycher, N.
Peiffer, L.
Sonnenthal, E. L.
Saldi, G.
Reed, M. H.
Kennedy, B. M.
TI Integrated multicomponent solute geothermometry
SO GEOTHERMICS
LA English
DT Article
DE Geothermometer; Optimization; Exploration; Numerical modeling; Mixing;
Geothermal
ID MOLAL THERMODYNAMIC PROPERTIES; MINERAL EQUILIBRIA; WATERS; CHEMISTRY;
ICELAND; TEMPERATURES; SIMULATION; PROGRAM; SPRINGS; GASES
AB The previously developed and well-demonstrated mineral saturation geothermometry method is revisited with the objective to ease its application, and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated by assessing numerically the clustering of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are implemented into one stand-alone program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimation software. The geothermometry system is tested with geothermal waters from previous studies, and with fluids at various degrees of fluid rock chemical equilibrium obtained from laboratory experiments and reactive transport simulations. Such an integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Spycher, N.; Peiffer, L.; Sonnenthal, E. L.; Saldi, G.; Kennedy, B. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Reed, M. H.] Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA.
RP Spycher, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM nspycher@lbl.gov
RI Sonnenthal, Eric/A-4336-2009; Spycher, Nicolas/E-6899-2010;
OI Peiffer, Loic/0000-0002-2036-8449
FU U.S. Department of Energy, Geothermal Technologies Program, Energy
Efficiency and Renewable Energy Office [DE-EE0002765]
FX This work was supported by the U.S. Department of Energy, Geothermal
Technologies Program, Energy Efficiency and Renewable Energy Office,
Award No. DE-EE0002765. We thank Patrick Dobson and Jennifer Lewicki for
their valuable inputs after testing GeoT, Kevin Knauss for his
leadership with the experimental component of this study, Joe Iovenitti
(Alta Rock) for providing data on the Newberry project, and Christoph
Wanner for compiling and testing GeoT on various platforms. We are also
grateful to Stuart F. Simmons and William C. Evans for their
constructive reviews which helped improve the original manuscript.
NR 40
TC 12
Z9 12
U1 5
U2 22
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD JUL
PY 2014
VL 51
BP 113
EP 123
DI 10.1016/j.geothermics.2013.10.012
PG 11
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA AI3RD
UT WOS:000336778700010
ER
PT J
AU Wanner, C
Peiffe, L
Sonnenthal, E
Spycher, N
Iovenitti, J
Kennedy, BM
AF Wanner, Christoph
Peiffe, Loic
Sonnenthal, Eric
Spycher, Nicolas
Iovenitti, Joe
Kennedy, Burton Mack
TI Reactive transport modeling of the Dixie Valley geothermal area:
Insights on flow and geothermometry
SO GEOTHERMICS
LA English
DT Article
DE Reactive transport modeling; Solute geothermometry; Dixie Valley;
Fracture flow; Geothermal springs
ID HYDROTHERMAL SYSTEM; YUCCA MOUNTAIN; FLUID-FLOW; SIMULATION; WATERS;
EQUILIBRIA; FRACTURE; NEVADA; FORM
AB A 2D reactive transport model of the Dixie Valley geothermal area in Nevada, USA was developed to assess fluid flow pathways and fluid rock interaction processes. The model includes two major normal faults and the incorporation of a dual continuum domain to simulate the presence of a small-scale thermal spring being fed by a highly permeable but narrow fracture zone. Simulations were performed incorporating fluid flow, heat conduction and advection, and kinetic mineral-water reactions. Various solute geothermometry methods were applied to simulated spring compositions, to compare estimated reservoir temperatures with "true" modeled reservoir temperatures, for a fluid ascending the simulated fracture and cooling on its way to the surface. Under the modeled conditions (cooling but no mixing or boiling), the classical Na-K(-Ca) geothermometers performed best because these are least affected by mineral precipitation upon cooling. Geothermometry based on computed mineral saturation indices and the quartz geothermometer were more sensitive to re-equilibration upon cooling, but showed good results for fluid velocities above ca. 0.1 m/d and a reactive fracture surface area 1-2 orders of magnitude lower than the corresponding geometric surface area. This suggests that such upflow rates and relatively low reactive fracture surface areas are likely present in many geothermal fields. The simulations also suggest that the presence of small-scale fracture systems having an elevated permeability of 10-12 to 10(-10) m(2) can significantly alter the shallow fluid flow regime of geothermal systems. For the Dixie Valley case, the model implies that such elevated permeabilities lead to a shallow (less than 1 km) convection cell where superficial water infiltrates along the range front normal fault and connects the small-scale geothermal spring through basin filling sediments. Furthermore, we conclude that a fracture permeability on the order of 10(-12) m(2) may lead to near surface temperature >100 degrees C whereas a permeability of 10-10 m2 is not realistic because this permeability led to extreme upflow velocities and to a short-circuit of the regional fault zone. (c) 2013 Elsevier Ltd. All rights reserved.
C1 [Wanner, Christoph; Peiffe, Loic; Sonnenthal, Eric; Spycher, Nicolas; Kennedy, Burton Mack] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Iovenitti, Joe] AltaRockEnergy Inc, Sausalito, CA USA.
RP Wanner, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM cwanner@lbl.gov
RI Sonnenthal, Eric/A-4336-2009; Spycher, Nicolas/E-6899-2010;
OI Wanner, Christoph/0000-0003-3488-8602; Peiffer, Loic/0000-0002-2036-8449
FU U.S. Department of Energy, Geothermal Technologies Program, Energy
Efficiency and Renewable Energy Office [DE-EE0002765, DE-AC02-05CH11231]
FX This work was supported by the U.S. Department of Energy, Geothermal
Technologies Program, Energy Efficiency and Renewable Energy Office,
Award Nos. DE-EE0002765 and DE-AC02-05CH11231. We thank one anonymous
reviewer for a thorough review and constructive comments.
NR 42
TC 6
Z9 6
U1 1
U2 30
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD JUL
PY 2014
VL 51
BP 130
EP 141
DI 10.1016/j.geothermics.2013.12.003
PG 12
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA AI3RD
UT WOS:000336778700012
ER
PT J
AU Peiffer, L
Wanner, C
Spycher, N
Sonnenthal, EL
Kennedy, BM
Iovenitti, J
AF Peiffer, L.
Wanner, C.
Spycher, N.
Sonnenthal, E. L.
Kennedy, B. M.
Iovenitti, J.
TI Optimized multicomponent vs. classical geothermometry: Insights from
modeling studies at the Dixie Valley geothermal area
SO GEOTHERMICS
LA English
DT Article
DE Geothermometer; Optimization; Exploration; Numerical modeling; Mixing;
Geothermal
ID NEVADA; WATERS; EQUILIBRIA; SIMULATION; BASIN
AB A new geothermometry approach is explored, incorporating multicomponent geothermometry coupled with numerical optimization to provide more confident estimates of geothermal reservoir temperatures when results of classical geothermometers are inconsistent. This approach is applied to geothermal well and spring waters from the Dixie Valley geothermal area (Nevada), to evaluate the influence of salt brines mixing and dilution of geothermal fluids on calculated temperatures. The main advantage of the optimized multicomponent method over classical geothermometers is its ability to quantify the extent of dilution and gas loss experienced by a geothermal fluid, and to optimize other poorly constrained or unknown parameters (such as Al and Mg concentrations), allowing the reconstruction of the deep reservoir fluid composition and therefore gaining confidence in reservoir temperatures estimations. Because the chemical evolution of deep geothermal fluids is a combination of multiple time-dependent processes that take place when these fluids ascend to the surface, reactive transport modeling is used to assess constraints on the application of solute geothermometers. Simulation results reveal that Al and Mg concentrations of ascending fluids are sensitive to mineral precipitation-dissolution affecting reservoir temperatures inferred with multicomponent geothermometry. In contrast, simulations show that the concentrations of major elements such as Na, K, and SiO2 are less sensitive to re-equilibration. Geothermometers based on these elements give reasonable reservoir temperatures in many cases, except when dilution or mixing with saline waters has taken place. Optimized multicomponent geothermometry yields more representative temperatures for such cases. Taking into account differences in estimated temperatures, and chemical compositions of the Dixie Valley thermal waters, a conceptual model of two main geothermal reservoirs is proposed. The first reservoir is located along the Stillwater range normal fault system and has an estimated temperature of 240-260 degrees C. It covers the area corresponding to the geothermal field but could extend towards the south-west where deep temperatures of 200-225 degrees C are estimated. The second reservoir has an estimated temperature of 175-190 degrees C and extends from well 62-21 to northeastern Hyder, Lower Ranch, Fault Line, and Jersey springs. (c) 2014 Elsevier Ltd. All rights reserved.
C1 [Peiffer, L.; Wanner, C.; Spycher, N.; Sonnenthal, E. L.; Kennedy, B. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Iovenitti, J.] AltaRockEnergy Inc, Sausalito, CA 94965 USA.
RP Peiffer, L (reprint author), Univ Nacl Autonoma Mexico, Inst Energias Renovables, Temixco 62580, Morelos, Mexico.
EM loic.peiffer@gmail.com; nspycher@lbl.gov
RI Sonnenthal, Eric/A-4336-2009; Spycher, Nicolas/E-6899-2010;
OI Wanner, Christoph/0000-0003-3488-8602; Peiffer, Loic/0000-0002-2036-8449
FU U.S. Department of Energy, Geothermal Technologies Program, Energy
Efficiency and Renewable Energy Office [DE-EE0002765]
FX This work was supported by the U.S. Department of Energy, Geothermal
Technologies Program, Energy Efficiency and Renewable Energy Office,
Award no. DE-EE0002765. We thank Susan Lutz for providing XRD analyses,
and Dick Benoit and Lisa Shevenell for personal communications regarding
Dixie Valley. We are also grateful to Patrick Dobson for a constructive
review of the original manuscript. Reviews by S. Simmons and an
anonymous reviewer are also greatly appreciated.
NR 42
TC 6
Z9 7
U1 1
U2 14
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD JUL
PY 2014
VL 51
BP 154
EP 169
DI 10.1016/j.geothermics.2013.12.002
PG 16
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA AI3RD
UT WOS:000336778700014
ER
PT J
AU Jeanne, P
Rutqvist, J
Vasco, D
Garcia, J
Dobson, PF
Walters, M
Hartline, C
Borgia, A
AF Jeanne, Pierre
Rutqvist, Jonny
Vasco, Donald
Garcia, Julio
Dobson, Patrick F.
Walters, Mark
Hartline, Craig
Borgia, Andrea
TI A 3D hydrogeological and geomechanical model of an Enhanced Geothermal
System at The Geysers, California
SO GEOTHERMICS
LA English
DT Article
DE Enhanced Geothermal Systems; The Geysers; Induced seismicity; TerraSAR-X
satellites; Shear zones; Thermo-hydromechanical simulation
ID FIELD; DEFORMATION; ROCK
AB In this study, integrated coupled process modeling and field observations are used to build a threedimensional hydrogeological and geomechanical model of an Enhanced Geothermal System (EGS) in the northwestern part of The Geysers geothermal field, California. We constructed a model and characterized hydraulic and mechanical properties of relevant geological layers and a system of multiple intersecting shear zones. This characterization was conducted through detailed coupled process modeling of a oneyear injection stimulation with simultaneous field monitoring of reservoir pressure, microseismicity, and surface deformations. The analysis of surface deformations was found to be particularly challenging as the subtle surface deformations caused by the injection taking place below 3 km depth are intermingled with deformations caused by both tectonic effects and seasonal surface effects associated with rainfall. However, through a detailed analysis of the field data we identified deformations associated with injection. Hydraulic and mechanical properties of relevant rock layers and shear zones were determined using a 3D hydrogeological and geomechanical model. Hydraulic properties were determined using inverse analysis by fitting the pressure evolution in monitoring wells surrounding the injection well. Mechanical properties were estimated by comparison of the predicted microseismicity potential with the observed microseismicity and by fitting the predicted vertical displacement with the surface deformations measured by satellite. The results show the critical importance of considering the regional fault system, especially reservoir-level faults and shear zones that modify injection water flow and steam pressure diffusion. In the vicinity of the EGS Demonstration Project, fluid flow pathways and pressure diffusion fronts appears to be at a maximum along N130 oriented shear zones and at a minimum along N50 oriented shear zones. Evidence for this comes from microseismic event hypocenters which extend several kilometers horizontally from the injection well and deep into a recent granitic intrusion that underlies the high temperature reservoir. Published by Elsevier Ltd.
C1 [Jeanne, Pierre; Rutqvist, Jonny; Vasco, Donald; Dobson, Patrick F.; Borgia, Andrea] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Garcia, Julio; Walters, Mark; Hartline, Craig] Calpine Corp, Middletown, CA 95461 USA.
RP Jeanne, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM pjeanne@lbl.gov
RI Dobson, Patrick/D-8771-2015; Rutqvist, Jonny/F-4957-2015; Jeanne,
Pierre/I-2996-2015; Vasco, Donald/I-3167-2016; Vasco, Donald/G-3696-2015
OI Dobson, Patrick/0000-0001-5031-8592; Rutqvist,
Jonny/0000-0002-7949-9785; Jeanne, Pierre/0000-0003-1487-8378; Vasco,
Donald/0000-0003-1210-8628; Vasco, Donald/0000-0003-1210-8628
FU Energy Efficiency and Renewable Energy, Geothermal Technologies Program,
of the U.S. Department under the U.S. Department of Energy
[DE-AC02-05CH11231]; Calpine Corporation
FX This work was conducted with funding provided by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Geothermal Technologies
Program, of the U.S. Department under the U.S. Department of Energy
Contract No. DE-AC02-05CH11231, and by Calpine Corporation. We are
grateful to Katie Boyle and Lawrence Hutchings from the Lawrence
Berkeley National Laboratory (LBNL) for making their seismic data
available to us.
NR 24
TC 13
Z9 14
U1 0
U2 27
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD JUL
PY 2014
VL 51
BP 240
EP 252
DI 10.1016/j.geothermics.2014.01.013
PG 13
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA AI3RD
UT WOS:000336778700020
ER
PT J
AU Jeanne, P
Rutqvist, J
Hartline, C
Garcia, J
Dobson, PF
Walters, M
AF Jeanne, Pierre
Rutqvist, Jonny
Hartline, Craig
Garcia, Julio
Dobson, Patrick F.
Walters, Mark
TI Reservoir structure and properties from geomechanical modeling and
microseismicity analyses associated with an enhanced geothermal system
at The Geysers, California
SO GEOTHERMICS
LA English
DT Article
DE Enhanced geothermal system; Micro-earthquake analysis; Fault zone
network; Inverse fluid flow modeling; Thermo-hydromechanical simulation;
Micro-earthquake predicted
ID FLUID-FLOW; FIELD; ROCK; AREA; SEISMICITY
AB This work contributes to modeling studies associated with an enhanced geothermal system demonstration project in the northwestern region of The Geysers, California. We first attempt to determine the structural configuration and reservoir properties of the steam-bearing reservoir, based on microseismicity recorded during a one-year water injection operation. This is particularly challenging because errors in hypocenter determination (due primarily to errors in the velocity model and first-arrival picks) tend to "defocus" any microseismic events related to a distributed network of fractures, resulting in a "cloud" of microseismic events. This work includes a dynamic analysis of the observed alignments in daily microseismicity hypocenters during water injection, along with the constraints provided by geological data (surface mapping and drill cuttings) to determine the location and orientation of shear zones. We then evaluate the viability of the resulting network of proposed shear zones, using a 2D fluid flow and geomechanical model simulation of the injection and comparing it to the evolution of observed (1) pressure in nearby monitoring wells and (2) microseismicity hypocenters. The shear-zone hydraulic properties were estimated using inverse analysis of the pressure evolution in the surrounding wells, while mechanical properties were estimated by comparing the calculated stress changes and associated microseismic potential with the observed microseismicity. The results indicate that a model including the network of proposed shear zones does calculate reservoir hydraulic and mechanical responses similar to those observed during water injection. Finally, the results confirm previous studies at The Geysers indicating that the injection-induced microseismicity is caused by thermal contraction near the injection wells where strong cooling prevails, whereas away from the injection wells, small increases in steam pressure are the primary trigger of microseismicity. Published by Elsevier Ltd.
