FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Knebe, A Pearce, FR Lux, H Ascasibar, Y Behroozi, P Casado, J Moran, CC Diemand, J Dolag, K Dominguez-Tenreiro, R Elahi, P Falck, B Gottlober, S Han, JX Klypin, A Lukic, Z Maciejewski, M McBride, CK Merchan, ME Muldrew, SI Neyrinck, M Onions, J Planelles, S Potter, D Quilis, V Rasera, Y Ricker, PM Roy, F Ruiz, AN Sgro, MA Springel, V Stadel, J Sutter, PM Tweed, D Zemp, M AF Knebe, Alexander Pearce, Frazer R. Lux, Hanni Ascasibar, Yago Behroozi, Peter Casado, Javier Moran, Christine Corbett Diemand, Juerg Dolag, Klaus Dominguez-Tenreiro, Rosa Elahi, Pascal Falck, Bridget Gottloeber, Stefan Han, Jiaxin Klypin, Anatoly Lukic, Zarija Maciejewski, Michal McBride, Cameron K. Merchan, Manuel E. Muldrew, Stuart I. Neyrinck, Mark Onions, Julian Planelles, Susana Potter, Doug Quilis, Vicent Rasera, Yann Ricker, Paul M. Roy, Fabrice Ruiz, Andres N. Sgro, Mario A. Springel, Volker Stadel, Joachim Sutter, P. M. Tweed, Dylan Zemp, Marcel TI Structure finding in cosmological simulations: the state of affairs SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: haloes; galaxies: luminosity function; mass function; galaxies: statistics; cosmology: theory; dark matter ID DARK-MATTER HALOES; N-BODY SIMULATIONS; LAMBDA-CDM COSMOLOGY; MILKY-WAY SATELLITES; GAUSSIAN INITIAL CONDITIONS; PRIMORDIAL NON-GAUSSIANITY; FINDER COMPARISON PROJECT; DIGITAL SKY SURVEY; ADAPTIVE MESH REFINEMENT; SAGITTARIUS DWARF GALAXY AB The ever increasing size and complexity of data coming from simulations of cosmic structure formation demand equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the 'halo finder comparison project': we investigate in detail the (possible) origin of any deviations across finders. To this extent, we decipher and discuss differences in halo-finding methods, clearly separating them from the disparity in definitions of halo properties. We observe that different codes not only find different numbers of objects leading to a scatter of up to 20 per cent in the halo mass and V-max function, but also that the particulars of those objects that are identified by all finders differ. The strength of the variation, however, depends on the property studied, e.g. the scatter in position, bulk velocity, mass and the peak value of the rotation curve is practically below a few per cent, whereas derived quantities such as spin and shape show larger deviations. Our study indicates that the prime contribution to differences in halo properties across codes stems from the distinct particle collection methods and - to a minor extent - the particular aspects of how the procedure for removing unbound particles is implemented. We close with a discussion of the relevance and implications of the scatter across different codes for other fields such as semi-analytical galaxy formation models, gravitational lensing and observables in general. C1 [Knebe, Alexander; Ascasibar, Yago; Casado, Javier; Dominguez-Tenreiro, Rosa] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, E-28049 Madrid, Spain. [Pearce, Frazer R.; Lux, Hanni; Elahi, Pascal; Muldrew, Stuart I.; Onions, Julian] Univ Nottingham, Sch Phys Astron, Nottingham NG7 2RD, England. [Lux, Hanni] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Behroozi, Peter] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Behroozi, Peter] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Behroozi, Peter] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Moran, Christine Corbett; Diemand, Juerg; Potter, Doug; Stadel, Joachim] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Dolag, Klaus; Maciejewski, Michal] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Dolag, Klaus] Univ Observ Munchen, D-81679 Munich, Germany. [Elahi, Pascal; Han, Jiaxin] Shanghai Astron Observ, Key Lab Res Galaxies & Cosmol, Shanghai 200030, Peoples R China. [Falck, Bridget] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Gottloeber, Stefan] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany. [Han, Jiaxin] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China. [Han, Jiaxin] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. [Klypin, Anatoly] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Lukic, Zarija] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94610 USA. [Lukic, Zarija] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [McBride, Cameron K.] Vanderbilt Univ, Stevenson Ctr 6301, Dept Phys & Astron, Nashville, TN 37235 USA. [McBride, Cameron K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Merchan, Manuel E.; Ruiz, Andres N.; Sgro, Mario A.] UNC, CONICET, CCT Cordoba, Inst Astron Teor & Expt, Cordoba, Argentina. [Neyrinck, Mark] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Planelles, Susana] Univ Trieste, Dept Phys, Astron Unit, I-34131 Trieste, Italy. [Planelles, Susana] INAF, Osservatorio Astron Trieste, I-34131 Trieste, Italy. [Quilis, Vicent] Univ Valencia, Dept Astron & Astrofis, E-46100 Burjassot, Valencia, Spain. [Rasera, Yann; Roy, Fabrice] Univ Paris Diderot, Observ Paris, UMR CNRS 8102, CNRS,LUTh, F-92190 Meudon, France. [Ricker, Paul M.; Sutter, P. M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Ricker, Paul M.; Sutter, P. M.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Springel, Volker] Heidelberg Inst Theoret Studies, D-69118 Heidelberg, Germany. [Springel, Volker] Heidelberg Univ, Zentrum Astron, D-69120 Heidelberg, Germany. [Sutter, P. M.] Univ Paris 06, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Sutter, P. M.] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Sutter, P. M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Tweed, Dylan] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Zemp, Marcel] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. RP Knebe, A (reprint author), Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, Modulo 15, E-28049 Madrid, Spain. EM alexander.knebe@uam.es RI Diemand, Juerg/G-9448-2011; Knebe, Alexander/N-1815-2014; Quilis, Vicent/E-8409-2016; OI Zemp, Marcel/0000-0002-0498-3812; Ascasibar Sequeiros, Yago/0000-0003-1577-2479; Knebe, Alexander/0000-0003-4066-8307; Quilis, Vicent/0000-0002-2852-5031; Onions, Julian/0000-0001-5192-6856; Pearce, Frazer/0000-0002-2383-9250 FU European Commission's Framework Programme 7, through the Marie Curie Initial Training Network CosmoComp [PITN-GA-2009-238356]; ASTROSIM network of the European Science Foundation [2910]; Spanish Ministerio de Ciencia e Innovacion (MICINN) in Spain through the Ramon y Cajal programme; ASTROMADRID network [AYA 2009-13875-C03-02, AYA2009-12792-C03-03, CSD2009-00064, CAM S2009/ESP-1496]; Ministerio de Econom'a y Competitividad (MINECO) [AYA2012-31101]; European Commissions Framework Programme 7, through the Marie Curie Initial Training Network CosmoComp [PITN-GA-2009-238356]; MICINN (Spain) [AYA2010-21887-C04-03]; Ramon y Cajal programme [RyC-2011-09461]; NASA HST Theory Grant [HST-AR-12159.01-A]; US Department of Energy [DE-AC02-76SF00515]; MICINN/MINECO (Spain) from the PNAyA [AYA2009-12792-C03-03]; MICINN (Spain) from the PNAyA [AYA2009-12792-C03-03]; regional Madrid V PRICIT programme through the ASTROMADRID network [CAM S2009/ESP-1496]; 'Supercomputacion y e-Ciencia' Consolider-Ingenio project [CSD2007-0050]; Gordon and Betty Moore Foundation; STFC [ST/H002774/1, ST/K0090X/1]; STFC Studentship Enhancement Programme (STEP); PRIN-INAF09 project; Spanish MINECO [AYA2010-21322-C03-01]; 985 grant from Peking University; National Science Foundation of China [11250110052] FX This paper was initiated at the Subhaloes going Notts workshop in Dovedale, UK, which was funded by the European Commission's Framework Programme 7, through the Marie Curie Initial Training Network CosmoComp (PITN-GA-2009-238356). It also uses data and results from the first halo finder comparison workshop 'Haloes going MAD' in Madrid, Spain, which was funded by the ASTROSIM network of the European Science Foundation (Science Meeting 2910).; AK is supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) in Spain through the Ramon y Cajal programme as well as the grants AYA 2009-13875-C03-02, AYA2009-12792-C03-03, CSD2009-00064 and CAM S2009/ESP-1496 (from the ASTROMADRID network), and the Ministerio de Econom'a y Competitividad (MINECO) through grant AYA2012-31101. He further thanks Calexico for tres avisos.; HL acknowledges a fellowship from the European Commissions Framework Programme 7, through the Marie Curie Initial Training Network CosmoComp (PITN-GA-2009-238356).; YA receives financial support from project AYA2010-21887-C04-03 from the MICINN (Spain), as well as the Ramon y Cajal programme (RyC-2011-09461), now managed by the MINECO (fiercely cutting back on the Spanish scientific infrastructure).; PB received support from NASA HST Theory Grant HST-AR-12159.01-A and was additionally supported by the US Department of Energy under contract number DE-AC02-76SF00515.; JC is supported by a contract from MICINN/MINECO (Spain) through the grant AYA2009-12792-C03-03 from the PNAyA.; RDT is supported by the MICINN (Spain) through the grant AYA2009-12792-C03-03 from the PNAyA, as well as by the regional Madrid V PRICIT programme through the ASTROMADRID network (CAM S2009/ESP-1496) and the 'Supercomputacion y e-Ciencia' Consolider-Ingenio CSD2007-0050 project. She also thanks the computer resources provided by BSC/RES (Spain) and the Centro de Computacion Cientifica (UAM, Spain).; BF acknowledges support from the Gordon and Betty Moore Foundation and the STFC grants ST/H002774/1 and ST/K0090X/1.; SIM acknowledges the support of the STFC Studentship Enhancement Programme (STEP).; SP also acknowledges a fellowship from the European Commission's Framework Programme 7, through the Marie Curie Initial Training Network CosmoComp (PITN-GA-2009-238356) as well as from the PRIN-INAF09 project 'Towards an Italian Network for Computational Cosmology'. SP and VQ thank partial financial support from Spanish MINECO (grant AYA2010-21322-C03-01).; MZ is supported by a 985 grant from Peking University and the International Young Scientist grant 11250110052 by the National Science Foundation of China. NR 304 TC 58 Z9 58 U1 0 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT PY 2013 VL 435 IS 2 BP 1618 EP 1658 DI 10.1093/mnras/stt1403 PG 41 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 229KY UT WOS:000325264600053 ER PT J AU Jia, J Hill, JC Evans, KJ Fann, GI Taylor, MA AF Jia, Jun Hill, Judith C. Evans, Katherine J. Fann, George I. Taylor, Mark A. TI A Spectral Deferred Correction Method Applied to the Shallow Water Equations on a Sphere SO MONTHLY WEATHER REVIEW LA English DT Article DE Differential equations; Error analysis; Numerical analysis; modeling ID ATMOSPHERIC DYNAMICAL CORE; MODEL; SIMULATION; CONVERGENCE; GRIDS AB Although significant gains have been made in achieving high-order spatial accuracy in global climate modeling, less attention has been given to the impact imposed by low-order temporal discretizations. For long-time simulations, the error accumulation can be significant, indicating a need for higher-order temporal accuracy. A spectral deferred correction (SDC) method is demonstrated of even order, with second- to eighth-order accuracy and A-stability for the temporal discretization of the shallow water equations within the spectral-element High-Order Methods Modeling Environment (HOMME). Because this method is stable and of high order, larger time-step sizes can be taken while still yielding accurate long-time simulations. The spectral deferred correction method has been tested on a suite of popular benchmark problems for the shallow water equations, and when compared to the explicit leapfrog, five-stage Runge-Kutta, and fully implicit (FI) second-order backward differentiation formula (BDF2) time-integration methods, it achieves higher accuracy for the same or larger time-step sizes. One of the benchmark problems, the linear advection of a Gaussian bell height anomaly, is extended to run for longer time periods to mimic climate-length simulations, and the leapfrog integration method exhibited visible degradation for climate length simulations whereas the second-order and higher methods did not. When integrated with higher-order SDC methods, a suite of shallow water test problems is able to replicate the test with better accuracy. C1 [Jia, Jun; Hill, Judith C.; Evans, Katherine J.; Fann, George I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Taylor, Mark A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Jia, J (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,MS 6367, Oak Ridge, TN 37831 USA. EM jiaj@ornl.gov OI Evans, Katherine/0000-0001-8174-6450 FU Joint Oak Ridge National Laboratory; Sandia National Laboratories Institute for Advanced Algorithms and Architectures; Math/CS Institute EASI; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX The authors thank the three anonymous reviewers who provided very useful comments and suggestions. This work was supported by the Joint Oak Ridge National Laboratory and Sandia National Laboratories Institute for Advanced Algorithms and Architectures and the Math/CS Institute EASI. This research used the resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC05-00OR22725. The submitted manuscript has been authored by a contractor of the U.S. government. Accordingly, the U.S. government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. government purposes. NR 39 TC 5 Z9 5 U1 1 U2 21 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD OCT PY 2013 VL 141 IS 10 BP 3435 EP 3449 DI 10.1175/MWR-D-12-00048.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 223UM UT WOS:000324836800012 ER PT J AU Dubourdieu, C Bruley, J Arruda, TM Posadas, A Jordan-Sweet, J Frank, MM Cartier, E Frank, DJ Kalinin, SV Demkov, AA Narayanan, V AF Dubourdieu, Catherine Bruley, John Arruda, Thomas M. Posadas, Agham Jordan-Sweet, Jean Frank, Martin M. Cartier, Eduard Frank, David J. Kalinin, Sergei V. Demkov, Alexander A. Narayanan, Vijay TI Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode SO NATURE NANOTECHNOLOGY LA English DT Article ID DEPOLARIZATION FIELD; NEGATIVE CAPACITANCE; CRYSTALLINE OXIDES; THIN-FILMS; 001 SI; STABILITY; FUTURE; GROWTH; SCALE AB Epitaxial growth of SrTiO3 on silicon by molecular beam epitaxy has opened up the route to the integration of functional complex oxides on a silicon platform. Chief among them is ferroelectric functionality using perovskite oxides such as BaTiO3. However, it has remained a challenge to achieve ferroelectricity in epitaxial BaTiO3 films with a polarization pointing perpendicular to the silicon substrate without a conducting bottom electrode. Here, we demonstrate ferroelectricity in such stacks. Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal the presence of crystalline domains with the long axis of the tetragonal structure oriented perpendicular to the substrate. Using piezoforce microscopy, polar domains can be written and read and are reversibly switched with a phase change of 180 degrees. Open, saturated hysteresis loops are recorded. Thus, ferroelectric switching of 8- to 40-nm-thick BaTiO3 films in metal-ferroelectric-semiconductor structures is realized, and field-effect devices using this epitaxial oxide stack can be envisaged. C1 [Dubourdieu, Catherine; Bruley, John; Jordan-Sweet, Jean; Frank, Martin M.; Cartier, Eduard; Frank, David J.; Narayanan, Vijay] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Arruda, Thomas M.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Posadas, Agham; Demkov, Alexander A.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. RP Dubourdieu, C (reprint author), CNRS, Inst Nanotechnol Lyon, UMR 5270, 36 Ave Guy de Collongue, F-69134 Ecully, France. EM catherine.dubourdieu@ec-lyon.fr; mmfrank@us.ibm.com; vijayna@us.ibm.com RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Scientific User Facility Division, Office of Basic Energy Sciences, US Department of Energy; National Science Foundation [DMR-0548182]; Office of Naval Research [N000 14-10-1-0489] FX C.D. acknowledges IBM for her Visiting Scientist position and CNRS for her detachment. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-98CH10886). PFM experiments (T.M.A. and S.V.K.) were performed at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, which is sponsored by the Scientific User Facility Division, Office of Basic Energy Sciences, US Department of Energy. The work in Austin was supported by the National Science Foundation (grant no. DMR-0548182) and the Office of Naval Research (grant no. N000 14-10-1-0489). NR 40 TC 81 Z9 81 U1 17 U2 179 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD OCT PY 2013 VL 8 IS 10 BP 748 EP 754 DI 10.1038/nnano.2013.192 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 230MW UT WOS:000325345900017 PM 24077030 ER PT J AU Wang, EY Ding, H Fedorov, AV Yao, W Li, Z Lv, YF Zhao, K Zhang, LG Xu, ZJ Schneeloch, J Zhong, RD Ji, SH Wang, LL He, K Ma, XC Gu, GD Yao, H Xue, QK Chen, X Zhou, SY AF Wang, Eryin Ding, Hao Fedorov, Alexei V. Yao, Wei Li, Zhi Lv, Yan-Feng Zhao, Kun Zhang, Li-Guo Xu, Zhijun Schneeloch, John Zhong, Ruidan Ji, Shuai-Hua Wang, Lili He, Ke Ma, Xucun Gu, Genda Yao, Hong Xue, Qi-Kun Chen, Xi Zhou, Shuyun TI Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor SO NATURE PHYSICS LA English DT Article ID QUANTUM COMPUTATION; MAJORANA FERMIONS; NANOWIRE; INSULATORS; BI2SR2CACU2O8+DELTA; SIGNATURE; ANYONS AB Topological insulators are a newclass of material(1,2), that exhibit robust gapless surface states protected by time-reversal symmetry(3,4). The interplay of such symmetry-protected topological surface states and symmetry-broken states (for example, superconductivity) provides a platform for exploring new quantum phenomena and functionalities, such as one-dimensional chiral or helical gapless Majorana fermions(5), and Majorana zero modes(6) that may find application in fault-tolerant quantum computation(7,8). Inducing superconductivity on the topological surface states is a prerequisite for their experimental realization(1,2). Here, by growing high-quality topological insulator Bi2Se3 films on a d-wave superconductor Bi2Sr2CaCu2O8+delta using molecular beam epitaxy, we are able to induce high-temperature superconductivity on the surface states of Bi2Se3 films with a large pairing gap up to 15meV. Interestingly, distinct from the d-wave pairing of Bi2Sr2CaCu2O8-delta, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step towards the realization of the long sought Majorana zero modes. C1 [Wang, Eryin; Ding, Hao; Yao, Wei; Li, Zhi; Lv, Yan-Feng; Zhao, Kun; Zhang, Li-Guo; Ji, Shuai-Hua; Xue, Qi-Kun; Chen, Xi; Zhou, Shuyun] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Wang, Eryin; Ding, Hao; Yao, Wei; Li, Zhi; Lv, Yan-Feng; Zhao, Kun; Zhang, Li-Guo; Ji, Shuai-Hua; Xue, Qi-Kun; Chen, Xi; Zhou, Shuyun] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Wang, Eryin; Fedorov, Alexei V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Xu, Zhijun; Schneeloch, John; Zhong, Ruidan; Gu, Genda] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wang, Lili; He, Ke; Ma, Xucun] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Yao, Hong] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China. RP Chen, X (reprint author), Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. EM xc@mail.tsinghua.edu.cn; syzhou@mail.tsinghua.edu.cn RI Zhou, Shuyun/A-5750-2009; Ji, Shuaihua/F-1743-2014; Yao, Hong/D-3202-2011; xu, zhijun/A-3264-2013; HE, KE/A-9078-2013; Yao, Wei/C-5767-2015; HE, KE/G-7538-2011; Ding, Hao/H-8401-2013; Zhong, Ruidan/D-5296-2013 OI Yao, Hong/0000-0003-2867-6144; xu, zhijun/0000-0001-7486-2015; Schneeloch, John/0000-0002-3577-9574; Yao, Wei/0000-0003-4518-3632; Ding, Hao/0000-0001-9635-3940; Zhong, Ruidan/0000-0003-1652-9454 FU National Natural Science Foundation of China [11274191, 11025419]; Ministry of Education of China [20121087903, 20121778394]; National Thousand Young Talents Program; Advanced Light Source doctoral fellowship programme; DOE [DE AC02 98CH10886]; DOE Center for Emergent Superconductivity; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We thank L. Fu, D-H. Lee, S. Kivelson and S. Zhang for useful discussions. This work is supported by the National Natural Science Foundation of China (grant No. 11274191 and 11025419) and Ministry of Education of China (20121087903, 20121778394). H.Y. and S.Z. acknowledges the support from the National Thousand Young Talents Program. E.W. acknowledges support from the Advanced Light Source doctoral fellowship programme. G.G. and Z.X. are supported by DOE under Contract No. DE AC02 98CH10886. J.S. and R.Z. are supported by DOE Center for Emergent Superconductivity. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 53 Z9 54 U1 10 U2 139 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD OCT PY 2013 VL 9 IS 10 BP 620 EP 624 DI 10.1038/NPHYS2744 PG 5 WC Physics, Multidisciplinary SC Physics GA 228RL UT WOS:000325205000010 ER PT J AU Aetukuri, NB Gray, AX Drouard, M Cossale, M Gao, L Reid, AH Kukreja, R Ohldag, H Jenkins, CA Arenholz, E Roche, KP Durr, HA Samant, MG Parkin, SSP AF Aetukuri, Nagaphani B. Gray, Alexander X. Drouard, Marc Cossale, Matteo Gao, Li Reid, Alexander H. Kukreja, Roopali Ohldag, Hendrik Jenkins, Catherine A. Arenholz, Elke Roche, Kevin P. Duerr, Hermann A. Samant, Mahesh G. Parkin, Stuart S. P. TI Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy SO NATURE PHYSICS LA English DT Article ID X-RAY-ABSORPTION; ELECTRONIC-STRUCTURE; OXIDES; VO2; SPECTROSCOPY; TEMPERATURE; RESISTIVITY; FILMS AB External control of the conductivity of correlated oxides is one of the most promising schemes for realizing energy-efficient electronic devices. Vanadium dioxide (VO2), an archetypal correlated oxide compound, undergoes a temperature-driven metal-insulator transition near room temperature with a concomitant change in crystal symmetry. Here, we show that the metal-insulator transition temperature of thin VO2(001) films can be changed continuously from similar to 285 to similar to 345 K by varying the thickness of the RuO2 buffer layer (resulting in different epitaxial strains). Using strain-, polarizationand temperature-dependent X-ray absorption spectroscopy, in combination with X-ray diffraction and electronic transport measurements, we demonstrate that the transition temperature and the structural distortion across the transition depend on the orbital occupancy in the metallic state. Our findings open up the possibility of controlling the conductivity in atomically thin VO2 layers by manipulating the orbital occupancy by, for example, heterostructural engineering. C1 [Aetukuri, Nagaphani B.; Drouard, Marc; Cossale, Matteo; Gao, Li; Roche, Kevin P.; Samant, Mahesh G.; Parkin, Stuart S. P.] IBM Almaden Res Ctr, San Jose, CA 95120 USA. [Aetukuri, Nagaphani B.; Kukreja, Roopali] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Gray, Alexander X.; Reid, Alexander H.; Kukreja, Roopali; Duerr, Hermann A.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Ohldag, Hendrik] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Jenkins, Catherine A.; Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Aetukuri, NB (reprint author), IBM Almaden Res Ctr, 650 Harry Rd, San Jose, CA 95120 USA. EM phani@alumni.stanford.edu; stuart.parkin@us.ibm.com RI Roche, Kevin/L-8504-2013; Aetukuri, Nagaphani/A-2107-2015; Ohldag, Hendrik/F-1009-2014; Durr, Hermann/F-6205-2012 OI Roche, Kevin/0000-0001-8601-1525; Aetukuri, Nagaphani/0000-0001-7269-5057; FU US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-76SF00515]; Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; Stanford Synchrotron Radiation Lightsource FX The authors thank S. Yang, X. Jiang and A. Pushp for useful discussions and J. Jeong for help with VO2 deposition. Research at Stanford is supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC02-76SF00515. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC02-05CH11231. Part of this research was supported by the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. NR 32 TC 113 Z9 115 U1 26 U2 230 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD OCT PY 2013 VL 9 IS 10 BP 661 EP 666 DI 10.1038/NPHYS2733 PG 6 WC Physics, Multidisciplinary SC Physics GA 228RL UT WOS:000325205000018 ER PT J AU McDowell, NG Ryan, MG Zeppel, MJB Tissue, DT AF McDowell, Nate G. Ryan, Michael G. Zeppel, Melanie J. B. Tissue, David T. TI Improving our knowledge of drought-induced forest mortality through experiments, observations, and modeling SO NEW PHYTOLOGIST LA English DT Editorial Material DE carbon dioxide; die-off; simulation; temperature; vapor pressure deficit ID INDUCED TREE MORTALITY; MOUNTAIN PINE-BEETLE; CARBON ALLOCATION; HEIGHT; DYNAMICS; GROWTH; VEGETATION; RESPONSES; STORAGE; SIZE C1 [McDowell, Nate G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Ryan, Michael G.] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Ryan, Michael G.] US Forest Serv, USDA, Rocky Mt Res Stn, Ft Collins, CO 80523 USA. [Zeppel, Melanie J. B.] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. [Tissue, David T.] Univ Western Sydney, Hawkesbury Inst Environm, Richmond, NSW 2753, Australia. RP McDowell, NG (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM mcdowell@lanl.gov RI Ryan, Michael/A-9805-2008 OI Ryan, Michael/0000-0002-2500-6738 NR 71 TC 37 Z9 40 U1 5 U2 141 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1469-8137 J9 NEW PHYTOL JI New Phytol. PD OCT PY 2013 VL 200 IS 2 SI SI BP 289 EP 293 DI 10.1111/nph.12502 PG 5 WC Plant Sciences SC Plant Sciences GA 220XV UT WOS:000324621600001 PM 24050629 ER PT J AU Xu, CG McDowell, NG Sevanto, S Fisher, RA AF Xu, Chonggang McDowell, Nate G. Sevanto, Sanna Fisher, Rosie A. TI Our limited ability to predict vegetation dynamics under water stress SO NEW PHYTOLOGIST LA English DT Editorial Material DE carbon fluxes; data-model comparison; drought; ecosystem response to water stress; net primary production (NPP); photosynthesis; respiration; vegetation models ID CLIMATE-CHANGE; MODEL; MECHANISMS; MORTALITY; DROUGHT; CARBON C1 [Xu, Chonggang; McDowell, Nate G.; Sevanto, Sanna] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Fisher, Rosie A.] Natl Ctr Atmospher Res, Terr Sci Sect, Boulder, CO 80307 USA. RP Xu, CG (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM cxu@lanl.gov OI Xu, Chonggang/0000-0002-0937-5744 NR 16 TC 25 Z9 25 U1 5 U2 74 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1469-8137 J9 NEW PHYTOL JI New Phytol. PD OCT PY 2013 VL 200 IS 2 SI SI BP 298 EP 300 DI 10.1111/nph.12450 PG 3 WC Plant Sciences SC Plant Sciences GA 220XV UT WOS:000324621600003 PM 24050631 ER PT J AU McDowell, NG Fisher, RA Xu, CG Domec, JC Holtta, T Mackay, DS Sperry, JS Boutz, A Dickman, L Gehres, N Limousin, JM Macalady, A Martinez-Vilalta, J Mencuccini, M Plaut, JA Ogee, J Pangle, RE Rasse, DP Ryan, MG Sevanto, S Waring, RH Williams, AP Yepez, EA Pockman, WT AF McDowell, Nate G. Fisher, Rosie A. Xu, Chonggang Domec, J. C. Holtta, Teemu Mackay, D. Scott Sperry, John S. Boutz, Amanda Dickman, Lee Gehres, Nathan Limousin, Jean Marc Macalady, Alison Martinez-Vilalta, Jordi Mencuccini, Maurizio Plaut, Jennifer A. Ogee, Jerome Pangle, Robert E. Rasse, Daniel P. Ryan, Michael G. Sevanto, Sanna Waring, Richard H. Williams, A. Park Yepez, Enrico A. Pockman, William T. TI Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework SO NEW PHYTOLOGIST LA English DT Review DE carbon starvation; cavitation; die-off; dynamic global vegetation models (DGVMs); hydraulic failure; photosynthesis; process-based models ID WESTERN UNITED-STATES; INDUCED TREE MORTALITY; MOUNTAIN PINE-BEETLE; PINYON-JUNIPER WOODLAND; TEMPERATE FOREST TREES; CLIMATE-CHANGE; GLOBAL-CHANGE; DIE-OFF; PONDEROSA PINE; PLANT-GROWTH AB Model-data comparisons of plant physiological processes provide an understanding of mechanisms underlying vegetation responses to climate. We simulated the physiology of a pinon pine-juniper woodland (Pinus edulis-Juniperus monosperma) that experienced mortality during a 5yr precipitation-reduction experiment, allowing a framework with which to examine our knowledge of drought-induced tree mortality. We used six models designed for scales ranging from individual plants to a global level, all containing state-of-the-art representations of the internal hydraulic and carbohydrate dynamics of woody plants. Despite the large range of model structures, tuning, and parameterization employed, all simulations predicted hydraulic failure and carbon starvation processes co-occurring in dying trees of both species, with the time spent with severe hydraulic failure and carbon starvation, rather than absolute thresholds per se, being a better predictor of impending mortality. Model and empirical data suggest that limited carbon and water exchanges at stomatal, phloem, and below-ground interfaces were associated with mortality of both species. The model-data comparison suggests that the introduction of a mechanistic process into physiology-based models provides equal or improved predictive power over traditional process-model or empirical thresholds. Both biophysical and empirical modeling approaches are useful in understanding processes, particularly when the models fail, because they reveal mechanisms that are likely to underlie mortality. We suggest that for some ecosystems, integration of mechanistic pathogen models into current vegetation models, and evaluation against observations, could result in a breakthrough capability to simulate vegetation dynamics. C1 [McDowell, Nate G.; Xu, Chonggang; Dickman, Lee; Sevanto, Sanna; Williams, A. Park] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Fisher, Rosie A.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80305 USA. [Domec, J. C.] Univ Bordeaux, Bordeaux Sci Agro, UMR INRA TCEM 1220, F-33140 Villenave Dornon, France. [Domec, J. C.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Holtta, Teemu] Univ Helsinki, Dept Forest Sci, FIN-00014 Helsinki, Finland. [Mackay, D. Scott] SUNY Buffalo, Dept Geog, Buffalo, NY 14261 USA. [Sperry, John S.] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA. [Boutz, Amanda; Gehres, Nathan; Limousin, Jean Marc; Plaut, Jennifer A.; Pangle, Robert E.; Pockman, William T.] 1 Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Macalady, Alison] Univ Arizona, Sch Geog & Dev, Tucson, AZ 85721 USA. [Macalady, Alison] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA. [Martinez-Vilalta, Jordi] CREAF, Cerdanyola Del Valles 08193, Spain. [Martinez-Vilalta, Jordi] Univ Autonoma Barcelona, Cerdanyola Del Valles 08193, Spain. [Mencuccini, Maurizio] CREAF, ICREA, Cerdanyola Del Valles 08193, Spain. [Mencuccini, Maurizio] Univ Edinburgh, Sch GeoSci, Edinburgh EH9 3JN, Midlothian, Scotland. [Ogee, Jerome] INRA, EPHYSE UR1263, F-33140 Villenave Dornon, France. [Rasse, Daniel P.] Bioforsk Norwegian Inst Agr & Environm Res, As, Norway. [Ryan, Michael G.] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Ryan, Michael G.] US Forest Serv, Rocky Mt Forest & Range Expt Stn, USDA, Ft Collins, CO 80526 USA. [Waring, Richard H.] Oregon State Univ, Coll Forestry, Corvallis, OR 97331 USA. [Yepez, Enrico A.] Inst Tecnol Sonora, Dept Ciencias Agua & Medio Ambiente, Obregon 85000, Sonora, Mexico. RP McDowell, NG (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM mcdowell@lanl.gov RI Dickman, Lee/J-2391-2015; Williams, Park/B-8214-2016; Mackay, Scott/J-7569-2012; Ryan, Michael/A-9805-2008; Yepez, Enrico/C-2802-2014; Mencuccini, Maurizio/B-9052-2011; Martinez-Vilalta, Jordi/D-3385-2014; Pockman, William/D-4086-2014; Waring, Richared/C-4796-2014; Young, Kristina/M-3069-2014; Ogee, Jerome/C-7185-2013 OI Daniel, Rasse/0000-0002-5977-3863; Xu, Chonggang/0000-0002-0937-5744; Dickman, Lee/0000-0003-3876-7058; Williams, Park/0000-0001-8176-8166; Mackay, Scott/0000-0003-0477-9755; Ryan, Michael/0000-0002-2500-6738; Mencuccini, Maurizio/0000-0003-0840-1477; Martinez-Vilalta, Jordi/0000-0002-2332-7298; Pockman, William/0000-0002-3286-0457; Waring, Richared/0000-0003-2533-3664; FU New Phytologist Trust and Trustees; Department of Energy-Office of Science; LANL-LDRD FX We thank the New Phytologist Trust and Trustees for funding in support of the workshop 'A multi-scale model investigation of the mechanisms of drought-induced vegetation mortality' held in Santa Fe, New Mexico, in November 2011. Additional support was provided by the Department of Energy-Office of Science, and LANL-LDRD. NR 118 TC 114 Z9 114 U1 15 U2 237 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD OCT PY 2013 VL 200 IS 2 SI SI BP 304 EP 321 DI 10.1111/nph.12465 PG 18 WC Plant Sciences SC Plant Sciences GA 220XV UT WOS:000324621600005 PM 24004027 ER PT J AU Plaut, JA Wadsworth, WD Pangle, R Yepez, EA McDowell, NG Pockman, WT AF Plaut, Jennifer A. Wadsworth, W. Duncan Pangle, Robert Yepez, Enrico A. McDowell, Nate G. Pockman, William T. TI Reduced transpiration response to precipitation pulses precedes mortality in a pinon-juniper woodland subject to prolonged drought SO NEW PHYTOLOGIST LA English DT Article DE carbon starvation; die-off; hydraulic conductance; hydraulic failure; mixed effects model; semi-arid ID INDUCED TREE MORTALITY; SAP-FLOW; WATER RELATIONS; VEGETATION MORTALITY; SUMMER PRECIPITATION; AMERICAN SOUTHWEST; CARBON-STARVATION; LEAF HYDRAULICS; CLIMATE-CHANGE; UNITED-STATES AB Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5yr of data from a rainfall manipulation experiment in pinon-juniper (Pinus edulis-Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post-event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post-pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought-related mortality. C1 [Plaut, Jennifer A.; Pangle, Robert; Pockman, William T.] 1 Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Wadsworth, W. Duncan] Rice Univ, Dept Stat, Houston, TX 77251 USA. [Yepez, Enrico A.] Inst Tecnol Sonora, Dept Ciencias Agua & Medio Ambiente, Ciudad Obregon Sonora 85000, Mexico. [McDowell, Nate G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Plaut, JA (reprint author), 1 Univ New Mexico, Dept Biol, MSC03 2020, Albuquerque, NM 87131 USA. EM jplaut@unm.edu RI Yepez, Enrico/C-2802-2014; Pockman, William/D-4086-2014; Young, Kristina/M-3069-2014 OI Pockman, William/0000-0002-3286-0457; FU Department of Energy's Office of Science (BER); National Science Foundation's Graduate Research Fellowship Program; NIH at Rice University [NCI T32 CA096520]; NSF [DEB 0620482] FX We gratefully acknowledge the efforts of Jim Elliot, Judson Hill, Nathan Gehres, Don Natvig, Renee Brown, Jennifer Johnson, Julie Glaser, Clif Meyer, Sam Markwell, Matt Spinelli, Greg Brittain, Jake Ring, and numerous undergraduate students in implementing this experiment and collecting much of the data. This project was supported by an award to N.G.M. and W. T. P. from the Department of Energy's Office of Science (BER) and to J.A.P. by the National Science Foundation's Graduate Research Fellowship Program. W. D. W. was supported by NIH Grant NCI T32 CA096520 at Rice University. The project was also supported by the resources and staff of the Sevilleta LTER (funded by NSF DEB 0620482), the Sevilleta Field Station at the University of New Mexico, and the US Fish and Wildlife Service, who provided access to the Sevilleta National Wildlife Refuge. NR 78 TC 27 Z9 27 U1 5 U2 83 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1469-8137 J9 NEW PHYTOL JI New Phytol. PD OCT PY 2013 VL 200 IS 2 SI SI BP 375 EP 387 DI 10.1111/nph.12392 PG 13 WC Plant Sciences SC Plant Sciences GA 220XV UT WOS:000324621600011 PM 23844951 ER PT J AU Becker, B Weltz, A Kulisek, JA Thompson, J Thompson, N Danon, Y AF Becker, B. Weltz, A. Kulisek, J. A. Thompson, J. Thompson, N. Danon, Y. TI Nondestructive Assay Measurements Using the RPI Lead Slowing-Down Spectrometer SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID SPENT-FUEL; TIME SPECTROMETER AB The use of a lead slowing-down spectrometer (LSDS) is considered as a possible option for nondestructive assay of fissile material of used nuclear fuel. The primary objective is to quantify fissile isotopes, particularly Pu-239 and U-235, via a direct measurement distinguishing them through their characteristic fission spectra in the LSDS. In this paper, we present several assay measurements performed at the Rensselaer Polytechnic Institute (RPI) to support ongoing feasibility studies of the method and to provide benchmark experiments for Monte Carlo calculations of the assay system. Afresh uranium oxide fuel rod from the RPI Walthousen Reactor Critical Facility, a Pu-239-Be source, and several highly enriched U-235 disks were assayed in the LSDS. The characteristic fission spectra were measured with U-238 and Th-232 threshold fission chambers, which are primarily sensitive to fission neutrons with energies above the threshold. Despite the constant neutron and gamma background from the Pu-Be source and the intense interrogation neutron flux, the LSDS system was able to measure the characteristic U-235 and Pu-239 responses. All measurements were compared to Monte Carlo simulations complementing previous modeling-based studies. It is shown that the available simulation tools and models are well suited to simulate the assay. An absolute calibration technique of the LSDS, which is required to perform quantitative measurements of the assayed fissile materials, is presented. C1 [Becker, B.; Weltz, A.; Thompson, J.; Thompson, N.; Danon, Y.] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Kulisek, J. A.] Pacific NW Natl Lab, Radiat Detect & Nucl Sci Grp, Natl Secur Div, Richland, WA 99352 USA. RP Becker, B (reprint author), Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, 110 8th St, Troy, NY 12180 USA. EM danony@rpi.edu OI Becker, Bjorn/0000-0001-6821-1873 FU U.S. Department of Energy [DE-AC52-06-NA25396] FX The authors sincerely thank the technical staff at the RPI linac (P. Brand, M. Gray, M. Strock, and A. Kerdoun) for their efforts in operating and maintaining the linac and LSDS and assistance with setting up experiments. This work was supported by U.S. Department of Energy contract DE-AC52-06-NA25396. We also acknowledge the work of the anonymous referees for their valuable comments and suggestions, which improved the original manuscript. NR 21 TC 1 Z9 1 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD OCT PY 2013 VL 175 IS 2 BP 124 EP 134 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 229YT UT WOS:000325304500002 ER PT J AU Rising, ME Prinja, AK Talou, P AF Rising, M. E. Prinja, A. K. Talou, P. TI Prompt Fission Neutron Spectrum Uncertainty Propagation Using Polynomial Chaos Expansion SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID NUCLEAR-DATA; QUANTIFICATION; TECHNOLOGY; TRANSPORT; SCIENCE AB The polynomial chaos expansion-stochastic collocation method (PCE-SCM) is demonstrated to be a computationally efficient approach for propagating nuclear data uncertainties evaluated for the prompt fission neutron spectra (PFNS) of n + U-235 and n + Pu-239 fission reactions through two fast neutron critical benchmark experiments. A principal component decomposition of the PFNS covariance matrices yields an efficient representation of the uncertainty in terms of two to four random variables. Both normal and uniform distributions are considered for these random variables, and the random output variables (angular flux and k-eigenvalue) are expressed in terms of Hermite and Legendre chaos expansions, respectively. Tensor product Hermite and Legendre Gauss quadrature sets, respectively, are used to relate the deterministic chaos expansion coefficients to solutions of independent transport k-eigenvalue problems, and the resulting polynomial chaos expansion provides a complete statistical characterization of the uncertainty in the output variables. Direct random sampling of the PFNS followed by repeated solution of the transport problem to create an ensemble of solutions is used to benchmark results obtained from the PCE-SCM implementation. Both direct random sampling and the PCE-SCM implementation yield comparable results where, for the Jezebel and Lady Godiva critical assemblies, the calculated uncertainties in k(eff) resulting from the PFNS propagated uncertainties are found to be of the same order or larger than reported experimental measurement uncertainties, respectively. The PCE-SCM implementation results obtained require orders of magnitude less computational resources compared with the direct random sampling approach. C1 [Rising, M. E.; Prinja, A. K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Rising, M. E.; Talou, P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Rising, ME (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. EM mrising@lanl.gov NR 21 TC 7 Z9 7 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD OCT PY 2013 VL 175 IS 2 BP 188 EP 203 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 229YT UT WOS:000325304500007 ER PT J AU Kim, YS Hofman, GL Robinson, AB Wachs, DM AF Kim, Yeon Soo Hofman, G. L. Robinson, A. B. Wachs, D. M. TI IMPROVED IRRADIATION PERFORMANCE OF URANIUM-MOLYBDENUM/ALUMINUM DISPERSION FUEL BY SILICON ADDITION IN ALUMINUM SO NUCLEAR TECHNOLOGY LA English DT Article DE research and test reactor LEU conversion; interaction between U-Mo and Al; uraniummolybdenum fuel dispersion in aluminum matrix ID U-MO ALLOY; LAYER GROWTH; DEGREES-C; AL; DIFFUSION; SI; INTERDIFFUSION; PRODUCT; MATRIX AB Uranium-molybdenum fuel particle dispersion in aluminum is a form of fuel under development for conversion of high-power research and test reactors from highly enriched to low-enriched uranium in the U.S. Global Threat Reduction Initiative program (also known as the Reduced Enrichment for Research and Test Reactors program). Extensive irradiation tests have been conducted to find a solution for problems caused by interaction layer growth and pore formation between U-Mo and Al.Adding a small amount of Si (up to similar to 5 wt%) in the Al matrix was one of the proposed remedies. The effect of silicon addition in the Al matrix was examined using irradiation test results by comparing side-by-side samples with different Si additions. Interaction layer growth was progressively reduced with increasing Si addition to the matrix Al, up to 4.8 wt%. The Si addition also appeared to delay pore formation and growth between the U-Mo and Al. C1 [Kim, Yeon Soo; Hofman, G. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Robinson, A. B.; Wachs, D. M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Kim, YS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov FU U.S. Department of Energy, Office of Global Threat Reduction [NA-21]; UChicago Argonne, LLC [DE-AC-02-06CH11357]; Department of Energy FX This work was supported by the U.S. Department of Energy, Office of Global Threat Reduction (NA-21), National Nuclear Security Administration, under contract DE-AC-02-06CH11357 between UChicago Argonne, LLC, and the Department of Energy. NR 53 TC 8 Z9 8 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2013 VL 184 IS 1 BP 42 EP 53 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 229BF UT WOS:000325236100003 ER PT J AU Chang, L Cloet, IC Roberts, CD Schmidt, SM Tandy, PC AF Chang, L. Cloet, I. C. Roberts, C. D. Schmidt, S. M. Tandy, P. C. TI Pion Electromagnetic Form Factor at Spacelike Momenta SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYSON-SCHWINGER EQUATIONS; QCD; MESONS; MODEL; ELECTRODYNAMICS; CHROMODYNAMICS; APPROXIMATION; SCATTERING; PHYSICS; THEOREM AB A novel method is employed to compute the pion electromagnetic form factor, F-pi(Q(2)), on the entire domain of spacelike momentum transfer using the Dyson-Schwinger equation (DSE) framework in QCD. The DSE architecture unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA). Using this PDA, the leading-order, leading-twist perturbative QCD result for Q(2)F(pi)(Q(2)) underestimates the full computation by just 15% on Q(2) greater than or similar to 8 GeV2, in stark contrast to the result obtained using the asymptotic PDA. The analysis shows that hard contributions to the pion form factor dominate for Q(2) greater than or similar to 8 GeV2, but, even so, the magnitude of Q(2)F(pi)(Q(2)) reflects the scale of dynamical chiral symmetry breaking, a pivotal emergent phenomenon in the standard model. C1 [Chang, L.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Cloet, I. C.; Roberts, C. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Schmidt, S. M.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Schmidt, S. M.] JARA, D-52425 Julich, Germany. [Tandy, P. C.] Kent State Univ, Dept Phys, Ctr Nucl Res, Kent, OH 44242 USA. RP Chang, L (reprint author), Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. FU Forschungszentrum Julich GmbH, Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; National Science Foundation [NSF-PHY1206187] FX This work is supported by Forschungszentrum Julich GmbH, Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357, and National Science Foundation, Grant No. NSF-PHY1206187. NR 67 TC 44 Z9 44 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 1 PY 2013 VL 111 IS 14 AR 141802 DI 10.1103/PhysRevLett.111.141802 PG 5 WC Physics, Multidisciplinary SC Physics GA 230UT UT WOS:000325369300002 PM 24138233 ER PT J AU Warren, JM Bilheux, H Cheng, CL Perfect, E AF Warren, Jeffrey M. Bilheux, Hassina Cheng, Chu-Lin Perfect, Edmund TI Reply to: Comment on 'neutron imaging reveals internal plant water dynamics' SO PLANT AND SOIL LA English DT Editorial Material DE Hydraulic lift; Hydraulic redistribution; Neutron radiography; Root water uptake AB Our recent publication (Warren et al., Plant Soil 366:683-693, 2013) described how pulses of deuterium oxide (D2O) or H2O combined with neutron radiography can be used to indicate root water uptake and hydraulic redistribution in maize. This technique depends on the large inherent differences in neutron cross-section between D and H atoms resulting in strong image contrast. However, as illustrated by Carminati and Zarebanadkouki (2013) there can be a change in total water content without a change in contrast simply by a change in the relative proportions of D2O and H2O. We agree with their premise and detailed calculations (Zarebanadkouki at al. 2012, 2013), and present further evidence that mixing of D2O and H2O did not confound evidence of hydraulic redistribution in our study. C1 [Warren, Jeffrey M.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Warren, Jeffrey M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Bilheux, Hassina] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Cheng, Chu-Lin; Perfect, Edmund] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. RP Warren, JM (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, POB 2008, Oak Ridge, TN 37831 USA. EM warrenjm@ornl.gov; bilheuxhn@ornl.gov; ccheng7@utk.edu; eperfect@utk.edu RI Warren, Jeffrey/B-9375-2012; Cheng, Chu-Lin/G-3471-2013; Bilheux, Hassina/H-4289-2012 OI Warren, Jeffrey/0000-0002-0680-4697; Cheng, Chu-Lin/0000-0002-1900-463X; Bilheux, Hassina/0000-0001-8574-2449 NR 5 TC 4 Z9 4 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0032-079X J9 PLANT SOIL JI Plant Soil PD OCT PY 2013 VL 371 IS 1-2 BP 15 EP 17 DI 10.1007/s11104-013-1858-y PG 3 WC Agronomy; Plant Sciences; Soil Science SC Agriculture; Plant Sciences GA 224JZ UT WOS:000324882500002 ER PT J AU Iwata, A Tek, AL Richard, MMS Abernathy, B Fonseca, A Schmutz, J Chen, NWG Thareau, V Magdelenat, G Li, YP Murata, M Pedrosa-Harand, A Geffroy, V Nagaki, K Jackson, SA AF Iwata, Aiko Tek, Ahmet L. Richard, Manon M. S. Abernathy, Brian Fonseca, Artur Schmutz, Jeremy Chen, Nicolas W. G. Thareau, Vincent Magdelenat, Ghislaine Li, Yupeng Murata, Minoru Pedrosa-Harand, Andrea Geffroy, Valerie Nagaki, Kiyotaka Jackson, Scott A. TI Identification and characterization of functional centromeres of the common bean SO PLANT JOURNAL LA English DT Article DE Phaseolus vulgaris; centromere; satellite repeats; centromere-specific histone H3; centromere evolution; higher-order repeat structure; chromosome-specific homogenization ID MULTIPLE SEQUENCE ALIGNMENT; ARABIDOPSIS-THALIANA; TANDEM REPEATS; DNA-SEQUENCES; SATELLITE REPEAT; EVOLUTIONARY DYNAMICS; REPETITIVE SEQUENCES; MOLECULAR DRIVE; HISTONE H3; RICE AB In higher eukaryotes, centromeres are typically composed of megabase-sized arrays of satellite repeats that evolve rapidly and homogenize within a species' genome. Despite the importance of centromeres, our knowledge is limited to a few model species. We conducted a comprehensive analysis of common bean (Phaseolus vulgaris) centromeric satellite DNA using genomic data, fluorescence in situ hybridization (FISH), immunofluorescence and chromatin immunoprecipitation (ChIP). Two unrelated centromere-specific satellite repeats, CentPv1 and CentPv2, and the common bean centromere-specific histone H3 (PvCENH3) were identified. FISH showed that CentPv1 and CentPv2 are predominantly located at subsets of eight and three centromeres, respectively. Immunofluorescence- and ChIP-based assays demonstrated the functional significance of CentPv1 and CentPv2 at centromeres. Genomic analysis revealed several interesting features of CentPv1 and CentPv2: (i) CentPv1 is organized into an higher-order repeat structure, named Nazca, of 528bp, whereas CentPv2 is composed of tandemly organized monomers; (ii) CentPv1 and CentPv2 have undergone chromosome-specific homogenization; and (iii) CentPv1 and CentPv2 are not likely to be commingled in the genome. These findings suggest that two distinct sets of centromere sequences have evolved independently within the common bean genome, and provide insight into centromere satellite evolution. C1 [Iwata, Aiko; Abernathy, Brian; Li, Yupeng; Jackson, Scott A.] Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA. [Iwata, Aiko; Abernathy, Brian; Li, Yupeng; Jackson, Scott A.] Univ Georgia, Inst Plant Breeding Genet & Genom, Athens, GA 30602 USA. [Tek, Ahmet L.; Murata, Minoru; Nagaki, Kiyotaka] Okayama Univ, Inst Plant Sci & Resources, Kurashiki, Okayama 7100046, Japan. [Tek, Ahmet L.] Harran Univ, Dept Agron, Fac Agr, TR-63300 Sanliurfa, Turkey. [Richard, Manon M. S.; Chen, Nicolas W. G.; Thareau, Vincent; Geffroy, Valerie] Univ Paris 11, IBP, F-91405 Orsay, France. [Fonseca, Artur; Pedrosa-Harand, Andrea] Univ Fed Pernambuco, Lab Plant Cytogenet & Evolut, Dept Bot, BR-50670420 Recife, PE, Brazil. [Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Schmutz, Jeremy] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Magdelenat, Ghislaine] Genoscope Commissariat Energie Atom, Ctr Natl Sequencage, F-91057 Evry, France. [Geffroy, Valerie] Inst Natl Rech Agron, Unite Mixte Rech Genet Vegetale, F-91190 Gif Sur Yvette, France. RP Geffroy, V (reprint author), Univ Paris 11, IBP, Batiment 630, F-91405 Orsay, France. EM sjackson@uga.edu; nagaki@rib.okayama-u.ac.jp; sjackson@uga.edu RI Tek, Ahmet L./G-5100-2012; martel, celine/M-9779-2014; Li, Yupeng/A-7718-2012; Pedrosa-Harand, Andrea/D-9286-2012; OI Tek, Ahmet L./0000-0002-3292-5142; martel, celine/0000-0002-1800-4558; Li, Yupeng/0000-0003-0843-7592; Pedrosa-Harand, Andrea/0000-0001-5213-4770; Chen, Nicolas/0000-0002-7528-4656 FU USDA-NIFA [2009-01860]; Japan Society for the Promotion of Science (JSPS); INRA; IFR87; Turkish Higher Education Council; Harran University, Turkey; Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE), Brazil; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil FX This work was supported by a USDA-NIFA grant 2009-01860 to S.A.J., the Fellowship Program of the Japan Society for the Promotion of Science (JSPS) to A.L.T. and K.N., by INRA and IFR87 to V.G., and partly by the Turkish Higher Education Council and Harran University, Turkey, to A.L.T. A.F. was supported by a grant from Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE), Brazil, and A.P.-H. by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil. NR 66 TC 19 Z9 20 U1 0 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 J9 PLANT J JI Plant J. PD OCT PY 2013 VL 76 IS 1 BP 47 EP 60 DI 10.1111/tpj.12269 PG 14 WC Plant Sciences SC Plant Sciences GA 224WZ UT WOS:000324923900005 PM 23795942 ER PT J AU Geshi, N Johansen, JN Dilokpimol, A Rolland, A Belcram, K Verger, S Kotake, T Tsumuraya, Y Kaneko, S Tryfona, T Dupree, P Scheller, HV Hofte, H Mouille, G AF Geshi, Naomi Johansen, Jorunn N. Dilokpimol, Adiphol Rolland, Aurelia Belcram, Katia Verger, Stephane Kotake, Toshihisa Tsumuraya, Yoichi Kaneko, Satoshi Tryfona, Theodora Dupree, Paul Scheller, Henrik V. Hoefte, Herman Mouille, Gregory TI A galactosyltransferase acting on arabinogalactan protein glycans is essential for embryo development in Arabidopsis SO PLANT JOURNAL LA English DT Article DE Galactosyltransferase; Arabinogalactan proteins; Embryo development ID RAPHANUS-SATIVUS L; DAUCUS-CAROTA L; STREPTOMYCES-AVERMITILIS; SOMATIC EMBRYOGENESIS; MOLECULAR-CLONING; GENE; EXPRESSION; THALIANA; IDENTIFICATION; BIOSYNTHESIS AB Arabinogalactan proteins (AGPs) are a complex family of cell-wall proteoglycans that are thought to play major roles in plant growth and development. Genetic approaches to studying AGP function have met limited success so far, presumably due to redundancy within the large gene families encoding AGP backbones. Here we used an alternative approach for genetic dissection of the role of AGPs in development by modifying their glycan side chains. We have identified an Arabidopsis glycosyltransferase of CAZY family GT31 (AtGALT31A) that galactosylates AGP side chains. A mutation in the AtGALT31A gene caused the arrest of embryo development at the globular stage. The presence of the transcript in the suspensor of globular-stage embryos is consistent with a role for AtGALT31A in progression of embryo development beyond the globular stage. The first observable defect in the mutant is perturbation of the formative asymmetric division of the hypophysis, indicating an essential role for AGP proteoglycans in either specification of the hypophysis or orientation of the asymmetric division plane. C1 [Geshi, Naomi; Dilokpimol, Adiphol; Scheller, Henrik V.] Univ Copenhagen, Dept Plant Biol & Biotechnol, DK-1871 Frederiksberg C, Denmark. [Johansen, Jorunn N.; Rolland, Aurelia; Belcram, Katia; Verger, Stephane; Hoefte, Herman; Mouille, Gregory] Inst Natl Rech Agron, Saclay Plant Sci, Inst Jean Pierre Bourgin, Unite Mixte Rech 1318, F-78000 Versailles, France. [Johansen, Jorunn N.; Rolland, Aurelia; Belcram, Katia; Verger, Stephane; Hoefte, Herman; Mouille, Gregory] AgroParisTech, Unite Mixte Rech 1318, Inst Jean Pierre Bourgin, Saclay Plant Sci, F-78000 Versailles, France. [Kotake, Toshihisa; Tsumuraya, Yoichi] Saitama Univ, Div Life Sci, Grad Sch Sci & Engn, Sakura Ku, Saitama 3388570, Japan. [Kaneko, Satoshi] Natl Food Res Inst, Food Biotechnol Div, Tsukuba, Ibaraki 3058642, Japan. [Tryfona, Theodora; Dupree, Paul] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England. [Scheller, Henrik V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Feedstocks Div, Berkeley, CA 94720 USA. RP Mouille, G (reprint author), Inst Natl Rech Agron, Saclay Plant Sci, Inst Jean Pierre Bourgin, Unite Mixte Rech 1318, F-78000 Versailles, France. EM gregory.mouille@versailles.inra.fr RI Kotake, Toshihisa/F-1117-2011; Scheller, Henrik/A-8106-2008; OI Kotake, Toshihisa/0000-0002-1110-5006; Scheller, Henrik/0000-0002-6702-3560; VERGER, Stephane/0000-0003-3643-3978 FU European Commission [LSHG-CT-2006-037704)]; WALLNET [512265]; FP7 project RENEWALL [211981]; Office of Science, US Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory FX Support was provided by the European Commission Framework Programme FP6 projects AGRON-OMICS (grant number LSHG-CT-2006-037704) and WALLNET (grant number 512265) and FP7 project RENEWALL (grant number 211981), and the Office of Science, US Department of Energy (contract DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory). NR 48 TC 30 Z9 31 U1 1 U2 56 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 J9 PLANT J JI Plant J. PD OCT PY 2013 VL 76 IS 1 BP 128 EP 137 DI 10.1111/tpj.12281 PG 10 WC Plant Sciences SC Plant Sciences GA 224WZ UT WOS:000324923900011 PM 23837821 ER PT J AU Collins, DH Warr, RL Huzurbazar, AV AF Collins, David H. Warr, Richard L. Huzurbazar, Aparna V. TI An introduction to statistical flowgraph models for engineering systems SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY LA English DT Review DE Censored data; feedback; Markov process; reliability analysis; semi-Markov process; transform inversion ID NUMERICAL INVERSION; LAPLACE TRANSFORMS AB Statistical flowgraph models have proven useful for analysis and modeling of complex systems viewed as multistate processes that lead to outcomes such as degraded operation or failure. This article provides an engineering-oriented introduction to statistical flowgraph models: system representation, setting up a flowgraph model, parameter estimation, solution of the model (using either a frequentist or Bayesian approach), and interpretation of model outputs. The method is illustrated with a model for piping reliability in a nuclear power plant, and compared with alternative solution methods. C1 [Collins, David H.; Huzurbazar, Aparna V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Warr, Richard L.] Air Force Inst Technol, Wright Patterson AFB, OH USA. RP Collins, DH (reprint author), Los Alamos Natl Lab, CCS 6,POB 1663,MS F600, Los Alamos, NM 87545 USA. EM dcollins@lanl.gov NR 46 TC 0 Z9 0 U1 2 U2 16 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1748-006X EI 1748-0078 J9 P I MECH ENG O-J RIS JI Proc. Inst. Mech. Eng. Part O-J. Risk Reliab. PD OCT PY 2013 VL 227 IS 5 BP 461 EP 470 DI 10.1177/1748006X13481927 PG 10 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 224LK UT WOS:000324887000001 ER PT J AU Phillips, DJ Schei, JL Rector, DM AF Phillips, Derrick J. Schei, Jennifer L. Rector, David M. TI Vascular Compliance Limits during Sleep Deprivation and Recovery Sleep SO SLEEP LA English DT Article DE Optical imaging; evoked response potentials; hemoglobin; rat; metabolism ID CEREBRAL-BLOOD-FLOW; EVOKED-POTENTIALS; BRAIN ACTIVATION; NEURAL ACTIVITY; WAKE CYCLE; RAT; RESPONSES; WAKING; STATES; EEG AB Study Objectives: Our previous studies showed that evoked hemodynamic responses are smaller during wake compared to sleep; suggesting neural activity is associated with vascular expansion and decreased compliance. We explored whether prolonged activity during sleep deprivation may exacerbate vascular expansion and blunt hemodynamic responses. Design: Evoked auditory responses were generated with periodic 65dB speaker clicks over a 72-h period and measured with cortical electrodes. Evoked hemodynamic responses were measured simultaneously with optical techniques using three light-emitting diodes, and a photodiode. Setting: Animals were housed in separate 30x30x80cm enclosures, tethered to a commutator system and maintained on a 12-h light/dark cycle. Food and water were available ad libitum. Patients or Participants: Seven adult female Sprague-Dawley rats. Interventions: Following a 24-h baseline recording, sleep deprivation was initiated for 0 to 10 h by gentle handling, followed by a 24-h recovery sleep recording. Evoked electrical and hemodynamic responses were measured before, during, and after sleep deprivation. Measurements and Results: Following deprivation, evoked hemodynamic amplitudes were blunted. Steady-state oxyhemoglobin concentration increased during deprivation and remained high during the initial recovery period before returning to baseline levels after approximately 9-h. Conclusions: Sleep deprivation resulted in blood vessel expansion and decreased compliance while lower basal neural activity during recovery sleep may allow blood vessel compliance to recover. Chronic sleep restriction or sleep deprivation could push the vasculature to critical levels, limiting blood delivery, and leading to metabolic deficits with the potential for neural trauma. C1 [Phillips, Derrick J.; Rector, David M.] Washington State Univ, Dept Vet Comparat Anat Pharmacol & Physiol, Pullman, WA 99164 USA. [Schei, Jennifer L.] Los Alamos Natl Lab, Grp Appl Modern Phys P 21, Los Alamos, NM USA. RP Rector, DM (reprint author), Washington State Univ, Dept Vet Comparat Anat Pharmacol & Physiol, 205 Wegner Hall, Pullman, WA 99164 USA. EM drector@wsu.edu FU NIH [MH71830]; W.M. Keck Foundation; Poncin Foundation; NSF [DGE-0900781] FX This work was funded by NIH MH71830, W.M. Keck Foundation, The Poncin Foundation and NSF DGE-0900781. NR 47 TC 5 Z9 5 U1 2 U2 3 PU AMER ACAD SLEEP MEDICINE PI WESTCHESTER PA ONE WESTBROOK CORPORATE CTR, STE 920, WESTCHESTER, IL 60154 USA SN 0161-8105 J9 SLEEP JI Sleep PD OCT 1 PY 2013 VL 36 IS 10 BP 1459 EP 1470 DI 10.5665/sleep.3036 PG 12 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA 227SV UT WOS:000325135600010 PM 24082305 ER PT J AU Deline, C Dobos, A Janzou, S Meydbray, J Donovan, M AF Deline, Chris Dobos, Aron Janzou, Steven Meydbray, Jenya Donovan, Matt TI A simplified model of uniform shading in large photovoltaic arrays SO SOLAR ENERGY LA English DT Article DE Photovoltaic modeling; Partial shading; Inter-row shading; Annual performance model ID I-V CHARACTERISTICS; SHADED SOLAR-CELLS; COMPUTER-SIMULATION; PV ARRAYS; SYSTEMS; MODULE AB This work presents a novel analytical approximation of the effect of inter-row shading on large photovoltaic (PV) arrays. Computation time is reduced orders of magnitude relative to full numerical simulations, allowing this method to be used in annual production estimation software - for instance, it is currently implemented in the National Renewable Energy Laboratory's System Advisor Model program. A further advantage of the analytical approach is that, unlike numerical simulations, computation time does not increase with the size of the PV installation. Comparisons with full I-V curve simulations indicate that this simplified approach has typical error of 1% over multiple module fill factor, shade extent and shade opacity assumptions. Maximum error of 2-6% was found for simulations of crystalline silicon modules. Comparisons with experimental results show good agreement between the experiment and the model over a range of operating conditions, and intercomparison with prior modeling methods indicates a spread of possible model results, depending on model assumptions. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Deline, Chris; Dobos, Aron; Janzou, Steven] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Deline, C (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM chris.deline@nrel.gov FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the US Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. Helpful comments were provided by Cliff Hansen at Sandia National Labs and Sara MacAlpine at the University of Colorado. NR 28 TC 20 Z9 22 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD OCT PY 2013 VL 96 BP 274 EP 282 DI 10.1016/j.solener.2013.07.008 PG 9 WC Energy & Fuels SC Energy & Fuels GA 225LA UT WOS:000324963200026 ER PT J AU Meysing, DM Burst, JM Rance, WL Reese, MO Barnes, TM Gessert, TA Wolden, CA AF Meysing, D. M. Burst, J. M. Rance, W. L. Reese, M. O. Barnes, T. M. Gessert, T. A. Wolden, C. A. TI The influence of cadmium sulfide and contact annealing configuration on the properties of high-performance cadmium stannate SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Cadmium stannate; Transparent conductive oxide; Cadmium telluride; Thin-film photovoltaics; Annealing Sputtering ID TRANSPARENT CONDUCTING OXIDES; FILM SOLAR-CELLS; THIN-FILMS; ELECTRICAL-PROPERTIES; CD2SNO4; CDO AB The sensitivity of cadmium stannate (CTO) performance to both sputtering and annealing conditions was investigated. Films treated by the standard proximity anneal in contact with a CdS film displayed an electrical resistivity of 2.2 x 10(-4) Omega cm, high mobility (similar to 57 cm(2)/V s), and >90% transmission throughout the near infrared (251350 nm). Film properties were insensitive to annealing temperature and sputtering ambient when O-2 was present during deposition. Next, we demonstrated process modifications to the proximity anneal. CTO and CTO/CdS bilayer films were annealed either uncovered or covered with a bare glass plate. CTO/CdS bilayers annealed in the covered configuration had comparable or superior conductivity to the proximity anneal, with optimal performance achieved with 10 nm of CdS. The resistivity of uncovered films and films produced without CdS was insensitive to CdS thickness (similar to 3 x 10(-4) mu cm), and displayed higher mobility and improved transparency, particularly in the near infrared. The electrical properties were well correlated with X-ray diffraction measurements of film crystallinity and purity. These high-conductivity films are promising for photovoltaic applications, transmitting 92-95% of solar radiation > 1 eV. (C) 2013 Elsevier B.V. All rights reserved. C1 [Meysing, D. M.; Wolden, C. A.] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Burst, J. M.; Rance, W. L.; Reese, M. O.; Barnes, T. M.; Gessert, T. A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Meysing, DM (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, 1613 Illinois St, Golden, CO 80401 USA. EM dmeysing@mymail.mines.edu FU U.S. Department of Energy [DE-AC36-08-G028308]; National Renewable Energy Laboratory; Foundational Program to Advance Cell Efficiency (F-PACE) FX The authors would like to thank Dr. Timothy Coutts for stimulating discussions. This work was supported by the U.S. Department of Energy under Contract no. DE-AC36-08-G028308 with the National Renewable Energy Laboratory and funded by the Foundational Program to Advance Cell Efficiency (F-PACE). This work is subject to government rights. NR 27 TC 4 Z9 4 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT PY 2013 VL 117 SI SI BP 300 EP 305 DI 10.1016/j.solmat.2013.06.009 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 228LN UT WOS:000325188400048 ER PT J AU Feldman, A Ahrenkiel, R Lehman, J AF Feldman, Ari Ahrenkiel, Richard Lehman, John TI Degradation of photovoltaic devices at high concentration by space charge limited currents SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Ambipolar mobility; Mobility; Photoconductive decay; RCPCD; Silicon; Solar cells ID SURFACE RECOMBINATION VELOCITIES; SILICON; PLASMA; SEMICONDUCTORS; INTERFACE AB High-injection mobility reduction is examined by theory, modeling, and experimental data acquired by resonance-coupled photoconductive decay (RCPCD). The ambipolar mobility is shown to reduce to zero when the constituent injection-dependent carrier mobilities are taken into account. Modeling of the photoconductivity incorporating the transient, injection-dependent, ambipolar mobility confirms experimental reduction in signal at increasing carrier-generation rates. The onset of the reduction of mobility occurs at approximately 10 times the background carrier density; thus devices that utilize lightly doped materials are susceptible to anomalous injection-based behavior. For photovoltaic applications, high-injection device-performance degradation would result from mobility reduction due to reduced diffusion length. (C) 2013 Elsevier B.V. All rights reserved. C1 [Feldman, Ari; Ahrenkiel, Richard] Colorado Sch Mines, Golden, CO 80401 USA. [Feldman, Ari; Lehman, John] Natl Inst Stand & Technol, Boulder, CO USA. [Ahrenkiel, Richard] Natl Renewable Energy Lab, Golden, CO USA. RP Feldman, A (reprint author), Natl Inst Stand & Technol, Boulder, CO USA. EM ari.feldman@nist.gov NR 15 TC 1 Z9 1 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT PY 2013 VL 117 SI SI BP 408 EP 411 DI 10.1016/j.solmat.2013.07.005 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 228LN UT WOS:000325188400063 ER PT J AU Holmes, NP Burke, KB Sista, P Barr, M Magurudeniya, HD Stefan, MC Kilcoyne, ALD Zhou, XJ Dastoor, PC Belcher, WJ AF Holmes, Natalie P. Burke, Kerry B. Sista, Prakash Barr, Matthew Magurudeniya, Harsha D. Stefan, Mihaela C. Kilcoyne, A. L. David Zhou, Xiaojing Dastoor, Paul C. Belcher, Warwick J. TI Nano-domain behaviour in P3HT:PCBM nanoparticles, relating material properties to morphological changes SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Nanoparticle; Polymer molecular weight; Morphology; Organic photovoltaic ID PHASE-SEPARATION; SOLAR-CELLS; MOLECULAR-WEIGHT; POLYMER; P3HT/PCBM; POLY(3-HEXYLTHIOPHENE); BLENDS; POLY(3-ALKYLTHIOPHENES); MISCIBILITY; PERFORMANCE AB In this article we report a morphological study of the poly(3-hexylthiophene) (P3HT): phenyl-C61butyric acid methyl ester (PCBM) material system in nanoparticle organic thin films. The morphology and chemical composition of unannealed and annealed P3HT:PCBM nanoparticles has been investigated using scanning transmission X-ray microscopy (STXM) for a range of P3HT molecular weights (M-w= 5-72 kg mol(-1)). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) have been used to support the STXM data. We find that unannealed P3HT:PCBM nanoparticles (NPs) exhibit a common core-shell morphology, with a PCBM-rich core and P3HT-rich shell. The morphology of the thermally annealed NP films is highly dependent upon the molecular weight of the P3HT and is determined by PCBM diffusion through the P3HT matrix. Two PCBM diffusion mechanisms operate within this system: (1) at high molecular weights diffusion of molecular PCBM dominates whilst, (2) at low molecular weights diffusion of the PCBM cores is significant. The Stokes-Einstein continuum model for diffusion has been used to determine a threshold molecular weight at which the diffusion of PCBM cores is activated in these films. The calculated value (M-W similar to 38-25 kg mol(-1)) is shown to agree very well with experimental observations. Finally, a model for the morphological evolution of annealed P3HT: PCBM NP films is developed. (C) 2013 Elsevier B.V. All rights reserved. C1 [Holmes, Natalie P.; Burke, Kerry B.; Barr, Matthew; Zhou, Xiaojing; Dastoor, Paul C.; Belcher, Warwick J.] Univ Newcastle, Ctr Organ Elect, Callaghan, NSW 2308, Australia. [Sista, Prakash; Magurudeniya, Harsha D.; Stefan, Mihaela C.] Univ Texas Dallas, Dept Chem, Richardson, TX 75080 USA. [Kilcoyne, A. L. David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Belcher, WJ (reprint author), Univ Newcastle, Ctr Organ Elect, Univ Dr, Callaghan, NSW 2308, Australia. EM warwick.belcher@newcastle.edu.au RI Burke, Kerry/C-9627-2011; Kilcoyne, David/I-1465-2013 OI Burke, Kerry/0000-0002-4977-1426; FU Australian Solar Institute; University of Newcastle FX Special thanks to at the University of Newcastle Electron Microscopy and X-ray Unit. The University of Newcastle and the Australian Solar Institute are gratefully acknowledged for Ph.D. scholarships (NH). NR 28 TC 17 Z9 17 U1 4 U2 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT PY 2013 VL 117 SI SI BP 437 EP 445 DI 10.1016/j.solmat.2013.06.003 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 228LN UT WOS:000325188400067 ER PT J AU Bhandari, KP Roland, PJ Mahabaduge, H Haugen, NO Grice, CR Jeong, S Dykstra, T Gao, JB Ellingson, RJ AF Bhandari, Khagendra P. Roland, Paul J. Mahabaduge, Hasitha Haugen, Neale O. Grice, Corey R. Jeong, Sohee Dykstra, Tieneke Gao, Jianbo Ellingson, Randy J. TI Thin film solar cells based on the heterojunction of colloidal PbS quantum dots with CdS SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Quantum dot; PbS; CdS; Solar cell; Thin film ID CHEMICAL-VAPOR-DEPOSITION; BATH DEPOSITION; EFFICIENCY; STABILITY; NANOCRYSTALS; AIR AB Here we report on heterojunction PbS quantum dot (QD) solar cells using RF magnetron sputtered CdS as the n-type window layer. These solar cells generate large open circuit voltage compared to previously reported PbS-QD solar cells. Our investigations of this device design show an optimized CdS film thickness of 70 nm and an optimized PbS QD diameter of similar to 2.7 nm, corresponding to a bandgap energy of similar to 1.57 eV. Under simulated AM 1.5 G illumination, we attain short circuit current as high as 12 mA-cm(-2), an open circuit voltage of 0.65 V and efficiency as high as 3.3%. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bhandari, Khagendra P.; Roland, Paul J.; Mahabaduge, Hasitha; Haugen, Neale O.; Grice, Corey R.; Dykstra, Tieneke; Gao, Jianbo; Ellingson, Randy J.] Univ Toledo, Dept Phys & Astron, Wright Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA. [Gao, Jianbo] NREL, Golden, CO 80401 USA. [Jeong, Sohee] Korea Inst Machinery & Mat, Nanomech Res Div, Taejon 305343, South Korea. RP Bhandari, KP (reprint author), Univ Toledo, Dept Phys & Astron, Wright Ctr Photovolta Innovat & Commercializat, 2801 W Bancroft St, Toledo, OH 43606 USA. EM randy.ellingson@utoledo.edu RI Ellingson, Randy/H-3424-2013; GAO, JIANBO/A-1633-2014; OI Haugen, Neale/0000-0003-2674-3147; Jeong, Sohee/0000-0002-9863-1374; Grice, Corey/0000-0002-0841-5943 FU Global Frontier RD Program; Center for Multiscale Energy Systems; Air Force Research Laboratory [FA9453-08-C-0172, FA9453-11-C-0253]; University of Toledo's School for Solar and Advanced Renewable Energy; National Renewable Energy Laboratory Seed Fund program; State of Ohio Wright Centers program FX The authors would like to thank Y. Xie for his assistance to measure surface roughness using atomic force microscopy. K. Shandari, T. Dykstra, R. Ellingson, N. Haugen, and P. Roland received support from the Air Force Research Laboratory under Contracts FA9453-08-C-0172 and FA9453-11-C-0253; CG was supported by the University of Toledo's School for Solar and Advanced Renewable Energy; K. Bhandari and J. Gao received support from the National Renewable Energy Laboratory Seed Fund program; R. Ellingson received support from the State of Ohio Wright Centers program; and S. Jeong was supported by the Global Frontier R&D Program by the Center for Multiscale Energy Systems. NR 39 TC 32 Z9 32 U1 1 U2 66 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT PY 2013 VL 117 SI SI BP 476 EP 482 DI 10.1016/j.solmat.2013.07.018 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 228LN UT WOS:000325188400072 ER PT J AU Sun, WC Kuhn, MR Rudnicki, JW AF Sun, WaiChing Kuhn, Matthew R. Rudnicki, John W. TI A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band SO ACTA GEOTECHNICA LA English DT Article DE Discrete element method; Homogenization; Lattice Boltzmann method; Micromechanics of granular materials; Microstructure; Strain localization ID DIGITAL IMAGE CORRELATION; GRANULAR MEDIA; DEFORMATION; SANDSTONE; DISCRETE; MODEL; PORE; SAND; LOCALIZATION; SIMULATIONS AB This paper presents a multiscale analysis of a dilatant shear band using a three-dimensional discrete element method and a lattice Boltzmann/finite element hybrid scheme. In particular, three-dimensional simple shear tests are conducted via the discrete element method. A spatial homogenization is performed to recover the macroscopic stress from the micro-mechanical force chains. The pore geometries of the shear band and host matrix are quantitatively evaluated through morphology analyses and lattice Boltzmann/finite element flow simulations. Results from the discrete element simulations imply that grain sliding and rotation occur predominately with the shear band. These granular motions lead to dilation of pore space inside the shear band and increases in local permeability. While considerable anisotropy in the contact fabric is observed with the shear band, anisotropy of the permeability is, at most, modest in the assemblies composed of spherical grains. C1 [Sun, WaiChing] Sandia Natl Labs, Livermore, CA USA. [Kuhn, Matthew R.] Univ Portland, Donald P Shiley Sch Engn, Dept Civil Engn, Portland, OR 97203 USA. [Rudnicki, John W.] Northwestern Univ, Technol Inst A333, Dept Civil & Environm Engn, Evanston, IL 60208 USA. RP Sun, WC (reprint author), Sandia Natl Labs, Mail Stop 9912,7011 East Ave, Livermore, CA USA. EM wsun@sandia.gov RI Sun, WaiChing/A-2638-2009; Rudnicki, John/B-7088-2009 OI Sun, WaiChing/0000-0002-3078-5086; FU Geosciences Research Program of the U.S. Department of Energy [DE-FG02-08ER15980]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge the support provided by the Geosciences Research Program of the U.S. Department of Energy under Grant No. DE-FG02-08ER15980 to Northwestern University. We also thank Professor Teng-fong Wong for fruitful discussion. We thank Professor Ronaldo I Borja and the anonymous reviewer for helpful suggestions that improved the paper.; Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 45 TC 22 Z9 23 U1 3 U2 43 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1861-1125 J9 ACTA GEOTECH JI Acta Geotech. PD OCT PY 2013 VL 8 IS 5 BP 465 EP 480 DI 10.1007/s11440-013-0210-2 PG 16 WC Engineering, Geological SC Engineering GA 221CF UT WOS:000324634300001 ER PT J AU Mason, JK Johnson, OK Reed, BW Li, SF Stolken, JS Kumar, M AF Mason, Jeremy K. Johnson, Oliver K. Reed, Bryan W. Li, Shiu Fai Stolken, James S. Kumar, Mukul TI Statistics of twin-related domains and the grain boundary network SO ACTA MATERIALIA LA English DT Article DE Twinning; Twin-related domain; Thermomechanical processing; High-energy X-ray diffraction; EBSD ID WEIBULL DISTRIBUTION; NICKEL; MICROSTRUCTURE; ALLOY AB The twin-related domain, or a collection of contiguous grains related by twinning operations, is proposed as the basis for the analysis of grain boundary network connectivity in materials prone to annealing twinning. The distribution of the number of grains in a twin-related domain was measured for materials with a variety of compositions and processing histories. The Weibull distribution is found to accurately reflect many features of the twin-related domain populations, and the parameters of the Weibull distribution vary systematically with the number fraction of resistant boundaries in the microstructure. An alternative model based on the microstructural effects of sequential thermomechanical processing is proposed. This provides an overall fit to the experimental data of comparable quality to the Weibull distribution, while allowing an interpretation of the model parameters that suggests a refinement of the usual thermomechanical processing schedule. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Mason, Jeremy K.; Reed, Bryan W.; Li, Shiu Fai; Stolken, James S.; Kumar, Mukul] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Johnson, Oliver K.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. RP Mason, JK (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM jkylemason@gmail.com; ojohnson@-mit.edu; reed12@llnl.gov; li31@llnl.gov; stolken1@llnl.gov; kumar3@llnl.gov RI Li, Shiu Fai/B-2605-2014; Mason, Jeremy/P-8188-2014; Mason, Jeremy/P-9567-2015; OI Li, Shiu Fai/0000-0001-9805-5621; Mason, Jeremy/0000-0002-0425-9816; Mason, Jeremy/0000-0002-0425-9816; Johnson, Oliver/0000-0001-7827-1271 FU US Department of Energy; Lawrence Livermore National Laboratory [AC52-07NA27344]; Department of Defense (DoD); National Defense Science & Engineering Graduate Fellowship (NDSEG) Program; Lawrence Postdoctoral Fellowship program; US Department of Energy, Office of Science, Office of Basic Energy Sciences, [DE-ACO2-06CH11357] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors are grateful to J.L. Jones for her contribution to the initial data analysis. J.K.M., O.J., B.W.R., S.F.L. and M.K. were supported by the US DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering. O.J. received further support from the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program, and J.K.M. received further support through the Lawrence Postdoctoral Fellowship program. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 29 TC 2 Z9 2 U1 3 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD OCT PY 2013 VL 61 IS 17 BP 6524 EP 6532 DI 10.1016/j.actamat.2013.07.031 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 223GC UT WOS:000324791700018 ER PT J AU Johnson, JL Whalen, DJ Even, W Fryer, CL Heger, A Smidt, J Chen, KJ AF Johnson, Jarrett L. Whalen, Daniel J. Even, Wesley Fryer, Chris L. Heger, Alex Smidt, Joseph Chen, Ke-Jung TI THE BIGGEST EXPLOSIONS IN THE UNIVERSE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; early universe; supernovae: general ID SUPERMASSIVE BLACK-HOLES; METAL-POOR STARS; PAIR-INSTABILITY SUPERNOVAE; INITIAL MASS FUNCTION; DARK-MATTER HALOES; DIGITAL SKY SURVEY; 1ST STARS; POPULATION-III; DIRECT COLLAPSE; GRAVITATIONAL COLLAPSE AB Supermassive primordial stars are expected to form in a small fraction of massive protogalaxies in the early universe, and are generally conceived of as the progenitors of the seeds of supermassive black holes (BHs). Supermassive stars with masses of similar to 55,000 M-circle dot, however, have been found to explode and completely disrupt in a supernova (SN) with an energy of up to similar to 10(55) erg instead of collapsing to a BH. Such events, similar to 10,000 times more energetic than typical SNe today, would be among the biggest explosions in the history of the universe. Here we present a simulation of such a SN in two stages. Using the RAGE radiation hydrodynamics code, we first evolve the explosion from an early stage through the breakout of the shock from the surface of the star until the blast wave has propagated out to several parsecs from the explosion site, which lies deep within an atomic cooling dark matter (DM) halo at z similar or equal to 15. Then, using the GADGET cosmological hydrodynamics code, we evolve the explosion out to several kiloparsecs from the explosion site, far into the low-density intergalactic medium. The host DM halo, with a total mass of 4 x 10(7) M-circle dot, much more massive than typical primordial star-forming halos, is completely evacuated of high-density gas after less than or similar to 10 Myr, although dense metal-enriched gas recollapses into the halo, where it will likely form second-generation stars with metallicities of similar or equal to 0.05 Z(circle dot) after greater than or similar to 70 Myr. The chemical signature of supermassive star explosions may be found in such long-lived second-generation stars today. C1 [Johnson, Jarrett L.; Whalen, Daniel J.; Smidt, Joseph] Los Alamos Natl Lab, Astrophys & Cosmol Grp T2, Thermonucl Applicat Phys Grp XTD 6, Los Alamos, NM 87545 USA. [Whalen, Daniel J.] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Even, Wesley; Fryer, Chris L.] Los Alamos Natl Lab, Computat Phys & Methods Grp CCS 2, Los Alamos, NM 87545 USA. [Heger, Alex] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Chen, Ke-Jung] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Johnson, JL (reprint author), Los Alamos Natl Lab, Astrophys & Cosmol Grp T2, Thermonucl Applicat Phys Grp XTD 6, POB 1663, Los Alamos, NM 87545 USA. EM jlj@lanl.gov OI Even, Wesley/0000-0002-5412-3618 FU U.S. Department of Energy through the LANL/LDRD Program; LDRD Director's Postdoctoral Fellowship at Los Alamos National Laboratory; Baden-Wurttemberg-Stiftung by contract research via the program Internationale Spitzenforschung II [P-LS-SPII/18]; U.S. DOE Program for Scientific Discovery through Advanced Computing (SciDAC) [DE-FC02-09ER41618]; U.S. Department of Energy [DE-FG02-87ER40328]; Joint Institute for Nuclear Astrophysics (JINA; NSF) [PHY08-22648, PHY110-2511]; ARC Future Fellowship [FT120100363]; Monash University Larkins Fellowship; KITP/UCSB Graduate Fellowship; UMN Stanwood Johnston Fellowship; National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was supported by the U.S. Department of Energy through the LANL/LDRD Program, and J.L.J. acknowledges the support of a LDRD Director's Postdoctoral Fellowship at Los Alamos National Laboratory. The RAGE and GADGET simulations were carried out on the LANL Institutional Computing clusters Pinto and Mustang, respectively. D.J.W. acknowledges support from the Baden-Wurttemberg-Stiftung by contract research via the program Internationale Spitzenforschung II (grant P-LS-SPII/18). A. H. and K. C. were supported by the U.S. DOE Program for Scientific Discovery through Advanced Computing (SciDAC; DE-FC02-09ER41618), by the U.S. Department of Energy under grant DE-FG02-87ER40328, by the Joint Institute for Nuclear Astrophysics (JINA; NSF grant PHY08-22648 and PHY110-2511). A. H. acknowledges support by an ARC Future Fellowship (FT120100363) and a Monash University Larkins Fellowship. K. C. was supported by a KITP/UCSB Graduate Fellowship and by a UMN Stanwood Johnston Fellowship. The authors thank A very Meiksin for helpful discussion. Work at LANL was done under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 113 TC 25 Z9 25 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2013 VL 775 IS 2 AR 107 DI 10.1088/0004-637X/775/2/107 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 222ME UT WOS:000324734400027 ER PT J AU Miller, JM Parker, ML Fuerst, F Bachetti, M Harrison, FA Barret, D Boggs, SE Chakrabarty, D Christensen, FE Craig, WW Fabian, AC Grefenstette, BW Hailey, CJ King, AL Stern, DK Tomsick, JA Walton, DJ Zhang, WW AF Miller, J. M. Parker, M. L. Fuerst, F. Bachetti, M. Harrison, F. A. Barret, D. Boggs, S. E. Chakrabarty, D. Christensen, F. E. Craig, W. W. Fabian, A. C. Grefenstette, B. W. Hailey, C. J. King, A. L. Stern, D. K. Tomsick, J. A. Walton, D. J. Zhang, W. W. TI NuSTAR SPECTROSCOPY OF GRS 1915+105: DISK REFLECTION, SPIN, AND CONNECTIONS TO JETS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; black hole physics; gravitation; relativistic processes; X-rays: binaries ID BLACK-HOLE SPIN; X-RAY BINARIES; ACCRETION DISK; GRS-1915+105; ENERGY; CONSTRAINTS; GRS1915+105; EXTRACTION; EMISSION; CORONAE AB We report on the results of spectral fits made to a NuSTAR observation of the black hole GRS 1915+105 in a "plateau" state. This state is of special interest because it is similar to the "low/hard" state seen in other black holes, especially in that compact, steady jets are launched in this phase. The 3-79 keV bandpass of NuSTAR, and its ability to obtain moderate-resolution spectra free from distortions such as photon pile-up, are extremely well suited to studies of disk reflection in X-ray binaries. In only 15 ks of net exposure, an extraordinarily sensitive spectrum of GRS 1915+105 was measured across the full bandpass. Ionized reflection from a disk around a rapidly spinning black hole is clearly required to fit the spectra; even hybrid Comptonization models including ionized reflection from a disk around a Schwarzschild black hole proved inadequate. A spin parameter of a = 0.98 +/- 0.01 (1 sigma statistical error) is measured via the best-fit model; low spins are ruled out at a high level of confidence. This result suggests that jets can be launched from a disk extending to the innermost stable circular orbit. A very steep inner disk emissivity profile is also measured, consistent with models of compact coronae above Kerr black holes. These results support an emerging association between the hard X-ray corona and the base of the relativistic jet. C1 [Miller, J. M.; King, A. L.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Parker, M. L.; Fabian, A. C.] Univ Cambridge, Inst Astron, Cambridge CB3 OHA, England. [Fuerst, F.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Bachetti, M.; Harrison, F. A.; Barret, D.; Grefenstette, B. W.] Univ Toulouse, UPS OMP, F-31400 Toulouse, France. [Bachetti, M.] CNRS, Inst Rech Astrophys & Planetol, F-31028 Toulouse 4, France. [Boggs, S. E.; Tomsick, J. A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Chakrabarty, D.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Christensen, F. E.] Danish Tech Univ, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Craig, W. W.; Hailey, C. J.] Columbia Univ, New York, NY 10027 USA. [Stern, D. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Miller, JM (reprint author), Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. EM jonmm@umich.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Bachetti, Matteo/0000-0002-4576-9337 FU NASA [NNG08FD60C] FX This work was supported under NASA contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. J.M.M. thanks Sergei Trushkin for communicating radio results. NR 40 TC 39 Z9 39 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2013 VL 775 IS 2 AR L45 DI 10.1088/2041-8205/775/2/L45 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 220ZP UT WOS:000324626700012 ER PT J AU Li, C Tsay, SC Hsu, NC Kim, JY Howell, SG Huebert, BJ Ji, Q Jeong, MJ Wang, SH Hansell, RA Bell, SW AF Li, Can Tsay, Si-Chee Hsu, N. Christina Kim, Jin Young Howell, Steven G. Huebert, Barry J. Ji, Qiang Jeong, Myeong-Jae Wang, Sheng-Hsiang Hansell, Richard A. Bell, Shaun W. TI Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Southeast Asia; Aerosols; Chemical composition; Microphysical properties; Optical properties ID SOUTHEAST-ASIA; AIR-QUALITY; RADIATIVE PROPERTIES; SIZE DISTRIBUTIONS; TROPOSPHERIC OZONE; NORTHERN VIETNAM; ELEMENTAL CARBON; ACE-ASIA; CHINA; PARTICLES AB Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.183 degrees N, 102.565 degrees E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 +/- 64 Mm(-1); absorption: 15 +/- 8 Mm(-1); PM10 concentration: 33 +/- 17 mu g m(-3)), and dominated by submicron particles. Major aerosol compounds included carbonaceous (OC: 9.5 +/- 3.6 mu g m(-3); EC: 2.0 +/- 2.3 mu g m(-3)) and secondary species (SO42-: 6.4 +/- 3.7 mu g m(-3), NH4+: 2.2 +/- 1.3 mu g m(-3)). While the site was seldom under the direct influence of large forest fires to its north, agricultural fires were ubiquitous during the experiment, as suggested by the substantial concentration of K+ (0.56 +/- 0.33 mu g m(-3)). Besides biomass burning, aerosols in Phimai during the experiment were also strongly influenced by industrial and vehicular emissions from the Bangkok metropolitan region and long-range transport from southern China. High humidity played an important role in determining the aerosol composition and properties in the region. Sulfate was primarily formed via aqueous phase reactions, and hygroscopic growth could enhance the aerosol light scattering by up to 60%, at the typical morning RH level of 85%. The aerosol single scattering albedo demonstrated distinct diurnal variation, ranging from 0.86 +/- 0.04 in the evening to 0.92 +/- 0.02 in the morning. This experiment marks the first time such comprehensive characterization of aerosols was made for rural central Thailand. Our results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Li, Can; Ji, Qiang; Hansell, Richard A.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kim, Jin Young] Korea Inst Sci & Technol, Natl Agenda Res Div, Seoul, South Korea. [Howell, Steven G.; Huebert, Barry J.] Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA. [Jeong, Myeong-Jae] Gangneung Wonju Natl Univ, Dept Atmospher & Environm Sci, Kangnung 210702, Gangwon Do, South Korea. [Wang, Sheng-Hsiang] Natl Cent Univ, Dept Atmospher Sci, Jhongli, Taiwan. [Wang, Sheng-Hsiang] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Bell, Shaun W.] Sci Syst & Applications Inc, Lanham, MD USA. RP Li, C (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 613-0, Greenbelt, MD 20771 USA. EM can.li@nasa.gov RI Li, Can/F-6867-2011; Tsay, Si-Chee/J-1147-2014; Hansell, Richard/J-2065-2014; Wang, Sheng-Hsiang/F-4532-2010 OI Wang, Sheng-Hsiang/0000-0001-9675-3135 FU NASA Radiation Sciences Program [NNG04GC59G]; Korea Institute of Science and Technology FX The BASE-ASIA project was supported by the NASA Radiation Sciences Program managed by Dr. Hal Maring. The UH group would like to acknowledge our funding agency (NASA Radiation Sciences Program, #NNG04GC59G). J.Y. Kim was supported by Korea Institute of Science and Technology. We also thank Jariya Boonjarwat, and the exceedingly helpful and generous staff of the Phimai facility. NR 54 TC 14 Z9 14 U1 0 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD OCT PY 2013 VL 78 SI SI BP 60 EP 71 DI 10.1016/j.atmosenv.2012.04.003 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 220RW UT WOS:000324605600005 ER PT J AU Huang, K Fu, JS Hsu, NC Gao, Y Dong, XY Tsay, SC Lam, YF AF Huang, Kan Fu, Joshua S. Hsu, N. Christina Gao, Yang Dong, Xinyi Tsay, Si-Chee Lam, Yun Fat TI Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Biomass burning; Southeast Asia; CMAQ; Long-range transport; Aerosol chemical property; Aerosol optical property ID AEROSOL OPTICAL-PROPERTIES; SKY RADIANCE MEASUREMENTS; TRANSPORT; COMBUSTION; PARTICLES; ALGORITHM; SUPERSITE; EMISSIONS; PACIFIC; NETWORK AB A synergy of numerical simulation, ground-based measurement and satellite observation was applied to evaluate the impact of biomass burning originating from Southeast Asia (SE Asia) within the framework of NASA's 2006 Biomass burning Aerosols in Southeast Asia: Smoke Impact Assessment (BASE-ASIA). Biomass burning emissions in the spring of 2006 peaked in March-April when most intense biomass burning occurred in Myanmar, northern Thailand, Laos, and parts of Vietnam and Cambodia. Model performances were reasonably validated by comparing to both satellite and ground-based observations despite overestimation or underestimation occurring in specific regions due to high uncertainties of biomass burning emission. Chemical tracers of particulate K+, OC concentrations, and OC/EC ratios showed distinct regional characteristics, suggesting biomass burning and local emission dominated the aerosol chemistry. CMAQ modeled aerosol chemical components were underestimated at most circumstances and the converted AOD values from CMAQ were biased low at about a factor of 2, probably due to the underestimation of biomass emissions. Scenario simulation indicated that the impact of biomass burning to the downwind regions spread over a large area via the Asian spring monsoon, which included Southern China, South China Sea, and Taiwan Strait. Comparison of AERONET aerosol optical properties with simulation at multi-sites clearly demonstrated the biomass burning impact via long-range transport. In the source region, the contribution from biomass burning to AOD was estimated to be over 56%. While in the downwind regions, the contribution was still significant within the range of 26%-62%. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Huang, Kan; Fu, Joshua S.; Gao, Yang; Dong, Xinyi; Lam, Yun Fat] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Fu, Joshua S.] UTK ORNL Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN USA. [Hsu, N. Christina; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Fu, JS (reprint author), Univ Tennessee, Dept Civil & Environm Engn, 59 Perkins Hall, Knoxville, TN 37996 USA. EM jsfu@utk.edu RI Tsay, Si-Chee/J-1147-2014; Huang, Kan/E-4824-2011; LAM, Yun Fat/K-7287-2015 OI LAM, Yun Fat/0000-0002-5917-0907 FU NASA GSFC [NNX09AG75G]; NASA Radiation Sciences Program FX We thank Thailand PCD, EANET, Taiwan EPA and AERONET for proving the measurement data. We thank Dr. Edward J. Hyer for providing FLAMBE biomass burning emission data. We thank NASA GSFC on funding support (grant no.: NNX09AG75G). Data products from SMART-COMMIT and Deep Blue groups of NASA GSFC are funded by the NASA Radiation Sciences Program, managed by Dr. Hal Maring. Hong Kong data was obtained from Hong Kong Environmental Protection Department. NR 33 TC 34 Z9 35 U1 6 U2 63 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD OCT PY 2013 VL 78 SI SI BP 291 EP 302 DI 10.1016/j.atmosenv.2012.03.048 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 220RW UT WOS:000324605600028 ER PT J AU Streets, DG Canty, T Carmichael, GR de Foy, B Dickerson, RR Duncan, BN Edwards, DP Haynes, JA Henze, DK Houyoux, MR Jacobi, DJ Krotkov, NA Lamsal, LN Liu, Y Lu, ZF Martini, RV Pfister, GG Pinder, RW Salawitch, RJ Wechti, KJ AF Streets, David G. Canty, Timothy Carmichael, Gregory R. de Foy, Benjamin Dickerson, Russell R. Duncan, Bryan N. Edwards, David P. Haynes, John A. Henze, Daven K. Houyoux, Marc R. Jacobi, Daniel J. Krotkov, Nickolay A. Lamsal, Lok N. Liu, Yang Lu, Zifeng Martini, Randall V. Pfister, Gabriele G. Pinder, Robert W. Salawitch, Ross J. Wechti, Kevin J. TI Emissions estimation from satellite retrievals: A review of current capability SO ATMOSPHERIC ENVIRONMENT LA English DT Review DE Satellite retrievals; Emission inventories; Air quality management; Data assimilation; National Emission Inventory ID OZONE MONITORING INSTRUMENT; AEROSOL OPTICAL DEPTH; TROPOSPHERIC NITROGEN-DIOXIDE; EASTERN UNITED-STATES; GROUND-LEVEL PM2.5; IMAGING SPECTRORADIOMETER MODIS; ATMOSPHERIC INFRARED SOUNDER; NITRIC-OXIDE EMISSIONS; BIOMASS BURNING PLUMES; THERMAL POWER-PLANTS AB Since the mid-1990s a new generation of Earth-observing satellites has been able to detect tropospheric air pollution at increasingly high spatial and temporal resolution. Most primary emitted species can be measured by one or more of the instruments. This review article addresses the question of how well we can relate the satellite measurements to quantification of primary emissions and what advances are needed to improve the usability of the measurements by U.S. air quality managers. Built on a comprehensive literature review and comprising input by both satellite experts and emission inventory specialists, the review identifies several targets that seem promising: large point sources of NOx and SO2, species that are difficult to measure by other means (NH3 and CH4, for example), area sources that cannot easily be quantified by traditional bottom-up methods (such as unconventional oil and gas extraction, shipping, biomass burning, and biogenic sources), and the temporal variation of emissions (seasonal, diurnal, episodic). Techniques that enhance the usefulness of current retrievals (data assimilation, oversampling, multi-species retrievals, improved vertical profiles, etc.) are discussed. Finally, we point out the value of having new geostationary satellites like CEO-CAPE and TEMPO over North America that could provide measurements at high spatial (few km) and temporal (hourly) resolution. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Canty, Timothy] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Carmichael, Gregory R.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [de Foy, Benjamin] St Louis Univ, Dept Earth & Atmospher Sci, St Louis, MO 63108 USA. [Duncan, Bryan N.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. [Edwards, David P.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80301 USA. [Haynes, John A.] Natl Aeronaut & Space Adm, Div Earth Sci, Washington, DC 20546 USA. [Henze, Daven K.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Houyoux, Marc R.] US EPA, Off Air Qual Planning & Stand, Res Triangle Pk, NC 27711 USA. [Jacobi, Daniel J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Liu, Yang] Emory Clin, Dept Environm Hlth, Atlanta, GA 30322 USA. [Martini, Randall V.