C1 [Jeanne, Pierre; Rutqvist, Jonny; Dobson, Patrick F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Hartline, Craig; Garcia, Julio; Walters, Mark] Calpine Corp, Middletown, CA 95461 USA.
RP Jeanne, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM pjeanne@lbl.gov
RI Dobson, Patrick/D-8771-2015; Rutqvist, Jonny/F-4957-2015; Jeanne,
Pierre/I-2996-2015;
OI Dobson, Patrick/0000-0001-5031-8592; Rutqvist,
Jonny/0000-0002-7949-9785; Jeanne, Pierre/0000-0003-1487-8378; Walters,
Mark/0000-0001-8458-4813
FU Assistant Secretary for Energy Efficiency and Renewable Energy,
Geothermal Technologies Program, of the U.S. Department under the U.S.
Department of Energy [DE-AC02-05CH11231]; Calpine Corporation
FX This work was conducted with funding by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Geothermal Technologies Program,
of the U.S. Department under the U.S. Department of Energy Contract No.
DE-AC02-05CH11231, and by Calpine Corporation. We are grateful to Katie
Boyle and Lawrence Hutchings from Lawrence Berkeley National Laboratory
(LBNL) for making seismic data available to us, and for the constructive
comments and recommendations of the reviewers.
NR 33
TC 11
Z9 11
U1 0
U2 27
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0375-6505
EI 1879-3576
J9 GEOTHERMICS
JI Geothermics
PD JUL
PY 2014
VL 51
BP 460
EP 469
DI 10.1016/j.geothermics.2014.02.003
PG 10
WC Energy & Fuels; Geosciences, Multidisciplinary
SC Energy & Fuels; Geology
GA AI3RD
UT WOS:000336778700039
ER
PT J
AU Solbrig, CW
Pope, CL
Andrus, JP
AF Solbrig, Charles W.
Pope, Chad L.
Andrus, Jason P.
TI Stress and diffusion in stored Pu ZPPR fuel from alpha generation
SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
LA English
DT Article
DE Metal fuel failure in long term storage; Metal fuel swelling stress; Gas
diffusion in metal; High Pu content nuclear fuel
ID HELIUM
AB ZPPR (Zero Power Physics Reactor) is a research reactor that has been used to investigate breeder reactor fuel designs. The reactor has been dismantled but its fuel is still stored there. Of concern are its plutonium containing metal fuel elements which are enclosed in stainless steel cladding with gas space filled with helium-argon gas and welded air tight. The fuel elements which are 5.08 cm by 0.508 cm up to 20.32 cm long (2 in x 0.2 in x 8 in) were manufactured in 1968. A few of these fuel elements have failed releasing contamination raising concern about the general state of the large number of other fuel elements. Inspection of the large number of fuel elements could lead to contamination release so analytical studies have been conducted to estimate the probability of failed fuel elements.
This paper investigates the possible fuel failures due to generation of helium in the metal fuel from the decay of Pu and its possible damage to the fuel cladding from metal fuel expansion or from diffusion of helium into the fuel gas space. This paper (1) calculates the initial gas loading in a fuel element and its internal free volume after it has been brought into the atmosphere at ZPPR, (2) shows that the amount of helium generated by decay of Pu over 46 years since manufacture is significantly greater than this initial loading, (3) determines the amount of fuel swelling if the helium stays fixed in the fuel plate and estimates the amount of helium which diffuses out of the fuel plate into the fuel plenum assuming the helium does not remain fixed in the fuel plate but can diffuse to the plenum and possibly through the cladding. Since the literature is not clear as to which possibility occurs, as with Schroedinger's cat, both possibilities are analyzed. The paper concludes that (1) if the gas generated is fixed in the fuel, then the fuel swelling it can cause would not cause any fuel failure and (2) if the helium does diffuse out of the fuel (in accordance diffusivities estimated from the literature), then it is unlikely that fuel element bulging will occur. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Solbrig, Charles W.; Pope, Chad L.; Andrus, Jason P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Solbrig, CW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM charles.solbrig@inl.gov
FU U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho
Operations Office [DE-AC07-05ID14517]
FX This work is supported by the U.S. Department of Energy, Office of
Nuclear Energy, under DOE Idaho Operations Office Contract
DE-AC07-05ID14517. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that
the United States Government retains a nonexclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes.
NR 13
TC 0
Z9 0
U1 0
U2 2
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0017-9310
EI 1879-2189
J9 INT J HEAT MASS TRAN
JI Int. J. Heat Mass Transf.
PD JUL
PY 2014
VL 74
BP 251
EP 262
DI 10.1016/j.ijheatmasstransfer.2014.03.006
PG 12
WC Thermodynamics; Engineering, Mechanical; Mechanics
SC Thermodynamics; Engineering; Mechanics
GA AI2NV
UT WOS:000336696100024
ER
PT J
AU Aguirre, BA
Zubia, D
Ordonez, R
Anwar, F
Prieto, H
Sanchez, CA
Salazar, MT
Pimentel, AA
Michael, JR
Zhou, XW
Mcclure, JC
Nielson, GN
Cruz-Campa, JL
AF Aguirre, Brandon A.
Zubia, David
Ordonez, Rafael
Anwar, Farhana
Prieto, Heber
Sanchez, Carlos A.
Salazar, Maria T.
Pimentel, Alejandro. A.
Michael, Joseph R.
Zhou, Xiaowang
Mcclure, John C.
Nielson, Gregory N.
Cruz-Campa, Jose L.
TI Selective Growth of CdTe on Nano-patterned CdS via Close-Space
Sublimation
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE CdTe; solar cells; close space sublimation; nanoheteroepitaxy; selective
growth
ID VAPOR-PHASE EPITAXY; SOLAR-CELLS
AB Selective-area deposition of CdTe on CdS via close-space sublimation is used to study the effect of window size (2 mu m and 300 nm) on grain growth. The basic fabrication procedures for each of the layers (CdS, SiO2, and CdTe) and for achieving selective-area growth are presented. Selective-area growth of both micro- and nano-scale CdTe islands on CdS substrates using close-spaced sublimation is demonstrated. Scanning electron microscopy and electron backscatter diffraction microstructure analysis show that the micro-scale CdTe islands remain polycrystalline. However, when the island size is reduced to 300 nm, single crystal CdTe can be achieved within the windows. The CdTe grains were most often in the (101) orientation for both the micro- and nano-sized CdTe islands.
C1 [Aguirre, Brandon A.; Zubia, David; Ordonez, Rafael; Anwar, Farhana; Prieto, Heber; Sanchez, Carlos A.; Mcclure, John C.] Univ Texas El Paso, El Paso, TX 79968 USA.
[Salazar, Maria T.] Sandia Natl Labs, MESAFAB Operat, Albuquerque, NM 87185 USA.
[Pimentel, Alejandro. A.; Michael, Joseph R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Zhou, Xiaowang] Sandia Natl Labs, Livermore, CA USA.
[Aguirre, Brandon A.; Nielson, Gregory N.; Cruz-Campa, Jose L.] Sandia Natl Labs, MEMS Technol, Albuquerque, NM 87185 USA.
RP Aguirre, BA (reprint author), Univ Texas El Paso, El Paso, TX 79968 USA.
EM baaguirre@miners.utep.edu
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]; National Science Foundation [ECS-0335765]; National
Institute of Nano Engineering (NINE); Solar Economy Integrative Graduate
Education Research Traineeship (SEIGERT), NSF [DGE-0903670]; Solar
Economy Integrative Graduate Education Research Traineeship (SEIGERT),
DOE [DE-EE0005958]
FX This work was performed, in part, at the Center for Integrated
Nanotechnologies, an Office of Science User Facility operated for the U.
S. Department of Energy (DOE) Office of Science. Sandia National
Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000. This work was
performed in part at the Microelectronics Research Center at UT Austin,
a member of the National Nanotechnology Infrastructure Network, which is
supported by the National Science Foundation under award no.
ECS-0335765. This work is sponsored by the National Institute of Nano
Engineering (NINE) and the Solar Economy Integrative Graduate Education
Research Traineeship (SEIGERT), NSF award DGE-0903670, and DOE award
DE-EE0005958.
NR 21
TC 7
Z9 7
U1 1
U2 22
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0361-5235
EI 1543-186X
J9 J ELECTRON MATER
JI J. Electron. Mater.
PD JUL
PY 2014
VL 43
IS 7
BP 2651
EP 2657
DI 10.1007/s11664-014-3104-7
PG 7
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied
SC Engineering; Materials Science; Physics
GA AI3WT
UT WOS:000336796700024
ER
PT J
AU Reina, C
Conti, S
AF Reina, C.
Conti, S.
TI Kinematic description of crystal plasticity in the finite kinematic
framework: A micromechanical understanding of F=(FFP)-F-e
SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
LA English
DT Article
DE Crystal plasticity; Finite kinematics; Dislocation density tensor
ID SINGLE-CRYSTALS; STRUCTURED DEFORMATIONS; CONTINUUM THEORY;
DISLOCATIONS; ENERGY; ELASTOPLASTICITY; INCOMPATIBILITY; DECOMPOSITION;
ENERGETICS; MECHANICS
AB The plastic component of the deformation gradient plays a central role in finite kinematic models of plasticity. However, its characterization has been the source of extended debates in the literature and many important issues still remain unresolved. Some examples are the micromechanical understanding of F = (FFp)-F-e with multiple active slip systems, the uniqueness of the decomposition, or the characterization of the plastic deformation without reference to the so-called intermediate configuration. In this paper, we shed some light to these issues via a two-dimensional kinematic analysis of the plastic deformation induced by discrete slip surfaces and the corresponding dislocation structures. In particular, we supply definitions for the elastic and plastic components of the deformation gradient as a function of the active slip systems without any a priori assumption on the decomposition of the total deformation gradient. These definitions are explicitly and uniquely given from the microstructure and do not make use of any unrealizable intermediate configuration. The analysis starts from a semi-continuous mathematical description of the deformation at the microscale, where the displacements are considered continuous everywhere in the domain except at the discrete slip surfaces, over which there is a displacement jump. At this scale, where the microstructure is resolved, the deformation is uniquely characterized from purely kinematic considerations and the elastic and plastic components of the deformation gradient can be defined based on physical arguments. These quantities are then passed to the continuous limit via homogenization, i.e. by increasing the number of slip surfaces to infinity and reducing the lattice parameter to zero. This continuum limit is computed for several illustrative examples, where the well-known multiplicative decomposition of the total deformation gradient is recovered. Additionally, by similar arguments, an expression of the dislocation density tensor is obtained as the limit of discrete dislocation densities which are well characterized within the semi-continuous model. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Reina, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Reina, C.; Conti, S.] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany.
[Reina, C.] Univ Penn, Philadelphia, PA 19104 USA.
RP Reina, C (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM creina@seas.upenn.edu
RI Conti, Sergio/B-3214-2009
OI Conti, Sergio/0000-0001-7987-9174
FU Hausdorff Center for Mathematics; Deutsche Forschungsgemeinschaft
[Forschergruppe 797, CO 304/4-2]; U.S. Department of Energy by Lawrence
Livermore National Laboratory [DE-AC52-07NA27344]
FX The authors acknowledge support from the Hausdorff Center for
Mathematics and the Deutsche Forschungsgemeinschaft through
Forschergruppe 797, project CO 304/4-2. This work performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.
NR 41
TC 16
Z9 16
U1 2
U2 10
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-5096
EI 1873-4782
J9 J MECH PHYS SOLIDS
JI J. Mech. Phys. Solids
PD JUL
PY 2014
VL 67
BP 40
EP 61
DI 10.1016/j.jmps.2014.01.014
PG 22
WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed
Matter
SC Materials Science; Mechanics; Physics
GA AI2PE
UT WOS:000336699700005
ER
PT J
AU Hopkins, JB
Vericella, JJ
Harvey, CD
AF Hopkins, Jonathan B.
Vericella, John J.
Harvey, Christopher D.
TI Modeling and generating parallel flexure elements
SO PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR
PRECISION ENGINEERING AND NANOTECHNOLOGY
LA English
DT Article
DE Flexure elements; Compliant members; Flexible joints; Elements of
constraint; Flexure systems; Screw theory; Freedom and Constraint
Topologies; FACT
ID DEGREE-OF-FREEDOM; THERMAL-EXPANSION; SYSTEM CONCEPTS
AB This work introduces the principles necessary to model and generate parallel flexure elements (i.e., compliant members or flexible joints) that may be used to synthesize next-generation precision flexure systems. These principles are extensions of the Freedom and Constraint Topologies (FACT) synthesis approach, which utilizes geometric shapes to help designers synthesize flexure systems that achieve desired degrees of freedom (DOFs). Prior to this paper, FACT was limited to the design of flexure systems that consisted primarily of simple wire or blade flexure elements only. In this paper, the principles are introduced that enable designers to use the same shapes of FACT to synthesize parallel flexure elements of any geometry, including new and often irregularly-shaped elements (e.g., hyperboloids or hyperbolic paraboloids). The ability to recognize such elements within the shapes of FACT, therefore, enables designers to consider a larger body of solution options that satisfy a broader range of kinematic, elastomechanical, and dynamic design requirements. Example flexure systems that consist of flexure elements, generated using this theory, are provided as case studies. (c) 2014 Elsevier Inc. All rights reserved.
C1 [Hopkins, Jonathan B.; Vericella, John J.; Harvey, Christopher D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Hopkins, JB (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA.
EM jonathanbhopkins@gmail.com
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344, LLNL-JRNL-614192]; DARPA's Materials; Controlled
Microstructural Architecture program in the Defense Sciences Office,
Program Manager Judah Goldwasser
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. LLNL-JRNL-614192. Support from DARPA's Materials with
Controlled Microstructural Architecture program in the Defense Sciences
Office, Program Manager Judah Goldwasser, is gratefully acknowledged.
NR 32
TC 3
Z9 3
U1 0
U2 10
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0141-6359
EI 1873-2372
J9 PRECIS ENG
JI Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol.
PD JUL
PY 2014
VL 38
IS 3
BP 525
EP 537
DI 10.1016/j.precisioneng.2014.02.001
PG 13
WC Engineering, Multidisciplinary; Engineering, Manufacturing; Nanoscience
& Nanotechnology; Instruments & Instrumentation
SC Engineering; Science & Technology - Other Topics; Instruments &
Instrumentation
GA AI3OC
UT WOS:000336770800009
ER
PT J
AU Barnette, AL
Ohlhausen, JA
Dugger, MT
Kim, SH
AF Barnette, Anna L.
Ohlhausen, J. Anthony
Dugger, Michael T.
Kim, Seong H.
TI Humidity Effects on In Situ Vapor Phase Lubrication with n-Pentanol
SO TRIBOLOGY LETTERS
LA English
DT Article
DE Nanotribology; Boundary lubrication chemistry; FTIR; Vapor phase
lubrication
ID SILICON-OXIDE; ADSORPTION-ISOTHERM; MICROELECTROMECHANICAL SYSTEMS;
AMBIENT CONDITIONS; CAPILLARY FORCE; SURFACE; WATER; ADHESION; LIQUID;
FRICTION
AB The effect of water vapor on n-pentanol vapor phase lubrication (VPL) was studied with a microelectromechanical system (MEMS) side-wall tribometer, a pin-on-disc tribometer, and attenuated total reflection infrared (ATR-IR) spectroscopy. The n-pentanol vapor pressure was fixed at 50 % relative to its saturation vapor pressure (P (sat) = similar to 2.2 Torr at room temperature), which is sufficient to maintain a monolayer of n-pentanol on a SiO2 surface in a dry Ar environment. As the relative humidity (RH) was increased from zero to 30 %, ATR-IR measurements showed that the water adsorption on the surface increases and the adsorbed pentanol thickness decreases by 60 %. These changes in the adsorption isotherm were manifested as higher, and more scattered friction coefficients observed during the MEMS tribometer operation. The maximum RH tolerance appeared to be 25-30 % RH above which the MEMS tribometer failed to operate reliably. In contrast, the n-pentanol VPL efficiency was not affected significantly during the macro-scale pin-on-disc tribometer tests. These results imply that the friction behavior of the asperity contacts in MEMS is more susceptible to co-adsorption of water than the friction behavior of macro-scale contacts.
C1 [Barnette, Anna L.; Kim, Seong H.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA.
[Barnette, Anna L.; Kim, Seong H.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
[Ohlhausen, J. Anthony; Dugger, Michael T.] Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA.
RP Kim, SH (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA.
EM mtdugge@sandia.gov; shk10@psu.edu
FU National Science Foundation [CMMI-1000021]; Sandia National
Laboratories; United States Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]
FX This work was financially supported by the National Science Foundation
(Grant No. CMMI-1000021) and Sandia National Laboratories. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000.
NR 30
TC 5
Z9 5
U1 4
U2 12
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1023-8883
EI 1573-2711
J9 TRIBOL LETT
JI Tribol. Lett.
PD JUL
PY 2014
VL 55
IS 1
BP 177
EP 186
DI 10.1007/s11249-014-0345-9
PG 10
WC Engineering, Chemical; Engineering, Mechanical
SC Engineering
GA AI3AB
UT WOS:000336729400018
ER
PT J
AU Bonvini, M
Sohn, MD
Granderson, J
Wetter, M
Piette, MA
AF Bonvini, Marco
Sohn, Michael D.
Granderson, Jessica
Wetter, Michael
Piette, Mary Ann
TI Robust on-line fault detection diagnosis for HVAC components based on
nonlinear state estimation techniques
SO APPLIED ENERGY
LA English
DT Article
DE Fault detection and diagnosis; Bayesian Updating; Chiller plant faults;
Unscented Kalman filtering
ID QUANTITATIVE MODEL; BUILDING SYSTEMS; PART II; STRATEGY; PROGNOSTICS
AB This work presents a robust and computationally efficient algorithm for both whole-building and component-level energy fault detection and diagnosis (FDD). The algorithm is able to provide reliable estimation of multiple and simultaneous fault conditions, even in the presence of noisy and sometimes erroneous sensor data, and to provide uncertainty estimation. The algorithm can be used to provide such outputs as the probability of a fault, the likely cause(s), and the expected consequences of the fault(s) on energy use. The approach is based on an advanced Bayesian nonlinear state estimation technique called Unscented Kalman Filtering, but with our addition of a back-smoothing method that provides fast and robust FDD for common building use cases. The approach is presented and demonstrated for detecting energy and hydraulic faults in a chiller plant. The model of the chiller plant is a subsystem of an actual chiller plant, calibrated to real data. The algorithm can detect common faults, such as (1) energy faults (e.g., the chiller is not working properly, or far from its nominal condition), (2) functional faults caused by issues in the compressor and (3) occlusions in the valves that may reduce the water flow rate through the condenser and evaporator water loop. It is also shown that estimates of uncertainty are consistent with the error in the synthetic data, and can be updated as new data stream in from sensors. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Bonvini, Marco; Granderson, Jessica; Wetter, Michael; Piette, Mary Ann] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Dept, Berkeley, CA 94720 USA.
[Sohn, Michael D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Berkeley, CA 94720 USA.
RP Sohn, MD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Dept, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM mdsohn@lbl.gov
FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office
of Building Technologies of the U.S. Department of Energy
[DE-AC02-05CH11231]; US Department of Defense under the ESTCP program
FX This research was supported in part by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Office of Building Technologies
of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.
The research was also supported by the US Department of Defense under
the ESTCP program.
NR 25
TC 19
Z9 19
U1 2
U2 35
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
EI 1872-9118
J9 APPL ENERG
JI Appl. Energy
PD JUL 1
PY 2014
VL 124
BP 156
EP 166
DI 10.1016/j.apenergy.2014.03.009
PG 11
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA AH7TT
UT WOS:000336338800014
ER
PT J
AU Zimmermann, EA
Gludovatz, B
Schaible, E
Busse, B
Ritchie, RO
AF Zimmermann, Elizabeth A.
Gludovatz, Bernd
Schaible, Eric
Busse, Bjoern
Ritchie, Robert O.
TI Fracture resistance of human cortical bone across multiple length-scales
at physiological strain rates
SO BIOMATERIALS
LA English
DT Article
DE Bone; Strain rate; Fracture toughness; Plasticity; X-ray diffraction
ID FATIGUE-CRACK-PROPAGATION; MECHANICAL-PROPERTIES; COMPACT-BONE; CEMENT
LINE; BOVINE BONE; TOUGHNESS; COLLAGEN; DEFORMATION; NANOSCALE; DENSITY
AB While most fracture-mechanics investigations on bone have been performed at low strain rates, physiological fractures invariably occur at higher loading rates. Here, at strain rates from 10(-5) to 10(-1) s(-1), we investigate deformation and fracture in bone at small length-scales using in situ small-angle x-ray scattering (SAXS) to study deformation in the mineralized collagen fibrils and at the microstructural level via fracture-mechanics experiments to study toughening mechanisms generating toughness through crack-tip shielding. Our results show diminished bone toughness at increasing strain rates as cracks penetrate through the osteons at higher strain rates instead of deflecting at the cement lines, which is a prime toughening mechanism in bone at low strain rates. The absence of crack deflection mechanisms at higher strain rates is consistent with lower intrinsic bone matrix toughness. In the SAXS experiments, higher fibrillar strains at higher strain rates suggest less inelastic deformation and thus support a lower intrinsic toughness. The increased incidence of fracture induced by high strain rates can be associated with a loss in toughness in the matrix caused by a strain rate induced stiffening of the fibril ductility, Le., a "locking-up" of the viscous sliding and sacrificial bonding mechanisms, which are the origin of inelastic deformation (and toughness) in bone at small length-scales. Published by Elsevier Ltd.
C1 [Zimmermann, Elizabeth A.; Gludovatz, Bernd; Busse, Bjoern; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Schaible, Eric] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Expt Syst Grp, Berkeley, CA 94720 USA.
[Busse, Bjoern] Univ Med Ctr, Dept Osteol & Biomech, Hamburg, Germany.
[Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM RORitchie@lbl.gov
RI Ritchie, Robert/A-8066-2008; Zimmermann, Elizabeth/A-4010-2015; Busse,
Bjorn/O-8462-2016;
OI Ritchie, Robert/0000-0002-0501-6998; Gludovatz,
Bernd/0000-0002-2420-3879; Busse, Bjorn/0000-0002-3099-8073; Zimmermann,
Elizabeth/0000-0001-9927-3372
FU National Institute of Health (NIH/NIDCR) [5R01 DE015633]; Emmy Noether
program of the German Research Foundation (DFG) [BU 2562/2-1]; Office of
Science of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the National Institute of Health (NIH/NIDCR)
under grant no. 5R01 DE015633 to the Lawrence Berkeley National
Laboratory (LBNL). BB was supported by the Emmy Noether program of the
German Research Foundation (DFG) under grant number BU 2562/2-1. We
acknowledge the use of the x-ray synchrotron beamline 7.3.3 (SAXS/WAXD)
at the Advanced Light Source (ALS) at LBNL, which is funded by the
Office of Science of the U.S. Department of Energy under contract no.
DE-AC02-05CH11231. The authors wish to thank Dr. Tony Tomsia at LBNL for
his support.
NR 61
TC 22
Z9 22
U1 6
U2 55
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0142-9612
EI 1878-5905
J9 BIOMATERIALS
JI Biomaterials
PD JUL
PY 2014
VL 35
IS 21
BP 5472
EP 5481
DI 10.1016/j.biomaterials.2014.03.066
PG 10
WC Engineering, Biomedical; Materials Science, Biomaterials
SC Engineering; Materials Science
GA AH7WL
UT WOS:000336346000006
PM 24731707
ER
PT J
AU Basu, A
Sanford, RA
Johnson, TM
Lundstrom, CC
Loffler, FE
AF Basu, Anirban
Sanford, Robert A.
Johnson, Thomas M.
Lundstrom, Craig C.
Loeffler, Frank E.
TI Uranium isotopic fractionation factors during U(VI) reduction by
bacterial isolates
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID SULFATE-REDUCING BACTERIA; MASS-DEPENDENT FRACTIONATION;
ANAEROMYXOBACTER-DEHALOGENANS; MICROBIAL REDUCTION; CHROMIUM ISOTOPES;
ELECTRON-TRANSFER; U-238/U-235; GROUNDWATER; RATIOS; CR(VI)
AB We experimentally determined the magnitude of uranium isotopic fractionation induced by U(VI) reduction by metal reducing bacterial isolates. Our results indicate that microbial U(VI) reduction induces isotopic fractionation; heavier isotopes (i.e., U-238) partition into the solid U(IV) products. The magnitudes of isotopic fractionation (expressed as epsilon = 1000 parts per thousand * (alpha-1)) for U-238/U-235 were 0.68 parts per thousand +/- 0.05 parts per thousand and 0.99 parts per thousand +/- 0.12 parts per thousand for Geobacter sulfurreducens strain PCA and strain IFRC-N, respectively. The epsilon values for Anaeromyxobacter dehalogenans strain FRC-W, strain FRC-R5, a novel Shewanella isolate, and Desulfitobacterium sp. strain Viet1 were 0.72 parts per thousand +/- 0.15 parts per thousand, 0.99 parts per thousand +/- 0.12 parts per thousand, 0.96 parts per thousand +/- 0.16 parts per thousand and 0.86 parts per thousand +/- 0.06 parts per thousand, respectively. Our results show that the maximum epsilon values of similar to 1.0 parts per thousand were obtained with low biomass (similar to 10(7) cells/mL) and low electron donor concentrations (similar to 500 mu M). These results provide an initial assessment of U-238/U-235 shifts induced by microbially-mediated U(VI) reduction, which is needed as U-238/U-235 data are increasingly applied as redox indicators in various geochemical settings. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Basu, Anirban] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Sanford, Robert A.; Johnson, Thomas M.; Lundstrom, Craig C.] Univ Illinois, Dept Geol, Urbana, IL 61801 USA.
[Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
[Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA.
[Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
RP Basu, A (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 483 McCone Hall, Berkeley, CA 94720 USA.
EM anirbanbasu@berkeley.edu
RI Basu, Anirban/P-5048-2016
OI Basu, Anirban/0000-0002-4905-9156
FU US Department of Energy, Office of Science - Subsurface Biogeochemical
Research Program [DE-SC0001281]
FX This material is based upon work supported by US Department of Energy,
Office of Science within the Subsurface Biogeochemical Research Program
under grant DE-SC0001281. We thank three anonymous reviewers for their
comments, which greatly improved the quality of this work.
NR 62
TC 28
Z9 29
U1 7
U2 47
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD JUL 1
PY 2014
VL 136
BP 100
EP 113
DI 10.1016/j.gca.2014.02.041
PG 14
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AH9SG
UT WOS:000336481800007
ER
PT J
AU Lee, JH
Zachara, JM
Fredrickson, JK
Heald, SM
McKinley, JP
Plymale, AE
Resch, CT
Moore, DA
AF Lee, Ji-Hoon
Zachara, John M.
Fredrickson, James K.
Heald, Steve M.
McKinley, James P.
Plymale, Andrew E.
Resch, Charles T.
Moore, Dean A.
TI Fe(II)- and sulfide-facilitated reduction of Tc-99(VII) O-4(-) in
microbially reduced hyporheic zone sediments
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID X-RAY-ABSORPTION; HANFORD SITE; VADOSE ZONE; PERTECHNETATE
IMMOBILIZATION; TECHNETIUM SPECIATION; SUBSURFACE SEDIMENTS;
HYDROGEN-SULFIDE; URANIUM; RIVER; IRON
AB Redox-reactive, biogeochemical phases generated by reductive microbial activity in hyporheic zone sediments from a dynamic groundwater-river interaction zone were evaluated for their ability to reduce soluble pertechnetate [Tc-99(VII) O-4(-)] to less soluble Tc(IV). The sediments were bioreduced by indigenous microorganisms that were stimulated by organic substrate addition in synthetic groundwater with or without sulfate. In most treatments, 20 mu mol L-1 initial aqueous Tc(VII) was reduced to near or below detection (3.82 X 10(-9) mol L-1) over periods of days to months in suspensions of variable solids concentrations. Native sediments containing significant lithogenic Fe(II) in various phases were, in contrast, unreactive with Tc(VII). The reduction rates in the bioreduced sediments increased with increases in sediment mass, in proportion to weak acid-extractable Fe(II) and sediment-associated sulfide (AVS). The rate of Tc(VII) reduction was first order with respect to both aqueous Tc(VII) concentration and sediment mass, but correlations between specific reductant concentrations and reaction rate were not found. X-ray microprobe measurements revealed a strong correlation between Tc hot spots and Fe-containing mineral particles in the sediment. However, only a portion of Fe-containing particles were Tc-hosts. The Tc-hot spots displayed a chemical signature (by EDXRF) similar to pyroxene. The application of autoradiography and electron microprobe allowed further isolation of Tc-containing particles that were invariably found to be ca 100 mu m aggregates of primary mineral material embedded within a fine-grained phyllosilicate matrix. EXAFS spectroscopy revealed that the Tc(IV) within these were a combination of a Tc(IV) O-2-like phase and Tc(IV)-Fe surface clusters, with a significant fraction of a TcSx-like phase in sediments incubated with SO42-. AVS was implicated as a more selective reductant at low solids concentration even though its concentration was below that required for stoichiometric reduction of Tc(VII). These results demonstrate that composite mineral aggregates may be redox reaction centers in coarse-textured hyporheic zone sediments regardless of the dominant anoxic biogeochemical processes. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Lee, Ji-Hoon; Zachara, John M.; Fredrickson, James K.; McKinley, James P.; Plymale, Andrew E.; Resch, Charles T.; Moore, Dean A.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Heald, Steve M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Zachara, JM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM john.zachara@pnnl.gov
FU Subsurface Biogeochemical Research Program (SBR); Office of Biological
and Environmental Research (OBER); US DOE; PNNL Scientific Focus Area
(SFA); Department of Energy's Office of Biological and Environmental
Research; Office of Basic Energy Sciences, US DOE [DE-AC02-06CH11357]
FX This research was supported by the Subsurface Biogeochemical Research
Program (SBR), Office of Biological and Environmental Research (OBER),
US DOE; and is a contribution of the PNNL Scientific Focus Area (SFA).