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada. [Pinder, Robert W.] US Environm Protect Agcy, Off Res & Dev, Res Triangle Pk, NC USA. RP Streets, DG (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dstreets@anl.gov RI Pinder, Robert/F-8252-2011; Lu, Zifeng/F-3266-2012; Canty, Timothy/F-2631-2010; de Foy, Benjamin/A-9902-2010; Salawitch, Ross/B-4605-2009; Krotkov, Nickolay/E-1541-2012; Dickerson, Russell/F-2857-2010; Duncan, Bryan/A-5962-2011; OI Pinder, Robert/0000-0001-6390-7126; Canty, Timothy/0000-0003-0618-056X; de Foy, Benjamin/0000-0003-4150-9922; Salawitch, Ross/0000-0001-8597-5832; Krotkov, Nickolay/0000-0001-6170-6750; Dickerson, Russell/0000-0003-0206-3083; Streets, David/0000-0002-0223-1350 FU NASA Air Quality Applied Sciences Team (AQAST); US Department of Energy [DE-AC02-06CH11357] FX Nine of the co-authors of this article (DGS, GRC, BdF, RRD, BND, DPE, DKH, DJJ, and YL) are members of the NASA Air Quality Applied Sciences Team (AQAST) and acknowledge funding support from this program. They wish to express their gratitude to the present (John Haynes) and former (Lawrence Friedl) NASA program managers. Argonne National Laboratory is operated by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357 with the US Department of Energy. NR 311 TC 81 Z9 82 U1 14 U2 214 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD OCT PY 2013 VL 77 BP 1011 EP 1042 DI 10.1016/j.atmosenv.2013.05.051 PG 32 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 223YN UT WOS:000324848500107 ER PT J AU Fischer, J Lima, JA Freire, PTC Melo, FEA Havenith, RWA Mendes, J Broer, R Eckert, J Bordallo, HN AF Fischer, Jennifer Lima, Jose A. Freire, Paulo T. C. Melo, Francisco E. A. Havenith, Remco W. A. Mendes Filho, Josue Broer, Ria Eckert, Juergen Bordallo, Heloisa N. TI Molecular flexibility and structural instabilities in crystalline L-methionine SO BIOPHYSICAL CHEMISTRY LA English DT Article DE Amino acid; Flexibility; Structure; Dynamics; Spectroscopy; Computation ID INELASTIC NEUTRON-SCATTERING; AMINO-ACIDS; RAMAN-SPECTROSCOPY; PHASE-TRANSITION; LINE-SHAPES; AB-INITIO; L-ALANINE; L-VALINE; DYNAMICS; ROTATION AB We have investigated the dynamics in polycrystalline samples of L-methionine related to the structural transition at about 307 K by incoherent inelastic and quasielastic neutron scattering, X-ray powder diffraction as well as ab-initio calculations. L-Methionine is a sulfur amino acid which can be considered a derivative of alanine with the alanine R-group CH3 exchanged by -CH3S- (CH2)(2). Using X-ray powder diffraction we have observed at similar to 190 K an anomalous drop of the c-lattice parameter and an abrupt change of the beta-monoclinic angle that could be correlated to the anomalies observed in previous specific heat measurements. Distinct changes in the quasielastic region of the neutron spectra are interpreted as being due to the onset and slowing-down of reorientational motions of the CH3-S group, are clearly distinguished above 130 K in crystalline L-methionine. Large-amplitude motions observed at low frequencies are also activated above 275 K, while other well-defined vibrations are damped. The ensemble of our results suggests that the crystalline structure of L-methionine is dynamically highly disordered above 275 K, and such disorder can be linked to the flexibility of the molecular thiol-ether group. (C) 2013 Elsevier B.V. All rights reserved. C1 [Fischer, Jennifer] Univ Kassel, Inst Phys, D-34132 Kassel, Germany. [Fischer, Jennifer] Univ Kassel, Ctr Interdisciplinary Nanostruct Sci & Technol CI, D-34132 Kassel, Germany. [Fischer, Jennifer; Bordallo, Heloisa N.] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Lima, Jose A.; Freire, Paulo T. C.; Melo, Francisco E. A.; Mendes Filho, Josue] Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil. [Havenith, Remco W. A.; Broer, Ria] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands. [Eckert, Juergen] Univ S Florida, Dept Chem, Tampa, FL 33620 USA. [Eckert, Juergen] Los Alamos Natl Lab, LANSCE, Lujan Ctr, Los Alamos, NM 87545 USA. [Bordallo, Heloisa N.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. RP Eckert, J (reprint author), Univ S Florida, Dept Chem, 4202 E Fowler Ave, Tampa, FL 33620 USA. EM juergen@usf.edu; bordallo@nbi.ku.dk RI Bordallo, Heloisa/I-6836-2012; Melo, Francisco/J-2596-2014; de Lima Jr, Jose/M-1977-2014; Freire, Paulo/C-5229-2013; Universidade Federal do Ceara, Physics Department/J-4630-2016; UFC, DF/E-1564-2017 OI Bordallo, Heloisa/0000-0003-0750-0553; Freire, Paulo/0000-0002-2321-3709; Universidade Federal do Ceara, Physics Department/0000-0002-9247-6780; FU Helmholtz-Zentrum Berlin (HZB); FUNCAP; CNPq; Deutsche Forschungsgemeinschaf (DFG) [GZ: 444 BRA-113/310/0-1]; Netherlands Organisation for Scientific Research (NWO/ECHO) [700.57.027]; Berlin Neutron Scattering Center (BENSC); Institut Laue-Langevin (ILL); Julich Center for Neutron Scattering (JCNS) FX Part of the results presented in this work were obtained during the development of the Diplomarbeit of IF at the University of Kassel, and financially supported by the Helmholtz-Zentrum Berlin (HZB) through the groups of Prof. Dr. M. Ballauff and Dr. A. Kyriakopoulos. JF acknowledges Andrey Maljuk (HZB) for the thermal measurements. JF and HNB thank Tilo Seydel (ILL) and Joachim Wuttke (JCNS) for the support during the IN10 and SPHERES experiments, respectively. JE would like to thank Jernej Stare (NIC, Slovenia) for the help with some of the computational aspects. HNB would also like to acknowledge Mark Johnson (ILL) for the helpful discussions. This research was financed by FUNCAP, CNPq and by the Deutsche Forschungsgemeinschaf (DFG project GZ: 444 BRA-113/310/0-1). RWAH acknowledges the Netherlands Organisation for Scientific Research (NWO/ECHO), grant 700.57.027. The support given by the Berlin Neutron Scattering Center (BENSC), Institut Laue-Langevin (ILL) and Julich Center for Neutron Scattering (JCNS) is also acknowledged. NR 52 TC 3 Z9 3 U1 5 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-4622 J9 BIOPHYS CHEM JI Biophys. Chem. PD OCT-NOV PY 2013 VL 180 BP 76 EP 85 DI 10.1016/j.bpc.2013.06.011 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Chemistry, Physical SC Biochemistry & Molecular Biology; Biophysics; Chemistry GA 224OU UT WOS:000324898700009 PM 23886538 ER PT J AU Selig, MJ Thygesen, LG Johnson, DK Himmel, ME Felby, C Mittal, A AF Selig, Michael J. Thygesen, Lisbeth G. Johnson, David K. Himmel, Michael E. Felby, Claus Mittal, Ashutosh TI Hydration and saccharification of cellulose I beta, II and IIII at increasing dry solids loadings SO BIOTECHNOLOGY LETTERS LA English DT Article DE Cellulose; Crystalline allomorph; High solids; Hydration; Saccharification ID CRYSTALLINE CELLULOSE; ENZYMATIC-HYDROLYSIS; LIGNOCELLULOSE AB Crystalline cellulose I beta (Avicel) was chemically transformed into cellulose II and IIII producing allomorphs with similar crystallinity indices (ATR-IR and XRD derived). Saccharifications by commercial cellulases at arrayed solids loadings showed cellulose IIII was more readily hydrolysable and less susceptible to increased dry solids levels than cellulose I beta and II. Analysis by dynamic vapor sorption revealed cellulose II has a distinctively higher absorptive capacity than cellulose I and IIII. When equally hydrated (g water/g cellulose), low-field nuclear magnetic resonance (LF-NMR) relaxometry showed that cellulose II, on average, most constrained water while cellulase IIII left the most free water. LF-NMR spin-spin relaxation time distribution profiles representing distinct water pools suggest cellulose IIII had the most restricted pool and changes in water distribution during enzymatic saccharification were most dramatic with respect to cellulose IIII compared to celluloses I beta and II. C1 [Selig, Michael J.; Thygesen, Lisbeth G.; Felby, Claus] Univ Copenhagen, Fac Sci, Dept Forest & Landscape, DK-1958 Frederiksberg, Denmark. [Johnson, David K.; Himmel, Michael E.; Mittal, Ashutosh] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Selig, MJ (reprint author), Univ Copenhagen, Fac Sci, Dept Forest & Landscape, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark. EM mjs@life.ku.dk; Ashutosh.Mittal@nrel.gov NR 14 TC 10 Z9 10 U1 2 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0141-5492 EI 1573-6776 J9 BIOTECHNOL LETT JI Biotechnol. Lett. PD OCT PY 2013 VL 35 IS 10 BP 1599 EP 1607 DI 10.1007/s10529-013-1258-7 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 226CL UT WOS:000325011900008 PM 23881312 ER PT J AU Noris, F Adamkiewicz, G Delp, WW Hotchi, T Russell, M Singer, BC Spears, M Vermeer, K Fisk, WJ AF Noris, Federico Adamkiewicz, Gary Delp, William W. Hotchi, Toshifumi Russell, Marion Singer, Brett C. Spears, Michael Vermeer, Kimberly Fisk, William J. TI Indoor environmental quality benefits of apartment energy retrofits SO BUILDING AND ENVIRONMENT LA English DT Article DE Apartments; Energy; Indoor environmental quality; Retrofit; Selection ID HEALTH AB Sixteen apartments serving low-income populations in three buildings were retrofit with the goal of simultaneously reducing energy consumption and improving indoor environmental quality (IEQ). Retrofit measures varied among apartments and included, among others, envelope sealing, installation of continuous mechanical ventilation systems, upgrading bathroom fans and range hoods, attic insulation, replacement of heating and cooling systems, and adding wall-mounted particle air cleaners. IEQ parameters were measured, generally for two one-week periods before and after the retrofits. The measurements indicate an overall improvement in IEQ conditions after the retrofits. Comfort conditions, bathroom humidity, and concentrations of carbon dioxide, acetaldehyde, volatile organic compounds, and particles generally improved. Formaldehyde and nitrogen dioxide levels decreased in the building with the highest concentrations, were unchanged in a second building, and increased in a third building. IEQ parameters other than particles improved more in apartments with continuous mechanical ventilation systems installed. In general, but not consistently, larger percent increases in air exchange rates were associated with larger percent decreases in indoor levels of the pollutants that primarily come from indoor sources. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Noris, Federico; Delp, William W.; Hotchi, Toshifumi; Russell, Marion; Singer, Brett C.; Spears, Michael; Fisk, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Indoor Environm Grp, Berkeley, CA 94720 USA. [Adamkiewicz, Gary] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA. [Vermeer, Kimberly] Urban Habitat Initiat Inc, Boston, MA USA. RP Fisk, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,90R3058, Berkeley, CA 94720 USA. EM wjfisk@lbl.gov FU California Energy Commission, Public Interest Energy Research Program, Energy Related Environmental Research Program [500-09-022]; U.S. Department of Energy [DE-AC02-05CH11231] FX Funding was provided by the California Energy Commission, Public Interest Energy Research Program, Energy Related Environmental Research Program, through contract 500-09-022 and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under contract DE-AC02-05CH11231. The authors thank Marla Mueller and Chris Early for Program Management; the Technical Advisory Committee for input and assistance in apartment recruitment; tenants and building owners and managers for their cooperation. NR 22 TC 14 Z9 14 U1 5 U2 61 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 J9 BUILD ENVIRON JI Build. Environ. PD OCT PY 2013 VL 68 BP 170 EP 178 DI 10.1016/j.buildenv.2013.07.003 PG 9 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA 222HY UT WOS:000324723000016 ER PT J AU Dennis, KL Wang, YW Blatner, NR Wang, SY Saadalla, A Trudeau, E Roers, A Weaver, CT Lee, JJ Gilbert, JA Chang, EB Khazaie, K AF Dennis, Kristen L. Wang, Yunwei Blatner, Nichole R. Wang, Shuya Saadalla, Abdulrahman Trudeau, Erin Roers, Axel Weaver, Casey T. Lee, James J. Gilbert, Jack A. Chang, Eugene B. Khazaie, Khashayarsha TI Adenomatous Polyps Are Driven by Microbe-Instigated Focal Inflammation and Are Controlled by IL-10-Producing T Cells SO CANCER RESEARCH LA English DT Article ID ENTEROTOXIGENIC BACTEROIDES-FRAGILIS; INTERLEUKIN-10-DEFICIENT MICE; COLORECTAL-CANCER; MAST-CELLS; INTESTINAL INFLAMMATION; CYTOKINE PRODUCTION; COLON-CANCER; COLITIS; GENE; ENTEROCOLITIS AB Interleukin (IL)-10 is elevated in cancer and is thought to contribute to immune tolerance and tumor growth. Defying these expectations, the adoptive transfer of IL-10-expressing T cells to mice with polyposis attenuates microbial-induced inflammation and suppresses polyposis. To gain better insights into how IL-10 impacts polyposis, we genetically ablated IL-10 in T cells in APC(Delta 468) mice and compared the effects of treatment with broad-spectrum antibiotics. We found that T cells and regulatory T cells (Treg) were a major cellular source of IL-10 in both the healthy and polyp-bearing colon. Notably, T cell-specific ablation of IL-10 produced pathologies that were identical to mice with a systemic deficiency in IL-10, in both cases increasing the numbers and growth of colon polyps. Eosinophils were found to densely infiltrate colon polyps, which were enriched similarly for microbiota associated previously with colon cancer. In mice receiving broad-spectrum antibiotics, we observed reductions in microbiota, inflammation, and polyposis. Together, our findings establish that colon polyposis is driven by high densities of microbes that accumulate within polyps and trigger local inflammatory responses. Inflammation, local microbe densities, and polyp growth are suppressed by IL-10 derived specifically from T cells and Tregs. (C)2013 AACR. C1 [Dennis, Kristen L.; Blatner, Nichole R.; Wang, Shuya; Saadalla, Abdulrahman; Trudeau, Erin; Khazaie, Khashayarsha] Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Feinberg Sch Med, Chicago, IL 60611 USA. [Wang, Yunwei; Chang, Eugene B.] Knapp Ctr Biomed Discovery, Dept Med, Chicago, IL USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Gilbert, Jack A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Weaver, Casey T.] Univ Alabama Birmingham, Dept Pathol, Birmingham, AL 35294 USA. [Lee, James J.] Mayo Clin Scottsdale, Dept Biochem & Mol Biol, Scottsdale, AR USA. [Roers, Axel] Tech Univ Dresden, Inst Immunol, D-01062 Dresden, Germany. RP Khazaie, K (reprint author), Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, 303 East Super St,3-111 Lurie, Chicago, IL 60611 USA. EM khazaie@northwestern.edu OI Weaver, Casey/0000-0002-2180-1793 FU Robert H. Lurie Comprehensive Cancer Center [DK42086]; University of Chicago Digestive Disease Research Core Center [DK42086]; Zell Family Award; [NIH-1R01CA160436-01]; [NIH-DK097268] FX Funding for this project included an NIH-1R01CA160436-01, a Zell Family Award and an anonymous foundation award of the Robert H. Lurie Comprehensive Cancer Center (K. Khazaie) and an NIH-DK097268 and University of Chicago Digestive Disease Research Core Center grant-DK42086 (E.B. Chang). NR 50 TC 35 Z9 43 U1 6 U2 33 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD OCT 1 PY 2013 VL 73 IS 19 BP 5905 EP 5913 DI 10.1158/0008-5472.CAN-13-1511 PG 9 WC Oncology SC Oncology GA 229NJ UT WOS:000325273000007 PM 23955389 ER PT J AU Kopp, RE Mignone, BK AF Kopp, Robert E. Mignone, Bryan K. TI Circumspection, reciprocity, and optimal carbon prices SO CLIMATIC CHANGE LA English DT Article ID CLIMATE-CHANGE; DIOXIDE AB Assessments of the benefits of climate change mitigation-and thus of the appropriate stringency of greenhouse gas emissions abatement-depend upon ethical, legal, and political economic considerations. Global climate change mitigation is often represented as a repeated prisoners' dilemma in which the net benefits of sustained global cooperation exceed the net benefits of uncooperative unilateral action for any given actor. Global cooperation can be motivated either by circumspection-a decision to account for the damages one's own actions inflict upon others-or by the expectation of reciprocity from others. If the marginal global benefits of abatement are approximately constant in total abatement, the domestically optimal price approaches the global cooperative optimum linearly with increasing circumspection and reciprocity. Approximately constant marginal benefits are expected if climate damages are quadratic in temperature and if the airborne fraction of carbon emissions is constant. If, on the other hand, damages increase with temperature faster than quadratically or carbon sinks weaken significantly with increasing CO2 concentrations, marginal benefits will decline with abatement. In this case, the approach to the global optimum is concave and less than full circumspection and/or reciprocity can lead to optimal domestic abatement close to the global optimum. C1 [Kopp, Robert E.] Rutgers State Univ, Dept Earth & Planetary Sci, Piscataway, NJ 08854 USA. [Kopp, Robert E.] Rutgers State Univ, Rutgers Energy Inst, Piscataway, NJ 08854 USA. [Mignone, Bryan K.] US DOE, Off Climate Change Policy & Technol, Washington, DC 20585 USA. RP Kopp, RE (reprint author), Rutgers State Univ, Dept Earth & Planetary Sci, Piscataway, NJ 08854 USA. EM robert.kopp@rutgers.edu OI Kopp, Robert/0000-0003-4016-9428 FU U.S. Department of Energy; U.S. Climate Change Technology Program FX We thank R. Duke and two anonymous reviewers for helpful comments. REK was supported by the U.S. Department of Energy and the U.S. Climate Change Technology Program. This work does not reflect the official views or policies of the United States government or any agency thereof, including the funding entities. NR 24 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD OCT PY 2013 VL 120 IS 4 BP 831 EP 843 DI 10.1007/s10584-013-0858-5 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 223SR UT WOS:000324830500011 ER PT J AU Mearns, LO Sain, S Leung, LR Bukovsky, MS McGinnis, S Biner, S Caya, D Arritt, RW Gutowski, W Takle, E Snyder, M Jones, RG Nunes, AMB Tucker, S Herzmann, D McDaniel, L Sloan, L AF Mearns, L. O. Sain, S. Leung, L. R. Bukovsky, M. S. McGinnis, S. Biner, S. Caya, D. Arritt, R. W. Gutowski, W. Takle, E. Snyder, M. Jones, R. G. Nunes, A. M. B. Tucker, S. Herzmann, D. McDaniel, L. Sloan, L. TI Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP) SO CLIMATIC CHANGE LA English DT Letter ID HYDROLOGIC FEEDBACK; WARMING CLIMATE; HIGH-RESOLUTION; COUPLED MODEL; PRECIPITATION; ATMOSPHERE; EUROPE; SIMULATIONS; UNCERTAINTY; TEMPERATURE AB We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs. C1 [Mearns, L. O.; Sain, S.; Bukovsky, M. S.; McGinnis, S.; McDaniel, L.] Natl Ctr Atmospher Res, IMAGe, Boulder, CO 80307 USA. [Leung, L. R.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Biner, S.; Caya, D.] Ouranos, Montreal, PQ H3A 1B9, Canada. [Arritt, R. W.; Gutowski, W.; Takle, E.; Herzmann, D.] Iowa State Univ, Dept Agron, Ames, IA 50011 USA. [Snyder, M.; Sloan, L.] Univ Calif Santa Cruz, Dept Earth Sci, Santa Cruz, CA 95064 USA. [Jones, R. G.; Tucker, S.] UK Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. [Nunes, A. M. B.] Fed Univ Rio de Janeiro UFRJ, CCMN, Inst Geosci IGEO, Dept Meteorol, BR-21941916 Rio De Janeiro, RJ, Brazil. RP Mearns, LO (reprint author), Natl Ctr Atmospher Res, IMAGe, POB 3000, Boulder, CO 80307 USA. EM lindam@ucar.edu RI Nunes, Ana/G-6160-2013; OI Nunes, Ana/0000-0002-1877-2688; McGinnis, Seth/0000-0001-8082-834X NR 33 TC 48 Z9 49 U1 3 U2 45 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD OCT PY 2013 VL 120 IS 4 BP 965 EP 975 DI 10.1007/s10584-013-0831-3 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 223SR UT WOS:000324830500022 ER PT J AU Logue, JM Sherman, MH Walker, IS Singer, BC AF Logue, J. M. Sherman, M. H. Walker, I. S. Singer, B. C. TI Energy impacts of envelope tightening and mechanical ventilation for the US residential sector SO ENERGY AND BUILDINGS LA English DT Article DE HVAC; Weatherization; ASHRAE 62.2; Retrofit; WAP; Energy bills AB Effective residential envelope air sealing reduces infiltration and associated energy costs for thermal conditioning, yet often creates a need for mechanical ventilation to protect indoor air quality. This study estimated the potential energy savings of implementing airtightness improvements or absolute standards along with mechanical ventilation throughout the U.S. housing stock. We used a physics-based modeling framework to simulate the impact of envelope tightening, providing mechanical ventilation as needed. There are 113 million homes in the US. We calculated the change in energy demand for each home in a nationally representative sample of 50,000 virtual homes developed from the 2009 Residential Energy Consumption Survey. Ventilation was provided as required by 2010 and proposed 2013 versions of ASHRAE Standard 62.2. Ensuring that all current homes comply with 62.2-2010 would increase residential site energy demand by 0.07 quads (0.07 exajoules (EJ)) annually. Improving airtightness of all homes at current average retrofit performance levels would decrease demand by 0.7 quads (0.74 EJ) annually and upgrading all homes to be as airtight as the top 10% of similar homes would double the savings, leading to roughly $22 billion in annual savings in energy bills. We also analyzed the potential benefits of bringing the entire stock to airtightness specifications of IECC 2012, Canada's R2000, and passive house standards. (C) 2013 Elsevier B.V. All rights reserved. C1 [Logue, J. M.; Sherman, M. H.; Walker, I. S.; Singer, B. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Residential Bldg Syst Grp, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Logue, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Residential Bldg Syst Grp, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM jmlogue@lbl.gov NR 28 TC 10 Z9 10 U1 3 U2 35 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 J9 ENERG BUILDINGS JI Energy Build. PD OCT PY 2013 VL 65 BP 281 EP 291 DI 10.1016/j.enbuild.2013.06.008 PG 11 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 218RJ UT WOS:000324449800030 ER PT J AU Wang, WM Katipamula, S Huang, YZ Brambley, MR AF Wang, Weimin Katipamula, Srinivas Huang, Yunzhi Brambley, Michael R. TI Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat SO ENERGY AND BUILDINGS LA English DT Article DE Packaged air conditioner; Retrofit; HVAC control; Energy simulation ID VENTILATION; SYSTEM AB This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include an air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. Simulation results show that simply adding multi-speed supply-fan control and DCV leads to 14-42% energy savings and 27-59% cost savings. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is also estimated. (C) 2013 Elsevier B.V. All rights reserved. C1 [Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, WM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM weimin.wang@pnnl.gov FU Building Technologies Program of the U.S. Department of Energy (DOE) FX The authors acknowledge the Building Technologies Program of the U.S. Department of Energy (DOE) for funding the study. In particular, we would like to acknowledge Alan Schroeder, Technology Development Manager with DOE, for his management oversight. At the Pacific Northwest National Laboratory, we would like to thank Andrew Nicholls and Ron Underhill for providing technical reviews and Sue Arey for editorial support. NR 18 TC 3 Z9 3 U1 1 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 J9 ENERG BUILDINGS JI Energy Build. PD OCT PY 2013 VL 65 BP 497 EP 507 DI 10.1016/j.enbuild.2013.06.033 PG 11 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 218RJ UT WOS:000324449800052 ER PT J AU Steven, B Gallegos-Graves, L Belnap, J Kuske, CR AF Steven, Blaire Gallegos-Graves, La Verne Belnap, Jayne Kuske, Cheryl R. TI Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE 16S rRNA gene; arid land; biogeography; biological soil crust; Cyanobacteria; dryland soil; soil bacteria; soil archaea ID RIBOSOMAL-RNA GENE; COLORADO PLATEAU; DESERT CRUSTS; SUCCESSIONAL STAGES; AGRICULTURAL FIELD; SEQUENCE-ANALYSIS; RARE BIOSPHERE; ARID LANDS; SP NOV.; DIVERSITY AB Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0-1cm; below-crust soils, 2-5cm) and two horizontal spatial scales (15cm and 5m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances. C1 [Steven, Blaire; Gallegos-Graves, La Verne; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Belnap, Jayne] US Geol Survey, Southwest Biol Sci Ctr, Moab, UT USA. RP Kuske, CR (reprint author), Los Alamos Natl Lab, Biosci Div, M888, Los Alamos, NM 87545 USA. EM kuske@lanl.gov RI Steven, Blaire/E-5295-2012 OI Steven, Blaire/0000-0001-5940-2432 FU Laboratory Directed Research and Development program of the Los Alamos National Laboratory; U.S. Department of Energy, Biological and Environmental Research Program [2009LANLF26]; Ecosystems and Climate and Land Use Programs, USGS FX This work was supported by the Laboratory Directed Research and Development program of the Los Alamos National Laboratory and a Science Focus Area grant (2009LANLF26) from the U.S. Department of Energy, Biological and Environmental Research Program, and the Ecosystems and Climate and Land Use Programs, USGS. This is LANL unclassified report LA-UR 12-25497. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U. S. Government. NR 68 TC 28 Z9 29 U1 8 U2 105 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD OCT PY 2013 VL 86 IS 1 SI SI BP 101 EP 113 DI 10.1111/1574-6941.12143 PG 13 WC Microbiology SC Microbiology GA 216RC UT WOS:000324300700010 PM 23621290 ER PT J AU Alshibli, K Cil, MB Kenesei, P Lienert, U AF Alshibli, Khalid Cil, Mehmet B. Kenesei, Peter Lienert, Ulrich TI Strain tensor determination of compressed individual silica sand particles using high-energy synchrotron diffraction SO GRANULAR MATTER LA English DT Article DE Silica sand; Lattice strain; 3D X-ray diffraction; Granular materials; Synchrotron ID X-RAY-DIFFRACTION; GRANULAR-MATERIALS; NEUTRON-DIFFRACTION; SHEAR BANDS; GRAIN; STATE; DILATANCY; CONTACT; QUARTZ; BULK AB The three-dimensional X-ray diffraction (3DXRD) nondestructive technique was used to measure lattice strains within individual sand particles subjected to compressive loading. Three experiments were conducted on similar single columns of silica sand particles with particle sizes between 0.595 and 0.841 mm. In each experiment, three sand particles were placed inside an acrylic mold with an inner diameter of 1 mm. Multiple in situ 3DXRD scans were acquired for each sand column as compressive load was increased. The volume-averaged lattice strain tensor was calculated for each sand particle. In addition, particle orientation and volumetric strain were calculated for individual sand particles. The axial normal strain exhibited a linear response in the range of 0 to when the applied compressive axial load (F) increased from 0 to 30 N when one particle in the sand column fractured. Stress tensor of individual particles was calculated from the acquired lattice strain measurements and elastic constants of silica sand that were reported in the literature. To the best of our knowledge, there have been no reported experimental measurements of the lattice strain tensor measurements within individual silica sand particles. The quantitative measurements reported in this paper at the particle level are very valuable for developing, validating or calibrating micromechanics-based finite element and discrete element models to predict the constitutive behavior of granular materials. 3DXRD represents an exciting new non-destructive technique to directly measure constitutive behavior at the scale of individual particles. C1 [Alshibli, Khalid; Cil, Mehmet B.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Kenesei, Peter] Argonne Natl Lab, Argonne, IL 60439 USA. [Lienert, Ulrich] DESY, DESY Photon Sci, Hamburg, Germany. RP Alshibli, K (reprint author), Univ Tennessee, Dept Civil & Environm Engn, 73A Perkins Hall, Knoxville, TN 37996 USA. EM Alshibli@utk.edu; mcil@utk.edu; kenesei@aps.anl.gov; ulrich.lienert@desy.de FU National Science Foundation (NSF) [CMMI-1156436]; GeoSoilEnviroCARS (Sector 13); National Science Foundation-Earth Sciences [EAR-1128799]; Department of Energy, Geosciences [DE-FG02-94ER14466]; U.S. DOE [DE-AC02-06CH11357] FX This material is based upon work supported by the National Science Foundation (NSF) under Grant No. (CMMI-1156436). The 3DXRD data were collected using the X-ray Operations and Research Beamline 1-ID and SMT scans were collected using the X-ray Operations and Research Beamline Station 13-BMD at the Advanced Photon Source (APS), Argonne National Laboratory (ANL). We thank Dr. Mark Rivers of (APS) for help in performing the SMT scans. We also acknowledge the support of GeoSoilEnviroCARS (Sector 13), which is supported by the National Science Foundation-Earth Sciences (EAR-1128799), and the Department of Energy, Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 38 TC 6 Z9 6 U1 3 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-5021 EI 1434-7636 J9 GRANUL MATTER JI Granul. Matter PD OCT PY 2013 VL 15 IS 5 BP 517 EP 530 DI 10.1007/s10035-013-0424-x PG 14 WC Materials Science, Multidisciplinary; Mechanics; Physics, Applied SC Materials Science; Mechanics; Physics GA 223CC UT WOS:000324780300002 ER PT J AU Hoffmann, A AF Hoffmann, Axel TI Spin Hall Effects in Metals SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE Terms Magnetization dynamics; magnetoelectronics; metallic films; spin Hall effects ID HGTE QUANTUM-WELLS; SINGLE DIRAC CONE; ROOM-TEMPERATURE; TOPOLOGICAL INSULATORS; FERROMAGNETIC-RESONANCE; CONDUCTION ELECTRONS; MAGNETORESISTANCE; INJECTION; DRIVEN; SEMICONDUCTORS AB Spin Hall effects convert charge currents into spin currents and vice versa even in nonmagnetic conductors due to spin orbit coupling. This enables spin Hall effects to be utilized both for the generation and detection of spin currents and magnetization dynamics. This paper reviews the experimental characterization of these effects in metallic systems, which have so far shown the highest efficiency in using spin Hall effects for charge-to-spin interconversion. The advantages and disadvantages of complimentary measurement techniques are discussed and in addition an outlook of the possible impact on applications is presented. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Hoffmann, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hoffmann@anl.gov RI Hoffmann, Axel/A-8152-2009 OI Hoffmann, Axel/0000-0002-1808-2767 FU U.S. Department of Energy, Basic Energy Sciences [DE-AC02-06CH11357] FX My initial interests in spin Hall effects were triggered by a presentation of Jorge Hirsch on the topic, while I was a student at the University of California-San Diego in the late 1990's. Over the last few years I was fortunate to work with several very talented people on this topic, including Goran Mihajlovie, Oleksandr Mosendz, Miguel Garcia, Gerrit E. W. Bauer, John E. Pearson, Frank Fradin, Vincent Vlaminck, Helmut Schultheiss, Sam Bader, Zihui Wang, Yiyan Sun, Young-Yeal Song, and Mingzhong Wu. Furthermore I enjoyed stimulating discussions with many colleagues, in particular with Michel Dyakonov, and Roland Winkler. I am grateful to the IEEE Magnetics Society, which supported me as a Distinguished Lecturer in 2011 to discuss this and related work with many research groups worldwide. Finally, my own work on spin Hall effects and the preparation of this manuscript was supported by the U.S. Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 259 TC 204 Z9 204 U1 33 U2 238 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD OCT PY 2013 VL 49 IS 10 BP 5172 EP 5193 DI 10.1109/TMAG.2013.2262947 PG 22 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 224YU UT WOS:000324930200001 ER PT J AU James, DL Leggett, WF Webb, SW AF James, D. L. Leggett, W. F. Webb, S. W. TI An investigation of axial dispersion enhanced by thermosolutal natural convection in a horizontal annular-like enclosure SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Enhanced dispersion; Thermosolutal natural convection; Annular-like enclosure; Orthogonal buoyancy forces ID DOUBLE-DIFFUSIVE CONVECTION; CONCENTRATION GRADIENTS; VAPOR TRANSPORT; HEAT-TRANSFER; RECTANGULAR ENCLOSURES; OPPOSING TEMPERATURE; NUMERICAL-SIMULATION; SHALLOW ENCLOSURES; CIRCULAR-CYLINDER; CLOSED ANNULUS AB The objective of the experimental investigation was to quantify the axial dispersion of a dilute secondary gas that was subjected to orthogonal thermal and solutal buoyancy gradients in a horizontal annular-like enclosure. Test results showed that a linear axial concentration profile existed at steady-state for the secondary gas. Unheated tests with only solutal buoyancy gradients resulted in a dispersion multiple, D-M, of approximately 8 times molecular diffusion. The combined thermal and solutal buoyancy tests, in which a thermal plume from the simulated heater packages aided in mixing, yielded an axial dispersion multiple coefficient of approximately 23 times molecular diffusion, a 188% increase as compared to solutal buoyancy alone. A correlation describing the experimental data trend for the dispersion multiple as a function of buoyancy ratio, N = Ra-S/Ra-T, was computed to be D-M = 19.2N(-0.061), which is valid for for binary mixtures where the solutal and thermal gradients are orthogonal with Pr and Le of order 1, 0 < Ra-T < 3.5 x 10(6), and 0.1 < N < 0.6. (c) 2013 Elsevier Ltd. All rights reserved. C1 [James, D. L.; Leggett, W. F.] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. [Webb, S. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP James, DL (reprint author), Texas Tech Univ, Dept Mech Engn, Box 41021, Lubbock, TX 79409 USA. EM darryl.james@ttu.edu; wfleggett@ttu.edu; Stephen.Webb.CRC@gmail.com FU Office of Repository Development as part of the Civilian Radioactive Waste Program, which is part the US Department of Energy; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Office of Repository Development as part of the Civilian Radioactive Waste Program, which is part the US Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 47 TC 0 Z9 0 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD OCT PY 2013 VL 65 BP 314 EP 320 DI 10.1016/j.ijheatmasstransfer.2013.05.029 PG 7 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 223XC UT WOS:000324844800032 ER PT J AU Walsh, SDC Lomov, IN AF Walsh, Stuart D. C. Lomov, Ilya N. TI Micromechanical modeling of thermal spallation in granitic rock SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Thermal spallation; Numerical simulation; Micromechanical modeling ID WESTERLY GRANITE; CONCRETE; FIRE; TEMPERATURE; MICROCRACKING; DEFORMATION; PRESSURES; TRANSPORT; FAILURE; PHASES AB While the underlying mechanisms governing thermal spallation in rock have been known since the 1930s, our ability to model this behavior remains largely empirical. Leading models of thermal spallation either rely on experimentally derived relationships linking applied thermal stresses to spall production, or employ idealized representations that ignore the effects of rock microstructure. Although such models are useful for describing systems within a given context, they are less suited to extrapolate outside the range to which they are fitted or to derive new insight into how mechanisms at smaller-scales influence spall production. This paper describes a numerical modeling tool designed to conduct explicit simulations of thermal spallation at the grain-scale. The model uses an Eulerian-Godunov scheme to simulate solid and fluid mechanical behavior, permitting both inter- and intra-granular fracture. Simulations conducted with the model illustrate how differences in rock properties, microstructural geometry and mineral volume fractions, combined with variations in thermal and mechanical loading conditions, influence spallation at the grain scale. We discuss the implications of these results on the processes controlling thermal spallation of rock, in particular, the role of micropores in the onset and extent of spallation. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Walsh, Stuart D. C.; Lomov, Ilya N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Walsh, SDC (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Computat Geosci Grp, Livermore, CA 94550 USA. EM walsh24@Ilnl.gov OI Walsh, Stuart/0000-0001-8155-4870 FU auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. NR 55 TC 6 Z9 6 U1 5 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD OCT PY 2013 VL 65 BP 366 EP 373 DI 10.1016/j.ijheatmasstransfer.2013.05.043 PG 8 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 223XC UT WOS:000324844800038 ER PT J AU Errera, MR Lorente, S Anderson, R Bejan, A AF Errera, M. R. Lorente, S. Anderson, R. Bejan, A. TI One underground heat exchanger for multiple heat pumps SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Constructal design; Heat pumps; Geothermal; Ground coupled ID SYSTEMS; OPERATION; ENERGY; WELLS AB A heat pump that is coupled thermally with the ground extracts heat from the soil in winter, and discharges heat in the summer. The coupling is made through a buried heat exchanger. In this paper we explore the idea of using a single heat exchanger that serves more than one heat pump. Each heat pump draws its mass flow rate from the heat exchanger and, in addition, a background flow rate circulates permanently through the heat exchanger. The places where the heat pumps are connected to the exchanger vary. The objective of the design is to select the configuration of the multi-component system such that the total enthalpy flow rate delivered to the heat pumps is larger and the total pumping power is smaller. The paper documents the effect of geometry (the connections) and the relative sizes (mass flow rates of heat pumps) on the total enthalpy flow rate. The paper shows the parametric domain in which the design with a single heat exchanger is superior in comparison with the classical design where each heat pump is connected to its own heat exchanger. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Errera, M. R.] Univ Fed Parana, Dept Environm Engn, BR-81531980 Curitiba, Parana, Brazil. [Lorente, S.] Univ Toulouse, UPS, INSA, Lab Mat & Durabilite Construct, F-31077 Toulouse 04, France. [Anderson, R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bejan, A.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. RP Bejan, A (reprint author), Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. EM abejan@duke.edu FU Evaluation of Graduate Education (CAPES) fellowship [BEX 9576/11-8]; National Renewable Energy Laboratory, Golden, Colorado [XXL-1-40325-01] FX We thank Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) fellowship (BEX 9576/11-8) for the support of Prof. Marcelo Risso Errera's work at Duke University. Profs. Bejan and Lorente's work was sup- ported by a subcontract (XXL-1-40325-01) from the National Renewable Energy Laboratory, Golden, Colorado. NR 29 TC 6 Z9 6 U1 2 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD OCT PY 2013 VL 65 BP 727 EP 738 DI 10.1016/j.ijheatmasstransfer.2013.06.027 PG 12 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 223XC UT WOS:000324844800074 ER PT J AU Cekmer, O LaManna, JM Mench, MM AF Cekmer, Ozgur LaManna, Jacob M. Mench, Matthew M. TI Alternative analytical analysis for improved Loschmidt diffusion cell SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Loschmidt cell; Effective diffusion coefficient; Finite volume discretization; Porous media; Mass transport ID PEM FUEL-CELLS; SOLUTE TRANSPORT; POROUS-MEDIUM; COEFFICIENT AB To measure gas phase diffusion coefficients across porous media, an apparatus called a Loschmidt diffusion cell is often utilized. In previous studies with such an apparatus, an infinite-length assumption is used to simplify the analytical solution. Experimentally, cell lengths must be quite long and measurement time is very brief to fulfill this assumption. In this study, Fick's second law is applied, and separation of variables with shifted homogeneity technique is performed for data analysis to enable design of a more compact experimental apparatus with extended measurement times and improved precision. The analytical solution is proved by both the inverse-matrix method and finite-volume discretization. Finally, using the new analytical solution obtained, the effective diffusion coefficient is determined for porous media used in fuel cell applications. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Cekmer, Ozgur; LaManna, Jacob M.; Mench, Matthew M.] Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Mench, Matthew M.] Oak Ridge Natl Lab, Emiss & Catalysis Res Grp, Oak Ridge, TN 37831 USA. RP Mench, MM (reprint author), Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. EM mmench@utk.edu FU Department of Energy [DE-EE0000470] FX This material is based upon work supported by the Department of Energy under Award Number DE-EE0000470. NR 18 TC 1 Z9 1 U1 1 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD OCT PY 2013 VL 65 BP 883 EP 892 DI 10.1016/j.ijheatmasstransfer.2013.06.062 PG 10 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 223XC UT WOS:000324844800088 ER PT J AU Lee, YJ van Nostrand, JD Tu, QC Lu, ZM Cheng, L Yuan, T Deng, Y Carter, MQ He, ZL Wu, LY Yang, F Xu, J Zhou, JZ AF Lee, Yong-Jin van Nostrand, Joy D. Tu, Qichao Lu, Zhenmei Cheng, Lei Yuan, Tong Deng, Ye Carter, Michelle Q. He, Zhili Wu, Liyou Yang, Fang Xu, Jian Zhou, Jizhong TI The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities SO ISME JOURNAL LA English DT Article DE virulence genes; functional gene array; climate warming; oil-contamination; caries ID GEOCHIP-BASED ANALYSIS; PROBE DESIGN CRITERIA; SEA OIL PLUME; ESCHERICHIA-COLI; OLIGONUCLEOTIDE MICROARRAY; BACTERIAL VIRULENCE; ELEVATED CO2; WATER; SOIL; IDENTIFICATION AB Pathogens present in the environment pose a serious threat to human, plant and animal health as evidenced by recent outbreaks. As many pathogens can survive and proliferate in the environment, it is important to understand their population dynamics and pathogenic potential in the environment. To assess pathogenic potential in diverse habitats, we developed a functional gene array, the PathoChip, constructed with key virulence genes related to major virulence factors, such as adherence, colonization, motility, invasion, toxin, immune evasion and iron uptake. A total of 3715 best probes were selected from 13 virulence factors, covering 7417 coding sequences from 1397 microbial species (2336 strains). The specificity of the PathoChip was computationally verified, and approximately 98% of the probes provided specificity at or below the species level, proving its excellent capability for the detection of target sequences with high discrimination power. We applied this array to community samples from soil, seawater and human saliva to assess the occurrence of virulence genes in natural environments. Both the abundance and diversity of virulence genes increased in stressed conditions compared with their corresponding controls, indicating a possible increase in abundance of pathogenic bacteria under environmental perturbations such as warming or oil spills. Statistical analyses showed that microbial communities harboring virulence genes were responsive to environmental perturbations, which drove changes in abundance and distribution of virulence genes. The PathoChip provides a useful tool to identify virulence genes in microbial populations, examine the dynamics of virulence genes in response to environmental perturbations and determine the pathogenic potential of microbial communities. C1 [Lee, Yong-Jin; van Nostrand, Joy D.; Tu, Qichao; Lu, Zhenmei; Cheng, Lei; Yuan, Tong; Deng, Ye; He, Zhili; Wu, Liyou; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Lee, Yong-Jin; van Nostrand, Joy D.; Tu, Qichao; Lu, Zhenmei; Cheng, Lei; Yuan, Tong; Deng, Ye; He, Zhili; Wu, Liyou; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Lu, Zhenmei] Zhejiang Univ, Coll Life Sci, Hangzhou 310003, Zhejiang, Peoples R China. [Carter, Michelle Q.] USDA, Produce Safety & Microbiol Unit, Western Reg Res Ctr, ARS, Albany, CA USA. [Yang, Fang] Qingdao Municipal Hosp, Oral Res Ctr, Qingdao, Shandong, Peoples R China. [Xu, Jian] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao, Shandong, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, 101 David L Boren Blvd, Norman, OK 73019 USA. EM jzhou@ou.edu RI Van Nostrand, Joy/F-1740-2016; OI Van Nostrand, Joy/0000-0001-9548-6450; ?, ?/0000-0002-7584-0632 FU US Department of Energy, Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program [DE-SC0004601] FX We thank T. Hazen for providing samples from the Gulf of Mexico. This work was supported, in part, by the US Department of Energy, Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program (DE-SC0004601). NR 81 TC 9 Z9 9 U1 6 U2 73 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 J9 ISME J JI ISME J. PD OCT PY 2013 VL 7 IS 10 BP 1974 EP 1984 DI 10.1038/ismej.2013.88 PG 11 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 224FY UT WOS:000324869400009 PM 23765101 ER PT J AU Bailey, VL Fansler, SJ Stegen, JC Mccue, LA AF Bailey, Vanessa L. Fansler, Sarah J. Stegen, James C. Mccue, Lee Ann TI Linking microbial community structure to beta-glucosidic function in soil aggregates SO ISME JOURNAL LA English DT Article DE microbial community; diversity; 16S pyrosequencing; beta-glucosidase; soil aggregates; ATP ID MICROSCALE DISTRIBUTION; BACTERIAL DIVERSITY; MICROORGANISMS; DEGRADATION; MICROARRAY; FUNGAL; DNA AB To link microbial community 16S structure to a measured function in a natural soil, we have scaled both DNA and beta-glucosidase assays down to a volume of soil that may approach a unique microbial community. beta-Glucosidase activity was assayed in 450 individual aggregates, which were then sorted into classes of high or low activities, from which groups of 10 or 11 aggregates were identified and grouped for DNA extraction and pyrosequencing. Tandem assays of ATP were conducted for each aggregate in order to normalize these small groups of aggregates for biomass size. In spite of there being no significant differences in the richness or diversity of the microbial communities associated with high beta-glucosidase activities compared with the communities associated with low beta-glucosidase communities, several analyses of variance clearly show that the communities of these two groups differ. The separation of these groups is partially driven by the differential abundances of members of the Chitinophagaceae family. It may be observed that functional differences in otherwise similar soil aggregates can be largely attributed to differences in resource availability, rather than to the presence or absence of particular taxonomic groups. C1 [Bailey, Vanessa L.; Fansler, Sarah J.; Stegen, James C.; Mccue, Lee Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bailey, VL (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,MSIN J4-18, Richland, WA 99352 USA. EM vanessa.bailey@pnnl.gov RI Stegen, James/Q-3078-2016; OI Stegen, James/0000-0001-9135-7424; Bailey, Vanessa/0000-0002-2248-8890; McCue, Lee Ann/0000-0003-4456-517X FU Microbial Communities Initiative LDRD Program at the Pacific Northwest National Laboratory, DOE [DE-AC06-76RL01830] FX This research was funded by the Microbial Communities Initiative LDRD Program at the Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC06-76RL01830. NR 37 TC 12 Z9 12 U1 8 U2 77 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 J9 ISME J JI ISME J. PD OCT PY 2013 VL 7 IS 10 BP 2044 EP 2053 DI 10.1038/ismej.2013.87 PG 10 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 224FY UT WOS:000324869400015 PM 23719152 ER PT J AU Kennedy, TF Connery, J Fortune, T Forristal, D Grant, J AF Kennedy, T. F. Connery, J. Fortune, T. Forristal, D. Grant, J. TI A comparison of the effects of minimum-till and conventional-till methods, with and without straw incorporation, on slugs, slug damage, earthworms and carabid beetles in autumn-sown cereals SO JOURNAL OF AGRICULTURAL SCIENCE LA English DT Article ID SOUTH-EASTERN AUSTRALIA; DIRECT DRILLED CEREALS; WINTER OILSEED RAPE; YELLOW DWARF VIRUS; CONSERVATION TILLAGE; POPULATION-DYNAMICS; ARABLE LAND; NO-TILLAGE; CROPPING SYSTEMS; REDUCED TILLAGE AB The present study compared slug, earthworm and carabid beetle abundance and slug damage to plants in minimum tillage (MT) and conventional tillage (CT) autumn-sown cereals. Winter barley was sown by CT and MT for 3 years followed by winter wheat for 6 years on a light-textured soil (Trial 1). Each cultivation was split so that straw was incorporated into the soil during cultivation in one split while the other did not receive straw. A similar investigation with winter wheat, over the same period, was undertaken on a nearby heavy-textured soil (Trial 2). The effects of method of cultivation and soil incorporation of straw on slug abundance and damage, and on earthworm populations were measured. Additionally, at Trial 1, the effects of cultivation and straw treatments on carabid beetle occurrence were measured in years 5-9. Over the 9 years, the method of cultivation had a significant effect on slug numbers in each trial. Slugs were more numerous in MT than CT plots, significantly so in 3 of the 9 years in Trial 1 and in 5 years in Trial 2. In Trial 1, slug numbers were significantly greater on no-straw than straw plots in 3 years as well as for the 9 years combined. Slug numbers did not differ between straw and no-straw plots in Trial 2. Slug numbers varied significantly between years and were influenced by factors other than the method of cultivation and straw application. Slug damage to seed and seedlings was quite low in each year (1-2%). Slug damage to cereal leaves at GS 23 was widespread in both trials, and severe in some years. MT had more leaf damage than CT in 5 of the 9 years in each trial, significantly so in 3 years in Trial 1 and in 4 years in Trial 2. Straw did not affect leaf damage in either MT or CT. Slug damage was not related to, nor did it affect either ear density or grain yield. The dominant slug species was Deroceras reticulatum. Earthworm numbers were significantly greater in MT than CT, for combined years, in each trial. Annually, these differences were significant for 5 years in Trial 1 and 2 years in Trial 2. Straw plots had significantly more earthworms than no-straw, for combined years, in each trial. The latter differences were significant for 5 years in Trial 1 and 3 years in Trial 2. In MT, the positive effect of straw on earthworm numbers was significant in Trial 2 but not in Trial 1. In CT, the latter effect was significant in each trial. Lumbricus species were more numerous in MT than CT and in straw than no-straw treatments. The impact of cultivation on numbers of carabid beetles was species-specific. The large beetle, Pterostichus melanarius, was significantly more numerous in MT than CT in 2 of the 5 years and for the aggregate of 5 years. Small carabids (Bembidion species and Trechus quadristriatus) were significantly more abundant in CT than MT in 3 of the 5 years as well as for the aggregate of 5 years. Straw did not affect the number of any or all carabid species either for combined cultivations (MT + CT) or within either MT or CT. It is concluded that MT increases slug numbers, slug damage and earthworm numbers relative to CT cultivations. MT favours large carabid beetles and CT favours small beetles. Straw incorporation increases earthworm numbers but not slugs, slug damage or carabid beetles. Slug damage to cereal leaves does not affect ear density or grain yield in either MT or CT crops when sown to a depth of 40mm and before 18 September. C1 [Kennedy, T. F.; Connery, J.; Fortune, T.; Forristal, D.] TEAGASC, Oak Pk Res Ctr, Carlow, Ireland. [Grant, J.] TEAGASC, Food Res Ctr, Dublin 15, Ireland. RP Kennedy, TF (reprint author), TEAGASC, Oak Pk Res Ctr, Carlow, Ireland. EM tom.kennedy200@gmail.com NR 136 TC 5 Z9 5 U1 3 U2 81 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0021-8596 J9 J AGR SCI JI J. Agric. Sci. PD OCT PY 2013 VL 151 IS 5 BP 605 EP 629 DI 10.1017/S0021859612000706 PG 25 WC Agriculture, Multidisciplinary SC Agriculture GA 222VN UT WOS:000324760200001 ER PT J AU Hu, NP Dong, XC He, XY Argekar, S Zhang, Y Browning, JF Schaefer, DW AF Hu, Naiping Dong, Xuecheng He, Xueying Argekar, Sandip Zhang, Yan Browning, James F. Schaefer, Dale W. TI Interfacial morphology of low-voltage anodic aluminium oxide SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID ANGLE X-RAY; NEUTRON-SCATTERING; MEMBRANES AB X-ray reflectivity (XRR) and neutron reflectivity (NR), as well as ultra-small-angle X-ray scattering (USAXS), are used to examine the in-plane and surface-normal structure of anodic films formed on aluminium alloy AA2024 and pure aluminium. Aluminium and alloy films up to 3500 angstrom thick were deposited on Si wafers by electron beam evaporation of ingots. Porous anodic aluminium oxide (AAO) films are formed by polarizing at constant voltage up to 20 V noble to the open circuit potential. The voltage sweet spot (5 V) appropriate for constant-voltage anodization of such thin films was determined for both alloy and pure Al. In addition, a new concurrent voltage-and current-control protocol was developed to prepare films with larger pores (voltages higher than 5 V), but formed at a controlled current so that pore growth is slow enough to avoid stripping the aluminium substrate layer. USAXS shows that the pore size and interpore spacing are fixed in the first 10 s after initiation of anodization. Pores then grow linearly in time, at constant radius and interpore spacing. Using a combination of XRR and NR, the film density and degree of hydration of the films were determined from the ratio of scattering length densities. Assuming a chemical formula Al2O3 center dot xH(2)O, it was found that x varies from 0.29 for the native oxide to 1.29 for AAO grown at 20 V under concurrent voltage and current control. The average AAO film density of the porous film at the air surface is 2.45 (20) g cm(-3). The density of the 'barrier' layer at the metal interface is 2.9 (4) g cm(-3), which indicates that this layer is also quite porous. C1 [Hu, Naiping; Dong, Xuecheng; He, Xueying; Argekar, Sandip; Schaefer, Dale W.] Univ Cincinnati, Chem Program, Cincinnati, OH 45221 USA. [Hu, Naiping; Dong, Xuecheng; He, Xueying; Argekar, Sandip; Schaefer, Dale W.] Univ Cincinnati, Mat Engn Program, Cincinnati, OH 45221 USA. [Zhang, Yan] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. [Browning, James F.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37830 USA. RP Schaefer, DW (reprint author), Univ Cincinnati, Chem Program, Cincinnati, OH 45221 USA. EM dale.schaefer@uc.edu OI Browning, James/0000-0001-8379-259X FU Strategic Environmental Research and Development Program; LANL under DOE [W7405-ENG-36]; Office of Basic Energy Sciences, US Department of Energy; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Work at the University of Cincinnati was funded by the Strategic Environmental Research and Development Program. We thank Peng Wang, Michael Jablin, Jarek Majewski, Jan Ilavsky and Rex Hjelm for assistance in collecting and interpreting the data. The NR data were collected at the SPEAR reflectometer at LANL and the Liquids Reflectometer, Spallation Neutron Source (SNS), ORNL. USAXS data were measured at beamline 15 ID-D at the Advanced Photon Source, Argonne National Laboratory. SANS data were collected using the LQD instrument at LANL. Lujan Neutron Scattering Center (LANSCE) is supported by LANL under DOE contract W7405-ENG-36, and by the Office of Basic Energy Sciences, US Department of Energy. Research performed at the SNS at ORNL was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 16 TC 3 Z9 3 U1 2 U2 40 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD OCT PY 2013 VL 46 BP 1386 EP 1396 DI 10.1107/S0021889813018219 PN 5 PG 11 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 222WZ UT WOS:000324764500018 ER PT J AU Freelon, B Suthar, K Ilavsky, J AF Freelon, Byron Suthar, Kamlesh Ilavsky, Jan TI A multi-length-scale USAXS/SAXS facility: 10-50 keV small-angle X-ray scattering instrument SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID ADVANCED PHOTON SOURCE; HIGH-RESOLUTION; ENERGIES; DETECTOR; BONE AB Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Z samples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described. (C) 2013 International Union of Crystallography Printed in Singapore - all rights reserved C1 [Freelon, Byron; Ilavsky, Jan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Suthar, Kamlesh] Argonne Natl Lab, Div Phys Sci, Argonne, IL 60439 USA. [Freelon, Byron] Univ Chicago, ChemMatCARS, Chicago, IL 60637 USA. RP Freelon, B (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM freelon@cars.uchicago.edu RI USAXS, APS/D-4198-2013 FU National Science Foundation/Department of Energy [NSF/CHE-0822838]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant No. NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. This work was performed at the ChemMatCARS beamline at the Advanced Photon Source, Argonne National Laboratory. The authors thank Drs J. Viccaro, M. Meron, Binhua Lin and Yu-Sheng Chen for useful discussions and their work on the beamline upgrade. We thank Charles Kurtz, Sonke Siefert, John Shick and Bonil Koo for technical help and discussions regarding this project. NR 22 TC 5 Z9 5 U1 0 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD OCT PY 2013 VL 46 BP 1508 EP 1512 DI 10.1107/S0021889813021900 PN 5 PG 5 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 222WZ UT WOS:000324764500031 ER PT J AU Yancey, NA Tumuluru, JS Wright, CT AF Yancey, Neal A. Tumuluru, Jaya Shankar Wright, Christopher T. TI Drying, Grinding and Pelletization Studies on Raw and Formulated Biomass Feedstock's for Bioenergy Applications SO JOURNAL OF BIOBASED MATERIALS AND BIOENERGY LA English DT Article DE Corn Stover; Switchgrass; Lodgepole Pine; Eucalyptus; Grinding Drying and Pelletization; Energy Consumption; Pellet Properties ID QUALITY; SILAGE; COAL AB The United States has an abundant potential of biomass resources that can be used as bioenergy feedstocks; however, biomass in its raw, "as-harvested" form is not necessarily in a format (low bulk density and high moisture content) that meets the needs for the biofuel or bioenergy industry. Both high production and niche crops must be used together to meet the U. S. Department of Energy (DOE)'s goal to supply 36 billion gallons of renewable transportation fuels by 2022. To reach this goal, the United States must use more than just the common biomass sources such as corn stover, switchgrass, and other high production energy crops; it must also find ways to combine additional feedstocks as well. This study shows that the formulation of mixed feedstocks using niche and high production crops can produce feedstocks that meet the uniform format required by industry. Corn stover, switchgrass, lodgpole pine, and eucalyptus were combined during preprocessing followed by densification into pellets, resulting in a denser, higher energy value, more durable feedstock than the average of these fuels individually. This study also compares the energy consumption involved in preprocessing biomass. In the case of grinding energies for both Stage-I and Stage-II processes, corn stover and switchgrass consumed the least at about 19 and 34 kW hr/ton and 11 and 18 kW hr/ton, respectively, whereas the highest was both woody biomass types at about 94 and 43-49 kW hr/ton. The bulk density of pelletized blended feedstock is about 729 kg/m(3) and is higher than what corn stover and switchgrass pelletized individually can achieve. The heating values are highest for woody biomass at about 18.37-19.30 MJ/kg and lowest for corn stover and switchgrass, which were both in the range of 16.74-16.97 MJ/kg. From these results, we can conclude that the physical and energy properties of blended feedstocks are better than just individually pelletized herbaceous biomass. C1 [Yancey, Neal A.; Tumuluru, Jaya Shankar; Wright, Christopher T.] Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Energy Syst & Technol Div, Idaho Falls, ID 83415 USA. RP Yancey, NA (reprint author), Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Energy Syst & Technol Div, 2525 North Fremont Ave, Idaho Falls, ID 83415 USA. EM neal.yancey@inl.gov FU U.S. Department of Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work is supported by the U.S. Department of Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. The authors would like to acknowledge Leslie Park Ovard for her contribution to the development of this manuscript and to Gordon Holt for his editorial assistance. NR 25 TC 8 Z9 9 U1 1 U2 37 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1556-6560 J9 J BIOBASED MATER BIO JI J. Biobased Mater. Bioenergy PD OCT PY 2013 VL 7 IS 5 BP 549 EP 558 DI 10.1166/jbmb.2013.1390 PG 10 WC Chemistry, Applied; Energy & Fuels; Materials Science, Biomaterials SC Chemistry; Energy & Fuels; Materials Science GA 225VQ UT WOS:000324993400003 ER PT J AU Antony, S Aitken, JB Vogt, S Lai, B Brown, T Spiccia, L Harris, HH AF Antony, Sumy Aitken, Jade B. Vogt, Stefan Lai, Barry Brown, Tracey Spiccia, Leone Harris, Hugh H. TI X-ray fluorescence imaging of single human cancer cells reveals that the N-heterocyclic ligands of iodinated analogues of ruthenium anticancer drugs remain coordinated after cellular uptake SO JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY LA English DT Article DE Anticancer drugs; Ruthenium; Iodine; X-ray fluorescence imaging ID NAMI-A; MOLECULAR-STRUCTURE; COMPLEXES; DERIVATIVES; IMIDAZOLE; KP1019; AGENT AB Analogues of KP1019 containing iodinated indazole ligands were prepared to investigate the biological fate of the Ru-N-heterocycle bond in this class of anticancer agents. The new complexes, 5-iodoindazolium trans-tetrachloridobis(5-iodoindazole)ruthen(III)ate (1) and 5-iodoindazolium trans-tetrachlorido(dimethyl sulfoxide)(5-iodoindazole)ruthen(III)ate (3), were characterized by elemental analysis, mass spectrometry and UV-vis spectrophotometry. Tetramethylammonium salts of these complexes (2 and 4) were synthesized and characterized in a similar manner. Half-maximum inhibitory concentrations of 2 and 4 with regard to A549 cells at 24 h were determined on the basis of the dose-response curves derived from real-time cell adhesion impedance measurements and were shown to be in the same range as those determined for KP1019 and NAMI-A using the same method. X-ray fluorescence imaging of single cultured A549 cells treated with 2 or 4 showed that, in both cases, the distribution of ruthenium and iodine was identical, indicating that the Ru-N bonds in the anionic complexes remained intact after incubation in culture medium and subsequent cellular uptake and processing. C1 [Antony, Sumy; Harris, Hugh H.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Antony, Sumy; Spiccia, Leone] Monash Univ, Sch Chem, Melbourne, Vic 3800, Australia. [Aitken, Jade B.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Vogt, Stefan; Lai, Barry] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Brown, Tracey] Monash Univ, Dept Biochem & Mol Biol, Melbourne, Vic 3800, Australia. RP Harris, HH (reprint author), Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. EM hugh.harris@adelaide.edu.au RI Spiccia, Leone/I-8085-2013; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Spiccia, Leone/0000-0003-2258-8506; Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Harris, Hugh/0000-0002-3472-8628 FU Australian Research Council [DP0985807-QEII, DP0984722]; International Synchrotron Access Program; Australian Government; US Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was funded by the Australian Research Council (DP0985807-QEII and DP0984722 to H.H.H.). We thank Aviva Levina for helpful discussions. We acknowledge travel funding provided by the International Synchrotron Access Program managed by the Australian Synchrotron and funded by the Australian Government. The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, under contract DE-AC02-06CH11357. NR 25 TC 9 Z9 9 U1 1 U2 32 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-8257 J9 J BIOL INORG CHEM JI J. Biol. Inorg. Chem. PD OCT PY 2013 VL 18 IS 7 BP 845 EP 853 DI 10.1007/s00775-013-1027-z PG 9 WC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear SC Biochemistry & Molecular Biology; Chemistry GA 221CX UT WOS:000324636200011 PM 23943098 ER PT J AU Houmard, M Fu, Q Genet, M Saiz, E Tomsia, AP AF Houmard, Manuel Fu, Qiang Genet, Martin Saiz, Eduardo Tomsia, Antoni P. TI On the structural, mechanical, and biodegradation properties of HA/beta-TCP robocast scaffolds SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS LA English DT Article DE calcium phosphates; HA; -TCP composites; robocasting; biomedical scaffolds; tissue engineering ID CALCIUM-PHOSPHATE CERAMICS; HYDROXYAPATITE SCAFFOLDS; BONE REGENERATION; PORE-SIZE; BIOCERAMICS; POROSITY; COMPRESSION; BEHAVIOR; CAP AB Hydroxyapatite/-tricalcium phosphate (HA/-TCP) composite scaffolds have shown great potential for bone-tissue engineering applications. In this work, ceramic scaffold with different HA/-TCP compositions (pure HA, 60HA/40-TCP, and 20HA/80-TCP) were fabricated by a robotic-assisted deposition (robocasting) technique using water-based hydrogel inks. A systematic study was conducted to investigate the porosity, mechanical property, and degradation of the scaffolds. Our results indicate that, at a similar volume porosity, the mechanical strength of the sintered scaffolds increased with the decreasing rod diameter. The compressive strength of the fabricated scaffolds (porosity approximate to 25-80 vol %) varied between approximate to 3 and approximate to 50 MPa, a value equal or higher than that of human cancellous bone (2-12 MPa). Although there was a slight increase of Ca and P ions in water after 5 month, no noticeable degradation of the scaffolds in SBF or water was observed. Our findings from this work indicate that composite calcium phosphate scaffolds with customer-designed chemistry and architecture may be fabricated by a robotic-assisted deposition method. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 1233-1242, 2013. C1 [Houmard, Manuel; Fu, Qiang; Genet, Martin; Tomsia, Antoni P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Houmard, Manuel] Fed Univ Minas Gerais UFMG, Dept Mat Engn & Civil Construct, BR-31270901 Belo Horizonte, MG, Brazil. [Saiz, Eduardo] Univ London Imperial Coll Sci Technol & Med, Dept Mat, Ctr Adv Struct Ceram, London, England. RP Houmard, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mhoumard@ufmg.br RI Houmard, Manuel/F-7229-2013; Genet, Martin/H-4247-2015 OI Genet, Martin/0000-0003-2204-201X FU National Institutes of Health/National Institute of Dental and Craniofacial Research [1 R01 DE015633]; Department of Energy [DE-AC02-05CH11231] FX Contract grant sponsor: National Institutes of Health/National Institute of Dental and Craniofacial Research; contract grant number: 1 R01 DE015633.; Contract grant sponsor: Department of Energy; contract grant number: DE-AC02-05CH11231 NR 42 TC 17 Z9 17 U1 5 U2 43 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1552-4973 J9 J BIOMED MATER RES B JI J. Biomed. Mater. Res. Part B PD OCT PY 2013 VL 101 IS 7 BP 1233 EP 1242 DI 10.1002/jbm.b.32935 PG 10 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 216RQ UT WOS:000324302100014 PM 23650043 ER PT J AU Sivasankar, S AF Sivasankar, Sanjeevi TI Tuning the Kinetics of Cadherin Adhesion SO JOURNAL OF INVESTIGATIVE DERMATOLOGY LA English DT Review ID CELL-CELL-ADHESION; STRUCTURAL BASIS; EXTRACELLULAR DOMAINS; ADHERENS JUNCTIONS; CATCH BONDS; TISSUE MORPHOGENESIS; CLASSICAL CADHERINS; MEDIATED ADHESIONS; CRYSTAL-STRUCTURE; ALPHA-CATENIN AB Cadherins are Ca(2+-)dependent cell-cell adhesion proteins that maintain the structural integrity of the epidermis; their principle function is to resist mechanical force. This review summarizes the biophysical mechanisms by which classical cadherins tune adhesion and withstand mechanical stress. We first relate the structure of classical cadherins to their equilibrium binding properties. We then review the role of mechanical perturbations in tuning the kinetics of cadherin adhesion. In particular, we highlight recent studies that show that cadherins form three types of adhesive bonds: catch bonds, which become longer lived and lock in the presence of tensile force; slip bonds, which become shorter lived when pulled; and ideal bonds, which are insensitive to tugging. C1 [Sivasankar, Sanjeevi] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Sivasankar, Sanjeevi] US DOE, Ames Lab, Ames, IA 50011 USA. RP Sivasankar, S (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM sivasank@iastate.edu FU March of Dimes Foundation; American Heart Association FX I thank Dr Sabyasachi Rakshit for his help in preparing Figure 2. This work was supported in part by a Basil O'Connor Starter Scholar Award from the March of Dimes Foundation and a grant from the American Heart Association. NR 69 TC 9 Z9 9 U1 1 U2 12 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0022-202X EI 1523-1747 J9 J INVEST DERMATOL JI J. Invest. Dermatol. PD OCT PY 2013 VL 133 IS 10 BP 2318 EP 2323 DI 10.1038/jid.2013.229 PG 6 WC Dermatology SC Dermatology GA 224OY UT WOS:000324899100007 PM 23812234 ER PT J AU McCreery, D Han, M Pikov, V Yadav, K Pannu, S AF McCreery, Douglas Han, Martin Pikov, Victor Yadav, Kamal Pannu, Satinderpall TI Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate SO JOURNAL OF NEURAL ENGINEERING LA English DT Article ID BRAIN-STEM IMPLANT; AUDITORY MIDBRAIN; FREQUENCY ORGANIZATION; CODING MECHANISMS; CAT; RESPONSES; MICROSTIMULATION; PROJECTIONS; MICROELECTRODES; PERFORMANCE AB Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This 'constant maximum' protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of ABIs may benefit from using pulse rates greater than those presently used in most ABIs, and by sound processing strategies that enhance the modulation depth of the electrical stimulus while preserving dynamic range. C1 [McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal] Huntington Med Res Inst, Pasadena, CA 91105 USA. [Pannu, Satinderpall] Lawrence Livermore Natl Lab, Ctr Micro & Nanotechnol, Livermore, CA USA. RP McCreery, D (reprint author), Huntington Med Res Inst, Pasadena, CA 91105 USA. EM dougmc@hmri.org FU National Institutes of Health (National Institute On Deafness And Other Communication Disorders) [R01DC009643]; NIDCD [Y1-DC-8002-01] FX Thinh Vo, Victoria Cheng, and Nijole Kuleviciute fabricated the microelectrode arrays. Edna Smith managed and assisted with the animal surgeries, and we thank Smith and her animal care staff for excellent care of the animals. Cheryl Long provided secretarial assistance and assisted with the figures. Nijole Kuleviciute assisted with the animal studies and managed the anesthesia during data acquisition. Aloysius Kowalewski fabricated many of the special devices used to assemble the electrode arrays, and used during their surgical implantation. Dr Angela Tooker performed the design and microfabrication of the polyimide microelectrode arrays. Kedar Shah performed the integration and assembly of the polyimide devices. Dr Vanessa Tolosa performed electrode activation and characterization of the Iridium electrodes on the polyimide microelectrode arrays. Thinh Vo performed the final assembly of the electrode arrays implanted in the cochlear nucleus and ICC. The animal studies were approved by the Animal Care and Use Committee of HMRI, and were performed under the guidelines set forth in the Guide to Care and Use of Laboratory Animals (1996 edition). The work was supported by research grants R01DC009643 and R01DC009643 from the National Institutes of Health (National Institute On Deafness And Other Communication Disorders). The polyimide recording microelectrodes implanted in the ICC were designed and fabricated with funding from Contract Y1-DC-8002-01 from the NIDCD to the Lawrence Livermore National Laboratory. The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Deafness and Other Communication Disorders, the National Institutes of Health, or the US Department of Energy. NR 61 TC 2 Z9 2 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1741-2560 J9 J NEURAL ENG JI J. Neural Eng. PD OCT PY 2013 VL 10 IS 5 AR 056010 DI 10.1088/1741-2560/10/5/056010 PG 17 WC Engineering, Biomedical; Neurosciences SC Engineering; Neurosciences & Neurology GA 224DN UT WOS:000324862400010 PM 23928683 ER PT J AU Jia, JY Radhakrishnan, S Mohapatra, S AF Jia, Jiangyong Radhakrishnan, Sooraj Mohapatra, Soumya TI A study of the anisotropy associated with dipole asymmetry in heavy ion collisions SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID PB-PB COLLISIONS; ENERGY; FLOW; TEV AB The anisotropy associated with the initial dipole asymmetry in heavy ion collisions is studied via the two-particle relative azimuthal angle (Delta phi = phi(a) - phi(b)) correlations, within a multi-phase transport model. For a broad selection of centrality, transverse momenta (p(T)(a,b)) and pseudorapidity (eta(a,b)), a fitting method is used to decompose the anisotropy into a rapidity-even component, characterized by the Fourier coefficient nu(1), and a global momentum conservation component. The extracted nu(1) values are negative for p(T) less than or similar to 0.7-0.9 GeV, reach a maximum at 2-3 GeV, and decrease at higher p(T). The nu(1) values vary weakly with eta and centrality, but increase with collision energy and the parton cross-section. The extracted global momentum conservation component is found to depend on Delta eta = eta(a) - eta(b) for vertical bar Delta eta vertical bar < 3. C1 [Jia, Jiangyong; Radhakrishnan, Sooraj; Mohapatra, Soumya] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM jjia@bnl.gov; sooraj9286@gmail.com; smohapatra@gmail.com FU NSF [PHY-1019387, PHY-1305037] FX We acknowledge valuable discussions with Matthew Luzum and Jean-Yves Ollitrault, in particular concerning the relation between the event plane method and the two-particle correlation method. We thank Roy Lacey for a careful proofreading of the paper. This research is supported by NSF under grant number PHY-1019387 and PHY-1305037. NR 34 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD OCT PY 2013 VL 40 IS 10 AR 105108 DI 10.1088/0954-3899/40/10/105108 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 219WY UT WOS:000324543500008 ER PT J AU Luo, XF Xu, J Mohanty, B Xu, N AF Luo, Xiaofeng Xu, Ji Mohanty, Bedangadas Xu, Nu TI Volume fluctuation and auto-correlation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID QCD PHASE-DIAGRAM; CRITICAL-POINT; QUANTUM CHROMODYNAMICS; TRANSITION; SEARCH; MODEL AB Moments (variance (sigma(2)), skewness (S), kurtosis (kappa)) of multiplicity distributions of conserved quantities, such as net-baryon, net-charge and net-strangeness, are predicted to be sensitive to the correlation length of the system and connected to the thermodynamic susceptibilities computed in the Lattice QCD and Hadron Resonance Gas model. In this paper, we present several measurement artifacts that could lead to volume fluctuation and auto-correlation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions using the ultra-relativistic quantum molecular dynamics model. We discuss methods to overcome these artifacts so that the extracted moments can be used to obtain physical conclusions. In addition, we present methods to properly estimate the statistical errors in moment analysis. C1 [Luo, Xiaofeng; Xu, Ji; Xu, Nu] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Luo, Xiaofeng; Xu, Ji; Xu, Nu] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Mohanty, Bedangadas] Natl Inst Sci Educ & Res, Bhubaneswar 751005, Orissa, India. [Xu, Nu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Luo, XF (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. EM xfluo@iopp.ccnu.edu.cn OI Mohanty, Bedangadas/0000-0001-9610-2914 FU National Natural Science Foundation of China [11205067, 11135011]; CCNU-QLPL Innovation Fund [QLPL2011P01, QLPL2013P01]; China Postdoctoral Science Foundation [2012M511237]; DST SwarnaJayanti project fellowship FX The work was supported in part by the National Natural Science Foundation of China under grant no. 11205067 and 11135011. CCNU-QLPL Innovation Fund (QLPL2011P01, QLPL2013P01) and the China Postdoctoral Science Foundation (2012M511237). BM is supported by the DST SwarnaJayanti project fellowship. NR 27 TC 19 Z9 19 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD OCT PY 2013 VL 40 IS 10 AR UNSP 105104 DI 10.1088/0954-3899/40/10/105104 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 219WY UT WOS:000324543500004 ER PT J AU DiPrete, CC DiPrete, DP Edwards, TB Fink, SD Hobbs, DT Peters, TB AF DiPrete, C. C. DiPrete, D. P. Edwards, T. B. Fink, S. D. Hobbs, D. T. Peters, T. B. TI Effects of ammonium molybdophosphate (AMP) on strontium, actinides, and RCRA metals in SRS simulated waste SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Ammonium molybdophosphate; Actinide; Cesium; Radioseparation ID EXCHANGE PROPERTIES; SORPTION; CESIUM AB Three radionuclide-spiked salt solutions have been prepared that simulate a range of typical compositions in Savannah River Site waste solutions. The Savannah River National Laboratory performed a series of tests with the three salt solutions designed to determine the propensity of ammonium molybdophosphate (AMP) to bind some of the common analytes such as the actinides (Pu, Am, Np, U), strontium, or the elements (Ag, As, Ba, Cd, Cr, Hg, Pb, Se) regulated by the Resource Conservation Recovery Act (RCRA). The results of the tests indicate that within the protocol conditions, AMP exhibited no appreciable affinity for plutonium, neptunium, uranium and strontium. AMP showed a possible minor affinity for americium; however, the data is not as clear due to continued americium solubility changes during the duration of the experiment. Of the eight RCRA elements studied, AMP exhibited affinity for only silver under our experimental conditions. C1 [DiPrete, C. C.; DiPrete, D. P.; Edwards, T. B.; Fink, S. D.; Hobbs, D. T.; Peters, T. B.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Peters, TB (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM thomas.peters@srnl.doe.gov FU EM-21 division of DOE FX SRNL would like to thank the EM-21 division of DOE for the funding for this work. Additional thanks are given to the Analytical Development (AD) section at SRNL. NR 16 TC 0 Z9 0 U1 3 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD OCT PY 2013 VL 298 IS 1 BP 265 EP 275 DI 10.1007/s10967-012-2338-1 PG 11 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 219XX UT WOS:000324546100034 ER PT J AU Hixon, AE DiPrete, DP DeVol, TA AF Hixon, Amy E. DiPrete, David P. DeVol, Timothy A. TI Development of a colorimetric test for quantification of uranium in drinking water SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Uranium; Br-PADAP; Extraction chromatography; Colorimetry ID BR-PADAP AB A colorimetric method was developed for the determination of uranium in groundwater. The detection limit for the method is approximately 25 mu g/L uranium, which is below the maximum contaminant level for uranium in drinking water, 30 mu g/L. The method is rapid and requires little technical training to conduct, allowing it to be used by consumers, in the laboratory, or in the field. The two-step technique involves preconcentrating uranium using a U/TEVA-2 extraction chromatographic resin followed by complexation with a pyridylazo indicator dye, 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. If color change is visible to the eye, the concentration of uranium in groundwater is above the detection limit. Preconcentration using U/TEVA-2 also serves to eliminate metals that may interfere with the quantification of uranium. C1 [Hixon, Amy E.; DeVol, Timothy A.] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. [DiPrete, David P.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Hixon, AE (reprint author), Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. EM aeratli@clemson.edu RI Hixon, Amy/D-4608-2016; OI Hixon, Amy/0000-0003-4513-4574 FU Radiochemistry Education Awards Program (REAP) [DE-FG07-05ID14692/IDNE006] FX This research was supported by the Radiochemistry Education Awards Program (REAP) administered by the Medical University of South Carolina, Contract No. DE-FG07-05ID14692/IDNE006. NR 15 TC 4 Z9 4 U1 2 U2 30 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD OCT PY 2013 VL 298 IS 1 BP 419 EP 427 DI 10.1007/s10967-012-2385-7 PG 9 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 219XX UT WOS:000324546100053 ER PT J AU Egnatuk, CM Biegalski, SR AF Egnatuk, Christine M. Biegalski, Steven R. TI Radioargon production through the irradiation of calcium oxide SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Argon; Research reactor; Noble gas; Radioargon; Neutron activation ID AR-37 AB The production of radioargon through the irradiation of CaO was performed in an in-core facility within the The University of Texas at Austin MARK II TRIGA reactor. The major radioargon isotope produced was Ar-37 via the Ca-40(n,alpha)Ar-37 reaction pathway. The CaO powder was vacuumed sealed in a quartz ampoule. The sample was irradiated in a Cd-lined Al alloy canister for 2 h at 500 kW. After the irradiation, the sample was counted using an HPGe detector five times with increasing count times. Ar-41, K-42, K-43, and Ca-47 were detected in the spectra. The induced activities of Ar-37, Ar-39, Ar-41, K-42, K-43, and Ca-47 were calculated using a 63-group energy-dependent neutron flux determined utilizing a neutron energy flux profile calculated from a MCNPX model of the TRIGA reactor core. The production ratios generated from the model allowed for the estimation of induced Ar-37 and Ar-39 activities through the measured induced activities of Ar-41, K-42, K-43, and Ca-47. C1 [Egnatuk, Christine M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Egnatuk, Christine M.; Biegalski, Steven R.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. RP Egnatuk, CM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM egnatuk1@llnl.gov NR 11 TC 2 Z9 2 U1 1 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD OCT PY 2013 VL 298 IS 1 BP 475 EP 479 DI 10.1007/s10967-012-2400-z PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 219XX UT WOS:000324546100061 ER PT J AU Del Valle, SY Hyman, JM Chitnis, N AF Del Valle, Sara Y. Hyman, James M. Chitnis, Nakul TI MATHEMATICAL MODELS OF CONTACT PATTERNS BETWEEN AGE GROUPS FOR PREDICTING THE SPREAD OF INFECTIOUS DISEASES SO MATHEMATICAL BIOSCIENCES AND ENGINEERING LA English DT Article DE Mathematical epidemiology; social networks; contact patterns; reproduction number; proportional mixing; segregate mixing ID SMALLPOX-VACCINATION POLICY; EPIDEMIOLOGIC MODELS; HIV TRANSMISSION; SOCIAL NETWORKS; BIOTERRORISM; POPULATIONS; RESPONSES; OUTBREAKS; DYNAMICS; BEHAVIOR AB The spread of an infectious disease is sensitive to the contact patterns in the population and to precautions people take to reduce the transmission of the disease. We investigate the impact that different mixing assumptions have on the spread an infectious disease in an age-structured ordinary differential equation model. We consider the impact of heterogeneity in susceptibility and infectivity within the population on the disease transmission. We apply the analysis to the spread of a smallpox-like disease, derive the formula for the reproduction number, R-0, and based on this threshold parameter, show the level of human behavioral change required to control the epidemic. We analyze how different mixing patterns can affect the disease prevalence, the cumulative number of new infections, and the final epidemic size. Our analysis indicates that the combination of residual immunity and behavioral changes during a smallpox-like disease outbreak can play a key role in halting infectious disease spread; and that realistic mixing patterns must be included in the epidemic model for the predictions to accurately reflect reality. C1 [Del Valle, Sara Y.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hyman, James M.] Tulane Univ, New Orleans, LA 70118 USA. [Chitnis, Nakul] Swiss Trop & Publ Hlth Inst, CH-4002 Basel, Switzerland. [Chitnis, Nakul] Univ Basel, CH-4003 Basel, Switzerland. RP Del Valle, SY (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sdelvall@lanl.gov; mhyman@tulane.edu; Nakul.Chitnis@unibas.ch RI Chitnis, Nakul/B-3105-2013 FU Los Alamos National Laboratory under the Department of Energy [DE-AC52-06NA25396]; NIH/NIGMS [U01-GM097658-01] FX This research has been supported at Los Alamos National Laboratory under the Department of Energy contract DE-AC52-06NA25396 and a grant from the NIH/NIGMS in the Models of Infectious Disease Agent Study (MIDAS) program U01-GM097658-01. The authors will also like to thank Prof. Herbert Hethcote for providing valuable comments during the early stages of this paper. NR 57 TC 3 Z9 3 U1 2 U2 21 PU AMER INST MATHEMATICAL SCIENCES PI SPRINGFIELD PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA SN 1547-1063 J9 MATH BIOSCI ENG JI Math. Biosci. Eng. PD OCT-DEC PY 2013 VL 10 IS 5-6 SI SI BP 1475 EP 1497 DI 10.3934/mbe.2013.10.1475 PG 23 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA 217XV UT WOS:000324397300014 PM 24245626 ER PT J AU Kao-Kniffin, J Zhu, B AF Kao-Kniffin, Jenny Zhu, Biao TI A Microbial Link between Elevated CO2 and Methane Emissions that is Plant Species-Specific SO MICROBIAL ECOLOGY LA English DT Article ID RHIZOSPHERE CARBON FLOW; SOIL ORGANIC-MATTER; REED CANARY GRASS; PADDY RICE FIELDS; COMMUNITY STRUCTURE; ATMOSPHERIC CO2; BACTERIAL COMMUNITIES; DIOXIDE ENRICHMENT; CH4 EMISSIONS; MICROORGANISMS AB Rising atmospheric CO2 levels alter the physiology of many plant species, but little is known of changes to root dynamics that may impact soil microbial mediation of greenhouse gas emissions from wetlands. We grew co-occurring wetland plant species that included an invasive reed canary grass (Phalaris arundinacea L.) and a native woolgrass (Scirpus cyperinus L.) in a controlled greenhouse facility under ambient (380 ppm) and elevated atmospheric CO2 (700 ppm). We hypothesized that elevated atmospheric CO2 would increase the abundance of both archaeal methanogen and bacterial methanotroph populations through stimulation of plant root and shoot biomass. We found that methane levels emitted from S. cyperinus shoots increased 1.5-fold under elevated CO2, while no changes in methane levels were detected from P. arundincea. The increase in methane emissions was not explained by enhanced root or shoot growth of S. cyperinus. Principal components analysis of the total phospholipid fatty acid (PLFA) recovered from microbial cell membranes revealed that elevated CO2 levels shifted the composition of the microbial community under S. cyperinus, while no changes were detected under P. arundinacea. More detailed analysis of microbial abundance showed no impact of elevated CO2 on a fatty acid indicative of methanotrophic bacteria (18:2 omega 6c), and no changes were detected in the terminal restriction fragment length polymorphism (T-RFLP) relative abundance profiles of acetate-utilizing archaeal methanogens. Plant carbon depleted in C-13 was traced into the PLFAs of soil microorganisms as a measure of the plant contribution to microbial PLFA. The relative contribution of plant-derived carbon to PLFA carbon was larger in S. cyperinus compared with P. arundinacea in four PLFAs (i14:0, i15:0, a15:0, and 18:1 omega 9t). The delta C-13 isotopic values indicate that the contribution of plant-derived carbon to microbial lipids could differ in rhizospheres of CO2-responsive plant species, such as S. cyperinus in this study. The results from this study show that the CO2-methane link found in S. cyperinus can occur without a corresponding change in methanogen and methanotroph relative abundances, but PLFA analysis indicated shifts in the community profile of bacteria and fungi that were unique to rhizospheres under elevated CO2. C1 [Kao-Kniffin, Jenny; Zhu, Biao] Cornell Univ, Dept Hort, Ithaca, NY 14853 USA. [Zhu, Biao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Kao-Kniffin, J (reprint author), Cornell Univ, Dept Hort, 134A Plant Sci Bldg, Ithaca, NY 14853 USA. EM jtk57@cornell.edu RI Zhu, Biao/F-8712-2010 OI Zhu, Biao/0000-0001-9858-7943 FU Department of Energy's National Institute for Climatic Change Research (NICCR); National Science Foundation Division of Environmental Biology FX We thank Teri Balser, Katherine Faust, Marlo Dobrient, Vivian Chiang, Katherine Faust, Domonique Freyer, Dirk Krueger, Randy Jackson, Gary Oates, and Kim Sparks for help with the project. Funding for the project was provided by the Department of Energy's National Institute for Climatic Change Research (NICCR) and the National Science Foundation Division of Environmental Biology. NR 56 TC 3 Z9 4 U1 9 U2 113 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-3628 J9 MICROB ECOL JI Microb. Ecol. PD OCT PY 2013 VL 66 IS 3 BP 621 EP 629 DI 10.1007/s00248-013-0254-8 PG 9 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 220BJ UT WOS:000324555400013 PM 23784452 ER PT J AU Ward, J Marvin, R O'Halloran, T Jacobsen, C Vogt, S AF Ward, Jesse Marvin, Rebecca O'Halloran, Thomas Jacobsen, Chris Vogt, Stefan TI Rapid and Accurate Analysis of an X-Ray Fluorescence Microscopy Data Set through Gaussian Mixture-Based Soft Clustering Methods SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE X-ray fluorescence microscopy; cluster analysis; soft clustering; hard clustering; Gaussian mixture models; k-means clustering; expectation maximization; image segmentation; bioinorganic chemistry; Plasmodium falciparum ID PARASITE PLASMODIUM-FALCIPARUM; ZINC; SPECTROMICROSCOPY; METABOLISM; COMPLEX AB X-ray fluorescence (XRF) microscopy is an important tool for studying trace metals in biology, enabling simultaneous detection of multiple elements of interest and allowing quantification of metals in organelles without the need for subcellular fractionation. Currently, analysis of XRF images is often done using manually defined regions of interest (ROIs). However, since advances in synchrotron instrumentation have enabled the collection of very large data sets encompassing hundreds of cells, manual approaches are becoming increasingly impractical. We describe here the use of soft clustering to identify cell ROIs based on elemental contents, using data collected over a sample of the malaria parasite Plasmodium falciparum as a test case. Soft clustering was able to successfully classify regions in infected erythrocytes as "parasite," "food vacuole," "host," or "background." In contrast, hard clustering using the k-means algorithm was found to have difficulty in distinguishing cells from background. While initial tests showed convergence on two or three distinct solutions in 60% of the cells studied, subsequent modifications to the clustering routine improved results to yield 100% consistency in image segmentation. Data extracted using soft cluster ROIs were found to be as accurate as data extracted using manually defined ROIs, and analysis time was considerably improved. C1 [Ward, Jesse; Jacobsen, Chris; Vogt, Stefan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Marvin, Rebecca; O'Halloran, Thomas] Northwestern Univ, Dept Chem & Chem Life Proc, Evanston, IL 60208 USA. [O'Halloran, Thomas] Northwestern Univ, Interdept Biol Sci, Evanston, IL 60208 USA. [Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Vogt, S (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM svogt@aps.anl.gov RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; Jacobsen, Chris/E-2827-2015 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Jacobsen, Chris/0000-0001-8562-0353 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences program [DE-AC02-06CH11357]; National Institutes of Health [GM038784-22S1] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences program under contract DE-AC02-06CH11357 and by the National Institutes of Health grant GM038784-22S1. NR 22 TC 4 Z9 4 U1 1 U2 17 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD OCT PY 2013 VL 19 IS 5 BP 1281 EP 1289 DI 10.1017/S1431927613012737 PG 9 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 219ZQ UT WOS:000324550900021 PM 23924688 ER PT J AU Wu, J Pelleg, O Logvenov, G Bollinger, AT Sun, YJ Boebinger, GS Vanevic, M Radovic, Z Bozovic, I AF Wu, J. Pelleg, O. Logvenov, G. Bollinger, A. T. Sun, Y-J. Boebinger, G. S. Vanevic, M. Radovic, Z. Bozovic, I. TI Anomalous independence of interface superconductivity from carrier density SO NATURE MATERIALS LA English DT Article ID TEMPERATURE SUPERCONDUCTOR; CUPRATE SUPERCONDUCTORS; NORMAL-STATE; LA2-XSRXCUO4; OXIDES; HETEROSTRUCTURE; ENHANCEMENT; STRAIN AB The recent discovery of superconductivity at the interface of two non-superconducting materials has received much attention(1-12). In cuprate bilayers, the critical temperature (T-c) can be significantly enhanced compared with single-phase samples(2,7,9). Several explanations have been proposed, invoking Sr interdiffusion(2), accumulation and depletion of mobile charge carriers(2,8,10), elongation of the copper-to-apicaloxygen bond length(11,12), or a beneficial crosstalk between a material with a high pairing energy and another with a large phase stiffness(13-16). From each of these models, one would predict Tc to depend strongly on the carrier density in the constituent materials. Here, we study combinatorial libraries of La2-xSrxCuO4-La2CuO4 bilayer samples-an unprecedentedly large set of more than 800 different compositions. The doping level x spans a wide range, 0 : 15 < x < 0 : 47, and the measured Hall coefficient varies by one order of magnitude. Nevertheless, across the entire sample set, T-c stays essentially constant at about 40 K. We infer that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. This result poses a new challenge to theory-cuprate superconductors have not run out of surprises. C1 [Wu, J.; Pelleg, O.; Logvenov, G.; Bollinger, A. T.; Sun, Y-J.; Vanevic, M.; Radovic, Z.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wu, J.; Boebinger, G. S.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Logvenov, G.] Max Planck Inst Solid State Res, DE-70569 Stuttgart, Germany. [Sun, Y-J.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Sun, Y-J.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Vanevic, M.; Radovic, Z.] Univ Belgrade, Dept Phys, Belgrade 11158, Serbia. RP Bozovic, I (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM bozovic@bnl.gov NR 30 TC 26 Z9 26 U1 5 U2 95 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD OCT PY 2013 VL 12 IS 10 BP 877 EP 881 DI 10.1038/NMAT3719 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 222MU UT WOS:000324736000011 PM 23913171 ER PT J AU de Jong, S Kukreja, R Trabant, C Pontius, N Chang, CF Kachel, T Beye, M Sorgenfrei, F Back, CH Brauer, B Schlotter, WF Turner, JJ Krupin, O Doehler, M Zhu, D Hossain, MA Scherz, AO Fausti, D Novelli, F Esposito, M Lee, WS Chuang, YD Lu, DH Moore, RG Yi, M Trigo, M Kirchmann, P Pathey, L Golden, MS Buchholz, M Metcalf, P Parmigiani, F Wurth, W Fohlisch, A Schussler-Langeheine, C Durr, HA AF de Jong, S. Kukreja, R. Trabant, C. Pontius, N. Chang, C. F. Kachel, T. Beye, M. Sorgenfrei, F. Back, C. H. Braeuer, B. Schlotter, W. F. Turner, J. J. Krupin, O. Doehler, M. Zhu, D. Hossain, M. A. Scherz, A. O. Fausti, D. Novelli, F. Esposito, M. Lee, W. S. Chuang, Y. D. Lu, D. H. Moore, R. G. Yi, M. Trigo, M. Kirchmann, P. Pathey, L. Golden, M. S. Buchholz, M. Metcalf, P. Parmigiani, F. Wurth, W. Foehlisch, A. Schuessler-Langeheine, C. Duerr, H. A. TI Speed limit of the insulator-metal transition in magnetite SO NATURE MATERIALS LA English DT Article ID VERWEY TRANSITION; NEUTRON-SCATTERING; FE3O4; FLUCTUATIONS AB As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown(1), magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible(2-8). Recently, three- Fe- site lattice distortions called trimeronswere identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase(9). Here we investigate the Verwey transition with pump- probe X- ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two- step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5 +/- 0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics(10). C1 [de Jong, S.; Kukreja, R.; Back, C. H.; Braeuer, B.; Zhu, D.; Hossain, M. A.; Scherz, A. O.; Lee, W. S.; Moore, R. G.; Yi, M.; Trigo, M.; Kirchmann, P.; Golden, M. S.; Duerr, H. A.] SLAC Natl Accelerator Lab, Stanford Inst Energy & Mat Sci, Menlo Pk, CA 94025 USA. [Kukreja, R.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Trabant, C.; Chang, C. F.; Doehler, M.; Buchholz, M.; Schuessler-Langeheine, C.] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany. [Trabant, C.; Pontius, N.; Kachel, T.; Beye, M.; Sorgenfrei, F.; Foehlisch, A.; Schuessler-Langeheine, C.] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany. [Trabant, C.; Foehlisch, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Chang, C. F.] MPI CPfS, D-01187 Dresden, Germany. [Sorgenfrei, F.; Wurth, W.] Univ Hamburg, Dept Phys, D-22761 Hamburg, Germany. [Sorgenfrei, F.; Wurth, W.] Univ Hamburg, Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany. [Back, C. H.] Univ Regensburg, Inst Phys, D-93053 Regensburg, Germany. [Schlotter, W. F.; Turner, J. J.; Krupin, O.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Krupin, O.; Scherz, A. O.] European XFEL GmbH, D-22761 Hamburg, Germany. [Fausti, D.; Esposito, M.; Parmigiani, F.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Fausti, D.; Novelli, F.; Esposito, M.; Parmigiani, F.] Elettra Sincrotrone Trieste SCnA, I-34012 Trieste, Italy. [Chuang, Y. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lu, D. H.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Pathey, L.] Paul Scherrer Inst, SwissFEL, CH-5232 Villigen, Switzerland. [Golden, M. S.] Univ Amsterdam, Van der Waals Zeeman Inst, NL-1098 XH Amsterdam, Netherlands. [Metcalf, P.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. RP Schussler-Langeheine, C (reprint author), Univ Cologne, Inst Phys 2, Zulpicher Str 77, D-50937 Cologne, Germany. EM christian.schuessler@helmholtz-berlin.de; hdurr@slac.stanford.edu RI Zhu, Diling/D-1302-2013; Golden, Mark/D-3469-2011; SchuSSler-Langeheine, Christian/C-3186-2008; Hossain, Muhammed/G-3876-2012; Chang, Chun-Fu/B-7805-2012; Back, Christian/A-8969-2012; Kirchmann, Patrick/C-1195-2008; Beye, Martin/F-1165-2011; Pontius, Niko/I-1804-2013; Durr, Hermann/F-6205-2012 OI Fausti, Daniele/0000-0002-2142-9741; Alexander, Fohlisch/0000-0003-4126-8233; Parmigiani, Fulvio/0000-0001-9529-7406; SchuSSler-Langeheine, Christian/0000-0002-4553-9726; Hossain, Muhammed/0000-0003-1440-3161; Chang, Chun-Fu/0000-0003-1803-2468; Back, Christian/0000-0003-3840-0993; Kirchmann, Patrick/0000-0002-4835-0654; Beye, Martin/0000-0002-3924-2993; FU Stanford Institute for Materials and Energy Sciences (SIMES) [DE-AC02-76SF00515]; LCLS by the US Department of Energy, Office of Basic Energy Sciences; Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES); Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231]; University of Hamburg through the BMBF priority programme FSP [301]; Center for Free Electron Laser Science (CFEL); FOM/NWO; Helmholtz Virtual Institute Dynamic Pathways in Multidimensional Landscapes; DFG [SFB 608]; BMBF [05K10PK2]; SFB [925]; European Union Seventh Framework Programme [280555]; Italian Ministry of University and Research [FIRB-RBAP045JF2, FIRB-RBAP06AWK3] FX Research at Stanford was supported through the Stanford Institute for Materials and Energy Sciences (SIMES) under contract DE-AC02-76SF00515 and the LCLS by the US Department of Energy, Office of Basic Energy Sciences. Portions of this research were carried out on the SXR Instrument at the LCLS, a division of SLAC National Accelerator Laboratory and an Office of Science user facility operated by Stanford University for the US Department of Energy. The SXR Instrument is funded by a consortium whose membership includes the LCLS, Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES), Lawrence Berkeley National Laboratory (LBNL, contract number DE-AC02-05CH11231), University of Hamburg through the BMBF priority programme FSP 301, and the Center for Free Electron Laser Science (CFEL). The stay of M. S. G. at SLAC was made possible by support from FOM/NWO and the Helmholtz Virtual Institute Dynamic Pathways in Multidimensional Landscapes. The Cologne team was supported by the DFG through SFB 608 and by the BMBF (contract 05K10PK2). The University of Hamburg team was supported by the SFB 925 'Light induced dynamics and control of correlated quantum systems'. The Elettra-Sincrotrone Trieste and University of Trieste team was supported by European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement number 280555 and by the Italian Ministry of University and Research under grant numbers: FIRB-RBAP045JF2 and FIRB-RBAP06AWK3. D.F., F.N., M.E. and F.P. thank F. Cilento and F. Randi for technical support. NR 30 TC 38 Z9 38 U1 11 U2 148 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD OCT PY 2013 VL 12 IS 10 BP 882 EP 886 DI 10.1038/NMAT3718 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 222MU UT WOS:000324736000012 PM 23892787 ER PT J AU Kim, KS Walter, AL Moreschini, L Seyller, T Horn, K Rotenberg, E Bostwick, A AF Kim, Keun Su Walter, Andrew L. Moreschini, Luca Seyller, Thomas Horn, Karsten Rotenberg, Eli Bostwick, Aaron TI Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene SO NATURE MATERIALS LA English DT Article ID STATES AB Charge carriers in bilayer graphene are widely believed to be massive Dirac fermions(1-3) that have a bandgap tunable by a transverse electric field(3,4). However, a full transport gap, despite its importance for device applications, has not been clearly observed in gated bilayer graphene(5-7), a long-standing puzzle. Moreover, the low-energy electronic structure of bilayer graphene is widely held to be unstable towards symmetry breaking either by structural distortions, such as twist(8-10), strain(11,12), or electronic interactions(7,13,14) that can lead to various ground states. Which effect dominates the physics at low energies is hotly debated. Here we show both by direct band-structure measurements and by calculations that a native imperfection of bilayer graphene, a distribution of twists whose size is as small as similar to 0.1 degrees, is sufficient to generate a completely new electronic spectrum consisting of massive and massless Dirac fermions. The massless spectrum is robust against strong electric fields, and has a unusual topology in momentum space consisting of closed arcs having an exotic chiral pseudospin texture, which can be tuned by varying the charge density. The discovery of this unusual Dirac spectrum not only complements the framework of massive Dirac fermions, widely relevant to charge transport in bilayer graphene, but also supports the possibility of valley Hall transport(15). C1 [Kim, Keun Su; Moreschini, Luca; Rotenberg, Eli; Bostwick, Aaron] EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kim, Keun Su; Horn, Karsten] Max Planck Gesell, Fritz Haber Inst, Dept Mol Phys, D-14195 Berlin, Germany. [Walter, Andrew L.] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain. [Seyller, Thomas] Tech Univ Chemnitz, Inst Phys, D-09126 Chemnitz, Germany. RP Bostwick, A (reprint author), EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM abostwick@lbl.gov RI Rotenberg, Eli/B-3700-2009; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; Walter, Andrew/B-9235-2011; Seyller, Thomas/F-8410-2011 OI Rotenberg, Eli/0000-0002-3979-8844; Seyller, Thomas/0000-0002-4953-2142 FU US Department of Energy, Office of Sciences [DE-AC02-05CH11231]; NRF Grant; Korean Government [NRF-2011-357-C00022]; Max Planck Society; Swiss National Science Foundation (SNSF) [PA00P2-136420]; DFG in the framework of the Priority Program FX This work and ALS were supported by the US Department of Energy, Office of Sciences under Contract No. DE-AC02-05CH11231. K.S.K. acknowledges support by an NRF Grant funded by the Korean Government (NRF-2011-357-C00022). A.L.W. acknowledges support by the Max Planck Society. L.M. acknowledges support by Grant PA00P2-136420 from the Swiss National Science Foundation (SNSF). T.S. was supported by the DFG in the framework of the Priority Program 1459 'Graphene'. We thank F. Speck, M. Ostler and F. Fromm for assistance during sample preparation, and J. Denlinger for assistance during measurement. NR 30 TC 57 Z9 58 U1 9 U2 113 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD OCT PY 2013 VL 12 IS 10 BP 887 EP 892 DI 10.1038/NMAT3717 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 222MU UT WOS:000324736000013 PM 23892785 ER PT J AU Wang, C Hwang, D Yu, ZB Takei, K Park, J Chen, T Ma, BW Javey, A AF Wang, Chuan Hwang, David Yu, Zhibin Takei, Kuniharu Park, Junwoo Chen, Teresa Ma, Biwu Javey, Ali TI User-interactive electronic skin for instantaneous pressure visualization SO NATURE MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; LARGE-AREA; CARBON NANOTUBES; ARTIFICIAL SKIN; STRETCHABLE ELECTRONICS; INTEGRATED-CIRCUITS; CONDUCTIVE RUBBER; SENSORS; MATRIX; TRANSPARENT AB Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli(1-12). Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic(4,13-17) demonstration where three distinct electronic components-thin-film transistor, pressure sensor and OLED arrays-are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices. C1 [Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Ma, Biwu; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Park, Junwoo; Chen, Teresa; Ma, Biwu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Wang, Chuan/B-3649-2011; Javey, Ali/B-4818-2013; Foundry, Molecular/G-9968-2014 FU DARPA/DSO Maximum Mobility and Manipulation; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Director,Office of Science, Office of Basic Energy Sciences,Materials Sciences and Engineering Division,of the US Department of Energy [DE-AC02-05CH11231]; World Class University programme at Sunchon National University FX This work was funded by DARPA/DSO Maximum Mobility and Manipulation. OLED processing was performed as a user project in the Molecular Foundry,supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Some of the materials and optical characterization was performed in the Electronic Materials Laboratory at LBNL,which is supported by the Director,Office of Science, Office of Basic Energy Sciences,Materials Sciences and Engineering Division,of the US Department of Energy under Contract No.DE-AC02-05CH11231. A.J. acknowledges support from the World Class University programme at Sunchon National University. NR 30 TC 244 Z9 247 U1 46 U2 412 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD OCT PY 2013 VL 12 IS 10 BP 899 EP 904 DI 10.1038/NMAT3711 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 222MU UT WOS:000324736000015 PM 23872732 ER PT J AU Bardhan, R Hedges, LO Pint, CL Javey, A Whitelam, S Urban, JJ AF Bardhan, Rizia Hedges, Lester O. Pint, Cary L. Javey, Ali Whitelam, Stephen Urban, Jeffrey J. TI Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals SO NATURE MATERIALS LA English DT Article ID HYDROGEN STORAGE; CRITICAL-POINT; NUCLEATION; SYSTEM; NANOPARTICLES; SURFACE; TRANSITIONS; PLATFORM; FIELD; PD AB A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells. C1 [Bardhan, Rizia; Hedges, Lester O.; Whitelam, Stephen; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. [Pint, Cary L.; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Pint, Cary L.; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. RP Whitelam, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov; jjurban@lbl.gov RI Bardhan, Rizia/B-4674-2014; Pint, Cary/I-6785-2013; Javey, Ali/B-4818-2013; Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy Hydrogen Storage Program [KC0202020]; Mohr Davidow Ventures and Berkeley Sensor and Actuators Center; Center for Nanoscale Control of Geologic CO2; US D.O.E. Energy Frontier Research Center [DE-AC02-05CH11231] FX We would like to thank R. Hauge at Rice University, Houston, Texas for help with the optical cell. We would also like to acknowledge A. Schwartzberg, T. Mattox, R. Buonsanti, A. Ruminski, T. Kyukendall, I. Tamblyn and L. Maibaum for helpful discussions. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. J.J.U. and R. B. are supported under the US Department of Energy Hydrogen Storage Program, B&R code KC0202020. C.L.P. and A.J. are supported under Mohr Davidow Ventures and Berkeley Sensor and Actuators Center. L.O.H. was supported by the Center for Nanoscale Control of Geologic CO2, a US D.O.E. Energy Frontier Research Center, under Contract No. DE-AC02-05CH11231. NR 40 TC 34 Z9 34 U1 13 U2 145 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD OCT PY 2013 VL 12 IS 10 BP 905 EP 912 DI 10.1038/NMAT3716 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 222MU UT WOS:000324736000016 PM 23913172 ER PT J AU Moitra, P Yang, YM Anderson, Z Kravchenko, II Briggs, DP Valentine, J AF Moitra, Parikshit Yang, Yuanmu Anderson, Zachary Kravchenko, Ivan I. Briggs, Dayrl P. Valentine, Jason TI Realization of an all-dielectric zero-index optical metamaterial SO NATURE PHOTONICS LA English DT Article ID REFRACTIVE-INDEX; NEGATIVE INDEX; DIRAC CONES AB Metamaterials offer unprecedented flexibility for manipulating the optical properties of matter, including the ability to access negative index(1-4), ultrahigh index(5) and chiral optical properties(6-8). Recently, metamaterials with near-zero refractive index have attracted much attention(9-13). Light inside such materials experiences no spatial phase change and extremely large phase velocity, properties that can be applied for realizing directional emission(14-16), tunnelling waveguides(17), large-area single-mode devices(18) and electromagnetic cloaks(19). However, at optical frequencies, the previously demonstrated zero- or negative-refractive-index metamaterials have required the use of metallic inclusions, leading to large ohmic loss, a serious impediment to device applications(20,21). Here, we experimentally demonstrate an impedance-matched zero-index metamaterial at optical frequencies based on purely dielectric constituents. Formed from stacked silicon-rod unit cells, the metamaterial has a nearly isotropic low-index response for transverse-magnetic polarized light, leading to angular selectivity of transmission and directive emission from quantum dots placed within the material. C1 [Moitra, Parikshit; Yang, Yuanmu] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37212 USA. [Anderson, Zachary] Sch Sci & Math Vanderbilt, Nashville, TN 37232 USA. [Kravchenko, Ivan I.; Briggs, Dayrl P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Valentine, Jason] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37212 USA. RP Valentine, J (reprint author), Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37212 USA. EM jason.g.valentine@vanderbilt.edu RI Yang, Yuanmu/J-3187-2012; Kravchenko, Ivan/K-3022-2015; Valentine, Jason/A-6121-2012 OI Yang, Yuanmu/0000-0002-5264-0822; Kravchenko, Ivan/0000-0003-4999-5822; FU Office of Naval Research [N00014-11-1-0521, N00014-12-1-0571]; United States-Israel Binational Science Foundation [2010460]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work was funded by the Office of Naval Research (programmes N00014-11-1-0521 and N00014-12-1-0571) and the United States-Israel Binational Science Foundation (programme 2010460). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors thank N. Lavrik for discussions regarding RIE processing. NR 35 TC 167 Z9 169 U1 32 U2 224 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD OCT PY 2013 VL 7 IS 10 BP 791 EP 795 DI 10.1038/NPHOTON.2013.214 PG 5 WC Optics; Physics, Applied SC Optics; Physics GA 225ZF UT WOS:000325003100011 ER PT J AU Guo, XG Zhou, NJ Lou, SJ Smith, J Tice, DB Hennek, JW Ortiz, RP Navarrete, JTL Li, SY Strzalka, J Chen, LX Chang, RPH Facchetti, A Marks, TJ AF Guo, Xugang Zhou, Nanjia Lou, Sylvia J. Smith, Jeremy Tice, Daniel B. Hennek, Jonathan W. Ponce Ortiz, Rocio Lopez Navarrete, Juan T. Li, Shuyou Strzalka, Joseph Chen, Lin X. Chang, Robert P. H. Facchetti, Antonio Marks, Tobin J. TI Polymer solar cells with enhanced fill factors SO NATURE PHOTONICS LA English DT Article ID OPEN-CIRCUIT VOLTAGE; NONGEMINATE RECOMBINATION; PHOTOVOLTAIC DEVICES; CHARGE SEPARATION; PERFORMANCE; EFFICIENCY; DYNAMICS; POLYMER/FULLERENE; HETEROJUNCTIONS; PHOTOCURRENT AB Recent advances in polymer solar cell (PSC) performance have resulted from compressing the bandgap to enhance the short-circuit current while lowering the highest occupied molecular orbital to increase the open-circuit voltage. Nevertheless, PSC power conversion efficiencies are still constrained by low fill factors, typically below 70%. Here, we report PSCs with exceptionally high fill factors by combining complementary materials design, synthesis, processing and device engineering strategies. The donor polymers, PTPD3T and PBTI3T, when incorporated into inverted bulk-heterojunction PSCs with a PC71BM acceptor, result in PSCs with fill factors of 76-80%. The enhanced performance is attributed to highly ordered, closely packed and properly oriented active-layer microstructures with optimal horizontal phase separation and vertical phase gradation. The result is efficient charge extraction and suppressed bulk and interfacial bimolecular recombination. The high fill factors yield power conversion efficiencies of up to 8.7% from polymers with suboptimal bandgaps, suggesting that efficiencies above 10% should be realizable by bandgap modification. C1 [Guo, Xugang; Zhou, Nanjia; Lou, Sylvia J.; Smith, Jeremy; Tice, Daniel B.; Hennek, Jonathan W.; Ponce Ortiz, Rocio; Chen, Lin X.; Facchetti, Antonio; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Guo, Xugang; Zhou, Nanjia; Lou, Sylvia J.; Smith, Jeremy; Tice, Daniel B.; Hennek, Jonathan W.; Ponce Ortiz, Rocio; Li, Shuyou; Chen, Lin X.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.] Northwestern Univ, Argonne Northwestern Solar Energy Res Ctr, Mat Res Ctr, Evanston, IL 60208 USA. [Guo, Xugang] South Univ Sci & Technol China, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China. [Zhou, Nanjia; Li, Shuyou; Chang, Robert P. H.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Ponce Ortiz, Rocio; Lopez Navarrete, Juan T.] Univ Malaga, Dept Phys Chem, E-29071 Malaga, Spain. [Strzalka, Joseph] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Facchetti, Antonio] Polyera Corp, Skokie, IL 60077 USA. RP Chen, LX (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM lchen@anl.gov; r-chang@northwestern.edu; a-facchetti@northwestern.edu; t-marks@northwestern.edu RI Chang, R.P.H/B-7505-2009; Ponce Ortiz, Rocio/B-3730-2013; Lopez Navarrete, Juan Teodomiro /H-3783-2015; Zhou, Nanjia/F-5820-2014; GUO, XUGANG/E-8218-2016 OI Ponce Ortiz, Rocio/0000-0002-3836-3494; Lopez Navarrete, Juan Teodomiro /0000-0002-5763-9214; Zhou, Nanjia/0000-0003-4493-1264; FU ANSER Center, an Energy Frontier Research Center; US Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-SC0001059]; Polyera Corporation; AFOSR [FA9550-08-1-0331]; NSF-MRSEC programme of the Northwestern University Materials Research Science and Engineering Center for characterization facilities [DMR-1121262]; Institute for Sustainability and Energy at Northwestern (ISEN); NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University; SUSTC start-up fund; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; MICINN [CTQ2012-33733]; Junta de Andalucia [PO9-4708]; NSF-IGERT FX This research was supported as part of the ANSER Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences (award no. DE-SC0001059), by Polyera Corporation, and by AFOSR (FA9550-08-1-0331). The authors acknowledge the NSF-MRSEC programme of the Northwestern University Materials Research Science and Engineering Center for characterization facilities (DMR-1121262) and the Institute for Sustainability and Energy at Northwestern (ISEN) for partial funding for equipment. The microscopy work was performed in the EPIC facility of the NUANCE Center at Northwestern University, which is supported by NSF-NSEC, NSF-MRSEC, the Keck Foundation, the State of Illinois and Northwestern University. X. G. acknowledges financial support from an SUSTC start-up fund. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). R.P.O. acknowledges the MICINN of Spain for a Ramon y Cajal research contract. J.T.L.N. acknowledges financial support from the MICINN (project no. CTQ2012-33733) and the Junta de Andalucia (project no. PO9-4708). D. B. T. is funded by the NSF-IGERT Program. NR 50 TC 401 Z9 404 U1 26 U2 313 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD OCT PY 2013 VL 7 IS 10 BP 825 EP 833 DI 10.1038/NPHOTON.2013.207 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA 225ZF UT WOS:000325003100017 ER PT J AU Unal, C Williams, BJ Yacout, A Higdon, DM AF Unal, C. Williams, B. J. Yacout, A. Higdon, D. M. TI Application of advanced validation concepts to oxide fuel performance codes: LIFE-4 fast-reactor and FRAPCON thermal-reactor fuel performance codes SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID CALIBRATION; MODEL AB Evolving nuclear energy programs expect to use enhanced modeling and simulation (M&S) capabilities, using multiscale, multiphysics modeling approaches, to reduce both cost and time from the design through the licensing phases. Interest in the development of the multiscale, multiphysics approach has increased in the last decade because of the need for predictive tools for complex interacting processes as a means of eliminating the limited use of empirically based model development. Complex interacting processes cannot be predicted by analyzing each individual component in isolation. In most cases, the mathematical models of complex processes and their boundary conditions are nonlinear. As a result, the solutions of these mathematical models often require high-performance computing capabilities and resources. The use of multiscale, multiphysics (MS/MP) models in conjunction with high-performance computational software and hardware introduces challenges in validating these predictive tools-traditional methodologies will have to be modified to address these challenges. The advanced MS/MP codes for nuclear fuels and reactors are being developed within the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of the US Department of Energy (DOE) - Nuclear Energy (NE). This paper does not directly address challenges in calibration/validation of MS/MP capabilities because these advanced tools have not yet reached sufficient maturity to support such an investigation. In an earlier paper (Unal et al., 2011), we proposed a methodology that potentially can be used to address these new challenges in the design and licensing of evolving nuclear technology. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept was introduced and is accomplished through data assimilation. Since advanced MS/MP codes have not yet reached the level of maturity required for a comprehensive validation and calibration exercise, we considered two legacy fuel codes and apply parts of our methodology to these codes to demonstrate the benefits of the new calibration capabilities we recently developed as a part of the proposed framework. This effort does not directly support "born-assessed" validation for advanced MS/MP codes, but is useful to gain insight on legacy modeling deficiencies and to guide and develop recommendations on high and low priority directions for development of advanced codes and advanced experiments, so as to maximize the benefits of advanced validation and uncertainty quantification (VU) efforts involving the next generation of MS/MP code capabilities. This paper discusses the application of advanced validation techniques (sensitivity, calibration, and prediction) to nuclear fuel performance codes FRAPCON (Geelhood et al., 2011a,b) and LIFE-4 (Boltax et al., 1990). FRAPCON is used to predict oxide fuel behavior in light water reactors. LIFE-4 was developed in the 1980s to predict oxide fuel behavior in fast reactors. We introduce a sensitivity ranking methodology to narrow down the selected parameters for follow-up sensitivity and calibration analyses. We use screening methods with both codes and discuss the results. The number of selected modeling parameters was 61 for FRAPCON and 69 for LIFE-4. The screening study resulted in only 24 parameters of importance in the FRAPCON application, whereas LIFE-4 analysis reduced the set of important modeling parameters from 69 to 35. Sensitivity screening results, combined with post-calibration sensitivity analysis, results in the following ranking of LIFE-4 models for future improvements: fuel creep, fuel thermal conductivity, fission gas transport/release, crack/boundary, and fuel gap conductivity. More data are needed to validate calibrated parameter distributions for future uncertainty quantification studies with LIFE-4. We apply a collection of different VU methodologies to assess the preliminary performance of an advanced fuel code (see Stull, C.J., Williams, B.J., Unal. C., 2012). We summarize our lessons learned from that study in the discussion section to provide a context for issues often encountered in the application of advanced VU methodologies. (c) 2013 Elsevier B.V. All rights reserved. C1 [Unal, C.; Williams, B. J.; Higdon, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yacout, A.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Unal, C (reprint author), Los Alamos Natl Lab, POB 1663,Mail Stop F606, Los Alamos, NM 87545 USA. EM cu@lanl.gov OI Williams, Brian/0000-0002-3465-4972 FU US Department of Energy, Nuclear Energy Division, Advanced Modeling and Simulation Office (NE-71), Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, Verification, Validation and Uncertainty Quantification (VU) program element FX This work was sponsored by the US Department of Energy, Nuclear Energy Division, Advanced Modeling and Simulation Office (NE-71), Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, Verification, Validation and Uncertainty Quantification (VU) program element. The authors are grateful to Dr. Keith Bradley, NEAMS National Technical Director; Mr. James Peltz, NEAMS Program Manager; Dr. Robert Versluis, NEAMS Program Manager; Mr. Alex Larzelere, Director of the Advanced Modeling and Simulation Office; and Dr. James Stewart, NEAMS VU Technical Lead; for their support. NR 15 TC 2 Z9 2 U1 0 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2013 VL 263 BP 102 EP 128 DI 10.1016/j.nucengdes.2013.02.013 PG 27 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 223XY UT WOS:000324847000012 ER PT J AU Tung, YH Ferng, YM Johnson, RW Chieng, CC AF Tung, Yu-Hsin Ferng, Yuh-Ming Johnson, Richard W. Chieng, Ching-Chang TI Study of natural circulation in a VHTR after a LOFA using different turbulence models SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID HIGH-TEMPERATURE REACTOR; HEAT-TRANSFER; CONVECTION; FLOW; LAYER AB Natural convection currents in the core are anticipated in the event of the failure of the gas circulator in a prismatic gas-cooled very high temperature reactor (VHTR). The paths that the helium coolant takes in forming natural circulation loops and the effective heat transport are of interest. The heated flow in the reactor core is turbulent during normal operating conditions and at the beginning of the LOFA with forced convection, but the flow may significantly be slowed down after the event and laminarized with mixed convection. In the present study, the potential occurrence and effective heat transport of natural circulation are demonstrated using computational fluid dynamic (CFD) calculations with different turbulence models as well as laminar flow. Validations and recommendation on turbulence model selection are conducted. The study concludes that large loop natural convection is formed due to the enhanced turbulence levels by the buoyancy effect and the turbulent regime near the interface of upper plenum and flow channels increases the flow resistance for channel flows entering upper plenum and thus less heat can be removed from the core than the prediction by laminar flow assumption. (c) 2013 Elsevier B.V. All rights reserved. C1 [Tung, Yu-Hsin; Ferng, Yuh-Ming] Natl Tsing Hua Univ, Inst Nucl Engn & Sci, Hsinchu, Taiwan. [Ferng, Yuh-Ming; Chieng, Ching-Chang] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu, Taiwan. [Johnson, Richard W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Chieng, Ching-Chang] City Univ Hong Kong, Dept Mech & Biomed Engn, Kowloon, Hong Kong, Peoples R China. RP Chieng, CC (reprint author), Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu, Taiwan. EM cchieng@ess.nthu.edu.tw FU National Science Council, Taiwan [NSC 100-2623-E-007-003-NU] FX The authors thank the National Center for High-Performance Computing, Taiwan for computing resources and the National Science Council, Taiwan for financial support under Grant NSC 100-2623-E-007-003-NU. NR 25 TC 4 Z9 4 U1 1 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2013 VL 263 BP 206 EP 217 DI 10.1016/j.nucengdes.2013.04.009 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 223XY UT WOS:000324847000021 ER PT J AU Wang, D Mahaffy, JH Staudenmeier, J Thurston, CG AF Wang, Dean Mahaffy, John H. Staudenmeier, Joseph Thurston, Carl G. TI Implementation and assessment of high-resolution numerical methods in TRACE SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID CONSERVATIVE DIFFERENCE SCHEME; FLOW; LAWS AB The 1st-order upwind differencing numerical scheme is widely employed to discretize the convective terms of the two-phase flow transport equations in reactor systems analysis codes such as TRACE and RELAP. While very robust and efficient, 1st-order upwinding leads to excessive numerical diffusion. Standard 2nd-order numerical methods (e.g., Lax-Wendroff and Beam-Warming) can effectively reduce numerical diffusion but often produce spurious oscillations for steep gradients. To overcome the difficulties with the standard higher-order schemes, high-resolution schemes such as nonlinear flux limiters have been developed and successfully applied in numerical simulation of fluid-flow problems in recent years. The present work contains a detailed study on the implementation and assessment of six nonlinear flux limiters in TRACE. These flux limiters selected are MUSCL, Van Leer (VL), OSPRE, Van Albada (VA), ENO, and Van Albada 2 (VA2). The assessment is focused on numerical stability, convergence, and accuracy of the flux limiters and their applicability for boiling water reactor (BWR) stability analysis. It is found that VA and MUSCL work best among of the six flux limiters. Both of them not only have better numerical accuracy than the 1st-order upwind scheme but also preserve great robustness and efficiency. (c) 2013 Elsevier B.V. All rights reserved. C1 [Wang, Dean] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Mahaffy, John H.; Staudenmeier, Joseph; Thurston, Carl G.] US Nucl Regulatory Commiss, Washington, DC 20555 USA. RP Wang, D (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley RD 6167, Oak Ridge, TN 37831 USA. EM wangda@ornl.gov FU United States Nuclear Regulatory Commission, Office of Nuclear Regulatory Research; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the United States Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. This manuscript has been authored by UT-Battelle LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 21 TC 3 Z9 4 U1 1 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2013 VL 263 BP 327 EP 341 DI 10.1016/j.nucengdes.2013.05.015 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 223XY UT WOS:000324847000031 ER PT J AU Rostamian, M Johnson, G Hiruta, M Potirniche, GP Ougouag, AM Cogliati, JJ Tokuhiro, A AF Rostamian, Maziar Johnson, Gannon Hiruta, Mie Potirniche, Gabriel P. Ougouag, Abderrafi M. Cogliati, Joshua J. Tokuhiro, Akira TI Computational and experimental prediction of dust production in pebble bed reactors-Part I SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB This paper describes the computational modeling and simulation, and experimental testing of graphite moderators in frictional contacts as anticipated in a pebble bed reactor. The potential of carbonaceous particulate generation due to frictional contact at the surface of pebbles and the ensuing entrainment and transport into the gas coolant are safety concerns at elevated temperatures under accident scenarios such as air ingress in the high temperature gas-cooled reactor. The safety concerns are due to the documented ability of carbonaceous particulates to adsorb fission products and transport them in the primary circuit of the pebble bed reactor, thus potentially giving rise to a relevant source term under accident scenarios. Here, a finite element approach is implemented to develop a nonlinear wear model in air environment. In this model, material wear coefficient is related to the changes in asperity height during wear. The present work reports a comparison between the finite element simulations and the experimental results obtained using a custom-designed tribometer. The experimental and computational results are used to estimate the quantity of nuclear grade graphite dust produced from a typical anticipated configuration. In Part II, results from a helium environment at higher temperatures and pressures are experimentally studied. (c) 2013 Elsevier B.V. All rights reserved. C1 [Rostamian, Maziar; Johnson, Gannon; Hiruta, Mie; Potirniche, Gabriel P.; Tokuhiro, Akira] Univ Idaho, Dept Mech Engn, Idaho Falls, ID 83401 USA. [Ougouag, Abderrafi M.; Cogliati, Joshua J.] Idaho Natl Lab, Idaho Falls, ID 83401 USA. RP Rostamian, M (reprint author), Univ Idaho, Dept Mech Engn, 1776 Sci Ctr Dr, Idaho Falls, ID 83401 USA. EM mrostamian@asme.org OI Ougouag, Abderrafi/0000-0003-4436-380X FU DOE [NEUP09-151] FX We express our gratitude to DOE, under NEUP09-151, "The Experimental Study and Computational Simulations of Key Pebble Bed Thermomechanics Issues for Design and Safety" for providing financial support for this study. NR 21 TC 6 Z9 7 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2013 VL 263 BP 500 EP 508 DI 10.1016/j.nucengdes.2013.04.019 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 223XY UT WOS:000324847000046 ER PT J AU Hiruta, M Johnson, G Rostamian, M Potirniche, GP Ougouag, AM Bertino, M Franzel, L Tokuhiro, A AF Hiruta, Mie Johnson, Gannon Rostamian, Maziar Potirniche, Gabriel P. Ougouag, Abderrafi M. Bertino, Massimo Franzel, Louis Tokuhiro, Akira TI Computational and experimental prediction of dust production in pebble bed reactors, Part II SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID GRAPHITE; FRICTION; WEAR AB This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite-graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor. (c) 2013 Elsevier B.V. All rights reserved. C1 [Hiruta, Mie; Johnson, Gannon; Rostamian, Maziar; Potirniche, Gabriel P.; Tokuhiro, Akira] Univ Idaho, Dept Mech Engn, Idaho Falls, ID 83401 USA. [Ougouag, Abderrafi M.] Idaho Natl Lab, Idaho Falls, ID 83401 USA. [Bertino, Massimo; Franzel, Louis] Virginia Commonwealth Univ, Dept Phys, Richmond, VA 23284 USA. RP Rostamian, M (reprint author), Univ Idaho, Dept Mech Engn, 1776 Sci Ctr Dr, Idaho Falls, ID 83401 USA. EM mrostamian@asme.org OI Ougouag, Abderrafi/0000-0003-4436-380X FU DOE [NEUP09-151] FX We express our gratitude to DOE, under NEUP09-151, "The Experimental Study and Computational Simulations of Key Pebble Bed Thermomechanics Issues for Design and Safety" for providing financial support for this study. NR 23 TC 6 Z9 7 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2013 VL 263 BP 509 EP 514 DI 10.1016/j.nucengdes.2013.04.032 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 223XY UT WOS:000324847000047 ER PT J AU Kim, SW Hooker, JM Otto, N Win, K Muench, L Shea, C Carter, P King, P Reid, AE Volkow, ND Fowler, JS AF Kim, Sung Won Hooker, Jacob M. Otto, Nicola Win, Khaing Muench, Lisa Shea, Colleen Carter, Pauline King, Payton Reid, Alicia E. Volkow, Nora D. Fowler, Joanna S. TI Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article DE C-11]valproic acid; [C-11]butyric acid; [C-11]4-phenylbutyric acid; Pharmacokinetics; Positron emission tomography; Histone deacetylase (HDAC) ID HISTONE DEACETYLASE INHIBITORS; INCREASED FETAL-HEMOGLOBIN; BETA-GLOBIN DISORDERS; DISEASE MOUSE MODEL; SODIUM-BUTYRATE; ULCERATIVE-COLITIS; COLONIC-MUCOSA; IN-VIVO; PHENYLBUTYRATE; MEMORY AB The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profiles. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in six female baboons over 90 min. The carbon-11 labeled carboxylic acids were prepared by using (CO2)-C-11 and the appropriate Grignard reagents. [C-11]BA was metabolized rapidly (only 20% of the total carbon-11 in plasma was parent compound at 5 min post injection) whereas for VPA and PBA 98% and 85% of the radioactivity were the unmetabolized compound at 30 min after their administration respectively. The brain uptake of all three carboxylic acids was very low (<0.006%ID/cc, BA > VPA > PBA), which is consistent with the need for very high doses for therapeutic efficacy. Most of the radioactivity was excreted through the kidneys and accumulated in the bladder. However, the organ biodistribution between the drugs differed. [C-11]BA showed relatively high uptake in spleen and pancreas whereas [C-11]PBA showed high uptake in liver and heart. Notably, [C-11]VPA showed exceptionally high heart uptake possibly due to its involvement in lipid metabolism. The unique biodistribution of each of these drugs may be of releVance in understanding their therapeutic and side effect profile including their teratogenic effects. Published by Elsevier Inc. C1 [Kim, Sung Won; Muench, Lisa; Volkow, Nora D.] NIAAA, Lab Neuroimaging, Upton, NY 11973 USA. [Hooker, Jacob M.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Div Nucl Med & Mol Imaging, Boston, MA USA. [Otto, Nicola] Johannes Gutenberg Univ Mainz, Inst Organ Chem, D-55122 Mainz, Germany. [Win, Khaing] St Josephs Coll, Dept Biol & Chem, Brooklyn, NY USA. [Shea, Colleen; Carter, Pauline; King, Payton; Fowler, Joanna S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Reid, Alicia E.] CUNY Medgar Evers Coll, Brooklyn, NY 11225 USA. [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD USA. RP Kim, SW (reprint author), NIAAA, Lab Neuroimaging, Upton, NY 11973 USA. EM sunny.kim@nih.gov; hooker@nmr.mgh.harvard.edu OI Hooker, Jacob/0000-0002-9394-7708 FU U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-98CH10886]; NIH Intramural Program of the National Institute on Alcohol Abuse and Alcoholism; BNL Science Undergraduate Laboratory Internship Program; Deutscher Akademischer Austauschdienst (DAAD), Bonn, Germany; [1R01DA030321] FX This work was performed at Brookhaven National Laboratory (BNL) with infrastructure support from the U.S. Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-98CH10886. The NIH Intramural Program of the National Institute on Alcohol Abuse and Alcoholism (SWK, LM, NDV) and grant 1R01DA030321 (JMH, SWK) provided research support. Additional support was provided by the BNL Science Undergraduate Laboratory Internship Program (KW) and the Deutscher Akademischer Austauschdienst (DAAD), Bonn, Germany (NO). We thank Michael Schueller for cyclotron operations and Donald Warner for PET operations. NR 48 TC 12 Z9 12 U1 5 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD OCT PY 2013 VL 40 IS 7 BP 912 EP 918 DI 10.1016/j.nucmedbio.2013.06.007 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 221JW UT WOS:000324656100008 PM 23906667 ER PT J AU Bernhard, A Milovanovic, P Zimmermann, EA Hahn, M Djonic, D Krause, M Breer, S Puschel, K Djuric, M Amling, M Busse, B AF Bernhard, A. Milovanovic, P. Zimmermann, E. A. Hahn, M. Djonic, D. Krause, M. Breer, S. Pueschel, K. Djuric, M. Amling, M. Busse, B. TI Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women SO OSTEOPOROSIS INTERNATIONAL LA English DT Article DE Cortical bone; Femur; Individual osteon's stability; Osteocyte lacunae; Osteonal morphometry ID OSTEOCYTE LACUNAR DENSITY; POSTMENOPAUSAL WOMEN; FEMORAL-NECK; ZOLEDRONIC ACID; HIP FRACTURE; MECHANICAL-PROPERTIES; ORAL ALENDRONATE; STRUCTURAL BASIS; AGE; STRENGTH AB We analyzed morphological characteristics of osteons along with the geometrical indices of individual osteonal mechanical stability in young, healthy aged, untreated osteoporotic, and bisphosphonate-treated osteoporotic women. Our study revealed significant intergroup differences in osteonal morphology and osteocyte lacunae indicating different remodeling patterns with implications for fracture susceptibility. Introduction Bone remodeling is the key process in bone structural reorganization, and its alterations lead to changes in bone mechanical strength. Since osteons reflect different bone remodeling patterns, we hypothesize that the femoral cortices of females under miscellaneous age, disease and treatment conditions will display distinct osteonal morphology and osteocyte lacunar numbers along with different mechanical properties. Methods The specimens used in this study were collected at autopsy from 35 female donors (young group, n=6, age 32 +/- 8 years; aged group, n=10, age 79 +/- 9 years; osteoporosis group, n=10, age 81 +/- 9 years; and bisphosphonate group, n=9, age 81 +/- 7 years). Von Kossa-modified stained femoral proximal diaphyseal sections were evaluated for osteonal morphometric parameters and osteocyte lacunar data. Geometrical indices of osteonal cross-sections were calculated to assess the mechanical stability of individual osteons, in terms of their resistance to compression, bending, and buckling. Results The morphological assessment of osteons and quantification of their osteocyte lacunae revealed significant differences between the young, aged, osteoporosis and bisphosphonate-treated groups. Calculated osteonal geometric indices provided estimates of the individual osteons' resistance to compression, bending and buckling based on their size. In particular, the osteons in the bisphosphonate-treated group presented improved osteonal geometry along with increased numbers of osteocyte lacunae that had been formerly impaired due to aging and osteoporosis. Conclusions The data derived from osteons (as the basic structural units of the cortical bone) in different skeletal conditions can be employed to highlight structural factors contributing to the fracture susceptibility of various groups of individuals. C1 [Bernhard, A.; Milovanovic, P.; Zimmermann, E. A.; Hahn, M.; Krause, M.; Breer, S.; Amling, M.; Busse, B.] Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, D-22529 Hamburg, Germany. [Milovanovic, P.; Djonic, D.; Djuric, M.] Univ Belgrade, Sch Med, Inst Anat, Lab Anthropol, Belgrade 11000, Serbia. [Zimmermann, E. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Pueschel, K.] Univ Med Ctr Hamburg Eppendorf, Dept Forens Med, D-20246 Hamburg, Germany. RP Busse, B (reprint author), Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, Lottestr 59, D-22529 Hamburg, Germany. EM b.busse@uke.uni-hamburg.de RI Zimmermann, Elizabeth/A-4010-2015; Busse, Bjorn/O-8462-2016 OI Busse, Bjorn/0000-0002-3099-8073 FU South-Eastern-European-Cooperation; University Medical Center HamburgEppendorf; Federal Ministry of Education and Research (BMBF) FX Dr. Petar Milovanovic is a fellow of the DAAD (Deutscher Akademischer Austauschdienst-German Academic Exchange Service; A/11/83161) and Serbian Ministry of Science (III45005). Dr. Bjorn Busse is a fellow of the DFG-Emmy Noether program (Deutsche Forschungsgemeinschaft-German Research Foundation; BU 2562/2-1). This study was supported by grants from the South-Eastern-European-Cooperation, University Medical Center HamburgEppendorf and from the Federal Ministry of Education and Research (BMBF) through the consortium "BioAssett" and "Osteopath." NR 60 TC 18 Z9 18 U1 0 U2 16 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0937-941X J9 OSTEOPOROSIS INT JI Osteoporosis Int. PD OCT PY 2013 VL 24 IS 10 BP 2671 EP 2680 DI 10.1007/s00198-013-2374-x PG 10 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 219UN UT WOS:000324536200014 PM 23632826 ER PT J AU Chevalier, S Pint, B Monceau, D AF Chevalier, Sebastien Pint, Bruce Monceau, Daniel TI High Temperature Corrosion and Protection of Ceramics, Composites and Silicides SO OXIDATION OF METALS LA English DT Editorial Material C1 [Chevalier, Sebastien] Univ Bourgogne, ICB Lab CNRS, F-21078 Dijon, France. [Pint, Bruce] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Monceau, Daniel] CIRIMAT, INP Toulouse CNRS, F-31030 Toulouse, France. RP Chevalier, S (reprint author), Univ Bourgogne, ICB Lab CNRS, 9 Ave Savary, F-21078 Dijon, France. EM Sebastien.Chevalier@u-bourgogne.fr; pintba@ornl.gov; daniel.monceau@ensiacet.fr RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 0 TC 0 Z9 0 U1 0 U2 6 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD OCT PY 2013 VL 80 IS 3-4 SI SI BP 205 EP 205 DI 10.1007/s11085-013-9443-6 PG 1 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 220MF UT WOS:000324587700001 ER PT J AU Haynes, JA Armstrong, BL Kumar, D Dryepondt, S Zhang, Y AF Haynes, J. A. Armstrong, B. L. Kumar, D. Dryepondt, S. Zhang, Y. TI Oxidation of Slurry Aluminide Coatings on Cast Stainless Steel Alloy CF8C-Plus at 800 A degrees C in Water Vapor SO OXIDATION OF METALS LA English DT Article DE Stainless steel; Aluminide; Slurry coating; Water vapor; Oxidation ID STEAM-TURBINE COMPONENTS; DEGRADATION; BEHAVIOR; DIFFUSION AB A new, cast austenitic stainless steel, CF8C-Plus (CF8C-P), has been developed for a wide range of high temperature applications, including diesel exhaust components, turbine casings and turbocharger housings. CF8C-P offers significant improvements in creep rupture life and creep rupture strength over standard CF8C steel. However, at higher temperatures and in aggressive environments such as those containing significant water vapor, an oxidation-resistant protective coating will be necessary to extend service life. The oxidation behavior of alloys CF8C and CF8C-P with various aluminide coatings were compared at 800 A degrees C in air plus 10 vol% water vapor. Due to their affordability, slurry aluminides were the primary coating system of interest, although chemical vapor deposition and pack cementation coatings were also compared. Additionally, a preliminary study of the low-cycle fatigue (LCF) behavior of aluminized CF8C-P was conducted at 800 A degrees C. Each type of coating provided substantial improvements in oxidation behavior, with simple slurry aluminides exhibiting very good oxidation resistance after 3,000 h testing in water vapor. Preliminary LCF results indicated that thicker aluminide coatings degraded high temperature fatigue properties of CF8C-P, whereas thinner coatings did not. Results suggest that appropriately designed slurry aluminide coatings are a viable option for economical, long-term oxidation protection of austenitic stainless steels in water vapor. C1 [Haynes, J. A.; Armstrong, B. L.; Kumar, D.; Dryepondt, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zhang, Y.] Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. RP Haynes, JA (reprint author), Oak Ridge Natl Lab, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM haynesa@ornl.gov; YZhang@tntech.edu RI Armstrong, Beth/E-6752-2017 OI Armstrong, Beth/0000-0001-7149-3576 FU U.S. Department of Energy; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technology Program FX The authors would like to thank L. Walker, J. Henry, K. Cooley, and M. Howell for their role in the experimental work. S. Pawel provided helpful comments on the manuscript. This work reported in this manuscript has been performed by UT-Battelle, LLC, under contract with the U.S. Department of Energy. The research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technology Program. NR 24 TC 4 Z9 4 U1 0 U2 25 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD OCT PY 2013 VL 80 IS 3-4 SI SI BP 363 EP 387 DI 10.1007/s11085-013-9378-y PG 25 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 220MF UT WOS:000324587700014 ER PT J AU Krusin-Elbaum, L Shibauchi, T Kasahara, Y Okazaki, R Matsuda, Y McDonald, RD Mielke, CH Hasegawa, M AF Krusin-Elbaum, L. Shibauchi, T. Kasahara, Y. Okazaki, R. Matsuda, Y. McDonald, R. D. Mielke, C. H. Hasegawa, M. TI Quantum-limit linkage of 'strange' and conventional metal states of high-T-c superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Quantum phase transitions; Strong electron correlations; Superconductivity ID HIGH-TEMPERATURE SUPERCONDUCTORS; PSEUDOGAP AB The key to the nature of superconducting pairing in high-T-c cuprates lies in understanding the transition to a conventional behavior when they are heavily doped. By using high magnetic fields, we show that the pseudogapped Tl2Ba2CuO6+x becomes a conventional metal at heavy doping in a quantum phase transition, where the pseudogap boundary develops a thermodynamic divergence corresponding to a zero entropy jump. The critical doping point downshifts with magnetic field in unison with the suppression of T-c. This implies that quantum critical fluctuations and magnetic degrees that destabilize the pseudogap are linked to the superconductivity with high T-c. (C) 2013 Elsevier B.V. All rights reserved. C1 [Krusin-Elbaum, L.] CUNY City Coll, Dept Phys, New York, NY 10031 USA. [Shibauchi, T.; Kasahara, Y.; Okazaki, R.; Matsuda, Y.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Kasahara, Y.] Univ Tokyo, Quantum Phase Elect Ctr, Tokyo 1138656, Japan. [McDonald, R. D.; Mielke, C. H.] Los Alamos Natl Lab, NHMFL, Los Alamos, NM 87545 USA. [Hasegawa, M.] Nagoya Univ, Dept Mat Sci & Engn, Chikusa Ku, Nagoya, Aichi 4648603, Japan. RP Krusin-Elbaum, L (reprint author), CUNY City Coll, Dept Phys, New York, NY 10031 USA. EM krusin@sci.ccny.cuny.edu RI Kasahara, Yuichi/N-8436-2013; Shibauchi, Takasada/B-9349-2008; Mielke, Charles/S-6827-2016; OI Shibauchi, Takasada/0000-0001-5831-4924; Mielke, Charles/0000-0002-2096-5411; Mcdonald, Ross/0000-0002-5819-4739 FU NSF through NHMFL [AL99424-A009]; MEXT, Japan; NSF [DMR-9527035] FX This work was supported in part by NSF through NHMFL by Contract No. AL99424-A009, and in part by Grants-in-Aid for Scientific Research of MEXT, Japan. Measurements were performed at NHMFL, which is supported by the NSF Cooperative Agreement No. DMR-9527035. NR 9 TC 0 Z9 0 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD OCT PY 2013 VL 493 BP 15 EP 17 DI 10.1016/j.physc.2013.03.009 PG 3 WC Physics, Applied SC Physics GA 215ZL UT WOS:000324250000005 ER PT J AU Kim, MH Tanaka, T Ellis, CT Mukherjee, A Acbas, G Ohkubo, I Christen, H Mandrus, D Kontani, H Cerne, J AF Kim, M. -H. Tanaka, T. Ellis, C. T. Mukherjee, A. Acbas, G. Ohkubo, I. Christen, H. Mandrus, D. Kontani, H. Cerne, J. TI Infrared anomalous Hall effect in CaxSr1-xRuO3 films SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILMS; SIDE-JUMP; ANGLE; SUPERCONDUCTORS; FERROMAGNETICS; SRRUO3; TC AB The midinfrared anomalous Hall effect (AHE) can provide critical new information for resolving the controversial origins of the dc AHE in CaxSr1-xRuO3. The complex Faraday and Kerr angles, as well as the complex Hall conductivity sigma(xy), are measured in CaxSr1-xRuO3 films as a function of mid-and near-infrared energy E from 0.1 eV to 1.4 eV, magnetic field H, temperature T, and Ca concentration x. For the ferromagnetic state from x = 0 to 0.4, the (d(xz), d(yz))-orbital tight-binding model is employed to investigate the quasiparticle role in the low energy response of the AHE sigma(xy)(E) since the Berry curvature term becomes weak at low energies. The infrared Hall sign reversals with T are observed only at x = 0 and 0.13, which is narrower than the Ca concentration range in which the dc Hall sign reversal appears. The similarity of the infrared Hall angles between paramagnetic and ferromagnetic CaxSr1-xRuO3 compounds demonstrates the symmetric nature of the Hall response around the quantum phase transition at x = 0.7. C1 [Kim, M. -H.; Ellis, C. T.; Mukherjee, A.; Acbas, G.; Cerne, J.] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Kim, M. -H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Tanaka, T.; Kontani, H.] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. [Ohkubo, I.] Univ Tokyo, Dept Appl Chem, Tokyo, Japan. [Christen, H.; Mandrus, D.] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Kim, MH (reprint author), SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. RI Mandrus, David/H-3090-2014; Christen, Hans/H-6551-2013; OHKUBO, Isao/B-9553-2013 OI Christen, Hans/0000-0001-8187-7469; OHKUBO, Isao/0000-0002-4187-0112 FU Research Corporation for Science Advancement Cottrell Scholar Grant; National Science Foundation (NSF) [NSF-CAREER-DMR0449899, NSF-DMR1006078] FX The authors thank H. D. Drew for helpful discussions. We also wish to thank P. Khalifah for providing us the dc data and Z. Fang for the calculation data of Berry phase contribution. This work was supported by the Research Corporation for Science Advancement Cottrell Scholar Grant, the National Science Foundation (NSF) NSF-CAREER-DMR0449899, and NSF-DMR1006078. NR 30 TC 2 Z9 2 U1 1 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 1 PY 2013 VL 88 IS 15 AR 155101 DI 10.1103/PhysRevB.88.155101 PG 7 WC Physics, Condensed Matter SC Physics GA 228JQ UT WOS:000325182500001 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MA Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amoroso, S Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Artamonov, A Artoni, G Arutinov, D Asai, S Asbah, N Ask, S Asman, B Asquith, L Assamagan, K Astalos, R Astbury, A Atkinson, M Auerbach, B Auge, E Augsten, K Aurousseau, M Avolio, G Axen, D Azuelos, G Azuma, Y Baak, MA Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Sawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Bernlochner, FU Berry, T Bertella, C Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Bittner, B Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blocki, J Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bornben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brost, E Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Buescher, V Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalhol, J Casadei, D Casado, MP Cascella, M Caso, C Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Chow, BKB Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coelli, S Coffey, L Cogan, JG Coggeshall, J Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Courneyea, L Cowan, G Cox, BE Cranmer, K Crepe-Renaudin, S Crescioli, F Cristinziani, M Crosetti, G Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Curtis, CJ Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallaire, F Dallapiccola, C Dam, M Damiani, DS Daniells, AC Danielsson, HO Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Davey, W Davidek, T Davidson, N Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Dohmae, T Doi, Y Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duflot, L Dufour, MA Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Dwuznik, M Ebke, J Eckweiler, S Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Engelmann, R Engl, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facini, G Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, MJ Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gandrajula, RP Gao, YS Gaponenko, A Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gillman, AR Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giuliani, C Giunta, M Gjelsten, BK Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glazov, A Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gunther, J Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Haefner, P Hajduk, Z Hakobyan, H Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hard, AS Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Hernandez, CM Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmgren, SO Holzbauer, JL Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hu, X Hubacek, Z Hubaut, F Huegging, R Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huelsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jeng, GY Jen-La Plante, I Jennens, D Jenni, P Jentzsch, J Jeske, C Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ P, MJ Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Keller, JS Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koenig, S Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretzschmar, J Kreutzfeldt, K Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Krueger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MK Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Lukas, W Luminari, L Lund, E Lundberg, J Lundberg, O Lund-Jensen, B Lundquist, J Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madar, R Madaras, RJ Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marques, CN Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Mengarelli, A Menke, S Meoni, E Mercurio, KM Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Herrera, CM Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, N Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Nguyen, DH Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nozaki, M Nozka, L Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccioini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quilty, D Raas, M Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Range-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Ritsch, E Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, JJ Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarrazin, B Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaelicke, A Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, A South, D Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, R Staszewski, R Staude, A Stavina, P Steele, G Steinbach, R Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stonjek, S Stradling, AR Straessner, A Strandberg, JJ Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, R Styles, NA Su, D Subramania, H Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Tuna, AN Turala, M Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Vacavant, L Vacek, V Vachon, B Vahsen, S Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vitells, O Viti, M Vivarelli, I Vague, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, W Wagner, P Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whitehead, SR Whiteson, D Whittington, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Williams, S Willis, W Willocq, S Wilson, JA Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, D Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zibell, A Zieminska, D Zimin, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. A. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Alvarez Gonzalez, B. Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Ammosov, V. V. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asbah, N. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Astbury, A. Atkinson, M. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Barreiro Guimaraes da Costa, J. Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Sawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez Garcia, J. A. Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Bernlochner, F. U. Berry, T. Bertella, C. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Bittner, B. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bornben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brost, E. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Cao, T. Capeans Garrido, M. D. M. Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalhol, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Charlton, D. G. Chavda, V. Chavez Barajas, C. A. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Chow, B. K. B. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coelli, S. Coffey, L. Cogan, J. G. Coggeshall, J. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Courneyea, L. Cowan, G. Cox, B. E. Cranmer, K. Crepe-Renaudin, S. Crescioli, F. Cristinziani, M. Crosetti, G. Cuciuc, C. -M. Cuenca Almenar, C. Cuhadar Donszelmann, T. Cummings, J. Curatolo, M. Curtis, C. J. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallaire, F. Dallapiccola, C. Dam, M. Damiani, D. S. Daniells, A. C. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Dohmae, T. Doi, Y. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Dufour, M-A. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Dwuznik, M. Ebke, J. Eckweiler, S. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Engelmann, R. Engl, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facini, G. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, M. J. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Flores Castillo, L. R. Florez Bustos, A. C. Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Fullana Torregrosa, E. Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gandrajula, R. P. Gao, Y. S. Gaponenko, A. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gillman, A. R. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giuliani, C. Giunta, M. Gjelsten, B. K. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Gomez Fajardo, L. S. Goncalo, R. Goncalves Pinto Firmino Da Costa, J. Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gunther, J. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Haefner, P. Hajduk, Z. Hakobyan, H. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hard, A. S. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmgren, S. O. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S-C Hu, D. Hu, X. Hubacek, Z. Hubaut, F. Huegging, R. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jeng, G-Y Jen-La Plante, I. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. P, M. Jorge Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Keller, J. S. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Kluge, E-E Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koenig, S. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Koeneke, K. Koenig, A. C. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretzschmar, J. Kreutzfeldt, K. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. K. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Lukas, W. Luminari, L. Lund, E. Lundberg, J. Lundberg, O. Lund-Jensen, B. Lundquist, J. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madar, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marques, C. N. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Maettig, P. Maettig, S. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P Meyer, J. Meyer, J. Michal, S. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Moeller, V. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moeser, N. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Nguyen, D. H. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nozaki, M. Nozka, L. Nuncio-Quiroz, A-E Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Cavalcanti, T. Perez Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccioini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pizio, C. Pleier, M-A Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quilty, D. Raas, M. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Range-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Ritsch, E. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Saddique, A. Sadeh, I. Sadrozinski, H. F-W Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. J. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarrazin, B. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultz-Coulon, H-C Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. South, D. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, R. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, R. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stonjek, S. Stradling, A. R. Straessner, A. Strandberg, J. J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, R. Styles, N. A. Su, D. Subramania, Hs Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J-W Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Tuna, A. N. Turala, M. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Berg, R. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vague, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, W. Wagner, P. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Williams, S. Willis, W. Willocq, S. Wilson, J. A. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the high-mass Drell-Yan differential cross-section in pp collisions at root s=7 TeV with the ATLAS detector SO PHYSICS LETTERS B LA English DT Article ID PARTON DISTRIBUTIONS; LHC AB This Letter reports a measurement of the high-mass Drell-Yan differential cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. Based on an integrated luminosity of 4.9 fb(-1), the differential cross-section in the Z/gamma* -> e(+)e(-) channel is measured with the ATLAS detector as a function of the invariant mass, m(ee), in the range 116 < m(ee) < 1500 GeV, for a fiducial region in which both the electron and the positron have transverse momentum p(T) > 25 GeV and pseudorapidity vertical bar n vertical bar < 2.5. A comparison is made to various event generators and to the predictions of perturbative QCD calculations at next-to-next-to-leading order. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, Hs; Vague, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Pacheco Pages, A.; Padilla Aranda, C.; Bueso, X. Portell; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Pacheco Pages, A.; Padilla Aranda, C.; Bueso, X. Portell; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Pacheco Pages, A.; Padilla Aranda, C.; Bueso, X. Portell; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] ICREA, Barcelona, Spain. [Krstic, J.; Popovic, D. S.; Sijacki, Dj; Simic, Lj] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Cervelli, A.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Cervelli, A.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Mclaughlan, T.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Grafstrom, P.; Jha, M. K.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccioini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Mengarelli, A.; Monzani, S.; Piccioini, M.; Romano, M.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, R.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A-E; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Therhaag, J.; Tsung, J-W; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.; Zambito, S.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, BR-21945 Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joal del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M-A; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Andari, N.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Campana, S.; Capeans Garrido, M. D. M.; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Chavez Barajas, C. A.; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Facini, G.; Farthouat, P.; Fassnacht, P.; Franchino, S.; Francis, D.; Franz, S.; Froidevaux, D.; Gabaldon, C.; Garonne, V.; Gianotti, F.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Koeneke, K.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mapelli, L.; Martin, B.; Messina, A.; Meyer, J.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cottin, G.; Diaz, M. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, B.; Li, S.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Xu, C.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Dodd, J.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Loevschall-Jensen, A. E.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Namasivayam, H.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Friedrich, C.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Goncalves Pinto Firmino Da Costa, J.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, R.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Friedrich, C.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Goncalves Pinto Firmino Da Costa, J.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, R.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Reisinger, I.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Grohs, J. P.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Seifert, F.; Steinbach, R.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Finelli, K. D.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Liu, M.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Walls, F. M. Garay; Harrington, R. D.; Korn, A.; Martin, V. J.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Amoroso, S.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Hartert, J.; Herten, G.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Madar, R.; Mahboubi, K.; Mohr, W.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Bucci, F.; Toro, R. Camacho; Clark, A.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Guescini, F.; Iacobucci, G.; La Rosa, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Peters, R. F. Y.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Barreiro Guimaraes da Costa, J.; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Henke, M.; Hofmann, J. I.; Khomich, A.; Kluge, E-E; Laier, H.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H-C; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Halladjian, G.; Limper, M.; Mallik, U.; Mandrysch, R.; Morange, N.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kazarinov, M. Y.; Kharchenko, D.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Natl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Gibson, S. M.; Goncalo, R.; Hayden, D.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Nash, M.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.; Sircar, A.; Subramaniam, R.; Tamsett, M. C.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bornben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Range-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bornben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Range-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bornben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Range-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.; Wielers, M.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Goeringer, C.; Handel, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Neusiedl, A.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Howarth, J.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Robinson, J. E. M.; Tomlinson, L.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dufour, M-A.; Klemetti, M.; Mantifel, R.; Robertson, S. H.; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Qian, J.; Scheirich, D.; Searcy, J.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Alvarez Gonzalez, B.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Coelli, S.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Asbah, N.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Dallaire, F.; Davies, M.; Gauthier, L.; Giunta, M.; Leroy, C.; Martin, J. P.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; Dao, V.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koetsveld, F.; Koenig, A. C.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. S.; Bogdanchikov, A.; Kazanin, V. F.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Auge, E.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Auge, E.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J. S.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Colombo, T.; Conta, C.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Degenhardt, J.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Marshall, Z.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Giannetti, P.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Giannetti, P.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Carvalhol, J.; Castro, N. F.; Conde Muino, P.; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; P, M. Jorge; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Marques, C. N.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Fullana Torregrosa, E.; Kodys, P.; Leitner, R.; Novakova, J.; Pleskot, V.; Rybar, M.; Spousta, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Res Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P; Mijovic, L.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S-C; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Cuhadar Donszelmann, T.; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Sawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, T. M.; Carrillo-Montoya, G. D.; Leney, K. J. C.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Petridis, A.; Plucinski, P.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Petridis, A.; Plucinski, P.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J. J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G-Y; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, L.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Di Mattia, A.; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Cheung, S. L.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Polifka, R.; Rosenbaum, G. A.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Losty, M. J.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Benitez Garcia, J. A.; Florez Bustos, A. C.; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J. J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J. J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J. J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J. J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J. J.; Sanchez Martinez, V.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jeske, C.; Jones, G.; Martin, T. A.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Flores Castillo, L. R.; Gutzwiller, O.; Hard, A. S.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ma, L. L.; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fischer, J.; Fleischmann, S.; Flick, T.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Sturm, R.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cuenca Almenar, C.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Ctr Calcul, IN2P3, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Aguilar-Saavedra, J. A.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Gomes, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Apolle, R.; Davies, E.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Sawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalhol, J.; Fiolhais, M. C. N.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Wemans, A. Do Valle] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Ge, P.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Gkialas, I.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. Manhattan Coll, New York, NY USA. Aix Marseille Univ, CPPM, Marseille, France. CNRS, IN2P3, Marseille, France. [Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. Univ Paris Diderot, Paris, France. CNRS, IN2P3, Paris, France. Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Xu, C.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. Univ Geneva, Sect Phys, Geneva, Switzerland. Univ Minho, Dept Fis, Braga, Portugal. Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. DESY, Hamburg, Germany. DESY, Zeuthen, Germany. Int Sch Adv Studies SISSA, Trieste, Italy. Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. Columbia Univ, Nevis Lab, Irvington, NY USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Univ Oxford, Dept Phys, Oxford, England. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Wolters, Helmut/M-4154-2013; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; Ferrando, James/A-9192-2012; Boyko, Igor/J-3659-2013; Brooks, William/C-8636-2013; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Moraes, Arthur/F-6478-2010; Doyle, Anthony/C-5889-2009; Gabrielli, Alessandro/H-4931-2012; Marti-Garcia, Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Sukharev, Andrey/A-6470-2014; Solfaroli Camillocci, Elena/J-1596-2012; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Zimmermann, Claus/E-9598-2014; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Kepka, Oldrich/G-6375-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Hejbal, Jiri/H-1358-2014; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Lysak, Roman/H-2995-2014; Kuday, Sinan/C-8528-2014; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Bosman, Martine/J-9917-2014; Castro, Nuno/D-5260-2011; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; White, Ryan/E-2979-2015; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Tikhomirov, Vladimir/M-6194-2015 OI Salamanna, Giuseppe/0000-0002-0861-0052; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252; Price, Darren/0000-0003-2750-9977; Carvalho, Joao/0000-0002-3015-7821; Belanger-Champagne, Camille/0000-0003-2368-2617; Gomes, Agostinho/0000-0002-5940-9893; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Casadei, Diego/0000-0002-3343-3529; Della Volpe, Domenico/0000-0001-8530-7447; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Pina, Joao /0000-0001-8959-5044; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; Ferrando, James/0000-0002-1007-7816; Boyko, Igor/0000-0002-3355-4662; Brooks, William/0000-0001-6161-3570; Moraes, Arthur/0000-0002-5157-5686; Doyle, Anthony/0000-0001-6322-6195; Gabrielli, Alessandro/0000-0001-5346-7841; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Bosman, Martine/0000-0002-7290-643X; Castro, Nuno/0000-0001-8491-4376; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; White, Ryan/0000-0003-3589-5900; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 48 TC 48 Z9 49 U1 8 U2 166 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT PY 2013 VL 725 IS 4-5 BP 223 EP 242 DI 10.1016/j.physletb.2013.07.049 PG 20 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 215PP UT WOS:000324223100008 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Fried, M Fruhwirth, R Ghete, VM Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Staykova, Z Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, E Blyweert, S D'Hondt, J Kalogeropoulos, A Keaveney, J Maes, M Olbrechts, A Tavernier, S Van Doninck, W Van Mulders, R Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Favart, L Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Dildick, S Garcia, G Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, R Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Selvaggi, M Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alida, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Sierra, LFC Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammall, S Kame, AE Mahmoud, MA Mahrous, A Radi, A Kadastik, M Muentel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Choudhury, S Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bluj, M Busson, P Chariot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Tschudi, Y Vander Donckt, M Verdier, P Viret, S Tsamalaidze, Z Autermann, C Beranek, S Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Costanza, E Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Horton, D Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Olzem, J Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Walsh, R Wissing, C Blobel, V Enderle, H Erfle, J Gebbert, U Gorner, M Gosselink, M Haller, J Heine, K Hoing, RS Kaussen, G Kirschenmann, H Klanner, R Kogler, R Lange, J Marchesini, I Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Troendle, D Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hartmann, F Hauth, T Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Kornmayer, A Pardo, PL Martschei, D Muller, T Niegel, M Nurnberg, A Oberst, O Ott, J Quast, G Rabbertz, K Ratnikov, F Roecker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Radics, B Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Saxena, P Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Chatterjee, RM Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Panda, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Laselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, R Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, E Perrotta, A Primavera, R Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Chiorboli, M Costa, S Giordano, R Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Gori, V Lenzi, R Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, R Di Matteo, L Dinardo, ME Fiorendi, S Gennai, S Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fats, TT Buontempo, S Cavallo, N De Cosa, A Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Gulmini, M Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Maron, G Meneguzzo, AT Michelotto, M Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Gabusi, M Ratti, SP Riccardi, C Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Grippo, MT Kraan, A Ligabue, E Lomtadze, T Martini, L Messineo, A Palla, E Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Casasso, S Costa, M Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Zanetti, A Chang, S Kim, TY Nam, SK Kim, DH Kim, GN Kim, JE Kong, DJ Oh, YD Park, H Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Grigelionis, I Juodagalvis, A Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Almeida, N Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Antunes, JR Seixas, J Varela, J Vischia, P Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Laney, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, E Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bendavid, J Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S d'Enterria, D Dabrowski, A David, A De Roeck, A De Visscher, S Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hartl, C Hinzmann, A Innocente, V Janot, P Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lee, YJ Lourenco, C Magini, N Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mulders, M Musella, P Nesvold, E Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimiae, M Piparo, D Plagge, M Quertenmont, L Racz, A Reece, W Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Stoye, M Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, E Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Amsler, C Chiochia, V Favaro, C Rikova, MI Kilminster, B Mejias, BM Otiougova, P Robmann, P Snoek, H Taroni, S Tupputi, S Verzetti, M Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Nelson, R Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schleint, P Takasugi, E Traczyk, P Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Hanson, G Jandir, P Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Warthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P George, C Golf, F Incandela, J Justus, C Kalavase, P Kovalskyi, D Krutelyov, V Lowette, S Villalba, RM Mccoll, N Pavlunin, V Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Mulholland, T Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Gutsche, O Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Ratnikova, N Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Lacroix, F Moon, DH O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Ogul, H Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Hu, G Maksimovic, P Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Busza, W Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Kim, Y Klute, M Lai, YS Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stoeckli, F Sumorok, K Velicanu, D Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Suarez, RG Keller, J Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Antonelli, L Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Williams, G Winer, BL Wolfe, H Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Jung, K Koybasi, O Kress, M Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Wang, F Xu, L Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R De Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Walker, M Cerizza, G Hollingsworth, M Rose, K Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Grothe, M Hall-Wilton, R Herndon, M Herve, A Kaadze, K Klabbers, P Klukas, J Lanaro, A Loveless, R Mohapatra, A Mozer, MU Ojalvo, I Pierro, GA Polese, G Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Fried, M. Fruehwirth, R. Ghete, V. M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C-E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Staykova, Z. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, E. Blyweert, S. D'Hondt, J. Kalogeropoulos, A. Keaveney, J. Maes, M. Olbrechts, A. Tavernier, S. Van Doninck, W. Van Mulders, R. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, R. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Selvaggi, M. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alida Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Carrillo Montoya, C. A. Chaparro Sierra, L. F. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammall, S. Kame, A. Ellithi Mahmoud, M. A. Mahrous, A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Choudhury, S. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bluj, M. Busson, P. Chariot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J-L. Andrea, J. Bloch, D. Bodin, D. Brom, J-M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J-C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A-C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Vander Donckt, M. Verdier, P. Viret, S. Tsamalaidze, Z. Autermann, C. Beranek, S. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Costanza, E. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I-A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. Oe Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Walsh, R. Wissing, C. Blobel, V. Enderle, H. Erfle, J. Gebbert, U. Gorner, M. Gosselink, M. Haller, J. Heine, K. Hoeing, R. S. Kaussen, G. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Marchesini, I. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Troendle, D. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hartmann, F. Hauth, T. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Kornmayer, A. Pardo, P. Lobelle Martschei, D. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Schilling, F-P. Schott, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Radics, B. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Saxena, P. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Panda, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Laselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, R. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, E. Perrotta, A. Primavera, R. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Chiorboli, M. Costa, S. Giordano, R. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, R. Di Matteo, L. Dinardo, M. E. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fats, T. Tabarelli Buontempo, S. Cavallo, N. De Cosa, A. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Gulmini, M. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Maron, G. Meneguzzo, A. T. Michelotto, M. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Kraan, A. Ligabue, E. Lomtadze, T. Martini, L. Messineo, A. Palla, E. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Zanetti, A. Chang, S. Kim, T. Y. Nam, S. K. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Oh, Y. D. Park, H. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Grigelionis, I. Juodagalvis, A. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Almeida, N. Bargassa, P. Silva, C. Beira Da Cruz E. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Laney, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, E. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bendavid, J. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Colafranceschi, S. d'Enterria, D. Dabrowski, A. David, A. De Roeck, A. De Visscher, S. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hartl, C. Hinzmann, A. Innocente, V. Janot, P. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lee, Y-J. Lourenco, C. Magini, N. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mulders, M. Musella, P. Nesvold, E. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Quertenmont, L. Racz, A. Reece, W. Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Stoye, M. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, E. Baeni, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Amsler, C. Chiochia, V. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Taroni, S. Tupputi, S. Verzetti, M. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W-S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R-S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A-M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Nelson, R. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schleint, P. Takasugi, E. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Jandir, P. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Warthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Kalavase, P. Kovalskyi, D. Krutelyov, V. Lowette, S. Villalba, R. Magana Mccoll, N. Pavlunin, V. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Mulholland, T. Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gutsche, O. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Ratnikova, N. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Lacroix, F. Moon, D. H. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Griffiths, S. Merlo, J-P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Ogul, H. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Hu, G. Maksimovic, P. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Busza, W. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Kim, Y. Klute, M. Lai, Y. S. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Suarez, R. Gonzalez Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Antonelli, L. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Williams, G. Winer, B. L. Wolfe, H. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Jung, K. Koybasi, O. Kress, M. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Wang, F. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Walker, M. Cerizza, G. Hollingsworth, M. Rose, K. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Kaadze, K. Klabbers, P. Klukas, J. Lanaro, A. Loveless, R. Mohapatra, A. Mozer, M. U. Ojalvo, I. Pierro, G. A. Polese, G. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; SUSY; Hadronic; Btag ID SUPERGAUGE TRANSFORMATIONS; PARTON DISTRIBUTIONS; ATLAS DETECTOR; ROOT-S=7 TEV; B-JETS; MODEL; PHENOMENOLOGY; SUPERSYMMETRY; EXTENSION; INVARIANT AB A search for supersymmetry is presented based on events with large missing transverse energy, no isolated electron or muon, and at least three jets with one or more identified as a bottom-quark jet. A simultaneous examination is performed of the numbers of events in exclusive bins of the scalar sum of jet transverse momentum values, missing transverse energy, and bottom-quark jet multiplicity. The sample, corresponding to an integrated luminosity of 19.4 fb(-1), consists of proton-proton collision data recorded at a center-of-mass energy of 8 TeV with the CMS detector at the LHC in 2012. The observed numbers of events are found to be consistent with the standard model expectation, which is evaluated with control samples in data. The results are interpreted in the context of two simplified supersymmetric scenarios in which gluino pair production is followed by the decay of each gluino to an undetected lightest supersymmetric particle and either a bottom or top quark-antiquark pair, characteristic of gluino mediated bottom- or top-squark production. Using the production cross section calculated to next-to-leading-Order plus next-to-leading-logarithm accuracy, and in the limit of a massless lightest supersymmetric particle, we exclude gluinos with masses below 1170 GeV and 1020 GeV for the two scenarios, respectively. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Fried, M.; Fruehwirth, R.; Ghete, V. M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C-E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, E.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, R.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, R.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alida Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammall, S.; Kame, A. Ellithi; Mahmoud, M. A.; Mahrous, A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bluj, M.; Busson, P.; Chariot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, IN2P3 CNRS, Lab Leprince Ringuet, Palaiseau, France. [Beluffi, C.; Agram, J-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J-M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J-C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A-C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] CNRS IN2P3, Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Vander Donckt, M.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, E.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. Oe; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Gorner, M.; Gosselink, M.; Haller, J.; Heine, K.; Hoeing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Marchesini, I.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Troendle, D.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Pardo, P. Lobelle; Martschei, D.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Schilling, F-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Worm, S. D.; Newbold, D. M.; Lucas, R.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Radics, B.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Panda, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Banerjee, S.; Dugad, S.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Natl Univ Ireland Univ Coll Dublin, Dublin 4, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Laselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Laselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, R.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, E.; Perrotta, A.; Primavera, R.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, R.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, R.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, R.; Di Matteo, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fats, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [De Guio, R.; Di Matteo, L.; Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fats, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Gulmini, M.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Michelotto, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, E.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, E.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; D'Agnolo, R. T.; Fiori, F.; Foa, L.; Ligabue, E.; Vernieri, C.; Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Rovelli, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Casasso, S.; Costa, M.; Migliore, E.; Monaco, V.; Ortona, G.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Chang, S.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Oh, Y. D.; Park, H.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementcny Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Grigelionis, I.; Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; Silva, C. Beira Da Cruz E.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentarcio & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Laney, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, E.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Iaydjiev, P.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Mohanty, A. K.; Masetti, G.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Meola, S.; Paolucci, P.; Galanti, M.; D'Agnolo, R. T.; Grassi, M.; Seixas, J.; Chamizo Llatas, M.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; d'Enterria, D.; Dabrowski, A.; David, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hinzmann, A.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y-J.; Lourenco, C.; Magini, N.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Quertenmont, L.; Racz, A.; Reece, W.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, E.; Baeni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Taroni, S.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schleint, P.; Takasugi, E.; Traczyk, P.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Jandir, P.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Warthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Suarez, R. Gonzalez; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northeastern Univ, Boston, MA 02115 USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Williams, G.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Wang, F.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Rose, K.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Kaadze, K.; Klabbers, P.; Klukas, J.; Lanaro, A.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Pierro, G. A.; Polese, G.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C-E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammall, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kame, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Mahrous, A.] Helwan Univ, Cairo, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J-L.; Conte, E.; Drouhin, F.; Fontaine, J-C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Gulmini, M.; Maron, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Androsov, K.; Grippo, M. T.; Martini, L.] Univ Siena, I-53100 Siena, Italy. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Worm, S. D.; Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, Kahramanmaras, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. RP Alverson, G (reprint author), Northeastern Univ, Boston, MA 02115 USA. EM cms-publication-committee-chair@cern.ch; george.alverson@cern.ch RI Menasce, Dario Livio/A-2168-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Michelotto, Michele/A-9571-2013; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Bartalini, Paolo/E-2512-2014; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Montanari, Alessandro/J-2420-2012; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Venturi, Andrea/J-1877-2012; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Lokhtin, Igor/D-7004-2012; Markina, Anastasia/E-3390-2012; Petrushanko, Sergey/D-6880-2012; Dudko, Lev/D-7127-2012; Dermenev, Alexander/M-4979-2013; Wolszczak, Weronika/N-3113-2013; Tinoco Mendes, Andre David/D-4314-2011; da Cruz e Silva, Cristovao/K-7229-2013; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Hill, Christopher/B-5371-2012; Ligabue, Franco/F-3432-2014; Bargassa, Pedrame/O-2417-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Popov, Andrey/E-1052-2012; Chinellato, Jose Augusto/I-7972-2012; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Calvo Alamillo, Enrique/L-1203-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Manganote, Edmilson/K-8251-2013; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015 OI Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Toback, David/0000-0003-3457-4144; Margaroli, Fabrizio/0000-0002-3869-0153; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Michelotto, Michele/0000-0001-6644-987X; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Montanari, Alessandro/0000-0003-2748-6373; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Dudko, Lev/0000-0002-4462-3192; Tinoco Mendes, Andre David/0000-0001-5854-7699; de Jesus Damiao, Dilson/0000-0002-3769-1680; Novaes, Sergio/0000-0003-0471-8549; Hill, Christopher/0000-0003-0059-0779; Sogut, Kenan/0000-0002-9682-2855; Lucchini, Marco Toliman/0000-0002-7497-7450; Gutsche, Oliver/0000-0002-8015-9622; Raval, Amita/0000-0003-0164-4337; Torassa, Ezio/0000-0003-2321-0599; Verdier, Patrice/0000-0003-3090-2948; CHANG, PAO-TI/0000-0003-4064-388X; Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; ORTONA, Giacomo/0000-0001-8411-2971; Giubilato, Piero/0000-0003-4358-5355; Gallinaro, Michele/0000-0003-1261-2277; Tabarelli de Fatis, Tommaso/0000-0001-6262-4685; Ulrich, Ralf/0000-0002-2535-402X; Lenzi, Piergiulio/0000-0002-6927-8807; Abbiendi, Giovanni/0000-0003-4499-7562; Gonzi, Sandro/0000-0003-4754-645X; HSIUNG, YEE/0000-0003-4801-1238; Levchenko, Petr/0000-0003-4913-0538; Vidal Marono, Miguel/0000-0002-2590-5987; Faccioli, Pietro/0000-0003-1849-6692; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Staiano, Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Landsberg, Greg/0000-0002-4184-9380; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Tricomi, Alessia Rita/0000-0002-5071-5501; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Costa, Salvatore/0000-0001-9919-0569; Lloret Iglesias, Lara/0000-0002-0157-4765; Kasemann, Matthias/0000-0002-0429-2448; Tosi, Nicolo/0000-0002-0474-0247; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; WANG, MIN-ZU/0000-0002-0979-8341; Popov, Andrey/0000-0002-1207-0984; da Cruz e silva, Cristovao/0000-0002-1231-3819; Chinellato, Jose Augusto/0000-0002-3240-6270; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070 FU BMWF (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MSTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter (Thailand); IPST (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council (European Union); EPLANET (European Union); Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; EU, Regional Development Fund; Thalis programme; Aristeia programme; EU-ESF; Greek NSRF; [SF0690030s09] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF. NR 64 TC 69 Z9 69 U1 6 U2 159 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT PY 2013 VL 725 IS 4-5 BP 243 EP 270 DI 10.1016/j.physletb.2013.06.058 PG 28 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 215PP UT WOS:000324223100009 ER PT J AU Gal, A Millener, DJ AF Gal, A. Millener, D. J. TI Neutron-rich hypernuclei: H-6(Lambda) and beyond SO PHYSICS LETTERS B LA English DT Article DE Hypernuclei; Effective interactions in hadronic systems; Shell model ID LAMBDA-BINDING ENERGIES; SHELL-MODEL ANALYSIS; NN 3-BODY FORCE; LIGHT HYPERNUCLEI; J-PARC; SIGMA; SPECTROSCOPY; POTENTIALS; NUCLEI; EXCESS AB Recent experimental evidence presented by the FINUDA Collaboration for a particle-stable H-6(Lambda) has stirred renewed interest in charting domains of particle-stable neutron-rich Lambda hypernuclei, particularly for unbound nuclear cores. We have studied within a shell-model approach several neutron-rich Lambda hypernuclei in the nuclear p shell that could be formed in (pi(-), K+) or in (K-, pi(+)) reactions on stable nuclear targets. Hypernuclear shell-model input is taken from a theoretically inspired successful fit of gamma-ray transitions in p-shell Lambda hypernuclei which includes also Lambda N <-> Sigma N coupling (Lambda Sigma coupling). The particle stability of H-6(Lambda) is discussed and predictions are made for binding energies of He-9(Lambda), Li-10(Lambda), Be-12(Lambda), B-14(Lambda). None of the large effects conjectured by some authors to arise from Lambda Sigma coupling is borne out, neither by these realistic p-shell calculations, nor by quantitative estimates outlined for heavier hypernuclei with substantial neutron excess. (C) 2013 Elsevier B.V. All rights reserved. C1 [Gal, A.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Millener, D. J.