Subsurface sediment samples were provided courtesy of the Integrated
Field Research Challenge (IFRC) site at the Hanford 300 Area. Selected
analyses were performed at the Environmental Molecular Sciences
Laboratory (EMSL), a national scientific user facility sponsored by the
Department of Energy's Office of Biological and Environmental Research
and located at PNNL. PNNL is operated for the DOE by Battelle. XAS
analyses were performed at the Advanced Photon Source supported by
Office of Basic Energy Sciences, US DOE under Contract
DE-AC02-06CH11357. The reviewers acknowledge, with apprecia-tion, three
insightful reviews that improved the quality of this contribution.
NR 49
TC 11
Z9 11
U1 14
U2 76
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD JUL 1
PY 2014
VL 136
BP 247
EP 264
DI 10.1016/j.gca.2013.08.017
PG 18
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA AH9SG
UT WOS:000336481800015
ER
PT J
AU Bellomo, N
Brezzi, F
Manzini, G
AF Bellomo, N.
Brezzi, F.
Manzini, G.
TI Recent techniques for PDE discretizations on polyhedral meshes
SO MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES
LA English
DT Article
DE Polygonal meshes; polyhedral meshes; Mimetic Finite Differences; Virtual
Element Methods; Finite Volumes; discontinuous Galerkin methods
ID MIMETIC FINITE-DIFFERENCES; ELEMENT-METHOD; DIFFERENCE METHOD
AB This brief paper is an introduction to the papers published in a special issue devoted to survey on recent techniques for discretizing Partial Differential Equations on general polygonal and polyhedral meshes. The number of different techniques to deal with discretizations on polygonal and polyhedral meshes is quite huge, and their history is quite long. Here we concentrate on the most recent techniques, including Mimetic Finite Differences, Virtual Element Methods, and the recent developments, in this direction, of Finite Volumes and Discontinuous Galerkin Methods.
C1 [Bellomo, N.] Politecn Torino, Dept Math Sci, I-10129 Turin, Italy.
[Brezzi, F.] IUSS, I-27100 Pavia, Italy.
[Brezzi, F.] IMATI CNR, I-27100 Pavia, Italy.
[Manzini, G.] Los Alamos Natl Lab, Appl Math & Plasma Phys Grp, Div Theoret, Los Alamos, NM 87545 USA.
RP Brezzi, F (reprint author), IUSS, Via Ferrata 5, I-27100 Pavia, Italy.
EM nicola.bellomo@polito.it; brezzi@imati.cnr.it; gmanzini@lanl.gov
RI Brezzi, Franco/D-4362-2009; Bellomo, Nicola/B-3431-2010;
OI Brezzi, Franco/0000-0003-4715-5475; Bellomo, Nicola/0000-0002-5989-1608;
Manzini, Gianmarco/0000-0003-3626-3112
NR 21
TC 0
Z9 0
U1 0
U2 11
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0218-2025
EI 1793-6314
J9 MATH MOD METH APPL S
JI Math. Models Meth. Appl. Sci.
PD JUL
PY 2014
VL 24
IS 8
SI SI
BP 1453
EP 1455
DI 10.1142/S0218202514030018
PG 3
WC Mathematics, Applied
SC Mathematics
GA AH1ZS
UT WOS:000335921100001
ER
PT J
AU Gyrya, V
Lipnikov, K
Manzini, G
Svyatskiy, D
AF Gyrya, Vitaliy
Lipnikov, Konstantin
Manzini, Gianmarco
Svyatskiy, Daniil
TI M-Adaptation in the mimetic finite difference method
SO MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES
LA English
DT Article
DE Mimetic discretization; unstructured polyhedral meshes; discrete maximum
principles; numerical optimization
ID DISCRETE MAXIMUM PRINCIPLE; ANISOTROPIC DIFFUSION-PROBLEMS; MULTIPOINT
FLUX APPROXIMATION; TENSOR ARTIFICIAL VISCOSITY; ELLIPTIC PROBLEMS;
POLYGONAL MESHES; POLYHEDRAL MESHES; VOLUME METHOD; TOPOLOGY
OPTIMIZATION; UNSTRUCTURED GRIDS
AB The mimetic finite difference method produces a family of schemes with equivalent properties such as the stencil size, stability region, and convergence order. Each member of this family is defined by a set of parameters which can be chosen locally for every mesh element. The number of parameters depends on the geometry of a particular mesh element. M-Adaptation is a new adaptation methodology that identifies a member of this family with additional (superior) properties compared to the other schemes in the family. We analyze the enforcement of the discrete maximum principles for the diffusion equation in the primal and dual forms, the reduction of numerical dispersion and anisotropy for the acoustic wave equation, and the optimization of the performance of multi-grid solvers.
C1 [Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco; Svyatskiy, Daniil] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA.
[Manzini, Gianmarco] CNR, Ist Matemat Appl & Tecnol Informat, I-27100 Pavia, Italy.
RP Manzini, G (reprint author), Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA.
EM gyrya@lanl.gov; lipnikov@lanl.gov; gmanzini@lanl.gov; dasvyat@lanl.gov
OI Manzini, Gianmarco/0000-0003-3626-3112; Gyrya,
Vitaliy/0000-0002-5083-8878
FU National Nuclear Security Administration of the US Department of Energy
at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Office of
Science Advanced Scientific Computing Research (ASCR) Program in Applied
Mathematics Research
FX This work was carried out under the auspices of the National Nuclear
Security Administration of the US Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-06NA25396. The authors
acknowledge support of the DOE Office of Science Advanced Scientific
Computing Research (ASCR) Program in Applied Mathematics Research. The
model in Sec. 6 was provided by the DOE Office of Environmental
Management Advanced Simulation Capability for Environmental Management
(ASCEM) Program. 128
NR 129
TC 7
Z9 7
U1 0
U2 7
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0218-2025
EI 1793-6314
J9 MATH MOD METH APPL S
JI Math. Models Meth. Appl. Sci.
PD JUL
PY 2014
VL 24
IS 8
SI SI
BP 1621
EP 1663
DI 10.1142/S0218202514400053
PG 43
WC Mathematics, Applied
SC Mathematics
GA AH1ZS
UT WOS:000335921100006
ER
PT J
AU Manzini, G
Russo, A
Sukumar, N
AF Manzini, Gianmarco
Russo, Alessandro
Sukumar, N.
TI New perspectives on polygonal and polyhedral finite element methods
SO MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES
LA English
DT Article
DE Wachspress basis functions; barycentric finite elements; virtual element
method; numerical integration; consistency
ID TENSOR ARTIFICIAL VISCOSITY; ARBITRARY PLANAR POLYGONS; MOVING
LEAST-SQUARES; DIFFERENCE METHOD; ELLIPTIC PROBLEMS; DIFFUSION-PROBLEMS;
MIMETIC DISCRETIZATION; TOPOLOGY OPTIMIZATION; CONVEX POLYGONS; SOLID
MECHANICS
AB Generalized barycentric coordinates such as Wachspress and mean value coordinates have been used in polygonal and polyhedral finite element methods. Recently, mimetic finite difference schemes were cast within a variational framework, and a consistent and stable finite element method on arbitrary polygonal meshes was devised. The method was coined as the virtual element method (VEM), since it did not require the explicit construction of basis functions. This advance provides a more in-depth understanding of mimetic schemes, and also endows polygonal-based Galerkin methods with greater flexibility than three-node and four-node finite element methods. In the VEM, a projection operator is used to realize the decomposition of the stiffness matrix into two terms: a consistent matrix that is known, and a stability matrix that must be positive semi-definite and which is only required to scale like the consistent matrix. In this paper, we first present an overview of previous developments on conforming polygonal and polyhedral finite elements, and then appeal to the exact decomposition in the VEM to obtain a robust and efficient generalized barycentric coordinate-based Galerkin method on polygonal and polyhedral elements. The consistent matrix of the VEM is adopted, and numerical quadrature with generalized barycentric coordinates is used to compute the stability matrix. This facilitates post-processing of field variables and visualization in the VEM, and on the other hand, provides a means to exactly satisfy the patch test with efficient numerical integration in polygonal and polyhedral finite elements. We present numerical examples that demonstrate the sound accuracy and performance of the proposed method. For Poisson problems in R-2 and R-3, we establish that linearly complete generalized barycentric interpolants deliver optimal rates of convergence in the L-2-norm and the H-1-seminorm.
C1 [Manzini, Gianmarco] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA.
[Manzini, Gianmarco; Russo, Alessandro] CNR, Ist Matemat Appl & Tecnol Informat E Magenes, I-27100 Pavia, Italy.
[Russo, Alessandro] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20153 Milan, Italy.
[Sukumar, N.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA.
RP Manzini, G (reprint author), Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA.
EM gmanzini@lanl.gov; alessandro.russo@unimib.it; nsukumar@ucdavis.edu
RI Sukumar, N/B-1660-2008; Russo, Alessandro/F-6081-2012;
OI Russo, Alessandro/0000-0002-6878-402X; Manzini,
Gianmarco/0000-0003-3626-3112
FU National Nuclear Security Administration of the US Department of Energy
at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Office of
Science Advanced Scientific Computing Research (ASCR) Program in Applied
Mathematics; National Science Foundation [CMMI-1334783]
FX The work of G. M. was partially supported by the National Nuclear
Security Administration of the US Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-06NA25396 and the DOE
Office of Science Advanced Scientific Computing Research (ASCR) Program
in Applied Mathematics. N.S. gratefully acknowledges the research
support of the National Science Foundation through Contract Grant
CMMI-1334783 to the University of California at Davis. N.S. also thanks
Michael Floater, Andrew Gillette and Kai Hormann for many helpful
discussions.
NR 136
TC 30
Z9 30
U1 6
U2 21
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0218-2025
EI 1793-6314
J9 MATH MOD METH APPL S
JI Math. Models Meth. Appl. Sci.
PD JUL
PY 2014
VL 24
IS 8
SI SI
BP 1665
EP 1699
DI 10.1142/S0218202514400065
PG 35
WC Mathematics, Applied
SC Mathematics
GA AH1ZS
UT WOS:000335921100007
ER
PT J
AU Shim, YS
Zhang, L
Kim, DH
Kim, YH
Choi, YR
Nahm, SH
Kang, CY
Lee, W
Jang, HW
AF Shim, Young-Seok
Zhang, Lihua
Kim, Do Hong
Kim, Yeon Hoo
Choi, You Rim
Nahm, Seung Hoon
Kang, Chong-Yun
Lee, Wooyoung
Jang, Ho Won
TI Highly sensitive and selective H-2 and NO2 gas sensors based on
surface-decorated WO3 nanoigloos
SO SENSORS AND ACTUATORS B-CHEMICAL
LA English
DT Article
DE WO3; Nanoigloos; Surface decoration; Metal nanoparticles; Sensitization
ID ELECTRONIC NOSE; SENSING PROPERTIES; THIN-FILMS; CATALYSIS; SILVER;
NANOSTRUCTURES; TEMPERATURE
AB WO3 nanoigloos decorated with Ag-, Pd-. and Au nanoparticles are fabricated by soft-template method and self-agglomeration of metal films. The responses of WO3 nanoigloos decorated with metal nanoparticies to various gases such as NO2, CH3COCH3, C2H5OH, and H-2 are much higher than those of bare WO3 nanoigloos. According to the surface decoration, WO3 nanigloos show significantly different behaviors in the response enhancement, revealing that Pd-decorated WO3 nanoigloos exhibit the highest response to H-2 together with fast response time to H-2,H- C2H5OH, and CH3COCH3 (below 10s),Au-decorated WO3 nanoigloos exhibit the highest response to NO2. The catalytic effect of Ag is relatively weaker than Pd and Au nanoparticles, however, it exhibit the fastest response time to NO2. These are attributed to not only the varied catalytic activities of the metal nanoparticles, but also the different work function energies of them. Our results show that highly sensitive and selective WO3 nanoigloos decorated with metal nanoparticles can be an effective platform to fabricate an electronic nose for the further application of semiconducting metal oxide gas sensors. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Lee, Wooyoung] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea.
[Shim, Young-Seok; Lee, Wooyoung] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea.
[Shim, Young-Seok; Kim, Do Hong; Kim, Yeon Hoo; Choi, You Rim; Jang, Ho Won] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 151744, South Korea.
[Kang, Chong-Yun] Korea Inst Sci & Technol, Ctr Elect Mat, Seoul 136791, South Korea.
[Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Nahm, Seung Hoon] Korea Res Inst Stand & Sci, Ctr Energy Mat Metrol, Taejon 305340, South Korea.
Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 136701, South Korea.
RP Lee, W (reprint author), Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea.
EM wooyouong@yonsei.ac.kr; hwjang@snu.ac.kr
RI Jang, Ho Won/D-9866-2011;
OI Jang, Ho Won/0000-0002-6952-7359; Kang, Chong-Yun/0000-0002-4516-8160
FU Minstry of science, ICT AMP;Future Planning as the Globlal Frontier
Project; Outstanding Young Researcher Program,; National Research
Foundation of Korea; Korea Institure of science and Techmology; National
Research Foundation of Korea (NRF) [2009-0093823]; U.S. Department of
Energy, Office of Basic Energy Sciences, [DE-AC02-98CH10886]
FX This work was financially supported by the Center for Integrated Smart
Sensors funded by the Ministry of science, ICT & Future Planning as the
Global Frontier Project, the Outstanding Young Researcher Program, and
the National Research Foundation of Korea and a research program of the
Korea Institute of science and Technology. WL is grateful for the
support of priority Research Centers Program (2009-0093823) though the
National Research Foundation of Korea (NRF). TEM Research carried out in
part at the Center for Functional Nanomaterials, Brookhaven National
Laboratory. which is supported by the U.S. Department of Energy, Office
of Basic Energy Sciences,under Contract No.DE-AC02-98CH10886.
NR 38
TC 20
Z9 21
U1 6
U2 78
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-4005
J9 SENSOR ACTUAT B-CHEM
JI Sens. Actuator B-Chem.
PD JUL
PY 2014
VL 198
BP 294
EP 301
DI 10.1016/j.snb.2014.03.073
PG 8
WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
SC Chemistry; Electrochemistry; Instruments & Instrumentation
GA AG7EE
UT WOS:000335580100043
ER
PT J
AU Chen, CF
Marksteiner, QR
Reiten, MR
Wynn, TA
Guidry, DR
AF Chen, Ching-Fong
Marksteiner, Quinn R.
Reiten, Matthew R.
Wynn, Thomas A.
Guidry, Dennis R.
TI Lamination of magnesium oxide spacers to barium strontium zirconium
titanate ceramics
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID SOLITON GENERATION; FREQUENCY
AB We propose an innovative idea to bond the dielectric barium strontium zirconium titanate (BSTZO) plates with magnesium oxide (MgO) as the spacers to achieve a hermetic module without any air gaps between the dielectric and the spacer. The gold metallization can be applied across the whole assembly to create an integrated electrode. The gold metallization also eliminates pressure contact by external copper plates assemblies, which are required to achieve good contacts between the copper plates and the metallized surfaces of the BSTZO. The MgO spacers are processed using a dry-pressing and pressureless-sintering method. The thermal expansion coefficient (CTE) of BSTZO and MgO spacer was measured. In addition to matching the CTE between BSTZO dielectric and the MgO spacer, it is also critical to develop a good bonding material with CTE matching to BSTZO and MgO spacer. The effect of CTE for various bonding compositions on the dielectric properties was thoroughly studied and reported. The mechanism explaining the high and low dielectric constants for the laminates is proposed and discussed based on the CTE results and their effect on microstructural development.
C1 [Chen, Ching-Fong; Wynn, Thomas A.; Guidry, Dennis R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Marksteiner, Quinn R.; Reiten, Matthew R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Chen, CF (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
EM cchen@lanl.gov
FU US Department of Energy through the LANL LDRD program; DOE
[DE-AC52-06NA25396]
FX The authors would like to thank Elias N. Pulliam for measuring the
dielectrical properties of some laminates. We gratefully acknowledge the
support of the US Department of Energy through the LANL LDRD program for
this work. Los Alamos National Laboratory is operated by Los Alamos
National Security LLC under DOE Contract DE-AC52-06NA25396.
NR 14
TC 1
Z9 1
U1 0
U2 14
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2461
EI 1573-4803
J9 J MATER SCI
JI J. Mater. Sci.
PD JUL
PY 2014
VL 49
IS 14
BP 5218
EP 5226
DI 10.1007/s10853-014-8238-8
PG 9
WC Materials Science, Multidisciplinary
SC Materials Science
GA AG5IC
UT WOS:000335451700055
ER
PT J
AU Hecht, AA
Blakeley, RE
Martin, WJ
Leonard, E
AF Hecht, A. A.
Blakeley, R. E.
Martin, W. J.
Leonard, E.
TI Comparison of Geant4 and MCNP6 for use in delayed fission radiation
simulation
SO ANNALS OF NUCLEAR ENERGY
LA English
DT Article
DE Fission distribution; Delayed radiation; Monte Carlo; Geant4; MCNP;
CINDER
ID GAMMA SIGNATURE CALCULATION; NEUTRON-INDUCED FISSION; MONTE-CARLO
AB Neutron induced fission fragment distributions and delayed fission radiation are extremely important with reactor applications in fission cross sections and heating. Data on the fragment distributions are sparse so simulations use models or interpolations between known neutron energies. Different simulations perform different treatments of the distributions, and have different capabilities and flexibility in use. MCNP is a typical workhorse for fission simulations and coupled with burn-up codes such as CINDER can provide delayed radiation from fission. Geant4 is an extremely flexible physics based Monte Carlo simulation framework, but is not typically used for fission research. In this work the applicability of Geant4 for delayed fission radiation simulations is examined, with comparison to MCNP6 coupled with the CINDER2008 burn-up code. The Fisher and Engle fission experiment with the Godiva II subcritical assembly as a fission neutron source is used as a test case. Both simulations are adapted from that experiment and simulation results are compared with that experiment. Following Fisher and Engle, photons/fission/sec, MeV/fission/sec, and MeV/photon are examined. For the first two quantities results from both simulation codes are similar and are lower than experimental values, with Geant4 giving a higher value for earlier time bins and MCNP6/CINDER giving a higher value for the later time bins. For the last quantity both simulations are usually within uncertainty of the experimental values, with MCNP6/CINDER values consistently higher than both experimental and Geant4 values. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Hecht, A. A.; Blakeley, R. E.; Martin, W. J.; Leonard, E.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Martin, W. J.] Sandia Natl Labs, Albuquerque, NM 87123 USA.
RP Hecht, AA (reprint author), Univ New Mexico, Albuquerque, NM 87131 USA.
EM hecht@unm.edu
FU DTRA [DTRA01-03-D-0009-0025]
FX This work was partially supported through DTRA contract
DTRA01-03-D-0009-0025, Modeling and Simulation to Support Systems
Development and Assessment for Standoff Detection of Nuclear Materials
and through a UNM Junior Faculty Collaborative Research Grant. The
authors acknowledge useful discussions on programming with John Perry of
both UNM and LANL.
NR 22
TC 1
Z9 1
U1 3
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0306-4549
J9 ANN NUCL ENERGY
JI Ann. Nucl. Energy
PD JUL
PY 2014
VL 69
BP 134
EP 138
DI 10.1016/j.anucene.2014.02.004
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA AG0LR
UT WOS:000335107500017
ER
PT J
AU Hunt, RD
Hickman, RR
Ladd-Lively, JL
Anderson, KK
Collins, RT
Collins, JL
AF Hunt, R. D.
Hickman, R. R.
Ladd-Lively, J. L.
Anderson, K. K.
Collins, R. T.
Collins, J. L.
TI Production of small uranium dioxide microspheres for cermet nuclear fuel
using the internal gelation process
SO ANNALS OF NUCLEAR ENERGY
LA English
DT Article
DE Internal gelation; Uranium oxide microspheres; Cermet fuel
AB The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/(tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 mu m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 mu m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide (UOx) microspheres. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Hunt, R. D.; Ladd-Lively, J. L.; Anderson, K. K.; Collins, R. T.; Collins, J. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Hickman, R. R.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35802 USA.
RP Hunt, RD (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA.
EM huntrd@ornl.gov
RI Ladd-Lively, Jennifer/I-6305-2016
OI Ladd-Lively, Jennifer/0000-0001-9353-675X
NR 18
TC 3
Z9 3
U1 2
U2 18
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0306-4549
J9 ANN NUCL ENERGY
JI Ann. Nucl. Energy
PD JUL
PY 2014
VL 69
BP 139
EP 143
DI 10.1016/j.anucene.2014.02.003
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA AG0LR
UT WOS:000335107500018
ER
PT J
AU Ashley, SF
Lindley, BA
Parks, GT
Nuttall, WJ
Gregg, R
Hesketh, KW
Kannan, U
Krishnani, PD
Singh, B
Thakur, A
Cowper, M
Talamo, A
AF Ashley, S. F.
Lindley, B. A.
Parks, G. T.
Nuttall, W. J.
Gregg, R.
Hesketh, K. W.
Kannan, U.
Krishnani, P. D.
Singh, B.
Thakur, A.
Cowper, M.
Talamo, A.
TI Fuel cycle modelling of open cycle thorium-fuelled nuclear energy
systems
SO ANNALS OF NUCLEAR ENERGY
LA English
DT Article
DE Thorium; Nuclear energy; Fuel cycle modelling; Open nuclear fuel cycle;
Proliferation resistance
ID REACTOR; DESIGN
AB In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium-uranium-fuelled (Th-U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to similar to 20% U-235, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory's fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th-U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of similar to 6% in the required uranium ore per kWh was seen for one of the Th-U-fuelled systems compared to the reference U-fuelled system, the other two Th-U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th-U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little merit in incorporating thorium into nuclear energy systems operating with open nuclear fuel cycles. (C) 2014 The Authors. Published by Elsevier Ltd.
C1 [Ashley, S. F.; Lindley, B. A.; Parks, G. T.] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England.
[Nuttall, W. J.] Open Univ, Dept Engn & Innovat, Milton Keynes MK7 6AA, Bucks, England.
[Gregg, R.; Hesketh, K. W.] UK Natl Nucl Lab, Preston PR4 0XJ, Lancs, England.
[Kannan, U.; Krishnani, P. D.; Singh, B.; Thakur, A.] Bhabha Atom Res Ctr, Reactor Phys Design Div, Bombay 400085, Maharashtra, India.
[Cowper, M.] Univ Liverpool, Oliver Lodge Lab, Dept Phys, NTEC, Liverpool L69 7ZE, Merseyside, England.
[Talamo, A.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
RP Ashley, SF (reprint author), Open Univ, Dept Engn & Innovat, Milton Keynes MK7 6AA, Bucks, England.
EM sfa24@cam.ac.uk
OI Ashley, Stephen/0000-0001-5139-2209; talamo, alberto/0000-0001-5685-0483
FU UK Engineering and Physical Sciences Research Council [EP/I018425/1]
FX This work is supported by the UK Engineering and Physical Sciences
Research Council under Grant No. EP/I018425/1. Two of the authors (SFA
and WJN) would like to acknowledge the generous welcome provided by
Bhabha Atomic Research Centre during a visit to their facilities.
NR 62
TC 8
Z9 8
U1 2
U2 36
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0306-4549
J9 ANN NUCL ENERGY
JI Ann. Nucl. Energy
PD JUL
PY 2014
VL 69
BP 314
EP 330
DI 10.1016/j.anucene.2014.01.042
PG 17
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA AG0LR
UT WOS:000335107500036
ER
PT J
AU Al-Azizi, AA
Eryilmaz, O
Erdemir, A
Kim, SH
AF Al-Azizi, Ala' A.
Eryilmaz, Osman
Erdemir, Ali
Kim, Seong H.
TI Nano-texture for a wear-resistant and near-frictionless diamond-like
carbon
SO CARBON
LA English
DT Article
ID DLC FILMS; SUPERLOW-FRICTION; INTERNAL-STRESS; THIN-FILMS;
SURFACE-ROUGHNESS; AMORPHOUS-CARBON; ELASTIC-MODULUS; COATINGS;
LUBRICATION; HARDNESS
AB The effect of nano-scale surface texture on wear resistance of diamond-like carbon 0)14 films was studied using a reciprocating ball-on-fiat tribometer in dry, humid, and liquid water environments. The nano-scale surface texture was produced by depositing similar to 1 gm thick DLC films onto silicon substrates pre-textured with pyramidal wells and polystyrene spheres. The surface roughness of the textured DLC films was about 50 nm in both cases. The friction and wear behavior of the flat and nano-textured DLC films were tested with AISI 440C-grade stainless steel balls at a contact load creating about 360 nm deep Hertzian deformation which is significantly larger than the surface roughness. At this condition, nano-texturing did not affect the friction coefficient, but it significantly reduced the wear of DLC films in dry and humid nitrogen compared to flat DLC. In dry nitrogen, the nanotextured DLC films showed the ultra-low friction without substantial wear of DLC and deposition of thick transfer films onto the counter-surface. The wear reduction appeared to be related to the stress relief in the nano-textured DLC film. In liquid water, surface features on the nano-textured DLC films were diminished due to tribochemical oxidation and material removal at the sliding interface. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Al-Azizi, Ala' A.; Kim, Seong H.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA.
[Eryilmaz, Osman; Erdemir, Ali] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
[Eryilmaz, Osman; Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
RP Kim, SH (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA.
EM shkim@engr.psu.edu
FU National Science Foundation [CMMI-1131128]; U.S. Department of Energy,
Basic 'Energy Sciences, Office of Energy Efficiency and Renewable Energy
[DE-ACO2-06CH11357]
FX This work was supported by the National Science Foundation (Grant No.
CMMI-1131128). The authors acknowledged Dr. Shikuan Yang for his help
with electron microscope imaging. O.E. and A.E. were supported by the
U.S. Department of Energy, Basic 'Energy Sciences, Office of Energy
Efficiency and Renewable Energy, under contract #DE-ACO2-06CH11357.
NR 67
TC 9
Z9 9
U1 9
U2 102
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
EI 1873-3891
J9 CARBON
JI Carbon
PD JUL
PY 2014
VL 73
BP 403
EP 412
DI 10.1016/j.carbon.2014.03.003
PG 10
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA AG0HK
UT WOS:000335096300044
ER
PT J
AU Shin, SJ
Tran, IC
Willey, TM
van Buuren, T
Ilausky, J
Biener, MM
Worsley, MA
Hamza, AV
Kucheyev, SO
AF Shin, S. J.
Tran, I. C.
Willey, T. M.
van Buuren, T.
Ilausky, J.
Biener, M. M.
Worsley, M. A.
Hamza, A. V.
Kucheyev, S. O.
TI Robust nanoporous alumina monoliths by atomic layer deposition on
low-density carbon-nanotube scaffolds
SO CARBON
LA English
DT Article
ID SENSING INDENTATION; AEROGELS; SOLIDS
AB Synthesis of nanoporous alumina monoliths with controlled morphology and density is a challenge. Here, we demonstrate mechanically robust alumina monoliths synthesized by conformal overcoating of graphitic nanoligaments of low-density carbon-nanotube-based aerogels (CNT-CAs) by using atomic layer deposition. Young's modulus of resultant monoliths increases superlinearly with the monolith density with an exponent of -2.4, defined by the morphology and connectivity of the CNT-CA scaffold. As a result, for a given monolith density, alumina-carbon composites have moduli comparable to those of CNT-CAs and significantly superior to those of pure alumina aerogels reported previously. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Shin, S. J.; Tran, I. C.; Willey, T. M.; van Buuren, T.; Biener, M. M.; Worsley, M. A.; Hamza, A. V.; Kucheyev, S. O.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Ilausky, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Shin, SJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM shin5@llnl.gov
RI Worsley, Marcus/G-2382-2014; USAXS, APS/D-4198-2013; Tran,
Ich/C-9869-2014; Foundry, Molecular/G-9968-2014; Ilavsky,
Jan/D-4521-2013; Willey, Trevor/A-8778-2011
OI Worsley, Marcus/0000-0002-8012-7727; Ilavsky, Jan/0000-0003-1982-8900;
Willey, Trevor/0000-0002-9667-8830
FU LLNL [DE-AC52-07NA27344]; US DOE [DE-ACO2-05CH11231, DE-ACO2-06CH11357];
National Science Foundation/DOE [NSF/CHE-0822838]
FX This work was performed under the auspices of the US DOE by LLNL under
Contract DE-AC52-07NA27344. Transmission electron microscopy experiments
were conducted at the National Center for Electron Microscopy, LBNL,
which is supported by the US DOE under Contract DE-ACO2-05CH11231. Use
of the Advanced Photon Source, an Office of Science User Facility
operated for the US DOE Office of Science by Argonne National
Laboratory, was supported by the US DOE under Contract No.
DE-ACO2-06CH11357. ChemMatCARS Sector 15 is principally supported by the
National Science Foundation/ DOE under Grant No. NSF/CHE-0822838.
NR 24
TC 5
Z9 5
U1 3
U2 36
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
EI 1873-3891
J9 CARBON
JI Carbon
PD JUL
PY 2014
VL 73
BP 443
EP 447
DI 10.1016/j.carbon.2014.03.006
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA AG0HK
UT WOS:000335096300048
ER
PT J
AU Abdalla, M
Hastings, A
Helmy, M
Prescher, A
Osborne, B
Lanigan, G
Forristal, D
Killi, D
Maratha, P
Williams, M
Rueangritsarakul, K
Smith, P
Nolan, P
Jones, MB
AF Abdalla, M.
Hastings, A.
Helmy, M.
Prescher, A.
Osborne, B.
Lanigan, G.
Forristal, D.
Killi, D.
Maratha, P.
Williams, M.
Rueangritsarakul, K.
Smith, P.
Nolan, P.
Jones, M. B.