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Gal, A (reprint author), Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. EM avragal@vms.huji.ac.il FU U.S. DOE [DE-AC02-98CH10886]; Brookhaven National Laboratory; EU initiative FP7, HadronPhysics3, under the SPHERE cooperation program; EU initiative FP7, HadronPhysics3, under the LEANNIS cooperation program FX We thank Emiko Hiyama and Jiff Mare for useful comments made on a previous version of this work. D.J.M. acknowledges the support by the U.S. DOE under Contract DE-AC02-98CH10886 with the Brookhaven National Laboratory, and A.G. acknowledges support by the EU initiative FP7, HadronPhysics3, under the SPHERE and LEANNIS cooperation programs. NR 34 TC 14 Z9 14 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT PY 2013 VL 725 IS 4-5 BP 445 EP 450 DI 10.1016/j.physletb.2013.07.027 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 215PP UT WOS:000324223100041 ER PT J AU Zhao, N Yao, JZ Chaiprasongsuk, M Li, GL Guan, J Tschaplinski, TJ Guo, H Chen, F AF Zhao, Nan Yao, Jianzhuang Chaiprasongsuk, Minta Li, Guanglin Guan, Ju Tschaplinski, Timothy J. Guo, Hong Chen, Feng TI Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa) SO PHYTOCHEMISTRY LA English DT Article DE Poplar; Populus trichocarpa; Salicaceae; Benzoic acid; SABATH family; Substrate-specificity evolution ID ADENOSYL-L-METHIONINE; CARBOXYL METHYLTRANSFERASE; ARABIDOPSIS-THALIANA; METHYL SALICYLATE; INDOLE-3-ACETIC-ACID METHYLTRANSFERASE; SABATH FAMILY; BIOSYNTHESIS; EXPRESSION; POPLAR; ENZYME AB Methyl jasmonate is a metabolite known to be produced by many plants and has roles in diverse biological processes. It is biosynthesized by the action of S-adenosyl-L-methionine:jasmonic acid carboxyl methyltransferase (JMT), which belongs to the SABATH family of methyltransferases. Herein is reported the isolation and biochemical characterization of a JMT gene from black cottonwood (Populus trichocarpa). The genome of P. trichocarpa contains 28 SABATH genes (PtSABATH1 to PtSABATH28). Recombinant PtSABATH3 expressed in Escherichia coli showed the highest level of activity with jasmonic acid (JA) among carboxylic acids tested. It was therefore renamed PtJMT1. PtJMT1 also displayed activity with benzoic acid (BA), with which the activity was about 22% of that with JA. PtSABATH2 and PtSABATH4 were most similar to PtJMT1 among all PtSABATHs. However, neither of them had activity with JA. The apparent Km values of PtJMT1 using JA and BA as substrate were 175 mu M and 341 mu M, respectively. Mutation of Ser-153 and Asn-361, two residues in the active site of PtJMT1, to Tyr and Ser respectively, led to higher specific activity with BA than with JA. Homology-based structural modeling indicated that substrate alignment, in which Asn-361 is involved, plays a role in determining the substrate specificity of PtJMT1. In the leaves of young seedlings of black cottonwood, the expression of PtJMT1 was induced by plant defense signal molecules methyl jasmonate and salicylic acid and a fungal elicitor alamethicin, suggesting that PtJMT1 may have a role in plant defense against biotic stresses. Phylogenetic analysis suggests that PtJMT1 shares a common ancestor with the Arabidopsis JMT, and functional divergence of these two apparent JMT orthologs has occurred since the split of poplar and Arabidopsis lineages. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Zhao, Nan; Chaiprasongsuk, Minta; Li, Guanglin; Guan, Ju; Chen, Feng] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Zhao, Nan; Tschaplinski, Timothy J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Yao, Jianzhuang; Guo, Hong] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Chen, F (reprint author), Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. EM fengc@utk.edu OI Tschaplinski, Timothy/0000-0002-9540-6622 FU BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center; Office of Biological and Environmental Research in the DOE Office of Science; U.S. Government [DE-AC05-00OR22725]; Thailand fellowship FX This work was partly supported by the BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science (to F.C. and T.J.T.). This manuscript has been co-authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Minta Chaiprasongsuk is supported by a Thailand fellowship. NR 36 TC 4 Z9 5 U1 6 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0031-9422 J9 PHYTOCHEMISTRY JI Phytochemistry PD OCT PY 2013 VL 94 BP 74 EP 81 DI 10.1016/j.phytochem.2013.06.014 PG 8 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 222HF UT WOS:000324721100008 PM 23849543 ER PT J AU Kirkwood, RK Moody, JD Kline, J Dewald, E Glenzer, S Divol, L Michel, P Hinkel, D Berger, R Williams, E Milovich, J Yin, L Rose, H MacGowan, B Landen, O Rosen, M Lindl, J AF Kirkwood, R. K. Moody, J. D. Kline, J. Dewald, E. Glenzer, S. Divol, L. Michel, P. Hinkel, D. Berger, R. Williams, E. Milovich, J. Yin, L. Rose, H. MacGowan, B. Landen, O. Rosen, M. Lindl, J. TI A review of laser-plasma interaction physics of indirect-drive fusion SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Review ID STIMULATED RAMAN-SCATTERING; IGNITION-SCALE PLASMAS; LANGMUIR DECAY INSTABILITY; INHOMOGENEOUS COLLISIONAL PLASMAS; GAS-FILLED HOHLRAUMS; ION-ACOUSTIC-WAVES; BRILLOUIN-SCATTERING; ENERGY-TRANSFER; BEAM DEFLECTION; FLOWING PLASMA AB The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8 MJ of energy per pulse. The concept for fusion ignition on the NIF, as first proposed in 1990, was based on an indirectly driven spherical capsule of fuel in a high-Z hohlraum cavity filled with low-Z gas (Lindl et al 2004 Phys. Plasmas 11 339). The incident laser energy is converted to x-rays with keV energy on the hohlraums interior wall. The x-rays then impinge on the surface of the capsule, imploding it and producing the fuel conditions needed for ignition. It was recognized at the inception that this approach would potentially be susceptible to scattering of the incident light by the plasma created in the gas and the ablated material in the hohlraum interior. Prior to initial NIF operations, expectations for laser-plasma interaction (LPI) in ignition-scale experiments were based on experimentally benchmarked simulations and models of the plasma effects that had been carried out as part of the original proposal for NIF and expanded during the 13-year design and construction period. The studies developed the understanding of the stimulated Brillouin scatter, stimulated Raman scatter and filamentation that can be driven by the intense beams. These processes produce scatter primarily in both the forward and backward direction, and by both individual beams and collective interaction of multiple beams. Processes such as hot electron production and plasma formation and transport were also studied. The understanding of the processes so developed was the basis for the design and planning of the recent experiments in the ignition campaign at NIF, and not only indicated that the plasma instabilities could be controlled to maximize coupling, but predicted that, for the first time, they would be beneficial in controlling drive symmetry. The understanding is also now a critical component in the worldwide effort to produce a fusion energy source with a laser (Lindl et al 2011 Nucl. Fusion 51 094024, Collins et al 2012 Phys. Plasmas 19 056308) and has recently received its most critical test yet with the inception of the NIF experiments with ignition-scale indirect-drive targets (Landen et al 2010 Phys. Plasmas 17 056301, Edwards et al 2011 Phys. Plasmas 18 051003, Glenzer et al 2011 Phys. Rev. Lett. 106 085004, Haan et al 2011 Phys. Plasmas 18 051001, Landen et al 2011 Phys. Plasmas 18 051001, Lindl et al 2011 Nucl. Fusion 51 094024). In this paper, the data obtained in the first complete series of coupling experiments in ignition-scale hohlraums is reviewed and compared with the preceding work on the physics of LPIs with the goal of recognizing aspects of our understanding that are confirmed by these experiments and recognizing and motivating areas that need further modeling. Understanding these hohlraum coupling experiments is critical as they are only the first step in a campaign to study indirectly driven implosions under the conditions of ignition by inertial confinement at NIF, and in the near future they are likely to further influence ignition plans and experimental designs. C1 [Kirkwood, R. K.; Moody, J. D.; Dewald, E.; Glenzer, S.; Divol, L.; Michel, P.; Hinkel, D.; Berger, R.; Williams, E.; Milovich, J.; MacGowan, B.; Landen, O.; Rosen, M.; Lindl, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kline, J.; Yin, L.; Rose, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kirkwood, RK (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RI Michel, Pierre/J-9947-2012; OI Yin, Lin/0000-0002-8978-5320; Kline, John/0000-0002-2271-9919 NR 132 TC 16 Z9 18 U1 8 U2 95 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD OCT PY 2013 VL 55 IS 10 AR 103001 DI 10.1088/0741-3335/55/10/103001 PG 27 WC Physics, Fluids & Plasmas SC Physics GA 220ZF UT WOS:000324625600001 ER PT J AU Shao, LM Xu, GS Liu, SC Zweben, SJ Wan, BN Guo, HY Liu, AD Chen, R Cao, B Zhang, W Wang, HQ Wang, L Ding, SY Yan, N Hu, GH Xiong, H Chen, L Liu, YL Zhao, N Li, YL AF Shao, L. M. Xu, G. S. Liu, S. C. Zweben, S. J. Wan, B. N. Guo, H. Y. Liu, A. D. Chen, R. Cao, B. Zhang, W. Wang, H. Q. Wang, L. Ding, S. Y. Yan, N. Hu, G. H. Xiong, H. Chen, L. Liu, Y. L. Zhao, N. Li, Y. L. TI Velocimetry of edge turbulence during the dithering L-H transition with dynamic programming based time-delay estimation technique in the EAST superconducting tokamak SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID SHEAR; FLOW; TRANSPORT AB A dual gas puff imaging (GPI) system has been successfully assembled on the Experimental Advanced Superconducting Tokamak (EAST) and applied for the study of the dithering L-H transition in the 2012 spring campaign. A new method i.e., the dynamic programming based time-delay estimation technique, has been applied to the 64 x 64 pixels GPI video images to yield time-dependent two-dimensional velocity fields at the plasma edge on EAST. Local poloidal flow velocities up to similar to-3 km s(-1) (in the electron diamagnetic direction) and radial flow velocities up to similar to-2 km s(-1) (inward) are found inside the separatrix during a dithering burst. The radial and poloidal cross-correlation length, flow velocity and auto-correlation time inside the separatrix increase preceding the dithering burst and decrease following the dithering burst. These observations provide strong evidence for the shear flows playing an important role during the dithering L-H transition. C1 [Shao, L. M.; Xu, G. S.; Liu, S. C.; Wan, B. N.; Guo, H. Y.; Chen, R.; Cao, B.; Zhang, W.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Yan, N.; Hu, G. H.; Xiong, H.; Chen, L.; Liu, Y. L.; Zhao, N.; Li, Y. L.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Guo, H. Y.] Tri Alpha Energy Inc, Rancho Santa Margarita, CA 92688 USA. [Liu, A. D.] Univ Sci & Technol China, Dept Modern Phys, CAS Key Lab Plasma Phys, Hefei 230026, Peoples R China. RP Shao, LM (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM shaolm@ipp.ac.cn RI Liu, Ah Di/N-7124-2013; Xu, Guosheng/B-4857-2013 FU National Magnetic Confinement Fusion Science Program of China [2011GB107001, 2011GB107003, 2012GB101000, 2010GB104001, 2013GB107003]; National Natural Science Foundation of China [11205193, 11075181, 11021565, 10990212, 11105177]; Sino Danish Center for Education and Research FX The authors gratefully acknowledge the contribution of the EAST staff and the fruitful discussions with Y Chen, H Y Wang and S B Xia. This work was supported by the National Magnetic Confinement Fusion Science Program of China under Contracts No 2011GB107001, No 2011GB107003, No 2012GB101000 and No 2010GB104001, No 2013GB107003 the National Natural Science Foundation of China under Contracts No 11205193, No 11075181, No 11021565, No 10990212, No 11105177 and the Sino Danish Center for Education and Research. NR 31 TC 6 Z9 6 U1 9 U2 33 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD OCT PY 2013 VL 55 IS 10 AR 105006 DI 10.1088/0741-3335/55/10/105006 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 220ZF UT WOS:000324625600007 ER PT J AU Wu, A Loutherback, K Lambert, G Estevez-Salmeron, L Tlsty, TD Austin, RH Sturm, JC AF Wu, Amy Loutherback, Kevin Lambert, Guillaume Estevez-Salmeron, Luis Tlsty, Thea D. Austin, Robert H. Sturm, James C. TI Cell motility and drug gradients in the emergence of resistance to chemotherapy SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID CANCER-CELLS; MICROENVIRONMENT; CULTURE; TUMOR; CHEMOTAXIS; GLYCOLYSIS; EXPRESSION; GENERATION; EVOLUTION; SYSTEMS AB The emergence of resistance to chemotherapy by cancer cells, when combined with metastasis, is the primary driver of mortality in cancer and has proven to be refractory to many efforts. Theory and computer modeling suggest that the rate of emergence of resistance is driven by the strong selective pressure of mutagenic chemotherapy and enhanced by the motility of mutant cells in a chemotherapy gradient to areas of higher drug concentration and lower population competition. To test these models, we constructed a synthetic microecology which superposed a mutagenic doxorubicin gradient across a population of motile, metastatic breast cancer cells (MDA-MB-231). We observed the emergence of MDA-MB-231 cancer cells capable of proliferation at 200 nM doxorubicin in this complex microecology. Individual cell tracking showed both movement of the MDA-MB-231 cancer cells toward higher drug concentrations and proliferation of the cells at the highest doxorubicin concentrations within 72 h, showing the importance of both motility and drug gradients in the emergence of resistance. C1 [Wu, Amy; Sturm, James C.] Princeton Univ, Dept Elect Engn, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA. [Loutherback, Kevin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Lambert, Guillaume] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA. [Estevez-Salmeron, Luis; Tlsty, Thea D.] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94122 USA. [Austin, Robert H.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. RP Austin, RH (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. EM austin@princeton.edu RI Loutherback, Kevin/G-1957-2015 OI Loutherback, Kevin/0000-0002-4020-5188 FU National Cancer Institute; National Science Foundation [PHYS-1066293] FX We thank Liyu Liu and Henrik Flyvbjerg for helpful discussions. This project was supported primarily by the National Cancer Institute. This work was supported in part by the National Science Foundation under Grant PHYS-1066293 and the hospitality of the Aspen Center for Physics. NR 33 TC 23 Z9 23 U1 2 U2 31 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 1 PY 2013 VL 110 IS 40 BP 16103 EP 16108 DI 10.1073/pnas.1314385110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 227II UT WOS:000325105500064 PM 24046372 ER PT J AU Ford, DC Cooley, LD Seidman, DN AF Ford, Denise C. Cooley, Lance D. Seidman, David N. TI Suppression of hydride precipitates in niobium superconducting radio-frequency cavities SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID LOW-TEMPERATURE BAKING; AUGMENTED-WAVE METHOD; NB-H ALLOYS; VACANCY-FORMATION; PARTICLE ACCELERATORS; TRANSITION-METALS; RF CAVITIES; HYDROGEN; NITROGEN; OXYGEN AB Niobium hydride is a suspected contributor to degraded niobium superconducting radio-frequency (SRF) cavity performance by Q slope and Q disease. The concentration and distribution of hydrogen atoms in niobium can be strongly affected by the cavity processing treatments. This study provides guidance for cavity processing based on density functional theory calculations of the properties of common processing impurity species-hydrogen, oxygen, nitrogen, and carbon-in the body-centered cubic (bcc) niobium lattice. We demonstrate that some fundamental properties are shared between the impurity atoms, such as anionic character in niobium. The strain field produced, however, by hydrogen atoms is both geometrically different and substantially weaker than the strain field produced by the other impurities. We focus on the interaction between oxygen and hydrogen atoms in the lattice, and demonstrate that the elastic interactions between these species and the bcc niobium lattice cause trapping of hydrogen and oxygen atoms by bcc niobium lattice vacancies. We also show that the attraction of oxygen to a lattice vacancy is substantially stronger than the attraction of hydrogen to the vacancy. Additionally, hydrogen dissolved in niobium tetrahedral interstitial sites can be trapped by oxygen, nitrogen and possibly carbon atoms dissolved in octahedral interstitial sites. These results indicate that the concentration of oxygen in the bcc lattice can have a strong impact on the ability of hydrogen to form detrimental phases. Based on our results and a literature survey, we propose a mechanism for the success of the low-temperature annealing step applied to niobium SRF cavities. We also recommend further examination of nitrogen and carbon in bcc niobium, and particularly the role that nitrogen can play in preventing detrimental hydride phase formation. C1 [Ford, Denise C.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Ford, Denise C.; Cooley, Lance D.] Fermilab Natl Accelerator Lab, Tech Div, Superconducting Mat Dept, Batavia, IL 60510 USA. [Seidman, David N.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Seidman, David N.] Northwestern Univ, Ctr Atom Probe Tomog NUCAPT, Evanston, IL 60208 USA. RP Ford, DC (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. EM deniseford@u.northwestern.edu RI Seidman, David/B-6697-2009; Cooley, Lance/E-7377-2015 OI Cooley, Lance/0000-0003-3488-2980 FU Fermi Research Alliance, LLC [De-AC02-07CH11359]; United States Department of Energy FX Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. NR 65 TC 3 Z9 3 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD OCT PY 2013 VL 26 IS 10 AR 105003 DI 10.1088/0953-2048/26/10/105003 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 218KJ UT WOS:000324431000005 ER PT J AU Grassellino, A Romanenko, A Sergatskov, D Melnychuk, O Trenikhina, Y Crawford, A Rowe, A Wong, M Khabiboulline, T Barkov, F AF Grassellino, A. Romanenko, A. Sergatskov, D. Melnychuk, O. Trenikhina, Y. Crawford, A. Rowe, A. Wong, M. Khabiboulline, T. Barkov, F. TI Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID SURFACE-RESISTANCE; Q-SLOPE; FIELD; NITRIDE AB We report a surface treatment that systematically improves the quality factor of niobium radio frequency cavities beyond the expected limit for niobium. A combination of annealing in a partial pressure of nitrogen or argon gas and subsequent electropolishing of the niobium cavity surface leads to unprecedented low values of the microwave surface resistance, and an improvement in the efficiency of the accelerating structures up to a factor of 3, reducing the cryogenic load of superconducting cavities for both pulsed and continuous duty cycles. The field dependence of the surface resistance is reversed compared to standardly treated niobium. C1 [Grassellino, A.; Romanenko, A.; Sergatskov, D.; Melnychuk, O.; Crawford, A.; Rowe, A.; Wong, M.; Khabiboulline, T.; Barkov, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Trenikhina, Y.] IIT, Chicago, IL 60616 USA. RP Grassellino, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM annag@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy; DOE Office of Nuclear Physics FX The authors would like to thank Drs C Ginsburg, L D Cooley, V Yakovlev and R D Kephart for supporting this R&D work, for several insightful discussions and for providing feedback on the paper. We would like to thank also the technical support of the Fermilab cavity processing team, and Fermilab T&I department for the support with cavity testing. An acknowledgment for several insightful discussions on the results goes to Professor Enzo Palmieri, and for his extensive work on NbN that originally inspired these studies. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. AR and YT are partially supported by the DOE Office of Nuclear Physics. NR 33 TC 43 Z9 44 U1 4 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD OCT PY 2013 VL 26 IS 10 AR 102001 DI 10.1088/0953-2048/26/10/102001 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 218KJ UT WOS:000324431000001 ER PT J AU Haberkorn, N Zhang, YY Kim, J McCleskey, TM Burrell, AK Depaula, RF Tajima, T Jia, QX Civale, L AF Haberkorn, N. Zhang, Y. Y. Kim, Jeehoon McCleskey, Thomas M. Burrell, Anthony K. Depaula, R. F. Tajima, T. Jia, Q. X. Civale, L. TI Upper critical magnetic field and vortex-free state in very thin epitaxial delta-MoN films grown by polymer-assisted deposition SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID ANGULAR-DEPENDENCE; SUPERCONDUCTING FILMS; TEMPERATURE; IRRADIATION; MOLYBDENUM; NITROGEN; DETECTOR; PHASE AB We measured the thickness dependence of the superconducting properties in epitaxial delta-MoN thin films grown on alpha-Al2O3(001) substrates by polymer-assisted deposition. Our results indicate that the superconducting properties such as the upper critical field (mu H-0(c2) approximate to 10 T) and the superconducting critical temperature (T-c = 12.5 K) are thickness independent for films thicker than similar to 36 nm. By measuring the critical current density (J(c)) in the vortex-free state, which coincides with the depairing current density (J(0)), we estimate that films thicker than similar to 36 nm have a coherence length xi(0) = 5.8 +/- 0.2 nm and penetration depth lambda(0) = 420 +/- 50 nm. We found that it is possible to enhance the H-c2(0) values to close to 10 T without any appreciable reduction in T-c. C1 [Haberkorn, N.; Zhang, Y. Y.; Kim, Jeehoon; McCleskey, Thomas M.; Burrell, Anthony K.; Depaula, R. F.; Tajima, T.; Jia, Q. X.; Civale, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Haberkorn, N (reprint author), Ctr Atom Bariloche, Ave Bustillo 9500, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. EM nhaberk@cab.cnea.gov.ar RI Jia, Q. X./C-5194-2008; Zhang, Yingying/A-7260-2009; OI Zhang, Yingying/0000-0002-8448-3059; Civale, Leonardo/0000-0003-0806-3113; Mccleskey, Thomas/0000-0003-3750-3245 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Tajima DOE Early Career Award; Center for Integrated Nanotechnologies (CINT), an Office of Science User Facility; CINT [U2009B059] FX Research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (transport and MFM measurements, theoretical interpretation, data analysis and manuscript preparation), and by Tajima 2010 DOE Early Career Award (films fabrication). This work was also supported, in part, at the Center for Integrated Nanotechnologies (CINT), an Office of Science User Facility operated for the US Department of Energy Office of Science. Access to the PPMS system was granted through CINT user project no. U2009B059. NH is a member of CONICET (Argentina). We thank Cristian Batista and Shi-Zeng Lin for helpful discussions. NR 38 TC 4 Z9 4 U1 2 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD OCT PY 2013 VL 26 IS 10 AR 105023 DI 10.1088/0953-2048/26/10/105023 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 218KJ UT WOS:000324431000025 ER PT J AU Pong, I Oberli, LR Bottura, L AF Pong, Ian Oberli, Luc-Rene Bottura, Luca TI Cu diffusion in Nb3Sn internal tin superconductors during heat treatment SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID CONDUCTORS; POWDER; PHASE; WIRE; SN AB Heat treatments and phase formation of Nb3Sn internal tin superconductors are more complicated than bronze route conductors due to the need to convert low melting/low decomposition temperature Sn-rich phases to higher temperature Cu-rich Cu-Sn phases. Conventionally, the Cu-Sn phase development in internal tin wires and hence heat treatment optimization and microstructure control are typically interpreted as a matter of outward Sn diffusion from the Sn core towards the Nb filaments, and Cu diffusion in the opposite direction is simply assumed. In this paper, we present a perspective of Cu diffusion, based on our investigation of phase development. We shall show that the conventional Sn diffusion perspective cannot explain some of our observations, in particular the subelement core phase development. We shall also show that the distribution of Kirkendall pores is opposite to that of the coarse Nb3Sn grains, thus establishing a direct relationship between copper diffusion and coarse Nb3Sn grain formation and distribution. We shall compare wires of different local Cu: Nb area ratio (LAR) and show how Cu diffusion appears to control the Cu-Sn phase formation across the subelement and the final Nb3Sn microstructure (and hence influences the critical current density). Drawing from what we learnt from our observation, we managed to modify a standard heat treatment and obtained up to over 20% improvement in critical current density in some of the wire designs we investigated. C1 [Pong, Ian; Oberli, Luc-Rene; Bottura, Luca] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. RP Pong, I (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ian.pong@cantab.net FU Lawrence Berkeley National Laboratory (LBNL); LHC Accelerator Research Program (LARP) under the US Department of Energy [DE-AC02-05CH11231] FX The OST wires used in this work was supported by the Lawrence Berkeley National Laboratory (LBNL) and the LHC Accelerator Research Program (LARP) under the US Department of Energy contract no. DE-AC02-05CH11231. The Luvata sample W was supplied by Luvata Waterbury. NR 14 TC 7 Z9 7 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD OCT PY 2013 VL 26 IS 10 AR 105002 DI 10.1088/0953-2048/26/10/105002 PG 10 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 218KJ UT WOS:000324431000004 ER PT J AU Quaranta, O Cecil, TW Gades, L Mazin, B Miceli, A AF Quaranta, O. Cecil, T. W. Gades, L. Mazin, B. Miceli, A. TI X-ray photon detection using superconducting resonators in thermal quasi-equilibrium SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID MICROCALORIMETER; SPECTROMETERS; LIFETIMES AB Superconducting resonators have to date been used for photon detection in a non-equilibrium manner. In this paper, we demonstrate that such devices can also be used in a thermal quasi-equilibrium manner to detect x-ray photons. We have used a resonator to measure the temperature rise induced by an x-ray photon absorbed in normal metal and superconducting absorbers on continuous and perforated silicon nitride membranes. We observed two distinct pulses with vastly different decay times. We attribute the shorter pulses to non-equilibrium quasiparticle relaxation and the longer pulses to a thermal relaxation process. In addition, we have measured the temperature dependence of the x-ray induced temperature rise and decay times. Finally, we have measured the resonator sensitivity and energy resolution. C1 [Quaranta, O.; Cecil, T. W.; Gades, L.; Miceli, A.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Mazin, B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Quaranta, O (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM oquaranta@aps.anl.gov; amiceli@aps.anl.gov RI Mazin, Ben/B-8704-2011 OI Mazin, Ben/0000-0003-0526-1114 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to thank Vlad Yefremenko, Ralu Divan, Suzanne Miller, and Chian Liu for valuable discussions on device fabrication. We thank Yejun Feng for valuable discussions. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 31 TC 9 Z9 9 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD OCT PY 2013 VL 26 IS 10 AR 105021 DI 10.1088/0953-2048/26/10/105021 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 218KJ UT WOS:000324431000023 ER PT J AU Weigand, M Rutter, NA Durrell, JH AF Weigand, M. Rutter, N. A. Durrell, J. H. TI In-plane critical current density measurements of straight and curved tracks in RABiTS-MOD coated conductors SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID YBCO; DEPOSITION; FILMS AB Depending on the temperature and the magnitude and orientation of an external magnetic field, the critical current density, J(c), of a coated conductor can be limited either by the properties of the grain boundaries or by those of the grains. In order to ascertain what governs J(c) under different conditions, we have measured straight and curved tracks, patterned into RABiTS-MOD samples, while a magnetic field was swept in the plane of the films. Significantly different results were obtained at different field and temperature ranges, which we were able to attribute to J(c) being limited by either grain boundaries or grains. C1 [Weigand, M.; Rutter, N. A.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Durrell, J. H.] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. RP Weigand, M (reprint author), Los Alamos Natl Lab, MPA CMMS, MS K764, Los Alamos, NM 87545 USA. EM jhd25@cam.ac.uk RI Weigand, Marcus/E-7173-2010; Durrell, John/A-4052-2008 OI Weigand, Marcus/0000-0002-8745-7876; Durrell, John/0000-0003-0712-3102 FU Engineering and Physical Sciences Research Council [EP/C011554/1, EP/C011546/1] FX This work was supported by the Engineering and Physical Sciences Research Council (grant numbers EP/C011554/1 and EP/C011546/1). We are grateful to American Superconductor for supplying the samples. NR 16 TC 2 Z9 2 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD OCT PY 2013 VL 26 IS 10 AR 105012 DI 10.1088/0953-2048/26/10/105012 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 218KJ UT WOS:000324431000014 ER PT J AU Grob, P Bean, D Typke, D Li, XM Nogales, E Glaeser, RM AF Grob, Patricia Bean, Derek Typke, Dieter Li, Xueming Nogales, Eva Glaeser, Robert M. TI Ranking TEM cameras by their response to electron shot noise SO ULTRAMICROSCOPY LA English DT Article DE Camera performance; Modulation transfer function; Noise ID CCD CAMERAS; MICROSCOPY; SIGNAL AB We demonstrate two ways in which the Fourier transforms of images that consist solely of randomly distributed electrons (shot noise) can be used to compare the relative performance of different electronic cameras. The principle is to determine how closely the Fourier transform of a given image does, or does not, approach that of an image produced by an ideal camera, i.e. one for which single electron events are modeled as Kronecker delta functions located at the same pixels vvhere the electrons were incident on the camera. Experimentally, the average width of the single electron response is characterized by fitting a single Lorentzian function to the azimuthally averaged amplitude of the Fourier transform. The reciprocal of the spatial frequency at which the Lorentzian function falls to a value of 0.5 provides an estimate of the number of pixels at which the corresponding line spread function falls to a value of 1/e. In addition, the excess noise due to stochastic variations in the magnitude of the response of the camera (for single-electron events) is characterized by the amount to which the appropriately normalized power spectrum does, or does not, exceed the total number of electrons in the image. These simple measurements provide an easy way to evaluate the relative performance of different cameras. To illustrate this point we present data for Mr three different types of scintillator-coupled camera plus a silicon-pixel (direct detection) camera. (C) 2013 Elsevier FN. All rights reserved. C1 [Grob, Patricia; Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bean, Derek] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Typke, Dieter; Nogales, Eva; Glaeser, Robert M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Li, Xueming] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Glaeser, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM rmglaeser@lbl.gov FU NIH [GM 63072 (EN), GM083039]; NSF [DBI-0960271]; David Agard are Howard Hughes Medical Institute investigators FX This work has been supported in part by NIH Grant GM 63072 (EN), by NSF Grant DBI-0960271 (to David Agard and Yifan Cheng), and by NIH Grant GM083039 (RMG.), EN and David Agard are Howard Hughes Medical Institute investigators. These sponsors had no role in the study design, collection, analysis and interpretation of data, the writing of this report, and the decision to submit the article for publication. NR 13 TC 7 Z9 7 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD OCT PY 2013 VL 133 BP 1 EP 7 DI 10.1016/j.ultramic.2013.01.003 PG 7 WC Microscopy SC Microscopy GA 218ZI UT WOS:000324471800001 PM 23747527 ER PT J AU Haigh, SJ Jiang, B Alloyeau, D Kisielowski, C Kirkland, AI AF Haigh, S. J. Jiang, B. Alloyeau, D. Kisielowski, C. Kirkland, A. I. TI Recording low and high spatial frequencies in exit wave reconstructions SO ULTRAMICROSCOPY LA English DT Article DE Exit wave restoration; Aberration correction; TEM ID TRANSMISSION ELECTRON-MICROSCOPY; ZERNIKE PHASE PLATE; HIGH-RESOLUTION TEM; SPHERICAL-ABERRATION; FOCUS-VARIATION; CHROMATIC ABERRATION; ATOMIC-RESOLUTION; CCD CAMERAS; RETRIEVAL; FUTURE AB Aberration corrected Transmission Electron Microscope (TEM) images can currently resolve information at significantly better than 0.1 nm. Aberration corrected imaging conditions seek to optimize the transfer of high-resolution information but in doing so they prevent the transfer of low spatial frequency information. To recover low spatial frequency information, aberration corrected images must be acquired at a large defocus which compromises high spatial frequency information transfer. In this paper we present two a posteriori solutions to this problem in which the information bandwidth in an exit wave reconstruction is increased. In the first we reconstruct the electron exit wavefunction from two focal series datasets, with different, uniform focal steps, experimentally demonstrating that the width of the transfer interval can be extended from 0.2 nm(-1) (similar to 5 nm) to better than 10 nm(-1) (0.1 nm). In the second we outline the use of a focal series recorded with a non-uniform focal step to recover a wider range of spatial frequencies without the need for a large number of images. Using simulated data we show that using this non-uniform focal step the spatial frequency interval for a five image data set may be increased to between 0.25 nm(-1) (4 nm) and 8.3 nm(-1) (0.12 nm) compared to between 0.74 nm(-1) (1.4 nm) and 8.3 nm(-1) (0.12 nm) for the standard focal series geometry. (C) 2013 The Authors. Published by Elsevier BY. All rights reserved. C1 [Haigh, S. J.; Kirkland, A. I.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Jiang, B.] FEI Co, Hillsboro, OR 97124 USA. [Alloyeau, D.; Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Alloyeau, D.; Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. RP Haigh, SJ (reprint author), Univ Manchester, Sch Mat, Grosvenor St, Manchester M1 7HS, Lancs, England. EM sarah.haigh@manchester.ac.uk; angus.kirkland@materials.ox.ac.uk RI Haigh, Sarah/D-1309-2014; Foundry, Molecular/G-9968-2014 OI Haigh, Sarah/0000-0001-5509-6706; FU EPSRC [EP/F048009/1, EP/G035954/1]; JEOL (UK) Ltd.; Soft Matter program of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Financial support from EPSRC (Grant nos. EP/F048009/1 and EP/G035954/1) and JEOL (UK) Ltd. is acknowledged. The investigation of 1 soft/hard interfaces is supported by the Soft Matter program of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. The operation of the TEAM I microscope at the NCEM is supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 49 TC 5 Z9 5 U1 1 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD OCT PY 2013 VL 133 BP 26 EP 34 DI 10.1016/j.ultramic.2013.04.012 PG 9 WC Microscopy SC Microscopy GA 218ZI UT WOS:000324471800004 PM 23751209 ER PT J AU Kim, DH Mudiyanselage, K Szanyi, J Kwak, JH Zhu, HY Peden, CHF AF Kim, Do Heui Mudiyanselage, Kumudu Szanyi, Janos Kwak, Ja Hun Zhu, Haiyang Peden, Charles H. F. TI Effect of K loadings on nitrate formation/decomposition and on NOx storage performance of K-based NOx storage-reduction catalysts SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE NOx storage-reduction; Potassium; FTIR; NO2 TPD; Pt-K/gamma-Al2O3; KNO3 ID NSR CATALYSTS; PT/BAO/AL2O3 CATALYSTS; SURFACE-PROPERTIES; TRAP CATALYST; FT-IR; PT/K/GAMMA-AL2O3; GAMMA-AL2O3; ADSORPTION; ALUMINA; SUPPORT AB We have investigated the effect of K loadings on the formation and the decomposition of KNO3 over K2O/Al2O3, and measured NOx storage performance of Pt-K2O/Al2O3 catalysts with various potassium loadings. After NO2 adsorption on K2O/Al2O3 at room temperature, ionic and bidentate nitrates were observed by Fourier transform infra-red (FTIR) spectroscopy. The ratio of the former to the latter species increased with increasing potassium loading up to 10 wt%, and then stayed almost constant with additional K, demonstrating a clear dependence of loading on potassium nitrate formed. Although both K2O(10)/Al2O3 and K2O(20)/Al2O3 samples formed similar nitrate species identified by FTIR obtained after NO2 adsorption, the latter has more thermally stable nitrate species as evidenced by FTIR and NO2 temperature programmed desorption (TPD) results. With regard to NOx storage-reduction performance of Pt-K2O/Al2O3 samples, the temperature of maximum NOx uptake (T-max) is 573 K up to a potassium loading of 10 wt%. As the potassium loading increases from 10 wt% to 20 wt%, T-max shifted from 573 K to 723 K. Moreover, the amount of NO uptake (38 cm(3) NOx/gram of catalyst) at T-max increased more than three times, indicating that efficiency of K in storing NOx is enhanced significantly at higher temperature, in good agreement with the NO2 TPD and FTIR results. Thus, a combination of characterization and NOx storage performance results demonstrates an unexpected effect of potassium loading on nitrate formation and decomposition processes; results important for developing Pt-K2O/Al2O3 as potential catalysts as high temperature NOx storage-reduction applications. (c) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Do Heui] Seoul Natl Univ, Inst Chem Proc, Sch Chem & Biol Engn, Seoul 151742, South Korea. [Mudiyanselage, Kumudu; Szanyi, Janos; Kwak, Ja Hun; Zhu, Haiyang; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. RP Kim, DH (reprint author), Seoul Natl Univ, Inst Chem Proc, Sch Chem & Biol Engn, 1 Gwanak Ro, Seoul 151742, South Korea. EM dohkim@snu.ac.kr RI Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; Mudiyanselage, Kumudu/B-2277-2013; OI Mudiyanselage, Kumudu/0000-0002-3539-632X; Peden, Charles/0000-0001-6754-9928 FU U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program; U.S. DOE's Office of Biological and Environmental Research; Research Settlement Fund FX Financial support was provided by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. The research was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE's Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for the U.S. Department of Energy by Battelle. Prof. Do Heui Kim acknowledges the partial support of Research Settlement Fund for the new faculty of Seoul National University. NR 25 TC 6 Z9 6 U1 5 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD OCT-NOV PY 2013 VL 142 BP 472 EP 478 DI 10.1016/j.apcatb.2013.05.063 PG 7 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 213RP UT WOS:000324077600054 ER PT J AU Chichester, DL Kinlaw, MT AF Chichester, David L. Kinlaw, Mathew T. TI The MARVEL assembly for neutron multiplication SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Neutron multiplication; Reactor physics; Training AB A new multiplying test assembly is under development at Idaho National Laboratory to support research, validation, evaluation, and learning. The item is comprised of three stacked, highly-enriched uranium (HEU) cylinders, each 11.4 cm in diameter and having a combined height of up to 11.7 cm. The combined mass of all three cylinders is 20.3 kg of HEU. Calculations for the bare configuration of the assembly indicate a multiplication level of >3.5 (k(eff)=0.72). Reflected configurations of the assembly, using either polyethylene or tungsten, are possible and have the capability of raising the assembly's multiplication level to greater than 10. This paper describes simulations performed to assess the assembly's multiplication level under different conditions and describes the resources available at INL to support the use of these materials. We also describe some preliminary calculations and test activities using the assembly to study neutron multiplication. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Chichester, David L.; Kinlaw, Mathew T.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Chichester, DL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM david.chichester@inl.gov; mathew.kinlaw@inl.gov FU Idaho National Laboratory's Laboratory-Directed Research and Development (LDRD) program FX The author's would like to acknowledge the support of Idaho National Laboratory's Laboratory-Directed Research and Development (LDRD) program for this work. NR 25 TC 2 Z9 2 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD OCT PY 2013 VL 80 BP 42 EP 48 DI 10.1016/j.apradiso.2013.05.012 PG 7 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 218QO UT WOS:000324447700007 PM 23827507 ER PT J AU Palaversa, L Ivezic, Z Eyer, L Ruzdjak, D Sudar, D Galin, M Kroflin, A Mesaric, M Munk, P Vrbanec, D Bozic, H Loebman, S Sesar, B Rimoldini, L Hunt-Walker, N VanderPlas, J Westman, D Stuart, JS Becker, AC Srdoc, G Wozniak, P Oluseyi, H AF Palaversa, Lovro Ivezic, Zeljko Eyer, Laurent Ruzdjak, Domagoj Sudar, Davor Galin, Mario Kroflin, Andrea Mesaric, Martina Munk, Petra Vrbanec, Dijana Bozic, Hrvoje Loebman, Sarah Sesar, Branimir Rimoldini, Lorenzo Hunt-Walker, Nicholas VanderPlas, Jacob Westman, David Stuart, J. Scott Becker, Andrew C. Srdoc, Gregor Wozniak, Przemyslaw Oluseyi, Hakeem TI EXPLORING THE VARIABLE SKY WITH LINEAR. III. CLASSIFICATION OF PERIODIC LIGHT CURVES SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: eclipsing; blue stragglers; catalogs; Galaxy: halo; stars: statistics; stars: variables: general ID LARGE-MAGELLANIC-CLOUD; RR LYRAE STARS; AUTOMATED SUPERVISED CLASSIFICATION; GRAVITATIONAL LENSING EXPERIMENT.; UMA-TYPE SYSTEMS; SURVEY STRIPE 82; ECLIPSING BINARIES; VARIABILITY SURVEY; SPACED DATA; SDSS AB We describe the construction of a highly reliable sample of similar to 7000 optically faint periodic variable stars with light curves obtained by the asteroid survey LINEAR across 10,000 deg(2) of the northern sky. The majority of these variables have not been cataloged yet. The sample flux limit is several magnitudes fainter than most other wide-angle surveys; the photometric errors range from similar to 0.03 mag at r = 15 to similar to 0.20 mag at r = 18. Light curves include on average 250 data points, collected over about a decade. Using Sloan Digital Sky Survey (SDSS) based photometric recalibration of the LINEAR data for about 25 million objects, we selected similar to 200,000 most probable candidate variables with r < 17 and visually confirmed and classified similar to 7000 periodic variables using phased light curves. The reliability and uniformity of visual classification across eight human classifiers was calibrated and tested using a catalog of variable stars from the SDSS Stripe 82 region and verified using an unsupervised machine learning approach. The resulting sample of periodic LINEAR variables is dominated by 3900 RR Lyrae stars and 2700 eclipsing binary stars of all subtypes and includes small fractions of relatively rare populations such as asymptotic giant branch stars and SX Phoenicis stars. We discuss the distribution of these mostly uncataloged variables in various diagrams constructed with optical-to-infrared SDSS, Two Micron All Sky Survey, and Wide-field Infrared Survey Explorer photometry, and with LINEAR light-curve features. We find that the combination of light-curve features and colors enables classification schemes much more powerful than when colors or light curves are each used separately. An interesting side result is a robust and precise quantitative description of a strong correlation between the light-curve period and color/spectral type for close and contact eclipsing binary stars (beta Lyrae and W UMa): as the color-based spectral type varies from K4 to F5, the median period increases from 5.9 hr to 8.8 hr. These large samples of robustly classified variable stars will enable detailed statistical studies of the Galactic structure and physics of binary and other stars and we make these samples publicly available. C1 [Palaversa, Lovro; Eyer, Laurent; Rimoldini, Lorenzo] Univ Geneva, Astron Observ, CH-1290 Sauverny, Switzerland. [Ivezic, Zeljko; Loebman, Sarah; Hunt-Walker, Nicholas; VanderPlas, Jacob; Westman, David; Becker, Andrew C.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Ivezic, Zeljko; Kroflin, Andrea; Mesaric, Martina; Munk, Petra; Vrbanec, Dijana] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 10000, Croatia. [Ivezic, Zeljko; Ruzdjak, Domagoj; Sudar, Davor; Bozic, Hrvoje] Fac Geodesy, Hvar Observ, Zagreb 10000, Croatia. [Galin, Mario] Fac Geodesy, Zagreb 10000, Croatia. [Sesar, Branimir] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Rimoldini, Lorenzo] Univ Geneva, ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland. [Stuart, J. Scott] MIT, Lincoln Lab, Lexington, MA 02420 USA. [Wozniak, Przemyslaw] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Oluseyi, Hakeem] Florida Inst Technol, Melbourne, FL 32901 USA. RP Palaversa, L (reprint author), Univ Geneva, Astron Observ, 51 Chemin Maillettes, CH-1290 Sauverny, Switzerland. EM lovro.palaversa@unige.ch OI VanderPlas, Jacob/0000-0002-9623-3401; Wozniak, Przemyslaw/0000-0002-9919-3310 FU Gaia Research for European Astronomy Training (GREAT-ITN) Marie Curie network; European Union [264895]; NSF [AST-0707901, AST-1008784, AST-0551161]; Croatian National Science Foundation [O-1548-2009]; National Aeronautics and Space Administration at MIT Lincoln Laboratory under Air Force [FA8721-05-C-0002] FX L.P. acknowledges support from the Gaia Research for European Astronomy Training (GREAT-ITN) Marie Curie network, funded through the European Union Seventh Framework Programme ([FP7/2007-2013] under grant agreement No. 264895). Z.I. acknowledges support by NSF grants AST-0707901 and AST-1008784 to the University of Washington, by NSF grant AST-0551161 to LSST for design and development activity, and by the Croatian National Science Foundation grant O-1548-2009. The LINEAR program is funded by the National Aeronautics and Space Administration at MIT Lincoln Laboratory under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government. NR 74 TC 27 Z9 27 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD OCT PY 2013 VL 146 IS 4 AR 101 DI 10.1088/0004-6256/146/4/101 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 218AL UT WOS:000324404800030 ER PT J AU Rhodes, ME Lundquist, JK AF Rhodes, Michael E. Lundquist, Julie K. TI The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar SO BOUNDARY-LAYER METEOROLOGY LA English DT Article DE Diurnal cycle; Turbine wakes; Wind energy; Wind profiles; Lidar ID BOUNDARY-LAYER; TURBULENCE; TEMPERATURE; CASES-99; TUNNEL; FARMS AB We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters () downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately directly south of a wind turbine; the other lidar was moved approximately north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind-tunnel observations, and for guiding assessments of the impacts of wakes on surface turbulent fluxes or surface temperatures downwind of turbines. C1 [Rhodes, Michael E.; Lundquist, Julie K.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Lundquist, Julie K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lundquist, JK (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, 311 UCB, Boulder, CO 80309 USA. EM Julie.Lundquist@colorado.edu OI LUNDQUIST, JULIE/0000-0001-5490-2702 FU National Renewable Energy Laboratory [APUP UGA-0-41026-22] FX The authors gratefully acknowledge the efforts of our collaborators in the CWEX experiment, including the Iowa State Team of Dr. Gene Takle, Dan Rajewski, Russ Doorenbos, Kris Spoth, Jimmy Cayer, and the NCAR team including Dr. Steve Oncley and Dr. Tom Horst. We also extend appreciation to the wind farm operators and the landowners who permitted the deployment of the lidar systems, and to Dr. Branko Kosovic, Ms. Alice DuVivier, Dr. Andrew Clifton, and Mr. Brian Vanderwende for useful discussions and suggestions. We express appreciation for the helpful comments of two anonymous reviewers. This work was supported by the National Renewable Energy Laboratory under APUP UGA-0-41026-22. NREL is a national laboratory of the US Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NR 46 TC 20 Z9 20 U1 1 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-8314 EI 1573-1472 J9 BOUND-LAY METEOROL JI Bound.-Layer Meteor. PD OCT PY 2013 VL 149 IS 1 BP 85 EP 103 DI 10.1007/s10546-013-9834-x PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 216YK UT WOS:000324322600005 ER PT J AU Vakhtin, AA Calhoun, VD Jung, RE Prestopnik, JL Taylor, PA Ford, CC AF Vakhtin, Andrei A. Calhoun, Vince D. Jung, Rex E. Prestopnik, Jillian L. Taylor, Paul A. Ford, Corey C. TI Changes in intrinsic functional brain networks following blast-induced mild traumatic brain injury SO BRAIN INJURY LA English DT Article DE Blast; cognition; functional magnetic resonance imaging (fMRI); independent component analysis (ICA); mild traumatic brain injury (mTBI); resting state networks (RSN) ID DIFFUSE AXONAL INJURY; IRAQ WAR VETERANS; WHITE-MATTER; HEAD-INJURY; POSTCONCUSSIVE SYMPTOMS; CONNECTIVITY; ATTENTION; MRI; SCHIZOPHRENIA; AFGHANISTAN AB Objective: Blast-induced mild traumatic brain injuries (mTBI) commonly go undetected by computed tomography and conventional magnetic resonance imaging (MRI). This study was used to investigate functional brain network abnormalities in a group of blast-induced mTBI subjects using independent component analysis (ICA) of resting state functional MRI (fMRI) data. Methods: Twenty-eight resting state networks of 13 veterans who sustained blast-induced mTBI were compared with healthy controls across three fMRI domains: blood oxygenation level-dependent spatial maps, time course spectra and functional connectivity. Results: The mTBI group exhibited hyperactivity in the temporo-parietal junctions and hypoactivity in the left inferior temporal gyrus. Abnormal frequencies in default-mode (DMN), sensorimotor, attentional and frontal networks were detected. In addition, functional connectivity was disrupted in six network pairs: DMN-basal ganglia, attention-sensorimotor, frontal-DMN, attention-sensorimotor, attention-frontal and sensorimotor-sensorimotor. Conclusions: The results suggest white matter disruption across certain attentional networks. Additionally, given their elevated activity relative to controls', the temporo-parietal junctions of blast mTBI subjects may be compensating for diffuse axonal injury in other cortical regions. C1 [Vakhtin, Andrei A.; Prestopnik, Jillian L.; Ford, Corey C.] Univ New Mexico, Hlth Sci Ctr, Dept Neurol, Albuquerque, NM 87131 USA. [Calhoun, Vince D.] Mind Res Network, Albuquerque, NM USA. [Calhoun, Vince D.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Calhoun, Vince D.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Calhoun, Vince D.; Ford, Corey C.] Univ New Mexico, Dept Neurosci, Albuquerque, NM 87131 USA. [Calhoun, Vince D.] Univ New Mexico, Dept Psychiat, Albuquerque, NM 87131 USA. [Jung, Rex E.] Univ New Mexico, Dept Neurosurg, Albuquerque, NM 87131 USA. [Taylor, Paul A.] Sandia Natl Labs, Multiscale Dynam Mat Modeling Dept, Albuquerque, NM 87185 USA. RP Ford, CC (reprint author), 1 Univ New Mexico, Hlth Sci Ctr, Dept Neurol, MSC10 5620, Albuquerque, NM 87131 USA. EM cford@salud.unm.edu FU US Naval Health Research Center, Office of Naval Research; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded through the US Naval Health Research Center, Office of Naval Research, through project funding manager Mr James Mackiewicz. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors report no conflicts of interest. NR 43 TC 18 Z9 18 U1 2 U2 21 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 0269-9052 J9 BRAIN INJURY JI Brain Inj. PD OCT PY 2013 VL 27 IS 11 BP 1304 EP 1310 DI 10.3109/02699052.2013.823561 PG 7 WC Neurosciences; Rehabilitation SC Neurosciences & Neurology; Rehabilitation GA 217YQ UT WOS:000324399800010 PM 24020442 ER PT J AU Agarwal, S Phuoc, TX Soong, Y Martello, D Gupta, RK AF Agarwal, Sushant Phuoc, Tran X. Soong, Yee Martello, Donald Gupta, Rakesh K. TI Nanoparticle-stabilised invert emulsion drilling fluids for deep-hole drilling of oil and gas SO CANADIAN JOURNAL OF CHEMICAL ENGINEERING LA English DT Article DE invert emulsion drilling muds; HTHP drilling; nanoparticles; temperature aging; rheology ID PARTICLES AB Invert emulsions are used to drill for oil and gas when good wellbore stability and high temperature tolerance are required. These drilling fluids contain a solid phase and two immiscible liquid phases stabilised with a polymeric surfactant. In ultra deep drilling, due to high temperature, the surfactant degrades causing phase separation. However, fine particles can be used as stabilisers, and the result is a Pickering emulsion. Here, we demonstrate that the use of a combination of hydrophobic nanoparticles and organically modified nanoclay results in stable water-in-oil invert emulsions model drilling fluids. These gel-like model fluids have the desired plastic viscosity and yield stress suitable for drilling fluid applications that can be modified by adjusting the nanoparticle-content. Aging experiments at 225 degrees C showed that they also have high-temperature stability for demanding drilling operations. C1 [Agarwal, Sushant; Phuoc, Tran X.; Soong, Yee; Martello, Donald; Gupta, Rakesh K.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Agarwal, Sushant; Gupta, Rakesh K.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. RP Gupta, RK (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM rakesh.gupta@mail.wvu.edu FU National Energy Technology Laboratory, US Department of Energy FX Contract grant sponsor: National Energy Technology Laboratory, US Department of Energy. NR 15 TC 7 Z9 8 U1 2 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0008-4034 J9 CAN J CHEM ENG JI Can. J. Chem. Eng. PD OCT PY 2013 VL 91 IS 10 BP 1641 EP 1649 DI 10.1002/cjce.21768 PG 9 WC Engineering, Chemical SC Engineering GA 211SX UT WOS:000323932100004 ER PT J AU Ozcan, S Filip, P AF Ozcan, Soydan Filip, Peter TI Wear of carbon fiber reinforced carbon matrix composites: Study of abrasive, oxidative wear and influence of humidity SO CARBON LA English DT Article ID C/C COMPOSITES; FRICTION; GRAPHITE; MICROSTRUCTURE; LUBRICATION; NITROGEN; VAPOR; AIR AB The wear of C/C composites has been studied using a subscale aircraft brake dynamometer linked with a mass spectrometer. A disc-on-disc configuration allowed for simulation of various aircraft landing energy conditions (12.5%, 25%, 50%, and 100% of normal landing energy of a Boeing 737 aircraft) performed at 50% and 90% relative humidity levels. The microstructure of composite brakes was altered by applying three different heat treatment temperatures: 1800, 2100, and 2400 degrees C, respectively. A mass spectrometer linked to an environmental chamber of the subscale dynamometer was utilized to measure the in situ CO2 release during the wear tests. The relationships between microstructure, hardness of individual components of composites and wear performance at varied conditions are presented. Carbons obtained at higher heat treatment temperatures are most vulnerable to abrasive wear, while the less ordered carbons, typical for samples heat treated at lower temperatures, showed significant amount of oxidative wear. Oxidative wear was related to excessive heating of materials. Optimization of wear behavior of C/C composite is only possible by understanding the mechanisms of the microstructural changes of materials, corresponding mechanical properties and the nature of wear under various environmental conditions. Published by Elsevier Ltd. C1 [Ozcan, Soydan] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Filip, Peter] So Illinois Univ, Ctr Adv Frict Studies, Carbondale, IL 62901 USA. [Filip, Peter] So Illinois Univ, Dept Mech Engn & Energy Proc, Carbondale, IL 62901 USA. RP Ozcan, S (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. EM ozcans@ornl.gov OI Ozcan, Soydan/0000-0002-3825-4589 FU National Science Foundation, State of Illinois [EEC 3369523372]; Center for Advanced Friction Studies FX This research was sponsored by the National Science Foundation (Grant EEC 3369523372), State of Illinois and a consortium of 11 industrial partners of the Center for Advanced Friction Studies. Authors also would like to acknowledge the team members at Center for Advanced Friction Studies for their help On experiments. NR 35 TC 5 Z9 5 U1 1 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD OCT PY 2013 VL 62 BP 240 EP 247 DI 10.1016/j.carbon.2013.05.061 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 198OD UT WOS:000322931300026 ER PT J AU Liu, ACY Arenal, R Montagnac, G AF Liu, A. C. Y. Arenal, R. Montagnac, G. TI In situ transmission electron microscopy observation of keV-ion irradiation of single-walled carbon and boron nitride nanotubes SO CARBON LA English DT Article ID RAMAN-SPECTROSCOPY; NANOSTRUCTURES; SCATTERING; GRAPHITE; CRYSTALS; GRAPHENE; SPECTRUM; DEFECTS; BEAMS AB Single-walled carbon nanotubes (SWCNNT) and single-walled boron nitride nanotubes (SWBNNT) were irradiated with 30 key Kr+ ions at room temperature. The structural changes during irradiation were monitored in situ using transmission electron microscopy (TEM) and ex situ at certain dose points using Raman spectroscopy. Our measurements demonstrate that metallic/semiconducting SWCNNT and insulating SWBNNT undergo similar structural modifications due to key-ion irradiation. Point defects due to primary knock-on events accumulate and lead to the formation of defect complexes and eventual amorphization. The loss of atoms due to sputtering reduces the nanotube diameter and leads to shrinkage. Time resolved footage of the ion irradiation of a particular area demonstrated that NT scission and subsequent shortening can take place with some probability, possibly due to collision cascade events. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Liu, A. C. Y.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Liu, A. C. Y.; Arenal, R.] Argonne Natl Lab, Div Mat Sci, Ctr Electron Microscopy, Argonne, IL 60439 USA. [Arenal, R.] Univ Zaragoza, INA, LMA, Zaragoza 50018, Spain. [Arenal, R.] Fdn ARAID, Zaragoza 50018, Spain. [Arenal, R.] ONERA CNRS, UMR 104, Lab Etud Microstruct, F-92322 Chatillon, France. [Montagnac, G.] Ecole Normale Super Lyon, CNRS UMR5276, Lab Geol Lyon, F-69342 Lyon, France. RP Liu, ACY (reprint author), Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. EM amelia.liu@monash.edu; arenal@unizar.es RI Arenal, Raul/D-2065-2009 OI Arenal, Raul/0000-0002-2071-9093 FU Science Faculty; Monash Centre for Electron Microscopy, Monash University; U.S. Department of Energy, Office of Science Laboratory [DE-AC02-06CH11357]; Institut des sciences de l'Univers, CNRS FX A. Liu would like to acknowledge support from the Science Faculty and the Monash Centre for Electron Microscopy, Monash University. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy, Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. Raman spectrosocopy experiments have been carried out at the Laboratoire de geologie de Lyon, ENS-Lyon, supported by Institut des sciences de l'Univers, CNRS. Other complementary Raman meaurements, not shown here, have been also carried out at Argonne National Laboratory. We gratefully acknowledge the assistance of P. Baldo and E. Ryan during this experiment at Argonne National Laboratory. NR 45 TC 3 Z9 3 U1 3 U2 60 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD OCT PY 2013 VL 62 BP 248 EP 255 DI 10.1016/j.carbon.2013.05.062 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 198OD UT WOS:000322931300027 ER PT J AU Saldi, GD Daval, D Morvan, G Knauss, KG AF Saldi, Giuseppe D. Daval, Damien Morvan, Gilles Knauss, Kevin G. TI The role of Fe and redox conditions in olivine carbonation rates: An experimental study of the rate limiting reactions at 90 and 150 degrees C in open and closed systems SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID FORSTERITE DISSOLUTION RATES; SATURATED SUPERCRITICAL CO2; AQUEOUS-SOLUTION; MINERAL CARBONATION; SOLID-SOLUTIONS; OXIDIZING CONDITIONS; SURFACE SPECIATION; FE(II) OXIDATION; SILICA SORPTION; LAYER FORMATION AB The mechanisms and rates of olivine carbonation reactions have been the object of a number of studies, but the thermodynamic limitations and the kinetics of the elementary processes that control the overall reaction are still poorly understood and characterized. The main objective of this study is to probe the effect of Fe on the measured rates of olivine carbonation and its role in the formation of Si-rich surface layers, which can significantly inhibit olivine dissolution and limit the extent of the carbonation reaction. A series of batch and flow-through reactor experiments was conducted in pure water at 90 and 150 degrees C and under a CO2 partial pressure of 100 and 200 bar, using both a natural sample of Fe-bearing olivine (Fo(88)) and a synthetic sample of pure forsterite (Fo(100)). Experimental results show that Fe plays an ambivalent role in the carbonation rates of olivine. On one hand, the presence of Fe favors the formation of Fe-Si-rich protective layers at the interface between olivine and aqueous solution, slowing down the dissolution reaction and limiting the extent of carbonation, whereas pure silica coatings have little to no inhibiting effect on measured carbonation rates. On the other hand, Fe enhances olivine to carbonate conversion rates at low degrees of supersaturation, by promoting the formation of fast precipitating Mg-Fe carbonate solid solutions. The passivating properties of Fe-Si-rich layers originate from the strong Fe(III)-Si interaction and are linked to the permanence of oxidizing conditions in the aqueous fluid. As a consequence, under reducing conditions, olivine carbonation rates can be significantly increased by higher extents of dissolution and by the formation of ferroan magnesites (Mg,Fe)CO3, which nucleate faster than the pure Mg end-member. Forsterite and olivine carbonation reactions can be hindered by the formation of secondary Mg sheet-silicates but, at the conditions studied, the formation of such silicate phases was observed to be transitional and not affecting significantly the rates of carbonation at the end of one-month long experimental runs. This work presents new measurements of olivine carbonation rates and delivers relevant information that suggest new reference criteria for the assessment of the sequestration potential of CO2 repositories and the optimization of the mineral carbonation process in mafic and ultramafic rocks. Published by Elsevier Ltd. C1 [Saldi, Giuseppe D.; Daval, Damien; Knauss, Kevin G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Daval, Damien; Morvan, Gilles] LHyGeS, F-67084 Strasbourg, France. RP Saldi, GD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM gdsaldi@lbl.gov RI Daval, Damien/H-1116-2011 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Bio-sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX Work in the Earth Sciences Division and at the Molecular Foundry at LBL was supported by the Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Bio-sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 118 TC 24 Z9 24 U1 12 U2 70 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 1 PY 2013 VL 118 BP 157 EP 183 DI 10.1016/j.gca.2013.04.029 PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 213DZ UT WOS:000324035800011 ER PT J AU Nielsen, LC DePaolo, DJ AF Nielsen, Laura C. DePaolo, Donald J. TI Ca isotope fractionation in a high-alkalinity lake system: Mono Lake, California SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID CALCITE RECRYSTALLIZATION RATES; CARBONATE SEDIMENT; LIQUID WATER; PORE FLUID; PRECIPITATION; INHIBITION; DIFFUSION; ARAGONITE; SEAWATER; CYCLE AB Precipitation of calcium carbonate minerals from aqueous solutions causes surface-controlled kinetic stable Ca isotope fractionation. The magnitude of fractionation depends on the relative rates of ion attachment to and detachment from the mineral surface, which in turn is predicted to depend on both the saturation state and the solution stoichiometry or the Ca2+ : CO32- activity ratio. Experimental studies have not directly investigated the effects of varying solution stoichiometry on calcium isotope partitioning during calcite or aragonite growth, but natural alkaline lake systems such as Mono Lake, California provide a test bed for the hypothesized stoichiometry dependence. Mono Lake has a Ca2+ : CO32- activity ratio of about 0.0001, seven orders of magnitude lower than ocean water and typical terrestrial freshwater. We present chemical and isotopic measurements of streams, springs, lake water, and precipitated carbonates from the Mono Basin that yield evidence of stoichiometry-dependent Ca isotope fractionation during calcite, aragonite and Mg-calcite precipitation from the alkaline lake water. To estimate the Ca isotope fractionation factors, it is necessary to characterize the lake Ca balance and constrain the variability of lake water chemistry both spatially and temporally. Streams and springs supply Ca to the lake, and a substantial fraction of this supply is precipitated along the lake shore to form tufa towers. Lake water is significantly supersaturated with respect to carbonate minerals, so CaCO3 also precipitates directly from the water column to form carbonate-rich bottom sediments. Growth rate inhibition by orthophosphate likely preserves the high degree of supersaturation in the lake. Strontium isotope ratios are used to estimate the proportions of fresh and alkaline lake water from which each solid carbonate sample precipitated. Carbonate minerals that precipitate directly from lake water (low Ca2+ : CO32-) experience relatively large Ca isotope fractionation during growth. Tufa and shoreline carbonates that precipitate from lake water with a significant fraction of spring water (higher Ca2+ : CO32-) are considerably less fractionated, as predicted from theory. The behavior of the Mono Lake Ca isotope system is similar in some ways to that of the global oceans, in that the average delta Ca-44/40 of lake water is positive (estimated average of +1) and both riverine inputs and precipitated carbonates are isotopically light (delta Ca-44/40 between -0.5 and 0). We present a calcium isotope budget of the lake to constrain the long-term average lake water Ca isotope composition. Archived water samples indicate that the lake delta Ca-44/40 varied by over 2 parts per thousand between 1995 and 2010. The most extreme excursions are toward higher delta Ca-44/40, and are probably caused by carbonate precipitation events induced by breakdown of chemostratification. This variability indicates that the lake is out of steady state with respect to calcium isotopes, and that unlike the ocean, calcium isotopes in Mono Basin carbonate sediments likely do not record the balance between weathering and carbonate mineralization fluxes to and from the lake. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Nielsen, Laura C.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [DePaolo, Donald J.] Univ Calif Berkeley, Ctr Isotope Geochem, Berkeley, CA 94720 USA. [DePaolo, Donald J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Nielsen, LC (reprint author), Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. EM lauracn@stanford.edu FU Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231]; core program of the Chemical Sciences, Geosciences and Biosciences Division, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported as part of the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-AC02-05CH11231. The research is an extension of work that originated in the core program of the Chemical Sciences, Geosciences and Biosciences Division, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Numerous individuals provided field and laboratory assistance and expertise. The majority of field sampling was done with the help of Jennifer Druhan, and sample analyses were made with the help of Shaun Brown, Tom Owens, Joern Larsen and April Van Hise from the University of California-Berkeley and the Lawrence Berkeley National Laboratory. Archived water samples were generously provided by Gary Hemming (Queens College, NY) and Greg Reis (Mono Lake Committee), and sampling of deep lake sediment was made possible by Laurence Miller of the USGS, Menlo Park. NR 55 TC 14 Z9 15 U1 6 U2 62 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 1 PY 2013 VL 118 BP 276 EP 294 DI 10.1016/j.gca.2013.05.007 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 213DZ UT WOS:000324035800017 ER PT J AU Richardson, CD Hinman, NW Scott, JR AF Richardson, C. Doc Hinman, Nancy W. Scott, Jill R. TI Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE bio/organic compounds; Craters of the Moon National Monument; FTICR-MS; FTIR; Mars; SEM; sulphur isotopes; Thenardite; XRD ID ASSISTED-LASER-DESORPTION/IONIZATION; INFRARED MAPPING SPECTROMETER; MICROPROBE MASS-SPECTROMETRY; SULFUR ISOTOPE FRACTIONATION; MOON-NATIONAL-MONUMENT; MID-ATLANTIC RIDGE; SNAKE-RIVER PLAIN; ELEMENTAL SULFUR; ACIDITHIOBACILLUS-FERROOXIDANS; SPECIATION ANALYSIS AB Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars. C1 [Richardson, C. Doc; Hinman, Nancy W.] Univ Montana, Dept Geosci, Missoula, MT 59812 USA. [Scott, Jill R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Richardson, CD (reprint author), Univ Montana, Dept Geosci, 32 Campus Dr 1296, Missoula, MT 59812 USA. EM Jill.Scott@inl.gov FU National Aeronautics and Space Administration (NASA) Exobiology Programme [NNX08AP59G]; Idaho National Laboratory under United States Department of Energy (DOE) Idaho Operations Office [DE-AC07-05ID14517] FX The authors acknowledge support by the National Aeronautics and Space Administration (NASA) Exobiology Programme (grant no. NNX08AP59G) and permission to conduct this study from the National Park Service at Craters of the Moon National Monument. CDR would also like to thank Dawn Knipe, J. Michelle Kotler and Doug Owen for their valuable insight and assistance. Research performed at the Idaho National Laboratory under United States Department of Energy (DOE) Idaho Operations Office Contract DE-AC07-05ID14517. NR 92 TC 1 Z9 1 U1 4 U2 64 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD OCT PY 2013 VL 12 IS 4 BP 357 EP 368 DI 10.1017/S1473550413000256 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 220NH UT WOS:000324590800012 ER PT J AU Zhang, DZ Jayaraman, B AF Zhang, Duan Z. Jayaraman, Balaji TI Equations and closure models for material pulverization and debris flow SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW LA English DT Article DE Multi-velocity formulation; Material pulverization; Debris flow ID MATERIAL POINT METHOD; HYPERVELOCITY IMPACT; MULTIPHASE FLOWS; DISPERSE; DUCTILE; PLATES AB A transition from interacting continua to a disperse debris flow is numerically simulated using a multi-velocity formulation based on the ensemble phase average. The numerical calculation takes advantage of the recently developed dual domain material point method, which overcomes numerical instabilities, numerical diffusion and mesh distortion issues encountered in other numerical methods in cases of large material deformations. Comparisons with experiments show that the difference between the average of the velocity gradient and the gradient of the average velocity is important. To consider the transition from a continuum motion to a disperse flow, a model for this difference is expressed in terms of the effective plastic strain and the critical strain of the material. Although the model results in excellent comparisons to the experimental results, more work to study the difference and the model is needed for broader applications. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Zhang, Duan Z.; Jayaraman, Balaji] Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp, Los Alamos, NM 87545 USA. RP Zhang, DZ (reprint author), Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16801 USA. EM dzhang@lanl.gov FU United States Department of Energy; DOD/DOE Munitions Technology Development Program; Stockpile Safety and Surety Program; National Nuclear Security Administrations Science Campaign FX The authors would like to acknowledge many important discussions with Dr. R.M. Rauenzahn and Dr. X. Ma. This work was performed under the auspices of the United States Department of Energy. The Joint DOD/DOE Munitions Technology Development Program, Stockpile Safety and Surety Program, and the National Nuclear Security Administrations Science Campaign 2 provided the financial support for this work. NR 30 TC 2 Z9 3 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0301-9322 J9 INT J MULTIPHAS FLOW JI Int. J. Multiph. Flow PD OCT PY 2013 VL 56 BP 149 EP 159 DI 10.1016/j.ijmultiphaseflow.2013.06.001 PG 11 WC Mechanics SC Mechanics GA 218OV UT WOS:000324442900014 ER PT J AU Sarobol, P Wang, Y Chen, WH Pedigo, AE Koppes, JP Blendell, JE Handwerker, CA AF Sarobol, P. Wang, Y. Chen, W. H. Pedigo, A. E. Koppes, J. P. Blendell, J. E. Handwerker, C. A. TI A Predictive Model for Whisker Formation Based on Local Microstructure and Grain Boundary Properties SO JOM LA English DT Article ID HILLOCK FORMATION; SN-CU; GROWTH; MECHANISM; RECRYSTALLIZATION; DEFORMATION; ORIENTATION; MOTION; FILMS AB Whisker and hillock formation in thin films is well known as a highly local mechanism for stress relaxation, where in many cases, only a few whiskers form out of thousands of grains in a film. In this article, the microstructural characteristics for specific grains to form whiskers in beta-Sn films are discussed in light of our recent whisker growth model, establishing a relationship among grain boundary sliding limited Coble creep, surface grain geometry, and film stress for different stress conditions, including for thermal cycling. Through our recent finite-element simulations of stresses induced by room-temperature aging and thermal cycling of textured microstructures, the role of elastic and thermoelastic anisotropy in creating preferred whisker formation sites and the general propensity of a film to form whiskers have been proposed for a range of beta-Sn film textures. Taken together, these models suggest a strategy for identifying the effects of local microstructure and beta-Sn anisotropy on whisker formation. If these predictions are accurate, then whisker growth risk may be effectively reduced by engineering film microstructures and textures for specific applications and stress conditions. C1 [Sarobol, P.; Wang, Y.; Chen, W. H.; Pedigo, A. E.; Koppes, J. P.; Blendell, J. E.; Handwerker, C. A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Pedigo, A. E.] Naval Surface Warfare Ctr, Crane Div, Crane, IN 47522 USA. [Koppes, J. P.] Alcoa Howmet, Whitehall, MI 49461 USA. RP Sarobol, P (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM handwerker@purdue.edu OI Chen, Wei-Hsun/0000-0002-3761-1038 FU NSF Graduate Research Fellowship Program; Cisco Systems, Inc.; Foresite Inc.; ECI Technology; Naval Surface Warfare Center (Crane Division); DOE-BES [DE-FG02-05ER15637]; NSF [EAR-0337006, 0416243]; Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We gratefully acknowledge support from NSF Graduate Research Fellowship Program, Cisco Systems, Inc., Foresite Inc., ECI Technology, and Naval Surface Warfare Center (Crane Division). We would like to thank Dr. Peng Su, Maureen Williams, and Dr. Anthony Rollett for valuable discussions and Dr. Martin Kunz and Dr. Nobumichi Tamura for assistance with data extraction and analysis. We acknowledge support from DOE-BES (DE-FG02-05ER15637) and NSF (EAR-0337006) as well as access to ALS beamline 12.3.2. ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The microdiffraction program at the ALS beamline 12.3.2 was made possible by NSF Grant 0416243. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 28 TC 4 Z9 4 U1 1 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD OCT PY 2013 VL 65 IS 10 BP 1350 EP 1361 DI 10.1007/s11837-013-0717-x PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 213YX UT WOS:000324097700013 ER PT J AU Ruffing, AM AF Ruffing, Anne M. TI Borrowing genes from Chlamydomonas reinhardtii for free fatty acid production in engineered cyanobacteria SO JOURNAL OF APPLIED PHYCOLOGY LA English DT Article DE Free fatty acid biosynthesis; FFA biosynthesis; Cyanobacterial biofuels; Algal biofuels; Cyanobacteria; Free fatty acid ID CARRIER PROTEIN THIOESTERASE; ESCHERICHIA-COLI; SUBSTRATE-SPECIFICITY; PHOTOSYNTHESIS; OVERPRODUCTION; BIOSYNTHESIS; EXPRESSION; ALGAE AB Photosynthetically derived fuels, such as those produced by microalgae, are touted as a future renewable energy source and a means for achieving energy independence. Realization of these claims, however, will require fuel production rates beyond the native capabilities of these microorganisms. The development of a metabolic engineering toolkit for microalgae will be key for reaching the production rates necessary for fuel production. This work advances the toolkit for cyanobacterial fuels by exploring the use of eukaryotic algal gene sources for free fatty acid biosynthesis rather than the traditional bacterial and plant sources. Many species of eukaryotic algae naturally accumulate high levels of triacylglycerol, a compound requiring three fatty acid side chains. Triacylglycerol accumulation implies that eukaryotic algae have naturally efficient enzymes for free fatty acid production, representing an unexplored resource for metabolic engineering targets. In this work, the model cyanobacterium, Synechococcus elongatus PCC7942, was engineered for free fatty acid production by targeting three main rate-limiting steps: (1) fatty acid release, catalyzed by a thioesterase, (2) fixation of carbon by ribulose-1,5-bisphosphate carboxylase/oxygenase, and (3) the first committed step in fatty acid biosynthesis, acetyl-CoA carboxylase. The recombinant acyl-ACP thioesterase and acetyl-CoA carboxylase were derived from the model green alga, Chlamydomonas reinhardtii CC-503. By targeting these proposed rate-determining steps, free fatty acid production was improved on a cell weight basis; however, the overall concentration of excreted free fatty acid did not increase. Recombinant gene expression was optimized by using native promoters, and while expression improved, the free fatty acid yield did not likewise increase. From physiological measurements, it was determined that free fatty acid production in S. elongatus PCC7942 is ultimately limited by the negative physiological effects associated with free fatty acid synthesis rather than bottlenecks within the metabolic pathway. This work demonstrates the successful expression of algal genes in a cyanobacterial host, but further improvement in free fatty acid yields will only be possible when the negative effects of free fatty acid production are mitigated. C1 Sandia Natl Labs, Dept Bioenergy & Def Technol, Albuquerque, NM 87185 USA. RP Ruffing, AM (reprint author), Sandia Natl Labs, Dept Bioenergy & Def Technol, POB 5800,MS 1413, Albuquerque, NM 87185 USA. EM aruffin@sandia.gov FU Harry S. Truman Fellowship in National Security Science and Engineering; Laboratory Directed Research and Development program; United States Department of Energy [DE-ACO4-94AL85000]; NSF [MCB 0455318, DBI 0521587]; K-INBRE (NIH from the INBRE program of the National Center for Research Resources) [P20 RR16475]; NSF EPSCoR [EPS-0236913]; State of Kansas through Kansas Technology Enterprise Corporation; Kansas State University FX This work was supported by the Harry S. Truman Fellowship in National Security Science and Engineering and the Laboratory Directed Research and Development program. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-ACO4-94AL85000. The author is grateful to Dr. James Laio (University of California, Los Angeles) for providing pSA126 and to the Kansas Lipidomics Research Center for performing GC/MS analysis on the extracted FFAs. Instrument acquisition and method development at the Kansas Lipidomics Research Center was supported by NSF grants MCB 0455318 and DBI 0521587, K-INBRE (NIH Grant P20 RR16475 from the INBRE program of the National Center for Research Resources), and NSF EPSCoR grant EPS-0236913 with matching support from the State of Kansas through Kansas Technology Enterprise Corporation and Kansas State University. NR 41 TC 13 Z9 14 U1 5 U2 65 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0921-8971 J9 J APPL PHYCOL JI J. Appl. Phycol. PD OCT PY 2013 VL 25 IS 5 BP 1495 EP 1507 DI 10.1007/s10811-013-9993-7 PG 13 WC Biotechnology & Applied Microbiology; Marine & Freshwater Biology SC Biotechnology & Applied Microbiology; Marine & Freshwater Biology GA 214BH UT WOS:000324104700025 ER PT J AU Kazakov, AE Rajeev, L Luning, EG Zane, GM Siddartha, K Rodionov, DA Dubchak, I Arkin, AP Wall, JD Mukhopadhyay, A Novichkov, PS AF Kazakov, Alexey E. Rajeev, Lara Luning, Eric G. Zane, Grant M. Siddartha, Kavya Rodionov, Dmitry A. Dubchak, Inna Arkin, Adam P. Wall, Judy D. Mukhopadhyay, Aindrila Novichkov, Pavel S. TI New Family of Tungstate-Responsive Transcriptional Regulators in Sulfate-Reducing Bacteria SO JOURNAL OF BACTERIOLOGY LA English DT Article ID DESULFOVIBRIO-VULGARIS HILDENBOROUGH; ESCHERICHIA-COLI; MOLYBDATE; MOLYBDENUM; EXPRESSION; REDUCTION; PROTEIN; MODE; BINDING; OPERON AB The trace elements molybdenum and tungsten are essential components of cofactors of many metalloenzymes. However, in sulfate-reducing bacteria, high concentrations of molybdate and tungstate oxyanions inhibit growth, thus requiring the tight regulation of their homeostasis. By a combination of bioinformatic and experimental techniques, we identified a novel regulator family, tungstate-responsive regulator (TunR), controlling the homeostasis of tungstate and molybdate in sulfate-reducing deltaproteobacteria. The effector-sensing domains of these regulators are similar to those of the known molybdate-responsive regulator ModE, while their DNA-binding domains are homologous to XerC/XerD site-specific recombinases. Using a comparative genomics approach, we identified DNA motifs and reconstructed regulons for 40 TunR family members. Positional analysis of TunR sites and putative promoters allowed us to classify most TunR proteins into two groups: (i) activators of modABC genes encoding a high-affinity molybdenum and tungsten transporting system and (ii) repressors of genes for toluene sulfonate uptake (TSUP) family transporters. The activation of modA and modBC genes by TunR in Desulfovibrio vulgaris Hildenborough was confirmed in vivo, and we discovered that the activation was diminished in the presence of tungstate. A predicted 30-bp TunR-binding motif was confirmed by in vitro binding assays. A novel TunR family of bacterial transcriptional factors controls tungstate and molybdate homeostasis in sulfate-reducing deltaproteobacteria. We proposed that TunR proteins participate in protection of the cells from the inhibition by these oxyanions. To our knowledge, this is a unique case of a family of bacterial transcriptional factors evolved from site-specific recombinases. C1 [Kazakov, Alexey E.; Rajeev, Lara; Luning, Eric G.; Siddartha, Kavya; Dubchak, Inna; Arkin, Adam P.; Mukhopadhyay, Aindrila; Novichkov, Pavel S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Zane, Grant M.; Wall, Judy D.] Univ Missouri, Columbia, MO USA. [Rodionov, Dmitry A.] Sanford Burnham Med Res Inst, La Jolla, CA USA. [Rodionov, Dmitry A.] Russian Acad Sci, AA Kharkevich Inst Informat Transmiss Problems, Moscow, Russia. [Dubchak, Inna] Dept Energy Joint Genome Inst, Walnut Creek, CA USA. [Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Kazakov, AE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM aekazakov@lbl.gov; psnovichkov@lbl.gov RI Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Rodionov, Dmitry/0000-0002-0939-390X; Rajeev, Lara/0000-0002-0106-9195 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; Sanford-Burnham Medical Research Institute; [DE-SC0004999] FX This work was conducted by Ecosystems and Networks Integrated with Genes and Molecular Assemblies (ENIGMA; http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under contracts no. DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory and DE-SC0004999 with Sanford-Burnham Medical Research Institute and Lawrence Berkeley National Laboratory. NR 46 TC 6 Z9 6 U1 1 U2 15 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD OCT PY 2013 VL 195 IS 19 BP 4466 EP 4475 DI 10.1128/JB.00679-13 PG 10 WC Microbiology SC Microbiology GA 216YO UT WOS:000324323000016 PM 23913324 ER PT J AU Gordon, RD Qiu, W Romanov, V Lam, K Soloveychik, M Benetteraj, D Battaile, KP Chirgadze, YN Pai, EF Chirgadze, NY AF Gordon, Roni D. Qiu, Wei Romanov, Vladimir Lam, Kim Soloveychik, Maria Benetteraj, Diana Battaile, Kevin P. Chirgadze, Yuri N. Pai, Emil F. Chirgadze, Nickolay Y. TI Crystal structure of the CN-hydrolase SA0302 from the pathogenic bacterium Staphylococcus aureus belonging to the Nit and NitFhit Branch of the nitrilase superfamily SO JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS LA English DT Article DE nitrilase; CN-hydrolase; Nit-domain; thioredoxin-like activity; protein family ID ALIPHATIC AMIDASE; PROTEIN; REFINEMENT; MATRICES; REVEALS; FAMILY AB The nitrilases include a variety of enzymes with functional specificities of nitrilase, amidase, and hydrolase reactions. The crystal structure of the uncharacterized protein SA0302 from the pathogenic microorganism Staphylococcus aureus is solved at 1.7 angstrom resolution. The protein contains 261 amino acids and presents a four-layer sandwich with a chain topology similar to that of a few known CN-hydrolase folds. In the crystal, the proteins are arranged as dimers whose monomers are related by a pseudo twofold rotation symmetry axis. Analysis of the sequences and structures of CN-hydrolases with known 3D structures shows that SA0302 definitely is a member of Branch 10 (Nit and NitFhit) of the nitrilase superfamily. Enzyme activities and substrate specificities of members of this branch are not yet characterized, in contrast to those of the members of Branches 1-9. Although the sequence identities between Branch 10 members are rather low, less than 30%, five conserved regions are common in this subfamily. Three of them contain functionally important catalytic residues, and the two other newly characterized ones are associated with crucial intramolecular and intermolecular interactions. Sequence homology of the area near the active site shows clearly that the catalytic triad of SA0302 is Glu41-Lys110-Cys146. We suggest also that the active site includes a fourth residue, the closely located Glu119. Despite an extensive similarity with other Nit-family structural folds, SA0302 displays an important difference. Protein loop 111-122, which follows the catalytic Lys110, is reduced to half the number of amino acids found in other Nit-family members. This leaves the active site fully accessible to solvent and substrates. We have identified conservative sequence motifs around the three core catalytic residues, which are inherent solely to Branch 10 of the nitrilase superfamily. On the basis of these new sequence fingerprints, 10 previously uncharacterized proteins also could be assigned to this hydrolase subfamily. An animated interactive 3D complement (I3DC) is available in Proteopedia at C1 [Gordon, Roni D.; Qiu, Wei; Romanov, Vladimir; Lam, Kim; Soloveychik, Maria; Benetteraj, Diana; Pai, Emil F.; Chirgadze, Nickolay Y.] Princess Margaret Hosp, Ontario Canc Inst, Campbell Canc Res Inst, Univ Hlth Network, Toronto, ON M5G 2C4, Canada. [Battaile, Kevin P.] Argonne Natl Lab, Adv Photon Source, IMCA CAT, Hauptman Woodward Med Res Inst, Argonne, IL 60439 USA. [Chirgadze, Yuri N.] Russian Acad Sci, Inst Prot Res, Pushchino 142292, Moscow Region, Russia. [Pai, Emil F.] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada. [Pai, Emil F.] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A8, Canada. [Pai, Emil F.] Univ Toronto, Dept Med Biophys, Toronto, ON M5S 1A8, Canada. [Chirgadze, Nickolay Y.] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON M5S 1A8, Canada. RP Chirgadze, NY (reprint author), Princess Margaret Hosp, Ontario Canc Inst, Campbell Canc Res Inst, Univ Hlth Network, Toronto, ON M5G 2C4, Canada. EM nchirgad@uhnresearch.ca OI Battaile, Kevin/0000-0003-0833-3259; Pai, Emil/0000-0002-1162-7242 FU Ontario Research and Development Challenge Fund [99-SEP-0512]; Canadian Research Chairs program; Hauptman-Woodward Medical Research Institute; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge a grant from the Ontario Research and Development Challenge Fund (99-SEP-0512). We also would like to thank Affinium Pharmaceuticals, Inc., Toronto, for their contribution at earlier stages of the project. Emil F. Pai acknowledges support from the Canadian Research Chairs program. Use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman-Woodward Medical Research Institute. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 24 TC 1 Z9 1 U1 0 U2 8 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0739-1102 J9 J BIOMOL STRUCT DYN JI J. Biomol. Struct. Dyn. PD OCT 1 PY 2013 VL 31 IS 10 BP 1057 EP 1065 DI 10.1080/07391102.2012.719111 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 212SC UT WOS:000324002100003 PM 23607706 ER PT J AU Du, Q Gunzburger, M Lehoucq, RB Zhou, K AF Du, Qiang Gunzburger, Max Lehoucq, R. B. Zhou, Kun TI Analysis of the Volume-Constrained Peridynamic Navier Equation of Linear Elasticity SO JOURNAL OF ELASTICITY LA English DT Article DE Peridynamic theory; Navier equation; Nonlocal operators; Vector calculus; Volume-constrained problems ID BOUNDARY-VALUE-PROBLEMS; STATES AB Well-posedness results for the state-based peridynamic nonlocal continuum model of solid mechanics are established with the help of a nonlocal vector calculus. The peridynamic strain energy density for an elastic constitutively linear anisotropic heterogeneous solid is expressed in terms of the field operators of that calculus, after which a variational principle for the equilibrium state is defined. The peridynamic Navier equilibrium equation is then derived as the first-order necessary conditions and are shown to reduce, for the case of homogeneous materials, to the classical Navier equation as the extent of nonlocal interactions vanishes. Then, for certain peridynamic constitutive relations, the peridynamic energy space is shown to be equivalent to the space of square-integrable functions; this result leads to well-posedness results for volume-constrained problems of both the Dirichlet and Neumann types. Using standard results, well-posedness is also established for the time-dependent peridynamic equation of motion. C1 [Du, Qiang; Zhou, Kun] Penn State Univ, Dept Math, University Pk, PA 16802 USA. [Gunzburger, Max] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Lehoucq, R. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lehoucq, RB (reprint author), Sandia Natl Labs, POB 5800,MS 1320, Albuquerque, NM 87185 USA. EM qdu@math.psu.edu; gunzburg@fsu.edu; rblehou@sandia.gov; zhou@math.psu.edu RI Du, Qiang/B-1021-2008 OI Du, Qiang/0000-0002-1067-8937 FU U.S. Department of Energy [DE-SC0005346, DE-SC0004970, DE-AC04-94AL85000]; U.S. NSF [DMS-1016073, DMS-1013845]; U.S. Department of Energy through the Office of Advanced Scientific Computing Research, DOE Office of Science [FWP-09-014290] FX We thank Stewart Silling for some helpful discussions and the derivation in Sect. 2.1. Q. Du supported in part by the U.S. Department of Energy grant DE-SC0005346 and the U.S. NSF grant DMS-1016073.; M. Gunzburger supported in part by the U.S. Department of Energy grant number DE-SC0004970 and U.S. NSF grant number DMS-1013845.; R. Lehoucq supported in part by the U.S. Department of Energy grant number FWP-09-014290 through the Office of Advanced Scientific Computing Research, DOE Office of Science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94AL85000. NR 22 TC 22 Z9 23 U1 0 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0374-3535 J9 J ELASTICITY JI J. Elast. PD OCT PY 2013 VL 113 IS 2 BP 193 EP 217 DI 10.1007/s10659-012-9418-x PG 25 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 219HT UT WOS:000324497600004 ER PT J AU Wang, Y Rutqvist, J AF Wang, Yuan Rutqvist, Jonny TI Non-uniqueness of Beltrami-Schaefer Stress Functions SO JOURNAL OF ELASTICITY LA English DT Article DE Beltrami-Schaefer stress functions; Non-uniqueness; General solutions; Elasticity ID CONTINUUM-MECHANICS; COMPLETENESS AB Beltrami and Schaefer derived solutions for the equilibrium equations of an elastic objective free of body force, and Gurtin proved that the solutions are complete, i.e., proved that Beltrami-Schaefer stress functions are general solutions of the equilibrium equations. In this paper we show that the Beltrami-Schaefer stress functions are not unique, and we determine their degree of non-uniqueness. Finally, we present two applications of the non-uniqueness as remarks. C1 [Wang, Yuan] Hohai Univ, Coll Civil & Transportat Engn, Minist Educ Geomech & Embankment Engn, Key Lab, Nanjing 210098, Jiangsu, Peoples R China. [Wang, Yuan; Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Wang, Y (reprint author), Hohai Univ, Coll Civil & Transportat Engn, Minist Educ Geomech & Embankment Engn, Key Lab, Nanjing 210098, Jiangsu, Peoples R China. EM wangyuan@hhu.edu.cn RI Rutqvist, Jonny/F-4957-2015 OI Rutqvist, Jonny/0000-0002-7949-9785 FU National Natural Science Foundation [51179060]; Education Ministry Foundation of China [20110094130002]; 111 Project of China [B13024]; Program for Changjiang Scholars and Innovative Research Team in University of China [IRT1125]; U.S. Dept. of Energy [DE-AC02-05CH11231] FX The paper was supported by the National Natural Science Foundation (No. 51179060) and the Education Ministry Foundation (No. 20110094130002) of China, the 111 Project of China (No. B13024), the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT1125) and in part, supported by the U.S. Dept. of Energy under contract No. DE-AC02-05CH11231. NR 11 TC 2 Z9 2 U1 0 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0374-3535 J9 J ELASTICITY JI J. Elast. PD OCT PY 2013 VL 113 IS 2 BP 283 EP 288 DI 10.1007/s10659-012-9422-1 PG 6 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 219HT UT WOS:000324497600008 ER PT J AU Ozga, K Lakshminarayana, G Dospial, M Tkaczyk, S Fedorchuk, AO AF Ozga, K. Lakshminarayana, G. Dospial, M. Tkaczyk, S. Fedorchuk, A. O. TI Optoelectronic operation in ferroic [NH2(C2H5)(2)](2)CuxCo1-xCl4 nanocomposites SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS LA English DT Article ID OLYGOETHER PHOTOPOLYMER MATRICES; TEMPERATURE ANOMALIES; CRYSTALS; NANOCRYSTALLITES; BIREFRINGENCE; FIELD AB The complex studies of optically induced piezooptics and second harmonic generation (SHG) are performed for the [NH2(C2H5)(2)](2)CuxCo1-xCl4 nanocomposites in a form of films and bulks. The corresponding nanoparticles (NP) were embedded into different polymer matrices with content of NP varying from 1 % up to 9 % in weight units. The changes of the photoinduced optical SHG were caused by simultaneous illumination of two bicolour coherent laser beams and simultaneously applied dc-electric field at different temperatures, above glass transition temperature. The fundamental 1,064 nm Nd: YAG laser duration was equal to 12 ns. A comparison of the same features with the analogous crystals doped with Fe2+ was carried out. The samples doped by Fe3+ ions have shown substantially less photo induced SHG up to one order. The time kinetics of the photoinduced changes after the switching off the external laser fields was studied. Temperature dependences of the piezooptics and the SHG near the incommensurate phase existence were explored. C1 [Ozga, K.] Czestochowa Tech Univ, Dept Elect Engn, PL-42201 Czestochowa, Poland. [Lakshminarayana, G.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, Los Alamos, NM 87545 USA. [Dospial, M.] Czestochowa Tech Univ, Inst Mat Sci & Engn, PL-42200 Czestochowa, Poland. [Tkaczyk, S.] J Dlugosh Univ Czestochowa, Inst Phys, Czestochowa, Poland. [Fedorchuk, A. O.] Army Acad, Dept Chem, UA-79012 Lvov, Ukraine. RP Fedorchuk, AO (reprint author), Army Acad, Dept Chem, 32 Gvardiyska St, UA-79012 Lvov, Ukraine. EM ft.1958@yahoo.co.uk RI Dospial, Marcin/A-9130-2011; OI Dospial, Marcin/0000-0002-7944-2586; Gandham, Lakshminarayana/0000-0002-1458-9368 FU National Polish Grant [IP2011 039671] FX This work was performed within a framework of National Polish Grant IP2011 039671. NR 15 TC 1 Z9 1 U1 2 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-4522 J9 J MATER SCI-MATER EL JI J. Mater. Sci.-Mater. Electron. PD OCT PY 2013 VL 24 IS 10 BP 4137 EP 4141 DI 10.1007/s10854-013-1372-2 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 216ZK UT WOS:000324325800077 ER PT J AU Nesterov, AI Berman, GP Martinez, JMS Sayre, RT AF Nesterov, Alexander I. Berman, Gennady P. Sanchez Martinez, Jose Manuel Sayre, Richard T. TI Noise-assisted quantum electron transfer in photosynthetic complexes SO JOURNAL OF MATHEMATICAL CHEMISTRY LA English DT Article DE Non-Hermitian Hamiltonian; Photosynthetic complexes; Electron transfer; Noise; Sink ID PHYSIOLOGICAL TEMPERATURE; CHARGE SEPARATION; PROTEIN MOTION; PHOTOSYSTEM-II; LIGHT; COHERENCE; TRANSITION; CONTINUUM; DYNAMICS; ENERGY AB Electron transfer (ET) between primary electron donor and acceptor is modeled in the photosynthetic complexes. Our model includes (i) two discrete energy levels associated with donor and acceptor, which are directly interacting and (ii) two continuum manifolds of electron energy levels ("sinks"), each interacting with the donor and acceptor. We also introduce external (classical) noise which acts on both donor and acceptor. We derive a closed system of integro-differential equations which describes the non-Markovian quantum dynamics of the ET. A region of parameters is found in which the ET dynamics can be simplified, and described by coupled ordinary differential equations. Using these simplified equations, both cases of sharp and flat redox potentials are analyzed. We analytically and numerically obtain the characteristic parameters that optimize the ET rates and efficiency in this system. In particular, we demonstrate that even for flat redox potential a simultaneous influence of sink and noise can significantly increase the efficiency of the ET. We discuss a relation between our approach and the Marcus theory of ET. C1 [Nesterov, Alexander I.; Sanchez Martinez, Jose Manuel] Univ Guadalajara, CUCEI, Dept Fis, Guadalajara 44420, Jalisco, Mexico. [Berman, Gennady P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Sayre, Richard T.