TI Assessing the combined use of reduced tillage and cover crops for
mitigating greenhouse gas emissions from arable ecosystem
SO GEODERMA
LA English
DT Article
DE Reduced tillage; Conventional tillage; Cover crop; DNDC model;
Greenhouse gas emissions; Future climate
ID NITROUS-OXIDE EMISSIONS; SOIL CO2 EFFLUX; FLUXES FOLLOWING TILLAGE;
FILLED PORE-SPACE; LOAMY SAND SOIL; CARBON-DIOXIDE; LONG-TERM;
CONSERVATION TILLAGE; CROPPING SYSTEM; ORGANIC-MATTER
AB Field management activities have significant impacts on greenhouse gas (GHG) emissions from cropland soils. In this study, the effectiveness of combining reduced tillage with a mustard cover crop (RT-CC) to mitigate present and future GHG emissions from a fertilized spring barley field in the southeast of Ireland was assessed. The field site which had a free-draining sandy loam soil with low soil moisture holding capacity, had been managed for three years prior to measurements under two different tillage systems; conventional (CT) and RT-CC. Field measurements of soil CO2, N2O and CH4 emissions, crop biomass, water filled pore space (WFPS), soil temperature and soil nitrate were made to capture both steady state conditions as well as the management events. Field data were used to validate the DNDC (DeNitrification-DeComposition) model and future GHG emissions under two sets of climate projections were predicted. Although fertilizer use was the same for both treatments the RT-CC treatment had significantly (p < 0.05) higher N2O emissions for both present and future climate. However, the inclusion of a cover crop with the RT treatment increased predicted soil organic carbon (SOC), which more than compensated for the higher N2O flux resulting in a lower total GHG balance (TGGB) compared with the CT treatment. Results show that the effectiveness of RT-CC in mitigating GHG emissions will depend crucially on the magnitude of compensatory increases in carbon dioxide uptake by the cover crop that will contribute to a reduction in the total GHG balance. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Abdalla, M.; Hastings, A.; Smith, P.] Univ Aberdeen, Sch Biol Sci, Inst Biol & Environm Sci, Aberdeen AB24 3UU, Scotland.
[Abdalla, M.; Williams, M.; Rueangritsarakul, K.; Jones, M. B.] Univ Dublin Trinity Coll, Sch Nat Sci, Dept Bot, Dublin 2, Ireland.
[Helmy, M.; Osborne, B.; Killi, D.; Maratha, P.] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 4, Ireland.
[Prescher, A.] Inst Landscape Syst Anal, Leibniz Ctr Agr Landscape Res ZALF, D-15374 Muncheberg, Germany.
[Lanigan, G.] TEAGASC, Johnstown Castle Res Ctr, Wexford, Ireland.
[Forristal, D.] TEAGASC, Oak Pk Crops Res Ctr, Oak Pk, Co Carlow, Ireland.
[Nolan, P.] Univ Coll Dublin, Meteorol & Climate Ctr, Dublin 4, Ireland.
RP Abdalla, M (reprint author), Univ Aberdeen, Sch Biol Sci, Inst Biol & Environm Sci, 23 St Machar Dr, Aberdeen AB24 3UU, Scotland.
EM mabdalla@abdn.ac.uk
RI Lanigan, Gary/C-6864-2012; Smith, Pete/G-1041-2010
OI Lanigan, Gary/0000-0003-0813-3097; Smith, Pete/0000-0002-3784-1124
FU Irish Department of Agriculture Research Stimulus Fund [07 528]
FX This work was funded by the Irish Department of Agriculture Research
Stimulus Fund (project no: 07 528) and contributed to the EU FP7 project
GHG-Europe. We are grateful to the staff of Teagasc Research Centre,
Carlow for facilitating our field work. Pete Smith is a Royal
Society-Wolfson Research Merit Award holder.
NR 138
TC 6
Z9 6
U1 15
U2 122
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0016-7061
EI 1872-6259
J9 GEODERMA
JI Geoderma
PD JUL
PY 2014
VL 223
BP 9
EP 20
DI 10.1016/j.geoderma.2014.01.030
PG 12
WC Soil Science
SC Agriculture
GA AG3CA
UT WOS:000335292200002
ER
PT J
AU Chae, KY
Ahn, S
Bardayan, DW
Chipps, KA
Manning, B
Pain, SD
Peters, WA
Schmitt, KT
Smith, MS
Strauss, SY
AF Chae, K. Y.
Ahn, S.
Bardayan, D. W.
Chipps, K. A.
Manning, B.
Pain, S. D.
Peters, W. A.
Schmitt, K. T.
Smith, M. S.
Strauss, S. Y.
TI Construction of a fast ionization chamber for high-rate particle
identification
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Gas-filled ionization chamber; Fast response; High-current heavy ion
beams; Particle identification
AB A new gas filled ionization chamber for high count rate particle identification has been constructed and commissioned at the Holifielcl Radioactive lon Beam Facility (RIME) at Oak Ridge National Laboratory (ORNL). To enhance the response Lime of the ionization chamber, a design utilizing a tilted entrance window and tilted electrodes was adopted, which is modified from art original design by Kimura et al. [1]. A maximum counting rate of 700,000 particles per second has been achieved. The detector has been used for several radioactive beam measurements performed at the HRIBF. (C) 2014 Elsevier BY. All rights reserved.
C1 [Chae, K. Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea.
[Chae, K. Y.; Bardayan, D. W.; Chipps, K. A.; Pain, S. D.; Smith, M. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Ahn, S.; Chipps, K. A.; Schmitt, K. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Bardayan, D. W.; Strauss, S. Y.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Chipps, K. A.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA.
[Manning, B.; Strauss, S. Y.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Peters, W. A.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA.
RP Chae, KY (reprint author), Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea.
EM kchae@skku.edu
RI Pain, Steven/E-1188-2011; Peters, William/B-3214-2012;
OI Pain, Steven/0000-0003-3081-688X; Peters, William/0000-0002-3022-4924;
Chipps, Kelly/0000-0003-3050-1298
FU National Research Foundation of Korea (NRF) - Korea government (MEST)
[NRF-2012R1A1A1041763]; US Department of Energy Office of Nuclear
Physics [DE-AC05-00OR22725 (ORNL), DE-FG02-96ER40983, DE-SC0001174,
DE-FG03-93ER40789]; National Nuclear Security Administration
[DE-FG52-08NA28552]
FX The authors wish to thank the staff members of the HRIBF for making this
work possible. This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MEST)
(No. NRF-2012R1A1A1041763), the US Department of Energy Office of
Nuclear Physics under Contract nos. DE-AC05-00OR22725 (ORNL),
DE-FG02-96ER40983 and DE-SC0001174 (University of Tennessee),
DE-FG03-93ER40789 (Colorado School of Mines), and the National Nuclear
Security Administration under the Stewardship Science Academic Alliances
program through DOE Cooperative Agreement no. DE-FG52-08NA28552.
NR 15
TC 5
Z9 5
U1 1
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2014
VL 751
BP 6
EP 10
DI 10.1016/j.nima.2014.03.016
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AG0WD
UT WOS:000335135500002
ER
PT J
AU Wang, CL
Riedel, RA
AF Wang, C. L.
Riedel, R. A.
TI Uniformity measurements and new positioning algorithms for
wavelength-shifting fiber neutron detectors
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Wavelength-shifting fiber neutron detector; Neutron diffraction; Quantum
noise; Non-uniformity; Positioning algorithm; Gamma-ray sensitivity
ID SCINTILLATION CAMERAS; LIGHT
AB Wavelength-shifting (WLS) fiber scintillator detectors were successfully installed at two neutron powder diffractometers at the Spallation Neutron Source (SNS). However, they have the following second-order disadvantages: (i) they cannot have both high efficiency and images free of ghosting (position misassignment) concurrently; (ii) the apparent detection efficiency and spatial resolution are not uniform. These issues are related to the diffusion of scintillation photons and the fluctuation in the number of photons (quantum noise) collected by photo-multiplier tubes (PMTs). To mitigate these two issues, we developed two statistics-based positioning algorithms. i.e., a centroid algorithm (CEA) and a correlation algorithm (CA). Compared with the generally used maximum-photon algorithm (MPA), the CEA eliminates the ghosting with only about a 10% loss in detection efficiency, and provides better uniformity in detection efficiency and intrinsic background and lower gamma-ray sensitivity. The CA can effectively eliminate ghosting too, but the loss of efficiency at the group boundaries of PMTs is large. The results indicate that both algorithms can reduce the influence of quantum noise on the neutron positioning. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Wang, C. L.; Riedel, R. A.] Oak Ridge Natl Lab, Neutron Sci Directorate, Instrument & Source Div, Oak Ridge, TN 37831 USA.
RP Wang, CL (reprint author), Oak Ridge Natl Lab, Neutron Sci Directorate, Instrument & Source Div, Oak Ridge, TN 37831 USA.
EM wangc@ornl.gov
OI Wang, Cai-Lin/0000-0001-9745-2334
NR 19
TC 1
Z9 1
U1 1
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2014
VL 751
BP 55
EP 61
DI 10.1016/j.nima.2014.03.024
PG 7
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AG0WD
UT WOS:000335135500010
ER
PT J
AU Pawelczak, IA
Glenn, AM
Martinez, HP
Carman, ML
Zaitseva, NP
Payne, A
AF Pawelczak, I. A.
Glenn, A. M.
Martinez, H. P.
Carman, M. L.
Zaitseva, N. P.
Payne, S. A.
TI Boron-loaded plastic scintillator with neutron-gamma pulse shape
discrimination capability
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE (10)Boron-loaded PSD plastic scintillator; Pulse shape discrimination;
Thermal-neutron detection; Fast-neutron detection
ID LIQUID SCINTILLATOR; DETECTORS
AB Development of the plastic scintillator with neutron sensitivity from thermal to multi-MeV and pulse shape discrimination(PSD) has been demonstrated. Incorporation of B-10-containing compounds into the plastic scintillator with PSD capability leads to detector improvement in regard to neutron detection efficiency while preserving the discrimination between neutrons and gamma-rays. Effects of boron loading on scintillation and pulse shape discrimination properties are discussed. A PSD figure-of-merit value of 1.4 +/- 0.03 has been achieved for events in a thermal neutron energy domain, 50-100keV(ee), for PSD plastic loaded with 5 wt.% of m-carborane. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Pawelczak, I. A.; Glenn, A. M.; Martinez, H. P.; Carman, M. L.; Zaitseva, N. P.; Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Pawelczak, IA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM pawelczak1@llnl.gov
FU U.S.Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; U.S.Department of Energy Office of Nonproliferation
Research and Development [NA-22]; Defense and Thread Reduction Agency
FX This work was performed under the auspices of the U.S.Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Financial support provided by the U.S.Department of
Energy Office of Nonproliferation Research and Development (NA-22) and
Defense and Thread Reduction Agency. The authors wish to thank Dr.
Benjamin Rupert for preparation of liquid scintillator and Dr. Ronald
Wurtz for valuable discussions.
NR 20
TC 11
Z9 12
U1 0
U2 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2014
VL 751
BP 62
EP 69
DI 10.1016/j.nima.2014.03.027
PG 8
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AG0WD
UT WOS:000335135500011
ER
PT J
AU Burr, T
Hamada, MS
Ticknor, L
Weaver, B
AF Burr, Tom
Hamada, Michael S.
Ticknor, Larry
Weaver, Brian
TI Model selection and change detection for a time-varying mean in process
monitoring
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Approximate Bayesian computation; Model selection; Process monitoring
residuals
ID APPROXIMATE BAYESIAN COMPUTATION
AB Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Thresholde stimation is an old topic; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of alarm threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual=data - prediction. This paper briefly reviews alarm threshold estimation, introduces model selection options, and considers several assumptions regarding the data-generating mechanism for PM residuals. Four PM examples from nuclear safeguards are included. One example involves frequent by-batch material balance closures where a dissolution vessel has time-varying efficiency, leading to time-varying material holdup. Another example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals. Our main focus is model selection to select a defensible model for normal behavior with a time-varying mean in a PM residual stream. We use approximate Bayesian computation to perform the model selection and parameter estimation for normal behavior. We then describe a simple lag-one-differencing option similar to that used to monitor non-stationary times series to monitor for off-normal behavior. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Burr, Tom; Hamada, Michael S.; Ticknor, Larry; Weaver, Brian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Burr, T (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM tburr@lanl.gov
OI Ticknor, Lawrence/0000-0002-7967-7908
NR 31
TC 1
Z9 1
U1 1
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2014
VL 751
BP 79
EP 87
DI 10.1016/j.nima.2014.03.023
PG 9
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA AG0WD
UT WOS:000335135500013
ER
PT J
AU Wu, LZ
Serpersu, EH
AF Wu, Lingzhi
Serpersu, Engin H.
TI Erratum: "Deciphering interactions of the aminoglycoside
phosphotransferase( 3')-IIIa with its ligands," Biopolymers 91( 9), 801-
809, ( 2009)
SO BIOPOLYMERS
LA English
DT Correction
C1 [Wu, Lingzhi; Serpersu, Engin H.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA.
[Wu, Lingzhi] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China.
[Wu, Lingzhi] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China.
[Serpersu, Engin H.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA.
[Serpersu, Engin H.] Oak Ridge Natl Lab, Knoxville, TN 37996 USA.
RP Wu, LZ (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA.
NR 1
TC 0
Z9 0
U1 2
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0006-3525
EI 1097-0282
J9 BIOPOLYMERS
JI Biopolymers
PD JUL
PY 2014
VL 101
IS 7
BP 819
EP 819
DI 10.1002/bip.22480
PG 1
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA AF4KN
UT WOS:000334681000011
ER
PT J
AU Tan, ECD
Marker, TL
Roberts, MJ
AF Tan, Eric C. D.
Marker, Terry L.
Roberts, Michael J.
TI Direct Production of Gasoline and Diesel Fuels from Biomass via
Integrated Hydropyrolysis and Hydroconversion Process-A Techno- economic
Analysis
SO ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY
LA English
DT Article
DE biomass to fuels; hydropyrolysis; gasoline; diesel; techno-economic
analysis; process modeling
ID LIGNOCELLULOSIC BIOMASS; FAST PYROLYSIS; TECHNOECONOMICS; GASIFICATION
AB A techno-economic analysis (TEA) is performed to investigate the production of gasoline and diesel range hydrocarbon fuels by conversion of woody biomass via Gas Technology Institute (GTI)'s integrated hydropyrolysis plus hydroconversion (IH2) process. The processing capacity is 2000 dry metric tonnes (2205 dry US tons) of woody biomass per day. Major process areas include catalytic hydropyrolysis, catalytic hydroconversion, on-site hydrogen production, feedstock handling and storage, hydrocarbon absorber, sour water stripper, hydrogen sulfide scrubber, distillation tower, and all other operations support utilities. The TEA incorporates applicable commercial technologies, process modeling using Aspen HYSYS software, equipment cost estimation, and discounted cash flow analysis. The resulting minimum fuel selling price is $1.64 per gallon (or $1.68 per gallon of gasoline equivalent) in 2007 US dollars. The process yields 79 gallons of liquid fuels per dry US ton of woody biomass feedstock, for an annual fuel production rate of 61 million gallons at 96% on-stream time. The estimated total capital investment for an nth-plant is $264 million. A sensitivity analysis captures uncertainties in costs and plant performance. Results from this TEA can serve as the baseline for future comparison and as a basis for comparing this process to other biomass-to-liquid fuel pathways. (c) 2013 American Institute of Chemical Engineers Environ Prog, 33: 609-617, 2014
C1 [Tan, Eric C. D.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Marker, Terry L.; Roberts, Michael J.] Inst Gas Technol, Des Plaines, IL 60018 USA.
RP Tan, ECD (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
EM eric.tan@nrel.gov
FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy
Laboratory; DOE Cooperative Agreement [DE-EE-0002873]
FX This work was supported by the US Department of Energy under Contract
No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.