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Sayre, Richard T.] New Mexico Consortium, Los Alamos, NM 87544 USA. RP Nesterov, AI (reprint author), Univ Guadalajara, CUCEI, Dept Fis, Av Revoluc 1500, Guadalajara 44420, Jalisco, Mexico. EM nesterov@cencar.udg.mx; gpb@lanl.gov; jmsm.manuel@gmail.com; rsayre@newmexicoconsortium.org OI Nesterov, Alexander/0000-0002-4801-4570; Sayre, Richard/0000-0002-3153-7084 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; U.S. Department of Energy [DE-SC0001295]; CONACyT [15349] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. RTS acknowledges the U.S. Department of Energy-DE-SC0001295 for support of research regarding the organization of electron donors and acceptors in reaction center complexes. AIN acknowledges the support from the CONACyT, Grant No. 15349. NR 46 TC 2 Z9 2 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0259-9791 J9 J MATH CHEM JI J. Math. Chem. PD OCT PY 2013 VL 51 IS 9 BP 2514 EP 2541 DI 10.1007/s10910-013-0226-8 PG 28 WC Chemistry, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Chemistry; Mathematics GA 216GA UT WOS:000324268800017 ER PT J AU Kawano, T Chadwick, MB AF Kawano, Toshihiko Chadwick, Mark B. TI Estimation of Pu-239 independent and cumulative fission product yields from the chain yield data using a Bayesian technique SO JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY LA English DT Article DE fission product yield; nuclear data; Bayesian method; uncertainty; evaluated nuclear data library; plutonium-239; ENDF; B-VII.1 ID NUCLEAR-DATA; UNCERTAINTIES; ENDF/B-VII.1; NEUTRONS AB The independent and cumulative fission product yields (FPYs) are obtained by using the Bayesian technique based on the evaluated mass chain yield, where required constraints such as the normalization can be straightforwardly included. We apply this technique to the Pu-239 FPY data at neutron incident energies of 0.5, 2.0, and 14 MeV, where the most updated mass chain yield ENDF/B-VII.1 data are available. The obtained yield data are compared with the evaluated values by England and Rider in ENDF/B-VI, and differences from their values are investigated. We show that the modern decay data used, such as branching ratios to ground and metastable states, cause differences in the evaluated individual and cumulative fission yields. C1 [Kawano, Toshihiko; Chadwick, Mark B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kawano, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kawano@lanl.gov FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We thank S. Holloway for providing the decay data in CINDER. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 24 TC 4 Z9 4 U1 0 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0022-3131 J9 J NUCL SCI TECHNOL JI J. Nucl. Sci. Technol. PD OCT 1 PY 2013 VL 50 IS 10 BP 1034 EP 1042 DI 10.1080/00223131.2013.830580 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 212QO UT WOS:000323998100007 ER PT J AU Wissdorf, W Lorenz, M Pohler, T Honen, H Benter, T AF Wissdorf, Walter Lorenz, Matthias Poehler, Thorsten Hoenen, Herwart Benter, Thorsten TI Atmospheric Pressure Ion Source Development: Experimental Validation of Simulated Ion Trajectories within Complex Flow and Electrical Fields SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE CFD; SIMION; SDS; DIA; APLI ID IONIZATION MASS-SPECTROMETRY; INTERFACE AB Three-dimensionally (3D) resolved ion trajectory calculations within the complex viscous flow field of an atmospheric pressure ion source are presented. The model calculations are validated with spatially resolved measurements of the relative sensitivity distribution within the source enclosure, referred to as the distribution of ion acceptance (DIA) of the mass analyzer. In previous work, we have shown that the DIA shapes as well as the maximum signal strengths strongly depend on ion source operational parameters such as gas flows and temperatures, as well as electrical field gradients established by various source electrode potentials (e.g., capillary inlet port potential and spray shield potential). In all cases studied, distinct, reproducible, and, to some extent, surprising DIA patterns were observed. We have thus attempted to model selected experimental operational source modes (called operational points) using a validated computational flow dynamics derived 3D-velocity field as an input parameter set for SIMION/SDS, along with a suite of custom software for data analysis and parameter set processing. Despite the complexity of the system, the modeling results reproduce the experimentally derived DIA unexpectedly well. It is concluded that SIMION/SDS in combination with accurate computational fluid dynamics (CFD) input data and adequate analysis software is capable of successfully modeling operational points of an atmospheric pressure ion (API) source. This approach should be very useful in the computer-aided design of future API sources. C1 [Wissdorf, Walter; Benter, Thorsten] Univ Wuppertal, Inst Pure Appl Mass Spectrometry Phys & Theoret C, D-42119 Wuppertal, Germany. [Lorenz, Matthias] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Poehler, Thorsten; Hoenen, Herwart] Rhein Westfal TH Aachen, Inst Jet Prop & Turbomachinery, D-52062 Aachen, Germany. RP Wissdorf, W (reprint author), Univ Wuppertal, Inst Pure Appl Mass Spectrometry Phys & Theoret C, D-42119 Wuppertal, Germany. EM wissdorf@uni-wuppertal.de RI Lorenz, Matthias/F-8273-2016 OI Lorenz, Matthias/0000-0003-0867-8548 FU German Research Foundation (DFG) [BE BE2124/6-1]; Institute of Pure and Applied Mass Spectrometry, University of Wuppertal, Germany FX Financial support of the German Research Foundation (DFG project BE BE2124/6-1) is gratefully acknowledged. W. W. acknowledges support through a graduate student research stipend from the Institute of Pure and Applied Mass Spectrometry, University of Wuppertal, Germany. NR 37 TC 10 Z9 10 U1 0 U2 26 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD OCT PY 2013 VL 24 IS 10 BP 1456 EP 1466 DI 10.1007/s13361-013-0646-5 PG 11 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 215TV UT WOS:000324234300002 PM 23812870 ER PT J AU Piatkivskyi, A Osburn, S Jaderberg, K Grzetic, J Steill, JD Oomens, J Zhao, JF Lau, JKC Verkerk, UH Hopkinson, AC Siu, KWM Ryzhov, V AF Piatkivskyi, Andrii Osburn, Sandra Jaderberg, Kendall Grzetic, Josipa Steill, Jeffrey D. Oomens, Jos Zhao, Junfang Lau, Justin Kai-Chi Verkerk, Udo H. Hopkinson, Alan C. Siu, K. W. Michael Ryzhov, Victor TI Erratum to: Structure and Reactivity of the Distonic and Aromatic Radical Cations of Tryptophan (vol 24, pg 1620, 2013) SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Correction C1 [Piatkivskyi, Andrii; Osburn, Sandra; Jaderberg, Kendall; Ryzhov, Victor] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Piatkivskyi, Andrii; Osburn, Sandra; Jaderberg, Kendall; Ryzhov, Victor] No Illinois Univ, Ctr Biochem & Biophys Studies, De Kalb, IL 60115 USA. [Grzetic, Josipa; Steill, Jeffrey D.; Oomens, Jos] FOM Inst Plasma Phys, NL-3439 MN Nieuwegein, Netherlands. [Grzetic, Josipa; Steill, Jeffrey D.; Oomens, Jos] Univ Amsterdam, NL-1098 XH Amsterdam, Netherlands. [Grzetic, Josipa; Steill, Jeffrey D.; Oomens, Jos] Radboud Univ Nijmegen, FELIX Facil, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands. [Zhao, Junfang; Lau, Justin Kai-Chi; Verkerk, Udo H.; Hopkinson, Alan C.; Siu, K. W. Michael] York Univ, Dept Chem, Toronto, ON M3J 2R7, Canada. [Zhao, Junfang; Lau, Justin Kai-Chi; Verkerk, Udo H.; Hopkinson, Alan C.; Siu, K. W. Michael] York Univ, Ctr Res Mass Spectrometry, Toronto, ON M3J 2R7, Canada. [Steill, Jeffrey D.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Verkerk, UH (reprint author), York Univ, Dept Chem, Toronto, ON M3J 2R7, Canada. EM uverkerk@yorku.ca; ach@yorku.ca; ryzhov@niu.edu RI Oomens, Jos/F-9691-2015 NR 1 TC 1 Z9 1 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD OCT PY 2013 VL 24 IS 10 BP 1620 EP 1620 DI 10.1007/s13361-013-0708-8 PG 1 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 215TV UT WOS:000324234300021 ER PT J AU Chen, YQ Rajashankar, KR Yang, Y Agnihothram, SS Liu, C Lin, YL Baric, RS Li, F AF Chen, Yaoqing Rajashankar, Kanagalaghatta R. Yang, Yang Agnihothram, Sudhakar S. Liu, Chang Lin, Yi-Lun Baric, Ralph S. Li, Fang TI Crystal Structure of the Receptor-Binding Domain from Newly Emerged Middle East Respiratory Syndrome Coronavirus SO JOURNAL OF VIROLOGY LA English DT Article ID MOUSE HEPATITIS-VIRUS; SPIKE PROTEIN; SARS CORONAVIRUS; MACROMOLECULAR STRUCTURES; FUNCTIONAL RECEPTOR; MURINE CORONAVIRUS; BOVINE CORONAVIRUS; AMINOPEPTIDASE-N; SIALIC-ACID; INFECTION AB The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 77 people, with a fatality rate of more than 50%. Alarmingly, the virus demonstrates the capability of human-to-human transmission, raising the possibility of global spread and endangering world health and economy. Here we have identified the receptor-binding domain (RBD) from the MERS-CoV spike protein and determined its crystal structure. This study also presents a structural comparison of MERS-CoV RBD with other coronavirus RBDs, successfully positioning MERS-CoV on the landscape of coronavirus evolution and providing insights into receptor binding by MERS-CoV. Furthermore, we found that MERS-CoV RBD functions as an effective entry inhibitor of MERS-CoV. The identified MERS-CoV RBD may also serve as a potential candidate for MERS-CoV subunit vaccines. Overall, this study enhances our understanding of the evolution of coronavirus RBDs, provides insights into receptor recognition by MERS-CoV, and may help control the transmission of MERS-CoV in humans. C1 [Chen, Yaoqing; Yang, Yang; Liu, Chang; Lin, Yi-Lun; Li, Fang] Univ Minnesota, Sch Med, Dept Pharmacol, Minneapolis, MN 55455 USA. [Rajashankar, Kanagalaghatta R.] Cornell Univ, Dept Chem & Chem Biol, NE CAT, Adv Photon Source, Argonne, IL USA. [Agnihothram, Sudhakar S.; Baric, Ralph S.] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC USA. RP Li, F (reprint author), Univ Minnesota, Sch Med, Dept Pharmacol, Minneapolis, MN 55455 USA. EM lifang@umn.edu RI Yang, Yang/R-7215-2016; chen, yaoqing/S-2623-2016 OI Yang, Yang/0000-0001-9061-3828; chen, yaoqing/0000-0002-1278-3327 FU NIH [R01AI089728, R01AI085524, 1U19AI100625, 8P41GM103403-10]; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by NIH grant R01AI089728 (to F. Li), by NIH grants R01AI085524 and 1U19AI100625 (to R. S. Baric), and by NIH grant 8P41GM103403-10 (to the Northeastern Collaborative Access Team beamlines at the Advanced Photon Source). Use of the Advanced Photon Source was supported by the U.S. DOE under contract DE-AC02-06CH11357. Computer resources were provided by the Basic Sciences Computing Laboratory of the University of Minnesota Supercomputing Institute. NR 46 TC 43 Z9 43 U1 2 U2 32 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD OCT PY 2013 VL 87 IS 19 BP 10777 EP 10783 DI 10.1128/JVI.01756-13 PG 7 WC Virology SC Virology GA 214WV UT WOS:000324169200032 PM 23903833 ER PT J AU Jarman, RH Bafia, J Gebreslasse, T Ingram, BJ Carter, JD AF Jarman, Richard H. Bafia, Julie Gebreslasse, Tsige Ingram, Brian J. Carter, J. David TI Synthesis of the p-type semiconducting ternary oxide CuAlO2 using the Pechini method SO MATERIALS RESEARCH BULLETIN LA English DT Article DE Oxides; Semiconductors; Chemical synthesis; X-ray diffraction; Phase equilibria ID TRANSPARENT THIN-FILMS; NOBLE METAL OXIDES; CHEMICAL-SYNTHESIS; HIGH-CONDUCTIVITY; SINGLE-CRYSTAL; ALUMINATE; CHEMISTRY; GROWTH AB The synthesis of the delafossite phase CuAlO2 using the Pechini method was investigated. Powder X-ray diffraction data showed that pure, single-phase samples were obtained after only 3 h heating at 1100 degrees C. CuAl2O4, which contains Cu(II) rather than Cu(I), was the dominant phase between 700 and 1100 degrees C. Conversion to CuAlO2 is promoted by the positive entropy change associated with the evolution of oxygen. No mixed Cu-Al oxide was formed below 700 degrees C. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Jarman, Richard H.; Bafia, Julie; Gebreslasse, Tsige] Coll DuPage, Glen Ellyn, IL 60137 USA. [Ingram, Brian J.; Carter, J. David] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Jarman, RH (reprint author), Coll DuPage, 425 Fawell Blvd, Glen Ellyn, IL 60137 USA. EM Jarman@cod.edu FU National Science Foundation under Undergraduate Research Collaborative (URC) [CHE-0621794] FX Work conducted in part under the Faculty and Student Team (FaST) program, 2008. J. Bafia and T. Gebreslasse were supported by the National Science Foundation under grant CHE-0621794 Undergraduate Research Collaborative (URC). For the X-ray diffraction data, we thank Dr. Matthias Zeller, Ph.D. Senior Scientist and Crystallographer at the STaRBURSTT Cyber Instrumentation Consortium, Youngstown State University, Youngstown, Ohio. NR 23 TC 6 Z9 6 U1 4 U2 74 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 J9 MATER RES BULL JI Mater. Res. Bull. PD OCT PY 2013 VL 48 IS 10 BP 3916 EP 3918 DI 10.1016/j.materresbull.2013.06.003 PG 3 WC Materials Science, Multidisciplinary SC Materials Science GA 213RQ UT WOS:000324077700043 ER PT J AU Ozga, K Lakshminarayana, G Szota, M Nabialek, M Tkaczyk, S Kapustianyk, V Rudyk, V Myronchuk, G Danylchuk, S Fedorchuk, AO AF Ozga, K. Lakshminarayana, G. Szota, M. Nabialek, M. Tkaczyk, S. Kapustianyk, V. Rudyk, V. Myronchuk, G. Danylchuk, S. Fedorchuk, A. O. TI Optically induced anisotropy and electrooptics in ferroic organic nanocomposites SO OPTICAL AND QUANTUM ELECTRONICS LA English DT Article DE Photoinduced nonlinear optics; Ferroic crystals; Second harmonic generation ID PHASE-TRANSITIONS; CRYSTAL-STRUCTURE; NONLINEAR OPTICS; NANOCRYSTALLITES; BIREFRINGENCE AB The occurrence of linear electrooptics and optical anisotropy is observed in the ferroic crystals embedded into polymethylmethacrylate polymer matrix. The studies were performed for the optically treated bulk crystals and the large-size nanocrystals (with sizes higher than 50 nm) embedded into the polymer matrix. The specimens were both in a form of bulk as well as in the form of the composite films. To understand the mechanisms giving the principal role to the effect we have performed polarized absorption measurements for the samples treated in the external dc-electric field and bicolour 532 nm/1,064 nm laser treatments. The behaviour of the birefringence and of the linear electrooptics coefficients were studied within a temperature range covering the incommensurate phase existence. C1 [Ozga, K.] Czestochowa Tech Univ, Dept Elect Engn, PL-42201 Czestochowa, Poland. [Lakshminarayana, G.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, Los Alamos, NM 87545 USA. [Szota, M.] Czestochowa Tech Univ, Inst Mat Sci & Engn, PL-42200 Czestochowa, Poland. [Nabialek, M.; Tkaczyk, S.] J Dlugosh Univ Czestochowa, Inst Phys, Czestochowa, Poland. [Kapustianyk, V.; Rudyk, V.] Ivan Franko Natl Univ Lviv, Dept Phys, Lvov, Ukraine. [Myronchuk, G.; Danylchuk, S.] Eastern Ukrainian Univ, Lutsk, Ukraine. [Fedorchuk, A. O.] Army Acad, Dept Chem, UA-79012 Lvov, Ukraine. RP Myronchuk, G (reprint author), Eastern Ukrainian Univ, Voli 13, Lutsk, Ukraine. EM galynamyronchuk@yahoo.co.uk OI Gandham, Lakshminarayana/0000-0002-1458-9368 FU Ministry of Science and Higher Education [IP2011 039671] FX This work was performed within a framework of National Grant and the authors wish to thank the Ministry of Science and Higher Education (Grants No. IP2011 039671) for financial support. NR 21 TC 2 Z9 2 U1 3 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0306-8919 J9 OPT QUANT ELECTRON JI Opt. Quantum Electron. PD OCT PY 2013 VL 45 IS 10 BP 1115 EP 1124 DI 10.1007/s11082-013-9728-7 PG 10 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA 215SJ UT WOS:000324230300012 ER PT J AU Cohen, EEW Ahmed, O Kocherginsky, M Shustakova, G Kistner-Griffin, E Salama, JK Yefremenko, V Novosad, V AF Cohen, Ezra E. W. Ahmed, Omar Kocherginsky, Masha Shustakova, Galyna Kistner-Griffin, Emily Salama, Joseph K. Yefremenko, Volodymyr Novosad, Valentyn TI Study of functional infrared imaging for early detection of mucositis in locally advanced head and neck cancer treated with chemoradiotherapy SO ORAL ONCOLOGY LA English DT Article DE Mucositis; Chemoradiation therapy; Head and neck cancer; Imaging ID CHEMOTHERAPY; RADIOTHERAPY; RADIATION; CYTOKINES; THERAPY AB Background and Purpose: Chemoradiotherapy (CRT) has led to improved efficacy in treating locally advanced squamous cell carcinoma of the head and neck (LA-SCCHN) but has led to almost universal in-field mucositis. Patients treated with the same regimen often have differences in mucositis occurrence and severity. Mucositis induced via radiation is known to represent an intense inflammatory response histologically. We hypothesized that patients destined to display severe mucocutaneous toxicity would demonstrate greater alterations in thermal intensity early in therapy than identically treated counterparts. This will allow identification of patients that will require more intensive supportive care using thermal imaging technology. Materials and methods: Subjects with LA-SCCHN (oral cavity or oropharynx) being treated with the identical chemoradiotherapy regimen underwent baseline and weekly thermal imaging. Changes in skin temperature caused by mucositis and dermatitis compared with a reference area (Delta T were calculated and correlated to grade of mucositis based on NCI-CTCAE 3.0. Results: Thirty-four subjects were enrolled. Grade 3 mucositis and dermatitis was observed in 53% and 21%, respectively. We observed a statistically significant positive association between an early rise in Delta T and mucositis grade (p value = 0.03). Conclusions: Thermal imaging is able to detect small and early changes in skin surface temperature that may be associated with development of mucositis in patients being treated with chemoradiotherapy. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Cohen, Ezra E. W.; Ahmed, Omar; Shustakova, Galyna] Univ Chicago, Dept Med, Chicago, IL 60637 USA. [Kocherginsky, Masha; Kistner-Griffin, Emily] Univ Chicago, Dept Hlth Studies, Chicago, IL 60637 USA. [Salama, Joseph K.] Univ Chicago, Dept Radiat & Cellular Oncol, Chicago, IL 60637 USA. [Cohen, Ezra E. W.] Univ Chicago, Ctr Comprehens Canc, Chicago, IL 60637 USA. [Yefremenko, Volodymyr; Novosad, Valentyn] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Shustakova, Galyna] B Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine. RP Cohen, EEW (reprint author), 900 East 57th St,Room 7146, Chicago, IL 60637 USA. EM ecohen@medicine.bsd.uchicago.edu; Novosad@anl.gov RI Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015 FU UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne''); U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX The work at Argonne National Laboratory was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne''). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 20 TC 1 Z9 1 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1368-8375 J9 ORAL ONCOL JI Oral Oncol. PD OCT PY 2013 VL 49 IS 10 BP 1025 EP 1031 DI 10.1016/j.oraloncology.2013.07.009 PG 7 WC Oncology; Dentistry, Oral Surgery & Medicine SC Oncology; Dentistry, Oral Surgery & Medicine GA 218YD UT WOS:000324467800010 PM 23988569 ER PT J AU Limousin, JM Bickford, CP Dickman, LT Pangle, RE Hudson, PJ Boutz, AL Gehres, N Osuna, JL Pockman, WT McDowell, NG AF Limousin, Jean-Marc Bickford, Christopher P. Dickman, Lee T. Pangle, Robert E. Hudson, Patrick J. Boutz, Amanda L. Gehres, Nathan Osuna, Jessica L. Pockman, William T. McDowell, Nate G. TI Regulation and acclimation of leaf gas exchange in a pinon-juniper woodland exposed to three different precipitation regimes SO PLANT CELL AND ENVIRONMENT LA English DT Article DE acclimation; carbon balance; hydraulic limitation; photosynthesis; pinon-juniper woodland; precipitation manipulation; stomatal conductance; water stress ID CHANGE-TYPE DROUGHT; CARBON-ISOTOPE DISCRIMINATION; SOUTHWESTERN NORTH-AMERICA; TREE MORTALITY; MESOPHYLL CONDUCTANCE; QUERCUS-ILEX; PINUS-EDULIS; DIE-OFF; PHOTOSYNTHETIC CAPACITY; INTERSPECIFIC VARIATION AB Leaf gas-exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas-exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature pinon-juniper Pinus edulis-Juniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (-45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric pinon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas-exchange rates under well-watered conditions, leaf-specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade-off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of pinon under predicted increases in aridity in the southwestern USA. C1 [Limousin, Jean-Marc; Bickford, Christopher P.; Pangle, Robert E.; Hudson, Patrick J.; Boutz, Amanda L.; Gehres, Nathan; Osuna, Jessica L.; Pockman, William T.] 1 Univ New Mexico, Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Bickford, Christopher P.] Kenyon Coll, Dept Biol, Gambier, OH 43022 USA. [Dickman, Lee T.; McDowell, Nate G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Limousin, JM (reprint author), 1 Univ New Mexico, Univ New Mexico, Dept Biol, MSC03 2020, Albuquerque, NM 87131 USA. EM limousin@unm.edu RI Pockman, William/D-4086-2014; Young, Kristina/M-3069-2014; Dickman, Lee/J-2391-2015 OI Pockman, William/0000-0002-3286-0457; Dickman, Lee/0000-0003-3876-7058 FU Department of Energy's Office of Science (BER); Sevilleta LTER [NSF DEB-0620482]; UNM Sevilleta Field Station FX We gratefully acknowledge Judson Hill, Enrico Yepez, Jennifer Plaut, Clif Meyer, Renee Brown, James Elliot and numerous undergraduate assistants, for their efforts in the implementation of this experiment, and Kent Coombs, Ben Specter, Katie Sauer, Laura Pickrell and Jennifer Johnson, for their help during the numerous field campaigns. This project was funded by the Department of Energy's Office of Science (BER) via awards to N.G.M. and W.T.P. The project was also supported by the Sevilleta LTER (NSF DEB-0620482) and UNM Sevilleta Field Station. NR 66 TC 26 Z9 26 U1 3 U2 95 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD OCT PY 2013 VL 36 IS 10 BP 1812 EP 1825 DI 10.1111/pce.12089 PG 14 WC Plant Sciences SC Plant Sciences GA 210MX UT WOS:000323839000006 PM 23461476 ER PT J AU Tan, KM Chang, C Cuff, M Osipiuk, J Landorf, E Mack, JC Zerbs, S Joachimiak, A Collart, FR AF Tan, Kemin Chang, Changsoo Cuff, Marianne Osipiuk, Jerzy Landorf, Elizabeth Mack, Jamey C. Zerbs, Sarah Joachimiak, Andrzej Collart, Frank R. TI Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-Coumaric acid and related aromatic acids SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE ABC transporter; functional annotation; Rhodopseudomonas palustris; solute-binding protein; p-coumaric acid ID THERMAL SHIFT ASSAYS; RHODOPSEUDOMONAS-PALUSTRIS; MASS-SPECTROMETRY; ANAEROBIC DEGRADATION; LIGAND SPECIFICITY; SEQUENCE IDENTITY; ABC TRANSPORTERS; SIGNAL PEPTIDES; DRUG DISCOVERY; BACTERIA AB Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins.Proteins 2013; 81:1709-1726. (c) 2013 Wiley Periodicals, Inc. C1 [Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Joachimiak, Andrzej; Collart, Frank R.] Argonne Natl Lab, Biosci Div, Lemont, IL 60439 USA. [Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Lemont, IL 60439 USA. [Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Lemont, IL 60439 USA. [Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah] Lab Support, On Assignment, Rosemont, IL 60018 USA. RP Collart, FR (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM fcollart@anl.gov OI Collart, Frank/0000-0001-6942-4483 FU Argonne, a U.S. Department of Energy Office of Science laboratory; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357]; National Institutes of Health [GM094585] FX Grant sponsor: Argonne, a U.S. Department of Energy Office of Science laboratory and U.S. Department of Energy, Office of Biological and Environmental Research; Grant number: DE-AC02-06CH11357; Grant sponsor: National Institutes of Health; Grant number: GM094585. NR 68 TC 5 Z9 5 U1 2 U2 49 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 J9 PROTEINS JI Proteins PD OCT PY 2013 VL 81 IS 10 BP 1709 EP 1726 DI 10.1002/prot.24305 PG 18 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 214FA UT WOS:000324115400004 PM 23606130 ER PT J AU Zhao, GX Jin, ZM Wang, YL Allewell, NM Tuchman, M Shi, DS AF Zhao, Gengxiang Jin, Zhongmin Wang, Yanli Allewell, Norma M. Tuchman, Mendel Shi, Dashuang TI Structure and function of Escherichia coli RimK, an ATP-grasp fold, l-glutamyl ligase enzyme SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE RimK enzyme; ATP-grasp fold; post-translational modification of ribosomal protein; poly--glutamate synthetase; folypolyglutamate synthetase ID GLUTATHIONE; DISCOVERY; SYNTHASE AB We report herein the crystal structure of Escherichia coli RimK at a resolution of 2.85 angstrom, an enzyme that catalyzes the post-translational addition of up to 15 C-terminal glutamate residues to ribosomal protein S6. The structure belongs to the ATP-grasp superfamily and is organized as a tetramer, consistent with gel filtration analysis. Each subunit consists of three distinct structural domains and the active site is located in the cleft between these domains. The catalytic reaction appears to occur at the junction between the three domains as ATP binds between the B and C domains, and other substrates bind nearby.Proteins 2013; 81:1847-1854. (c) 2013 Wiley Periodicals, Inc. C1 [Zhao, Gengxiang; Tuchman, Mendel; Shi, Dashuang] George Washington Univ, Childrens Natl Med Ctr, Dept Integrat Syst Biol, Med Genet Res Ctr, Washington, DC 20010 USA. [Jin, Zhongmin] Argonne Natl Lab, Adv Photon Source, Southeast Reg Collaborat Access Team, Argonne, IL 60439 USA. [Wang, Yanli] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20894 USA. [Allewell, Norma M.] Univ Maryland, Dept Cell Biol & Mol Genet, Coll Comp Math & Nat Sci, College Pk, MD 20742 USA. [Allewell, Norma M.] Univ Maryland, Dept Chem & Biochem, Coll Comp Math & Nat Sci, College Pk, MD 20742 USA. [Shi, Dashuang] Gannan Normal Univ, Key Lab Organo Pharmaceut Chem, Ganzhou 341000, Jiangxi, Peoples R China. RP Shi, DS (reprint author), George Washington Univ, Childrens Natl Med Ctr, Dept Integrat Syst Biol, Med Genet Res Ctr, 111 Michigan Ave NW, Washington, DC 20010 USA. EM dshi@cnmcresearch.org FU U. S. Department of Energy, Office of Science and Office of Basic Energy Sciences [W-31-109-Eng-38]; NIH, the National Library of Medicine FX Grant sponsor: The U. S. Department of Energy, Office of Science and Office of Basic Energy Sciences; Grant number: W-31-109-Eng-38; Grant sponsor: Intramural Research Program of the NIH, the National Library of Medicine. NR 17 TC 5 Z9 6 U1 1 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 J9 PROTEINS JI Proteins PD OCT PY 2013 VL 81 IS 10 BP 1847 EP 1854 DI 10.1002/prot.24311 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 214FA UT WOS:000324115400014 PM 23609986 ER PT J AU Qiao, D Zhang, W Pan, TY Crooker, P David, S Feng, Z AF Qiao, D. Zhang, W. Pan, T-Y. Crooker, P. David, S. Feng, Z. TI Evaluation of residual plastic strain distribution in dissimilar metal weld by hardness mapping SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE Equivalent plastic strain; Dissimilar metal weld; Weld residual stress; Strain hardening; Hardness ID COMPLEX JOINTS; FLUID-FLOW; STRESSES; HEAT; DIFFRACTION; STEEL AB The knowledge of residual plastic strains is a prerequisite for studying the stress corrosion cracking in dissimilar metal welds common to nuclear power plant structures. In this work, the distribution of residual equivalent plastic strains in a multipass dissimilar metal weld composed of nickel alloy 82 and austenitic stainless steel 304L is evaluated quantitatively through microhardness mapping. The contribution to hardness from the plastic strain (workhardening) is separated from that from the chemistry variation in the dissimilar metal weld. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermomechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. Finally, the experimental result reveals that the typical post-buttering heat treatment for residual stress relief may not completely eliminate the residual plastic strains in the buttering layer. C1 [Qiao, D.; Zhang, W.; Pan, T-Y.; David, S.; Feng, Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Qiao, D.] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China. [Crooker, P.] Elect Power Res Inst, Palo Alto, CA USA. RP Feng, Z (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM fengz@ornl.gov RI Feng, Zhili/H-9382-2012; Zhang, Wei/B-9471-2013 OI Feng, Zhili/0000-0001-6573-7933; FU Electric Power Research Institute; US Department of Energy [DE-AC05-00OR22725] FX This research is sponsored by the Electric Power Research Institute. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Department of Energy under contract no. DE-AC05-00OR22725. The authors are grateful to Dr Y. Wang, Dr L. Zheng, Dr J. Chen, D. A. Frederick and B. W. Frederick for their assistance in the material processing and testing. NR 26 TC 5 Z9 5 U1 0 U2 23 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1362-1718 EI 1743-2936 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD OCT PY 2013 VL 18 IS 7 BP 624 EP 630 DI 10.1179/1362171813Y.0000000144 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 216VC UT WOS:000324312200012 ER PT J AU Calhoun, CA Wolhnershauser, JA Brown, DW Mulay, RP Garlea, E Agnew, SR AF Calhoun, C. A. Wolhnershauser, J. A. Brown, D. W. Mulay, R. P. Garlea, E. Agnew, S. R. TI Thermal residual strains in depleted alpha-U SO SCRIPTA MATERIALIA LA English DT Article DE Neutron diffraction; Residual stress; Thermal expansion; Crystal plasticity; alpha-Uranium ID URANIUM; TEMPERATURE; DEFORMATION; EVOLUTION; TEXTURE; SLIP AB Lattice strains induced by cooling textured, depleted U, from 500 degrees C to ambient temperature are measured using in situ neutron diffraction and simulated using an elastoplastic self-consistent polycrystal model. The results show that the high anisotropy of the single-crystal thermoelastic response induces thermal stresses sufficient to cause plastic relaxation. Incorporation of 1/2 < 1 (1) over bar 0 >{1 1 0} slip enables modeling of the observed internal strain evolution, although diffusional effects may also contribute to the observed relaxation. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Calhoun, C. A.; Wolhnershauser, J. A.; Mulay, R. P.; Agnew, S. R.] Univ Virginia, Charlottesville, VA 22904 USA. [Brown, D. W.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Agnew, SR (reprint author), Univ Virginia, Charlottesville, VA 22904 USA. EM agnew@virginia.edu FU US Government [DE-AC0500OR-22800] FX The submitted manuscript has been authored by a subcontractor of the US Government under contract DE-AC0500OR-22800. Accordingly, the US Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for US Government purposes. NR 18 TC 3 Z9 3 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD OCT PY 2013 VL 69 IS 8 BP 566 EP 569 DI 10.1016/j.scriptamat.2013.06.004 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 218TS UT WOS:000324456000001 ER PT J AU Tong, Y Dmowski, W Yokoyama, Y Wang, G Liaw, PK Egami, T AF Tong, Y. Dmowski, W. Yokoyama, Y. Wang, G. Liaw, P. K. Egami, T. TI Recovering compressive plasticity of bulk metallic glasses by high-temperature creep SO SCRIPTA MATERIALIA LA English DT Article DE Bulk metallic glasses; Plasticity; Creep; X-ray diffraction ID X-RAY-DIFFRACTION; STRUCTURAL RELAXATION; AMORPHOUS ALLOY; MATRIX COMPOSITES; SHEAR BANDS; STATE; EMBRITTLEMENT; DEFORMATION; ANISOTROPY; TOUGHNESS AB Most bulk metallic glasses fail mechanically in a brittle manner, without much plasticity. Annealing at a temperature below the glass transition temperature typically results in structural relaxation and even more enhanced brittleness. However, we report here that significant plasticity can be recovered if the sample is subjected to stress during annealing, resulting in thermomechanical creep. The structural analysis indicates that the high-temperature creep alleviates the effect of the structural relaxation and thus leads to structural rejuvenation and improved plasticity. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Tong, Y.; Dmowski, W.; Wang, G.; Liaw, P. K.; Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Yokoyama, Y.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dmowski, W (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM wdmowski@utk.edu RI Yokoyama, Yoshihiko/A-8603-2011 FU NSF [DMR-0906744, DMR-0909037]; US Department of Energy (DOE), Office of Science [DE-AC02-06CH11357] FX This work was supported by NSF DMR-0906744. G.W. and P.K.L. acknowledge support by NSF DMR-0909037. We thank J. Almer (APS, 1-ID) for help with the experimental setup. Use of the Advanced Photon Source is supported by the US Department of Energy (DOE), Office of Science, under Contract No. DE-AC02-06CH11357. NR 44 TC 8 Z9 9 U1 8 U2 81 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD OCT PY 2013 VL 69 IS 8 BP 570 EP 573 DI 10.1016/j.scriptamat.2013.06.020 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 218TS UT WOS:000324456000002 ER PT J AU Yao, L Ringer, SP Cairney, JM Miller, MK AF Yao, L. Ringer, S. P. Cairney, J. M. Miller, M. K. TI The anatomy of grain boundaries: Their structure and atomic-level solute distribution SO SCRIPTA MATERIALIA LA English DT Article DE Three-dimensional atom probe; Grain boundaries; Segregation; Nanostructured materials ID PROBE TOMOGRAPHY; SPECIMEN PREPARATION; RECONSTRUCTION AB The full macroscopic parameters of grain boundaries in a nanostructured ferritic alloy have been experimentally measured. A new atom-probe-tomography-based method determines the five degrees of freedom of the orientation relationship of the adjacent grains, and the local variations in the habit plane and solute excesses for tungsten and chromium across the grain boundary with a spatial resolution of up to 1 nm x 1 nm. The method also distinguishes ultrafine precipitates and ferrite-ferrite regions for a full description of the grain boundary. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Yao, L.; Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Ringer, S. P.; Cairney, J. M.] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. [Ringer, S. P.; Cairney, J. M.] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia. RP Yao, L (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM yaol@ornl.gov OI Cairney, Julie/0000-0003-4564-2675 FU US Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division; ORNL's Shared Research Equipment (ShaRE) User Program; DOE-BES; Australian Research Council FX Research supported by the US Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division (L.Y. and M.K.M.). Additional support for APT time was supplied through a user project supported by ORNL's Shared Research Equipment (ShaRE) User Program, which is also sponsored by DOE-BES. S.P.R. and J.M.C. were supported by the Australian Research Council and are grateful for scientific and technical input from the Australian Microscopy & Microanalysis Research Facility (ammrforg.au). NR 20 TC 19 Z9 19 U1 1 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD OCT PY 2013 VL 69 IS 8 BP 622 EP 625 DI 10.1016/j.scriptamat.2013.07.013 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 218TS UT WOS:000324456000015 ER PT J AU Braley, JC Lumetta, GJ Carter, JC AF Braley, Jenifer C. Lumetta, Gregg J. Carter, Jennifer C. TI Combining CMPO and HEH[EHP] for Separating Trivalent Lanthanides from the Transuranic Elements SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE Lanthanide separation; actinide separation; CMPO; HEH[EHP]; PC88A ID ACID EXTRACTANTS; MINOR ACTINIDES; DIAMEX PROCESS; NUCLEAR-FUEL; HDEHP; SOLVENT; OXIDE AB Combining octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) into a single process solvent for separating transuranic elements from liquid high-level waste is explored. The lanthanides and americium can be co-extracted from HNO3 into 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] in n-dodecane. The extraction is relatively insensitive to the HNO3 concentration within 0.1-5 mol/L HNO3. Americium can be selectively stripped from the CMPO/HEH[EHP] solvent into a citrate-buffered N-(2-hydroxyethyl)ethylenediaminetriacetic acid solution. Separation factors >14 can be achieved in the range pH 2.5-3.7, and the separation factors are relatively insensitive to pHa major advantage of this solvent formulation. C1 [Braley, Jenifer C.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Lumetta, Gregg J.; Carter, Jennifer C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lumetta, GJ (reprint author), Pacific NW Natl Lab, POB 999,MSIN P7-25, Richland, WA 99352 USA. EM gregg.lumetta@pnnl.gov FU U.S. Department of Energy, Office of Nuclear Energy, through the Fuel Cycle Research and Development Program; U.S. Department of Energy [DE-AC05-76RL01830] FX This work was funded by the U.S. Department of Energy, Office of Nuclear Energy, through the Fuel Cycle Research and Development Program. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830. NR 18 TC 5 Z9 5 U1 2 U2 15 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0736-6299 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD OCT 1 PY 2013 VL 31 IS 6 BP 567 EP 577 DI 10.1080/07366299.2013.785912 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 212QP UT WOS:000323998200001 ER PT J AU Anderson, TL Braatz, A Ellis, RJ Antonio, MR Nilsson, M AF Anderson, Timothy L. Braatz, Alex Ellis, Ross J. Antonio, Mark R. Nilsson, Mikael TI Synergistic Extraction of Dysprosium and Aggregate Formation in Solvent Extraction Systems Combining TBP and HDBP SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE Synergism; aggregation; reverse micelles; nuclear fuel separation; lanthanides; Small-Angle X-ray Scattering (SAXS) ID 3RD PHASE-FORMATION; NORMAL-BUTYL PHOSPHATE; LIQUID-LIQUID-EXTRACTION; N-OCTANE; NITRIC-ACID; DIALKYLPHOSPHORIC ACID; TRIBUTYL-PHOSPHATE; COMPLEX-FORMATION; TRIVALENT; ACTINIDES AB During treatment of nuclear fuel in the Plutonium/URanium EXtraction (PUREX) process, the extractant tri-n-butyl phosphate (TBP) is known to degrade to dibutylphosphoric acid (HDBP), which increases the extraction of metal ions, thereby inhibiting their stripping from the organic phase. To better understand this phenomenon, we investigated how mixtures of TBP and HDBP influenced the extraction of metal, nitric acid, and water, and correlated the results to aggregated structures in the organic phase. The mole ratios of TBP-HDBP mixtures had a non-linear effect on the extraction of Dy3+ and water from 0.2 M HNO3, indicating synergism. In 2 M HNO3, the TBP:HDBP mole ratio had a more linear relation to Dy3+ and water extraction, so the synergistic effect was less pronounced than in the low acid system. The extraction of nitric acid showed no synergistic effect and follows closely what would be expected in a system using TBP only. The small-angle X-ray scattering (SAXS) data of the 0.2 M acid system showed maximum contrast at a TBP:HDBP mole ratio of 0.25, so that the synergistic mixture is also the most aggregated at 0.2 M acid. The 2 M acid system also showed that the mixed system is more aggregated than the end members, although this does not result in peak extraction. Previous studies of synergistic extraction of metal cations explain the enhanced extraction by increased dehydration of the metal ion. Although our data do not rule out the formation of mixed complexes according to the classical mechanism of synergism, our evidence of increased water extraction and aggregate formation in systems combining TBP and HDBP are complementary to the metal-centric dehydration aspects of the process. The findings in this study give insights into the complex chemistry of solvent extraction, providing a possible link between formation of aggregates in the organic phase and synergistic extraction. C1 [Anderson, Timothy L.; Braatz, Alex; Nilsson, Mikael] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA. [Ellis, Ross J.; Antonio, Mark R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Nilsson, M (reprint author), Univ Calif Irvine, Dept Chem Engn & Mat Sci, 916 Engn Tower, Irvine, CA 92697 USA. EM nilssonm@uci.edu RI ellis, ross/J-1981-2016 OI ellis, ross/0000-0001-7691-5205 FU U.S. Department of Energy through the Nuclear Energy University Program, NEUP [120569, DE-NE0000156]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences [DE-AC02-06CH11357] FX The authors wish to thank the U.S. Department of Energy through the Nuclear Energy University Program, NEUP Contract No. 120569 and DE-NE0000156, for financial support for the experiments and for the HPGe detector, respectively. The IC measurements were carried out in the Metrohm Lab at UC Irvine. The work at Argonne and the use of the Advanced Photon Source are supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences, under contract No DE-AC02-06CH11357. The authors wish to thank Dr. Renato Chiarizia for valuable discussions regarding the theoretical calculations of acid uptake and selection of stability constants. NR 51 TC 7 Z9 7 U1 5 U2 33 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0736-6299 EI 1532-2262 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD OCT 1 PY 2013 VL 31 IS 6 BP 617 EP 633 DI 10.1080/07366299.2013.787023 PG 17 WC Chemistry, Multidisciplinary SC Chemistry GA 212QP UT WOS:000323998200005 ER PT J AU Colon, CFJ Moffat, HK Rao, RR AF Colon, Carlos F. Jove Moffat, Harry K. Rao, Rekha R. TI Modeling of Liquid-Liquid Extraction (LLE) Equilibria Using Gibbs Energy Minimization (GEM) for the System TBP-HNO3-UO2-H2O-Diluent SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE Gibbs Energy Minimization (GEM); Liquid-Liquid Extraction (LLE); Chemical Equilibria; Electrolyte; Organic Liquid ID N-BUTYL PHOSPHATE; HYDROCARBON DILUENT SOLUTIONS; PARTIAL MOLAL PROPERTIES; NITRIC-ACID; URANYL-NITRATE; SOLVENT-EXTRACTION; TRIBUTYL-PHOSPHATE; ACTIVITY-COEFFICIENTS; THERMODYNAMIC PROPERTIES; OSMOTIC COEFFICIENTS AB Liquid-liquid extraction (LLE) is a widely used separation method for an extensive range of metals including actinides. The Gibbs energy minimization (GEM) method is used to compute the complex chemical equilibria for the LLE system HNO3-H2O-UO2(NO3)(2)-TBP plus diluent at 25 degrees C. The nonelectrolyte phase is treated as an ideal mixture defined by eight tri-n-butyl phosphate (TBP) complexes plus the inert diluent. The Pitzer method is used to capture nonidealities in the concentrated electrolyte phase. The generated extraction isotherms are in very good agreement with reported experimental data for various TBP loadings and electrolyte concentrations demonstrating the adequacy of this approach to analyze complex multiphase multicomponent systems. The model is robust and yet flexible allowing for expansion to other LLE systems and coupling with computational tools for parameter analysis and optimization. C1 [Colon, Carlos F. Jove; Moffat, Harry K.; Rao, Rekha R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Colon, CFJ (reprint author), Sandia Natl Labs, POB 5800,MS 0779, Albuquerque, NM 87185 USA. EM cfjovec@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 84 TC 1 Z9 1 U1 2 U2 23 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0736-6299 EI 1532-2262 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD OCT 1 PY 2013 VL 31 IS 6 BP 634 EP 651 DI 10.1080/00397911.2013.785882 PG 18 WC Chemistry, Multidisciplinary SC Chemistry GA 212QP UT WOS:000323998200006 ER PT J AU Mittal, A Decker, SR AF Mittal, Ashutosh Decker, Stephen R. TI Special issue: Application of biotechnology for biofuels: transforming biomass to biofuels SO 3 BIOTECH LA English DT Editorial Material C1 [Mittal, Ashutosh; Decker, Stephen R.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Mittal, A (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. EM Ashutosh.Mittal@nrel.gov NR 17 TC 1 Z9 1 U1 1 U2 4 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2190-5738 EI 2190-572X J9 3 BIOTECH JI 3 Biotech PD OCT PY 2013 VL 3 IS 5 SI SI BP 341 EP 343 DI 10.1007/s13205-013-0122-8 PG 3 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA V39XD UT WOS:000209442800001 PM 28324334 ER PT J AU Rowley, J Decker, SR Michener, W Black, S AF Rowley, John Decker, Stephen R. Michener, William Black, Stuart TI Efficient extraction of xylan from delignified corn stover using dimethyl sulfoxide SO 3 BIOTECH LA English DT Article DE Xylan; Hemicellulose; Plant cell wall; Biomass; Acetylation AB Xylan can be extracted from biomass using either alkali (KOH or NaOH) or dimethyl sulfoxide (DMSO); however, DMSO extraction is the only method that produces a water-soluble xylan. In this study, DMSO extraction of corn stover was studied at different temperatures with the objective of finding a faster, more efficient extraction method. The temperature and time of extraction were compared followed by a basic structural analysis to ensure that no significant structural changes occurred under different temperatures. The resulting data showed that heating to 70 degrees C during extraction can give a yield comparable to room temperature extraction while reducing the extraction time by similar to 90 %. This method of heating was shown to be the most efficient method currently available and was shown to retain the important structural characteristics of xylan extracted with DMSO at room temperature. C1 [Rowley, John] Univ Colorado, Boulder, CO 80309 USA. [Decker, Stephen R.; Michener, William; Black, Stuart] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Decker, SR (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM steve.decker@nrel.gov FU United States Department of Energy, Office of the Biomass Program under National Renewable Energy Laboratory (NREL) [DE-AC36-99GO10337] FX This work was supported by the United States Department of Energy, Office of the Biomass Program under Contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory (NREL). NR 9 TC 2 Z9 2 U1 2 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2190-5738 EI 2190-572X J9 3 BIOTECH JI 3 Biotech PD OCT PY 2013 VL 3 IS 5 SI SI BP 433 EP 438 DI 10.1007/s13205-013-0159-8 PG 6 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA V39XD UT WOS:000209442800011 PM 28324339 ER PT J AU Rodland, KD AF Rodland, Karin D. TI Comprehensive proteomic analyses of TCGA ovarian cancer specimens: Update from CPTAC SO CLINICAL CANCER RESEARCH LA English DT Meeting Abstract C1 [Rodland, Karin D.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 EI 1557-3265 J9 CLIN CANCER RES JI Clin. Cancer Res. PD OCT 1 PY 2013 VL 19 SU S MA IA10 DI 10.1158/1078-0432.OVCA13-IA10 PG 1 WC Oncology SC Oncology GA V40RQ UT WOS:000209496100142 ER PT J AU Miller, EK AF Miller, Edmund K. TI Synthesizing Linear-Array Patterns via Matrix Computation of Element Currents SO IEEE ANTENNAS AND PROPAGATION MAGAZINE LA English DT Article DE Linear arrays; pattern synthesis ID ANTENNA-ARRAYS; DISTRIBUTIONS; CONSTRAINTS; AMPLITUDE; DESIGN; NULLS AB The design of linear arrays to produce a desired radiation pattern, i. e., the pattern-synthesis problem, continues to be of interest, as demonstrated by the number of articles being published on this topic. Varieties of approaches have been developed to deal with this problem. The approach discussed here begins with a specified set of element currents - such as choosing all to be of unit amplitude, for example - the radiation pattern of which is computed. A matrix is constructed, the individual coefficients of which are comprised of the contribution each element current makes to the maxima of this initial radiation pattern. A vector, the entries of which are the desired amplitudes of each maxima in the radiation pattern, is then multiplied by the inverse of this matrix. This operation generates a new set of element currents, the pattern maxima of which may change somewhat in angle relative to those of the initial pattern. This requires that the process be repeated as an iterative sequence of element-current and pattern computations. When the locations of the pattern maxima no longer change in angle and the maxima converge to their specified values, the synthesis is complete. Results from this approach are demonstrated for several pattern types. C1 [Miller, Edmund K.] Los Alamos Natl Lab, Lincoln, CA 95648 USA. EM e.miller@ieee.org NR 24 TC 4 Z9 4 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1045-9243 EI 1558-4143 J9 IEEE ANTENN PROPAG M JI IEEE Antennas Propag. Mag. PD OCT PY 2013 VL 55 IS 5 BP 85 EP 96 PG 12 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA AP9KF UT WOS:000342398000009 ER PT J AU Roncaglia, P Martone, ME Hill, DP Berardini, TZ Foulger, RE Imam, FT Drabkin, H Mungall, CJ Lomax, J AF Roncaglia, Paola Martone, Maryann E. Hill, David P. Berardini, Tanya Z. Foulger, Rebecca E. Imam, Fahim T. Drabkin, Harold Mungall, Christopher J. Lomax, Jane TI The Gene Ontology (GO) Cellular Component Ontology: integration with SAO (Subcellular Anatomy Ontology) and other recent developments SO JOURNAL OF BIOMEDICAL SEMANTICS LA English DT Article DE Gene ontology; Cellular component ontology; Subcellular anatomy ontology; Neuroscience; Annotation; Ontology language; Ontology integration; Neuroscience information framework ID PROTEIN ONTOLOGY; DATABASE; TOOL; REPRESENTATION; COMPLEXES AB Background: The Gene Ontology (GO) (http://www.geneontology.org/) contains a set of terms for describing the activity and actions of gene products across all kingdoms of life. Each of these activities is executed in a location within a cell or in the vicinity of a cell. In order to capture this context, the GO includes a sub-ontology called the Cellular Component (CC) ontology (GO-CCO). The primary use of this ontology is for GO annotation, but it has also been used for phenotype annotation, and for the annotation of images. Another ontology with similar scope to the GO-CCO is the Subcellular Anatomy Ontology (SAO), part of the Neuroscience Information Framework Standard (NIFSTD) suite of ontologies. The SAO also covers cell components, but in the domain of neuroscience. Description: Recently, the GO-CCO was enriched in content and links to the Biological Process and Molecular Function branches of GO as well as to other ontologies. This was achieved in several ways. We carried out an amalgamation of SAO terms with GO-CCO ones; as a result, nearly 100 new neuroscience-related terms were added to the GO. The GO-CCO also contains relationships to GO Biological Process and Molecular Function terms, as well as connecting to external ontologies such as the Cell Ontology (CL). Terms representing protein complexes in the Protein Ontology (PRO) reference GO-CCO terms for their species-generic counterparts. GO-CCO terms can also be used to search a variety of databases. Conclusions: In this publication we provide an overview of the GO-CCO, its overall design, and some recent extensions that make use of additional spatial information. One of the most recent developments of the GO-CCO was the merging in of the SAO, resulting in a single unified ontology designed to serve the needs of GO annotators as well as the specific needs of the neuroscience community. C1 [Roncaglia, Paola; Foulger, Rebecca E.; Lomax, Jane] European Bioinformat Inst, European Mol Biol Lab, Hinxton CB10 1SD, Cambs, England. [Roncaglia, Paola; Hill, David P.; Berardini, Tanya Z.; Foulger, Rebecca E.; Drabkin, Harold; Mungall, Christopher J.; Lomax, Jane] European Bioinformat Inst, European Mol Biol Lab, Gene Ontol Consortium, Hinxton CB10 1SD, Cambs, England. [Martone, Maryann E.; Imam, Fahim T.] Univ Calif San Diego, Dept Neurosci, Ctr Res Biol Syst, San Diego, CA 92103 USA. [Hill, David P.; Drabkin, Harold] Jackson Lab, Bar Harbor, ME 04609 USA. [Berardini, Tanya Z.] Carnegie Inst Sci, Dept Plant Biol, Arabidopsis Informat Resource, Stanford, CA 94305 USA. [Mungall, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Drabkin, Harold] Univ Delaware, Dept Comp & Informat Sci, Ctr Bioinformat & Computat Biol, Newark, DE 19711 USA. RP Roncaglia, P (reprint author), European Bioinformat Inst, European Mol Biol Lab, Wellcome Trust Genome Campus, Hinxton CB10 1SD, Cambs, England. EM paola@ebi.ac.uk OI Foulger, Rebecca/0000-0001-8682-8754; Lomax, Jane/0000-0001-8865-4321; Martone, Maryann/0000-0002-8406-3871 FU National Human Genome Research Institute (NHGRI) P41 grant [5P41HG002273-09]; European Union RTD Programme 'Quality of Life and Management of Living Resources' [QLRI-CT-2001-00981, QLRI-CT-2001-00015]; UniProtKB-GOA groups at EMBL-EBI; National Institute of General Medical Sciences (NIGMS) [GM080646]; European Molecular Biology Laboratory (EMBL); European Bioinformatics Institute Outstation (EMBL-EBI); NIH via the National Institute on Drug Abuse [HHSN271200800035C]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; [HG002273] FX This work was supported by the National Human Genome Research Institute (NHGRI) P41 grant 5P41HG002273-09 to the Gene Ontology Consortium and by the European Union RTD Programme 'Quality of Life and Management of Living Resources' QLRI-CT-2001-00981 and QLRI-CT-2001-00015 to GO and UniProtKB-GOA groups at EMBL-EBI. HJD is supported by HG002273, and National Institute of General Medical Sciences (NIGMS) GM080646). JL is funded by the European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute Outstation (EMBL-EBI) core funds. Support for the Neuroscience Information Framework is provided by a contract from the NIH Neuroscience Blueprint HHSN271200800035C via the National Institute on Drug Abuse. CJM's contribution was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 33 TC 9 Z9 10 U1 0 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2041-1480 J9 J BIOMED SEMANT JI J. Biomed. Semant. PD OCT PY 2013 VL 4 AR 20 DI 10.1186/2041-1480-4-20 PG 11 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA AR6PT UT WOS:000343706100001 PM 24093723 ER PT J AU Xu, TT Close, DM Webb, JD Ripp, SA Sayler, GS AF Xu, Tingting Close, Dan M. Webb, James D. Ripp, Steven A. Sayler, Gary S. TI Autonomously Bioluminescent Mammalian Cells for Continuous and Real-time Monitoring of Cytotoxicity SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Cellular Biology; Issue 80; Toxicity Tests; optical imaging devices (design and techniques); Cytotoxicity; Screening; Optical Imaging; Bacterial Bioluminescence; lux; Mammalian Cell Culture AB Mammalian cell-based in vitro assays have been widely employed as alternatives to animal testing for toxicological studies but have been limited due to the high monetary and time costs of parallel sample preparation that are necessitated due to the destructive nature of firefly luciferase-based screening methods. This video describes the utilization of autonomously bioluminescent mammalian cells, which do not require the destructive addition of a luciferin substrate, as an inexpensive and facile method for monitoring the cytotoxic effects of a compound of interest. Mammalian cells stably expressing the full bacterial bioluminescence (luxCDABEfrp) gene cassette autonomously produce an optical signal that peaks at 490 nm without the addition of an expensive and possibly interfering luciferin substrate, excitation by an external energy source, or destruction of the sample that is traditionally performed during optical imaging procedures. This independence from external stimulation places the burden for maintaining the bioluminescent reaction solely on the cell, meaning that the resultant signal is only detected during active metabolism. This characteristic makes the lux-expressing cell line an excellent candidate for use as a biosentinel against cytotoxic effects because changes in bioluminescent production are indicative of adverse effects on cellular growth and metabolism. Similarly, the autonomous nature and lack of required sample destruction permits repeated imaging of the same sample in real-time throughout the period of toxicant exposure and can be performed across multiple samples using existing imaging equipment in an automated fashion. C1 [Xu, Tingting; Sayler, Gary S.] Oak Ridge Natl Lab, Joint Inst Biol Sci, Oak Ridge, TN 37831 USA. [Close, Dan M.; Ripp, Steven A.; Sayler, Gary S.] 490 BioTech Inc, Washington, DC USA. [Webb, James D.; Ripp, Steven A.; Sayler, Gary S.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. RP Sayler, GS (reprint author), Oak Ridge Natl Lab, Joint Inst Biol Sci, Oak Ridge, TN 37831 USA. EM sayler@utk.edu RI Ripp, Steven/B-2305-2008; Close, Dan/A-4417-2012 OI Ripp, Steven/0000-0002-6836-1764; FU National Science Foundation Division of Chemical, Bioengineering, Environmental, and Transport (CBET) Systems [CBET-0853780, CBET-1159344]; National Institutes of Health, National Institute of Environmental Health Sciences (NIEHS) [1R43ES022567-01]; National Cancer Institute, Cancer Imaging Program [CA127745-01] FX These research efforts were supported by the National Science Foundation Division of Chemical, Bioengineering, Environmental, and Transport (CBET) Systems under award numbers CBET-0853780 and CBET-1159344 and the National Institutes of Health, National Institute of Environmental Health Sciences (NIEHS) under award number 1R43ES022567-01, and the National Cancer Institute, Cancer Imaging Program under award number CA127745-01. The IVIS Lumina instrument used in this work was obtained from the U.S. Army Defense University Research Instrumentation Program. NR 14 TC 1 Z9 1 U1 2 U2 5 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD OCT PY 2013 IS 80 AR UNSP e50972 DI 10.3791/50972 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V36RP UT WOS:000209228800051 PM 24193545 ER PT J AU Pokkuluri, PR Dwulit-Smith, J Duke, NE Wilton, R Mack, JC Bearden, J Rakowski, E Babnigg, G Szurmant, H Joachimiak, A Schiffer, M AF Pokkuluri, P. Raj Dwulit-Smith, Jeff Duke, Norma E. Wilton, Rosemarie Mack, Jamey C. Bearden, Jessica Rakowski, Ella Babnigg, Gyorgy Szurmant, Hendrik Joachimiak, Andrzej Schiffer, Marianne TI Analysis of periplasmic sensor domains from Anaeromyxobacter dehalogenans 2CP-C: Structure of one sensor domain from a histidine kinase and another from a chemotaxis protein SO MICROBIOLOGYOPEN LA English DT Article DE Acetate; chemotaxis; helical bundle; PAS-like; periplasmic sensor domains; sensor histidine kinase ID C-TYPE HEME; SIGNAL-TRANSDUCTION; CRYSTAL-STRUCTURE; GEOBACTER-SULFURREDUCENS; 3-DIMENSIONAL STRUCTURE; FAMILIES DATABASE; ESCHERICHIA-COLI; STRAIN 2CP-C; PAS DOMAIN; COMMON AB Anaeromyxobacter dehalogenans is a delta-proteobacterium found in diverse soils and sediments. It is of interest in bioremediation efforts due to its dechlorination and metal-reducing capabilities. To gain an understanding on A. dehalogenans' abilities to adapt to diverse environments we analyzed its signal transduction proteins. The A. dehalogenans genome codes for a large number of sensor histidine kinases (HK) and methyl-accepting chemotaxis proteins (MCP); among these 23 HK and 11 MCP proteins have a sensor domain in the periplasm. These proteins most likely contribute to adaptation to the organism's surroundings. We predicted their three-dimensional folds and determined the structures of two of the periplasmic sensor domains by X-ray diffraction. Most of the domains are predicted to have either PAS-like or helical bundle structures, with two predicted to have solute-binding protein fold, and another predicted to have a 6-phosphogluconolactonase like fold. Atomic structures of two sensor domains confirmed the respective fold predictions. The Adeh_2942 sensor (HK) was found to have a helical bundle structure, and the Adeh_3718 sensor (MCP) has a PAS-like structure. Interestingly, the Adeh_3718 sensor has an acetate moiety bound in a binding site typical for PAS-like domains. Future work is needed to determine whether Adeh_3718 is involved in acetate sensing by A. dehalogenans. C1 [Pokkuluri, P. Raj; Dwulit-Smith, Jeff; Duke, Norma E.; Wilton, Rosemarie; Babnigg, Gyorgy; Joachimiak, Andrzej; Schiffer, Marianne] Argonne Natl Lab, Argonne, IL 60439 USA. [Duke, Norma E.; Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA. [Mack, Jamey C.; Bearden, Jessica; Rakowski, Ella; Babnigg, Gyorgy; Joachimiak, Andrzej; Schiffer, Marianne] Argonne Natl Lab, Biosci Div, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Szurmant, Hendrik] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA. RP Pokkuluri, PR (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rajp@anl.gov FU U. S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U. S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U. S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 49 TC 1 Z9 1 U1 1 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2045-8827 J9 MICROBIOLOGYOPEN JI MicrobiologyOpen PD OCT PY 2013 VL 2 IS 5 BP 766 EP 777 DI 10.1002/mbo3.112 PG 12 WC Microbiology SC Microbiology GA AP8TK UT WOS:000342351700005 PM 23897711 ER PT J AU Jokela, T Stampfer, M Lorens, J LaBarge, M AF Jokela, Tiina Stampfer, Martha Lorens, James LaBarge, Mark TI The microenvironmental basis of AXL regulation SO MOLECULAR CANCER RESEARCH LA English DT Meeting Abstract C1 [Jokela, Tiina; Stampfer, Martha; LaBarge, Mark] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lorens, James] Univ Bergen, Bergen, Norway. RI Lorens, James/B-9737-2017 OI Lorens, James/0000-0002-6782-3349 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1541-7786 EI 1557-3125 J9 MOL CANCER RES JI Mol. Cancer Res. PD OCT PY 2013 VL 11 SU 10 MA A095 DI 10.1158/1557-3125.ADVBC-A095 PG 1 WC Oncology; Cell Biology SC Oncology; Cell Biology GA V40OL UT WOS:000209487800057 ER PT J AU Pelissier, FA Miyano, M Garbe, JC Stampfer, MR LaBarge, MA AF Pelissier, Fanny A. Miyano, Masaru Garbe, James C. Stampfer, Martha R. LaBarge, Mark A. TI The role of microenvironment in age-related breast cancers SO MOLECULAR CANCER RESEARCH LA English DT Meeting Abstract C1 [Pelissier, Fanny A.; Miyano, Masaru; Garbe, James C.; Stampfer, Martha R.; LaBarge, Mark A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1541-7786 EI 1557-3125 J9 MOL CANCER RES JI Mol. Cancer Res. PD OCT PY 2013 VL 11 SU 10 MA A112 DI 10.1158/1557-3125.ADVBC-A112 PG 1 WC Oncology; Cell Biology SC Oncology; Cell Biology GA V40OL UT WOS:000209487800069 ER PT J AU Stampfer, M Vrba, L Fuchs, L Brothman, A LaBarge, M Futscher, B Garbe, J AF Stampfer, Martha Vrba, Lukas Fuchs, Laura Brothman, Arthur LaBarge, Mark Futscher, Bernard Garbe, James TI Efficient immortalization of normal human mammary epithelial cells using two pathologically relevant agents does not require gross genomic alterations SO MOLECULAR CANCER RESEARCH LA English DT Meeting Abstract C1 [Stampfer, Martha; LaBarge, Mark; Garbe, James] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Vrba, Lukas; Fuchs, Laura; Brothman, Arthur; Futscher, Bernard] Univ Arizona, Tucson, AZ USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1541-7786 EI 1557-3125 J9 MOL CANCER RES JI Mol. Cancer Res. PD OCT PY 2013 VL 11 SU 10 MA B008 PG 2 WC Oncology; Cell Biology SC Oncology; Cell Biology GA V40OL UT WOS:000209487800090 ER PT J AU Stovall, DB Wan, M Miller, LD Cao, P Zhang, Q Stampfer, M Liu, WN Xu, JF Sui, GC AF Stovall, Daniel B. Wan, Meimei Miller, Lance D. Cao, Paul Zhang, Qiang Stampfer, Martha Liu, Wennuan Xu, Jianfeng Sui, Guangchao TI The role and regulation of SOX7 in breast cancer SO MOLECULAR CANCER RESEARCH LA English DT Meeting Abstract C1 [Stovall, Daniel B.; Wan, Meimei; Miller, Lance D.; Cao, Paul; Zhang, Qiang; Liu, Wennuan; Xu, Jianfeng; Sui, Guangchao] Wake Forest Univ, Winston Salem, NC 27109 USA. [Stampfer, Martha] Lawrence Berkley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1541-7786 EI 1557-3125 J9 MOL CANCER RES JI Mol. Cancer Res. PD OCT PY 2013 VL 11 SU 10 MA B025 DI 10.1158/1557-3125.ADVBC-B025 PG 1 WC Oncology; Cell Biology SC Oncology; Cell Biology GA V40OL UT WOS:000209487800101 ER PT J AU Bae, WK Park, YS Lim, J Lee, D Padilha, LA McDaniel, H Robel, I Lee, C Pietryga, JM Klimov, VI AF Bae, Wan Ki Park, Young-Shin Lim, Jaehoon Lee, Donggu Padilha, Lazaro A. McDaniel, Hunter Robel, Istvan Lee, Changhee Pietryga, Jeffrey M. Klimov, Victor I. TI Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes SO NATURE COMMUNICATIONS LA English DT Article ID SEMICONDUCTOR NANOCRYSTALS; CHARGE INJECTION; OPTICAL GAIN; DEVICES; ELECTROLUMINESCENCE; CDSE; CONFINEMENT; SUPPRESSION; POLYMER AB Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection. C1 [Bae, Wan Ki; Park, Young-Shin; Padilha, Lazaro A.; McDaniel, Hunter; Robel, Istvan; Pietryga, Jeffrey M.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Bae, Wan Ki] Korea Inst Sci & Technol, Photoelect Hybrid Res Ctr, Seoul 136791, South Korea. [Lim, Jaehoon; Lee, Donggu; Lee, Changhee] Seoul Natl Univ, Inter Univ Semicond Res Ctr, Sch Elect Engn & Comp Sci, Seoul 151744, South Korea. [Padilha, Lazaro A.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov RI Padilha, Lazaro/G-1523-2013; Robel, Istvan/D-4124-2011; Lee, Changhee/A-2471-2009; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Robel, Istvan/0000-0002-9738-7728; Lee, Changhee/0000-0003-2800-8250; Park, Young-Shin/0000-0003-4204-1305; Klimov, Victor/0000-0003-1158-3179 FU Chemical Sciences, Biosciences and Geosciences Division of Office of Science, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by the Chemical Sciences, Biosciences and Geosciences Division of Office of Science, Office of Basic Energy Sciences, US Department of Energy. NR 37 TC 126 Z9 127 U1 14 U2 71 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2013 VL 4 AR 2661 DI 10.1038/ncomms3661 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 245ON UT WOS:000326473300002 PM 24157692 ER PT J AU Kodysh, JB Omitaomu, OA Bhaduri, BL Neish, BS AF Kodysh, Jeffrey B. Omitaomu, Olufemi A. Bhaduri, Budhendra L. Neish, Bradley S. TI Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems SO SUSTAINABLE CITIES AND SOCIETY LA English DT Article DE Solar radiation; Irradiation; LiDAR; Hemispherical viewsheds; GIS; Photovoltaic system AB In this paper, a methodology for estimating solar potential on multiple building rooftops is presented. The objective of this methodology is to estimate the daily or monthly solar energy on individual buildings in a city/region using light detection and ranging (LiDAR) data and a geographic information system (GIS) approach. Conceptually, the methodology is based on the upward-looking hemispherical viewshed algorithm, but applied using an area-based modeling approach. The methodology considers input parameters, such as surface orientation, shadowing effect, elevation, and atmospheric conditions that influence solar intensity on the earth surface. The methodology has been implemented for some 212,000 buildings in Knox County, Tennessee, USA. Based on the results obtained, the methodology seems to be adequate for estimating solar radiation on multiple building rooftops. The use of LiDAR data improves the radiation potential estimates in terms of the model predictive error and the spatial pattern of the model outputs. This methodology could help cities/regions interested in sustainable projects to quickly identify buildings with higher potentials for roof-mounted photovoltaic systems. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kodysh, Jeffrey B.; Omitaomu, Olufemi A.; Bhaduri, Budhendra L.; Neish, Bradley S.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. [Omitaomu, Olufemi A.] Univ Tennessee, Dept Ind & Syst Engn, Knoxville, TN USA. RP Omitaomu, OA (reprint author), 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM omitaomuoa@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725]; United States Government FX This manuscript is authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 20 TC 13 Z9 14 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2210-6715 J9 SUSTAIN CITIES SOC JI Sust. Cities Soc. PD OCT PY 2013 VL 8 BP 31 EP 41 DI 10.1016/j.scs.2013.01.002 PG 11 WC Construction & Building Technology; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Construction & Building Technology; Science & Technology - Other Topics; Energy & Fuels GA V41OA UT WOS:000209554300004 ER PT J AU Xu, TF Sathaye, J Kramer, K AF Xu, Tengfang Sathaye, Jayant Kramer, Klaas TI Sustainability options in pulp and paper making: Costs of conserved energy and carbon reduction in the US SO SUSTAINABLE CITIES AND SOCIETY LA English DT Article DE Energy efficiency; Sustainability option; Cost of conserved energy; Cost of carbon reduction; Cost effective measures; Pulp and paper AB Adoption of energy efficient technologies is considered a key sustainability strategy for reducing greenhouse gas emissions in global industries. This article aims to assess costs of energy savings and carbon reduction from applying energy efficiency technologies in the US pulp and paper sector. Applicable efficiency measures were identified and their cost effectiveness was evaluated in two historical years 1994 and 2006. Potential savings of final energy use resulting from applicable sustainability options were estimated as 707 PJ in 1994 and 1064 PJ in 2006, respectively, corresponding to approximately 32% of the sector's annual final energy use in 1994 and 62% in 2006. The associated carbon-emission reduction was 8.1 million ton of carbon (MtC) in 1994 and 11.8 MtC in 2006, corresponding to 26% and 45% of sector's total energy-related carbon emissions in 1994 and 2006, respectively. Using the concepts of cost of conserved energy and cost of carbon reduction, we estimated that cost effective sustainability options contributed to final energy savings in the range of 15-25% of the annual energy use, and carbon-emission reduction from 14% to 20% of annual carbon emissions from the sector. (C) 2013 Elsevier B.V. All rights reserved. C1 [Xu, Tengfang; Sathaye, Jayant; Kramer, Klaas] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Xu, TF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM ttxu@lbl.gov FU Climate Economics Branch, Climate Change Division of US Environmental Protection Agency [DE-AC02-05CH11231]; US Department of Energy FX This study is sponsored by Climate Economics Branch, Climate Change Division of US Environmental Protection Agency, under Contract No. DE-AC02-05CH11231 with the US Department of Energy. NR 18 TC 12 Z9 12 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2210-6715 J9 SUSTAIN CITIES SOC JI Sust. Cities Soc. PD OCT PY 2013 VL 8 BP 56 EP 62 DI 10.1016/j.scs.2013.01.006 PG 7 WC Construction & Building Technology; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Construction & Building Technology; Science & Technology - Other Topics; Energy & Fuels GA V41OA UT WOS:000209554300007 ER PT J AU Miller, A Wildeman, T Figueroa, L AF Miller, Andrew Wildeman, Thomas Figueroa, Linda TI Zinc and nickel removal in limestone based treatment of acid mine drainage: The relative role of adsorption and co-precipitation SO APPLIED GEOCHEMISTRY LA English DT Article ID METAL REMOVAL; TRACE-METALS; IRON; SULFATE; WATERS; OXIDES; SORPTION; SCHWERTMANNITE; NEUTRALIZATION; FERRIHYDRITE AB Mining influenced water may contain high metal and sulfate loads, and have low pH (acid mine drainage). Removal of these metals prior to environmental discharge is critical to maintain ecosystem vitality. Limestone based passive treatment systems are commonly used for pH neutralization. The same conditions that lead to pH neutralization may also remove a substantial amount of metals from solution, but the connection between treatment conditions and metal removal are not well understood. In this study, zinc and nickel removals are quantified in batch reactor simulated limestone treatment of acid mine drainage. The resulting solid phase is characterized with a sequential extraction procedure, and the removals are interpreted using surface complexation and surface precipitation models. Zinc and nickel removals are closely linked to the initial iron concentration in the mine water, but are also affected by pH, alkalinity, calcium and sulfate concentrations. The surface complexation model was based on literature descriptions of hydrous ferric oxide. In order to obtain a sufficient fit to the data, the surface site density was increased to an unrealistically high value. Uptake data was also fit to an existing surface precipitation model. The values used are similar to those found in previous studies. Both models indicate that adsorption is not the dominant removal process in the treatment system. Using adsorption only models will generally underpredict metal removals within limestone based treatment systems. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Miller, Andrew] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Wildeman, Thomas; Figueroa, Linda] Colorado Sch Mines, Golden, CO 80033 USA. RP Miller, A (reprint author), Emporia State Univ, Emporia, KS 66801 USA. EM andrew.walker.miller@gmail.com FU USGS/Leetown Science Center Restoration Technologies Branch; EPA Mine Waste Technology Program FX This work was funded through the USGS/Leetown Science Center Restoration Technologies Branch and the EPA Mine Waste Technology Program. Much of this work was initiated through projects with Phil Sibrell, USGS. The manuscript benefitted greatly from a thorough review and suggestions from Bruce Honeyman. NR 27 TC 8 Z9 10 U1 1 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD OCT PY 2013 VL 37 BP 57 EP 63 DI 10.1016/j.apgeochem.2013.07.001 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 211VW UT WOS:000323940500005 ER PT J AU Wanner, C Zink, S Eggenberger, U Mader, U AF Wanner, Christoph Zink, Sonja Eggenberger, Urs Maeder, Urs TI Unraveling the partial failure of a permeable reactive barrier using a multi-tracer experiment and Cr isotope measurements SO APPLIED GEOCHEMISTRY LA English DT Article ID LONG-TERM PERFORMANCE; ZERO-VALENT IRON; HEXAVALENT CHROMIUM; STABLE-ISOTOPES; CONTAMINATED GROUNDWATER; FRACTIONATION FACTORS; CHROMATE REDUCTION; CR(VI) REDUCTION; MOJAVE DESERT; TRANSPORT AB At a Cr(VI) contaminated site in Thun, Switzerland, a permeable reactive barrier (PRB) was installed in 2008. Downstream Cr(VI) concentrations did not indicate any sign of its successful operation more than 2 years after PRB installation. The cause for this potential PRB failure was investigated by performing Cr isotope measurements and a multi-tracer experiment. The combination of reactive (Cr isotopes) and non-reactive tracers allowed characterizing the groundwater flow regime in the vicinity of the PRB in detail. In particular, it could be confirmed that most of the Cr(VI) load is currently bypassing the barrier, whereas only a minor Cr(VI) load is flowing through the PRB. Fitting of observed breakthrough curves using a conventional advection dispersion model resulted in average linear flow velocities of 13-15 m/day for the bypassing Cr(VI) load and 4-5 m/day for the Cr(VI) flowing through the barrier. Using a Rayleigh fractionation model a Cr(VI) reduction efficiency of 77-98% was estimated for the Cr(VI) load that is flowing through the barrier. In contrast, a value of 0-23% was estimated for the current overall PRB reduction efficiency. It is concluded that the PRB bypass and the low overall Cr(VI) reduction efficiency are caused by a limited PRB permeability inherited from skin effects that occurred during PRB emplacement. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Wanner, Christoph; Eggenberger, Urs; Maeder, Urs] Univ Bern, Inst Geol Sci, CH-3012 Bern, Switzerland. [Zink, Sonja] Leibniz Univ Hannover, Inst Mineral, D-30167 Hannover, Germany. RP Wanner, C (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cwanner@lbl.gov OI Wanner, Christoph/0000-0003-3488-8602 FU GEOTEST AG; SchenkerKorner Partner GmbH; German Research Foundation (DFG) [SCHO01071/3-1]; Subsurface Science Scientific Focus Area; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX We thank the geological consulting companies GEOTEST AG and SchenkerKorner & Partner GmbH (operating together as GIG Selve-Areal) for giving us access to confidential site information and for their financial support. Constructive discussions with Juergen Abrecht, Franz Schenker and Ronny Schoenberg were highly appreciated. Also, we thank two anonymous reviewers for their constructive comments and Rich Wanty for his helpful editorial handling. The project was also financially supported by the German Research Foundation (DFG) Grant SCHO01071/3-1 to Ronny Schoenberg. Furthermore, this work was partly supported by the Subsurface Science Scientific Focus Area funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-AC02-05CH11231. NR 38 TC 6 Z9 6 U1 2 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD OCT PY 2013 VL 37 BP 125 EP 133 DI 10.1016/j.apgeochem.2013.07.019 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 211VW UT WOS:000323940500012 ER PT J AU Chalbot, MC Nikolich, G Etyemezian, V Dubois, DW King, J Shafer, D da Costa, GG Hinton, JF Kavouras, IG AF Chalbot, M. -C. Nikolich, G. Etyemezian, V. Dubois, D. W. King, J. Shafer, D. da Costa, G. Gamboa Hinton, J. F. Kavouras, I. G. TI Soil humic-like organic compounds in prescribed fire emissions using nuclear magnetic resonance spectroscopy SO ENVIRONMENTAL POLLUTION LA English DT Article DE Biomass burning; Mineral dust; Wildfires; Organic carbon; Nuclear magnetic resonance; Aerosol ID PARTICULATE MATTER; DUST AEROSOLS; UNITED-STATES; PO VALLEY; SUBSTANCES; DISTRIBUTIONS; PARTICLES; GROWTH; FOREST; MODEL AB Here we present the chemical characterization of the water-soluble organic carbon fraction of atmospheric aerosol collected during a prescribed fire burn in relation to soil organic matter and biomass combustion. Using nuclear magnetic resonance spectroscopy, we observed that humic-like substances in fire emissions have been associated with soil organic matter rather than biomass. Using a chemical mass balance model, we estimated that soil organic matter may contribute up to 41% of organic hydrogen and up to 27% of water-soluble organic carbon in fire emissions. Dust particles, when mixed with fresh combustion emissions, substantially enhances the atmospheric oxidative capacity, particle formation and microphysical properties of clouds influencing the climatic responses of atmospheric aeroso. Owing to the large emissions of combustion aerosol during fires, the release of dust particles from soil surfaces that are subjected to intense heating and shear stress has, so far, been lacking. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Chalbot, M. -C.; Kavouras, I. G.] Univ Arkansas Med Sci, Dept Environm & Occupat Hlth, Little Rock, AR 72205 USA. [Nikolich, G.; Etyemezian, V.; King, J.; Kavouras, I. G.] Desert Res Inst, Div Atmospher Sci, Las Vegas, NV 89119 USA. [Dubois, D. W.] New Mexico State Univ, Div Plant & Environm Sci, Las Cruces, NM 88003 USA. [Shafer, D.] US DOE, Off Legacy Management, Westminster, CO 80021 USA. [da Costa, G. Gamboa] US FDA, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA. [Hinton, J. F.] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. RP Chalbot, MC (reprint author), Univ Arkansas Med Sci, Dept Environm & Occupat Hlth, 4301 W Markham St, Little Rock, AR 72205 USA. EM ikavouras@uams.edu RI DuBois, David/F-6380-2015; King, James/O-3047-2015; Kavouras, Ilias/H-7056-2012 OI DuBois, David/0000-0003-2560-505X; King, James/0000-0003-0494-153X; Kavouras, Ilias/0000-0003-0342-5306; Kavouras, Ilias/0000-0003-0436-3784 FU National Science Foundation [EAR-0952272]; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-06NA26383] FX We thank the Bureau of Land Management, Ely District Office in Nevada for their helpful logistical support. The study was partially supported by the National Science Foundation (Grant No. EAR-0952272) and the U.S. Department of Energy, National Nuclear Security Administration (Contract No. DE-AC52-06NA26383). The opinions expressed here do not necessarily represent those of the US Food and Drug Administration. NR 35 TC 9 Z9 10 U1 2 U2 36 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 J9 ENVIRON POLLUT JI Environ. Pollut. PD OCT PY 2013 VL 181 BP 167 EP 171 DI 10.1016/j.envpol.2013.06.008 PG 5 WC Environmental Sciences SC Environmental Sciences & Ecology GA 210CW UT WOS:000323807900023 PM 23867697 ER PT J AU Reedlunn, B Daly, S Shaw, J AF Reedlunn, Benjamin Daly, Samantha Shaw, John TI Superelastic shape memory alloy cables: Part I - Isothermal tension experiments SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Shape memory alloys; Cables; Wire rope; Digital image correlation; Infrared thermography; NiTi; Nitinol; Tensile testing ID AREA FAN NOZZLE; NITI; DEFORMATION; FABRICATION; MARTENSITE; ACTUATION; BEHAVIOR; PHASE; WIRE AB Cables (or wire ropes) made from NiTi shape memory alloy (SMA). wires are relatively new and unexplored structural elements that combine many of the advantages of conventional cables with the adaptive properties of SMAs (shape memory and superelasticity) and have a broad range of potential applications. In this two part series, an extensive set of uniaxial tension experiments was performed on two Nitinol cable constructions, a 7 x 7 right regular lay and a 1 x 27 alternating lay, to characterize their superelastic behavior in room temperature air. Details of the evolution of strain and temperature fields were captured by simultaneous stereo digital image correlation and infrared imaging, respectively. Here in Part I, the nearly isothermal, superelastic responses of the two cable designs are presented and compared. Overall, the 7 x 7 construction has a mechanical response similar to that of straight wires with propagating transformation fronts and distinct stress plateaus during stress-induced transformations. The 1 x 27 construction, however, exhibits a more compliant and stable mechanical response, trading a decreased force for additional elongation, and does not exhibit transformation fronts due to the deeper helix angles of the layers. In Part II that follows, selected subcomponents are dissected from the two cable's hierarchical constructions to experimentally break down the cable's responses. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Reedlunn, Benjamin] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Daly, Samantha] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Daly, Samantha] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Shaw, John] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. RP Reedlunn, B (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM breedlu@sandia.gov; samdaly@umich.edu; jashaw@umich.edu OI Daly, Samantha/0000-0002-7297-1696 FU General Motors Research and Development through the GM/UM Collaborative Research Laboratory (CRL) in Smart Materials and Structures; National Science Foundation [CMMI-0727331]; US Department of Energy, Office of Basic Energy Sciences [DE-SC0003996] FX We gratefully acknowledge the financial support for this work, provided by General Motors Research and Development through the GM/UM Collaborative Research Laboratory (CRL) in Smart Materials and Structures, the National Science Foundation (CMMI-0727331), and the US Department of Energy, Office of Basic Energy Sciences (DE-SC0003996). Helpful discussions with the members of the GM/UM CRL throughout the course of this work are acknowledged. Specimen materials were provided by Fort Wayne Metals Research at no cost, along with helpful guidance, which are also very much appreciated. NR 36 TC 15 Z9 15 U1 6 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD OCT PY 2013 VL 50 IS 20-21 BP 3009 EP 3026 DI 10.1016/j.ijsolstr.2013.03.013 PG 18 WC Mechanics SC Mechanics GA 199SI UT WOS:000323015400001 ER PT J AU Reedlunn, B Daly, S Shaw, J AF Reedlunn, Benjamin Daly, Samantha Shaw, John TI Superelastic shape memory alloy cables: Part II - Subcomponent isothermal responses SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Shape Memory Alloys; NiTi; Nitinol; Cables; Wire rope; Digital image correlation; Infrared thermography; Tensile testing; Superelasticity ID DEFORMATION; NITI; TRANSFORMATION; BEHAVIOR; PHASE; WIRE AB This paper constitutes the second part of our experimental study of the thermo-mechanical behavior of superelastic NiTi shape memory alloy cables. Part I introduced the fundamental, room temperature, tensile responses of two cable designs (7 x 7 right regular lay, and 1 x 27 alternating lay). In Part II, each cable behavior is studied further by breaking down the response into the contributions of its hierarchical subcomponents. Selected wire strands were extracted from the two cable constructions, and their quasi-static tension responses were measured using the same experimental setup of Part I. Consistent with the shallow wire helix angles in the 7 x 7 construction, the force-elongation responses of the core wire, 1 x 7 core strand and full 7 x 7 cable were similar on a normalized basis, with only a slight decrease in transformation force plateaus and slight increase in plateau strains in this specimen sequence. By contrast, each successive 1 x 27 component (1 x 6 core strand, 1 x 15 strand, and full cable) included an additional outer layer of wires with a larger number of wires, greater helix radius, and deeper helix angle, so the normalized axial load responses became significantly more compliant. Each specimen in the sequence also exhibited progressively larger strains at failure, reaching 40% strain in the full 1 x 27 cable. Stress-induced phase transformations involved localized strain/temperature and front propagation in all of the tested 7 x 7 components but none of the 1 x 27 components aside from the 1 x 27 core wire. Stereo digital image correlation measurements revealed finer features within a global transformation front of the 1 x 7 core strand than the 7 x 7 cable, consisting of an staggered pattern of individual wire fronts that moved in lock-step during elongation. Although the 1 x 27 multi-layer strands exhibited temperature/strain localizations in a distributed pattern during transformations, the localizations did not propagate and their cause was traced back to contact indentations (stress concentrations) arising from the cable's fabrication. The normalized axial torque responses of the multi-layer 1 x 27 components during transformation were distinctly non-monotonic and complex, due to the alternating handedness of the layers. Force and torque contributions of individual wire layers were deduced by subtracting 1 x 27 component responses, which helped to clarify the transformation kinetics within each layer and explain the unusual force and torque-undulations seen in the 1 x 27 cable response of Part I. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Reedlunn, Benjamin] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Daly, Samantha] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Daly, Samantha] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Shaw, John] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. RP Reedlunn, B (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM breedlu@sandia.gov; samdaly@umich.edu; jashaw@umich.edu OI Daly, Samantha/0000-0002-7297-1696 FU General Motors Research and Development through the GM/UM Collaborative Research Laboratory (CRL) in Smart Materials and Structures; National Science Foundation [CMMI-0727331]; US Department of Energy-Office of Basic Energy Sciences [DE-SC0003996] FX We gratefully acknowledge the financial support for this work, provided by General Motors Research and Development through the GM/UM Collaborative Research Laboratory (CRL) in Smart Materials and Structures, the National Science Foundation (CMMI-0727331), and the US Department of Energy-Office of Basic Energy Sciences (DE-SC0003996). Helpful discussions with the members of the GM/UM CRL throughout the course of this work are acknowledged. Specimen materials, were provided by Fort Wayne Metals Research at not cost, along with helpful guidance from Ray Bouthot, which are also very much appreciated. NR 13 TC 8 Z9 8 U1 3 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD OCT PY 2013 VL 50 IS 20-21 BP 3027 EP 3044 DI 10.1016/j.ijsolstr.2013.03.015 PG 18 WC Mechanics SC Mechanics GA 199SI UT WOS:000323015400002 ER PT J AU Sun, JM Karim, AM Zhang, H Kovarik, L Li, XHS Hensley, AJ McEwen, JS Wang, Y AF Sun, Junming Karim, Ayman M. Zhang, He Kovarik, Libor Li, Xiaohong Shari Hensley, Alyssa J. McEwen, Jean-Sabin Wang, Yong TI Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol SO JOURNAL OF CATALYSIS LA English DT Article DE Pd-Fe; Hydrodeoxygenation; Bimetallic catalysis; Bio-oil upgrading; Alloy catalyst; EXAFS; Carbon support ID RAY-ABSORPTION SPECTROSCOPY; PYROLYSIS OIL; TRANSPORTATION FUELS; BIO-OIL; REFINERY UNITS; BIOMASS; CONVERSION; HYDROGEN; PLATINUM; HYDROTREATMENT AB Carbon-supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C, and Ru/C) were characterized and evaluated for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA), aiming at the identification/elucidation of active catalysts for high-yield production of completely hydrodeoxygenated products (e.g., benzene). Phenol was found to be the major intermediate on all catalysts. Saturation of the aromatic ring is the major pathway over the precious metal catalysts, forming cyclohexanone and cyclohexanol, followed by ring opening to form gaseous products. Base metal catalysts exhibit lower activity than the precious metal catalysts, but selectively form benzene along with small amounts of toluene, trimethylbenzene (TMB), and cresol without forming ring-saturated or ring-opening products. Compared with Fe/C and Pd/C, PdFe/C catalysts exhibit a substantially enhanced activity while maintaining the high selectivity to HDO products without ring saturation or ring opening. The enhanced activity of PdFe/C is attributed to the modification of Fe nanoparticles by Pd as evidenced by STEM, EDS, EXAFS, TPR, and theoretical calculations. (C) 2013 Elsevier Inc. All rights reserved. C1 [Sun, Junming; Karim, Ayman M.; Kovarik, Libor; Li, Xiaohong Shari; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Zhang, He; Hensley, Alyssa J.; McEwen, Jean-Sabin; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. RP Karim, AM (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM ayman.karim@pnnl.gov; yong.wang@pnnl.gov RI Sun, Junming/B-3019-2011; Karim, Ayman/G-6176-2012; Kovarik, Libor/L-7139-2016 OI Sun, Junming/0000-0002-0071-9635; Karim, Ayman/0000-0001-7449-542X; FU National Advanced Biofuels Consortium (NABC); Department of Energy's Office of Biomass Program; US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy's Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory (PNNL) in Richland, WA; US Department of Energy, Office of Basic Energy Sciences [DE-FG02-05ER15688]; Voiland School of Chemical Engineering and Bioengineering FX We gratefully acknowledge the financial support from the National Advanced Biofuels Consortium (NABC) which is funded by the Department of Energy's Office of Biomass Program with recovery act funds. We also thank the financial support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. This work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory (PNNL) in Richland, WA. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, for the EXAFS experiments was supported by the US Department of Energy, Office of Basic Energy Sciences (Grant# DE-FG02-05ER15688). The DFT calculations were supported by institutional funds provided to JSM from the Voiland School of Chemical Engineering and Bioengineering. The authors also thank Zhehao Wei from WSU for some of the TPR experimental effort and Dr. Renqin Zhang from WSU for his efforts with the DFT calculations. NR 65 TC 93 Z9 95 U1 27 U2 284 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD OCT PY 2013 VL 306 BP 47 EP 57 DI 10.1016/j.jcat.2013.05.020 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 210WM UT WOS:000323865500005 ER PT J AU Li, MJ Wu, ZL Overbury, SH AF Li, Meijun Wu, Zili Overbury, S. H. TI Surface structure dependence of selective oxidation of ethanol on faceted CeO2 nanocrystals SO JOURNAL OF CATALYSIS LA English DT Article DE CeO2; Ceria nanoshapes; Structure dependence; Ethanol selective oxidation; Ethanol adsorption and desorption; Reaction pathways; DRIFTS; In situ spectroscopy; TPD; TPSR ID TEMPERATURE-PROGRAMMED DESORPTION; METAL-OXIDE SURFACES; CARBON-CARBON BOND; SITU FT-IR; CERIUM OXIDE; CATALYZED CONVERSION; HYDROGEN-PRODUCTION; THIN-FILMS; METHANOL; ADSORPTION AB Shaped CeO2 nanopartides have been used to explore the effect of surface structure upon the surface chemistry and catalytic selectivity for the ethanol selective oxidation reaction. CeO2 octahedra, cubes, and rods were synthesized using previously published methods. Adsorption and desorption behavior on these nanoshapes was determined by a combination of temperature-programmed desorption (TPD) and in situ DRIFTS. Activity and selectivity were measured in steady-state reaction and in temperature-programmed surface reaction (TPSR). Shape-dependent differences are observed in surface adsorbates, their transformation temperatures, and the selectivity for dehydration, dehydrogenation, and decomposition. Ethoxide and acetate are the primary surface species present under both TPD and TPSR conditions for all shapes. Different rates of alpha- and beta-CH bond scission on the different shapes are responsible for different product selectivity. Structure-dependent, reductive vacancy formation and availability of reactant O-2 combine to control surface H which in turn plays a role in controlling product selectivity. (C) 2013 Elsevier Inc. All rights reserved. C1 [Li, Meijun; Wu, Zili; Overbury, S. H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Overbury, SH (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM overburysh@ornl.gov RI Wu, Zili/F-5905-2012; Overbury, Steven/C-5108-2016 OI Wu, Zili/0000-0002-4468-3240; Overbury, Steven/0000-0002-5137-3961 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Scientific User Facilities Division, Office of Basic Energy Science, U.S. Department of Energy FX This Research is sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. Part of the work including Synthesis and TEM/SEM was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Science, U.S. Department of Energy. NR 66 TC 46 Z9 46 U1 12 U2 189 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD OCT PY 2013 VL 306 BP 164 EP 176 DI 10.1016/j.jcat.2013.06.019 PG 13 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 210WM UT WOS:000323865500017 ER PT J AU Li, G Jiang, DE Liu, C Yu, CL Jin, RC AF Li, Gao Jiang, De-en Liu, Chao Yu, Changlin Jin, Rongchao TI Oxide-supported atomically precise gold nanocluster for catalyzing Sonogashira cross-coupling SO JOURNAL OF CATALYSIS LA English DT Article DE Gold; Nanocluster; Sonogashira cross-coupling ID ACTIVE-SITE; CLUSTERS; CATALYSTS; NANOPARTICLES; OXIDATION; PHENYLACETYLENE; IODOBENZENE; ACTIVATION; REACTIVITY; HYDROGEN AB We report that thiolate-protected Au-25(SR)(18) (R = CH2CH2Ph) nanoclusters supported on oxides (such as CeO2, TiO2, MgO, and SiO2) can catalyze Sonogashira cross-coupling reaction between phenylacetylene and p-iodoanisole with high conversion of p-iodoanisole (up to 96.1%) and excellent selectivity (up to 88.1%). The-well-defined structure of Au-25(SR)(18) provides an important clue as to the catalytically active sites: the sterically unhindered facets on the cluster surface allow easy reactant access; each facet comprises three surface gold atoms from three separate "staple"-like -S(R)-Au-S(R)-Au-S(R)- surface-protecting motifs. Density functional theory modeling of the reactant adsorption shows that both reactants prefer to adsorb on the open facet with the phenyl ring facing a surface gold atom. Each reactant has an adsorption energy of -0.40 to -0.48 eV. When they co-adsorb on the catalyst, the total adsorption energy reaches -0.90 eV (a relatively strong adsorption state); more interestingly, at this state the two reactants are well positioned to couple with their Ph-C CH and Ph-I groups pointing toward the third gold atom of the open facet. The combined experimental and DFT results suggest a great potential to correlate the atomic configuration of the active sites to the catalytic performance of an atomically precise nanocluster. (C) 2013 Elsevier Inc. All rights reserved. C1 [Li, Gao; Liu, Chao; Yu, Changlin; Jin, Rongchao] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jin, RC (reprint author), Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA. EM rongchao@andrew.cmu.edu RI Jiang, De-en/D-9529-2011 OI Jiang, De-en/0000-0001-5167-0731 FU U.S. Department of Energy-Office of Basic Energy Sciences [DE-FG02-12ER16354]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is financially supported by U.S. Department of Energy-Office of Basic Energy Sciences (Grant DE-FG02-12ER16354). The DFT calculations used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy (No. DE-AC02-05CH11231). We thank Dr. Yu Lei for assistance in STEM imaging of Au25(SR)18/TiO2 catalysts. NR 49 TC 53 Z9 53 U1 4 U2 150 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD OCT PY 2013 VL 306 BP 177 EP 183 DI 10.1016/j.jcat.2013.06.017 PG 7 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 210WM UT WOS:000323865500018 ER PT J AU Hsiung, LL AF Hsiung, Luke L. TI HRTEM Study of Irradiation-Induced Cavities in Oxide-Dispersed Ferritic Steel SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Symposium of Solid-State Interfaces II - Toward an Atomistic-Scale Understanding of Structure, Properties, and Behavior through Theory and Experiment organized during the TMS Annual Meeting CY MAR 11-15, 2012 CL Orlando, FL SP TMS ID FBR CORE APPLICATION; MECHANICAL-PROPERTIES; ION IRRADIATION; HELIUM; IMPROVEMENT; RADIATION; EVOLUTION; ALLOYS; POWDER AB Structures of oxide nanoparticles and the effects of matrix/nanoparticle interfaces on irradiation-induced cavity nucleation and distribution in Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y(2)O(3) oxide-dispersed ferritic steel have been studied using high-resolution transmission electron microscopy techniques. The frequent observations of partially crystallized complex-oxide nanoparticles in as-fabricated steel provide an implication into the formation mechanism of nanoparticles. The mechanism involves the solid-state mixing of pre-alloyed metallic powder and Y2O3 powder to form an amorphous solid solution and from which the nucleation of high density complex-oxide nanoparticles (on the order of 1 x 10(22) m(-3)). Simultaneous dual ion beams consisting of iron and helium were employed to irradiate the oxide-dispersed steel at 698 K (425 A degrees C). The result shows that the defective oxide nanoparticles have a positive effect on the mitigation of dimensional swelling as a result of the preferred nucleation of helium-filled cavities at the matrix/nanoparticle interfaces. C1 Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Condensed Matter & Mat Div, Livermore, CA 94551 USA. RP Hsiung, LL (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Condensed Matter & Mat Div, Livermore, CA 94551 USA. EM hsiung1@llnl.gov NR 20 TC 1 Z9 1 U1 1 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD OCT PY 2013 VL 44A IS 10 BP 4496 EP 4504 DI 10.1007/s11661-013-1906-5 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 208GO UT WOS:000323666000016 ER PT J AU Boyce, BL Clark, BG Lu, P Carroll, JD Weinberger, CR AF Boyce, Brad L. Clark, Blythe G. Lu, Ping Carroll, Jay D. Weinberger, Christopher R. TI The Morphology of Tensile Failure in Tantalum SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID DUCTILE FRACTURE; VOID NUCLEATION; METALS; DAMAGE; DEFORMATION; BOUNDARIES; INITIATION; RUPTURE; GROWTH; HOLES AB The deformation, crack nucleation, coalescence, and rupture process of pure tantalum (99.9 pct) were studied under room temperature quasistatic loading using several in situ and ex-situ techniques including optical metallography, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission-electron microscopy (TEM). The fracture surface of tantalum forms a ridge-and-valley morphology that is distinct from conventional notions of ductile dimple microvoid coalescence, and also distinct from spall damage formed during dynamic shock conditions. Failure proceeds by void nucleation at a dislocation cell wall or in subgrain interiors. Coalescence appears to involve a two-stage damage progression: first individual voids coalesce along the tensile axis forming diamond-shaped multivoid cavities; then cavities link-up by intercavity necking. Final rupture occurs when the intercavity necks thin to 100-nm films and fail by crystallographic cleavage. This final tearing process was observed using in situ TEM tensile deformation of a thin tantalum film. The detailed microstructural and morphological observations of the current study can be used to guide the development of improved models for tearing of ductile metals. C1 [Boyce, Brad L.; Lu, Ping; Carroll, Jay D.; Weinberger, Christopher R.] Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA. [Clark, Blythe G.] Sandia Natl Labs, Phys Chem & Nano Sci Ctr, Albuquerque, NM 87185 USA. RP Boyce, BL (reprint author), Sandia Natl Labs, Mat Sci & Engn Ctr, POB 5800,MS0889, Albuquerque, NM 87185 USA. EM blboyce@sandia.gov RI Carroll, Jay/K-2720-2012; OI Carroll, Jay/0000-0002-5818-4709; Weinberger, Christopher/0000-0001-9550-6992 NR 28 TC 8 Z9 8 U1 2 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD OCT PY 2013 VL 44A IS 10 BP 4567 EP 4580 DI 10.1007/s11661-013-1814-8 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 208GO UT WOS:000323666000023 ER PT J AU Pollyea, RM Fairley, JP Podgorney, RK McLing, TL AF Pollyea, Ryan M. Fairley, Jerry P. Podgorney, Robert K. McLing, Travis L. TI A field sampling strategy for semivariogram inference of fractures in rock outcrops SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Article DE Field sampling; Fractured rock; Stochastic continuum; Box Canyon; Idaho ID OPTIMIZATION; VARIOGRAM; DESIGN; FLOW; TRANSPORT; NETWORK; MEDIA; MODEL; SOIL AB The stochastic continuum (SC) representation is one common approach for simulating the effects of fracture heterogeneity in groundwater flow and transport models. These SC reservoir models are generally developed using geostatistical methods (e.g., kriging or sequential simulation) that rely on the model semivariogram to describe the spatial variability of each continuum. Although a number of strategies for sampling spatial distributions have been published in the literature, little attention has been paid to the optimization of sampling in resource- or access-limited environments. Here we present a strategy for estimating the minimum sample spacing needed to define the spatial distribution of fractures on a vertical outcrop of basalt, located in the Box Canyon, east Snake River Plain, Idaho. We used fracture maps of similar basalts from the published literature to test experimentally the effects of different sample spacings on the resulting semivariogram model. Our final field sampling strategy was based on the lowest sample density that reproduced the semivariogram of the exhaustively sampled fracture map. Application of the derived sampling strategy to an outcrop in our field area gave excellent results, and illustrates the utility of this type of sample optimization. The method will work for developing a sampling plan for any intensive property, provided prior information for a similar domain is available; for example, fracture maps or ortho-rectified photographs from analogous rock types could be used to plan for sampling of a fractured rock outcrop. C1 [Pollyea, Ryan M.] No Illinois Univ, Dept Geol & Environm Geosci, De Kalb, IL 60115 USA. [Fairley, Jerry P.] Univ Idaho, Dept Geol Sci, Moscow, ID 83844 USA. [Podgorney, Robert K.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [McLing, Travis L.] Idaho Natl Lab, Ctr Adv Energy Studies, Idaho Falls, ID 83415 USA. RP Pollyea, RM (reprint author), No Illinois Univ, Dept Geol & Environm Geosci, De Kalb, IL 60115 USA. EM rpollyea@niu.edu OI Fairley, Jerry/0000-0002-6486-3003; Pollyea, Ryan/0000-0001-5560-8601 FU Laboratory Directed Research and Development Program of Idaho National Laboratory; Center for Advanced Energy Studies, under the US Department of Energy Idaho Operations Office [DE-AC07-05ID14517] FX The authors thank Professor Simon Kattenhorn for generously providing a digital image of the Box Canyon fracture map used in this analysis. The authors also thank Jennifer Hinds for her assistance preparing graphics and Scott Brinton for his tireless help in the field. This manuscript was greatly improved by suggestions from two anonymous reviewers. Financial support was provided by the Laboratory Directed Research and Development Program of Idaho National Laboratory, administered by the Center for Advanced Energy Studies, under the US Department of Energy Idaho Operations Office Contract DE-AC07-05ID14517. NR 21 TC 1 Z9 1 U1 1 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 EI 1436-3259 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD OCT PY 2013 VL 27 IS 7 BP 1735 EP 1740 DI 10.1007/s00477-013-0710-5 PG 6 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 197UG UT WOS:000322876100017 ER PT J AU de Araujo, FC D'Azevedo, EF Gray, LJ Degenhardt, R AF de Araujo, F. C. D'Azevedo, E. F. Gray, L. J. Degenhardt, R. TI A SBS-BD based solver for domain decomposition in BE methods SO ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS LA English DT Article DE 3D standard BEM; Subregioning techniques; Krylov solvers; Preconditioning; General composites ID NONSYMMETRIC LINEAR-SYSTEMS; BOUNDARY-ELEMENT ANALYSIS; BEM SOLUTION; 3D BEM; COMPOSITES; PERFORMANCE; ALGORITHMS; MATRICES; GMRES AB In boundary element methods (BEM), subregioning may be needed either to model complex solids (with cracks, stiffeners, layers, inclusions, etc.) or simply to decompose a problem by computational reasons (e.g. for parallelization). Since the development of the first BEM codes, many attempts have been made to efficiently devise generic boundary-element subregioning techniques. Crucial points are how to profit from the sparsity of the global matrix, and how to deal with traction discontinuities. In this work, the most fundamental steps for efficiently devising reliable and efficient subregioning algorithms are discussed. The subregion-by-subregion (SBS) algorithm and the preconditioning of the embedded Krylov solver are addressed. Besides the BiCG solver, the BiCGSTAB(l) is newly incorporated into the BE-SBS code. The 3D microstructural analysis of carbon-nanotube-reinforced composites (CNT composites) is considered to verify the performance of the algorithm. Numerical results showing the efficiency of the preconditioned solvers studied are presented. (C) 2013 Elsevier Ltd. All rights reserved. C1 [de Araujo, F. C.] Univ Fed Ouro Preto, Dept Civil Engn, BR-35400000 Ouro Preto, MG, Brazil. [D'Azevedo, E. F.; Gray, L. J.] ORNL, Div Math & Comp Sci, Oak Ridge, TN USA. [Degenhardt, R.] German Aerosp Ctr, Inst Composite Struct & Adapt Syst, D-38108 Braunschweig, Germany. RP de Araujo, FC (reprint author), Univ Fed Ouro Preto, Dept Civil Engn, BR-35400000 Ouro Preto, MG, Brazil. EM fcelio@em.ufop.br; dazevedoef@ornl.gov; len@bssi-tt.com; richard.degenhardt@dlr.de RI de Araujo, Francisco/L-9770-2014 FU Brazilian Research Council (CNPq); Research Foundation for the State of Minas Gerais (FAPEMIG), Brazil FX This research was sponsored by the Brazilian Research Council (CNPq), and the Research Foundation for the State of Minas Gerais (FAPEMIG), Brazil. NR 43 TC 0 Z9 0 U1 1 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-7997 J9 ENG ANAL BOUND ELEM JI Eng. Anal. Bound. Elem. PD OCT PY 2013 VL 37 IS 10 BP 1267 EP 1275 DI 10.1016/j.enganabound.2013.06.006 PG 9 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 207HQ UT WOS:000323589900006 ER PT J AU Koehler, DR AF Koehler, D. R. TI Geometric-distortions and physical structure modeling SO INDIAN JOURNAL OF PHYSICS LA English DT Article DE Geometry; Classical field theory; General relativity; Classical mechanics; Structural stability ID GEONS AB An investigation on the interpretation of localized geometric distortions as a source of microscopic physical particle-structures has been undertaken. Modeling utilizes the fundamental curvature equations of Riemannian geometry. It is limited to geometric-distortional families satisfying a simple temporal-to-spatial tensor equation-of-state, a Maxwellian relationship. A microscopic-level coupling-constant also results, which supplants and extends the classical gravitational coupling-constant. The geometrical tensor elements of the distorted space exhibit negative, as well as positive, curvature-magnitudes and energy-densities while the field-observable in the negative energy-density spatial core-region is non-Coulombic and non-infinite at the radial origin. Fundamental particles and gravitational structures have been mimicked. C1 Sandia Natl Labs, Dept Frequency & Optoelect Applicat, Albuquerque, NM 87185 USA. RP Koehler, DR (reprint author), Sandia Natl Labs, Dept Frequency & Optoelect Applicat, POB 5800, Albuquerque, NM 87185 USA. EM drkoehler.koehler@gmail.com NR 18 TC 0 Z9 0 U1 0 U2 2 PU INDIAN ASSOC CULTIVATION SCIENCE PI KOLKATA PA INDIAN J PHYSICS, JADAVPUR, KOLKATA 700 032, INDIA SN 0973-1458 J9 INDIAN J PHYS JI Indian J. Phys. PD OCT PY 2013 VL 87 IS 10 BP 1029 EP 1034 DI 10.1007/s12648-013-0321-5 PG 6 WC Physics, Multidisciplinary SC Physics GA 209EV UT WOS:000323738000013 ER PT J AU Banks, JW Aslam, TD AF Banks, J. W. Aslam, T. D. TI Richardson Extrapolation for Linearly Degenerate Discontinuities SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Richardson extrapolation; Error estimation; Convergence analysis; Shock capturing ID CONSERVATION-LAWS; OVERLAPPING GRIDS; ERROR ESTIMATION; SCHEMES; EQUATION; SYSTEMS AB In this paper we investigate the use of Richardson extrapolation to estimate the convergence rates for numerical solutions to wave propagation problems involving discontinuities. For many cases, we find that the computed results do not agree with the a-priori estimate of the convergence rate. Furthermore, the estimated convergence rate is found to depend on the specific details of how Richardson extrapolation was applied; in particular the order of comparisons between three approximate solutions can have a significant impact. Modified equations are used to analyze the situation. We elucidated, for the first time, the cause of apparently unpredictable estimated convergence rates from Richardson extrapolation in the presence of discontinuities. Furthermore, we ascertain one correct structure of Richardson extrapolation that can be used to obtain predictable estimates. We demonstrate these results using a number of numerical examples. C1 [Banks, J. W.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Aslam, T. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Banks, JW (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, L-422, Livermore, CA 94551 USA. EM banks20@llnl.gov; aslam@lanl.gov RI Banks, Jeffrey/A-9718-2012; OI Aslam, Tariq/0000-0002-4263-0401 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL [10-SI-013]; DOE contracts from the ASCR Applied Math Program; Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013, by DOE contracts from the ASCR Applied Math Program, and by Los Alamos National Laboratory under Contract DE-AC52-06NA25396. NR 20 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 EI 1573-7691 J9 J SCI COMPUT JI J. Sci. Comput. PD OCT PY 2013 VL 57 IS 1 BP 1 EP 18 DI 10.1007/s10915-013-9693-0 PG 18 WC Mathematics, Applied SC Mathematics GA 209FF UT WOS:000323739300001 ER PT J AU Xing, YL Zhang, XX AF Xing, Yulong Zhang, Xiangxiong TI Positivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Shallow water equations; Discontinuous Galerkin method; High order accuracy; Well-balanced; Positivity-preserving methods; Wetting and drying treatment ID VOLUME WENO SCHEMES; SAINT-VENANT SYSTEM; HIGH-ORDER SCHEMES; CONSERVATION-LAWS; SOURCE TERMS; HYPERBOLIC SYSTEMS; FLOWS; MODEL AB The shallow water equations model flows in rivers and coastal areas and have wide applications in ocean, hydraulic engineering, and atmospheric modeling. In "Xing et al. Adv. Water Resourc. 33: 1476-1493, 2010)", the authors constructed high order discontinuous Galerkin methods for the shallow water equations which can maintain the still water steady state exactly, and at the same time can preserve the non-negativity of the water height without loss of mass conservation. In this paper, we explore the extension of these methods on unstructured triangular meshes. The simple positivity-preserving limiter is reformulated, and we prove that the resulting scheme guarantees the positivity of the water depth. Extensive numerical examples are provided to verify the positivity-preserving property, well-balanced property, high-order accuracy, and good resolution for smooth and discontinuous solutions. C1 [Xing, Yulong] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Xing, Yulong] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. [Zhang, Xiangxiong] MIT, Dept Math, Cambridge, MA 02139 USA. RP Xing, YL (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM xingy@math.utk.edu; zhangxx@math.mit.edu FU National Science Foundation [DMS-1216454]; ORNL's Laboratory Directed Research and Development funds; U.S. Department of Energy, Office of Advanced Scientific Computing Research; UT-Battelle, LLC [DE-AC05-00OR22725] FX Research of the first author is sponsored by the National Science Foundation grant DMS-1216454, ORNL's Laboratory Directed Research and Development funds, and the U.S. Department of Energy, Office of Advanced Scientific Computing Research. The work was partially performed at ORNL, which is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725. NR 39 TC 17 Z9 18 U1 0 U2 9 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 J9 J SCI COMPUT JI J. Sci. Comput. PD OCT PY 2013 VL 57 IS 1 BP 19 EP 41 DI 10.1007/s10915-013-9695-y PG 23 WC Mathematics, Applied SC Mathematics GA 209FF UT WOS:000323739300002 ER PT J AU Miller, MK Parish, CM Li, Q AF Miller, M. K. Parish, C. M. Li, Q. TI Advanced oxide dispersion strengthened and nanostructured ferritic alloys SO MATERIALS SCIENCE AND TECHNOLOGY LA English DT Review DE Oxide dispersion strengthened alloys; Nanostructured ferritic alloys; Atom probe tomography; Nanoclusters; Grain boundaries; Review ID INTERNAL OXIDATION; SPECIMEN PREPARATION; STEELS; OXYGEN; MICROSTRUCTURE; NANOCLUSTERS; NANOFEATURES; SOLUBILITY; STABILITY; CHEMISTRY AB Nanostructured ferritic alloy is a subcategory of oxide dispersion strengthened steels intended for advanced reactor applications. The complex ultrafine grained microstructure of an advanced nanostructured ferritic alloy, as determined by electron microscopy and atom probe tomography, is summarised. Three distinct populations of precipitates were observed: 20-50 nm Ti(N,O,C), 5-10 nm diameter Y2Ti2O7/Y2TiO5 and 1-4 nm diameter Ti,Y, O enriched nanoclusters. The first two populations were predominantly located along grain boundaries together with Cr, W and C segregation. A dense population of nanoclusters was observed both in the grain interior as well as on the grain boundaries. These nanoclusters are highly tolerant to high dose irradiation at elevated temperatures. C1 [Miller, M. K.; Parish, C. M.; Li, Q.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov RI Parish, Chad/J-8381-2013; Li, Qian/A-8752-2015 FU US Government [DE-AC05-00OR22725]; US Department of Energy; Division of Materials Sciences and Engineering, Office of Basic Energy Science, US Department of Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; US Department of Energy's Office of Biological and Environmental Research FX This submission was sponsored by a contractor of the US Government under contract no. DE-AC05-00OR22725 with the US Department of Energy. The US Government retains, and the publisher, by accepting this submission for publication, acknowledges that the US Government retains, a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this submission, or allow others to do so, for US Government purposes. The present research was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Science, US Department of Energy. Research at the Oak Ridge National Laboratory ShaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Ion irradiations were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The authors thank Ms K. A. Powers for technical assistance and Dr D. T. Hoelzer for providing the base material used in the present study. Use of the Tecnai Osiris instrument was courtesy FEI corporation. NR 40 TC 18 Z9 18 U1 3 U2 64 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0267-0836 EI 1743-2847 J9 MATER SCI TECH-LOND JI Mater. Sci. Technol. PD OCT PY 2013 VL 29 IS 10 BP 1174 EP 1178 DI 10.1179/1743284713Y.0000000207 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 210JN UT WOS:000323828600005 ER PT J AU Capdevila, C Chao, J Jimenez, JA Miller, MK AF Capdevila, C. Chao, J. Jimenez, J. A. Miller, M. K. TI Effect of nanoscale precipitation on strengthening of ferritic ODS Fe-Cr-Al alloy SO MATERIALS SCIENCE AND TECHNOLOGY LA English DT Article DE Phase separation; Ferrous alloy; Mechanical alloying; Tomography; Thermoelectric power; Spinodal decomposition ID PHASE-SEPARATION KINETICS; THERMOELECTRIC-POWER; SPINODAL DECOMPOSITION; RECRYSTALLIZATION; TEMPERATURE; STEEL; DEFORMATION; PM2000 AB The kinetics of Fe rich alpha and Cr rich alpha' phase separation during aging of Fe-Cr-Al oxide dispersion strengthened alloys have been analysed with a combination of atom probe tomography and thermoelectric power measurements. The slight lattice parameter decrease measured by X-ray diffraction after thermal aging was associated with a lattice misfit between the emerging alpha and alpha' domains. The elastic strain associated with this misfit and the different elastic moduli for the alpha and alpha' phases would produce an increase in internal stresses that would retard the motion of dislocations and thus would be the main cause for the strengthening. C1 [Capdevila, C.; Chao, J.; Jimenez, J. A.] Ctr Nacl Invest Met CENIM CSIC, Madrid 28040, Spain. [Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Capdevila, C (reprint author), Ctr Nacl Invest Met CENIM CSIC, Avda Gregorio del Amo 8, Madrid 28040, Spain. EM ccm@cenim.csic.es RI Capdevila, Carlos/B-6970-2015; Jimenez, Jose/H-2644-2015 OI Capdevila, Carlos/0000-0002-1869-4085; Jimenez, Jose/0000-0003-4272-6873 FU Spanish Ministerio de Ciencia e Innovacion [ENE2009-13766-C04-01]; ORNL's Shared Research Equipment (ShaRE) User Facility; Office of Basic Energy Sciences, US Department of Energy FX PM 2000 is a trademark of Plansee GmbH. LEAP is a registered trademark of Cameca Instruments. Authors acknowledge financial support from Spanish Ministerio de Ciencia e Innovacion in the form of a Coordinate Project in the Energy Area of Plan Nacional 2009 (grant no. ENE2009-13766-C04-01). Research was supported by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. NR 30 TC 4 Z9 4 U1 2 U2 31 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0267-0836 J9 MATER SCI TECH-LOND JI Mater. Sci. Technol. PD OCT PY 2013 VL 29 IS 10 BP 1179 EP 1184 DI 10.1179/1743284713Y.0000000215 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 210JN UT WOS:000323828600006 ER PT J AU Ramirez-Rico, J Stolzenburg, F Almer, JD Routbort, JL Singh, D Faber, KT AF Ramirez-Rico, J. Stolzenburg, F. Almer, J. D. Routbort, J. L. Singh, D. Faber, K. T. TI In situ imaging and strain determination during fracture in a SiC/SiC ceramic matrix composite SO SCRIPTA MATERIALIA LA English DT Article DE Ceramic composites; Microdiffraction; Synchrotron techniques; Fracture ID FATIGUE-CRACK; TENSILE CREEP; X-RAY; FIBER; DAMAGE; EVOLUTION; GROWTH; DESIGN AB A combined imaging and microdiffraction technique using high-energy synchrotron X-rays is described and used to reveal microstructure, damage and strain evolution around notches in SiC/SiC composites. This technique allows for monitoring the material for cracks while loading and mapping the strain distribution in fibers and matrix with a resolution of tens of microns. We show that at current resolutions this technique is capable of measuring the strain distribution near crack tips in ceramic matrix composites and observe load transfer effects. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Ramirez-Rico, J.; Stolzenburg, F.; Faber, K. T.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Ramirez-Rico, J.] Univ Sevilla CSIC, Dpto Fis Mat Condensada ICMS, Seville 41012, Spain. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Routbort, J. L.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Singh, D.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Ramirez-Rico, J (reprint author), Univ Sevilla CSIC, Dpto Fis Mat Condensada ICMS, Seville 41012, Spain. EM jrr@us.es RI Ramirez-Rico, Joaquin/A-7006-2009 OI Ramirez-Rico, Joaquin/0000-0002-1184-0756 FU Initiative for Sustainability and Energy at Northwestern University (ISEN); Department of Energy, Office of Basic Energy Science [DE-AC02-06CH11357]; MRSEC program of the National Science Foundation [DMR-1121262]; Universidad de Sevilla under the IV Plan propio de Investigacion FX We are grateful to Dr. G. Morscher, who provided us with the CMC specimens. This work was supported by the Initiative for Sustainability and Energy at Northwestern University (ISEN), and by the Department of Energy, Office of Basic Energy Science, under contract number DE-AC02-06CH11357. Microscopy images were collected at the NUANCE Center at Northwestern University, which is supported by the MRSEC program of the National Science Foundation DMR-1121262). J.R.-R. is grateful to the Universidad de Sevilla for a travel grant under the IV Plan propio de Investigacion. This work is dedicated to the memory of J. L. Routbort, who passed away during the preparation of this manuscript. NR 18 TC 2 Z9 2 U1 1 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD OCT PY 2013 VL 69 IS 7 BP 497 EP 500 DI 10.1016/j.scriptamat.2013.05.032 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 207HY UT WOS:000323590700001 ER PT J AU Schreiber, DK Olszta, MJ Bruemmer, SM AF Schreiber, D. K. Olszta, M. J. Bruemmer, S. M. TI Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary alloy exposed to high-temperature water SO SCRIPTA MATERIALIA LA English DT Article DE Oxidation; Grain boundaries; Nickel alloys; Atom probe tomography; Transmission electron microscopy (TEM) ID STRESS-CORROSION CRACKING; BEHAVIOR; METALS; TEM AB Intergranular oxidation of a Ni-4Al alloy exposed to hydrogenated, high-temperature water was characterized using directly correlated transmission electron microscopy and atom probe tomography. These combined analyses revealed that discrete, well-separated oxides (NiAl2O4) precipitated along grain boundaries in the metal. Aluminum was depleted from the grain boundary between oxides and also selectively from one side of the grain boundary. The discrete oxide morphology, disconnected from the continuous surface oxidation, suggests intergranular solid-state internal oxidation of Al. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Schreiber, D. K.; Olszta, M. J.; Bruemmer, S. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Schreiber, DK (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM daniel.schreiber@pnnl.gov FU US Department of Energy (DOE) Office of Basic Energy Science; DOE's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830] FX Funding was provided by the US Department of Energy (DOE) Office of Basic Energy Science. Some of the work was performed using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 24 TC 10 Z9 10 U1 2 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD OCT PY 2013 VL 69 IS 7 BP 509 EP 512 DI 10.1016/j.scriptamat.2013.06.008 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 207HY UT WOS:000323590700004 ER PT J AU Devaraj, A Nag, S Banerjee, R AF Devaraj, Arun Nag, Soumya Banerjee, Rajarshi TI Alpha phase precipitation from phase-separated beta phase in a model Ti-Mo-Al alloy studied by direct coupling of transmission electron microscopy and atom probe tomography SO SCRIPTA MATERIALIA LA English DT Article DE Three-dimensional atom probe (3DAP); Atom probe tomography; Phase transformations; Titanium alloys; Transmission electron microscopy (TEM) ID TITANIUM-MOLYBDENUM ALLOYS AB Nucleation and growth of alpha precipitates during low-temperature annealing of Ti-10 at.% Mo-10 at.% Al alloy was investigated using direct coupling of transmission electron microscopy and atom probe tomography. The initial stages of annealing at 400 degrees C showed structurally well-defined alpha precipitates that were depleted in Mo as well as Al, and were confined within the Ti-rich beta phase separated pockets. The Al-enriched alpha phase was only observed after further annealing at 600 degrees C. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Devaraj, Arun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Devaraj, Arun; Nag, Soumya; Banerjee, Rajarshi] Univ N Texas, Ctr Adv Res & Technol, Denton, TX 76203 USA. [Devaraj, Arun; Nag, Soumya; Banerjee, Rajarshi] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. RP Devaraj, A (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM arun.devaraj@pnnl.gov FU National Science Foundation [6701956, 0700828, 0846444]; US Air Force Research Laboratory ISES; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RLO1830] FX The National Science Foundation (Grant Nos. 6701956, 0700828, and 0846444) and a US Air Force Research Laboratory ISES contract funded this work. The authors gratefully acknowledge the use of experimental facilities at the Center for Advanced Research and Technology (CART) at the University of North Texas. A portion of this research was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL), and is part of the Chemical Imaging Initiative conducted under the Laboratory Directed Research and Development Program at PNNL. PNNL is operated by Battelle for the DOE under contract DE-AC05-76RLO1830. NR 17 TC 10 Z9 10 U1 0 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD OCT PY 2013 VL 69 IS 7 BP 513 EP 516 DI 10.1016/j.scriptamat.2013.06.011 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 207HY UT WOS:000323590700005 ER PT J AU Bailey, VL McCue, LA Fansler, SJ Boyanov, MI DeCarlo, F Kemner, KM Konopka, A AF Bailey, Vanessa L. McCue, Lee Ann Fansler, Sarah J. Boyanov, Maxim I. DeCarlo, Francisco Kemner, Kenneth M. Konopka, Allan TI Micrometer-scale physical structure and microbial composition of soil macroaggregates SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE 16S; Macroaggregates; Communities; Pyrosequencing; Soil; Tomography ID X-RAY MICROTOMOGRAPHY; COMPUTED-TOMOGRAPHY; RIBOSOMAL-RNA; DIVERSITY; BIODIVERSITY; DYNAMICS; BACTERIA AB Soil macroaggregates are discrete, separable units of soil that we hypothesize contain smaller assemblages of microorganisms than bulk soil, and represent a scale potentially consistent with naturally occurring microbial communities. We posed two questions to explore microbial community composition in the context of the macroaggregate: 1) Is there a relationship between macroaggregate physical structure and microbial community composition in individual macroaggregates? And, 2) How similar are the bacterial communities in individual sub-millimeter soil macroaggregates sampled from the same 5-cm core? To address these questions, individual macroaggregates of three arbitrary size classes (250-425, 425-841, and 841-1000 mu m) were sampled from a grassland field. The physical structures of 14 individual macroaggregates were characterized using synchrotron-radiation based transmission X-ray tomography, revealing that a greater proportion of the pore space in the small- and medium-sized macroaggregates is as relatively smaller pores, resulting in greater overall porosity and pore mineral interface area in these smaller macroaggregates. Microbial community composition was characterized using 16S rRNA pyrosequencing data. Rarefaction analyses indicated that the membership of each macroaggregate was sufficiently sampled with only a few thousand sequences; in addition, the community membership varied widely between macroaggregates and the structure varied from those communities strongly dominated by a few phylotypes to communities that were evenly distributed among several phylotypes. We found no strong relationship of physical structure with community membership; this may be due to the low number of aggregates (10) for which we have both physical and biological data. Our results do support our initial expectation that individual macroaggregate communities were significantly less diverse than bulk soil from the same grassland field site. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Bailey, Vanessa L.; McCue, Lee Ann; Fansler, Sarah J.; Konopka, Allan] Pacific NW Natl Lab, Richland, WA 99354 USA. [Boyanov, Maxim I.; Kemner, Kenneth M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [DeCarlo, Francisco] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Bailey, VL (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM vanessa.bailey@pnnl.gov OI Bailey, Vanessa/0000-0002-2248-8890; McCue, Lee Ann/0000-0003-4456-517X FU Microbial Communities Initiative LORD Program at the Pacific Northwest National Laboratory; US Department of Energy [DE-AC06-76RL01830]; DOE's Office of Biological and Environmental Research; Argonne National Laboratory LDRD Program; DOE-SC Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was funded by the Microbial Communities Initiative LORD Program at the Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the US Department of Energy under contract DE-AC06-76RL01830. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. This research was also funded by the Argonne National Laboratory LDRD Program. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the DOE-SC Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. The authors thank J. Smith (USDA-ARS, Pullman, WA) for site access and sampling assistance, B. Arey and J. McKinley (PNNL) for assistance with SEM, and N. Fierer and C. Lauber (University of Colorado) for assistance with the pyrosequencing. NR 38 TC 7 Z9 7 U1 7 U2 127 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD OCT PY 2013 VL 65 BP 60 EP 68 DI 10.1016/j.soilbio.2013.02.005 PG 9 WC Soil Science SC Agriculture GA 208NQ UT WOS:000323686800007 ER PT J AU Hui, DF Mayes, MA Wang, GS AF Hui, Dafeng Mayes, Melanie A. Wang, Gangsheng TI Kinetic parameters of phosphatase: A quantitative synthesis SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Acid phosphatase; Alkaline phosphatase; Enzyme kinetics; Half-saturation constant; Maximum enzyme activity; pH; Temperature ID MICHAELIS-MENTEN KINETICS; SOIL ORGANIC PHOSPHORUS; ALKALINE-PHOSPHATASE; ACID-PHOSPHATASE; THERMODYNAMIC PARAMETERS; CARBON DECOMPOSITION; HEDLEY FRACTIONATION; ENZYMATIC-ACTIVITY; CLIMATE-CHANGE; TEMPERATURE AB Phosphatases play an important role in mineralization of organic phosphorus, soil phosphorus availability and global phosphorus cycling. Release of phosphorus in different ecosystems is important for plant growth and microbial function, and may be simulated by modeling organic phosphate mineralization. The half-saturation constant (K-m) and the maximum enzyme activity (V-max) in the Michaelis-Menten equation are the two important kinetic parameters in these models, but their values have not been systematically investigated. In this study, we compiled a database of kinetic parameters of phosphatase from 139 publications, estimated the means, variations and distributions of the kinetic parameters, and tested the differences in kinetic parameters of phosphatases of different types, origins and under different incubation conditions. We also analyzed the activation energy (E-a), temperature sensitivity (Q(10)), optimum pH (pH(opt)) and sensitivity of pH (pH(sen)) of phosphatase activity. Our results indicated that: 1) Both V-max and K-m were log-normal distributed with large variations; 2) There was no significant difference in K-m between the acid or alkaline phosphatases, but a significantly higher V-max for acid phosphatases was found compared with alkaline phosphatases; 3) K-m and V-max varied with the origins of enzymes and under different incubation conditions. Plant originated enzymes had the highest V-max while soil originated enzymes had the lowest V-max. Larger variation in V-max was found among the incubation times than among the incubation temperatures; 4) The mean values of E-a for acid and alkaline phosphatases were 36.30 and 23.61 kJ mol(-1), respectively, with an overall mean of 34.40 kJ mol(-1). The mean value of estimated pH(opt) for acid phosphatase was 5.2 while that for alkaline phosphatase was 9.5. The information generated in this study will be useful for phosphorus mineralization modeling and uncertainty analysis. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Hui, Dafeng] Tennessee State Univ, Dept Biol Sci, Nashville, TN 37209 USA. [Mayes, Melanie A.; Wang, Gangsheng] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Mayes, Melanie A.; Wang, Gangsheng] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. RP Hui, DF (reprint author), Tennessee State Univ, Dept Biol Sci, Nashville, TN 37209 USA. EM dhui@tnstate.edu OI Hui, Dafeng/0000-0002-5284-2897 FU Oak Ridge National Laboratory/Oak Ridge Associated Universities HBCU/MEI Faculty Summer Research Program; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX Research sponsored by the Oak Ridge National Laboratory/Oak Ridge Associated Universities HBCU/MEI Faculty Summer Research Program and by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract No. DE-AC05-00OR22725. The authors thank Dr. Wilfred M. Post for helpful discussion on this issue and Dr. J. Megan Steinweg for her constructive comments. NR 96 TC 11 Z9 14 U1 22 U2 140 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD OCT PY 2013 VL 65 BP 105 EP 113 DI 10.1016/j.soilbio.2013.05.017 PG 9 WC Soil Science SC Agriculture GA 208NQ UT WOS:000323686800013 ER PT J AU Li, HP Campbell, H Fernandez, S AF Li, Huiping Campbell, Harrison Fernandez, Steven TI Residential Segregation, Spatial Mismatch and Economic Growth across US Metropolitan Areas SO URBAN STUDIES LA English DT Article ID TECHNOLOGICAL-CHANGE; LABOR-MARKET; BLACK-YOUTH; EMPLOYMENT; ACCESSIBILITY; INEQUALITY; HYPOTHESIS; LOCATION; POVERTY; WORKERS AB Numerous studies have demonstrated the detrimental influence of residential segregation on poor inner-city residents. This study examines the impact of residential segregation on the welfare of populations in US metropolitan areas using economic growth as the indicator. Panel data of US metropolitan areas spanning 25 years, 1980-2005, are used to analyse the effect of segregation on economic growth. The results show that both racial and skill segregation have a negative impact on short- and long-term economic growth, which have increased over time. Further, the negative impact of the variables associated with spatial mismatch is also revealed. The results clearly point to the need for mobility policies that favour non-White households and comprehensive strategies that promote economic opportunities in low-resource communities in the US. C1 [Li, Huiping] Shanghai Univ Finance & Econ, Dept Publ Adm, Shanghai 200433, Peoples R China. [Campbell, Harrison] Univ N Carolina, Dept Geog, Charlotte, NC 28223 USA. [Fernandez, Steven] Oak Ridge Natl Lab, Geog Informat Sci & Technol Grp, Oak Ridge, TN USA. RP Li, HP (reprint author), Shanghai Univ Finance & Econ, Dept Publ Adm, E 225 Yuheng Bd 777 Guoding Rd, Shanghai 200433, Peoples R China. EM huiping.shufe@gmail.com; hscampbe@uncc.edu; fernandezsj@ornl.gov NR 82 TC 8 Z9 9 U1 4 U2 42 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0042-0980 EI 1360-063X J9 URBAN STUD JI Urban Stud. PD OCT PY 2013 VL 50 IS 13 BP 2642 EP 2660 DI 10.1177/0042098013477697 PG 19 WC Environmental Studies; Urban Studies SC Environmental Sciences & Ecology; Urban Studies GA 208UC UT WOS:000323704700002 ER PT J AU Miller, LM Bourassa, MW Smith, RJ AF Miller, Lisa M. Bourassa, Megan W. Smith, Randy J. TI FTIR spectroscopic imaging of protein aggregation in living cells SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES LA English DT Review DE Fourier transform infrared (FTIR) spectroscopy Microspectroscopy; Protein secondary structure; Protein aggregation; Amyloid ID TRANSFORM INFRARED-SPECTROSCOPY; SECONDARY STRUCTURE PREDICTION; AMYOTROPHIC-LATERAL-SCLEROSIS; ALZHEIMERS-DISEASE; SYNCHROTRON-RADIATION; SUPEROXIDE-DISMUTASE; ALPHA-SYNUCLEIN; PARKINSONS-DISEASE; BETA-SYNUCLEIN; IN-VITRO AB Protein misfolding and aggregation are the hallmark of a number of diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and the prion diseases. In all cases, a naturally-occurring protein misfolds and forms aggregates that are thought to disrupt cell function through a wide range of mechanisms that are yet to be fully unraveled. Fourier transform infrared (FTIR) spectroscopy is a technique that is sensitive to the secondary structure of proteins and has been widely used to investigate the process of misfolding and aggregate formation. This review focuses on how FTIR spectroscopy and spectroscopic microscopy are being used to evaluate the structural changes in disease-related proteins both in vitro and directly within cells and tissues. Finally, ongoing technological advances will be presented that are enabling time-resolved FTIR imaging of protein aggregation directly within living cells, which can provide insight into the structural intermediates, time scale, and mechanisms of cell toxicity associated with aggregate formation. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies. (C) 2013 Elsevier B.V. All rights reserved. C1 [Miller, Lisa M.; Smith, Randy J.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Miller, Lisa M.; Bourassa, Megan W.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Miller, LM (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Bldg 743,75 Brookhaven Ave, Upton, NY 11973 USA. EM lmiller@bnl.gov FU US Department of Energy [DE-AC02-98CH10886]; National Institutes of Health [RR23782] FX We thank Dr. David Borchelt (University of Florida College of Medicine) for providing the SOD1 cDNA used for the time-lapsed FTIR imaging study of G37R-SOD1 aggregation. The National Synchrotron Light Source is supported by the US Department of Energy under Contract No. DE-AC02-98CH10886. Beamline U10B at the NSLS was supported by the National Institutes of Health grant RR23782. NR 64 TC 44 Z9 45 U1 13 U2 120 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2736 J9 BBA-BIOMEMBRANES JI Biochim. Biophys. Acta-Biomembr. PD OCT PY 2013 VL 1828 IS 10 SI SI BP 2339 EP 2346 DI 10.1016/j.bbamem.2013.01.014 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 198SV UT WOS:000322943500011 PM 23357359 ER PT J AU Hoen, B Wiser, R Thayer, M Cappers, P AF Hoen, Ben Wiser, Ryan Thayer, Mark Cappers, Peter TI RESIDENTIAL PHOTOVOLTAIC ENERGY SYSTEMS IN CALIFORNIA: THE EFFECT ON HOME SALES PRICES SO CONTEMPORARY ECONOMIC POLICY LA English DT Article ID HEDONIC PRICES; VALUES AB Relatively little research exists estimating the marginal impacts of photovoltaic (PV) energy systems on home sale prices. Using a large data set of California homes that sold from 2000 through mid-2009, we find strong evidence, despite a variety of robustness checks, that existing homes with PV systems sold for a premium over comparable homes without PV systems, implying a near full return on investment. Premiums for new homes are found to be considerably lower than those for existing homes, implying, potentially, a trade-off between price and sales velocity. The results have significant implications for homeowners, builders, appraisers, lenders, and policymakers. (JEL R31, D12, C33) C1 [Hoen, Ben] Ernest Orlando Lawrence Berkeley Natl Lab, Elect Markets & Policy Grp, Milan, NY 12571 USA. [Wiser, Ryan] Ernest Orlando Lawrence Berkeley Natl Lab, Elect Markets & Policy Grp, Berkeley, CA 94720 USA. [Thayer, Mark] San Diego State Univ, Dept Econ, San Diego, CA 92182 USA. [Cappers, Peter] Ernest Orlando Lawrence Berkeley Natl Lab, Elect Markets & Policy Grp, Fayetteville, NY 13066 USA. RP Hoen, B (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Elect Markets & Policy Grp, Milan, NY 12571 USA. EM bhoen@lbl.gov; rhwiser@lbl.gov; mthayer@mail.sdsu.edu; pacappers@lbl.gov NR 26 TC 4 Z9 4 U1 0 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1074-3529 J9 CONTEMP ECON POLICY JI Contemp. Econ. Policy PD OCT PY 2013 VL 31 IS 4 BP 708 EP 718 DI 10.1111/j.1465-7287.2012.00340.x PG 11 WC Economics; Public Administration SC Business & Economics; Public Administration GA 204QD UT WOS:000323381900004 ER PT J AU Cao, FY Shi, ZM Hofstetter, J Uggowitzer, PJ Song, GL Liu, M Atrens, A AF Cao, Fuyong Shi, Zhiming Hofstetter, Joelle Uggowitzer, Peter J. Song, Guangling Liu, Ming Atrens, Andrej TI Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)(2) SO CORROSION SCIENCE LA English DT Article DE Magnesium; Weight loss; SEM ID BIODEGRADABLE MAGNESIUM IMPLANTS; ANODIC POLARIZATION CURVES; SODIUM-CHLORIDE SOLUTION; PURE MAGNESIUM; GALVANIC CORROSION; SULFATE-SOLUTIONS; DIFFUSION COEFFICIENTS; AQUEOUS-SOLUTION; CRACKING SCC; AL ALLOYS AB Corrosion was evaluated for ultra-high-purity magnesium (Mg) immersed in 3.5% NaCl solution saturated with Mg(OH)(2). The intrinsic corrosion rate measured with weight loss, P-W = 0.25 +/- 0.07 mm y(-1), was slightly smaller than that for high-purity Mg. Some specimens had somewhat higher corrosion rates attributed to localised corrosion. The average corrosion rate measured from hydrogen evolution, P-AH, was lower than that measured with weight loss, P-W, attributed to dissolution of some hydrogen in the Mg specimen. The amount of dissolution under electrochemical control was a small amount of the total dissolution. A new hydride dissolution mechanism is suggested. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Cao, Fuyong; Shi, Zhiming; Atrens, Andrej] Univ Queensland, Div Mat, St Lucia, Qld 4072, Australia. [Hofstetter, Joelle; Uggowitzer, Peter J.] Swiss Fed Inst Technol, Dept Mat, CH-8093 Zurich, Switzerland. [Song, Guangling] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Liu, Ming] GM China Sci Lab, Shanghai 201206, Peoples R China. RP Atrens, A (reprint author), Univ Queensland, Div Mat, St Lucia, Qld 4072, Australia. EM andrejs.atrens@uq.edu.au RI Song, Guang-Ling/D-9540-2013; Uggowitzer, Peter/H-3581-2012; Atrens, Andrejs/I-5850-2013 OI Song, Guang-Ling/0000-0002-9802-6836; Uggowitzer, Peter/0000-0002-9504-5652; Atrens, Andrejs/0000-0003-0671-4082 FU CAST CRC; Australian Research Council Centre of Excellence Design of Light Alloys; GM Global Research and Development; Australian Federal Government's Cooperative Research Centre scheme; China Scholarship Council FX The research was supported by CAST CRC, the Australian Research Council Centre of Excellence Design of Light Alloys, and GM Global Research and Development. CAST CRC was established under, and was funded in part by the Australian Federal Government's Cooperative Research Centre scheme. Thanks to Evan Gray for helpful discussions on the EIS spectra analysis. Thanks to the China Scholarship Council to provide a scholarship under the State Scholarship Fund to Fuyong Cao. Thanks to Aleks D. Atrens for extremely useful discussions. NR 72 TC 53 Z9 53 U1 7 U2 83 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD OCT PY 2013 VL 75 BP 78 EP 99 DI 10.1016/j.corsci.2013.05.018 PG 22 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 205UH UT WOS:000323469800008 ER PT J AU Ajwani, D Ali, S Katrinis, K Li, CH Park, AJ Morrison, JP Schenfeld, E AF Ajwani, Deepak Ali, Shoukat Katrinis, Kostas Li, Cheng-Hong Park, Alfred J. Morrison, John P. Schenfeld, Eugen TI Generating synthetic task graphs for simulating stream computing systems SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Stream computing systems; Workload characterization; Computational task graphs; Synthetic stream-computing graphs AB Stream-computing is an emerging computational model for performing complex operations on and across multi-source, high-volume data flows. The pool of mature publicly available applications employing this model is fairly small, and therefore the availability of workloads for various types of applications is scarce. Thus, there is a need for synthetic generation of large-scale workloads to drive simulations and estimate the performance of stream-computing applications at scale. We identify the key properties shared by most task graphs of stream-computing applications and use them to extend known random graph generation concepts with stream computing specific features, providing researchers with realistic input stream graphs. Our graph generation techniques serve the purpose of covering a disparity of potential applications and user input. Our first "domain-specific" framework exhibits high user-controlled configurability while the second "application-agnostic" framework focuses solely on emulating the key properties of general stream-computing systems, at the loss of domain-specific fine-tuning. (C) 2013 Elsevier Inc. All rights reserved. C1 [Ajwani, Deepak] Alcatel Lucent, Bell Labs, Dublin 15, Ireland. [Li, Cheng-Hong; Schenfeld, Eugen] IBM Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Park, Alfred J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Morrison, John P.] Natl Univ Ireland Univ Coll Cork, Ctr Unified Comp, Cork, Ireland. RP Ajwani, D (reprint author), Alcatel Lucent, Bell Labs, Dublin 15, Ireland. EM deepak.ajwani@alcatel-lucent.com FU Irish Research Council on Science, Engineering and Technology; IBM FX This research is supported in part by an Enterprise Partnership Scheme grant from the Irish Research Council on Science, Engineering and Technology and IBM. NR 29 TC 6 Z9 6 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD OCT PY 2013 VL 73 IS 10 BP 1362 EP 1374 DI 10.1016/j.jpdc.2013.06.002 PG 13 WC Computer Science, Theory & Methods SC Computer Science GA 204XN UT WOS:000323404700003 ER PT J AU Szafaryn, LG Gamblin, T de Supinski, BR Skadron, K AF Szafaryn, Lukasz G. Gamblin, Todd de Supinski, Bronis R. Skadron, Kevin TI Trellis: Portability across architectures with a high-level framework SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Parallel computation; Parallel frameworks; Parallel architectures; Loop mapping AB The increasing computational needs of parallel applications inevitably require portability across parallel architectures, which now include heterogeneous processing resources, such as CPUs and GPUs, and multiple SIMD/SIMT widths. However, the lack of a common parallel programming paradigm that provides predictable, near-optimal performance on each resource leads to the use of low-level frameworks with architecture-specific optimizations, which in turn cause the code base to diverge and makes porting difficult. Our experiences with parallel applications and frameworks lead us to the conclusion that achieving performance portability requires a common set of high-level directives and efficient mapping onto each architecture. In order to demonstrate this concept, we develop Trellis, a prototype programming framework that allows the programmer to maintain only a single generic and structured codebase that executes efficiently on both the CPU and the GPU. Our approach annotates such code with a single set of high-level directives, derived from both OpenMP and OpenACC, that is made compatible for both architectures. Most importantly, motivated by the limitations of the OpenACC compiler in transforming such code into a GPU kernel, we introduce a thread synchronization directive and a set of transformation techniques that allow us to obtain the GPU code with the desired parallelization that yields more optimal performance. While a common high-level programming framework for both CPU and GPO is not yet available, our analysis shows that even obtaining the best-case GPU performance with OpenACC, state-of-the-art solution, requires modifications to the structure of codes to properly exploit braided parallelism, and cope with conditional statements or serial sections. While this already requires prior knowledge of compiler behavior the optimal performance is still unattainable due to the lack of synchronization. We describe the contributions of Trellis in addressing these problems by showing how it can achieve correct parallelization of the original codes for three parallel applications, with performance competitive to that of OpenMP and CUDA, improved programmability and reduced overall code length. (C) 2013 Elsevier Inc. All rights reserved. C1 [Szafaryn, Lukasz G.] Univ Virginia, Charlottesville, VA 22903 USA. [Skadron, Kevin] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22903 USA. [Gamblin, Todd; de Supinski, Bronis R.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Szafaryn, LG (reprint author), Univ Virginia, Charlottesville, VA 22903 USA. EM lgs9a@virginia.edu; gamblin2@llnl.gov; bronis@llnl.gov; skadron@virginia.edu FU US NSF [MCDA-0903471]; SRC under GRC; C-FAR; MARCO; DARPA FX This work was supported in part by the US NSF under grant MCDA-0903471, by the SRC under GRC task 1972, and by C-FAR, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. NR 10 TC 1 Z9 1 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD OCT PY 2013 VL 73 IS 10 BP 1400 EP 1413 DI 10.1016/j.jpdc.2013.07.001 PG 14 WC Computer Science, Theory & Methods SC Computer Science GA 204XN UT WOS:000323404700006 ER PT J AU Knezevic, M McCabe, RJ Lebensohn, RA Tome, CN Liu, C Lovato, ML Mihaila, B AF Knezevic, Marko McCabe, Rodney J. Lebensohn, Ricardo A. Tome, Carlos N. Liu, Cheng Lovato, Manuel L. Mihaila, Bogdan TI Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: Application to low-symmetry metals SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Uranium; Constitutive modeling; Finite element method; Texture; EBSD ID CRYSTALLOGRAPHIC TEXTURE EVOLUTION; ALPHA-URANIUM; ELASTIC MODULI; DEFORMATION; STRAIN; TEMPERATURE; TITANIUM; CLOSURES; SLIP AB We present an implementation of the viscoplastic self-consistent (VPSC) polycrystalline model in an implicit finite element (FE) framework, which accounts for a dislocation-based hardening law for multiple slip and twinning modes at the micro-scale grain level. The model is applied to simulate the macro-scale mechanical response of a highly anisotropic low-symmetry (orthorhombic) crystal structure. In this approach, a finite element integration point represents a polycrystalline material point and the meso-scale mechanical response is obtained by the mean-field VPSC homogenization scheme. We demonstrate the accuracy of the FE-VPSC model by analyzing the mechanical response and microstructure evolution of alpha-uranium samples under simple compression/tension and four-point bending tests. Predictions of the FE-VPSC simulations compare favorably with experimental measurements of geometrical changes and microstructure evolution. Specifically, the model captures accurately the tension-compression asymmetry of the material associated with twinning, as well as the rigidity of the material response along the hard-to-deform crystallographic orientations. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Knezevic, Marko; McCabe, Rodney J.; Lebensohn, Ricardo A.; Tome, Carlos N.; Liu, Cheng; Lovato, Manuel L.; Mihaila, Bogdan] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Knezevic, Marko] Univ New Hampshire, Dept Mech Engn, Durham, NH 03824 USA. RP Knezevic, M (reprint author), Univ New Hampshire, Dept Mech Engn, 33 Acad Way,Kingsbury Hall,W119, Durham, NH 03824 USA. EM marko.knezevic@unh.edu RI Mihaila, Bogdan/D-8795-2013; Lebensohn, Ricardo/A-2494-2008; Tome, Carlos/D-5058-2013; OI Mihaila, Bogdan/0000-0002-1489-8814; Lebensohn, Ricardo/0000-0002-3152-9105; McCabe, Rodney /0000-0002-6684-7410 FU US Department of Energy [DE-AC52-06NA25396]; Seaborg Institute FX This work was supported in part by the US Department of Energy under contract number DE-AC52-06NA25396. M. Knezevic gratefully acknowledges the Seaborg Institute for partial financial support under a Post-Doctoral Fellowship through the LANL LDRD Program. The EBSD work was performed in the electron microscopy laboratory (EML) at Los Alamos. The authors acknowledge T. Beard for help with mechanical testing and J. Crapps for help with setting up the FE model. NR 33 TC 53 Z9 53 U1 4 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD OCT PY 2013 VL 61 IS 10 BP 2034 EP 2046 DI 10.1016/j.jmps.2013.05.005 PG 13 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 204XG UT WOS:000323404000004 ER PT J AU Gardner, SN Jaing, CJ AF Gardner, Shea N. Jaing, Crystal J. TI Bioinformatics for microbial genotyping of equine encephalitis viruses, orthopoxviruses, and hantaviruses SO JOURNAL OF VIROLOGICAL METHODS LA English DT Article DE Viral genotyping; TaqMan/PCR assays; SNP; Western/Eastern/Venezuelan encephalitis viruses; Orthopoxvirus; Hantavirus ID SOFTWARE; ALIGNMENT; SEQUENCE; ARRAY AB Microbial genotyping is essential for forensic discrimination of pathogen strains, tracing epidemics, and understanding evolutionary processes. Phylogenetic analyses were performed and genotyping assays designed for five viral species complexes or genera: Western, Eastern, and Venezuelan equine encephalitis viruses, hantavirus segments L, M, and S, and orthopoxviruses. For each group, sequence alignments and phylogenetic trees were built. PCR signatures composed of primer pairs or TagMan (TM) triplets were designed and mapped to nodes of the trees for sub-type or strain specific PCR-based identification. In addition, single nucleotide polymorphisms (SNPs) were identified and mapped to trees, and SNP microarray probes were designed to enable highly multiplexed genotyping of an unsequenced sample by hybridization. SNP-based trees corresponded well with MSA trees. Near-perfect isolate resolution was possible for all viruses analyzed computationally using either SNPs or PCR signatures. More tree nodes were represented by SNP loci than by PCR signatures, as PCR signatures often represented subsets of strains not corresponding to a branch. However, while PCR genotyping is possible, the number of PCR signatures needed to characterize an unknown can be very large. SNP microarrays are a suitable alternative, as arrays enable highly multiplexed, high resolution genotyping of an unknown in a single hybridization assay. (c) 2013 The Authors. Published by Elsevier B.V. All rights reserved. C1 [Gardner, Shea N.; Jaing, Crystal J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Gardner, SN (reprint author), Lawrence Livermore Natl Lab, POB 808,L-174, Livermore, CA 94551 USA. EM Gardner26@LLNL.gov FU Department of Homeland Security; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was funded by the Department of Homeland Security. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 18 TC 2 Z9 3 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-0934 J9 J VIROL METHODS JI J. Virol. Methods PD OCT PY 2013 VL 193 IS 1 BP 112 EP 120 DI 10.1016/j.jviromet.2013.04.019 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Virology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Virology GA 204JR UT WOS:000323362100017 PM 23714768 ER PT J AU Flynn, EB Chong, SY Jarmer, GJ Lee, JR AF Flynn, Eric B. Chong, See Yenn Jarmer, Gregory J. Lee, Jung-Ryul TI Structural imaging through local wavenumber estimation of guided waves SO NDT & E INTERNATIONAL LA English DT Article DE Nondestructive testing; Ultrasonic guided waves; Laser-generated ultrasound; Image processing ID SCANNING LASER VIBROMETRY; VISUALIZATION; ULTRASOUND AB This paper describes a method to effectively image structural features and defects using local estimates of the wavenumber of propagating guided Lamb waves at a fine grid of spatial sampling points. The guided waves are rapidly excited at each grid point using a scanning Q-switched laser system and sensed by a single fixed ultrasonic transducer. Through reciprocity, this produces a full-wave-field time history of a virtual wave being excited from the transducer. Using frequency wavenumber processing, localized wavelength estimates are obtained by isolating each wave mode, narrowband filtering to one or more high-energy frequency bands, and identifying the center-wavelength of a sliding wavenumber band-pass filter that maximizes the energy at each grid point. The approach was capable of producing detailed images of hidden wall-thinning in an aluminum plate and a steel pipe section and local impact delamination in a complicated composite component. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Flynn, Eric B.; Jarmer, Gregory J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Chong, See Yenn; Lee, Jung-Ryul] Chonbuk Natl Univ, Jeonju, South Korea. RP Flynn, EB (reprint author), Los Alamos Natl Lab, MS T001, Los Alamos, NM 87545 USA. EM ericbflynn@gmail.com RI Lee, Jung-Ryul/B-3266-2015; OI Flynn, Eric/0000-0003-0965-7052 FU Laboratory Directed Research and Development Program at Los Alamos National Laboratory [LA-UR-12-24768]; Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea; Ministry of Education, Science and Technology [2011-0030065] FX This research was supported by the Laboratory Directed Research and Development Program at Los Alamos National Laboratory (LA-UR-12-24768) and the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2011-0030065). The funding sources did not play any role in the study design or execution and were not involved in the writing of this report or the decision to publish. NR 14 TC 29 Z9 30 U1 2 U2 34 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0963-8695 EI 1879-1174 J9 NDT&E INT JI NDT E Int. PD OCT PY 2013 VL 59 BP 1 EP 10 DI 10.1016/j.ndteint.2013.04.003 PG 10 WC Materials Science, Characterization & Testing SC Materials Science GA 203MS UT WOS:000323297900001 ER PT J AU Saxena, S Bedoya, ID AF Saxena, Samveg Bedoya, Ivan D. TI Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits SO PROGRESS IN ENERGY AND COMBUSTION SCIENCE LA English DT Review DE Homogeneous charge compression ignition; Low temperature combustion; High load; Power output; Energy conversion; Spark-assisted compression ignition ID HOMOGENEOUS CHARGE COMPRESSION; SPARK-IGNITION ENGINE; SHOCK-TUBE IGNITION; N-HEPTANE OXIDATION; RAPID COMPRESSION; DIMETHYL ETHER; EMISSION CHARACTERISTICS; DETAILED CHEMISTRY; NATURAL-GAS; CONTROLLED AUTOIGNITION AB Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled compression ignition (RCCI), partial fuel stratification (PFS), partially premixed compression ignition, spark-assisted HCCI, and all forms of low temperature combustion (LTC). Published by Elsevier Ltd. C1 [Saxena, Samveg] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Bedoya, Ivan D.] Univ Antioquia, Grp Ciencia & Tecnol Gas & Uso Rac Energia, Medellin 63108, Colombia. RP Saxena, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd,90-2138, Berkeley, CA 94720 USA. EM samveg@berkeley.edu FU U.S. Department of Energy (through the HCCI/Advanced Engine Consortium); Natural Sciences and Engineering Research Council of Canada; laboratory directed research and development funds at Lawrence Berkeley National Laboratory; Programa de Sostenibilidad de Grupos de Investigacion Vicerrectoria de Investigacion (Universidad de Antioquia - Colombia) FX Funding to support some of the research topics discussed in this article was provided through the U.S. Department of Energy (through the HCCI/Advanced Engine Consortium), the Natural Sciences and Engineering Research Council of Canada, laboratory directed research and development funds at Lawrence Berkeley National Laboratory, and Programa de Sostenibilidad de Grupos de Investigacion 2013-2014 Vicerrectoria de Investigacion (Universidad de Antioquia - Colombia). NR 282 TC 105 Z9 108 U1 17 U2 157 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1285 J9 PROG ENERG COMBUST JI Prog. Energy Combust. Sci. PD OCT PY 2013 VL 39 IS 5 BP 457 EP 488 DI 10.1016/j.pecs.2013.05.002 PG 32 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 205QA UT WOS:000323458200003 ER PT J AU Blomberg, S Gustafson, J Martin, NM Messing, ME Deppert, K Liu, Z Chang, R Fernandes, VR Borg, A Gronbeck, H Lundgren, E AF Blomberg, S. Gustafson, J. Martin, N. M. Messing, M. E. Deppert, K. Liu, Z. Chang, R. Fernandes, V. R. Borg, A. Gronbeck, H. Lundgren, E. TI Generation and oxidation of aerosol deposited PdAg nanoparticles SO SURFACE SCIENCE LA English DT Article DE PdAg; Alloy; Nanoparticles; HPXPS ID ROOT-5)R27-DEGREES-O SURFACE OXIDE; BINDING-ENERGY SHIFTS; CO OXIDATION; CATALYTIC REACTIVITY; SPARK DISCHARGE; MODEL CATALYST; ATOMIC-SCALE; SEGREGATION; ALLOYS; PALLADIUM AB PdAg nanoparticles with a diameter of 10 nm have been generated by an aerosol particle method, and supported on a silica substrate. By using a combination of X-ray Energy Dispersive Spectroscopy and X-ray Photoelectron Spectroscopy it is shown that the size distribution of the particles is narrow and that the two metals form an alloy with a mixture of 75% Pd and 25% Ag. Under oxidizing conditions, Pd is found to segregate to the surface and a thin PdO like oxide is formed similar to the surface oxide previously reported on extended PdAg and pure Pd surfaces. (C) 2013 Elsevier B.V. All rights reserved. C1 [Blomberg, S.; Gustafson, J.; Martin, N. M.; Messing, M. E.; Lundgren, E.] Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden. [Deppert, K.] Lund Univ, Div Solid State Phys, SE-22100 Lund, Sweden. [Liu, Z.; Chang, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, ALS, Berkeley, CA 94720 USA. [Fernandes, V. R.; Borg, A.] Norwegian Univ Sci & Technol, Dept Phys, NO-7491 Trondheim, Norway. [Gronbeck, H.] Chalmers, Competence Ctr Catalysis, S-41296 Gothenburg, Sweden. RP Blomberg, S (reprint author), Lund Univ, Div Synchrotron Radiat Res, Box 118, SE-22100 Lund, Sweden. EM sara.blomberg@sljus.lu.se RI Deppert, Knut/A-6719-2008; Messing, Maria/D-5546-2009; Liu, Zhi/B-3642-2009; Gronbeck, Henrik/B-6585-2016; Lundgren, Edvin/F-5551-2010; OI Deppert, Knut/0000-0002-0471-951X; Messing, Maria/0000-0003-1834-236X; Liu, Zhi/0000-0002-8973-6561; Gronbeck, Henrik/0000-0002-8709-2889 FU Swedish Research Council; Crafoord Foundation; Knut and Alice Wallenberg Foundation; Foundation for Strategic Research (SSF); Anna and Edwin Berger Foundation; NordForsk; Office of Science, Office of Advanced Scientific Computing Research, Office of Basic Energy Sciences, Materials Sciences and Engineering, and Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Research Council of Norway [138368/V30] FX This work was financially supported by the Swedish Research Council, the Crafoord Foundation, the Knut and Alice Wallenberg Foundation, the Foundation for Strategic Research (SSF), the Anna and Edwin Berger Foundation and NordForsk. This work was also supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, Office of Basic Energy Sciences, Materials Sciences and Engineering, and Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 and Research Council of Norway no. 138368/V30. NR 48 TC 3 Z9 3 U1 4 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD OCT PY 2013 VL 616 BP 186 EP 191 DI 10.1016/j.susc.2013.06.005 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 205SB UT WOS:000323464000028 ER PT J AU Nerko, DC Axnanda, S Lofaro, JC Zhou, WP White, MG AF Nerko, Danielle C. Axnanda, Stephanus Lofaro, John C., Jr. Zhou, Wei-Ping White, Michael G. TI Synthesis and characterization of surface oxide films on CoGa(100) SO SURFACE SCIENCE LA English DT Article DE CoGa(100); Oxide thin film; Gallium oxide; Cobalt oxide ID METHANOL SYNTHESIS; CARBON-DIOXIDE; GA2O3-PD/SILICA CATALYSTS; OXIDATION; OXYNITRIDE; HYDROGEN; CO2/H-2; METALS; GROWTH; COGA AB It has been shown that a Ga2O3 film forms on the surface of CoGa alloy crystals when exposed to oxygen (Pan, 2001 and Vlad, 2010). In this work we report the results of the characterization of surface oxides on CoGa(100) using X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), and ion scattering spectroscopy (ISS). The oxides were synthesized using either O-2 or NO2 as the oxidant at 300 K or in excess of 700 K. ISS scans showed that cobalt was always present in the top surface layer regardless of oxidation conditions. XPS showed that depending on the oxidant and the temperature, the composition of the oxide films vary depending on oxidation treatment, with some oxides being nearly all Ga2O3 and ordered with a sharp LEED pattern consisting of (2 x 1) domains rotated by 90((degrees) under bar) and others being Co-Ga mixed oxides that gave no diffraction pattern. (C) 2013 Elsevier B.V. All rights reserved. C1 [Nerko, Danielle C.; Lofaro, John C., Jr.; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Axnanda, Stephanus; Zhou, Wei-Ping; White, Michael G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP White, MG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM mgwhite@bnl.gov RI zhou, weiping/C-6832-2012 OI zhou, weiping/0000-0002-8058-7280 FU Chemistry Department at Brookhaven National Laboratory [DE-ACO2-98CH10086]; U.S. Department of Energy (Division of Chemical Sciences, Geoscience and Biosciences); Laboratory Directed Research and Development Program at Brookhaven National Laboratory FX The experiments were carried out in the Chemistry Department at Brookhaven National Laboratory under Contract No. DE-ACO2-98CH10086 with the U.S. Department of Energy (Division of Chemical Sciences, Geoscience and Biosciences). WPZ was partially supported by the Laboratory Directed Research and Development Program at Brookhaven National Laboratory. NR 33 TC 0 Z9 0 U1 3 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD OCT PY 2013 VL 616 BP 192 EP 197 DI 10.1016/j.susc.2013.06.003 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 205SB UT WOS:000323464000029 ER PT J AU Hogle, S Maldonado, GI Alexander, C AF Hogle, Susan Maldonado, G. Ivan Alexander, Charles TI Increasing transcurium production efficiency through directed resonance shielding SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Transmutation; Actinides; Transcurium; Resonance shielding; High Flux Isotope Reactor AB The Radiochemical Engineering Development Center at Oak Ridge National Laboratory is the world's leader in production of Cf-252. This and other heavy actinides are produced by irradiation of mixed curium/americium targets in the High Flux Isotope Reactor. Due to the strong dependence of isotopic cross-sections upon incoming neutron energy, the efficiency with which an isotope is transmuted is highly dependent upon the energy spectrum and intensity of the neutron flux. There are certain energy ranges in which the rate of fission absorptions in feedstock materials is reduced relative to the rate of (n,gamma) captures. Using a variety of computational models it is shown that by perturbing the flux spectrum, it is possible to alter the net consumption of curium feedstock, as well as the yields of key isotopes for the heavy element research program, such as Bk-249 and Cf-252. This flux spectrum perturbation is accomplished by means of focused resonance shielding through the use of filter materials. It is further shown that these perturbations can alter the target yields in a significant way, increasing the amount of Cf-252 produced per unit curium consumption by over 40%. Published by Elsevier Ltd. C1 [Hogle, Susan; Maldonado, G. Ivan] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Alexander, Charles] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hogle, S (reprint author), Univ Tennessee, Dept Nucl Engn, 315 Pasqua Engn Bldg, Knoxville, TN 37996 USA. EM shogle@utk.edu; imaldona@utk.edu; alexandercw@ornl.gov OI Maldonado, Guillermo/0000-0001-7377-4494 NR 16 TC 0 Z9 0 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD OCT PY 2013 VL 60 BP 267 EP 273 DI 10.1016/j.anucene.2013.05.018 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 197MG UT WOS:000322854700033 ER PT J AU Steele, AM Poulston, S Magrini-Bair, K Jablonski, W AF Steele, Andrew M. Poulston, Stephen Magrini-Bair, Kimberly Jablonski, Whitney TI Catalytic syngas purification from model biomass gasification streams SO CATALYSIS TODAY LA English DT Article DE Rhodium; Nickel; Methane; Tar; Benzene; Oak wood ID HOT-GAS; STEAM-GASIFICATION; OLIVINE CATALYSTS; PARTIAL OXIDATION; TAR; REMOVAL; PERFORMANCE; BED AB Efficient cleaning and conditioning of biomass derived syngas for use in fuel synthesis continues to be a significant technical barrier to commercialising biofuels. The relative effectiveness of a range of nickel and rhodium containing catalysts for the conversion of model tar compounds (toluene and naphthalene or benzene) in a simulated bio-syngas stream containing up to 100 ppm H2S and up to 5 vol.% CH4 at temperatures from 700 to 900 degrees C were assessed at JMTC. Though H2S was found to significantly reduce hydrocarbon conversion near complete conversion of methane and tar could be achieved on a Rh based catalyst at 900 degrees C with a very high GHSV of 150,000 h(-1). At more realistic GHSV of 60,000 h(-1) and higher methane levels (5 vol.%) the effect of H2S concentration on catalyst activity followed an apparent linear activity decay law. Furthermore, the H2S deactivation was fully reversible and could be attributed to a transient site-blocking mechanism (TSB). Selected catalysts were also evaluated at NREL for tar and methane conversions using oak modelled syngas. The best Ni and best Rh catalyst were then tested under real conditions using oak derived syngas from NREL's pilot scale gasification unit. Rh based catalysts gave significantly better hydrocarbon conversion than the Ni catalysts at comparable conditions. The best Rh catalyst demonstrated 200 h of steady state methane conversion of 95% with little apparent loss of activity using oak modelled syngas. (C) 2013 Elsevier B.V. All rights reserved. C1 [Steele, Andrew M.; Poulston, Stephen] Johnson Matthey Technol Ctr, Reading RG4 9NH, Berks, England. [Magrini-Bair, Kimberly; Jablonski, Whitney] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. RP Steele, AM (reprint author), Johnson Matthey Technol Ctr, Reading RG4 9NH, Berks, England. EM steela@matthey.com; poulss@matthey.com; Kim.Magrini@nrel.gov FU Anglo American Platinum; United States Department of Energy's Biomass Program FX The authors thank Anglo American Platinum and the United States Department of Energy's Biomass Program for financial support. AMS and SP would like to thank colleagues at Johnson Matthey for their assistance with this work. NR 23 TC 7 Z9 7 U1 3 U2 80 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD OCT 1 PY 2013 VL 214 SI SI BP 74 EP 81 DI 10.1016/j.cattod.2013.02.007 PG 8 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 195HQ UT WOS:000322693300010 ER PT J AU Yang, Y Pope, SB Chen, JH AF Yang, Yue Pope, Stephen B. Chen, Jacqueline H. TI Empirical low-dimensional manifolds in composition space SO COMBUSTION AND FLAME LA English DT Article DE Turbulent combustion; Empirical low-dimensional manifold; Principal component analysis; Multivariate adaptive spline regression ID PRINCIPAL COMPONENT ANALYSIS; PROPER ORTHOGONAL DECOMPOSITION; FLAMELET-GENERATED MANIFOLDS; DIRECT NUMERICAL-SIMULATION; CONDITIONAL MOMENT CLOSURE; TURBULENT REACTIVE FLOWS; LARGE-EDDY SIMULATION; HIGHLY-HEATED COFLOW; ETHYLENE JET FLAME; EQUILIBRIUM METHOD AB To reduce the computational cost of turbulent combustion simulations with a detailed chemical mechanism, it is useful to find a low-dimensional manifold in composition space. Most previous low-dimensional manifolds in turbulent combustion are based on the governing conservation equations or thermochemistry and their application involves certain assumptions. On the other hand, empirical low-dimensional manifolds (ELDMs) are constructed based on samples of the compositions observed in experiments or in direct numerical simulation (DNS). Plane and curved ELDMs can be obtained using principal component analysis (PCA) and multivariate adaptive spline regression (MARS), respectively. The framework for ELDMs based on the represented compositions and principal components is considered in this study, where the represented compositions are selected from the PCA results. Both PCA and MARS are applied to the DNS databases of a non-premixed CO/H-2 temporally evolving jet flame and of an ethylene lifted jet flame. It is more accurate to represent the species mass fractions by curved MARS ELDMs than by plane PCA ELDMs. To achieve a overall departure less than a given level, more dimensions are required for the ethylene case (which involves 22 species) than for the CO/H-2 case (which involves 11 species). For MARS to achieve less than the 5% departure level, seven dimensions are required for the ethylene case, and just two dimensions are required for the CO/H-2 case. However, it is much more challenging to obtain the ELDMs with high accuracy for the chemical source terms using a small number of dimensions. In addition, the effects on the departure from ELDMs of the scaling method in PCA, local extinction, and the Reynolds number are discussed. Two different approximations for the chemical source term are compared with discussions for further a posteriori simulations. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Yang, Yue; Pope, Stephen B.] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Yang, Yue; Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Yang, Y (reprint author), Cornell Univ, 138 Upson Hall, Ithaca, NY 14853 USA. EM yy463@cornell.edu RI Yang, Yue/C-7873-2009 FU Combustion Energy Frontier Research Center, an Energy Frontier Research Center; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-SC0001198]; DOEs Innovative and Novel Computational Impact on Theory and Experiments (INCITE) program; Office of Science of the US DOE [DE-AC05-00OR22725] FX We are grateful to C.F. Van Loan for the algorithm of minimizing the distance between subspaces, E.R. Hawkes and H. Kolla for the postprocessing of DNS data, and J.C. Sutherland for valuable discussions. This research is supported by the Combustion Energy Frontier Research Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001198. Computer allocations were awarded by DOEs Innovative and Novel Computational Impact on Theory and Experiments (INCITE) program. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory (NCCS/ORNL) which is supported by the Office of Science of the US DOE under Contract No. DE-AC05-00OR22725. NR 45 TC 12 Z9 13 U1 3 U2 25 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD OCT PY 2013 VL 160 IS 10 BP 1967 EP 1980 DI 10.1016/j.combustflame.2013.04.006 PG 14 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 197JT UT WOS:000322848200005 ER PT J AU Zhou, RG Balusamy, S Sweeney, MS Barlow, RS Hochgreb, S AF Zhou, Ruigang Balusamy, Saravanan Sweeney, Mark S. Barlow, Robert S. Hochgreb, Simone TI Flow field measurements of a series of turbulent premixed and stratified methane/air flames SO COMBUSTION AND FLAME LA English DT Article DE Turbulent combustion; Lean stratified combustion; Co-annular bluff body burner; Laser Doppler anemometry; Particle image velocimetry; Velocity field ID EMISSION CHARACTERISTICS; PREFERENTIAL TRANSPORT; NUMERICAL-ANALYSIS; SWIRLING FLOWS; CH4/AIR FLAMES; COMBUSTION; VELOCIMETRY; SCALE; VELOCITY; SPECTRA AB This paper presents flow field measurements for the turbulent stratified burner introduced in two previous publications in which high resolution scalar measurements were made by Sweeney et al. [1,2] for model validation. The flow fields of the series of premixed and stratified methane/air flames are investigated under turbulent, globally lean conditions (phi(g) = 0.75). Velocity data acquired with laser Doppler anemometry (LDA) and particle image velocimetry (PIV) are presented and discussed. Pairwise 2-component LDA measurements provide profiles of axial velocity, radial velocity, tangential velocity and corresponding fluctuating velocities. The LDA measurements of axial and tangential velocities enable the swirl number to be evaluated and the degree of swirl characterized. Power spectral density and autocorrelation functions derived from the LDA data acquired at 10 kHz are optimized to calculate the integral time scales. Flow patterns are obtained using a 2-component Ply system operated at 7 Hz. Velocity profiles and spatial correlations derived from the PIV and LDA measurements are shown to be in very good agreement, thus offering 3D mapping of the velocities. A strong correlation was observed between the shape of the recirculation zones above the central bluff body and the effects of heat release, stoichiometry and swirl. Detailed analyses of the LDA data further demonstrate that the flow behavior changes significantly with the levels of swirl and stratification, which combines the contributions of dilatation, recirculation and swirl. Key turbulence parameters are derived from the total velocity components, combining axial, radial and tangential velocities. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Zhou, Ruigang; Balusamy, Saravanan; Sweeney, Mark S.; Hochgreb, Simone] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. [Barlow, Robert S.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Zhou, RG (reprint author), Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. EM rz242@cam.ac.uk RI Balusamy, Saravanan/H-5256-2013 OI Balusamy, Saravanan/0000-0002-3418-4915 FU Cambridge Overseas Trust; China Scholarship Council; Leverhulme Trust FX The authors gratefully acknowledge the financial support from the Cambridge Overseas Trust, China Scholarship Council, and Leverhulme Trust. NR 41 TC 17 Z9 17 U1 2 U2 35 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD OCT PY 2013 VL 160 IS 10 BP 2017 EP 2028 DI 10.1016/j.combustflame.2013.04.007 PG 12 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 197JT UT WOS:000322848200010 ER PT J AU Jackson, SI Short, M AF Jackson, Scott I. Short, Mark TI The influence of the cellular instability on lead shock evolution in weakly unstable detonation SO COMBUSTION AND FLAME LA English DT Article DE Detonation; Cellular instability; Curvature; Detonation shock dynamics ID DIRECT INITIATION; GASEOUS DETONATIONS; WAVES; COMBUSTION; ENERGY AB The evolution of the normal detonation shock velocity (D-n) with local shock curvature (kappa) is experimentally and numerically examined along entire evolving fronts of a weakly unstable cellular detonation cycle with the intention of extending the understanding of cellular evolution dynamics. As expected, a single velocity-curvature relation is not recovered due to the unsteady evolution of the cell. However, geometric features of the D-n-kappa evolution during a cell cycle reveal some new details of the mechanisms driving cellular detonation. On the cell centerline, the local shock velocity and curvature monotonically decrease throughout the cellular cycle. Off centerline, a larger range of wavefront curvature was exhibited in expanding cells as compared to shrinking ones, indicating that most curvature variation in a detonation cell occurs near the Mach stem. In normal shock velocity-curvature space, the cell dynamics can be mapped to three features that are characteristic of (feature 1) a detonation with a spatially short reaction zone, (feature 2) a transitional regime of shock and reaction zone decoupling, and (feature 3) a diffracting inert blast wave. New, growing cells predominately exhibited features 1 and 2, while decaying cells only exhibited feature 3. The portions of all profiles with normal velocities below the ChapmanJouguet velocity were characteristic of inert blast propagation, indicating the possibility that exceeding this velocity may be a necessary condition for the existence of shock and reaction zone coupling. In this inert blast regime, Dr, and K vary spatially across the wave front so each segment is not geometrically cylindrical, but when accumulated, the D-n-kappa data map out a straight line, indicating elements of self-similar flow for each stage in the cell cycle. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Jackson, Scott I.; Short, Mark] Los Alamos Natl Lab, Shock & Detonat Phys Grp, Los Alamos, NM 87545 USA. RP Jackson, SI (reprint author), Los Alamos Natl Lab, Shock & Detonat Phys Grp, POB 1663, Los Alamos, NM 87545 USA. EM sjackson@lanl.gov; short1@lanl.gov OI Jackson, Scott/0000-0002-6814-3468 FU Campaign 2 "High Explosive Science" and Advanced Scientific Computing (ASC) programs via the Department of Energy FX The authors are extremely grateful to J. Austin for providing the film data for this study. We thank S. Lau-Chapdelaine and M. Radulescu for the fitting of one-step rate parameters and T. Aslam for advice on use of the shock-fitting code developed in Ref. [28]. We also acknowledge discussions with J. Kasahara and H. Nakayama on the application of DSD concepts to gas-phase detonation dynamics. This effort was supported through the Campaign 2 "High Explosive Science" and Advanced Scientific Computing (ASC) programs via the Department of Energy. NR 34 TC 0 Z9 0 U1 1 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD OCT PY 2013 VL 160 IS 10 BP 2260 EP 2274 DI 10.1016/j.combustflame.2013.04.028 PG 15 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 197JT UT WOS:000322848200029 ER PT J AU Weir, C Pantoya, ML Daniels, MA AF Weir, Chelsea Pantoya, Michelle L. Daniels, Michael A. TI The role of aluminum particle size in electrostatic ignition sensitivity of composite energetic materials SO COMBUSTION AND FLAME LA English DT Article DE Electrostatic ignition; Aluminum combustion; Ignition sensitivity; Electrical conductivity; Thermite; Composite energetic materials AB Very often unintentional ignition of composite energetic materials (CEM) occurs when static electricity is discharged into the CEM. An interesting finding recently reported showed that for micron particle CEM formulations, only aluminum (Al) combined with copper oxide (CuO) was electrostatic discharge (ESD) ignition sensitive, while commonly used Al combined with molybdenum trioxide (MoO3) was deemed not ESD ignition sensitive. In practice however, nano Al-MoO3 results in frequent unintentional ESD ignition events. This study examines the role of Al particle size on ESD ignition sensitivity and measures electrical conductance for each CEM. Results show that as Al particle size is reduced, electrical conductance increases dramatically as does ESD ignition sensitivity. Overall, electrical conductance is shown to increase linearly with increasing Al surface area to volume ratio and the alumina passivation shell surrounding Al core particles plays a significant role in enhancing ignition sensitivity. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Weir, Chelsea; Pantoya, Michelle L.] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. [Daniels, Michael A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Pantoya, ML (reprint author), Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. EM mpantoya@gmail.com FU Army Research Office [W911NF-11-1-0439] FX The authors M. Pantoya and C. Weir are grateful for support from the Army Research Office contract number W911NF-11-1-0439 and encouragement from our program manager, Dr. Ralph Anthenien. Idaho National Laboratory is also gratefully acknowledged for supporting this collaborative work with internal funds via the LDRD program. NR 4 TC 12 Z9 12 U1 4 U2 43 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD OCT PY 2013 VL 160 IS 10 BP 2279 EP 2281 DI 10.1016/j.combustflame.2013.05.005 PG 3 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 197JT UT WOS:000322848200031 ER PT J AU Cardoso, G Stadler, M Siddiqui, A Marnay, C DeForest, N Barbosa-Povoa, A Ferrao, P AF Cardoso, G. Stadler, M. Siddiqui, A. Marnay, C. DeForest, N. Barbosa-Povoa, A. Ferrao, P. TI Microgrid reliability modeling and battery scheduling using stochastic linear programming SO ELECTRIC POWER SYSTEMS RESEARCH LA English DT Article DE Batteries; Optimal scheduling; Smart grids; Stochastic systems; Uncertainty; Microgrids ID DISTRIBUTED ENERGY-SYSTEMS; GENERATION; OPTIMIZATION; UNCERTAINTY; STRATEGIES; OPERATION AB This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6%. (C) 2013 Elsevier B.V. All rights reserved. C1 [Cardoso, G.; Barbosa-Povoa, A.; Ferrao, P.] Univ Tecn Lisboa, Inst Super Tecn, Lisbon, Portugal. [Stadler, M.; Marnay, C.; DeForest, N.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Siddiqui, A.] UCL, London WC1E 6BT, England. [Siddiqui, A.] Stockholm Univ, Stockholm, Sweden. RP Cardoso, G (reprint author), Univ Tecn Lisboa, Inst Super Tecn, Lisbon, Portugal. EM goncalo.cardoso@ist.utl.pt; mstadler@lbl.gov; afzal@stats.ucl.ac.uk; chrismarnay@lbl.gov; ndeforest@lbl.gov; apovoa@mail.ist.utl.pt; ferrao@ist.utl.pt RI Ferrao, Paulo/B-6065-2012; Barbosa-Povoa, Ana/A-8578-2012 OI Ferrao, Paulo/0000-0003-1357-9966; Barbosa-Povoa, Ana/0000-0001-6594-9653 FU Office of Electricity Delivery and Energy Reliability, Distributed Energy Program of the US Department of Energy [DE-AC02-05CH11231]; Fundacao para a Ciencia e Tecnologia [SFRH/BD/35147/2007] FX This work was funded by the Office of Electricity Delivery and Energy Reliability, Distributed Energy Program of the US Department of Energy under Contract No. DE-AC02-05CH11231. G. Cardoso was also funded by Fundacao para a Ciencia e Tecnologia under Grant SFRH/BD/35147/2007. NR 28 TC 22 Z9 22 U1 1 U2 49 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7796 J9 ELECTR POW SYST RES JI Electr. Power Syst. Res. PD OCT PY 2013 VL 103 BP 61 EP 69 DI 10.1016/j.epsr.2013.05.005 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 198RJ UT WOS:000322939700008 ER PT J AU Wang, H Wu, PD Wang, J Tome, CN AF Wang, H. Wu, P. D. Wang, J. Tome, C. N. TI A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE De-twinning; Twinning; Crystal plasticity; Cyclic loading ID MAGNESIUM ALLOY AZ31B; SITU NEUTRON-DIFFRACTION; FINITE-ELEMENT MODEL; TEXTURE DEVELOPMENT; CONSTITUTIVE MODEL; STRESS-RELAXATION; SINGLE-CRYSTALS; LOCALIZED DEFORMATION; HARDENING EVOLUTION; CYCLIC DEFORMATION AB Together with slip, deformation twinning and de-twinning are the plastic deformation mechanisms in hexagonal close packed (HCP) crystals, which strongly affect texture evolution and anisotropic response. As a consequence, several twinning models have been proposed and implemented in the existing polycrystalline plasticity models. De-twinning is an inverse process with respect to twinning, which is relevant to cycling, fatigue and complex loads but is rarely incorporated into polycrystalline plastic models. In this paper, we propose a physics-based twinning and de-twinning (TDT) model that has the capability of dealing with both mechanisms during plastic deformation. The TDT model is characterized by four deformation mechanisms corresponding to twin nucleation, twin growth, twin shrinkage and re-twinning. Twin nucleation and twin growth are associated with deformation twinning, and twin shrinkage and re-twinning are associated with de-twinning. The proposed TDT model is implemented in the Elasto-Visco-Plastic Self-Consistent (EVPSC) model. We demonstrate the validity and the capability of the TDT model by simulating cyclic loading of magnesium alloys AZ31B plate and AZ31 bar. Comparison with the measurements indicates that the TDT model is able to capture the key features observed in experiments, implying that the mechanical response in the simulated materials is mainly associated with twinning and de-twinning. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Wang, H.; Wu, P. D.] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. [Wang, J.; Tome, C. N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Wang, H (reprint author), McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. EM wangh56@mcmaster.ca RI Wang, Huamiao/F-7693-2010; Tome, Carlos/D-5058-2013; Wu, Peidong/A-7009-2008; Wang, Jian/F-2669-2012 OI Wang, Huamiao/0000-0002-7167-2483; Wang, Jian/0000-0001-5130-300X FU Natural Sciences and Engineering Research Council of Canada (NSERC); Ontario Ministry of Research and Innovation; US Department of Energy, Office of Basic Energy Sciences [FWP-06SCPE401] FX This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Ontario Ministry of Research and Innovation. CNT and JW were supported by the US Department of Energy, Office of Basic Energy Sciences (Project No: FWP-06SCPE401). The authors thank Dr. Sean R. Agnew and Dr. Liang Wu for sharing their texture data. NR 88 TC 111 Z9 113 U1 17 U2 142 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD OCT PY 2013 VL 49 BP 36 EP 52 DI 10.1016/j.ijplas.2013.02.016 PG 17 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 199VL UT WOS:000323023500003 ER PT J AU Hansen, BL Carpenter, JS Sintay, SD Bronkhorst, CA McCabe, RJ Mayeur, JR Mourad, HM Beyerlein, IJ Mara, NA Chen, SR Gray, GT AF Hansen, B. L. Carpenter, J. S. Sintay, S. D. Bronkhorst, C. A. McCabe, R. J. Mayeur, J. R. Mourad, H. M. Beyerlein, I. J. Mara, N. A. Chen, S. R. Gray, G. T., III TI Modeling the texture evolution of Cu/Nb layered composites during rolling SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Microstructure; Crystal plasticity; Layered material; Finite elements; Finite strain ID METALLIC MULTILAYERS; CRYSTAL PLASTICITY; GRAIN-BOUNDARIES; MECHANISMS; SLIP; MICROSTRUCTURE; REPRESENTATION; INTERFACES; BEHAVIOR AB Metallic based multi-layered nano-composites are recognized for their increased plastic flow strength and indentation hardness, increased ductility, improved radiation damage resistance, improved electrical and magnetic properties, and enhanced fatigue failure resistance compared to conventional metallic materials. One of the ways in which these classes of materials are manufactured is through accumulated roll bonding where the material is produced by several rolling and heat treatment steps during which the layer thickness is reduced through severe plastic deformation. In this article, a single rolling pass of the accumulated roll bonding process in which a Cu/Nb layered composite with an initial average layer thickness of 24 mu m subjected to a 50% height reduction is examined. Experimental morphological and crystallographic texture data is presented and used to initialize numerical models for these layered material systems. This study focuses on the Cu/Nb combination of fcc/bcc materials for incoherent material interfaces. A single crystal model based upon thermally activated dislocation motion is used and the evaluation of material parameters is presented. Since the initial state of the composite is not in a fully annealed condition, nano hardness tests for both the Cu and Nb layers are used to initialize the model for each of the two materials. EBSD data of the heat treated material is used to characterize the initial state of the composite and used to produce 40 combined morphological and crystallographic numerical model realizations of the material. Each of the models is then imposed to a plane strain compression deformation height reduction of 50%. Numerical data from the 40 simulations was then combined to arrive at the statistically comparable crystallographic texture for each of the Cu and Nb materials. This data was compared with the experimental data and the results suggest very good agreement between the predicted and experimental textures for both the materials. Selected stress profile predictions for two realizations are presented and demonstrate a strong difference in stress state between the Cu and Nb layers. Published by Elsevier Ltd. C1 [Hansen, B. L.; Bronkhorst, C. A.; Mayeur, J. R.; Mourad, H. M.; Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Sintay, S. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Carpenter, J. S.; McCabe, R. J.; Chen, S. R.; Gray, G. T., III] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Mara, N. A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Bronkhorst, CA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cabronk@lanl.gov RI Beyerlein, Irene/A-4676-2011; Bronkhorst, Curt/B-4280-2011; Mara, Nathan/J-4509-2014; OI Bronkhorst, Curt/0000-0002-2709-1964; McCabe, Rodney /0000-0002-6684-7410; Carpenter, John/0000-0001-8821-043X; Mara, Nathan/0000-0002-9135-4693 FU Los Alamos National Laboratory Directed Research Program [20110029DR]; National Nuclear Security Administration of the U. S. Department of Energy [DE-AC52-06NA25396] FX This work was conducted under the Los Alamos National Laboratory Directed Research Program project 20110029DR. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U. S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under contract DE-AC52-06NA25396. The authors would like to recognize important discussions with J. Wang, A. Misra, A. D. Rollett, D. L. McDowell, T. M. Pollock, T. Lookman. NR 63 TC 32 Z9 32 U1 3 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD OCT PY 2013 VL 49 BP 71 EP 84 DI 10.1016/j.ijplas.2013.03.001 PG 14 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 199VL UT WOS:000323023500005 ER PT J AU Bertin, N Capolungo, L Beyerlein, IJ AF Bertin, N. Capolungo, L. Beyerlein, I. J. TI Hybrid dislocation dynamics based strain hardening constitutive model SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Dislocations; Constitutive behavior; Crystal plasticity; Strain hardening; Hybrid model ID ALUMINUM SINGLE-CRYSTALS; HIGH-RATE DEFORMATION; MEAN FREE PATHS; PLASTIC-DEFORMATION; GRAIN-BOUNDARY; FLOW-STRESS; POLYCRYSTALLINE MATERIALS; LOCALIZED DEFORMATION; ELASTIC FIELD; FCC CRYSTALS AB In this article, a Hybrid strain-hardening Model for slip driven plasticity is introduced. The model distinguishes between the contributions of glissile and stored dislocations, and polar and non-polar dislocations. The core idea relies on a two step-approach in which all glissile non-polar dislocations on given slip systems are represented by a virtual dislocation loop which evolution is modeled by a dislocation dynamics approach, while transformations of dislocations from glissile to stored, resulting from short-range dislocation-dislocation interactions, are based on phenomenological relations informed by dislocation dynamics simulations on dislocation pair interactions. The constitutive model developed should then allow for a reduction in fitting parameters and should be suitable to predict complex loading. Besides, the Hybrid Model is able to predict dislocation densities for all kinds of populations, including junctions. As a first application, the resulting Hybrid continuum/discrete dislocation density Model is utilized for predicting the stress-strain response of single crystal aluminum as a function of its orientation, slip activity, and junction formation. (c) 2013 Published by Elsevier Ltd. C1 [Bertin, N.; Capolungo, L.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Georgia Tech, CNRS,UMI 2958, F-57070 Metz, France. [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Capolungo, L (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Georgia Tech, CNRS,UMI 2958, F-57070 Metz, France. EM laurent.capolungo@me.gatech.edu RI Beyerlein, Irene/A-4676-2011 FU office of Basic Energy Science [E401] FX The authors would like to thank the office of Basic Energy Science for support through project E401. NR 98 TC 15 Z9 15 U1 4 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD OCT PY 2013 VL 49 BP 119 EP 144 DI 10.1016/j.ijplas.2013.03.003 PG 26 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 199VL UT WOS:000323023500007 ER PT J AU Knezevic, M Beyerlein, IJ Brown, DW Sisneros, TA Tome, CN AF Knezevic, Marko Beyerlein, Irene J. Brown, Donald W. Sisneros, Thomas A. Tome, Carlos N. TI A polycrystal plasticity model for predicting mechanical response and texture evolution during strain-path changes: Application to beryllium SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Hexagonal metals; Constitutive modeling; Twinning; De-twinning; Strain-path change ID WROUGHT MAGNESIUM ALLOY; CRYSTALLOGRAPHIC TEXTURE; HARDENING EVOLUTION; CYCLIC DEFORMATION; ALPHA-TITANIUM; MG ALLOY; BEHAVIOR; SLIP; MICROSTRUCTURE; ALUMINUM AB A polycrystalline material, deformed to large plastic strains and subsequently reloaded along a distinct strain path, exhibits a change in flow stress and hardening behavior. Such changes upon reloading depend on the level of mechanical anisotropy induced by texture and sub-grain microstructure developed during prior loading. In order to comprehend such material behavior, we extend a previously developed rate- and temperature-sensitive hardening law for hexagonal single crystals that accounts explicitly for the evolution of dislocation densities by including the effects of reverse dislocation motion and de-twinning on strain hardening and texture evolution. The law is implemented within a visco-plastic self-consistent polycrystalline model and applied to simulate macroscopic behavior of polycrystalline beryllium during strain-path changes. We show that the model successfully captures the mechanical response and evolution of texture and twin volume fraction during pre-loading in compression and subsequent cross-reloading in compression along two orthogonal directions at two different strain rates. These predictions allow us to elucidate the role played by various slip and twin mechanisms, de-twinning, and reverse dislocation motion on strain hardening and texture evolution of beryllium during strain-path changes. The model is general and can be applied to any metal deforming by slip and twinning. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Knezevic, Marko; Brown, Donald W.; Sisneros, Thomas A.; Tome, Carlos N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Knezevic, Marko] Univ New Hampshire, Dept Mech Engn, Durham, NH 03824 USA. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Knezevic, M (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM marko.knezevic@unh.edu RI Beyerlein, Irene/A-4676-2011; Tome, Carlos/D-5058-2013 FU Seaborg Institute under a Post-Doctoral Fellowship through the LANL LDRD Program; US. Department of Energy; US Department of Energy, Office of Basic Energy Sciences [FWP-06SCPE401] FX M. Knezevic gratefully acknowledges the Seaborg Institute for financial support under a Post-Doctoral Fellowship through the LANL LDRD Program with the US. Department of Energy. I.J. Beyerlein and C.N. Tome acknowledge support by the US Department of Energy, Office of Basic Energy Sciences through Project No. FWP-06SCPE401. NR 51 TC 52 Z9 52 U1 9 U2 72 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD OCT PY 2013 VL 49 BP 185 EP 198 DI 10.1016/j.ijplas.2013.03.008 PG 14 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 199VL UT WOS:000323023500011 ER PT J AU Larson, J Wild, SM AF Larson, Jeffrey Wild, Stefan M. TI Non-intrusive termination of noisy optimization SO OPTIMIZATION METHODS & SOFTWARE LA English DT Article DE noisy optimization; termination criteria; deterministic noise; stochastic noise; derivative-free optimization; 90C56; 49J52 ID ALGORITHM AB Significant savings can be gained from terminating the optimization of a computationally expensive function well before traditional criteria, such as a maximum budget of evaluations, are satisfied. Early termination is desirable especially for noisy functions, where a solver could potentially proceed indefinitely while seeing changes insignificant relative to the noise. In this paper, we consider general termination tests that can be used in conjunction with any solver's built-in termination criteria. We propose parameterized families of termination tests, analyse their properties, and illustrate how they can employ an estimate of the function's noise level. Using a set of benchmark problems with both stochastic and deterministic noise and a set of derivative-free solvers, we compare the tests and their sensitivities to parameters in terms of both accuracy and efficiency. Recommendations are made for using the proposed tests in practice. C1 [Larson, Jeffrey] Univ Colorado Denver, Dept Math & Stat Sci, Denver, CO 80217 USA. [Wild, Stefan M.