The work is based on joint work between NREL and GTI under NREL
agreement number CRD-10-388. GTI would like to acknowledge funding of
the research through DOE Cooperative Agreement DE-EE-0002873. The
authors thank Sara Havig (NREL) for communications support.
NR 23
TC 10
Z9 10
U1 6
U2 39
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1944-7442
EI 1944-7450
J9 ENVIRON PROG SUSTAIN
JI Environ. Prog. Sustain. Energy
PD JUL
PY 2014
VL 33
IS 2
BP 609
EP 617
DI 10.1002/ep.11791
PG 9
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental;
Engineering, Chemical; Engineering, Industrial; Environmental Sciences
SC Science & Technology - Other Topics; Engineering; Environmental Sciences
& Ecology
GA AE9BL
UT WOS:000334298800035
ER
PT J
AU Daldorff, LKS
Toth, G
Gombosi, TI
Lapenta, G
Amaya, J
Markidis, S
Brackbill, JU
AF Daldorff, Lars K. S.
Toth, Gabor
Gombosi, Tamas I.
Lapenta, Giovanni
Amaya, Jorge
Markidis, Stefano
Brackbill, Jeremiah U.
TI Two-way coupling of a global Hall magnetohydrodynamics model with a
local implicit particle-in-cell model
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Plasma physics; MHD; PIC; Model coupling
ID HYBRID DRIFT INSTABILITY; BLOCK-ADAPTIVE GRIDS; PLASMA SIMULATION;
COLLISIONLESS DISSIPATION; MAGNETIC RECONNECTION; KINETIC SIMULATIONS;
RADIATIVE SHOCKS; SPACE WEATHER; SCHEME; FIELD
AB Computational models based on a fluid description of the plasma, such as magnetohydrodynamic (MHD) and extended magnetohydrodynamic (XMHD) codes are highly efficient, but they miss the kinetic effects due to the assumptions of small gyro radius, charge neutrality, and Maxwellian thermal velocity distribution. Kinetic codes can properly take into account the kinetic effects, but they are orders of magnitude more expensive than the fluid codes due to the increased degrees of freedom. If the fluid description is acceptable in a large fraction of the computational domain, it makes sense to confine the kinetic model to the regions where kinetic effects are important. This coupled approach can be much more efficient than a pure kinetic model. The speed up is approximately the volume ratio of the full domain relative to the kinetic regions assuming that the kinetic code uses a uniform grid. This idea has been advocated by [1] but their coupling was limited to one dimension and they employed drastically different grid resolutions in the fluid and kinetic models.
We describe a fully two-dimensional two-way coupling of a Hall MHD model BATS-R-US with an implicit Particle-in-Cell (PIC) model iPIC3D. The coupling can be performed with identical grid resolutions and time steps. We call this coupled computational plasma model MHD-EPIC (MHD with Embedded PIC regions). Our verification tests show that MHD-EPIC works accurately and robustly. We show a two-dimensional magnetosphere simulation as an illustration of the potential future applications of MHD-EPIC. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Daldorff, Lars K. S.; Toth, Gabor; Gombosi, Tamas I.] Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA.
[Lapenta, Giovanni; Amaya, Jorge] Katholieke Univ Leuven, Louvain, Belgium.
[Markidis, Stefano] KTH, Stockholm, Sweden.
[Brackbill, Jeremiah U.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Toth, G (reprint author), Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA.
RI Daldorff, Lars/M-4117-2013; Toth, Gabor/B-7977-2013; Gombosi,
Tamas/G-4238-2011;
OI Daldorff, Lars/0000-0002-1198-5138; Toth, Gabor/0000-0002-5654-9823;
Gombosi, Tamas/0000-0001-9360-4951; Lapenta,
Giovanni/0000-0002-3123-4024
FU National Science Foundation [AGS-1322543]; European Commission [263340];
Interuniversity Attraction Poles Programme; Belgian Science Policy
Office [IAP P7/08 CHARM]
FX The work performed at the University of Michigan was supported by the
National Science Foundation grant AGS-1322543. The research in support
of iPic3D has been funded by the European Commission's Seventh Framework
Programme (FP7/2007-2013) under the grant agreement SWIFF (project No.
263340, www.swiff.eu) and by the Interuniversity Attraction Poles
Programme initiated by the Belgian Science Policy Office (IAP P7/08
CHARM).
NR 49
TC 22
Z9 23
U1 1
U2 14
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD JUL 1
PY 2014
VL 268
BP 236
EP 254
DI 10.1016/j.jcp.2014.03.009
PG 19
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA AF3BP
UT WOS:000334586800011
ER
PT J
AU Banks, JW
Henshaw, WD
Schwendeman, DW
AF Banks, J. W.
Henshaw, W. D.
Schwendeman, D. W.
TI An analysis of a new stable partitioned algorithm for FSI problems. Part
II: Incompressible flow and structural shells
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Fluid-structure interaction; Added mass instability; Incompressible
fluid flow; Structures; Shells; Beams
ID FLUID-STRUCTURE PROBLEMS; OVERLAPPING GRIDS; EQUATIONS
AB Stable partitioned algorithms for fluid-structure interaction (FSI) problems are developed and analyzed in this two-part paper. Part I describes an algorithm for incompressible flow coupled with compressible elastic solids, while Part II discusses an algorithm for incompressible flow coupled with structural shells. The numerical approach described here for structural shells uses Robin (mixed) interface conditions for the pressure and velocity in the fluid which are derived directly from the governing equations. The resulting added-mass partitioned (AMP) algorithm is stable even for very light structures, requires no subiterations per time step, and is second-order accurate. The stability and accuracy of the AMP algorithm is evaluated for linearized FSI model problems. A normal mode analysis is performed to show that the new AMP algorithm is stable, even for the case of very light structures when added-mass effects are large. Exact traveling wave solutions are derived for the FSI model problems, and these solutions are used to verify the stability and accuracy of the corresponding numerical results obtained from the AMP algorithm for the cases of light, medium and heavy structures. A summary comparison of the AMP algorithm developed here and the one in Part I is provided. (C) 2014 Elsevier Inc. All rights reserved.
C1 [Banks, J. W.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA.
[Henshaw, W. D.; Schwendeman, D. W.] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA.
RP Henshaw, WD (reprint author), Rensselaer Polytech Inst, Dept Math Sci, 110 8th St, Troy, NY 12180 USA.
EM banks20@llnl.gov; henshw@rpi.edu; schwed@rpi.edu
RI Banks, Jeffrey/A-9718-2012
FU U.S. Department of Energy (DOE) by Lawrence Livermore National
Laboratory [DE-AC52-07NA27344]; DOE contracts from the ASCR Applied Math
Program; Lawrence Livermore National Laboratory [B548468]; National
Science Foundation [DMS-1016188]
FX This work was performed under the auspices of the U.S. Department of
Energy (DOE) by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 and by DOE contracts from the ASCR Applied Math
Program.; This research was supported by Lawrence Livermore National
Laboratory under Subcontract B548468, and by the National Science
Foundation under Grant DMS-1016188.
NR 16
TC 9
Z9 9
U1 0
U2 4
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD JUL 1
PY 2014
VL 268
BP 399
EP 416
DI 10.1016/j.jcp.2014.03.004
PG 18
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA AF3BP
UT WOS:000334586800019
ER
PT J
AU Li, X
Singh, RP
Dudeck, KW
Berchtold, KA
Benicewicz, BC
AF Li, Xin
Singh, Rajinder P.
Dudeck, Kevin W.
Berchtold, Kathryn A.
Benicewicz, Brian C.
TI Influence of polybenzimidazole main chain structure on H-2/CO2
separation at elevated temperatures
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Polybenzimidazole; Gas separation; Synthesis gas; Hydrogen separation
membrane; Pre-combustion carbon capture
ID MEMBRANE FUEL-CELLS; CARBON-DIOXIDE CAPTURE; IGCC POWER-PLANT; POLYMER
ELECTROLYTE; HYDROGEN-PRODUCTION; POLYIMIDE MEMBRANES; GAS SEPARATIONS;
CO2 CAPTURE; PBI; DMAC/LICL
AB Four polybenzimidazole (PBI) derivatives were prepared to study the effects of main chain chemistry and structure on H-2/CO2 perm selectivity of cast films. These structural variations were designed to exhibit high localized mobility at elevated temperatures, contain rigid and bent configurations that frustrated close chain packing, or possess bulky side groups. The modified PBIs exhibited high molecular weights, slightly lower thermal stabilities, and higher organo-solubilities compared with commercial m-PBI. Dilute polymer solutions (< 3.0 wt%) were used to fabricate high quality thin films under carefully optimized film processing conditions. Gas permeation properties of these PBl films were evaluated aL elevated temperatures (up to 250 degrees C) and pressures (up to 50 psia). It was found that the main chain structural variations effectively disrupted the PBl chain packing resulting in much improved film H-2 permeability (up to 997.2 barrer) compared with m-PBI (76.81 barrer) at 250 degrees C and 50 psia. However, lower H-2/CO2 selectivities (5-7(modified PBIs) versus 23 (m-PBI) were also measured and reflected the general trade-off betvveen gas permeability and selectivity. When tested at 250 degrees C, PM -based materials exhibited gas separation performance higher than the Robeson upper bound prediction and are promising materials for high temperature H-2 separation horn syngas. (c) 2014 Elsevier B.V. All rights reserved.
C1 [Li, Xin; Benicewicz, Brian C.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA.
[Singh, Rajinder P.; Dudeck, Kevin W.; Berchtold, Kathryn A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Carbon Capture & Separat Energy Applicat CaSEA La, Los Alamos, NM 87545 USA.
RP Benicewicz, BC (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA.
EM benice@sc.edu
OI Benicewicz, Brian/0000-0003-4130-1232; Singh,
Rajinder/0000-0003-4634-4290
FU U.S. DOE Energy Efficiency and Renewable Energy; Advanced Manufacturing
Office; Industrial Technologies Program; Los Alamos National Laborator;
Los Alamos National Security; DOE/NNSA [DE-AC52-06NA25396]
FX This project supports the U.S. DOE Energy Efficiency and Renewable
Energy-Advanced Manufacturing Office - Industrial Technologies Program.
The authors gratefully acknowledge the U.S. DOE/EIRE for financial
support of the project under Contract CPS #18990, Los Alamos National
Laboratory is operated by Los Alamos National Security, LLC for DOE/NNSA
under Contract DE-AC52-06NA25396. The authors also acknowledge PBI
Performance Products Inc. for their programmatic contributions.
NR 41
TC 9
Z9 9
U1 8
U2 76
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
EI 1873-3123
J9 J MEMBRANE SCI
JI J. Membr. Sci.
PD JUL 1
PY 2014
VL 461
BP 59
EP 68
DI 10.1016/j.memsci.2014.03.008
PG 10
WC Engineering, Chemical; Polymer Science
SC Engineering; Polymer Science
GA AF1YH
UT WOS:000334509300007
ER
PT J
AU Layton, W
Tran, H
Trenchea, C
AF Layton, W.
Tran, H.
Trenchea, C.
TI Numerical analysis of two partitioned methods for uncoupling
evolutionary MHD flows
SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
LA English
DT Article
DE magnetohydrodynamics; finite element methods; partitioned methods
ID FINITE-ELEMENT APPROXIMATION; INCOMPRESSIBLE MAGNETOHYDRODYNAMICS;
STATIONARY; EQUATIONS; STABILITY; BLANKETS; BOUNDARY
AB Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids, involving Navier-Stokes (NSE) equations in fluid dynamics and Maxwell equations in eletromagnetism. The physical processes of fluid flows and electricity and magnetism are quite different and numerical simulations of each subprocess can require different meshes, time steps, and methods. In most terrestrial applications, MHD flows occur at low-magnetic Reynold numbers. We introduce two partitioned methods to solve evolutionary MHD equations in such cases. The methods we study allow us at each time step to call NSE and Maxwell codes separately, each possibly optimized for the subproblem's respective physics. Complete error analysis and computational tests supporting the theory are given.Copyright (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1083-1102, 2014
C1 [Layton, W.; Trenchea, C.] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA.
[Tran, H.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
RP Tran, H (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA.
EM tranha@ornl.gov
FU NSF grant [DMS1216465]; Air Force grant [9550-12-1-0191]
FX Contract grant sponsor: NSF grant (W.L. and H.T.); contract grant
number: DMS1216465; Contract grant sponsor: Air Force grant (W.L., H.T.,
and C.T.); contract grant number: 9550-12-1-0191
NR 22
TC 4
Z9 4
U1 1
U2 5
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0749-159X
EI 1098-2426
J9 NUMER METH PART D E
JI Numer. Meth. Part Differ. Equ.
PD JUL
PY 2014
VL 30
IS 4
BP 1083
EP 1102
DI 10.1002/num.21857
PG 20
WC Mathematics, Applied
SC Mathematics
GA AF9CS
UT WOS:000335013400001
ER
PT J
AU Shi, XB
Cui, LS
Jiang, DQ
Yu, C
Guo, FM
Yu, MY
Ren, Y
Liu, YN
AF Shi, Xiaobin
Cui, Lishan
Jiang, Daqiang
Yu, Cun
Guo, Fangmin
Yu, Mengying
Ren, Yang
Liu, Yinong
TI Grain size effect on the R-phase transformation of nanocrystalline NiTi
shape memory alloys
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID EQUIATOMIC TINI ALLOY; MARTENSITIC-TRANSFORMATION; AT.PERCENT-NI;
DEFORMATION; BEHAVIOR; TEM
AB Development of nanoscale actuators and sensors in recent years calls for functional materials with small dimensions and high strengths. High strength nanocrystalline NiTi alloys which experience the R-phase transformation with a small thermal hysteresis are ideal candidates for these applications. To facilitate the application of the R-phase transformation in nanocrystalline NiTi alloys, this study investigated the effect of grain size on the R-phase transformation of a nanocrystalline Ti-50.2at.%Ni alloy. The nanometric grain size was created by severe cold deformation and low temperature anneal. It was found that in the recrystallized state, achieving nanoscale grain sizes (< 100 nm) was effective in suppressing the B2 -> B19' martensitic transformation and revealing the B2a dagger"R transformation. The B2a dagger"R transformation temperature was found to increase with the decreasing grain size within the range of 22-155 nm. The suppression of the B19' martensite in nanograins is attributed to the limited space within the grains to allow the formation of self-accommodation structures to contain the large lattice distortion of the martensite.
C1 [Shi, Xiaobin; Cui, Lishan; Jiang, Daqiang; Yu, Cun; Guo, Fangmin; Yu, Mengying] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China.
[Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Liu, Yinong] Univ Western Australia, Sch Mech & Chem Engn, Crawley, WA 6009, Australia.
RP Shi, XB (reprint author), China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China.
EM shyllen@sina.com
RI Liu, Yinong/G-6637-2011; Jiang, Daqiang /G-5511-2014
OI Liu, Yinong/0000-0002-8784-8543;
FU Natural Science Foundation of China (NSFC) [51231008]; Australian
Research Council [DP140103805]; National 973 Programs of China
[2012CB619400]; US Department of Energy, Office of Science
[DE-AC02-06CH11357]; US Department of Energy, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX This work was supported by the Natural Science Foundation of China
(NSFC) (key program project 51231008), Australian Research Council
(Grant No. DP140103805), and National 973 Programs of China
(2012CB619400). The use of the Advanced Photon Source was supported by
the US Department of Energy, Office of Science, and Office of Basic
Energy Sciences under Contract No. DE-AC02-06CH11357.