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Larson, J (reprint author), Univ Colorado Denver, Dept Math & Stat Sci, Denver, CO 80217 USA. EM jeffrey.larson@ucdenver.edu RI Wild, Stefan/P-4907-2016 OI Wild, Stefan/0000-0002-6099-2772 FU Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy, under Contract DE-AC02-06CH11357. The majority of this work was performed while the first author was visiting the Mathematics and Computer Science Division at Argonne National Laboratory. We are grateful to two anonymous referees for their comments that significantly improved the contents of this paper. NR 24 TC 0 Z9 0 U1 3 U2 9 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1055-6788 J9 OPTIM METHOD SOFTW JI Optim. Method Softw. PD OCT 1 PY 2013 VL 28 IS 5 BP 993 EP 1011 DI 10.1080/10556788.2012.656116 PG 19 WC Computer Science, Software Engineering; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Operations Research & Management Science; Mathematics GA 197BT UT WOS:000322823700003 ER PT J AU Kannan, A Shanbhag, UV Kim, HM AF Kannan, Aswin Shanbhag, Uday V. Kim, Harrison M. TI Addressing supply-side risk in uncertain power markets: stochastic Nash models, scalable algorithms and error analysis SO OPTIMIZATION METHODS & SOFTWARE LA English DT Article DE variational inequalities; stochastic programming; Nash games; projected gradient schemes; cutting plane methods ID S-ADAPTED EQUILIBRIA; ELECTRICITY MARKETS; VARIATIONAL-INEQUALITIES; GAMES; DECOMPOSITION; PROGRAMS; NETWORK; SYSTEMS AB Increasing penetration of volatile wind-based generation into the fuel mix is leading to growing supply-side volatility. As a consequence, the reliability of the power grid continues to be a source of much concern, particularly since the impact of supply-side risk exposure, arising from aggressive bidding,(1) is not felt by risk-seeking generation firms; instead, the system operator is largely responsible for managing shortfalls in the real-time market. We propose an alternate design in which the cost of such risk is transferred to firms responsible for imposing such risk. The resulting strategic problem can be cast as a two-period generalized stochastic Nash game with shared strategy sets. A subset of equilibria is given by a solution to a related stochastic variational inequality, that is shown to be both monotone and solvable. Computing solutions of this variational problem is challenging since the size of the problem grows with the cardinality of the sample space, network size and the number of participating firms. Consequently, direct schemes are inadvisable for most practical problems. Instead, we present a distributed regularized primal-dual scheme and a dual projection scheme where both primal and dual iterates are computed separately. Rates of convergence estimates are provided and error bounds are developed for inexact extensions of the dual scheme. Unlike projection schemes for deterministic problems, here the projection step requires the solution of a possibly massive stochastic programme. By utilizing cutting plane methods, we ensure that the complexity of the projection scheme scales slowly with the size of the sample space. We conclude with a study of a 53-node electricity network that allows for deriving insights regarding market design and operation, particularly for accommodating firms with uncertain generation assets. C1 [Kannan, Aswin] Argonne Natl Lab, Div Math & Comp Sci, Urbana, IL 61801 USA. [Shanbhag, Uday V.; Kim, Harrison M.] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL USA. RP Shanbhag, UV (reprint author), Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL USA. EM udaybag@illinois.edu FU Power Systems Engineering Research Center (PSERC); National Center for Supercomputing Applications (NCSA); DOE [DE-SC0003879]; [NSF-CCF-0728863]; [NSF-CMMI-0900196] FX We would like to acknowledge the support of the Power Systems Engineering Research Center (PSERC), the National Center for Supercomputing Applications (NCSA) and NSF-CCF-0728863 (Shanbhag), DOE award DE-SC0003879, and NSF-CMMI-0900196 (Kim). Comments from Profs. R. Baldick, S. Gabriel and B. F. Hobbs are gratefully acknowledged. NR 66 TC 7 Z9 7 U1 1 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1055-6788 EI 1029-4937 J9 OPTIM METHOD SOFTW JI Optim. Method Softw. PD OCT 1 PY 2013 VL 28 IS 5 BP 1095 EP 1138 DI 10.1080/10556788.2012.676756 PG 44 WC Computer Science, Software Engineering; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Operations Research & Management Science; Mathematics GA 197BT UT WOS:000322823700008 ER PT J AU Jenner, E Barbier, C D'Urso, B AF Jenner, Elliot Barbier, Charlotte D'Urso, Brian TI Durability of hydrophobic coatings for superhydrophobic aluminum oxide SO APPLIED SURFACE SCIENCE LA English DT Article DE Superhydrophobicity; Durability; Porous anodized aluminum; Contact angle; Rolling angle ID ANODIC POROUS ALUMINA; NANOPOROUS ALUMINA; SURFACES; FABRICATION; WATER AB Robust and easily produced superhydrophobic surfaces are of great interest for mechanical applications, including drag reduction and MEMS. We produce novel superhydrophobic surfaces with several different coatings and tested the durability of each of these coatings with respect to long term immersion in water in order to determine the most long-lasting surface preparation. A pair of combinations of spin on polymers, surface features, and adhesion promoters was found that provide long term durability. (C) 2013 Elsevier B.V. All rights reserved. C1 [Jenner, Elliot; D'Urso, Brian] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Barbier, Charlotte] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP D'Urso, B (reprint author), Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. EM Elj17@pitt.edu; barbiercn@ornl.gov; dursobr@pitt.edu OI Barbier, Charlotte/0000-0003-2752-0148 FU ORNL Seed Money Program; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the ORNL Seed Money Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 21 TC 8 Z9 9 U1 5 U2 94 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD OCT 1 PY 2013 VL 282 BP 73 EP 76 DI 10.1016/j.apsusc.2013.05.049 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 190CJ UT WOS:000322314800011 ER PT J AU Joshi, VV Meier, A Darsell, J Weil, KS Bowden, M AF Joshi, Vineet V. Meier, Alan Darsell, Jens Weil, K. Scott Bowden, Mark TI Trends in wetting behavior for Ag-CuO braze alloys on Ba0.5Sr0.5Co0.8Fe0.2O(3-delta) at elevated temperatures in air SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID COPPER OXIDE SYSTEM; MECHANICAL-PROPERTIES; NITRIDE CERAMICS; PHASE-EQUILIBRIA; MICRO-XRD; MEMBRANES; JOINTS AB In the current study, Ag-CuO, a reactive air brazing alloy was evaluated for brazing Ba0.5Sr0.5Co0.8Fe0.2O(3-delta) (BSCF). In situ contact angle tests were performed on BSCF using Ag-CuO binary mixtures at 950 and 1000 A degrees C, and the interfacial microstructures were evaluated. Wetting contact angles (theta < 90A degrees) were obtained at short times at 950 A degrees C, and the contact angles remained constant at 1000 A degrees C for 1, 2, and 8 mol% CuO contents. Microstructural analysis revealed the dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundaries. The formation of a thick interfacial reaction product layer and ridging at the sessile drop triple point indicate that the reaction kinetics are very rapid and that it will require careful process control to obtain the desired thin but continuous interfacial product layer. C1 [Joshi, Vineet V.; Meier, Alan] Alfred Univ, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA. [Joshi, Vineet V.; Darsell, Jens; Weil, K. Scott; Bowden, Mark] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Joshi, VV (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM vineet.joshi@pnnl.gov OI Joshi, Vineet/0000-0001-7600-9317 FU U.S. Department of Energy, Office of Fossil Energy; United States Department of Energy (U.S. DOE) [DE-AC06-76RLO 1830]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by the U.S. Department of Energy, Office of Fossil Energy. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the United States Department of Energy (U.S. DOE) under Contract DE-AC06-76RLO 1830. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 28 TC 7 Z9 7 U1 1 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD OCT PY 2013 VL 48 IS 20 BP 7153 EP 7161 DI 10.1007/s10853-013-7531-2 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 189OX UT WOS:000322277700034 ER PT J AU Carroll, JD Clark, BG Buchheit, TE Boyce, BL Weinberger, CR AF Carroll, J. D. Clark, B. G. Buchheit, T. E. Boyce, B. L. Weinberger, C. R. TI An experimental statistical analysis of stress projection factors in BCC tantalum SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Digital image correlation; Crystallography; Multicrystal; Crystal plasticity; Microstructure; Micromechanics ID X-RAY-DIFFRACTION; CENTERED-CUBIC METALS; CRYSTAL PLASTICITY; SINGLE-CRYSTALS; FINITE-ELEMENT; GRAIN-BOUNDARIES; TEMPERATURE DEPENDENCE; CONTRAST TOMOGRAPHY; LOCAL DEFORMATION; IMAGE CORRELATION AB Crystallographic slip planes in body centered cubic (BCC) metals are not fully understood. In polycrystals, there are additional confounding effects from grain interactions. This paper describes an experimental investigation into the effects of grain orientation and neighbors on elastic plastic strain accumulation. In situ strain fields were obtained by performing digital image correlation (DIC) on images from a scanning electron microscope (SEM) and from optical microscopy. These strain fields were statistically compared to the grain structure measured by electron backscatter diffraction (EBSD). Spearman rank correlations were performed between effective strain and six microstructural factors including four Schmid factors associated with the < 111 > slip direction, grain size, and Taylor factor. Modest correlations (similar to 10%) were found for a polycrystal tension specimen. The influence of grain neighbors was first investigated by re-correlating the polycrystal data using clusters of similarly-oriented grains identified by low grain boundary misorientation angles. Second, the experiment was repeated on a tantalum oligocrystal, with through-thickness grains. Much larger correlation coefficients were found in this multicrystal due to the dearth of grain neighbors and subsurface microstructure. Finally, a slip trace analysis indicated (in agreement with statistical correlations) that macroscopic slip often occurs on {110}< 111 > slip systems and sometimes by pencil glide on maximum resolved shear stress planes (MRSSP). These results suggest that Schmid factors are suitable for room temperature, quasistatic, tensile deformation in tantalum as long as grain neighbor effects are accounted for. (c) 2013 Elsevier B.V. All rights reserved. C1 [Carroll, J. D.; Buchheit, T. E.; Boyce, B. L.; Weinberger, C. R.] Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA. [Clark, B. G.] Sandia Natl Labs, Phys Chem & Nano Sci Ctr, Albuquerque, NM 87185 USA. RP Carroll, JD (reprint author), Sandia Natl Labs, Mat Sci & Engn Ctr, POB 5800, Albuquerque, NM 87185 USA. EM jcarrol@sandia.gov RI Carroll, Jay/K-2720-2012; OI Carroll, Jay/0000-0002-5818-4709; Weinberger, Christopher/0000-0001-9550-6992 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Dr. J.R. Michael and B. McKenzie for electron microscopy support. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 73 TC 11 Z9 11 U1 4 U2 36 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 1 PY 2013 VL 581 BP 108 EP 118 DI 10.1016/j.msea.2013.05.085 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 196UH UT WOS:000322802400015 ER PT J AU Jain, A Castelli, IE Hautier, G Bailey, DH Jacobsen, KW AF Jain, Anubhav Castelli, Ivano E. Hautier, Geoffroy Bailey, David H. Jacobsen, Karsten W. TI Performance of genetic algorithms in search for water splitting perovskites SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MATERIALS DESIGN; PREDICTION; OXIDES; OPTIMIZATION; POTENTIALS; PRINCIPLES; PARAMETERS; EXCHANGE; TRENDS AB We examine the performance of genetic algorithms (GAs) in uncovering solar water light splitters over a space of almost 19,000 perovskite materials. The entire search space was previously calculated using density functional theory to determine solutions that fulfill constraints on stability, band gap, and band edge position. Here, we test over 2500 unique GA implementations in finding these solutions to determine whether GA can avoid the need for brute force search, and thereby enable larger chemical spaces to be screened within a given computational budget. We find that the best GAs tested offer almost a 6 times efficiency gain over random search, and are comparable to the performance of a search based on informed chemical rules. In addition, the GA is almost 10 times as efficient as random search in finding half the solutions within the search space. By employing chemical rules, the performance of the GA can be further improved to approximately 12-17 better than random search. We discuss the effect of population size, selection function, crossover function, mutation rate, fitness function, and elitism on the final result, finding that selection function and elitism are especially important to GA performance. In addition, we determine that parameters that perform well in finding solar water splitters can also be applied to discovering transparent photocorrosion shields. Our results indicate that coupling GAs to high-throughput density functional calculations presents a promising method to rapidly search large chemical spaces for technological materials. C1 [Jain, Anubhav; Bailey, David H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Castelli, Ivano E.; Jacobsen, Karsten W.] Tech Univ Denmark, Ctr Atom Scale Mat Design, Dept Phys, DK-2800 Lyngby, Denmark. [Hautier, Geoffroy] Catholic Univ Louvain, ETSF, Inst Condensed Matter & Nanosci, B-1348 Louvain, Belgium. RP Jain, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ajain@lbl.gov RI Hautier, Geoffroy/A-8357-2011; Jacobsen, Karsten/B-3602-2009; Castelli, Ivano/N-1627-2015 OI Jacobsen, Karsten/0000-0002-1121-2979; Castelli, Ivano/0000-0001-5880-5045 FU F.R.S.- FNRS Belgium; U.S. Government [DE-AC02-05CH11231]; Luis W. Alvarez Fellowship in Computational Science; Danish Center for Scientific Computing [HDW-1103-06]; Catalysis for Sustainable Energy (CASE) initiative; Danish Ministry of Science, Technology and Innovation; Center for Atomic-scale Materials Design (CAMD); Lundbeck Foundation; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Shahar Keinan, Dr. Yosuke Kanai, Dr. Jeffrey Tilson, and Dr. Robert Fowler for their thoughts and assistance in designing this study. We thank Dr. Byron Schmuland for providing an elegant derivation of the random choosing probability problem via Math Exchange. Geoffroy Hautier acknowledges the F.R.S.- FNRS Belgium for financial support under a "Charge de Recherche'' grant. Anubhav Jain acknowledges funding through the U.S. Government under Contract DE-AC02-05CH11231 and the Luis W. Alvarez Fellowship in Computational Science. Ivano E. Castelli and Karsten W. Jacobsen acknowledge support from the Danish Center for Scientific Computing through grant HDW-1103-06, from the Catalysis for Sustainable Energy (CASE) initiative funded by the Danish Ministry of Science, Technology and Innovation and from the Center for Atomic-scale Materials Design (CAMD) sponsored by the Lundbeck Foundation. This research is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 60 TC 10 Z9 10 U1 1 U2 79 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD OCT PY 2013 VL 48 IS 19 BP 6519 EP 6534 DI 10.1007/s10853-013-7448-9 PG 16 WC Materials Science, Multidisciplinary SC Materials Science GA 184VH UT WOS:000321921300004 ER PT J AU Fabian, M Svab, E Pamukchieva, V Szekeres, A Todorova, K Vogel, S Ruett, U AF Fabian, M. Svab, E. Pamukchieva, V. Szekeres, A. Todorova, K. Vogel, S. Ruett, U. TI Reverse Monte Carlo modeling of the neutron and X-ray diffraction data for new chalcogenide Ge-Sb-S(Se)-Te glasses SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS LA English DT Review DE Amorphous materials; Chalcogenides; Non-crystalline materials; Neutron scattering; X-ray diffraction ID AMORPHOUS GE15TE85; CONSTRAINT THEORY; THIN-FILMS; ILLUMINATION; SIMULATION; SYSTEM; EXAFS AB New quaternary chalcogenide GexSb40-xS50Te10 and GexSb40-xSe50Te10 (x=20 and 27 at%) glasses have been synthesized and studied by neutron and high-energy X-ray diffraction. Both the traditional Fourier transformation technique and the Reverse Monte Carlo (RMC) modeling of the experimental data have been applied to model the 3-dimensional atomic configurations. From the analysis of the partial atomic correlation functions and structure factors the first and second neighbor distances, coordination numbers and bond-angle distributions are calculated. The influence of S(Se) content on the atomic environment in the glassy structure is considered and discussed in a function of glass composition. In addition, the packing density, average atomic volume and compactness for each composition are determined. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Fabian, M.] Energy Res Ctr, H-1525 Budapest, Hungary. [Fabian, M.; Svab, E.] Wigner Res Ctr Phys, H-1525 Budapest, Hungary. [Pamukchieva, V.; Szekeres, A.; Todorova, K.] Bulgarian Acad Sci, Inst Solid State Phys, BU-1784 Sofia, Bulgaria. [Vogel, S.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Ruett, U.] DESY, HASYLAB, D-22603 Hamburg, Germany. RP Fabian, M (reprint author), Energy Res Ctr, POB 49, H-1525 Budapest, Hungary. EM fabian.margit@energia.mta.hu OI Vogel, Sven C./0000-0003-2049-0361 FU EC under the FP7 Grant [283883-NMI3, 226716]; US-DOE [W-7405-ENG-36]; Bulgarian Academy of Sciences; Hungarian Academy of Sciences FX This research project has been supported by the EC under the FP7 Grant Agreement 283883-NMI3 and No. 226716. This study has benefited from the use of HIPPO at the LANSCE, by US-DOE Contract W-7405-ENG-36. The authors acknowledge the partial support of this work under the 2010-2012 Collaboration Agreement between the Bulgarian and Hungarian Academies of Sciences. NR 42 TC 4 Z9 4 U1 2 U2 47 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-3697 EI 1879-2553 J9 J PHYS CHEM SOLIDS JI J. Phys. Chem. Solids PD OCT PY 2013 VL 74 IS 10 BP 1355 EP 1362 DI 10.1016/j.jpcs.2013.05.011 PG 8 WC Chemistry, Multidisciplinary; Physics, Condensed Matter SC Chemistry; Physics GA 190OZ UT WOS:000322351400003 ER PT J AU Hong, MK Uberuaga, BP Andersson, DA Stanek, CR Phillpot, SR Sinnott, SB AF Hong, Minki Uberuaga, Blas P. Andersson, David A. Stanek, Christopher R. Phillpot, Simon R. Sinnott, Susan B. TI Role of electronic effects on the incorporation of Cr at a Sigma 5 grain boundary in UO2 SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Sigma 5 Grain boundary; UO2; Cr doping; Grain growth ID URANIUM-DIOXIDE; SUPERPLASTIC FLOW; POINT-DEFECTS; STABILITY; BEHAVIOR; ALUMINA; TIO2; GEO2 AB Due to the important role of microstructure on nuclear fuel performance, it is desirable to obtain improved control of fuel microstructure. For example, Cr2O3 has been used as a grain growth promoter during the sintering of UO2; however, the influence of Cr incorporation on the bonding within the grain boundary is not well understood. Here, we quantify the energetics associated with Cr incorporation and segregation in a model UO2 system with a Sigma 5 symmetric tilt grain boundary using density functional theory calculations. The results indicate that Cr prefers to reside in a U substitutional site and segregate to the grain boundary. The Bader charge analysis and the charge density difference analyses confirm that Cr forms bonds with neighboring O atoms that weaken the ionic nature of adjacent U-O bonds, especially when it occupies U substitutional site at the grain boundary. The implications of these findings for the usage of Cr2O3 as a growth promoter are discussed. (c) 2013 Elsevier B.V. All rights reserved. C1 [Hong, Minki; Phillpot, Simon R.; Sinnott, Susan B.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Uberuaga, Blas P.; Andersson, David A.; Stanek, Christopher R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Sinnott, SB (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. EM ssinn@mse.ufl.edu RI Sinnott, Susan/P-8523-2014 OI Sinnott, Susan/0000-0002-3598-0403 FU Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, Fuels Integrated Performance and Safety Code (IPSC) project; National Nuclear Security Administration of the (US) Department of Energy [DE-AC52-06NA25396]; US Government under DOE Contract, under the Energy Frontier Research Center (Office of Science, Office of Basic Energy Science) [DE-AC07-05ID14517, FWP 1356]; Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; DOE (Office of Science, Office of Basic Energy Sciences) [2008LANL1026] FX This work was supported by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, Fuels Integrated Performance and Safety Code (IPSC) project. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the (US) Department of Energy under contract DE-AC52-06NA25396. This work was authored by a subcontractor (SRP) of the US Government under DOE Contract No. DE-AC07-05ID14517, under the Energy Frontier Research Center (Office of Science, Office of Basic Energy Science, FWP 1356). Accordingly, the US Government retains and the publisher (by accepting the article for publication) acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. BPU, who co-advised this work, acknowledges support by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by DOE (Office of Science, Office of Basic Energy Sciences, 2008LANL1026). NR 22 TC 3 Z9 3 U1 0 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD OCT PY 2013 VL 78 BP 29 EP 33 DI 10.1016/j.commatsci.2013.05.008 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 181VV UT WOS:000321698700005 ER PT J AU Reshak, AH Fedorchuk, AO Lakshminarayana, G Alahmed, ZA Kamarudin, H Auluck, S AF Reshak, A. H. Fedorchuk, A. O. Lakshminarayana, G. Alahmed, Z. A. Kamarudin, H. Auluck, S. TI Influence of different exchange correlation potentials on band structure and optical constant calculations of ZrGa2 and ZrGe2 single crystals SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Inorganic materials; Crystal growth; Electronic band structure ID DENSITY; STATES AB The all-electron full potential linearized augmented plane wave method was used to solve the Kohn Sham DFT equations. We have employed different approximations for the exchange correlation potentials, namely: LDA, GGA and EVGGA, and insignificant effect on the band structure and the density of states were found. Calculations show that there is a significant difference in the band dispersion with replacement of Ga by Ge that is attributed to the fact that in the ZrGe2 compound Zr atom is situated at 4c site and two Ge atoms are situated at 4c site. Whereas for ZrGa2 compound Zr is located at 4g site and the three Ga atoms are situated at 4h, 2c and 2a sites, respectively. There exists strong hybridization between the states. Moving from ZrGa2 to ZrGe2 has significant influence on the magnitudes and the peak positions of states. The optical properties of the two compounds were studied and analyzed. (c) 2013 Elsevier B.V. All rights reserved. C1 [Reshak, A. H.] CENAKVA South Bohemia Univ CB, FFPW, Inst Complex Syst, Nove Hrady 37333, Czech Republic. [Reshak, A. H.; Kamarudin, H.] Univ Malaysia Perlis, Sch Mat Engn, Ctr Excellence Geopolymer & Green Technol, Kangar 01007, Perlis, Malaysia. [Fedorchuk, A. O.] Lviv Natl Univ Vet Med & Biotechnol, Dept Inorgan & Organ Chem, Lvov, Ukraine. [Lakshminarayana, G.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, Los Alamos, NM 87545 USA. [Auluck, S.] Natl Phys Lab, New Delhi 110012, Saudi Arabia. [Alahmed, Z. A.] King Saud Univ, Dept Phys & Astron, Riyadh 11451, Saudi Arabia. [Fedorchuk, A. O.] P Sagajdachnyj Mil Univ, Lvov, Ukraine. RP Reshak, AH (reprint author), CENAKVA South Bohemia Univ CB, FFPW, Inst Complex Syst, Nove Hrady 37333, Czech Republic. EM ft.1958@yahoo.co.uk RI Alahmed, Zeyad/F-1683-2013; Reshak, Ali/B-8649-2008; OI Alahmed, Zeyad/0000-0001-7304-8118; Reshak, Ali/0000-0001-9426-8363; hussin, kamarudin/0000-0001-9644-4244; Gandham, Lakshminarayana/0000-0002-1458-9368 FU Project CENAKVA [CZ.1.05/2.1.00/01.0024] FX This work was supported from the institutional research concept of the Project CENAKVA (No. CZ.1.05/2.1.00/01.0024). School of Material Engineering, Malaysia University of Perlis, Malaysia. NR 23 TC 0 Z9 0 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD OCT PY 2013 VL 78 BP 134 EP 139 DI 10.1016/j.commatsci.2013.04.056 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 181VV UT WOS:000321698700020 ER PT J AU Soncini, RM Means, NC Weiland, NT AF Soncini, Ryan M. Means, Nicholas C. Weiland, Nathan T. TI Co-pyrolysis of low rank coals and biomass: Product distributions SO FUEL LA English DT Article DE Coal; Biomass; Co-pyrolysis; Low rank coal ID GASIFICATION; COMBUSTION; BLENDS; CHAR; DEVOLATILIZATION; HYDROPYROLYSIS; SYNERGIES AB Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, success of this strategy requires investigation of the effects of coal/biomass co-feeding on reaction kinetics and product distributions. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO2, CH4, H-2, H2O, and C2H4) was determined by in situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH4, and C2H4, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H-2 production are also reduced. The data suggests that rapid pyrolysis of biomass produces hydrogen that stabilizes large radical structures generated during the early stages of coal pyrolysis. Stabilization causes these structures to be released as tar, rather than crosslinking with one another to produce secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.] Natl Energy Technol Lab, Pittsburgh, PA USA. [Soncini, Ryan M.; Means, Nicholas C.] URS Corp, Pittsburgh, PA USA. [Weiland, Nathan T.] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. RP Weiland, NT (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. EM nathan.weiland@mail.wvu.edu OI Weiland, Nathan/0000-0001-9382-6909 FU RES [DE-FE0004000]; National Energy Technology Laboratory's Regional University Alliance (NETL-RUA); NETL; Department of Energy, National Energy Technology Laboratory; agency of the United States Government; URS Energy & Construction, Inc.; United States Government FX This technical effort was performed under the RES contract DE-FE0004000, as part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy & Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 36 TC 25 Z9 34 U1 5 U2 141 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD OCT PY 2013 VL 112 BP 74 EP 82 DI 10.1016/j.fuel.2013.04.073 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 182IR UT WOS:000321735400010 ER PT J AU Ullan, M Wilder, M Spieler, H Spencer, E Rescia, S Newcomer, FM Martinez-McKinney, F Kononenko, W Grillo, AA Diez, S AF Ullan, M. Wilder, M. Spieler, H. Spencer, E. Rescia, S. Newcomer, F. M. Martinez-McKinney, F. Kononenko, W. Grillo, A. A. Diez, S. TI Enhanced Low Dose Rate Sensitivity (ELDRS) tests on advanced SiGe bipolar transistors for very high total dose applications SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Radiation effect; Bipolar transistor; SiGe HBT transistors; ELDRS; Switched experiments; ATLAS Upgrade ID INTEGRATED-CIRCUITS; DEGRADATION AB A new comprehensive method for assessing Enhanced Low Dose Rate Sensitivity (ELDRS) in bipolar transistors to be used for very high total doses is applied to an advanced SiGe HBT technology for its use in the ATLAS Upgrade at CERN. Conventional ELDRS assessment methods are combined with switched experiments (high/low dose rate), providing a way to verify the presence of ELDRS at very high doses in reasonable irradiation time. Additionally, an anomalous damage recovery has been found in transistors with saturated damage after further low dose rate irradiations. (C) 2013 Elsevier B.V. All rights reserved. C1 [Ullan, M.; Diez, S.] CSIC, CNM, Barcelona, Spain. [Wilder, M.; Spencer, E.; Martinez-McKinney, F.; Grillo, A. A.] Univ Calif Santa Cruz, SCIPP, Santa Cruz, CA 95064 USA. [Spieler, H.; Diez, S.] LBNL, Div Phys, Berkeley, CA USA. [Rescia, S.] BNL, Upton, NY USA. [Newcomer, F. M.; Kononenko, W.] Univ Penn, Philadelphia, PA 19104 USA. RP Ullan, M (reprint author), CSIC, CNM, Barcelona, Spain. EM Miguel.Ullan@imb-cnm.csic.es RI Ullan, Miguel/P-7392-2015 FU Spanish Ministry of Education and Science through the Particle Physics National Program [FPA2009-13234-C04-04]; FEDER funds FX This work is supported and financed in part by the Spanish Ministry of Education and Science through the Particle Physics National Program (Ref. FPA2009-13234-C04-04) and co-financed with FEDER funds. NR 17 TC 8 Z9 8 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2013 VL 724 BP 41 EP 46 DI 10.1016/j.nima.2013.04.088 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 181ZP UT WOS:000321709900008 ER PT J AU Thomas, KJ Norman, EB Smith, AR Chan, YD AF Thomas, K. J. Norman, E. B. Smith, A. R. Chan, Y. D. TI Installation of a muon veto for low background gamma spectroscopy at the LBNL low-background facility SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Low background counting; Muon veto; Gamma spectroscopy; Anticoincidence shielding ID SPECTROMETER; RADIOACTIVITY AB An active veto system consisting of plastic scintillation panels was installed outside the Pb shielding of a 115% n-type HPGe detector in an effort to reduce background continuum generated by cosmic ray muons on the surface. The Low Background Facility at the Lawrence Berkeley National Laboratory performs low level assay (generally of primordial U, Th, K) of candidate construction materials for experiments that require a high level of radiopurity. The counting is performed in two facilities: one local surface site and a remote underground site of approximately 600 m.w.e. For the recently installed veto system at the surface location, the top scintillator panel has been in use for nearly 1 year and the full 3 pi anticoincidence shield was commissioned into normal counting operations in January 2013. The integrated background from 20 to 3600 keV is reduced overall by a factor of 8, where most of the energy spectrum above 100 keV achieves an overall reduction that varies from 8 to 10. A dramatic improvement of peak-to-background across the entire continuum is observed, greatly enhancing low-level peaks that would otherwise be obscured. (C) 2013 Elsevier B.V. All rights reserved. C1 [Thomas, K. J.; Norman, E. B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Thomas, K. J.; Norman, E. B.; Smith, A. R.; Chan, Y. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Thomas, KJ (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM kjthomas@lbl.gov FU Department of Energy National Nuclear Security Administration [DE-NA0000979]; Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number(s) DE-NA0000979 and by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the US Department of Energy under Contract no. DE-AC02-05CH11231. Special thanks to Chuck Hurlbut and Chris Maxwell at Eljen Technology for their comments and suggestions regarding the design of the scintillator panels. NR 13 TC 7 Z9 7 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2013 VL 724 BP 47 EP 53 DI 10.1016/j.nima.2013.05.034 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 181ZP UT WOS:000321709900009 ER PT J AU Subedi, R Wang, D Pan, K Deng, X Michaels, R Reimer, PE Shahinyan, A Wojtsekhowski, B Zheng, X AF Subedi, R. Wang, D. Pan, K. Deng, X. Michaels, R. Reimer, P. E. Shahinyan, A. Wojtsekhowski, B. Zheng, X. TI A scaler-based data acquisition system for measuring parity-violating asymmetry in deep inelastic scattering SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Jefferson Lab; Hall A; PVDIS; DAQ ID ELECTRON-SCATTERING; NON-CONSERVATION; NUCLEON AB An experiment that measured the parity-violating asymmetries in deep inelastic scattering was completed at the Thomas Jefferson National Accelerator Facility in experimental Hall A. From these asymmetries, a combination of the quark weak axial charge could be extracted with a factor of five improvement in precision over world data. To achieve this, asymmetries at the 10(-4) level needed to be measured at event rates up to 600 kHz and the high pion background typical to deep inelastic scattering experiments needed to be rejected efficiently. A specialized data acquisition (DAQ) system with intrinsic particle identification (PID) was successfully developed and used: the pion contamination in the electron samples was controlled at the order of 2 x 10(-4) or below with an electron efficiency of higher than 91% during most of the production period of the experiment, the systematic uncertainty in the measured asymmetry due to DAQ deadtime was below 0.5%, and the statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes. The DAQ system is presented here with an emphasis on its design scheme, the achieved PID performance, deadtime effect and the capability of measuring small asymmetries. (C) 2013 Elsevier B.V. All rights reserved. C1 [Subedi, R.; Wang, D.; Deng, X.; Zheng, X.] Univ Virginia, Charlottesville, VA 22904 USA. [Pan, K.] MIT, Cambridge, MA 02139 USA. [Michaels, R.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 0036, Armenia. RP Zheng, X (reprint author), Univ Virginia, Charlottesville, VA 22904 USA. EM xiaochao@jlab.org RI Pan, Kai/D-4241-2016 OI Pan, Kai/0000-0001-9930-5063 FU Jeffress Memorial Trust [J-836]; US National Science Foundation [0653347]; US Department of Energy [DE-SC0003885, DE-AC02-06CH11357]; Jefferson Science Associates, LLC under US DOE [DE-AC05-06OR23177] FX This work was supported in part by the Jeffress Memorial Trust under Award no. J-836, the US National Science Foundation under Award no. 0653347, and the US Department of Energy under Award no. DE-SC0003885 and DE-AC02-06CH11357. Notice: authored by Jefferson Science Associates, LLC under US DOE Contract no. DE-AC05-06OR23177. The US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this paper for US Government purposes. NR 22 TC 3 Z9 3 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2013 VL 724 BP 90 EP 103 DI 10.1016/j.nima.2013.05.040 PG 14 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 181ZP UT WOS:000321709900015 ER PT J AU Pennline, HW Hoffman, JS AF Pennline, Henry W. Hoffman, James S. TI Flue gas cleanup using the Moving-Bed Copper Oxide Process SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE Flue gas cleanup; Copper oxide sorbent; Desulfurization; Oxy-firing ID CUO/AL2O3 CATALYST-SORBENT; SIMULTANEOUS REMOVAL; SO2; OPERATION AB The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO2) and nitric oxides (NOx) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO2 and NOx concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed. Published by Elsevier B.V. C1 [Pennline, Henry W.; Hoffman, James S.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Hoffman, JS (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM james.hoffman@netl.doe.gov NR 24 TC 4 Z9 4 U1 2 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD OCT PY 2013 VL 114 BP 109 EP 117 DI 10.1016/j.fuproc.2013.03.020 PG 9 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 173OW UT WOS:000321089800013 ER PT J AU Morgan, NR Kenamond, MA Burton, DE Carney, TC Ingraham, DJ AF Morgan, Nathaniel R. Kenamond, Mark A. Burton, Donald E. Carney, Theodore C. Ingraham, Daniel J. TI An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Lagrangian; Hydrodynamics; Contact; Slip; Cell-centered; Godunov; Finite-volume ID FRACTURE; SOLVER AB A new method is presented for modeling contact surfaces in Lagrangian cell-centered hydrodynamics (CCH). The contact method solves a multi-directional Riemann-like problem at each penetrating or touching node along the contact surface. The velocity of a penetrating or touching node and the corresponding forces are explicitly calculated using the Riemann-like nodal solver. The contact method works with material strength and allows surfaces to impact, slide, and separate. Results are presented for several test problems involving both gases and materials with strength. The new contact surface approach extends the modeling capabilities of CCH. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved. C1 [Morgan, Nathaniel R.; Kenamond, Mark A.; Burton, Donald E.; Carney, Theodore C.; Ingraham, Daniel J.] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM 87545 USA. RP Morgan, NR (reprint author), Los Alamos Natl Lab, X Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA. EM nmorgan@lanl.gov FU National Nuclear Security Administration FX We gratefully acknowledge the support of the National Nuclear Security Administration through the Laboratory Directed Research and Development (LDRD) program and the Advanced Simulation and Computing (ASC) program. We also thank Misha Shashkov for his insightful suggestions. The Los Alamos National Laboratory unlimited release number is: LA-UR-13-21631. NR 40 TC 14 Z9 14 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD OCT 1 PY 2013 VL 250 BP 527 EP 554 DI 10.1016/j.jcp.2013.05.015 PG 28 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 178GN UT WOS:000321433800026 ER PT J AU Carlberg, K Farhat, C Cortial, J Amsallem, D AF Carlberg, Kevin Farhat, Charbel Cortial, Julien Amsallem, David TI The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows (vol 242, pg 623, 2013) SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Correction C1 [Carlberg, Kevin; Cortial, Julien] Sandia Natl Labs, Livermore, CA 94550 USA. [Farhat, Charbel; Amsallem, David] Stanford Univ, Stanford, CA 94305 USA. RP Carlberg, K (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9159, Livermore, CA 94550 USA. EM ktcarlb@sandia.gov; cfarhat@stanford.edu; jcortia@sandia.gov; amsallem@stanford.edu NR 1 TC 0 Z9 0 U1 1 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD OCT 1 PY 2013 VL 250 BP 713 EP 713 DI 10.1016/j.jcp.2013.05.022 PG 1 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 178GN UT WOS:000321433800036 ER PT J AU Nlebedim, IC Moses, AJ Jiles, DC AF Nlebedim, I. C. Moses, A. J. Jiles, D. C. TI Non-stoichiometric cobalt ferrite, CoxFe3-xO4 (x=1.0 to 2.0): Structural, magnetic and magnetoelastic properties SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Cobalt ferrite; Stoichiometric composition; Crystal structure; Microstructure; Magnetostriction; Strain derivative; Anisotropy; Magnetic property ID ANISOTROPY; SPINELS; ORIGIN; MAGNETOSTRICTION; NANOPARTICLES; MOSSBAUER; BEHAVIOR AB This work discusses the changes in the structural, magnetic and magnetoelastic properties of CoxFe3-xO4 (x=1.0 to 2.0) due to variations in cation concentration and the presence of a secondary Co1-yFeyO phase. Non-stoichiometric cobalt ferrite samples used in this study were prepared via the ceramic method. Samples with x>1 possess two phases; a secondary rock salt Co1-yFeyO phase and a spinel cobalt ferrite phase with varying cation concentration. The sample x=1 has only the spinel phase. Increase in Co concentration resulted in a decrease in magnetization but an increase in coercivity. Magnetostrictive properties and magnetocrystalline anisotropy were also affected by deviation from stoichiometric composition. Results are discussed on the basis of the coexistence of Co3+, Co2+ and Fe3+ in the spinel lattice of the samples and the influence of the secondary Co1-yFeyO phase on the overall properties. (C) 2013 Elsevier B.V. All rights reserved. C1 [Nlebedim, I. C.; Jiles, D. C.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Moses, A. J.] Cardiff Univ, Sch Engn, Wolfson Ctr Magnet, Cardiff CF243AA, S Glam, Wales. [Nlebedim, I. C.; Jiles, D. C.] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. RP Nlebedim, IC (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM nlebedim@iastate.edu FU Department of Energy-Basic Energy Sciences, Materials Science and Engineering Division [DE-ACO2-07CH11358]; United Kingdom Engineering and Physical Science Research Council (EPSRC) [EP/D057094] FX Research at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences, Materials Science and Engineering Division under Contract no: DE-ACO2-07CH11358, and research at Cardiff University was supported by the United Kingdom Engineering and Physical Science Research Council (EPSRC) under Grant no: EP/D057094. NR 33 TC 12 Z9 13 U1 3 U2 57 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD OCT PY 2013 VL 343 BP 49 EP 54 DI 10.1016/j.jmmm.2013.04.063 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 173VK UT WOS:000321109500009 ER PT J AU Zuo, X Liu, XM Cai, F Yang, H Shen, XD Liu, G AF Zuo, Xiang Liu, Xiao-Min Cai, Feng Yang, Hui Shen, Xiao-Dong Liu, Gao TI Enhanced performance of a novel gel polymer electrolyte by dual plasticizers SO JOURNAL OF POWER SOURCES LA English DT Article DE Gel polymer electrolyte; Polyethylene glycol dimethyl ether; Methacrylate; Lithium polymer cell ID LITHIUM-ION BATTERIES; ELECTROCHEMICAL PROPERTIES; SIDE-CHAINS; CONDUCTIVITY; POLYETHERS; COPOLYMER; MIXTURES; NETWORKS; BEHAVIOR; OXIDE) AB In this contribution, polyethylene glycol dilaurate (PEGDL) is synthesized and adopted as the physical cross-linking agent to enhance the performance, especially the mechanical property of the gel polymer electrolytes (GPEs). With polyethylene glycol dimethyl ether (PEGDME) as the main plasticizer and PEGDL as the secondary plasticizer, several gel polymer electrolytes based on a copolymer of methoxypoly(ethylene glycol) methacrylate (MPEGM) and hexadecal-poly(ethylene glycol) methacrylate (HPEGM) are prepared by UV radiation curing. The relationship between the composition of the GPE and the physical properties, e.g., thermal property, mechanical property and ionic conductivity, is investigated. The lithium ion transference number, lithium/GPE interfacial property and charge-discharge performance of the lithium polymer cell based on the physically cross-linked GPE are studied. The gel polymer electrolyte prepared with the optimum composition exhibits excellent mechanical properties and a relatively high ionic conductivity (8.2 x 10(-4) S cm(-1) at 30 degrees C). A coin cell Li/GPE/LiFePO4, shows a discharge capacity 152 mAh g(-1) and 163 mAh g(-1) when cycled at 30 degrees C and 50 degrees C, respectively, under a current density of 0.1 C. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zuo, Xiang; Liu, Xiao-Min; Cai, Feng; Yang, Hui; Shen, Xiao-Dong] Nanjing Univ Technol, Coll Mat Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China. [Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Liu, XM (reprint author), Nanjing Univ Technol, Coll Mat Sci & Engn, 5 Xinmofan Rd, Nanjing 210009, Jiangsu, Peoples R China. EM lxm3799@yahoo.com; yanghui@njut.edu.cn RI Yang, Hui/B-3249-2012 OI Yang, Hui/0000-0003-4035-8894 FU Key Project of Natural Science Foundation of Jiangsu Province of China (gs1) [BK2011030]; Key Project of Educational Commission of Jiangsu Province of China (gs2) [11KJA430006]; Priority Academic Program Development of Jiangsu Higher Education Institutions FX This work was supported by Key Project of Natural Science Foundation of Jiangsu Province of China (gs1) (Grant No. BK2011030), Key Project of Educational Commission of Jiangsu Province of China (gs2) (Grant No. 11KJA430006) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. NR 39 TC 13 Z9 14 U1 7 U2 86 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 1 PY 2013 VL 239 BP 111 EP 121 DI 10.1016/j.jpowsour.2013.03.144 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 176ON UT WOS:000321314100015 ER PT J AU Tucker, MC DeJonghe, LC Garcia-Negron, V Trejo, R Lara-Curzio, E AF Tucker, Michael C. DeJonghe, Lutgard C. Garcia-Negron, Valerie Trejo, Rosa Lara-Curzio, Edgar TI Mechanical and electrochemical performance of composite cathode contact materials for solid oxide fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE SOFC; Cathode contact material; Adhesion; Mechanical testing ID SPECIMEN AB The feasibility of adding glass or inorganic binder to conventional SOFC cathode contact materials (CCM) in order to improve bonding to adjacent materials in the cell stack is assessed. Two glasses (SEM-COM SCZ-8 and Schott GM31107) and one inorganic binder (Aremco 644A) are mixed with LSM particles to produce composite CCM pastes. These are used to bond Mn1.5Co1.5O4-coated stainless steel mesh current collectors to anode-supported button cells. The cells are operated at 800 degrees C for about 1000 h. The cell with SCZ-8 addition to the CCM displays quite stable operation (3.9%/1000 h degradation), whereas the other additives lead to somewhat higher degradation rate. Bonding of the CCM to coated stainless steel coupons is also assessed. Interfacial fracture toughness is determined using a four-point bend test. The fracture toughness for LSM-Schott glass (12.3 N mm(-1)), LSM-SCZ-8 glass (6.8 N mm(-1)) and LSM-644A binder (5.4 N mm(-1)) are significantly improved relative to pure LSM (1.7 N mm(-1)). Indeed, addition of binder or glass is found to improve bonding of the CCM layer without sacrificing cell performance. (C) 2013 Elsevier B.V. All rights reserved. C1 [Tucker, Michael C.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [DeJonghe, Lutgard C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Garcia-Negron, Valerie; Trejo, Rosa; Lara-Curzio, Edgar] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Tucker, MC (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mctucker@lbl.gov FU U.S. Department of Energy, National Energy Technology Laboratory; U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Fossil Energy, SECA Core Technology Program at Oak Ridge National Laboratory [DE-AC05-00OR22725]; UT-Battelle, LLC FX This work was supported by the U.S. Department of Energy, National Energy Technology Laboratory and in part by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Program Manager Joseph Stoffa, and Jeffry Stevenson and Ryan Scott at Pacific Northwest National Laboratory for MCO deposition. The work at ORNL was supported by the U.S. Department of Energy, Office of Fossil Energy, SECA Core Technology Program at Oak Ridge National Laboratory under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 8 TC 2 Z9 2 U1 3 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 1 PY 2013 VL 239 BP 315 EP 320 DI 10.1016/j.jpowsour.2013.03.130 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 176ON UT WOS:000321314100041 ER PT J AU Browning, KL Baggetto, L Unocic, RR Dudney, NJ Veith, GM AF Browning, Katie L. Baggetto, Loic Unocic, Raymond R. Dudney, Nancy J. Veith, Gabriel M. TI Gas evolution from cathode materials: A pathway to solvent decomposition concomitant to SEI formation SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion safety; Gas evolution; Electrolyte decomposition; Coulombic losses ID LITHIUM-ION BATTERIES; MOLECULAR-DYNAMICS; COBALT OXIDE; RUTILE; WATER; SURFACE; PERFORMANCE; SOLUBILITY; INTERFACE; DISCHARGE AB This work reports a method to explore the catalytic reactivity of electrode surfaces toward the decomposition of carbonate solvents [ethylene carbonate (EC), dimethyl carbonate (DMC), and EC/DMC]. We show that the decomposition of a 1:1 wt% EC/DMC mixture is accelerated over certain commercially available LiCoO2 materials resulting in the formation of CO2 while over pure EC or DMC the reaction is much slower or negligible. The solubility of the produced CO2 in carbonate solvents is high (0.025 g mL(-1)) which masks the effect of electrolyte decomposition during storage or use. The origin of this decomposition is not clear but it is expected to be present on other cathode materials and may affect the analysis of SEI products as well as the safety of Li-ion batteries. (C) 2013 Elsevier B.V. All rights reserved. C1 [Browning, Katie L.; Baggetto, Loic; Unocic, Raymond R.; Dudney, Nancy J.; Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Veith, GM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM veithgm@ornl.gov RI Dudney, Nancy/I-6361-2016; Baggetto, Loic/D-5542-2017; OI Dudney, Nancy/0000-0001-7729-6178; Baggetto, Loic/0000-0002-9029-2363; Unocic, Raymond/0000-0002-1777-8228 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; UT-Battelle, LLC; Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy under contract with UT-Battelle, LLC (KLB, LB, RRU, GMV) and the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (NJD). Experiments were conducted by KLB with assistance in cell design and data analysis by LB, GMV and NJD. A portion of the research was performed by Oak Ridge National Laboratory's ShaRE User Facility (SEM - RRU), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 26 TC 8 Z9 8 U1 9 U2 116 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 1 PY 2013 VL 239 BP 341 EP 346 DI 10.1016/j.jpowsour.2013.03.118 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 176ON UT WOS:000321314100045 ER PT J AU Srouji, AK Zheng, LJ Dross, R Turhan, A Mench, MM AF Srouji, A. K. Zheng, L. J. Dross, R. Turhan, A. Mench, M. M. TI Ultra-high current density water management in polymer electrolyte fuel cell with porous metallic flow field SO JOURNAL OF POWER SOURCES LA English DT Article DE Fuel cell; Water management; High current; Porous flow field; Dry out; Back diffusion ID GAS-DIFFUSION MEDIA; MASS-TRANSPORT; PERFORMANCE; MEMBRANE; LAYER; RADIOGRAPHY; PRESSURE; BEHAVIOR; METHANOL; CATHODE AB Anode dry-out is the main mechanism identified to limit operation in an open metallic element (OME) PEFC. The fundamental water transport mechanisms in the OME PEFC were examined in order to engineer further improved performance and higher temperature operation required for efficient heat rejection. Specifically, the net water drag (NWD) was measured over a range of conditions and analyzed with respect to electrochemical impedance spectroscopy and performance. As the cell operating temperature was increased, the effect of back diffusion was reduced due to the diminishing liquid water content in the cathode catalyst layer, and at critical liquid water content, anode dry-out was triggered primarily through electro-osmotic drag. Addition of cathode humidity was shown to promote high temperature operation mostly due to improved water back diffusion. The same mechanism can be achieved by creating a pressure differential across the membrane, with higher pressure on the cathode side. Stable operation was demonstrated at 90 degrees C using a polymer electrolyte membrane. Real time NWD measurements during transient anodic dry-out conditions were consistent with gradual membrane dehydration. The trade-off between liquid water overshadowing cathode catalyst sites and its contribution in promoting back diffusion is a key factor in systems with anode dry-out limited operation. (C) 2013 Elsevier B.V. All rights reserved. C1 [Srouji, A. K.] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16801 USA. [Zheng, L. J.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16801 USA. [Srouji, A. K.; Zheng, L. J.; Turhan, A.; Mench, M. M.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Electrochem Energy Storage & Convers Lab, Knoxville, TN 37996 USA. [Dross, R.] Nuvera Fuel Cells Inc, Billerica, MA 01821 USA. [Mench, M. M.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Mench, MM (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Electrochem Energy Storage & Convers Lab, Knoxville, TN 37996 USA. EM mmench@utk.edu FU United States Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Program through Nuvera Fuel Cells Inc. [DE-EE0000472] FX The authors would like to thank Amedeo Conti from Nuvera Fuel Cells Inc. for many helpful discussions and guidance. This work is funded by the United States Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Program through Nuvera Fuel Cells Inc. under contract number DE-EE0000472. NR 56 TC 9 Z9 10 U1 2 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 1 PY 2013 VL 239 BP 433 EP 442 DI 10.1016/j.jpowsour.2013.03.145 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 176ON UT WOS:000321314100056 ER PT J AU Skubal, LR Walters, DR AF Skubal, L. R. Walters, D. R. TI Chemical polishing of aluminum coupons in support of vacuum chambers SO VACUUM LA English DT Article DE Chemical polishing; Vacuum systems; Aluminum AB Success of third and fourth generation light sources is highly dependent upon the smoothness of internal surfaces in small aperture undulators. The ratio of the undulator length to the chamber aperture is very large, making mechanical polishing difficult to implement. Chemical polishing is a viable alternative option. This study investigates the effectiveness of a chemical polishing step as a finishing treatment in lieu of mechanical polishing. Limited to no quantitative data exists in the literature that links specific chemical polishing processes to profilometer-measured surface roughness. This study examines the effectiveness of using two chemical solutions at various temperatures to treat the surfaces of aluminum coupons and reduce their surface roughness. Results indicate that certain chemical polishing steps can reduce the root mean square roughness of the surface by as much as 40%; however, careful control of the solution temperature, composition, and immersion time is critical. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Skubal, L. R.; Walters, D. R.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Skubal, LR (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM L@anl.gov; drw@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science, under contract DE-AC02-06CH11357. NR 8 TC 0 Z9 0 U1 2 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0042-207X J9 VACUUM JI Vacuum PD OCT PY 2013 VL 96 BP 1 EP 6 DI 10.1016/j.vacuum.2013.03.002 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 164QC UT WOS:000320423600001 ER PT J AU Schmeltzer, D Saxena, A AF Schmeltzer, D. Saxena, Avadh TI Magnetoelectric effect induced by electron-electron interaction in three dimensional topological insulators SO PHYSICS LETTERS A LA English DT Article ID AXION FIELD; ELECTRODYNAMICS; SOLITONS AB We compute the magnetoelectric response of an interacting topological insulator in three space dimensions with a short range interaction between electrons in different orbitals. We show that in the presence of interactions and inverted bands the chiral phase is gauged away and replaced by a topological angle (theta-term) which is determined by saddle point of the interacting action and the Fujikawa integration measure. The magnetoelectric response breaks time reversal symmetry which is restored at strong interactions. The effect is equivalent to the one in four dimensions without interaction; it can be observed by measuring the Faraday rotation under external stress. (c) 2013 Elsevier B.V. All rights reserved. C1 [Schmeltzer, D.] CUNY City Coll, Dept Phys, New York, NY 10031 USA. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Schmeltzer, D (reprint author), CUNY City Coll, Dept Phys, New York, NY 10031 USA. EM david@sci.ccny.cuny.edu; avadh@lanl.gov NR 36 TC 1 Z9 1 U1 1 U2 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 EI 1873-2429 J9 PHYS LETT A JI Phys. Lett. A PD OCT 1 PY 2013 VL 377 IS 25-27 BP 1631 EP 1636 DI 10.1016/j.physleta.2013.04.032 PG 6 WC Physics, Multidisciplinary SC Physics GA 156VB UT WOS:000319850900014 ER PT J AU Anders, A Panjan, M Franz, R Andersson, J Ni, P AF Anders, Andre Panjan, Matjaz Franz, Robert Andersson, Joakim Ni, Pavel TI Drifting potential humps in ionization zones: The "propeller blades" of high power impulse magnetron sputtering SO APPLIED PHYSICS LETTERS LA English DT Article ID DISCHARGES AB Ion energy distribution functions measured for high power impulse magnetron sputtering show features, such as a broad peak at several 10 eV with an extended tail, as well as asymmetry with respect to E x B, where E and B are the local electric and magnetic field vectors, respectively. Here it is proposed that those features are due to the formation of a potential hump of several 10V in each of the traveling ionization zones. Potential hump formation is associated with a negative-positive-negative space charge that naturally forms in ionization zones driven by energetic drifting electrons. (C) 2013 AIP Publishing LLC. C1 [Anders, Andre; Panjan, Matjaz; Franz, Robert; Andersson, Joakim; Ni, Pavel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Panjan, Matjaz] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Franz, Robert] Univ Leoben, A-8700 Leoben, Austria. [Andersson, Joakim] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore. RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Andersson, Joakim/A-3017-2009; Franz, Robert/G-5263-2010; Anders, Andre/B-8580-2009; OI Andersson, Joakim/0000-0003-2991-1927; Franz, Robert/0000-0003-4842-7276; Anders, Andre/0000-0002-5313-6505; Panjan, Matjaz/0000-0003-0844-2930 FU Fulbright Scholar grant; Austrian Science Fund (FWF) [J3168-N20]; National Research Foundation; Ministry of Education, Singapore; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the Fusion Group of LBNL for providing the fast camera. M. Panjan, R. Franz, and J. Andersson gratefully acknowledge support of a Fulbright Scholar grant, an Erwin Schrodinger Fellowship by the Austrian Science Fund (FWF, Project J3168-N20), and support from the National Research Foundation and the Ministry of Education, Singapore, respectively, which enabled their research at LBNL. Work at LBNL was supported by the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 23 TC 28 Z9 29 U1 3 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 30 PY 2013 VL 103 IS 14 AR 144103 DI 10.1063/1.4823827 PG 4 WC Physics, Applied SC Physics GA 232IZ UT WOS:000325488500137 ER PT J AU Boatner, LA Neal, JS Ramey, JO Chakoumakos, BC Custelcean, R AF Boatner, L. A. Neal, J. S. Ramey, J. O. Chakoumakos, B. C. Custelcean, R. TI The observation of scintillation in a hydrated inorganic compound: CeCl3 center dot 6H(2)O SO APPLIED PHYSICS LETTERS LA English DT Article ID TETRADECANUCLEAR RINGS; STRUCTURAL MOTIFS; CRYSTAL-GROWTH; CECL3(CH3OH)(4); TETRACHLORIDE; COMPLEXES; CHLORIDE; CHAINS AB We have recently reported the discovery of a family of rare-earth metal-organic single-crystal scintillators based on Ce3+ as the activator ion. Starting with the CeCl3(CH3OH)(4) prototype, this family of scintillators has recently been extended to include complex metal-organic adducts produced by reacting CeCl3 with heavier organics (e. g., isomers of propanol and butanol). Some of these rare-earth metal-organic materials incorporated waters of hydration in their structures, and the observation of scintillation in these hydrated compounds was an original finding for any solid scintillator. In the present work, we report the observation of gamma-ray-excited scintillation in an inorganic hydrated material, namely, single-crystal monoclinic CeCl3 center dot 6H(2)O. This observation shows that the mechanisms of the various scintillation energy-transfer processes are not seriously inhibited by the presence of waters of hydration in an inorganic material and that the observation of scintillation in other hydrated inorganic compounds is not precluded. (C) 2013 AIP Publishing LLC. C1 [Boatner, L. A.; Neal, J. S.; Ramey, J. O.] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. [Boatner, L. A.; Ramey, J. O.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Neal, J. S.] Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, Oak Ridge, TN 37831 USA. [Chakoumakos, B. C.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Custelcean, R.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Boatner, LA (reprint author), Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. EM boatnerla@ornl.gov RI Chakoumakos, Bryan/A-5601-2016; Boatner, Lynn/I-6428-2013; Custelcean, Radu/C-1037-2009; Neal, John/R-8203-2016 OI Chakoumakos, Bryan/0000-0002-7870-6543; Boatner, Lynn/0000-0002-0235-7594; Custelcean, Radu/0000-0002-0727-7972; Neal, John/0000-0001-8337-5235 FU Higher Education Research Experience (HERE) program; U.S. Department of Energy, Office of Nonproliferation Research and Development, NA-22, in the National Nuclear Security Administration (NNSA); Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors acknowledge with thanks contributions to the solution growth of single crystals of CeCl3center dot 6H2O by Jason L. Ramey and Shelby Brackett-summer students at ORNL working under the auspices of the Higher Education Research Experience (HERE) program. This research was supported by the U.S. Department of Energy, Office of Nonproliferation Research and Development, NA-22, in the National Nuclear Security Administration (NNSA). B. C. C. was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. R. C. was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. NR 18 TC 0 Z9 0 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 30 PY 2013 VL 103 IS 14 AR 141909 DI 10.1063/1.4823707 PG 4 WC Physics, Applied SC Physics GA 232IZ UT WOS:000325488500030 ER PT J AU Chen, D Zhang, M Liu, S Wang, YQ Nastasi, M Xue, ZY Wang, X Di, ZF AF Chen, Da Zhang, Miao Liu, Su Wang, Yongqiang Nastasi, Michael Xue, Zhongying Wang, Xi Di, Zengfeng TI Sharp crack formation in low fluence hydrogen implanted Si0.75Ge0.25/B doped Si0.70Ge0.30/Si heterostructure SO APPLIED PHYSICS LETTERS LA English DT Article ID INDUCED PLATELET; ON-INSULATOR; ART.; SILICON; LAYER; CMOS; SIGE AB An approach to transfer a high-quality SiGe layer for the fabrication of SiGe-on-insulator wafers has been proposed based on the investigation of crack formation in H-implanted Si0.75Ge0.25/B-doped Si0.70Ge0.30/Si structures. The crack formation is found to be closely correlated to the concentration of B atoms doped in the buried Si0.70Ge0.30 layer. For H-implanted Si0.75Ge0.25/Si0.70Ge0.30/Si structures without B doping, no platelets or cracking is observed in the Si0.70Ge0.30 layer. Upon increasing the concentration of B doping in the buried Si0.70Ge0.30 layer to 2 x 10(19)/cm(3), cracking occurs at the interfaces on both sides of Si0.70Ge0.30 interlayer, thus, resulting in the formation of continuous sharp crack confined in the ultrathin Si0.70Ge0.30 interlayer. With B doped ultrathin Si0.70Ge0.30 interlayer, the Si0.75Ge0.25 layer can be transferred to fabricate SiGe-oninsulator by H implantation with a fluence as low as 3 x 10(16)/cm(2), which is only half of the typical fluence required for a conventional ion-cut process. Since cracking is confined in the ultrathin Si0.70Ge0.30 interlayer, the as-cut SiGe-on-insulator possesses a rather smooth surface with a roughness of 1.55 nm. (C) 2013 AIP Publishing LLC. C1 [Chen, Da; Zhang, Miao; Xue, Zhongying; Wang, Xi; Di, Zengfeng] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Chen, Da; Liu, Su] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China. [Wang, Yongqiang] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Nastasi, Michael] Univ Nebraska, Nebraska Ctr Energy Sci Res, Lincoln, NE 68583 USA. RP Di, ZF (reprint author), Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. EM zfdi@mail.sim.ac.cn FU National Natural Science Foundation of China [61176001, 51222211, 61006088]; National Basic Research Program of China (973 Program) [2010CB832906]; Pujiang Talent Project of Shanghai [11PJ1411700]; One Hundred Talent project from Chinese Academy of Sciences FX This work was financially supported by the National Natural Science Foundation of China under Grant Nos. 61176001, 51222211, and 61006088, National Basic Research Program of China (973 Program) under Grant No. 2010CB832906, Pujiang Talent Project of Shanghai under Grant No. 11PJ1411700, One Hundred Talent project from Chinese Academy of Sciences. NR 16 TC 3 Z9 4 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 30 PY 2013 VL 103 IS 14 AR 142102 DI 10.1063/1.4823587 PG 4 WC Physics, Applied SC Physics GA 232IZ UT WOS:000325488500038 ER PT J AU Chung, KH Chen, AK Anderton, CR Bhadriraju, K Plant, AL Bush, BG Cook, RF DelRio, FW AF Chung, Koo-Hyun Chen, Antony K. Anderton, Christopher R. Bhadriraju, Kiran Plant, Anne L. Bush, Brian G. Cook, Robert F. DelRio, Frank W. TI Frictional properties of native and functionalized type I collagen thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; MECHANICAL-PROPERTIES; NANOMECHANICAL PROPERTIES; FIBRONECTIN CONFORMATION; CELL ATTACHMENT; CALIBRATION; BINDING; CONTACT; FIBRILS; SPECTROSCOPY AB Frictional properties of native and fibronectin (FN)-functionalized type I collagen (COL) thin films were studied via atomic force microscopy. The COL lateral contact stiffness was dependent only on the hydration state, indicating that shear deformation was invariant with FN. In contrast, the COL coefficient of friction and shear strength varied with both functionalization and hydration state. The changes in shear strength were found to correlate well with changes in mean cell spread area on the same thin films, suggesting that shear strength is a better indicator of cell spreading than heretofore considerations of film, and thus extracellular matrix, stiffness alone. (C) 2013 AIP Publishing LLC. C1 [Chung, Koo-Hyun] Univ Ulsan, Sch Mech Engn, Ulsan 680749, South Korea. [Chen, Antony K.; Anderton, Christopher R.; Bhadriraju, Kiran; Plant, Anne L.; Bush, Brian G.; Cook, Robert F.; DelRio, Frank W.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Chen, Antony K.] Peking Univ, Dept Biomed Engn, Coll Engn, Beijing 100871, Peoples R China. [Anderton, Christopher R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP DelRio, FW (reprint author), NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. EM frank.delrio@nist.gov RI CHEN, ANTONY/N-3460-2013; Chung, KooHyun/O-3042-2013 OI CHEN, ANTONY/0000-0002-4105-9741; Chung, KooHyun/0000-0002-9092-6784 FU National Research Foundation of Korea (NRF); Korean Government (MSIP) [2011-0014367] FX K.H.C. acknowledges financial support from the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2011-0014367). NR 39 TC 1 Z9 1 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 30 PY 2013 VL 103 IS 14 AR 143703 DI 10.1063/1.4824685 PG 5 WC Physics, Applied SC Physics GA 232IZ UT WOS:000325488500128 ER PT J AU Mitri, FG AF Mitri, F. G. TI Near-field single tractor-beam acoustical tweezers (vol 103, 114102, 2013) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov NR 2 TC 3 Z9 3 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 30 PY 2013 VL 103 IS 14 AR 149901 DI 10.1063/1.4824733 PG 1 WC Physics, Applied SC Physics GA 232IZ UT WOS:000325488500144 ER PT J AU Murphy, RD Torralva, B Adams, DP Yalisove, SM AF Murphy, Ryan D. Torralva, Ben Adams, David P. Yalisove, Steven M. TI Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si SO APPLIED PHYSICS LETTERS LA English DT Article ID ABLATION AB Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces similar to 50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection. (C) 2013 AIP Publishing LLC. C1 [Murphy, Ryan D.] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA. [Torralva, Ben] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Adams, David P.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Yalisove, Steven M.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Murphy, RD (reprint author), Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA. FU Defense Threat Reduction Agency [IACRO 12-2026I]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Defense Threat Reduction Agency, Basic Research Award No. # IACRO 12-2026I. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 12 TC 10 Z9 10 U1 3 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 30 PY 2013 VL 103 IS 14 AR 141104 DI 10.1063/1.4823588 PG 4 WC Physics, Applied SC Physics GA 232IZ UT WOS:000325488500004 ER PT J AU Rajpalke, MK Linhart, WM Birkett, M Yu, KM Scanlon, DO Buckeridge, J Jones, TS Ashwin, MJ Veal, TD AF Rajpalke, M. K. Linhart, W. M. Birkett, M. Yu, K. M. Scanlon, D. O. Buckeridge, J. Jones, T. S. Ashwin, M. J. Veal, T. D. TI Growth and properties of GaSbBi alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; PHOTOLUMINESCENCE; CONDUCTIVITY; ABSORPTION; ENERGY; FILMS AB Molecular-beam epitaxy has been used to grow GaSb1-xBix alloys with x up to 0.05. The Bi content, lattice expansion, and film thickness were determined by Rutherford backscattering and x-ray diffraction, which also indicate high crystallinity and that >98% of the Bi atoms are substitutional. The observed Bi-induced lattice dilation is consistent with density functional theory calculations. Optical absorption measurements and valence band anticrossing modeling indicate that the room temperature band gap varies from 720 meV for GaSb to 540 meV for GaSb0.95Bi0.05, corresponding to a reduction of 36 meV/% Bi or 210 meV per 0.01 angstrom change in lattice constant. (C) 2013 AIP Publishing LLC. C1 [Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Veal, T. D.] Univ Liverpool, Sch Phys Sci, Stephenson Inst Renewable Energy, Liverpool L69 7ZF, Merseyside, England. [Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Veal, T. D.] Univ Liverpool, Sch Phys Sci, Dept Phys, Liverpool L69 7ZF, Merseyside, England. [Yu, K. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Scanlon, D. O.] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Scanlon, D. O.; Buckeridge, J.] UCL, Dept Chem, London WC1H 0AJ, England. [Jones, T. S.; Ashwin, M. J.] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England. RP Rajpalke, MK (reprint author), Univ Liverpool, Sch Phys Sci, Stephenson Inst Renewable Energy, Liverpool L69 7ZF, Merseyside, England. EM M.J.Ashwin@warwick.ac.uk; T.Veal@liverpool.ac.uk RI Scanlon, David/B-1516-2008; Ashwin, Mark/A-2426-2014; Linhart, Wojciech/B-1712-2014; Buckeridge, John/A-4780-2013; Veal, Tim/A-3872-2010; OI Scanlon, David/0000-0001-9174-8601; Ashwin, Mark/0000-0001-8657-8097; Buckeridge, John/0000-0002-2537-5082; Veal, Tim/0000-0002-0610-5626; Yu, Kin Man/0000-0003-1350-9642 FU University of Liverpool; Engineering and Physical Sciences Research Council (EPSRC) [EP/G004447/2, EP/H021388/1]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; EPSRC [EP/K000136/1, EP/K000144/1, EP/F067496]; Ramsay Memorial Trust; UCL FX The work at Liverpool and Warwick was supported by the University of Liverpool and the Engineering and Physical Sciences Research Council (EPSRC) under Grant Nos. EP/G004447/2 and EP/H021388/1. RBS measurements performed at Lawrence Berkeley National Lab were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Calculations were performed on the IRIDIS cluster provided by the EPSRC-funded Centre for Innovation (EP/K000136/1 and EP/K000144/1), and the HECToR supercomputer via the UK's HPC Materials Chemistry Consortium (EP/F067496). DOS acknowledges the Ramsay Memorial Trust and UCL for a Ramsay Fellowship. DOS and TDV acknowledge membership of the Materials Design Network. Luke Rochford is gratefully acknowledged for performing the AFM measurements. NR 28 TC 34 Z9 35 U1 4 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 30 PY 2013 VL 103 IS 14 AR 142106 DI 10.1063/1.4824077 PG 4 WC Physics, Applied SC Physics GA 232IZ UT WOS:000325488500042 ER PT J AU Tracy, LA Lu, TM Bishop, NC Ten Eyck, GA Pluym, T Wendt, JR Lilly, MP Carroll, MS AF Tracy, L. A. Lu, T. M. Bishop, N. C. Ten Eyck, G. A. Pluym, T. Wendt, J. R. Lilly, M. P. Carroll, M. S. TI Electron spin lifetime of a single antimony donor in silicon SO APPLIED PHYSICS LETTERS LA English DT Article ID LATTICE RELAXATION; QUANTUM-DOT; STATES AB We present measurements of the electron spin lifetime (T-1) of a single Sb donor in Si. For a magnetic field (B) oriented along the [100] Si crystal direction and low temperature (T) such that kT << g mu B, we find T-1(-1) = KB5, where K = 1.7 x 10(-3) Hz T-5. The T-1(-1) proportional to B-5 dependence is expected for donor electron spin relaxation due to g-factor dependence on crystal strain. The magnitude of T-1 is within a factor of two of theoretical estimates and is in close agreement with values obtained for bulk donor ensembles. (C) 2013 AIP Publishing LLC. C1 [Tracy, L. A.; Lu, T. M.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Carroll, M. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lilly, M. P.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Tracy, LA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM latracy@sandia.gov FU Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to thank B. Silva and J. Dominguez for assistance with sample fabrication. This work was performed at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility, and Sandia National Laboratories, a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary Lockheed-Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 22 TC 5 Z9 5 U1 0 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 30 PY 2013 VL 103 IS 14 AR 143115 DI 10.1063/1.4824128 PG 4 WC Physics, Applied SC Physics GA 232IZ UT WOS:000325488500099 ER PT J AU Paul, CD Kiss, C Traore, DAK Gong, L Wilce, MCJ Devenish, RJ Bradbury, A Prescott, M AF Paul, Craig Don Kiss, Csaba Traore, Daouda A. K. Gong, Lan Wilce, Matthew C. J. Devenish, Rodney J. Bradbury, Andrew Prescott, Mark TI Phanta: A Non-Fluorescent Photochromic Acceptor for pcFRET SO PLOS ONE LA English DT Article ID GREEN FLUORESCENT PROTEIN; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; SEQUENCE SPACE; FRET; GFP; EVOLUTION; NANOSCOPY; DRONPA; CELLS AB We have developed an orange non-fluorescent photochromic protein (quantum yield, 0.003) we call Phanta that is useful as an acceptor in pcFRET applications. Phanta can be repeatedly inter-converted between the two absorbing states by alternate exposure to cyan and violet light. The absorption spectra of Phanta in one absorbing state shows excellent overlap with the emission spectra of a number of donor green fluorescent proteins including the commonly used EGFP. We show that the Phanta-EGFP FRET pair is suitable for monitoring the activation of caspase 3 in live cells using readily available instrumentation and a simple protocol that requires the acquisition of two donor emission images corresponding to Phanta in each of its photoswitched states. This the first report of a genetically encoded non-fluorescent acceptor for pcFRET. C1 [Paul, Craig Don; Wilce, Matthew C. J.; Devenish, Rodney J.; Prescott, Mark] Monash Univ, Dept Biochem & Mol Biol, Melbourne, Vic 3004, Australia. [Kiss, Csaba; Traore, Daouda A. K.; Gong, Lan; Bradbury, Andrew] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Prescott, M (reprint author), Monash Univ, Dept Biochem & Mol Biol, Clayton Campus, Melbourne, Vic 3004, Australia. EM Mark.Prescott@monash.edu RI Traore, Daouda/B-5242-2013; Gong, Lan/J-6368-2016; OI Traore, Daouda/0000-0003-1001-4716; Gong, Lan/0000-0003-3136-1565; Bradbury, Andrew/0000-0002-5567-8172 NR 30 TC 6 Z9 6 U1 0 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 30 PY 2013 VL 8 IS 9 AR e75835 DI 10.1371/journal.pone.0075835 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 231NL UT WOS:000325423500104 ER PT J AU Roh, HS Hua, TQ Ahluwalia, RK AF Roh, H. S. Hua, T. Q. Ahluwalia, R. K. TI Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Finite element analysis; Type IV composite pressure vessels; Hydrogen storage ID PRESSURE-VESSELS AB Finite element (FE) analysis of a filament wound 700-bar compressed hydrogen storage Type 4 tank is presented. Construction of the FE model was derived from an initial netting analysis to determine the optimal dome shape, winding angle, and helical and hoop layer thicknesses. The FE model was then used to predict the performance of the composite tank subject to the operating requirements and design assumptions, and to provide guidance for design optimization. Variation of the winding angle and helical layer thickness in the dome section was incorporated in the FE model. The analysis was used to determine the minimum helical and hoop layer thicknesses needed to assure structural integrity of the tank. The analysis also examined the use of "doilies" to reinforce the dome and the boss sections of the tanks to reduce the number of helical layers wound around the cylindrical section of the tank. The results of the FE analyses showed that the use of doilies reduces the stresses near the dome end but the stresses at the tank shoulder are not affected. A new integrated end-cap design is proposed to reinforce the dome section. With the integrated end-cap, FE analysis showed that the high stress points shift from the dome to the cylindrical section of the tank. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Roh, H. S.; Hua, T. Q.; Ahluwalia, R. K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Hua, TQ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hua@anl.gov FU U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Ms. Grace Ordaz of the Office of Fuel Cell Technologies was the Technology Development Manager for this study. Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. NR 15 TC 2 Z9 2 U1 2 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD SEP 30 PY 2013 VL 38 IS 29 BP 12795 EP 12802 DI 10.1016/j.ijhydene.2013.07.016 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 229ZS UT WOS:000325307000012 ER PT J AU Kamburov, D Mueed, MA Shayegan, M Pfeiffer, LN West, KW Baldwin, KW Lee, JJD Winkler, R AF Kamburov, D. Mueed, M. A. Shayegan, M. Pfeiffer, L. N. West, K. W. Baldwin, K. W. Lee, J. J. D. Winkler, R. TI Anisotropic Fermi contour of (001) GaAs electrons in parallel magnetic fields SO PHYSICAL REVIEW B LA English DT Article ID MAGNETORESISTANCE OSCILLATIONS; QUANTUM-WELLS; GAS; SUPERLATTICES AB We demonstrate a severe Fermi contour anisotropy induced by the application of a parallel magnetic field to high-mobility electrons confined to a 30-nm-wide (001) GaAs quantum well. We study commensurability oscillations, namely, geometrical resonances of the electron orbits with a unidirectional, surface-strain-induced, periodic potential modulation, to directly probe the size of the Fermi contours along and perpendicular to the parallel field. Their areas are obtained from the Shubnikov-de Haas oscillations. Our experimental data agree semiquantitatively with the results of parameter-free calculations of the Fermi contours, but there are significant discrepancies. C1 [Kamburov, D.; Mueed, M. A.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Lee, J. J. D.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Winkler, R.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Winkler, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kamburov, D (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. OI Kamburov, Dobromir/0000-0002-8605-1946 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-FG020-00- ER45841]; Gordon and Betty Moore Foundation [GBMF2719]; Keck Foundation, NSF [ECCS-1001719, DMR-1305691, MRSEC DMR-0819860]; National Science Foundation [DMR-1157490]; State of Florida; U.S. Department of Energy; DOE BES [DE-AC02-06CH11357] FX We acknowledge support through the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering (Award No. DE-FG020-00- ER45841) for measurements, and the Gordon and Betty Moore Foundation (Grant GBMF2719), Keck Foundation, NSF (ECCS-1001719, DMR-1305691, and MRSEC DMR-0819860) for sample fabrication and characterization. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida and the U.S. Department of Energy. Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357. We thank S. Hannahs, T. Murphy, and A. Suslov at NHMFL for valuable technical support during the measurements. We also express gratitude to Tokoyama Corporation for supplying the negative e-beam resist TEBN-1 used to make the samples. NR 24 TC 9 Z9 9 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 30 PY 2013 VL 88 IS 12 AR 125435 DI 10.1103/PhysRevB.88.125435 PG 5 WC Physics, Condensed Matter SC Physics GA 228HZ UT WOS:000325177900012 ER PT J AU Kovnir, K Thompson, CM Garlea, VO Haskel, D Polyanskii, AA Zhou, HD Shatruk, M AF Kovnir, Kirill Thompson, Corey M. Garlea, V. Ovidiu Haskel, Daniel Polyanskii, Anatolii A. Zhou, Haidong Shatruk, Michael TI Modification of magnetic anisotropy through 3d-4f coupling in La0.75Pr0.25Co2P2 SO PHYSICAL REVIEW B LA English DT Article ID PHOSPHIDES CACO2P2; SUPERCONDUCTIVITY; FERROMAGNETISM; PRCO2P2; ORDER AB Magnetic behavior of La0.75Pr0.25Co2P2 was investigated by a combination of magnetic measurements, magneto-optical imaging, neutron diffraction, and x-ray absorption spectroscopy, including x-ray magnetic circular dichroism. The material crystallizes in the ThCr2Si2 structure type and exhibits three consecutive magnetic phase transitions. At 167 K, the Co magnetic moments order ferromagnetically in the ab plane of the tetragonal crystal structure. At 66 K, a ferromagnetic ordering of Pr(4f) moments parallel to the c axis causes a rotation of the Co(3d) moments towards the c axis in the direction opposite to the Pr moments, thus forming a noncollinear ferrimagnetically ordered structure and switching the direction of the total magnetization from the ab plane to the c axis. The third magnetic transition observed at 35 K is likely associated with the establishment of the collinear ferrimagnetic order along the c axis. C1 [Kovnir, Kirill; Thompson, Corey M.; Shatruk, Michael] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Garlea, V. Ovidiu] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Haskel, Daniel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Polyanskii, Anatolii A.; Zhou, Haidong; Shatruk, Michael] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. RP Shatruk, M (reprint author), Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. EM shatruk@chem.fsu.edu RI Garlea, Vasile/A-4994-2016; Zhou, Haidong/O-4373-2016 OI Garlea, Vasile/0000-0002-5322-7271; FU National Science Foundation [DMR-0955353]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); U.S. DOE [DE-AC02-06CH11357] FX M.S. thanks the National Science Foundation (Career Award No. DMR-0955353) for the support of this work. Experiments at the Oak Ridge National Laboratory's High Flux Isotope Reactor were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. We thank Dr. Richard Rosenberg and Dr. Yongseong Choi (Argonne National Laboratory, Advanced Photon Source) for assistance with XMCD experiments, as well as Dr. Javier Fernandez-Rodriguez for the calculation of the theoretical XANES spectrum for the Pr3+ ion. NR 25 TC 7 Z9 7 U1 0 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 30 PY 2013 VL 88 IS 10 AR 104429 DI 10.1103/PhysRevB.88.104429 PG 10 WC Physics, Condensed Matter SC Physics GA 228GT UT WOS:000325174700006 ER PT J AU Kreisel, A Wang, Y Maier, TA Hirschfeld, PJ Scalapino, DJ AF Kreisel, A. Wang, Y. Maier, T. A. Hirschfeld, P. J. Scalapino, D. J. TI Spin fluctuations and superconductivity in KxFe2-ySe2 SO PHYSICAL REVIEW B LA English DT Article AB Superconductivity in alkali-intercalated iron selenide, with T-c's of 30 K and above, may have a different origin than that of the other Fe-based superconductors, since it appears that the Fermi surface does not have any holelike sheets centered around the Gamma point. Here we investigate the symmetry of the superconducting gap in the framework of spin-fluctuation pairing calculations using density functional theory bands downfolded onto a three-dimensional (3D), ten-orbital tight-binding model, treating the interactions in the random-phase approximation (RPA). We find a leading instability towards a state with d-wave symmetry, but show that the details of the gap function depend sensitively on electronic structure. As required by crystal symmetry, quasinodes on electron pockets always occur, but are shown to be either horizontal, looplike, or vertical depending on details. A variety of other 3D gap structures, including bonding-antibonding s-symmetry states which change sign between inner and outer electron pockets, are found to be subdominant. We then investigate the possibility that spin-orbit coupling effects on the one-electron band structure, which lead to enhanced splitting of the two M-centered electron pockets in the 2-Fe zone, may stabilize the bonding-antibonding s(+/-)-wave states. Finally, we discuss our results in the context of current phenomenological theories and experiments. C1 [Kreisel, A.; Wang, Y.; Hirschfeld, P. J.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Maier, T. A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Maier, T. A.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Scalapino, D. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Kreisel, A (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RI Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 FU DOE [DE-FG02-05ER46236]; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors gratefully acknowledge useful discussions with T. Berlijn, A. Chubukov, I. Eremin, H. Jeschke, M. Khodas, M. Korshunov, G. Panchapakesan, M. Taillefumier, M. Tomic, and R. Valenti. P.J.H., Y.W., and A.K. were supported by DOE DE-FG02-05ER46236. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 39 TC 18 Z9 18 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 30 PY 2013 VL 88 IS 9 AR 094522 DI 10.1103/PhysRevB.88.094522 PG 12 WC Physics, Condensed Matter SC Physics GA 228GC UT WOS:000325172900008 ER PT J AU Levin, EM Heremans, JP Kanatzidis, MG Schmidt-Rohr, K AF Levin, E. M. Heremans, J. P. Kanatzidis, M. G. Schmidt-Rohr, K. TI Electronic inhomogeneity in n- and p-type PbTe detected by Te-125 NMR SO PHYSICAL REVIEW B LA English DT Article ID PERFORMANCE BULK THERMOELECTRICS; ENHANCEMENT; TELLURIUM; STATES AB Te-125 nuclear magnetic resonance spectra and spin-lattice relaxation of n- and p-type PbTe, self-doping narrow band-gap semiconductors, have been studied and compared to those of p-type GeTe. Spin-lattice relaxation in GeTe can be fit by one component, while that in both PbTe samples must be fit by at least two components, showing electronically homogeneous and inhomogeneous materials, respectively. For PbTe-based materials, the spin-lattice relaxation rate 1/T-1 increases linearly with carrier concentration. The data for GeTe fall on the same line and allow us to extend this plot to higher concentrations. Long and short T-1 components in both PbTe samples reflect "low," similar to 10(17) cm(-3), and "high," similar to 10(18) cm(-3), carrier concentration components. Carrier concentrations in both n- and p-type PbTe samples obtained from the Hall and Seebeck effects generally match the "high" carrier concentration component, and to some extent, ignore the "low" one. This demonstrates that the Hall and Seebeck effects may have a limited ability for the determination of carrier concentration in complex thermoelectric PbTe-based and other multicomponent materials. C1 [Levin, E. M.; Schmidt-Rohr, K.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Levin, E. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Heremans, J. P.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Heremans, J. P.] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. [Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kanatzidis, M. G.] Argonne Natl Lab, Div Mat Sci, US DOE, Argonne, IL 60439 USA. [Schmidt-Rohr, K.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Levin, EM (reprint author), US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM levin@iastate.edu RI Heremans, Joseph/D-3298-2015 OI Heremans, Joseph/0000-0003-3996-2744 FU US DOE of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering; Iowa State University [DE-AC02-07CH11358]; NSF-CBET [1048622]; Energy Frontier Research Center Revolutionary Materials for Solid State Energy Conversion; US DOE, BES [DE-SC0001054] FX The authors thank C. M. Jaworski (OSU), K. Ahn (NU), and the Materials Preparation Center at Ames Laboratory US DOE for sample synthesis. The NMR study was supported by the US DOE of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, and performed at the Ames Laboratory, which is operated for the US DOE by Iowa State University under Contract No. DE-AC02-07CH11358. Work at OSU was supported by NSF-CBET, Award No. 1048622. Work at NU was supported by the Energy Frontier Research Center Revolutionary Materials for Solid State Energy Conversion, funded by US DOE, BES, under Award No. DE-SC0001054. NR 24 TC 12 Z9 12 U1 3 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 30 PY 2013 VL 88 IS 11 AR 115211 DI 10.1103/PhysRevB.88.115211 PG 5 WC Physics, Condensed Matter SC Physics GA 228HC UT WOS:000325175600005 ER PT J AU Mitchell, B Lee, D Lee, D Koizumi, A Poplawsky, J Fujiwara, Y Dierolf, V AF Mitchell, B. Lee, D. Lee, D. Koizumi, A. Poplawsky, J. Fujiwara, Y. Dierolf, V. TI Electron-beam-induced migration of hydrogen in Mg-doped GaN using Eu as a probe SO PHYSICAL REVIEW B LA English DT Article ID P-TYPE GAN; CHEMICAL-VAPOR-DEPOSITION; IRRADIATION; PHOTOLUMINESCENCE; DISSOCIATION; LUMINESCENCE; DEFECTS; COMPLEX; FILMS; LIGHT AB We demonstrate the use of hydrogen-induced changes in the emission of isoelectric Eu ions, in Mg-doped p-type GaN, as a powerful probe to study the dynamics of hydrogen movement under electron-beam irradiation. We identify, experimentally, a two-step process in the dissociation of Mg-H complexes and propose, based on density functional theory, that the presence of minority carriers and the resulting charge states of hydrogen drive this process. C1 [Mitchell, B.; Dierolf, V.] Lehigh Univ, Bethlehem, PA 18015 USA. [Lee, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lee, D.; Koizumi, A.; Fujiwara, Y.] Osaka Univ, Suita, Osaka 5650871, Japan. [Poplawsky, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Poplawsky, J.] Univ Tennessee, Knoxville, TN 37996 USA. RP Mitchell, B (reprint author), Lehigh Univ, 16 Mem Dr East, Bethlehem, PA 18015 USA. RI Fujiwara, Yasufumi/D-9052-2012; Lee, Donghwa/G-7934-2012; Poplawsky, Jonathan/Q-2456-2015; OI Lee, Donghwa/0000-0002-8956-3648; Poplawsky, Jonathan/0000-0002-4272-7043; Lee, Dong-gun/0000-0002-5339-9364 FU National Science Foundation [ECCS-1140038]; Japan Society for the Promotion of Science [19GS1209, 24226009]; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The work at Lehigh was supported by National Science Foundation Grant No. ECCS-1140038. The work at Osaka was partly supported by a Grant-in-Aid for Creative Scientific Research (Grant No. 19GS1209) and a Grant-in-Aid for Scientific Research (S) (Grant No. 24226009) from the Japan Society for the Promotion of Science. Computational work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 25 TC 9 Z9 9 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 30 PY 2013 VL 88 IS 12 AR 121202 DI 10.1103/PhysRevB.88.121202 PG 5 WC Physics, Condensed Matter SC Physics GA 228HZ UT WOS:000325177900002 ER PT J AU Buckley, MR AF Buckley, Matthew R. TI Using effective operators to understand CoGeNT and CDMS-Si signals SO PHYSICAL REVIEW D LA English DT Article ID 730 KG DAYS; DARK-MATTER; CONSTRAINTS; SEARCHES AB Several direct detection experiments have reported positive signals consistent with a dark matter particle with a mass of approximately 7-9 GeV and a spin-independent scattering cross section of 2.5-4.8 x 10(-41) cm(2). These results do not rise to the level of discovery, but assuming that they are due to dark matter, some questions about the underlying physics can already be addressed. In this paper, I apply the effective operator formalism for dark matter Standard Model interactions to the results of the CoGeNT and CDMS silicon target experiments. I demonstrate that only one set of flavor-blind effective operators between dark matter and quarks can be consistent with the reported results in all energy regimes of interest, namely thermal freeze-out, nuclear scattering, indirect detection, and TeV-scale colliders. This set of operators implies large couplings of dark matter with heavy quarks. The alternative implies either that the new physics has nontrivial flavor structure, that the effective formalism is not applicable and so contains new states in the spectrum accessible at the LHC, or has large annihilation channels (possibly via effective operators) into noncolored Standard Model particles. C1 Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Buckley, MR (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. OI Buckley, Matthew/0000-0003-1109-3460 FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy FX I would like to thank Dan Hooper, Ulrich Haisch, and Kathryn Zurek for useful discussions and advice. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 70 TC 15 Z9 15 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 30 PY 2013 VL 88 IS 5 AR 055028 DI 10.1103/PhysRevD.88.055028 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226JH UT WOS:000325031200007 ER PT J AU White, E Schwartz, AJ Adachi, I Aihara, H Asner, DM Aulchenko, V Aushev, T Bakich, AM Bala, A Bhardwaj, V Bhuyan, B Bonvicini, G Bozek, A Bracko, M Brodzicka, J Browder, TE Chekelian, V Chen, A Chen, P Cheon, BG Chilikin, K Chistov, R Cho, IS Cho, K Chobanova, V Choi, Y Cinabro, D Dingfelder, J Dolezal, Z Drasal, Z Dutta, D Eidelman, S Epifanov, D Esen, S Farhat, H Fast, JE Feindt, M Ferber, T Frey, A Gaur, V Gabyshev, N Ganguly, S Gillard, R Goh, YM Golob, B Hara, T Hayasaka, K Hayashii, H Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Ishikawa, A Itoh, R Iwasaki, Y Iwashita, T Jaegle, I Julius, T Kah, DH Kang, JH Kato, E Kiesling, C Kim, DY Kim, HO Kim, JB Kim, JH Kim, MJ Kim, YJ Kinoshita, K Klucar, J Ko, BR Kodys, P Korpar, S Krizan, P Krokovny, P Kronenbitter, B Kuhr, T Kumita, T Kuzmin, A Kwon, YJ Lange, JS Lee, SH Li, J Li, Y Gioi, LL Libby, J Liu, C Liu, Y Liventsev, D Lukin, P Matvienko, D Miyata, H Mizuk, R Mohanty, GB Moll, A Mussa, R Nakano, E Nakao, M Natkaniec, Z Nayak, M Nedelkovska, E Ng, C Nisar, NK Nishida, S Nitoh, O Ogawa, S Okuno, S Oswald, C Pakhlov, P Pakhlova, G Park, H Park, HK Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Ritter, M Roehrken, M Rostomyan, A Ryu, S Sahoo, H Saito, T Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Savinov, V Schneider, O Schnell, G Schwanda, C Semmler, D Senyo, K Seon, O Sevior, ME Shapkin, M Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Sohn, YS Sokolov, A Solovieva, E Stanic, S Staric, M Steder, M Sumiyoshi, T Tamponi, U Tatishvili, G Teramoto, Y Uchida, M Uehara, S Unno, Y Uno, S Vahsen, SE Van Hulse, C Varner, G Vorobyev, V Wagner, MN Wang, CH Wang, MZ Wang, P Watanabe, Y Williams, KM Won, E Yamashita, Y Yashchenko, S Yusa, Y Zhang, ZP Zhilich, V Zhulanov, V Zupanc, A AF White, E. Schwartz, A. J. Adachi, I. Aihara, H. Asner, D. M. Aulchenko, V. Aushev, T. Bakich, A. M. Bala, A. Bhardwaj, V. Bhuyan, B. Bonvicini, G. Bozek, A. Bracko, M. Brodzicka, J. Browder, T. E. Chekelian, V. Chen, A. Chen, P. Cheon, B. G. Chilikin, K. Chistov, R. Cho, I. -S. Cho, K. Chobanova, V. Choi, Y. Cinabro, D. Dingfelder, J. Dolezal, Z. Drasal, Z. Dutta, D. Eidelman, S. Epifanov, D. Esen, S. Farhat, H. Fast, J. E. Feindt, M. Ferber, T. Frey, A. Gaur, V. Gabyshev, N. Ganguly, S. Gillard, R. Goh, Y. M. Golob, B. Hara, T. Hayasaka, K. Hayashii, H. Hoshi, Y. Hou, W. -S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Ishikawa, A. Itoh, R. Iwasaki, Y. Iwashita, T. Jaegle, I. Julius, T. Kah, D. H. Kang, J. H. Kato, E. Kiesling, C. Kim, D. Y. Kim, H. O. Kim, J. B. Kim, J. H. Kim, M. J. Kim, Y. J. Kinoshita, K. Klucar, J. Ko, B. R. Kodys, P. Korpar, S. Krizan, P. Krokovny, P. Kronenbitter, B. Kuhr, T. Kumita, T. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, S. -H. Li, J. Li, Y. Gioi, L. Li Libby, J. Liu, C. Liu, Y. Liventsev, D. Lukin, P. Matvienko, D. Miyata, H. Mizuk, R. Mohanty, G. B. Moll, A. Mussa, R. Nakano, E. Nakao, M. Natkaniec, Z. Nayak, M. Nedelkovska, E. Ng, C. Nisar, N. K. Nishida, S. Nitoh, O. Ogawa, S. Okuno, S. Oswald, C. Pakhlov, P. Pakhlova, G. Park, H. Park, H. K. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Ritter, M. Roehrken, M. Rostomyan, A. Ryu, S. Sahoo, H. Saito, T. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Semmler, D. Senyo, K. Seon, O. Sevior, M. E. Shapkin, M. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Sohn, Y. -S. Sokolov, A. Solovieva, E. Stanic, S. Staric, M. Steder, M. Sumiyoshi, T. Tamponi, U. Tatishvili, G. Teramoto, Y. Uchida, M. Uehara, S. Unno, Y. Uno, S. Vahsen, S. E. Van Hulse, C. Varner, G. Vorobyev, V. Wagner, M. N. Wang, C. H. Wang, M. -Z. Wang, P. Watanabe, Y. Williams, K. M. Won, E. Yamashita, Y. Yashchenko, S. Yusa, Y. Zhang, Z. P. Zhilich, V. Zhulanov, V. Zupanc, A. CA Belle Collaboration TI Measurement of the wrong-sign decay D-0 -> K+pi(-)pi(+)pi(-) SO PHYSICAL REVIEW D LA English DT Article ID BELLE DETECTOR; SYMMETRY AB A measurement of the rate for the "wrong-sign" decay D-0 -> K+pi(-)pi(+)pi(-) relative to that for the "right-sign" decay D-0 -> K-pi(+)pi(+)pi(-) is presented. Using 791 fb(-1) of data collected with the Belle detector, we obtain a branching fraction ratio of R-WS = [0.324 +/- 0.008(stat) +/- 0.007(sys)]%. Multiplying this ratio by the world average value for the branching fraction B(D-0 -> K-pi(+)pi(+)pi(-)) gives a branching fraction B(D-0 -> K+pi(-)pi(+)pi(-)) = (2.61 +/- 0.06(-0.008)(+0.09)) x 10(-4). C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Dingfelder, J.; Oswald, C.] Univ Bonn, D-53115 Bonn, Germany. [Aulchenko, V.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shwartz, B.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] RAS, Budker Inst Nucl Phys SB, Novosibirsk 630090, Russia. [Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [White, E.; Schwartz, A. J.; Esen, S.; Kinoshita, K.; Liu, Y.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Rostomyan, A.; Steder, M.; Yashchenko, S.] DESY, D-22607 Hamburg, Germany. [Lange, J. S.; Semmler, D.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Frey, A.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Jaegle, I.; Sahoo, H.; Vahsen, S. E.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Hara, T.; Itoh, R.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, Y.; Uehara, S.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Ikerbasque, Bilbao 48011, Spain. [Bhuyan, B.; Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Libby, J.; Nayak, M.] Indian Inst Technol, Madras 600036, Tamil Nadu, India. [Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Mussa, R.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Chilikin, K.; Chistov, R.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Staric, M.] J Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Feindt, M.; Kronenbitter, B.; Kuhr, T.; Roehrken, M.; Zupanc, A.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kah, D. H.; Kim, H. O.; Kim, M. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chekelian, V.; Chobanova, V.; Kiesling, C.; Gioi, L. Li; Moll, A.; Nedelkovska, E.; Ritter, M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Mizuk, R.; Pakhlov, P.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Iijima, T.; Seon, O.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Bhardwaj, V.; Hayashii, H.; Iwashita, T.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Chen, P.; Hou, W. -S.; Hsiung, Y. B.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Brodzicka, J.