NR 20
TC 6
Z9 6
U1 0
U2 55
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2461
EI 1573-4803
J9 J MATER SCI
JI J. Mater. Sci.
PD JUL
PY 2014
VL 49
IS 13
BP 4643
EP 4647
DI 10.1007/s10853-014-8167-6
PG 5
WC Materials Science, Multidisciplinary
SC Materials Science
GA AF1RW
UT WOS:000334492000028
ER
PT J
AU Neubauer, J
Wood, E
AF Neubauer, Jeremy
Wood, Eric
TI The impact of range anxiety and home, workplace, and public charging
infrastructure on simulated battery electric vehicle lifetime utility
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Battery Lifetime Analysis and Simulation; Tool for Vehicles; Range
anxiety; Electric vehicle; Workplace charging; Public charging; Fast
charging
AB Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility due to factors including driver range anxiety and access to charging infrastructure. In this paper we apply NREL's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to range anxiety and different charging infrastructure scenarios, including variable time schedules, power levels, and locations (home, work, and public installations). We find that the effects of range anxiety can be significant, but are reduced with access to additional charging infrastructure. We also find that (1) increasing home charging power above that provided by a common 15 A, 120 V circuit offers little added utility, (2) workplace charging offers significant utility benefits to select high mileage commuters, and (3) broadly available public charging can bring many lower mileage drivers to near-100% utility while strongly increasing the achieved miles of high mileage drivers. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Neubauer, Jeremy; Wood, Eric] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Neubauer, J (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
EM Jeremy.neubauer@nrel.gov
FU Dave Howell and Brian Cunningham of the Energy Storage, Vehicle
Technologies Office, Office of Energy Efficiency and Renewable Energy,
U.S. Department of Energy; U.S. Department of Energy's Vehicle
Technologies Program
FX This study was supported by Dave Howell and Brian Cunningham of the
Energy Storage, Vehicle Technologies Office, Office of Energy Efficiency
and Renewable Energy, U.S. Department of Energy. The use of the battery
degradation and FASTSim tools, both developed at the National Renewable
Energy Laboratory under funding from the U.S. Department of Energy's
Vehicle Technologies Program, was critical to the completion of this
study. Special thanks to Kandler Smith for developing and supporting the
integration of the battery degradation model, and Ahmad Pesaran, the
National Renewable Energy Laboratory's Energy Storage team leader, for
his continual guidance.
NR 7
TC 24
Z9 24
U1 2
U2 41
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD JUL 1
PY 2014
VL 257
BP 12
EP 20
DI 10.1016/j.jpowsour.2014.01.075
PG 9
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA AE2CD
UT WOS:000333780000002
ER
PT J
AU Cao, WJ
Shih, J
Zheng, JP
Doung, T
AF Cao, W. J.
Shih, J.
Zheng, J. P.
Doung, T.
TI Development and characterization of Li-ion capacitor pouch cells
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Li-ion capacitor; Pouch cells; Activated carbon; Hard carbon; SLMP; Pore
size distribution
ID HYBRID ELECTROCHEMICAL CAPACITOR; ENERGY DENSITY; NEGATIVE ELECTRODES;
CYCLE PERFORMANCE; LAYER CAPACITOR; SOFT CARBON; IMPROVEMENT; CATHODE
AB High energy density Li-ion capacitor (LIC) pouch cell prototypes were assembled with lab-scale equipment using activated carbon cathode and hard carbon/lithium stabilized metal power (SLMP) anode. The specific energy and energy density as high as 30 Wh kg(-1) and 39 Wh L-1 have been achieved, respectively. The pouch cells can deliver over 50% of the maximum stored energy at a discharge rate over 100 Crate. After 10,000 cycles, the LIC pouch cell still has 80% of the initial capacitance. The average leakage current is 0.3 mu A cm(-2) during the first 72 h. (C) 2014 Published by Elsevier B.V.
C1 [Cao, W. J.; Shih, J.; Zheng, J. P.] Florida A&M Univ, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA.
[Cao, W. J.; Shih, J.; Zheng, J. P.] Florida State Univ, Tallahassee, FL 32310 USA.
[Cao, W. J.; Shih, J.; Zheng, J. P.] Florida State Univ, Aeropropuls Mechatron & Energy AME Ctr, Tallahassee, FL 32310 USA.
[Zheng, J. P.] Florida State Univ, CAPS, Tallahassee, FL 32310 USA.
[Doung, T.] US DOE, Off Vehicle Technol, Annandale, VA 22003 USA.
RP Zheng, JP (reprint author), Florida State Univ, CAPS, Tallahassee, FL 32310 USA.
EM zheng@eng.fsu.edu
FU DOE BAIT Program through PNNL [212964]; Florida State University
Research Foundation GAPS Program
FX This study is supported by DOE BAIT Program through PNNL with contract
No. 212964 and Florida State University Research Foundation GAPS
Program.
NR 23
TC 20
Z9 20
U1 8
U2 86
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD JUL 1
PY 2014
VL 257
BP 388
EP 393
DI 10.1016/j.jpowsour.2014.01.087
PG 6
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA AE2CD
UT WOS:000333780000050
ER
PT J
AU Chou, YS
Stevenson, JW
Choi, JP
AF Chou, Yeong-Shyung
Stevenson, Jeffry W.
Choi, Jung-Pyung
TI Long-term evaluation of solid oxide fuel cell candidate materials in a
3-cell generic stack test fixture, part III: Stability and
microstructure of Ce-(Mn,Co)-spinel coating, AISI441 interconnect,
alumina coating, cathode and anode
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Sealing glass; AISI441; Aluminization; (Mn,Co)-spinel; SOFC
ID FERRITIC STAINLESS-STEEL; (MN,CO)(3)O-4 SPINEL COATINGS; OXIDATION
BEHAVIOR; CHEMICAL COMPATIBILITY; SEALING GLASSES; SOFC CATHODES; CR;
TEMPERATURE; PERFORMANCE; ALLOYS
AB A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing under realistic conditions. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell's degradation. After 6000 h test, the spinel coating showed densification with some diffusion of Cr. At the metal interface, segregation of Si and Ti was observed, however, no continuous layer formed. The alumina coating for perimeter sealing areas appeared more dense and thick at the air side than the fuel side. Both the spinel and alumina coatings remained bonded. EDS analysis of Cr within the metal showed small decrease in concentration near the coating interface and would expect to cause no issue of Cr depletion. Inter-diffusion of Ni, Fe, and Cr between spot-welded Ni wire and AISI441 interconnect was observed and Cr-oxide scale formed along the circumference of the weld. The microstructure of the anode and cathode was discussed relating to degradation of the top and middle cells. Overall, the Ce-(Mn,Co) spinet coating, alumina coating, and AISI441 steel showed the desired long-term stability and the developed generic stack fixture proved to be a useful tool to validate candidate materials for SOFC. (C) 2013 Published by Elsevier B.V.
C1 [Chou, Yeong-Shyung; Stevenson, Jeffry W.; Choi, Jung-Pyung] Pacific NW Natl Lab, Energy & Efficiency Div, Richland, WA 99354 USA.
RP Chou, YS (reprint author), Pacific NW Natl Lab, Energy & Efficiency Div, K2-44,POB 999, Richland, WA 99354 USA.
EM yeong-shyung.chou@pnnl.gov
FU US Department of Energy's Solid-State Energy Conversion Alliance (SECA)
Core Technology Program; [DE-AC06-76RL0 1830]
FX The authors would like to thank S. Carlson for SEM sample preparation,
and J. Coleman for SEM analysis. The work summarized in this paper was
funded by the US Department of Energy's Solid-State Energy Conversion
Alliance (SECA) Core Technology Program. The authors would like to thank
Shailesh Vora, Briggs White, Patcharin Burke, and Joe Stoffa from
National Energy Technology Laboratory for helpful discussions. Pacific
Northwest National Laboratory is operated by Battelle Memorial Institute
for the US Department of Energy under Contract no. DE-AC06-76RL0 1830.
NR 40
TC 4
Z9 4
U1 5
U2 70
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
EI 1873-2755
J9 J POWER SOURCES
JI J. Power Sources
PD JUL 1
PY 2014
VL 257
BP 444
EP 453
DI 10.1016/j.jpowsour.2013.11.086
PG 10
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA AE2CD
UT WOS:000333780000055
ER
PT J
AU Grasso, S
Tatarko, P
Rizzo, S
Porwal, H
Hu, CF
Katoh, Y
Salvo, M
Reece, MJ
Ferraris, M
AF Grasso, Salvatore
Tatarko, Peter
Rizzo, Stefano
Porwal, Harshit
Hu, Chunfeng
Katoh, Yutai
Salvo, Milena
Reece, Michael J.
Ferraris, Monica
TI Joining of beta-SiC by spark plasma sintering
SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
LA English
DT Article
DE beta-SiC; Joining; Spark plasma sintering
ID SILICON-CARBIDE; TEMPERATURE; STRENGTH; DEPOSITION; CERAMICS; ALUMINUM
AB Spark plasma sintering (SPS) was employed to join monolithic beta-SiC with or without titanium as intermediate joining material. Both the localized and rapid heating contributed to the inherent energy saving of electric current assisted joining technique. The effects of uniaxial pressure and surface preparation were analyzed independently with respect to the flexural strength and the morphology of the joints. In particular samples polished down to 1 mu m and joined at 1900 degrees C for 5 min achieved the strength of the as received material. The failure occurred outside the joining interface, confirming the optimum quality of the joint. Pressure in combination with surface preparation was necessary to achieve perfect adhesion and pore free direct joining of SiC. The use of Ti foil as a joining material and pressure allowed joining of unpolished SiC. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
C1 [Grasso, Salvatore; Porwal, Harshit; Reece, Michael J.] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England.
[Grasso, Salvatore; Porwal, Harshit; Reece, Michael J.] Queen Mary Univ London, Nanoforce Technol Ltd, London E1 4NS, England.
[Tatarko, Peter] Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic.
[Rizzo, Stefano; Salvo, Milena; Ferraris, Monica] Politecn Torino, Inst Mat Phys & Engn, Dept Appl Sci & Technol, I-10129 Turin, Italy.
[Hu, Chunfeng] Chinese Acad Sci, NIMTE, Ningbo 315201, Zhejiang, Peoples R China.
[Katoh, Yutai] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Grasso, S (reprint author), Queen Mary Univ London, Nanoforce Technol Ltd, Joseph Priestley Bldg,Mile End Rd, London E1 4NS, England.
EM s.grasso@nanoforce.co.uk
RI Porwal, Harshit/K-6738-2014; Tatarko, Peter/F-1446-2016
OI Porwal, Harshit/0000-0002-4817-6545;
FU European Union [264526]
FX The research leading to these results was supported by the European
Union's Seventh Framework Programme managed by REA-Research Executive
Agency (http://www.ec.europa.eu/research/rea) (Marie Curie Action,
GlaCERCo GA 264526).
NR 25
TC 12
Z9 13
U1 0
U2 49
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0955-2219
EI 1873-619X
J9 J EUR CERAM SOC
JI J. Eur. Ceram. Soc.
PD JUL
PY 2014
VL 34
IS 7
BP 1681
EP 1686
DI 10.1016/j.jeurceramsoc.2013.12.023
PG 6
WC Materials Science, Ceramics
SC Materials Science
GA AD8CD
UT WOS:000333493200004
ER
PT J
AU Remillieux, MC
Anderson, BE
Le Bas, PY
Ulrich, TJ
AF Remillieux, Marcel C.
Anderson, Brian E.
Le Bas, Pierre-Yves
Ulrich, T. J.
TI Improving the air coupling of bulk piezoelectric transducers with wedges
of power-law profiles: A numerical study
SO ULTRASONICS
LA English
DT Article
DE Piezoelectric transducers; Air-coupled ultrasound; Acoustic-structure
interaction; Finite-element analysis; Time-reversed acoustics
ID CHANNEL TIME-REVERSAL; NONDESTRUCTIVE EVALUATION; ULTRASONIC
TRANSDUCERS; CHAOTIC CAVITIES; FLEXURAL WAVES; ACOUSTICS; PLATES
AB An air-coupled ultrasonic transducer is created by bonding a bulk piezoelectric element onto the surface of a thick plate with a wedge of power-law profile. The wedge is used to improve the ultrasonic radiation efficiency. The power-law profile provides a smooth, impedance-matching transition for the mechanical energy to be transferred from the thick plate to the air, through the large-amplitude flexural waves observed in the thinnest region of the wedge. The performance of the proposed transducer is examined numerically and compared to that of a design where the piezoelectric element is isolated and where it is affixed to a thin plate of uniform thickness. The numerical analysis is first focused on the free-field radiation of the transducers. Then, time-reversal experiments are simulated by placing the transducers inside a cavity of arbitrary shape with some perfectly reflecting boundaries. In addition to time-reversal mirrors, the proposed concept could be integrated in the design of phased arrays and parametric arrays. Published by Elsevier B.V.
C1 [Remillieux, Marcel C.; Anderson, Brian E.; Le Bas, Pierre-Yves; Ulrich, T. J.] Los Alamos Natl Lab, Geophys Grp EES 17, Los Alamos, NM 87545 USA.
RP Remillieux, MC (reprint author), Los Alamos Natl Lab, Geophys Grp EES 17, MS D446, Los Alamos, NM 87545 USA.
EM mcr1@lanl.gov; bea@lanl.gov; pylb@lanl.gov; tju@lanl.gov
NR 30
TC 4
Z9 4
U1 5
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0041-624X
EI 1874-9968
J9 ULTRASONICS
JI Ultrasonics
PD JUL
PY 2014
VL 54
IS 5
BP 1409
EP 1416
DI 10.1016/j.ultras.2014.02.017
PG 8
WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging
SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging
GA AE1XK
UT WOS:000333766300035
PM 24636675
ER
PT J
AU Calderon-Moreno, JM
Pol, VG
Suh, SH
Shin, HK
Popa, M
AF Calderon-Moreno, J. M.
Pol, V. G.
Suh, S. -H.
Shin, H. -K.
Popa, M.
TI Formation Mechanism and Red Light Emission Photoluminescence of
Single-Phase Crystalline Eu2O2CO3 Nanoplates Compared with Y2O3:Eu
Phosphor
SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
LA English
DT Article
DE Phosphor; Nanoplate; Photoluminescence; Crystalline
ID LUMINESCENCE PROPERTIES; THERMAL-DECOMPOSITION; FACILE SYNTHESIS;
NANOPARTICLES; EU2O3; OXYCARBONATE; SUPERSTRUCTURES; NANOCRYSTALS;
FABRICATION; SYMMETRY
AB The photoluminescence properties and formation mechanism of a novel stoichiometric phosphor are presented. Nanoplates of pure single-phase crystalline Eu2O2CO3 oxycarbonate (hexagonal type-II) were synthesized by dry autoclaving under autogenic pressure (under 3 MPa) using an efficient, high yield solid state green-chemistry route that can be extended to other rare-earth oxycarbonate and oxide systems, resulting in the full conversion of a simple commercial precursor in single-crystalline nanoplates with strong visible luminescence. Phosphors made of an oxide host and an active luminescent dopant ion are the commercial standard (i.e., Y2O3:Eu). It is generally considered that the activity of luminescent species, such as Eu3+, is quenched and disappears above a certain concentration of them in the lattice (concentration quenching). The truly stoichoimetric oxycarbonate phosphor without active dopant ions exhibits very strong red emission when excited by different excitations, in the UV and visible range, without any concentration quench