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Miyata, H.; Yusa, Y.] Niigata Univ, Niigata 9502181, Japan. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Fast, J. E.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bala, A.] Panjab Univ, Chandigarh 160014, India. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Liu, C.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, J.; Ryu, S.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Moll, A.] Tech Univ Munich, Excellence Cluster Univ, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Kato, E.; Saito, T.; Sanuki, T.; Sato, Y.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.; Epifanov, D.; Ng, C.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shapkin, M.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo 1848588, Japan. [Tamponi, U.] Univ Turin, I-10124 Turin, Italy. [Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Cho, I. -S.; Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.] Yonsei Univ, Seoul 120749, South Korea. [Pedlar, T. K.] Luther Coll, Iowa City, IA 52101 USA. RP White, E (reprint author), Univ Cincinnati, Cincinnati, OH 45221 USA. RI Nitoh, Osamu/C-3522-2013; Aihara, Hiroaki/F-3854-2010; Ishikawa, Akimasa/G-6916-2012; Pakhlov, Pavel/K-2158-2013; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chilikin, Kirill/B-4402-2014; Chistov, Ruslan/B-4893-2014; Pakhlova, Galina/C-5378-2014; Solovieva, Elena/B-2449-2014 OI Aihara, Hiroaki/0000-0002-1907-5964; Pakhlov, Pavel/0000-0001-7426-4824; Krokovny, Pavel/0000-0002-1236-4667; Chilikin, Kirill/0000-0001-7620-2053; Chistov, Ruslan/0000-0003-1439-8390; Pakhlova, Galina/0000-0001-7518-3022; Solovieva, Elena/0000-0002-5735-4059 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund [P 22742-N16]; National Natural Science Foundation of China [10575109, 10775142, 10875115, 10825524]; Ministry of Education, Youth and Sports of the Czech Republic [MSM0021620859]; Carl Zeiss Foundation; Deutsche Forschungsgemeinschaft; Volkswagen-Stiftung; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; BK21 program of the Ministry Education Science and Technology; WCU program of the Ministry Education Science and Technology; National Research Foundation of Korea [2010-0021174, 2011-0029457, 2012-0008143, 2012R1A1A2008330]; BRL program under NRF [KRF-2011-0020333]; GSDC of the Korea Institute of Science and Technology Information; Polish Ministry of Science and Higher Education; Ministry of Education and Science of the Russian Federation; Russian Federal Agency for Atomic Energy; Slovenian Research Agency; Basque Foundation for Science (IKERBASQUE); Swiss National Science Foundation; National Science Council; Ministry of Education of Taiwan; U.S. Department of Energy; National Science Foundation; MEXT for Science Research in a Priority Area ("New Development of Flavor Physics"); JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics"); National Science Center; UPV/EHU [UFI 11/55] FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund under Grant No. P 22742-N16; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115 and No. 10825524; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. MSM0021620859; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft and the Volkswagen-Stiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the BK21 and WCU program of the Ministry Education Science and Technology, National Research Foundation of Korea Grants No. 2010-0021174, No. 2011-0029457, No. 2012-0008143 and No. 2012R1A1A2008330, BRL program under NRF Grant No. KRF-2011-0020333, and GSDC of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Basque Foundation for Science (IKERBASQUE) and the UPV/EHU under program UFI 11/55; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics"), and from JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics"). NR 23 TC 3 Z9 3 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 30 PY 2013 VL 88 IS 5 AR 051101 DI 10.1103/PhysRevD.88.051101 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226JH UT WOS:000325031200001 ER PT J AU Piet, DL Straube, AV Snezhko, A Aranson, IS AF Piet, D. L. Straube, A. V. Snezhko, A. Aranson, I. S. TI Model of dynamic self-assembly in ferromagnetic suspensions at liquid interfaces SO PHYSICAL REVIEW E LA English DT Article ID COLLOIDS; FIELDS; MEDIA AB Ferromagnetic microparticles suspended at the interface between immiscible liquids and energized by an external alternating magnetic field show a rich variety of self-assembled structures, from linear snakes to radial asters. In order to obtain insight into the fundamental physical mechanisms and the overall balance of forces governing self-assembly, we develop a modeling approach based on analytical solutions of the time-averaged Navier-Stokes equations. These analytical expressions for the self-consistent hydrodynamic flows are then employed to modify effective interactions between the particles, which in turn are formulated in terms of the time-averaged quantities. Our method allows effective computational verification of the mechanisms of self-assembly and leads to a testable prediction, e. g., on the transitions between various patterns versus viscosity of the solvent. C1 [Piet, D. L.; Aranson, I. S.] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA. [Piet, D. L.; Snezhko, A.; Aranson, I. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Straube, A. V.] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany. RP Piet, DL (reprint author), Northwestern Univ, Dept Engn Sci & Appl Math, 2145 Sheridan Rd, Evanston, IL 60208 USA. RI Straube, Arthur/L-6379-2013 FU US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE AC02-06CH11357] FX The research was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357. A. V. S. thanks Argonne's Materials Theory Institute for support of his visit to Argonne. NR 31 TC 5 Z9 5 U1 3 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD SEP 30 PY 2013 VL 88 IS 3 AR 033024 DI 10.1103/PhysRevE.88.033024 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 228DV UT WOS:000325166600016 PM 24125361 ER PT J AU Hanson, D Hoover, S Crites, A Ade, PAR Aird, KA Austermann, JE Beall, JA Bender, AN Benson, BA Bleem, LE Bock, JJ Carlstrom, JE Chang, CL Chiang, HC Cho, HM Conley, A Crawford, TM de Haan, T Dobbs, MA Everett, W Gallicchio, J Gao, J George, EM Halverson, NW Harrington, N Henning, JW Hilton, GC Holder, GP Holzapfel, WL Hrubes, JD Huang, N Hubmayr, J Irwin, KD Keisler, R Knox, L Lee, AT Leitch, E Li, D Liang, C Luong-Van, D Marsden, G McMahon, JJ Mehl, J Meyer, SS Mocanu, L Montroy, TE Natoli, T Nibarger, JP Novosad, V Padin, S Pryke, C Reichardt, CL Ruhl, JE Saliwanchik, BR Sayre, JT Schaffer, KK Schulz, B Smecher, G Stark, AA Story, KT Tucker, C Vanderlinde, K Vieira, JD Viero, MP Wang, G Yefremenko, V Zahn, O Zemcov, M AF Hanson, D. Hoover, S. Crites, A. Ade, P. A. R. Aird, K. A. Austermann, J. E. Beall, J. A. Bender, A. N. Benson, B. A. Bleem, L. E. Bock, J. J. Carlstrom, J. E. Chang, C. L. Chiang, H. C. Cho, H-M. Conley, A. Crawford, T. M. de Haan, T. Dobbs, M. A. Everett, W. Gallicchio, J. Gao, J. George, E. M. Halverson, N. W. Harrington, N. Henning, J. W. Hilton, G. C. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Huang, N. Hubmayr, J. Irwin, K. D. Keisler, R. Knox, L. Lee, A. T. Leitch, E. Li, D. Liang, C. Luong-Van, D. Marsden, G. McMahon, J. J. Mehl, J. Meyer, S. S. Mocanu, L. Montroy, T. E. Natoli, T. Nibarger, J. P. Novosad, V. Padin, S. Pryke, C. Reichardt, C. L. Ruhl, J. E. Saliwanchik, B. R. Sayre, J. T. Schaffer, K. K. Schulz, B. Smecher, G. Stark, A. A. Story, K. T. Tucker, C. Vanderlinde, K. Vieira, J. D. Viero, M. P. Wang, G. Yefremenko, V. Zahn, O. Zemcov, M. CA SPTpol Collaboration TI Detection of B-Mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope SO PHYSICAL REVIEW LETTERS LA English DT Article ID POWER SPECTRA; GRAVITY-WAVES; LIGHT; TEMPERATURE; CMB AB Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a nonzero correlation at 7.7 sigma significance. The correlation has an amplitude and scale dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable. C1 [Hanson, D.; Bender, A. N.; de Haan, T.; Dobbs, M. A.; Holder, G. P.; Smecher, G.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Hoover, S.; Crites, A.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Crawford, T. M.; Gallicchio, J.; Keisler, R.; Leitch, E.; Liang, C.; Luong-Van, D.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Natoli, T.; Schaffer, K. K.; Story, K. T.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Hoover, S.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Meyer, S. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Crites, A.; Carlstrom, J. E.; Crawford, T. M.; Leitch, E.; Liang, C.; Meyer, S. S.; Mocanu, L.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Ade, P. A. R.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Aird, K. A.; Hrubes, J. D.] Univ Chicago, Chicago, IL 60637 USA. [Austermann, J. E.; Cho, H-M.; Conley, A.; Everett, W.; Halverson, N. W.; Henning, J. W.] Univ Colorado, CASA, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Beall, J. A.; Cho, H-M.; Gao, J.; Hilton, G. C.; Hubmayr, J.; Irwin, K. D.; Li, D.; Nibarger, J. P.] NIST, Boulder, CO 80305 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K. T.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Bock, J. J.; Padin, S.; Schulz, B.; Vieira, J. D.; Viero, M. P.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J. J.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Carlstrom, J. E.; Chang, C. L.; Mehl, J.; Wang, G.; Yefremenko, V.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, ZA-4000 Durban, South Africa. [George, E. M.; Harrington, N.; Holzapfel, W. L.; Huang, N.; Lee, A. T.; Reichardt, C. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Marsden, G.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Novosad, V.; Yefremenko, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Schulz, B.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Zahn, O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Hanson, D (reprint author), McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. RI Novosad, Valentyn/C-2018-2014; Holzapfel, William/I-4836-2015; Novosad, V /J-4843-2015; OI Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Tucker, Carole/0000-0002-1851-3918 FU National Science Foundation [ANT-0638937]; NSF [PHY-1125897, 0959620, AST-0956135]; Gordon and Betty Moore Foundation [GBMF 947]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs Program; Canadian Institute for Advanced Research; Lorne Trottier Chair program in Astrophysics and Cosmology at McGill; CITA National Fellowship program; NASA Hubble Fellowship [HF-51275] FX The SPT is supported by the National Science Foundation through Grant No. ANT-0638937, with partial support provided by NSF Grant No. PHY-1125897. Support for the development and construction of SPTpol were provided by the Gordon and Betty Moore Foundation through Grant No. GBMF 947 to the University of Chicago, a gift from the Kavli Foundation, and NSF Grant No. 0959620. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Award No. DE-AC02-05CH11231. It also used resources of the CLUMEQ supercomputing consortium, part of the Compute Canada network. Research at Argonne National Laboratory and use of the Center for Nanoscale Materials are supported by the Office of Science of the U.S. Department of Energy under Award No. DE-AC02-06CH11357. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs Program, and the Canadian Institute for Advanced Research. The C. U. Boulder group acknowledges support from NSF Grant No. AST-0956135. We thank P. Hargrave at Cardiff University for antireflection coating the SPTpol lens, A. Datesman for his work on TES detectors at Argonne, R. Divan for microfabrication support at Argonne, and the members of the Truce Collaboration for their efforts in the design of the 150 GHz polarization detectors, in particular D. Becker, J. Britton, M. D. Niemack, and K. W. Yoon at NIST. We thank M. Lueker, T. Plagge, Z. Staniszewski, E. Shirokoff, H. Spieler, and R. Williamson for their considerable contributions to the SPT program. D. H. was supported by the Lorne Trottier Chair program in Astrophysics and Cosmology at McGill and by the CITA National Fellowship program. R. K. acknowledges support from NASA Hubble Fellowship Grant No. HF-51275. NR 50 TC 148 Z9 148 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 30 PY 2013 VL 111 IS 14 AR 141301 DI 10.1103/PhysRevLett.111.141301 PG 6 WC Physics, Multidisciplinary SC Physics GA 230TO UT WOS:000325366100001 PM 24138230 ER PT J AU Zhang, Z Ding, XD Sun, J Suzuki, T Lookman, T Otsuka, K Ren, XB AF Zhang, Zhen Ding, Xiangdong Sun, Jun Suzuki, Tetsuro Lookman, Turab Otsuka, Kazuhiro Ren, Xiaobing TI Nonhysteretic Superelasticity of Shape Memory Alloys at the Nanoscale SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHENOMENOLOGICAL THEORY; PHASE-TRANSFORMATIONS; MOLECULAR-DYNAMICS; MARTENSITE; TRANSITION; TINI AB We perform molecular dynamics simulations to show that shape memory alloy nanoparticles below the critical size not only demonstrate superelasticity but also exhibit features such as absence of hysteresis, continuous nonlinear elastic distortion, and high blocking force. Atomic level investigations show that this nonhysteretic superelasticity results from a continuous transformation from the parent phase to martensite under external stress. This aspect of shape memory alloys is attributed to a surface effect; i.e., the surface locally retards the formation of martensite and then induces a critical-end-point-like behavior when the system is below the critical size. Our work potentially broadens the application of shape memory alloys to the nanoscale. It also suggests a method to achieve nonhysteretic superelasticity in conventional bulk shape memory alloys. C1 [Zhang, Zhen; Ding, Xiangdong; Sun, Jun; Ren, Xiaobing] Xi An Jiao Tong Univ, Multidisciplinary Mat Res Ctr, Frontier Inst Sci & Technol, Xian 710049, Peoples R China. [Zhang, Zhen; Ding, Xiangdong; Sun, Jun; Ren, Xiaobing] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Suzuki, Tetsuro; Otsuka, Kazuhiro; Ren, Xiaobing] Natl Inst Mat Sci, Ferro Phys Grp, Tsukuba, Ibaraki 3050047, Japan. [Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zhang, Z (reprint author), Xi An Jiao Tong Univ, Multidisciplinary Mat Res Ctr, Frontier Inst Sci & Technol, Xian 710049, Peoples R China. EM zhenn.zhang@gmail.com; dingxd@mail.xjtu.edu.cn; REN.Xiaobing@nims.go.jp RI Ding, Xiangdong/K-4971-2013; Ren, Xiaobing/B-6072-2009; zhen, zhang/B-8007-2009 OI Ding, Xiangdong/0000-0002-1220-3097; Ren, Xiaobing/0000-0002-4973-2486; FU National Basic Research Program of China [2012CB619401, 2010CB613003]; National Natural Science Foundation of China [51171140, 51231008, 51320105014, 51321003, 51222104]; 111 project of China [B06025]; Kakenhi FX The authors gratefully acknowledge the support of the National Basic Research Program of China (Grants No. 2012CB619401 and No. 2010CB613003), National Natural Science Foundation of China (Grants No. 51171140, No. 51231008, No. 51320105014, No. 51321003, and No. 51222104), as well as 111 project of China (Grant No. B06025). X. R. acknowledges the financial support from Kakenhi. NR 34 TC 11 Z9 14 U1 5 U2 58 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 30 PY 2013 VL 111 IS 14 AR 145701 DI 10.1103/PhysRevLett.111.145701 PG 5 WC Physics, Multidisciplinary SC Physics GA 230TO UT WOS:000325366100006 PM 24138254 ER PT J AU Das, T Balatsky, AV AF Das, Tanmoy Balatsky, A. V. TI Origin of pressure induced second superconducting dome in AyFe(2-x)Se(2) [A = K, (TI, Rb)] SO NEW JOURNAL OF PHYSICS LA English DT Article ID TEMPERATURE; ORDER; GAP AB Recent observation of a pressure induced second superconducting phase in A(y)Fe(2-x)Se(2) [A = K, (TI, Rb)] calls for the models of superconductivity that are rich enough to allow for multiple superconducting phases. We propose the model where pressure induces renormalization of band parameters in such a way that it leads to changes in Fermi surface topology even for a fixed electron number. We develop a low-energy effective model, derived from first-principles band-structure calculation at finite pressure, to suggest the phase assignment where a low pressure superconducting state with no hole pocket at the 0 point is a nodeless d-wave state. It evolves into a s(+/-) state at higher pressure when the Fermi surface topology changes and the hole pocket appears. We analyze the pairing interactions using a five band tight binding fitted band structure and find that a strong pairing strength is dependent on pressure. We also evaluate the energy and momentum dependence of neutron spin resonances in each of the phases as verifiable predictions of our proposal. C1 [Das, Tanmoy; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Balatsky, A. V.] NORDITA, SE-10691 Stockholm, Sweden. RP Das, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM tnmydas@gmail.com FU UCOP-TR; Nordita; Los Alamos National Laboratory, of the US Department of Energy [DE-AC52-06NA25396] FX This work was supported, in part, by UCOP-TR, Nordita and Los Alamos National Laboratory, of the US Department of Energy under contract DE-AC52-06NA25396, and benefited from the allocation of supercomputer time at NERSC. NR 37 TC 4 Z9 4 U1 1 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 30 PY 2013 VL 15 AR 093045 DI 10.1088/1367-2630/15/9/093045 PG 12 WC Physics, Multidisciplinary SC Physics GA 227TZ UT WOS:000325139000003 ER PT J AU Reinhard, PG Piekarewicz, J Nazarewicz, W Agrawal, BK Paar, N Roca-Maza, X AF Reinhard, P. -G. Piekarewicz, J. Nazarewicz, W. Agrawal, B. K. Paar, N. Roca-Maza, X. TI Information content of the weak-charge form factor SO PHYSICAL REVIEW C LA English DT Article ID MEAN-FIELD MODELS; ELECTRON-SCATTERING; NUCLEAR-STRUCTURE; DENSITY; RADII AB Background: Parity-violating electron scattering provides a model-independent determination of the nuclear weak-charge form factor that has widespread implications across such diverse areas as fundamental symmetries, nuclear structure, heavy-ion collisions, and neutron-star structure. Purpose: We assess the impact of precise measurements of the weak-charge form factor of Ca-48 and Pb-208 on a variety of nuclear observables, such as the neutron skin and the electric-dipole polarizability. Methods: We use the nuclear density functional theory with several accurately calibrated nonrelativistic and relativistic energy density functionals. To assess the degree of correlation between nuclear observables and to explore systematic and statistical uncertainties on theoretical predictions, we employ the chi-square statistical covariance technique. Results: We find a strong correlation between the weak-charge form factor and the neutron radius, that allows for an accurate determination of the neutron skin of neutron-rich nuclei. We determine the optimal range of the momentum transfer q that maximizes the information content of the measured weak-charge form factor and quantify the uncertainties associated with the strange quark contribution. Moreover, we confirm the role of the electric-dipole polarizability as a strong isovector indicator. Conclusions: Accurate measurements of the weak-charge form factor of Ca-48 and Pb-208 will have a profound impact on many aspects of nuclear theory and hadronic measurements of neutron skins of exotic nuclei at radioactive-beam facilities. C1 [Reinhard, P. -G.] Univ Erlangen Nurnberg, Inst Theoret Phys 2, D-91058 Erlangen, Germany. [Piekarewicz, J.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Nazarewicz, W.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Agrawal, B. K.] Saha Inst Nucl Phys, Kolkata 700064, India. [Paar, N.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia. [Roca-Maza, X.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Roca-Maza, X.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. RP Reinhard, PG (reprint author), Univ Erlangen Nurnberg, Inst Theoret Phys 2, Staudtstr 7, D-91058 Erlangen, Germany. RI Roca-Maza, Xavier/E-4541-2013 OI Roca-Maza, Xavier/0000-0002-2100-6407 FU US Department of Energy (DOE) [DE-FG05-92ER40750, DE-FG02-96ER40963]; BMBF [06ER9063] FX Useful discussions with the CREX Collaboration are gratefully acknowledged. This work was supported by the US Department of Energy (DOE) under Contracts No. DE-FG05-92ER40750 (FSU) and No. DE-FG02-96ER40963 (UTK), and by the BMBF under Contract No. 06ER9063. NR 52 TC 22 Z9 22 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 30 PY 2013 VL 88 IS 3 AR 034325 DI 10.1103/PhysRevC.88.034325 PG 10 WC Physics, Nuclear SC Physics GA 226IC UT WOS:000325027700001 ER PT J AU Skokov, V Friman, B Redlich, K AF Skokov, V. Friman, B. Redlich, K. TI Volume fluctuations and higher-order cumulants of the net baryon number SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; QCD PHASE-TRANSITION; CHARGE FLUCTUATIONS; FREEZE-OUT AB We consider the effect of volume fluctuations on cumulants of the net baryon number. Based on a general formalism, we derive universal expressions for the net baryon number cumulants in the presence of volume fluctuations with an arbitrary probability distribution. The relevance of these fluctuations for the baryon-number cumulants and in particular for the ratios of cumulants is assessed in the Polyakov loop extended quark-meson model within the functional renormalization group. We show that the baryon number cumulants are generally enhanced by volume fluctuations and that the critical behavior of higher-order cumulants may be modified significantly. C1 [Skokov, V.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Skokov, V.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Friman, B.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland. RP Skokov, V (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM vskokov@quark.phy.bnl.gov OI Skokov, Vladimir/0000-0001-7619-1796; Friman, Bengt/0000-0002-3211-7073 FU US Department of Energy [DE-AC02-98CH10886]; ExtreMe Matter Institute EMMI; National Science Centre (NCN) FX We thank P. Braun-Munzinger and A. Bzdak for stimulating discussions. The research of V.S. was supported under Contract No. DE-AC02-98CH10886 with the US Department of Energy. The authors are supported in part by the ExtreMe Matter Institute EMMI. K.R. acknowledges partial support by the National Science Centre (NCN). NR 25 TC 23 Z9 23 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 30 PY 2013 VL 88 IS 3 AR 034911 DI 10.1103/PhysRevC.88.034911 PG 5 WC Physics, Nuclear SC Physics GA 226IC UT WOS:000325027700007 ER PT J AU Zhang, WY Tang, Y Du, D Smith, J Timchalk, C Liu, DL Lin, YH AF Zhang, Weiying Tang, Yong Du, Dan Smith, Jordan Timchalk, Charles Liu, Deli Lin, Yuehe TI Direct, analysis of trichloropyridinol in human saliva using an Au nanoparticles-based immunochromatographic test strip for biomonitoring of exposure to chlorpyrifos SO TALANTA LA English DT Article DE Trichloropyridinol; Organophosphorus pesticides; Immunochromatographic biosensor; Biomarker; Au nanoparticles ID FLOW TEST STRIP; ORGANOPHOSPHORUS PESTICIDES; RAPID DETECTION; RAT SALIVA; BIOMARKER; AGENTS; PHARMACOKINETICS; BIOSENSOR; DRUGS; CHOLINESTERASE AB A portable immunochromatographic strip-based biosensor for direct detection of trichloropyridinol (TCP), a specific biomarker of exposure to chlorpyrifos, in human saliva sample is presented. In this approach, a series of immunoreactions was performed on the test strip, where the targeted analytes (TCP) bound to the Au nanoparticles-labeled antibodies on the conjugate pad to form analyte-Au-antibody conjugates, and then free Au-labeled antibodies were captured by TCP-BSA in the test zone. Captured Au nanoparticles, increased with decreased levels of analytes, can be observed visibly without any equipment and later quantified by a calorimetric reader. Several experimental parameters were optimized including Au nanoparticle-to-TCP antibody coupling ratio, the amount of Au-labeled TCP antibody, immunoreaction time, the pretreatment of sample pad and the preparation of stock solution of Au-TCP antibody that realize sensitivity, selectivity and direct detection of TCP. Under optimal conditions, this biosensor displays a highly linear range of 0.625-20 ng/mL TCP, with a detection limit of 0.47 ng/mL. Moreover, the immunosensor was successfully used for direct analysis of human saliva sample without any pretreatment. These results demonstrate that this Au nanoparticles-based immunochromatographic test strip (ITS) provides a simple, accurate, and quantitative tool for TCP detection and holds a great promise for point-of-care and in-field analysis of other biomarkers. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zhang, Weiying; Liu, Deli] Cent China Normal Univ, Coll Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Peoples R China. [Du, Dan] Cent China Normal Univ, Coll Chem, Minist Educ, Key Lab Pesticide & Chem Biol, Wuhan 430079, Peoples R China. [Zhang, Weiying; Tang, Yong; Du, Dan; Smith, Jordan; Timchalk, Charles; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Du, D (reprint author), Cent China Normal Univ, Coll Chem, Minist Educ, Key Lab Pesticide & Chem Biol, Wuhan 430079, Peoples R China. EM dudan@mail.ccnu.edu.cn; deliliu2013@163.com; yuehe.lin@pnnl.gov RI Du, Dan (Annie)/G-3821-2012; Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU CDC/NIOSH [R01 OH008173-01]; US-DOE [DE-AC05-76RL01830]; National Natural Science Foundation of China [21075047, 21275062]; Program for New Century Excellent Talents in University [NCET-12-0871]; China Scholarship Council (CSC); PNNL FX This work was done at Pacific Northwest National Laboratory (PNNL) and supported by CDC/NIOSH Grant R01 OH008173-01. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the federal government. Pacific Northwest National Laboratory is operated by Battelle for US-DOE under Contract DE-AC05-76RL01830. This work was also supported partially by the National Natural Science Foundation of China (21075047, 21275062) and the Program for New Century Excellent Talents in University (NCET-12-0871). We specially thank Dow Chemical Company for the samples contribution. W.Z. would like to acknowledge the fellowship from the China Scholarship Council (CSC) and the fellowship from PNNL. NR 35 TC 11 Z9 11 U1 1 U2 61 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD SEP 30 PY 2013 VL 114 BP 261 EP 267 DI 10.1016/j.talanta.2013.06.012 PG 7 WC Chemistry, Analytical SC Chemistry GA 212WJ UT WOS:000324013200038 PM 23953469 ER PT J AU Imholte, GC Sauteraud, R Korber, B Bailer, RT Turk, ET Shen, XY Tomaras, GD Mascola, JR Koup, RA Montefiori, DC Gottardo, R AF Imholte, Greg C. Sauteraud, Renan Korber, Bette Bailer, Robert T. Turk, Ellen T. Shen, Xiaoying Tomaras, Georgia D. Mascola, John R. Koup, Richard A. Montefiori, David C. Gottardo, Raphael TI A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling SO JOURNAL OF IMMUNOLOGICAL METHODS LA English DT Article DE Peptide microarrays; Antibodies; Normalization; Positivity calls; Software; Visualization ID FALSE DISCOVERY RATES; ARRAY DATA; CHIP-CHIP; NORMALIZATION; RESPONSES; VARIANCE; EPITOPES; EFFICACY AB We present an integrated analytical method for analyzing peptide microarray antibody binding data, from normalization through subject-specific positivity calls and data integration and visualization. Current techniques for the normalization of such data sets do not account for nonspecific binding activity. A novel normalization technique based on peptide sequence information quickly and effectively reduced systematic biases. We also employed a sliding mean window technique that borrows strength from peptides sharing similar sequences, resulting in reduced signal variability. A smoothed signal aided in the detection of weak antibody binding hotspots. A new principled FDR method of setting positivity thresholds struck a balance between sensitivity and specificity. In addition, we demonstrate the utility and importance of using baseline control measurements when making subject-specific positivity calls. Data sets from two human clinical trials of candidate HIV-1 vaccines were used to validate the effectiveness of our overall computational framework. (C) 2013 Elsevier B.V. All rights reserved. C1 [Imholte, Greg C.; Sauteraud, Renan; Gottardo, Raphael] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, Seattle, WA 98109 USA. [Imholte, Greg C.; Gottardo, Raphael] Univ Washington, Dept Stat, Seattle, WA 98195 USA. [Bailer, Robert T.; Turk, Ellen T.; Mascola, John R.; Koup, Richard A.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Korber, Bette] Los Alamos Natl Lab, Los Alamos, NM USA. [Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA. [Shen, Xiaoying; Tomaras, Georgia D.; Montefiori, David C.] Duke Univ, Med Ctr, Duke Human Vaccine Inst, Durham, NC 27710 USA. RP Gottardo, R (reprint author), Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1100 Fairview Ave North,M2-C200,POB 19024, Seattle, WA 98109 USA. EM gimholte@uw.edu; rgottard@fhcrc.org RI Tomaras, Georgia/J-5041-2016; OI Korber, Bette/0000-0002-2026-5757 FU Bill and Melinda Gates Foundation VISC (Vaccine Immunology Statistical Center) [OPP38744, OPP1032317]; National Institute of Health [U01 AI068635-01] FX The authors thank the participants, investigators, and sponsors of the RV144 Thai trial, including the U.S. Military HIV Research Program (MHRP); U.S. Army Medical Research and Materiel Command; NIAID; U.S. and Thai Components, Armed Forces Research Institute of Medical Science; Ministry of Public Health, Thailand; Mahidol University; Sanofi Pasteur; and Global Solutions for Infectious Diseases. We acknowledge the support from the Bill and Melinda Gates Foundation VISC (Vaccine Immunology Statistical Center) [grant numbers OPP38744, OPP1032317] and the National Institute of Health funded HIV Vaccine Trials Network [grant number U01 AI068635-01]. Finally, we are grateful to JPT for their help and technical assistance. NR 29 TC 8 Z9 8 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1759 EI 1872-7905 J9 J IMMUNOL METHODS JI J. Immunol. Methods PD SEP 30 PY 2013 VL 395 IS 1-2 BP 1 EP 13 DI 10.1016/j.jim.2013.06.001 PG 13 WC Biochemical Research Methods; Immunology SC Biochemistry & Molecular Biology; Immunology GA 212WC UT WOS:000324012500001 PM 23770318 ER PT J AU Ferrara, F Naranjo, LA D'Angelo, S Kiss, C Bradbury, ARM AF Ferrara, Fortunato Naranjo, Leslie A. D'Angelo, Sara Kiss, Csaba Bradbury, Andrew R. M. TI Specific binder for Lightning-Link (R) biotinylated proteins from an antibody phage library SO JOURNAL OF IMMUNOLOGICAL METHODS LA English DT Article DE Phage display; Yeast display; Protein conjugation; Biotinylation ID DISPLAY AB Many applications required protein biotinylation. We routinely use biotinylated proteins to select single chain antibodies from phage and/or yeast display libraries. During phage selection the biotinylated antigens are bound to streptavidin coupled magnetic beads, while during yeast display, the biotinylated antigens are used during flow cytometry for both analysis and sorting. The Lightning-Link (R) Biotin kit, a rapid straightforward biotinylation kit that avoids the need for dialysis, is particularly useful when the amount of available protein is limiting. During routine screening of antibody libraries we identified a specific clone that bound a universal neo-epitope generated only when antigens are biotinylated with the commercial Lightning-Link (R) kit, with an affinity of similar to 10 nM. Non-biotinylated proteins, and those biotinylated using alternative methods - the Thermo Fisher commercial kit or in vivo biotinylation using the Avitag (Ashraf et al., 2004) - were not recognized by this antibody. Using deep sequence analysis, the specific antibody was identified as being the most abundant in a number of different selections. This indicates the need for caution when using such modifying reagents, because of the possibility of selecting antibodies against the modification, rather than the target protein, and also highlights the value of deep sequencing analysis during display based selections. Furthermore, this antibody may have great utility in the analysis of proteins biotinylated using this method. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved. C1 [Ferrara, Fortunato; D'Angelo, Sara] New Mexico Consortium, Los Alamos, NM USA. [Naranjo, Leslie A.; Kiss, Csaba; Bradbury, Andrew R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Bradbury, ARM (reprint author), Los Alamos Natl Lab, Biosci Div, MS-M888,TA-43,HRL 1,Bldg 1, Los Alamos, NM 87545 USA. EM amb@lanl.gov FU Los Alamos National Laboratory; New Mexico Consortium through a NIH Grant "Technology Development for New Affinity Reagents Against the Human Proteome [1-U54-DK093500-01, RFA-RM-10-018] FX This work was supported by Los Alamos National Laboratory and New Mexico Consortium through a NIH U54 Grant "Technology Development for New Affinity Reagents Against the Human Proteome (U54) RFA-RM-10-018", grant number 1-U54-DK093500-01. NR 11 TC 4 Z9 5 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1759 J9 J IMMUNOL METHODS JI J. Immunol. Methods PD SEP 30 PY 2013 VL 395 IS 1-2 BP 83 EP 87 DI 10.1016/j.jim.2013.06.010 PG 5 WC Biochemical Research Methods; Immunology SC Biochemistry & Molecular Biology; Immunology GA 212WC UT WOS:000324012500011 PM 23850993 ER PT J AU Ellingson, SR Smith, JC Baudry, J AF Ellingson, Sally R. Smith, Jeremy C. Baudry, Jerome TI VinaMPI: Facilitating multiple receptor high-throughput virtual docking on high-performance computers SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT News Item DE drug discovery; high-throughput docking; multiprotein docking; high-performance computing ID DRUG DISCOVERY; MOLECULAR DOCKING; DYNAMICS; LIGANDS; SPACE AB The program VinaMPI has been developed to enable massively large virtual drug screens on leadership-class computing resources, using a large number of cores to decrease the time-to-completion of the screen. VinaMPI is a massively parallel Message Passing Interface (MPI) program based on the multithreaded virtual docking program AutodockVina, and is used to distribute tasks while multithreading is used to speed-up individual docking tasks. VinaMPI uses a distribution scheme in which tasks are evenly distributed to the workers based on the complexity of each task, as defined by the number of rotatable bonds in each chemical compound investigated. VinaMPI efficiently handles multiple proteins in a ligand screen, allowing for high-throughput inverse docking that presents new opportunities for improving the efficiency of the drug discovery pipeline. VinaMPI successfully ran on 84,672 cores with a continual decrease in job completion time with increasing core count. The ratio of the number of tasks in a screening to the number of workers should be at least around 100 in order to have a good load balance and an optimal job completion time. The code is freely available and downloadable. Instructions for downloading and using the code are provided in the Supporting Information. (c) 2013 Wiley Periodicals, Inc. C1 [Ellingson, Sally R.] Univ Tennessee, Knoxville, TN 37996 USA. [Ellingson, Sally R.; Smith, Jeremy C.; Baudry, Jerome] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN USA. [Smith, Jeremy C.; Baudry, Jerome] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN USA. RP Ellingson, SR (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM jbaudry@utk.edu RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU NCRR NIH HHS [1KL2RR031974] NR 30 TC 13 Z9 13 U1 1 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 J9 J COMPUT CHEM JI J. Comput. Chem. PD SEP 30 PY 2013 VL 34 IS 25 BP 2212 EP 2221 DI 10.1002/jcc.23367 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 202JB UT WOS:000323209500009 PM 23813626 ER PT J AU Yang, HJ Aubry, N Massoudi, M AF Yang, Hyunjin Aubry, Nadine Massoudi, Mehrdad TI Heat transfer in granular materials: effects of nonlinear heat conduction and viscous dissipation SO MATHEMATICAL METHODS IN THE APPLIED SCIENCES LA English DT Article DE heat flux vector; non-Fourier heat conduction; granular materials; inclined flow; nonlinear fluids; continuum mechanics; viscous dissipation ID FOURIERS LAW; CONSTITUTIVE RELATIONS; FLUX VECTOR; MECHANICS; THERMODYNAMICS; MODELS; FLOWS AB In this paper, we study the heat transfer in a one-dimensional fully developed flow of granular materials down a heated inclined plane. For the heat flux vector, we use a recently derived constitutive equation that reflects the dependence of the heat flux vector on the temperature gradient, the density gradient, and the velocity gradient in an appropriate frame invariant formulation. We use two different boundary conditions at the inclined surface: a constant temperature boundary condition and an adiabatic condition. A parametric study is performed to examine the effects of the material dimensionless parameters. The derived governing equations are coupled nonlinear second-order ordinary differential equations, which are solved numerically, and the results are shown for the temperature, volume fraction, and velocity profiles. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Yang, Hyunjin; Aubry, Nadine] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. [Massoudi, Mehrdad] US DOE, NETL, Pittsburgh, PA 15236 USA. RP Massoudi, M (reprint author), US DOE, NETL, POB 10940, Pittsburgh, PA 15236 USA. EM massoudi@netl.doe.gov NR 53 TC 1 Z9 1 U1 0 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0170-4214 J9 MATH METHOD APPL SCI JI Math. Meth. Appl. Sci. PD SEP 30 PY 2013 VL 36 IS 14 BP 1947 EP 1964 DI 10.1002/mma.2740 PG 18 WC Mathematics, Applied SC Mathematics GA 201IM UT WOS:000323133900011 ER PT J AU Morley, SK Henderson, MG Reeves, GD Friedel, RHW Baker, DN AF Morley, S. K. Henderson, M. G. Reeves, G. D. Friedel, R. H. W. Baker, D. N. TI Phase Space Density matching of relativistic electrons using the Van Allen Probes: REPT results SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE radiation belts; Van Allen probes; relativistic electrons; phase space density ID OUTER RADIATION BELT; INNER MAGNETOSPHERE; GEOMAGNETIC STORMS; FIELD; ACCELERATION; MODELS AB Phase Space Density (PSD) matching can be used to identify the presence of nonadiabatic processes, evaluate accuracy of magnetic field models, or to cross-calibrate instruments. Calculating PSD in adiabatic invariant coordinates requires a global specification of the magnetic field. For a well specified global magnetic field, nonadiabatic processes or inadequate cross calibration will give a poor PSD match. We have calculated PSD(, K) for both Van Allen Probes using a range of models and compare these PSDs at conjunctions in L* (for given , K). We quantitatively assess the relative goodness of each model for radiation belt applications. We also quantify the uncertainty in the model magnetic field magnitude and the related uncertainties in PSD, which has applications for modeling and particle data without concurrent magnetic field measurements. Using this technique, we show the error in PSD for an energy spectrum observed by the relativistic electron-proton telescope (REPT) is a factor of approximate to 1.2 using the TS04 model. C1 [Morley, S. K.; Henderson, M. G.; Reeves, G. D.; Friedel, R. H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Morley, SK (reprint author), Los Alamos Natl Lab, Mail Stop D466,POB 1663, Los Alamos, NM 87545 USA. EM smorley@lanl.gov RI Morley, Steven/A-8321-2008; Friedel, Reiner/D-1410-2012; Reeves, Geoffrey/E-8101-2011; Henderson, Michael/A-3948-2011 OI Morley, Steven/0000-0001-8520-0199; Friedel, Reiner/0000-0002-5228-0281; Reeves, Geoffrey/0000-0002-7985-8098; Henderson, Michael/0000-0003-4975-9029 FU RBSP-Energetic Particle Composition and Thermal Plasma Suite; Johns Hopkins University Applied Physics Laboratory (JHU/APL) [967399]; NASA [NAS5-01072] FX This work was partially supported by RBSP-Energetic Particle Composition and Thermal Plasma Suite funding provided by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) contract 967399 and NASA's Prime contract NAS5-01072. We would like to acknowledge the efforts of Charles Smith and Robert MacDowall of the EMFISIS magnetometer team for providing Van Allen Probes in situ magnetic field measurements. SKM thanks Craig Kletzing (U. Iowa; EMFISIS PI) and Yue Chen (LANL) for helpful discussions. NR 25 TC 10 Z9 10 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 28 PY 2013 VL 40 IS 18 BP 4798 EP 4802 DI 10.1002/grl.50909 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 233IU UT WOS:000325562600002 ER PT J AU Palipane, E Lu, J Chen, G Kinter, JL AF Palipane, Erool Lu, Jian Chen, Gang Kinter, James L., III TI Improved annular mode variability in a global atmospheric general circulation model with 16 km horizontal resolution SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE annular mode; high resolution modeling ID FLUCTUATION-DISSIPATION; PART I; CLIMATE; REANALYSIS AB In an attempt to assess the benefit of resolving the subsynoptic to mesoscale processes, the spatial and temporal characteristics of the annular modes (AMs), in particular those related to the troposphere-stratosphere interaction, are evaluated for moderate and high horizontal resolution simulations with the European Centre for Medium-Range Weather Forecast Integrated Forecast System global atmospheric general circulation model in comparison with the reanalysis. Notably, the performance with the high horizontal resolution (T1279 truncation, similar to 16km) version of the model is relatively more skillful than the moderate resolution (T159 truncation, similar to 125km) on most metrics examined, including the variance of the AMs at different seasons of the year, the intrinsic e-folding time scales of the AMs, and the downward influence from the stratosphere to troposphere in the AMs. Moreover, the summer Southern Annular Mode is more persistent in the high resolution and projected to respond in a greater magnitude to climate change forcing than the moderate resolution. C1 [Palipane, Erool; Kinter, James L., III] George Mason Univ, Dept Atmospher Ocean & Earth Sci, Fairfax, VA 22030 USA. [Lu, Jian] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chen, Gang] Cornell Univ, Dept Atmospher & Earth Sci, Ithaca, NY USA. [Kinter, James L., III] Inst Global Environm & Soc, Ctr Ocean Land Atmosphere Studies, Fairfax, VA USA. RP Lu, J (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM jian.lu@pnnl.gov RI Chen, Gang/I-3305-2012; Kinter, James/A-8610-2015 OI Chen, Gang/0000-0003-4934-1909; Kinter, James/0000-0002-6277-0559 FU NSF [AGS-1064045, AGS-1064079] FX The authors acknowledge the careful reading and perceptive comments by two anonymous reviewers, who helped improved the quality of the manuscript substantially. JL is grateful to Edwin Gerber and Lantao Sun for their constructive discussion during the formative stage of this study. EP and JL are supported by NSF grant AGS-1064045. GC is supported by NSF grant AGS-1064079. NCEP-DOE Reanalysis 2 data was provided by the NOAA/OAR/ESRLPSD, Boulder, Colorado, USA, through web site http://www.esrl.noaa.gov/psd/. NR 25 TC 2 Z9 2 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 28 PY 2013 VL 40 IS 18 BP 4893 EP 4899 DI 10.1002/grl.50649 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 233IU UT WOS:000325562600020 ER PT J AU Archer, CL Mirzaeisefat, S Lee, S AF Archer, Cristina L. Mirzaeisefat, Sina Lee, Sang TI Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE wind energy; wind power; wind farm; large-eddy simulation; turbulence; wake losses ID BOUNDARY-LAYERS; MODEL AB This paper attempts to quantify the effects of array layout on the performance of offshore wind farms. Array layout is characterized by the spacing between wind turbines (along and across the prevailing wind direction) and by their alignment (aligned or staggered). A large-eddy simulation code is utilized to create a turbulent boundary layer and is coupled with an actuator line model to simulate the effects of the rotating wind turbine blades. A control case (simulating the Lillgrund farm) and sensitivity runs are performed with various combinations of increased spacing, with and without staggering. Staggering every second row was found to be the simplest method to improve the capacity factor from 0.3 to 0.34 and array losses from 36% to 27%. The highest capacity factor (0.4) and the lowest array losses (14%) were obtained with a staggered layout with spacing across the prevailing wind direction that was twice the original. Smart layout choices can improve the array performance by 13%-33%. C1 [Archer, Cristina L.; Mirzaeisefat, Sina] Univ Delaware, Coll Earth Ocean & Environm, Newark, DE 19716 USA. [Lee, Sang] Natl Renewable Energy Lab, Golden, CO USA. RP Archer, CL (reprint author), Univ Delaware, Coll Earth Ocean & Environm, Newark, DE 19716 USA. EM carcher@udel.edu RI Archer, Cristina/H-3105-2013; OI Archer, Cristina/0000-0002-7837-7575; Mirzaeisefat, Sina/0000-0002-3802-0547 FU University of Delaware Research Foundation FX Part of this research was funded by the University of Delaware Research Foundation. NR 21 TC 18 Z9 18 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 28 PY 2013 VL 40 IS 18 BP 4963 EP 4970 DI 10.1002/grl.50911 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 233IU UT WOS:000325562600032 ER PT J AU Barton, NR Rhee, M AF Barton, N. R. Rhee, M. TI A multiscale strength model for tantalum over an extended range of strain rates SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CYLINDER IMPACT TEST; CONSTITUTIVE RELATIONS; FLOW-STRESS; DEFORMATION; COPPER; SIMULATIONS; BEHAVIOR; ALLOYS; METALS; DAMAGE AB A strength model for tantalum is developed and exercised across a range of conditions relevant to various types of experimental observations. The model is based on previous multiscale modeling work combined with experimental observations. As such, the model's parameterization includes a hybrid of quantities that arise directly from predictive sub-scale physics models and quantities that are adjusted to align the model with experimental observations. Given current computing and experimental limitations, the response regions for sub-scale physics simulations and detailed experimental observations have been largely disjoint. In formulating the new model and presenting results here, attention is paid to integrated experimental observations that probe strength response at the elevated strain rates where a previous version of the model has generally been successful in predicting experimental data [Barton et al., J. Appl. Phys. 109(7), 073501 (2011)]. (C) 2013 AIP Publishing LLC. C1 [Barton, N. R.; Rhee, M.] Lawrence Livermore Natl Lab, Mat Modeling & Simulat Grp, Livermore, CA 94551 USA. RP Barton, NR (reprint author), Lawrence Livermore Natl Lab, Mat Modeling & Simulat Grp, POB 808,L-129, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNLJRNL-641215]; agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNLJRNL-641215). Funding through the ASC/PEM program is gratefully acknowledged. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. NR 31 TC 6 Z9 6 U1 3 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 28 PY 2013 VL 114 IS 12 AR 123507 DI 10.1063/1.4822027 PG 9 WC Physics, Applied SC Physics GA 231CR UT WOS:000325391100014 ER PT J AU Curry, JJ Estupinan, EG Henins, A Lapatovich, WP Shastri, SD Hardis, JE AF Curry, J. J. Estupinan, E. G. Henins, A. Lapatovich, W. P. Shastri, S. D. Hardis, J. E. TI Enhancement of lanthanide evaporation by complexation: Dysprosium tri-iodide mixed with indium iodide and thulium tri-iodide mixed with thallium iodide SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HALIDE VAPORS; LAMPS AB The vapors in equilibrium with condensates of DyI3, DyI3/InI, TmI3, and TmI3/TlI were observed over the temperature range from 900 K to 1400 K using x-ray induced fluorescence. The total densities of each element (Dy, Tm, In, Tl, and I) in the vapor, summed over all atomic and molecular species, were determined. Dramatic enhancements in the total vapor densities of Dy and Tm were observed in the vapors over DyI3/InI and TmI3/TlI as compared to the vapors over pure DyI3 and pure TmI3, respectively. An enhancement factor exceeding 10 was observed for Dy at T approximate to 1020 K, decreasing to 0 at T approximate to 1250 K. An enhancement factor exceeding 20 was observed for Tm at T approximate to 1040 K, decreasing to 0 at T approximate to 1300 K. Such enhancements are expected from the formation of the vapor-phase hetero-complexes DyInI4 and TmTlI4. Numerical simulations of the thermochemical equilibrium suggest the importance of additional complexes in liquid phases. A description of the measurement technique is given. Improvements in the absolute calibration lead to an approximately 40% correction to previously reported preliminary results. (C) 2013 AIP Publishing LLC. C1 [Curry, J. J.; Henins, A.; Hardis, J. E.] NIST, Gaithersburg, MD 20899 USA. [Estupinan, E. G.] OSRAM SYLVANIA Inc, Beverly, MA 01915 USA. [Lapatovich, W. P.] Walter Lapatovich Consulting, Boxford, MA 01921 USA. [Shastri, S. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Curry, JJ (reprint author), NIST, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM jjcurry@nist.gov FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Steve Hansen of Anderson Physical Labs for helpful suggestions; the management of OSRAM SYLVANIA for supporting this project; our OSRAM SYLVANIA colleagues Joanne Browne, Victor Perez, Jeff Neil, Michael Quilici, and John Kelso for their expert technical assistance; Ali Mashayekhi and Roger Ranay of the Advanced Photon Source for their help on the beamline. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 25 TC 1 Z9 1 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2013 VL 139 IS 12 AR 124310 DI 10.1063/1.4821828 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 231DA UT WOS:000325392000061 PM 24089770 ER PT J AU Oda, T Zhang, YW Weber, WJ AF Oda, Takuji Zhang, Yanwen Weber, William J. TI Study of intrinsic defects in 3C-SiC using first-principles calculation with a hybrid functional SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; STATIC DIELECTRIC-CONSTANT; JAHN-TELLER DISTORTIONS; NEUTRAL SILICON VACANCY; PARTICLE BAND-STRUCTURE; ELECTRONIC-STRUCTURE; AB-INITIO; GREENS-FUNCTION; NATIVE DEFECTS; TOTAL-ENERGY AB Density functional theory (DFT) with a tailored Hartree-Fock hybrid functional, which can overcome the band gap problem arising in conventional DFT and gives a valence band width comparable with experiment, is applied to determine formation energies and electronic structures of intrinsic defects in cubic silicon carbide (3C-SiC). Systematic comparison of defect formation energies obtained with the tailored hybrid functional and a conventional DFT functional clearly demonstrates that conventional DFT results are not satisfactory. The understanding on intrinsic defects, which were previously investigated mainly with conventional DFT functionals, is largely revised with regard to formation energies, electronic structures and transition levels. It is found that conventional DFT functionals basically lead to (i) underestimation of the formation energy when the defect charge is more negative and (ii) overestimation when the defect charge is more positive. The underestimation is mainly attributed to the well-known band gap problem. The overestimation is attributed to shrinkage of the valence bands, although in some cases such band shrinkage may lead to underestimation depending on how the defect alters the valence band structure. Both the band gap problem and the valence band shrinkage are often observed in semiconductors, including SiC, with conventional DFT functionals, and thus need to be carefully dealt with to achieve reliable computational results. (C) 2013 AIP Publishing LLC. C1 [Oda, Takuji; Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Oda, T (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU Joint Institute for Advanced Materials; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the Joint Institute for Advanced Materials (T.O.) and by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (Y.Z. and W.J.W.). The theoretical calculations were performed using the supercomputer resources at the National Energy Research Scientific Computing Center located at the Lawrence Berkeley National Laboratory and at the Computational Simulation Centre (CSC) located at the International Fusion Energy Research Centre (IFERC). NR 92 TC 4 Z9 4 U1 10 U2 92 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2013 VL 139 IS 12 AR 124707 DI 10.1063/1.4821937 PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 231DA UT WOS:000325392000086 PM 24089795 ER PT J AU Urness, KN Guan, Q Golan, A Daily, JW Nimlos, MR Stanton, JF Ahmed, M Ellison, GB AF Urness, Kimberly N. Guan, Qi Golan, Amir Daily, John W. Nimlos, Mark R. Stanton, John F. Ahmed, Musahid Ellison, G. Barney TI Pyrolysis of furan in a microreactor SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PHOTOIONIZATION MASS-SPECTROMETRY; PHOTOELECTRON-SPECTROSCOPY; THERMAL-DECOMPOSITION; CROSS-SECTIONS; 2,5-DIMETHYLFURAN; 2-METHYLFURAN; BIOMASS; FLAME; DISSOCIATION; ENTHALPIES AB A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 mu s. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) (sic) a-carbene or alpha-carbene. The alpha-carbene fragments to CH2=C=O + HC CH while the beta-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the beta-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions. (C) 2013 AIP Publishing LLC. C1 [Urness, Kimberly N.; Guan, Qi; Daily, John W.] Univ Colorado, Dept Mech Engn, Ctr Combust & Environm Res, Boulder, CO 80309 USA. [Golan, Amir; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Nimlos, Mark R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Stanton, John F.] Univ Texas Austin, Dept Chem, Inst Theoret Chem, Austin, TX 78712 USA. [Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Urness, KN (reprint author), Univ Colorado, Dept Mech Engn, Ctr Combust & Environm Res, Boulder, CO 80309 USA. EM john.daily@colorado.edu; mark_nimlos@nrel.gov; jfstanton@mail.utexas.edu; mahmed@lbl.gov; barney@jila.colorado.edu RI Ahmed, Musahid/A-8733-2009 FU United States Department of Energy [DE-FG02-93ER14364]; United States Department of Energy's Office of the Biomass Program [1544759]; National Science Foundation [CHE-0848606, CHE-1112466]; Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Robert A. Welch Foundation [F-1283]; United States Department of Energy, Basic Energy Sciences [DE-FG02-07ER15884]; United States Department of Energy's Bioenergy Technology Office [DE-AC36-99GO10337]; National Renewable Energy Laboratory FX We would like to acknowledge support from the United States Department of Energy (Grant: DE-FG02-93ER14364), the United States Department of Energy's Office of the Biomass Program (Contract No. 1544759) and the National Science Foundation (CHE-0848606 and CHE-1112466) for J.W.D., J.F.S., and G.B.E., M.A., A.G. and the Advanced Light Source are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J.F.S. also acknowledges support from the Robert A. Welch Foundation (Grant F-1283) and the United States Department of Energy, Basic Energy Sciences (DE-FG02-07ER15884). M.R.N. is supported by United States Department of Energy's Bioenergy Technology Office, under Contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory. NR 43 TC 19 Z9 21 U1 8 U2 65 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2013 VL 139 IS 12 AR 124305 DI 10.1063/1.4821600 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 231DA UT WOS:000325392000056 PM 24089765 ER PT J AU Whitford, PC Sanbonmatsu, KY AF Whitford, Paul C. Sanbonmatsu, Karissa Y. TI Simulating movement of tRNA through the ribosome during hybrid-state formation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COARSE-GRAINED MODELS; ENERGY LANDSCAPES; CONFORMATIONAL TRANSITIONS; MOLECULAR SIMULATION; STRUCTURAL DYNAMICS; EF-G; TRANSLOCATION; PROTEINS; TRANSLATION; MECHANISM AB Biomolecular simulations provide a means for exploring the relationship between flexibility, energetics, structure, and function. With the availability of atomic models from X-ray crystallography and cryoelectron microscopy (cryo-EM), and rapid increases in computing capacity, it is now possible to apply molecular dynamics (MD) simulations to large biomolecular machines, and systematically partition the factors that contribute to function. A large biomolecular complex for which atomic models are available is the ribosome. In the cell, the ribosome reads messenger RNA (mRNA) in order to synthesize proteins. During this essential process, the ribosome undergoes a wide range of conformational rearrangements. One of the most poorly understood transitions is translocation: the process by which transfer RNA (tRNA) molecules move between binding sites inside of the ribosome. The first step of translocation is the adoption of a "hybrid" configuration by the tRNAs, which is accompanied by large-scale rotations in the ribosomal subunits. To illuminate the relationship between these rearrangements, we apply MD simulations using a multi-basin structure-based (SMOG) model, together with targeted molecular dynamics protocols. From 120 simulated transitions, we demonstrate the viability of a particular route during P/E hybrid-state formation, where there is asynchronous movement along rotation and tRNA coordinates. These simulations not only suggest an ordering of events, but they highlight atomic interactions that may influence the kinetics of hybrid-state formation. From these simulations, we also identify steric features (H74 and surrounding residues) encountered during the hybrid transition, and observe that flexibility of the single-stranded 3'-CCA tail is essential for it to reach the endpoint. Together, these simulations provide a set of structural and energetic signatures that suggest strategies for modulating the physical-chemical properties of protein synthesis by the ribosome. (C) 2013 AIP Publishing LLC. C1 [Whitford, Paul C.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Whitford, PC (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA. EM p.whitford@neu.edu; kys@lanl.gov OI Whitford, Paul/0000-0001-7104-2265 FU LANL Laboratory Directed Research and Development, National Institutes of Health [R01-GM072686]; Department of Physics at Northeastern University; Human Frontiers Science Program; National Science Foundation through XSEDE; SDSC [TG-MCB110021]; LANL Institutional Computing FX This work was supported by LANL Laboratory Directed Research and Development, National Institutes of Health (Grant No. R01-GM072686), the Department of Physics at Northeastern University, and the Human Frontiers Science Program. This research was supported in part by the National Science Foundation through XSEDE resources provided by SDSC under Grant No. TG-MCB110021. We also acknowledge support from LANL Institutional Computing. NR 75 TC 12 Z9 12 U1 3 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2013 VL 139 IS 12 AR UNSP 121919 DI 10.1063/1.4817212 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 231DA UT WOS:000325392000022 PM 24089731 ER PT J AU Levy, ME Zhang, RY Khalizov, AF Zheng, J Collins, DR Glen, CR Wang, Y Yu, XY Luke, W Jayne, JT Olaguer, E AF Levy, Misti E. Zhang, Renyi Khalizov, Alexei F. Zheng, Jun Collins, Don R. Glen, Crystal R. Wang, Yuan Yu, Xiao-Ying Luke, Winston Jayne, John T. Olaguer, Eduardo TI Measurements of submicron aerosols in Houston, Texas during the 2009 SHARP field campaign SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Review ID SECONDARY ORGANIC AEROSOL; PARTICLE MASS ANALYZER; POLAR STRATOSPHERIC CLOUDS; ABSORPTION CROSS-SECTION; BLACK-CARBON; LIGHT-ABSORPTION; SULFURIC-ACID; MIXING STATE; ATMOSPHERIC PARTICLES; MOBILITY RELATIONSHIP C1 [Levy, Misti E.; Zhang, Renyi; Khalizov, Alexei F.; Zheng, Jun; Collins, Don R.; Glen, Crystal R.; Wang, Yuan] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Zheng, Jun] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing, Jiangsu, Peoples R China. [Glen, Crystal R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Yu, Xiao-Ying] Pacific NW Natl Lab, Richland, WA 99352 USA. [Luke, Winston] NOAA, Air Resources Lab, Silver Spring, MD 20910 USA. [Jayne, John T.] Aerodyne Res Inc, Ctr Aerosol & Cloud Chem, Billerica, MA USA. [Olaguer, Eduardo] Houston Adv Res Ctr, The Woodlands, TX USA. RP Zhang, RY (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM renyi-zhang@tamu.edu RI Zheng, Jun/E-6772-2010; Collins, Don/F-9617-2012; Yu, Xiao-Ying/L-9385-2013; Levy, Misti/G-8660-2014; Zhang, Renyi/A-2942-2011; Khalizov, Alexei/E-9024-2010; Luke, Winston/D-1594-2016 OI Yu, Xiao-Ying/0000-0002-9861-3109; Levy, Misti/0000-0002-4832-7753; Khalizov, Alexei/0000-0003-3817-7568; Luke, Winston/0000-0002-1993-2241 FU Houston Advanced Research Center (HACR); Robert A. Welch Foundation [A-1417] FX This project was supported by the Houston Advanced Research Center (HACR) and the Robert A. Welch Foundation (A-1417). We were grateful to B. Thomas Jobson of Washington State University for providing the VOC measurements by PTR-MS and Barry Lefer of University of Houston for CO, SO2, and O3 measurements discussed in our analysis. NR 103 TC 14 Z9 15 U1 2 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 27 PY 2013 VL 118 IS 18 BP 10518 EP 10534 DI 10.1002/jgrd.50785 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 239LJ UT WOS:000326025200008 ER PT J AU Sathitsuksanoh, N Xu, B Zhao, BY Zhang, YHP AF Sathitsuksanoh, Noppadon Xu, Bin Zhao, Bingyu Zhang, Y-H. Percival TI Overcoming Biomass Recalcitrance by Combining Genetically Modified Switchgrass and Cellulose Solvent-Based Lignocellulose Pretreatment SO PLOS ONE LA English DT Article ID DILUTE-ACID PRETREATMENT; FERMENTABLE SUGAR YIELDS; ENZYMATIC-HYDROLYSIS; BIOFUEL PRODUCTION; LIGNIN MODIFICATION; CORN STOVER; SACCHARIFICATION; FRACTIONATION; ETHANOL; ACCESSIBILITY AB Decreasing lignin content of plant biomass by genetic engineering is believed to mitigate biomass recalcitrance and improve saccharification efficiency of plant biomass. In this study, we compared two different pretreatment methods (i.e., dilute acid and cellulose solvent) on transgenic plant biomass samples having different lignin contents and investigated biomass saccharification efficiency. Without pretreatment, no correlation was observed between lignin contents of plant biomass and saccharification efficiency. After dilute acid pretreatment, a strong negative correlation between lignin content of plant samples and overall glucose release was observed, wherein the highest overall enzymatic glucan digestibility was 70% for the low-lignin sample. After cellulose solvent- and organic solvent-based lignocellulose fractionation pretreatment, there was no strong correlation between lignin contents and high saccharification efficiencies obtained (i.e., 80-90%). These results suggest that the importance of decreasing lignin content in plant biomass to saccharification was largely dependent on pretreatment choice and conditions. C1 [Sathitsuksanoh, Noppadon; Zhang, Y-H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Xu, Bin; Zhao, Bingyu] Virginia Tech, Dept Hort, Blacksburg, VA USA. [Sathitsuksanoh, Noppadon; Zhang, Y-H. Percival] Virginia Tech, ICTAS, Blacksburg, VA USA. [Zhang, Y-H. Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN USA. [Zhang, Y-H. Percival] Gate Fuels Inc, Blacksburg, VA USA. [Zhang, Y-H. Percival] Cell Free Bioinnovat Inc, Blacksburg, VA USA. RP Sathitsuksanoh, N (reprint author), Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. EM sathino@vt.edu RI sathitsuksanoh, noppadon/O-6305-2014 OI sathitsuksanoh, noppadon/0000-0003-1521-9155 FU Institute of Critical Technology and Applied Sciences (ICTAS) of Virginia Tech; Biological Systems Engineering Department of Virginia Tech; Bioprocess and Biodesign Research Center of the Agricultural and Life Science College of Virginia Tech; U.S. Department of Energy [DE-FG02-08ER64629] FX This project was partly supported by a grant from the Institute of Critical Technology and Applied Sciences (ICTAS) of Virginia Tech, the Biological Systems Engineering Department of Virginia Tech, the Bioprocess and Biodesign Research Center of the Agricultural and Life Science College of Virginia Tech, and the U.S. Department of Energy (under contract number DE-FG02-08ER64629). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 26 TC 8 Z9 8 U1 1 U2 34 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 27 PY 2013 VL 8 IS 9 AR e73523 DI 10.1371/journal.pone.0073523 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 228WY UT WOS:000325223900015 PM 24086283 ER PT J AU Fang, XK Hansen, L Haso, F Yin, PC Pandey, A Engelhardt, L Slowing, I Li, T Liu, TB Luban, M Johnston, DC AF Fang, Xikui Hansen, Laura Haso, Fadi Yin, Panchao Pandey, Abhishek Engelhardt, Larry Slowing, Igor Li, Tao Liu, Tianbo Luban, Marshall Johnston, David C. TI {Mo24Fe12} Macrocycles: Anion Templation with Large Polyoxometalate Guests SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE anion templation; hydrogen bonds; magnetism; polyoxometalates; supramolecular chemistry ID SINGLE-MOLECULE MAGNET; INTERLOCKED STRUCTURES; CRYSTAL-STRUCTURES; COMPLEXES; CLUSTER; STATE; IONS; CAGE C1 [Fang, Xikui; Hansen, Laura; Pandey, Abhishek; Slowing, Igor; Luban, Marshall; Johnston, David C.] Iowa State Univ, US DOE Ames Lab, Ames, IA 50011 USA. [Fang, Xikui; Hansen, Laura; Pandey, Abhishek; Slowing, Igor; Luban, Marshall; Johnston, David C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Haso, Fadi; Yin, Panchao; Liu, Tianbo] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Engelhardt, Larry] Francis Marion Univ, Dept Phys & Astron, Florence, SC 29502 USA. [Li, Tao] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Fang, XK (reprint author), Iowa State Univ, US DOE Ames Lab, Ames, IA 50011 USA. EM xfang@ameslab.gov RI Yin, Panchao/J-3322-2013; li, tao/K-8911-2012; Pandey, Abhishek /M-5679-2015; Liu, Tianbo/D-8915-2017 OI Yin, Panchao/0000-0003-2902-8376; li, tao/0000-0001-5454-1468; Pandey, Abhishek /0000-0003-2839-1720; Liu, Tianbo/0000-0002-8181-1790 FU NSF [CHE-1026505]; U.S. DOE [DE-AC02-06CH11357]; [DE-AC02-07CH11358] FX Ames Laboratory is operated for the U.S. Department of Energy (DOE) by Iowa State University under Contract No. DE-AC02-07CH11358. T.L. acknowledges support from the NSF (CHE-1026505). The Advanced Photon Source, an Office of Science User Facility operated for DOE Office of Science by Argonne National Laboratory, is supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. We are grateful to Dr. Gordon Miller for granting access to X-ray facilities and Dr. Chih-Chia Su for assistance with synchrotron X-ray measurements. NR 49 TC 26 Z9 26 U1 6 U2 59 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD SEP 27 PY 2013 VL 52 IS 40 BP 10500 EP 10504 DI 10.1002/anie.201304887 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 227EF UT WOS:000325091500021 PM 23943611 ER PT J AU Buth, C He, F Ullrich, J Keitel, CH Hatsagortsyan, KZ AF Buth, Christian He, Feng Ullrich, Joachim Keitel, Christoph H. Hatsagortsyan, Karen Z. TI Attosecond pulses at kiloelectronvolt photon energies from high-order-harmonic generation with core electrons SO PHYSICAL REVIEW A LA English DT Article ID X-RAY; MULTIPHOTON IONIZATION; THRESHOLD IONIZATION; TUNNEL IONIZATION; LASER; FIELD; ATOMS; SYSTEMS; PHYSICS; OPTICS AB High-order harmonic generation (HHG) in simultaneous intense near-infrared (NIR) laser light and brilliant x rays above an inner-shell absorption edge is examined. A tightly bound inner-shell electron is transferred into the continuum. Then, NIR light takes over and drives the liberated electron through the continuum until it eventually returns to the cation leading in some cases to recombination and emission of a high-order harmonic (HH) photon that is upshifted by the x-ray photon energy. We develop a theory of this scenario and apply it to 1s electrons of neon atoms. The boosted HH light is used to generate a single attosecond pulse in the kiloelectronvolt regime. Prospects for nonlinear x-ray physics and HHG-based spectroscopy involving core orbitals are discussed. C1 [Buth, Christian] Argonne Natl Lab, Argonne, IL 60439 USA. [Buth, Christian; He, Feng; Ullrich, Joachim; Keitel, Christoph H.; Hatsagortsyan, Karen Z.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [He, Feng] Shanghai Jiao Tong Univ, Lab Laser Plasmas, Shanghai 200240, Peoples R China. [He, Feng] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. [Ullrich, Joachim] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. RP Buth, C (reprint author), Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany. EM christian.buth@web.de RI Hatsagortsyan, Karen/B-7091-2009; he, feng/H-7867-2012; Buth, Christian/A-2834-2017 OI Hatsagortsyan, Karen/0000-0002-1407-9122; Buth, Christian/0000-0002-5866-3443 FU Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; Marie Curie International Reintegration Grant within the 7th European Community Framework Program [266551]; Pujiang scholar fellowship [11PJ1404800]; National Science Foundation of China [11175120, 11104180]; National Science Foundation in Shanghai [11ZR1417100]; Fok Ying-Tong Education Foundation for Young Teachers in the High Education Institutions of China [131010] FX We would like to thank Stefano M. Cavaletto, Marcelo F. Ciappina, Markus C. Kohler, and Ji-Cai Liu for helpful discussions. C. B. was supported by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357 and by a Marie Curie International Reintegration Grant within the 7th European Community Framework Program (Call Identifier: FP7-PEOPLE-2010-RG, Proposal No. 266551). F. H. was supported by the Pujiang scholar fellowship (Grant No. 11PJ1404800), the National Science Foundation of China (Grants No. 11175120 and No. 11104180), the National Science Foundation in Shanghai (Grant No. 11ZR1417100), and the Fok Ying-Tong Education Foundation for Young Teachers in the High Education Institutions of China (Grant No. 131010). NR 91 TC 6 Z9 6 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD SEP 27 PY 2013 VL 88 IS 3 AR 033848 DI 10.1103/PhysRevA.88.033848 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 225AR UT WOS:000324935200009 ER PT J AU Bousso, R Freivogel, B Leichenauer, S Rosenhaus, V Zukowski, C AF Bousso, Raphael Freivogel, Ben Leichenauer, Stefan Rosenhaus, Vladimir Zukowski, Claire TI Null geodesics, local CFT operators, and AdS/CFT for subregions SO PHYSICAL REVIEW D LA English DT Article AB We investigate the nature of the AdS/CFT duality between a subregion of the bulk and its boundary. In global AdS/CFT in the classical G(N) = 0 limit, the duality reduces to a boundary value problem that can be solved by restricting to one-point functions of local operators in the conformal field theory (CFT). We show that the solution of this boundary value problem depends continuously on the CFT data. In contrast, the anti-de Sitter (AdS)-Rindler subregion cannot be continuously reconstructed from local CFT data restricted to the associated boundary region. Motivated by related results in the mathematics literature, we posit that a continuous bulk reconstruction is only possible when every null geodesic in a given bulk subregion has an endpoint on the associated boundary subregion. This suggests that a subregion duality for AdS-Rindler, if it exists, must involve nonlocal CFT operators in an essential way. C1 [Bousso, Raphael; Rosenhaus, Vladimir; Zukowski, Claire] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. [Bousso, Raphael; Rosenhaus, Vladimir; Zukowski, Claire] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bousso, Raphael; Rosenhaus, Vladimir; Zukowski, Claire] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Freivogel, Ben] Univ Amsterdam, GRAPPA, NL-1090 GL Amsterdam, Netherlands. [Freivogel, Ben] Univ Amsterdam, ITFA, NL-1090 GL Amsterdam, Netherlands. [Leichenauer, Stefan] CALTECH, Pasadena, CA 91125 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. FU Berkeley Center for Theoretical Physics; National Science Foundation [0855653, 0756174]; fqxi [RFP3-1004]; US Department of Energy [DE-AC02-05CH11231]; NSF Graduate Fellowships; John A. McCone Postdoctoral Fellowship FX We are grateful to many of our colleagues for extensive and very helpful discussions over the painful course of this work, especially J. de Boer, V. Hubeny, J. Maldacena, D. Marolf, I. Rodnianski, S. Shenker, L. Susskind, M. van Raamsdonk, and E. Verlinde. This work was supported by the Berkeley Center for Theoretical Physics, by the National Science Foundation (award numbers 0855653 and 0756174), by fqxi Grant No. RFP3-1004, and by the US Department of Energy under Contract No. DE-AC02-05CH11231. The work of V. R. and C. Z. is supported by NSF Graduate Fellowships. The work of S. L. is supported by a John A. McCone Postdoctoral Fellowship. NR 30 TC 32 Z9 32 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 27 PY 2013 VL 88 IS 6 AR 064057 DI 10.1103/PhysRevD.88.064057 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226KB UT WOS:000325033400009 ER PT J AU Dodelson, S Schneider, MD AF Dodelson, Scott Schneider, Michael D. TI The effect of covariance estimator error on cosmological parameter constraints SO PHYSICAL REVIEW D LA English DT Article ID MATTER POWER SPECTRUM; SIMULATIONS; MATRIX AB Extracting parameter constraints from cosmological observations requires accurate determination of the covariance matrix for use in the likelihood function. We show here that uncertainties in the elements of the covariance matrix propagate directly to increased uncertainties in cosmological parameters. When the covariance matrix is determined by simulations, the resulting variance of the each parameter increases by a factor of order 1 + N-b/N-s, where N-b is the number of bands in the measurement and N-s is the number of simulations. C1 [Dodelson, Scott] Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Dodelson, Scott] Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Schneider, Michael D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Schneider, Michael D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Dodelson, S (reprint author), Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. FU U.S. Department of Energy [DE-FG02-95ER40896]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX S. D. is supported by the U.S. Department of Energy, including Grant No. DE-FG02-95ER40896. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 25 TC 37 Z9 37 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 27 PY 2013 VL 88 IS 6 AR 063537 DI 10.1103/PhysRevD.88.063537 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226KB UT WOS:000325033400006 ER PT J AU Shen, CP Yuan, CZ Sibidanov, A Wang, P Hayasaka, K Wang, XL Adachi, I Aihara, H Asner, DM Aushev, T Bakich, AM Bala, A Bhardwaj, V Bhuyan, B Bondar, A Bonvicini, G Bozek, A Bracko, M Browder, TE Chang, MC Chen, A Cheon, BG Chistov, R Cho, IS Cho, K Chobanova, V Choi, SK Choi, Y Cinabro, D Dalseno, J Dolezal, Z Drasal, Z Drutskoy, A Dutta, D Eidelman, S Farhat, H Fast, JE Ferber, T Frey, A Gaur, V Gabyshev, N Ganguly, S Gillard, R Goh, YM Golob, B Haba, J Hayashii, H Hoshi, Y Hou, WS Hyun, HJ Iijima, T Ishikawa, A Itoh, R Iwasaki, Y Iwashita, T Jaegle, I Julius, T Kah, DH Kang, JH Kato, E Kawasaki, T Kiesling, C Kim, DY Kim, HJ Kim, HO Kim, JB Kim, JH Kim, YJ Kinoshita, K Ko, BR Kodys, P Korpar, S Krizan, P Krokovny, P Kumita, T Kuzmin, A Kwon, YJ Lange, JS Lee, SH Li, Y Libby, J Liu, C Liu, Y Lukin, P Matvienko, D Miyata, H Mizuk, R Moll, A Mori, T Muramatsu, N Mussa, R Nagasaka, Y Nakao, M Natkaniec, Z Nayak, M Ng, C Nishida, S Nitoh, O Ogawa, S Okuno, S Onuki, Y Pakhlova, G Park, H Park, HK Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Ritter, M Rohrken, M Rostomyan, A Ryu, S Sahoo, H Saito, T Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Savinov, V Schneider, O Schnell, G Schwanda, C Semmler, D Senyo, K Shapkin, M Shibata, TA Shiu, JG Shwartz, B Simon, F Sohn, YS Sokolov, A Solovieva, E Staric, M Steder, M Sumiyoshi, T Tamponi, U Tanida, K Tatishvili, G Teramoto, Y Uchida, M Uehara, S Uglov, T Unno, Y Uno, S Urquijo, P Vahsen, SE Van Hulse, C Vanhoefer, P Varner, G Vinokurova, A Vossen, A Wagner, MN Wang, CH Watanabe, Y Williams, KM Won, E Yamashita, Y Yashchenko, S Yook, Y Zhang, CC Zhang, ZP Zhilich, V AF Shen, C. P. Yuan, C. Z. Sibidanov, A. Wang, P. Hayasaka, K. Wang, X. L. Adachi, I. Aihara, H. Asner, D. M. Aushev, T. Bakich, A. M. Bala, A. Bhardwaj, V. Bhuyan, B. Bondar, A. Bonvicini, G. Bozek, A. Bracko, M. Browder, T. E. Chang, M. -C. Chen, A. Cheon, B. G. Chistov, R. Cho, I. -S. Cho, K. Chobanova, V. Choi, S. -K. Choi, Y. Cinabro, D. Dalseno, J. Dolezal, Z. Drasal, Z. Drutskoy, A. Dutta, D. Eidelman, S. Farhat, H. Fast, J. E. Ferber, T. Frey, A. Gaur, V. Gabyshev, N. Ganguly, S. Gillard, R. Goh, Y. M. Golob, B. Haba, J. Hayashii, H. Hoshi, Y. Hou, W. -S. Hyun, H. J. Iijima, T. Ishikawa, A. Itoh, R. Iwasaki, Y. Iwashita, T. Jaegle, I. Julius, T. Kah, D. H. Kang, J. H. Kato, E. Kawasaki, T. Kiesling, C. Kim, D. Y. Kim, H. J. Kim, H. O. Kim, J. B. Kim, J. H. Kim, Y. J. Kinoshita, K. Ko, B. R. Kodys, P. Korpar, S. Krizan, P. Krokovny, P. Kumita, T. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, S. -H. Li, Y. Libby, J. Liu, C. Liu, Y. Lukin, P. Matvienko, D. Miyata, H. Mizuk, R. Moll, A. Mori, T. Muramatsu, N. Mussa, R. Nagasaka, Y. Nakao, M. Natkaniec, Z. Nayak, M. Ng, C. Nishida, S. Nitoh, O. Ogawa, S. Okuno, S. Onuki, Y. Pakhlova, G. Park, H. Park, H. K. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Ritter, M. Roehrken, M. Rostomyan, A. Ryu, S. Sahoo, H. Saito, T. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Semmler, D. Senyo, K. Shapkin, M. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Simon, F. Sohn, Y. -S. Sokolov, A. Solovieva, E. Staric, M. Steder, M. Sumiyoshi, T. Tamponi, U. Tanida, K. Tatishvili, G. Teramoto, Y. Uchida, M. Uehara, S. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Vahsen, S. E. Van Hulse, C. Vanhoefer, P. Varner, G. Vinokurova, A. Vossen, A. Wagner, M. N. Wang, C. H. Watanabe, Y. Williams, K. M. Won, E. Yamashita, Y. Yashchenko, S. Yook, Y. Zhang, C. C. Zhang, Z. P. Zhilich, V. TI Measurement of e(+)e(-) -> omega pi(0), K*(892)(K)over-bar and K-2*(1430)(K)over-bar at root s near 10.6 GeV SO PHYSICAL REVIEW D LA English DT Article ID HADRONIC CONTRIBUTIONS; ASYMPTOTIC-BEHAVIOR; EXCLUSIVE PROCESSES; BELLE; TESTS; IDENTIFICATION; ANNIHILATION; MODEL; KEKB; FORM AB Using data samples of 89 fb(-1), 703 fb(-1), and 121 fb(-1) collected with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider at center-of-mass energies 10.52 GeV, 10.58 GeV, and 10.876 GeV, respectively, we study the exclusive reactions e(+)e(-) -> omega pi(0), K*(892)(K) over bar, and K-2*(1430)(K) over bar. ( Charge-conjugate modes are included implicitly.) Significant signals of omega pi(0), K*(892)(0)(K) over bar (0), and K-2*(1430)K--(+) are observed for the first time at these energies, and the energy dependencies of the cross sections are presented. On the other hand, no significant excesses for K*(892)K--(+) and K-2*(1430)(0)(K) over bar (0) are found, and we set limits on the cross section ratios R-VP = sigma(B)(e(+)e(-)-> K*(892)K-0(0))/sigma(B)(e(+)e(-)-> K*(892)K--(+)) > 4.3, 20.0, and 5.4, and R-TP = sigma(B)(e(+)e(-) -> K-2*(1430)(0)(K) over bar (0))/sigma(B)(e(+)e(-)-> K-2*(1430)K--(+)) < 1.1, 0.4, and 0.6, for center-of-mass energies of 10.52 GeV, 10.58 GeV, and 10.876 GeV, respectively, at the 90% C.L. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country, UPV EHU, Bilbao 48080, Spain. [Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China. [Urquijo, P.] Univ Bonn, D-53115 Bonn, Germany. [Bondar, A.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shwartz, B.; Vinokurova, A.; Zhilich, V.] Budker Inst Nucl Phys, RAS, SB, Novosibirsk 630090, Russia. [Bondar, A.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shwartz, B.; Vinokurova, A.; Zhilich, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, Prague 12116, Czech Republic. [Kinoshita, K.; Liu, Y.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Rostomyan, A.; Steder, M.; Yashchenko, S.] DESY, D-22607 Hamburg, Germany. [Chang, M. -C.] Fu Jen Cathol Univ, Dept Phys, Taipei 24205, Taiwan. [Lange, J. S.; Semmler, D.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Frey, A.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Choi, S. -K.] Gyeongsang Natl Univ, Chinju 660701, South Korea. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Jaegle, I.; Sahoo, H.; Vahsen, S. E.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Itoh, R.; Iwasaki, Y.; Nakao, M.; Nishida, S.; Sakai, Y.; Uehara, S.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Hiroshima 7315193, Japan. [Schnell, G.] Ikerbasque, Bilbao 48011, Spain. [Bhuyan, B.; Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Libby, J.; Nayak, M.] Indian Inst Technol, Madras 600036, Tamil Nadu, India. [Vossen, A.] Indiana Univ, Bloomington, IN 47408 USA. [Yuan, C. Z.; Wang, P.; Zhang, C. C.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Mussa, R.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Chistov, R.; Drutskoy, A.; Mizuk, R.; Pakhlova, G.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Staric, M.] J Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Roehrken, M.] Karlsruher Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kah, D. H.; Kim, H. J.; Kim, H. O.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chobanova, V.; Dalseno, J.; Kiesling, C.; Moll, A.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Drutskoy, A.; Mizuk, R.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Uglov, T.] Moscow Phys Tech Inst, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Mori, T.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Bhardwaj, V.; Hayashii, H.; Iwashita, T.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Hou, W. -S.; Shiu, J. -G.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Kawasaki, T.; Miyata, H.] Niigata Univ, Niigata 9502181, Japan. [Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Fast, J. E.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bala, A.] Panjab Univ, Chandigarh 160014, India. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Muramatsu, N.] Tohoku Univ, Res Ctr Electron Photon Sci, Sendai, Miyagi 9808578, Japan. [Liu, C.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Ryu, S.; Tanida, K.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Sibidanov, A.; Bakich, A. M.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Gaur, V.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Univ, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Kato, E.; Saito, T.; Sanuki, T.; Sato, Y.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.; Ng, C.; Onuki, Y.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Koganei, Tokyo 1848588, Japan. [Tamponi, U.] Univ Turin, I-10124 Turin, Italy. [Wang, X. L.; Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Cho, I. -S.; Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.; Yook, Y.] Yonsei Univ, Seoul 120749, South Korea. RP Shen, CP (reprint author), Beihang Univ, Beijing 100191, Peoples R China. RI Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014; Solovieva, Elena/B-2449-2014; Nitoh, Osamu/C-3522-2013; Aihara, Hiroaki/F-3854-2010; Ishikawa, Akimasa/G-6916-2012; Uglov, Timofey/B-2406-2014 OI Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022; Solovieva, Elena/0000-0002-5735-4059; Aihara, Hiroaki/0000-0002-1907-5964; Uglov, Timofey/0000-0002-4944-1830 FU MEXT (Japan); JSPS (Japan); Nagoya's TLPRC (Japan); ARC (Australia); DIISR (Australia); FWF (Austria); NSFC (China); MSMT (Czechia); CZF (Germany); DFG (Germany); VS (Germany); DST (India); INFN (Italy); MEST (Korea); NRF (Korea); GSDC of KISTI (Korea); WCU (Korea); MNiSW (Poland); NCN (Poland); MES (Russia); RFAAE (Russia); ARRS (Slovenia); IKERBASQUE (Spain); UPV/EHU (Spain); SNSF (Switzerland); NSC (Taiwan); MOE (Taiwan); DOE (USA); NSF (USA); Fundamental Research Funds for the Central Universities of China [303236] FX We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS, and Nagoya's TLPRC (Japan); ARC and DIISR (Australia); FWF (Austria); NSFC (China); MSMT (Czechia); CZF, DFG, and VS (Germany); DST (India); INFN (Italy); MEST, NRF, GSDC of KISTI, and WCU (Korea); MNiSW and NCN (Poland); MES and RFAAE (Russia); ARRS (Slovenia); IKERBASQUE and UPV/EHU (Spain); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (USA). This work is supported partly by the Fundamental Research Funds for the Central Universities of China (303236). NR 35 TC 4 Z9 4 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 27 PY 2013 VL 88 IS 5 AR UNSP 052019 DI 10.1103/PhysRevD.88.052019 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226JC UT WOS:000325030700001 ER PT J AU Parrish, RM Hohenstein, EG Schunck, NF Sherrill, CD Martinez, TJ AF Parrish, Robert M. Hohenstein, Edward G. Schunck, Nicolas F. Sherrill, C. David Martinez, Todd J. TI Exact Tensor Hypercontraction: A Universal Technique for the Resolution of Matrix Elements of Local Finite-Range N-Body Potentials in Many-Body Quantum Problems SO PHYSICAL REVIEW LETTERS LA English DT Article ID MECHANICAL PROBLEMS; PARTICLE NUMBER; ENERGY; APPROXIMATIONS; EQUATIONS AB Configuration-space matrix elements of N-body potentials arise naturally and ubiquitously in the Ritz-Galerkin solution of many-body quantum problems. For the common specialization of local, finite-range potentials, we develop the exact tensor hypercontraction method, which provides a quantized renormalization of the coordinate-space form of the N-body potential, allowing for a highly separable tensor factorization of the configuration-space matrix elements. This representation allows for substantial computational savings in chemical, atomic, and nuclear physics simulations, particularly with respect to difficult "exchangelike" contractions. C1 [Parrish, Robert M.; Sherrill, C. David] Georgia Inst Technol, Sch Chem & Biochem, Ctr Computat Mol Sci & Technol, Atlanta, GA 30332 USA. [Parrish, Robert M.; Sherrill, C. David] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA. [Hohenstein, Edward G.; Martinez, Todd J.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Hohenstein, Edward G.; Martinez, Todd J.] Stanford Univ, PULSE Inst, Stanford, CA 94305 USA. [Hohenstein, Edward G.; Martinez, Todd J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Schunck, Nicolas F.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Parrish, RM (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Ctr Computat Mol Sci & Technol, Atlanta, GA 30332 USA. EM schunck1@llnl.gov; sherrill@gatech.edu; toddjmartinez@gmail.com OI Schunck, Nicolas/0000-0002-9203-6849; Sherrill, David/0000-0002-5570-7666 FU DOE [DE-FG02-97ER25308]; National Science Foundation [CHE-1011360, OCI-1047577]; Department of Defense through a National Security Science and Engineering Faculty Fellowship (NSSEFF); U. S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U. S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Nuclear Physics; NSF CRIF [CHE-0946869]; Georgia Tech. FX R. M. P. is supported by a DOE Computational Science Graduate Fellowship (Grant No. DE-FG02-97ER25308), particularly including a practicum rotation at Lawrence Livermore National Laboratory. This material is based on work supported by the National Science Foundation through grants to C. D. S. (Grant No. CHE-1011360) and T. J. M. (Grant No. OCI-1047577), by the Department of Defense through a National Security Science and Engineering Faculty Fellowship (NSSEFF) to T. J. M. (Office of the Assistant Secretary of Defense for Research and Engineering). It was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory (Contract No. DE-AC52-07NA27344) through the Scientific Discovery through Advanced Computing (SciDAC) program funded by U. S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Nuclear Physics. The Center for Computational Molecular Science and Technology is funded through NSF CRIF Grant No. CHE-0946869 and by Georgia Tech. NR 30 TC 11 Z9 11 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 27 PY 2013 VL 111 IS 13 AR 132505 DI 10.1103/PhysRevLett.111.132505 PG 5 WC Physics, Multidisciplinary SC Physics GA 230TB UT WOS:000325364600001 PM 24116775 ER PT J AU Gori, S Low, I AF Gori, Stefania Low, Ian TI Precision Higgs measurements: constraints from new oblique corrections SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Higgs Physics; Beyond Standard Model; Supersymmetric Standard Model ID ELECTROWEAK SYMMETRY-BREAKING; LOW-ENERGY THEOREMS; BOSON PRODUCTION; RADIATIVE-CORRECTIONS; QCD CORRECTIONS; STANDARD MODEL; LHC; PHYSICS; DECAY; MASS AB New particles entering into self-energies of the Higgs boson would necessarily modify loop-induced couplings of the Higgs, if the new particle carries standard model gauge quantum numbers. For a 1 TeV new particle, deviations in these "Higgs oblique corrections" are generically of the order of v(2)/(1 TeV)(2) similar to 5%. We study constraints on masses and couplings of new scalars and fermions that can be derived from 5-10% deviations in the Higgs digluon and diphoton partial widths. To reduce theoretical uncertainties, we present next-to-leading order QCD corrections to the Higgs-to-digluon coupling for scalars and fermions in arbitrary representations of SU(3)c color group, by applying the low-energy Higgs theorems at two-loop order. As a by-product we provide a new value for NLO QCD corrections to the top squark contributions to digluon decays that differs from existing literature. We also emphasize that precise measurements of Higgs couplings to W boson and top quark are prerequisite to precise determinations of Higgs oblique corrections from new particles. C1 [Gori, Stefania] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Gori, Stefania; Low, Ian] Argonne Natl Lab, HEP Theory Grp, Lemont, IL USA. [Low, Ian] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Low, Ian] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. RP Gori, S (reprint author), Univ Chicago, Dept Phys, 5720 S Ellis Ave, Chicago, IL 60637 USA. EM goris@uchicago.edu; ilow@anl.gov FU DOE [DE-AC02-06CH11357, DE-FGO2-96-ER40956, DE-FG02-91ER40684]; Simons Foundation [230683]; National Science Foundation [PHY11-25915] FX We acknowledge helpful discussions and correspondences with Wolfgang Altmannshofer, Thomas Becher, Sally Dawson, Antonio Delgado, Robert Harlander, Bernd Kniehl, Fabio Maltoni, Matthias Neubert and Nausheen Shah. In particular we are grateful to Michael Spira and Babis Anastasiou for clarifying the computations in ref. [78] and ref. [80], respectively. This work is supported in part by DOE under Contract No. DE-AC02-06CH11357 (ANL), DE-FGO2-96-ER40956 (U.Chicago), and No. DE-FG02-91ER40684 (Northwestern), and by the Simons Foundation under award No. 230683. Work at KITP is supported by the National Science Foundation under Grant No. PHY11-25915. NR 108 TC 14 Z9 14 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 27 PY 2013 IS 9 AR 151 DI 10.1007/JHEP09(2013)151 PG 25 WC Physics, Particles & Fields SC Physics GA 226HK UT WOS:000325025600003 ER PT J AU Black-Schaffer, AM Balatsky, AV AF Black-Schaffer, Annica M. Balatsky, Alexander V. TI Odd-frequency superconducting pairing in multiband superconductors SO PHYSICAL REVIEW B LA English DT Article ID TRIPLET SUPERCONDUCTIVITY; FERROMAGNET STRUCTURES; INSULATORS; GRAPHENE; ORIGIN; FIELD; MODEL; MGB2 AB We point out that essentially all multiband superconductors have an odd-frequency pairing component, as follows from a general symmetry analysis of even- and odd-frequency pairing states. We show that odd-frequency superconducting pairing requires only a finite band hybridization, or scattering, and nonidentical intraband order parameters, of which only one band needs to be superconducting. Under these conditions odd-frequency odd-interband pairing is always present. From a symmetry analysis we establish a complete reciprocity between parity in band index and frequency. C1 [Black-Schaffer, Annica M.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Balatsky, Alexander V.] Nord Inst Theoret Phys NORDITA, S-10691 Stockholm, Sweden. [Balatsky, Alexander V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Black-Schaffer, AM (reprint author), Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden. FU Swedish research council (VR); European Research Council under the European Union's Seventh Framework Programme [DM-321031]; US DoE Basic Energy Sciences [DE-AC52-06NA25396] FX We are grateful to E. Abrahams, D. Scalapino, and J. R. Schrieffer for numerous discussions on the nature of odd-frequency superconductivity and acknowledge funding from the Swedish research council (VR) and the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement DM-321031. Work at Los Alamos was supported by US DoE Basic Energy Sciences for the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396. NR 43 TC 20 Z9 20 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 27 PY 2013 VL 88 IS 10 AR 104514 DI 10.1103/PhysRevB.88.104514 PG 5 WC Physics, Condensed Matter SC Physics GA 225ET UT WOS:000324945900001 ER PT J AU Friar, JL AF Friar, J. L. TI Nuclear polarization corrections to mu-d atoms in zero-range approximation SO PHYSICAL REVIEW C LA English DT Article ID LOW-ENERGY PARAMETERS; LIGHT MUONIC ATOMS; LAMB SHIFT; PROTON STRUCTURE; HYDROGEN; POLARIZABILITY; SIZE; SCATTERING; DEUTERIUM; CONSTANTS AB Nuclear polarization corrections to the 2P-2S Lamb shift in mu-d atoms are developed in order (a 5), and are shown to agree with a recent calculation. The nuclear physics in the resulting corrections is then evaluated in zero-range approximation. The dominant part of the correction is very simple in form and differs from a recent potential model calculation by less than 1%. It is also demonstrated how the third Zemach moment contribution largely cancels against part of the polarization correction, as it did in e-d atoms and does so exactly for pointlike nucleons. This suggests that it may be possible to reduce the uncertainty in the theory (of which nuclear polarization is the largest contributor) to less than 1%. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Friar, JL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM friarjim@aol.com NR 52 TC 16 Z9 16 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 27 PY 2013 VL 88 IS 3 AR 034003 DI 10.1103/PhysRevC.88.034003 PG 21 WC Physics, Nuclear SC Physics GA 226HX UT WOS:000325027100001 ER PT J AU Kamano, H Nakamura, SX Lee, TSH Sato, T AF Kamano, H. Nakamura, S. X. Lee, T. -S. H. Sato, T. TI Nucleon resonances within a dynamical coupled-channels model of pi N and gamma N reactions SO PHYSICAL REVIEW C LA English DT Article ID PARTIAL-WAVE ANALYSIS; MESON-EXCHANGE MODEL; BARYON RESONANCES; ETA-N; SCATTERING; PHOTOPRODUCTION; UNITARY; AMPLITUDE; REGION; DEPENDENCE AB The nucleon resonances are investigated within a dynamical coupled-channels model of pi N and gamma N reactions up to the invariant mass W = 2 GeV. The meson-baryon (MB) channels included in the calculations are MB = pi N, eta N, K Lambda , K Sigma, and pi pi N that has pi Delta, rho N, and sigma N resonant components. The meson-baryon amplitudes T-M'B', (MB) (W) are calculated from solving a set of coupled-channels integral equations defined by an interaction Hamiltonian consisting of (a) meson-exchange interactions nu(M'B'),(MB) derived from phenomenological Lagrangian and (b) vertex interactions N* -> MB for describing the transition of a bare excited nucleon state N* to a meson-baryon channel MB. The parameters of nu(M'B', MB) are mainly constrained by the fit to the data of pi N -> rho N in the low-energy region up toW = 1.4 GeV. The bare masses of N* and the N*. MB parameters are then determined in simultaneous fits to the data of pN. pN up to W = 2.3 GeV and those of pi N -> eta N, K Lambda, K Sigma and gamma N -> pi N, eta N, K Lambda, K Sigma up to W = 2.1 GeV. The pole positions and residues of nucleon resonances are extracted by analytically continuing the meson-baryon amplitudes T-M'B', (MB) (W) to the complex Riemann energy surface. From the extracted residues, we have determined the N*. pN,.N,.N, K Lambda, K Sigma transition amplitudes at resonance poles. We compare the resonance pole positions from our analysis with those given by the Particle Data Group and the recent coupled-channels analyses by the Julich and Bonn-Gatchina groups. Four results agree well only for the first N* in each spin-parity-isospin (J P, I) channel. For higher mass states, the number of states and their resonance positions from four results do not agree well. We discuss the possible sources of the discrepancies and the need of additional data from new hadron facilities such as the Japan Proton Accelerator Research Complex. C1 [Kamano, H.] Osaka Univ, Res Ctr Nucl Phys, Osaka 5670047, Japan. [Nakamura, S. X.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Sato, T.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. RP Kamano, H (reprint author), Osaka Univ, Res Ctr Nucl Phys, Osaka 5670047, Japan. RI Nakamura, Satoshi/M-9097-2016 OI Nakamura, Satoshi/0000-0002-7542-8859 NR 78 TC 68 Z9 68 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 27 PY 2013 VL 88 IS 3 AR 035209 DI 10.1103/PhysRevC.88.035209 PG 51 WC Physics, Nuclear SC Physics GA 226HX UT WOS:000325027100008 ER PT J AU Meslin, PY Gasnault, O Forni, O Schroder, S Cousin, A Berger, G Clegg, SM Lasue, J Maurice, S Sautter, V Le Mouelic, S Wiens, RC Fabre, C Goetz, W Bish, D Mangold, N Ehlmann, B Lanza, N Harri, AM Anderson, R Rampe, E McConnochie, TH Pinet, P Blaney, D Leveille, R Archer, D Barraclough, B Bender, S Blake, D Blank, JG Bridges, N Clark, BC DeFlores, L Delapp, D Dromart, G Dyar, MD Fisk, M Gondet, B Grotzinger, J Herkenhoff, K Johnson, J Lacour, JL Langevin, Y Leshin, L Lewin, E Madsen, MB Melikechi, N Mezzacappa, A Mischna, MA Moores, JE Newsom, H Ollila, A Perez, R Renno, N Sirven, JB Tokar, R de la Torre, M d'Uston, L Vaniman, D Yingst, A AF Meslin, P-Y. Gasnault, O. Forni, O. Schroeder, S. Cousin, A. Berger, G. Clegg, S. M. Lasue, J. Maurice, S. Sautter, V. Le Mouelic, S. Wiens, R. C. Fabre, C. Goetz, W. Bish, D. Mangold, N. Ehlmann, B. Lanza, N. Harri, A-M. Anderson, R. Rampe, E. McConnochie, T. H. Pinet, P. Blaney, D. Leveille, R. Archer, D. Barraclough, B. Bender, S. Blake, D. Blank, J. G. Bridges, N. Clark, B. C. DeFlores, L. Delapp, D. Dromart, G. Dyar, M. D. Fisk, M. Gondet, B. Grotzinger, J. Herkenhoff, K. Johnson, J. Lacour, J-L. Langevin, Y. Leshin, L. Lewin, E. Madsen, M. B. Melikechi, N. Mezzacappa, A. Mischna, M. A. Moores, J. E. Newsom, H. Ollila, A. Perez, R. Renno, N. Sirven, J-B. Tokar, R. de la Torre, M. d'Uston, L. Vaniman, D. Yingst, A. CA MSL Sci Team TI Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars SO SCIENCE LA English DT Article ID EMISSION SPECTROMETER DATA; X-RAY SPECTROMETER; CHEMICAL-COMPOSITION; INSTRUMENT SUITE; HYDROUS MINERALS; MARTIAN REGOLITH; WATER; SURFACE; CHEMISTRY; ALLOPHANE AB The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration. C1 [Meslin, P-Y.; Gasnault, O.; Forni, O.; Schroeder, S.; Berger, G.; Lasue, J.; Maurice, S.; Pinet, P.; d'Uston, L.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France. [Meslin, P-Y.; Gasnault, O.; Forni, O.; Schroeder, S.; Berger, G.; Lasue, J.; Maurice, S.; Pinet, P.; d'Uston, L.] IRAP, CNRS, F-31028 Toulouse 4, France. [Cousin, A.; Clegg, S. M.; Wiens, R. C.; Lanza, N.; Delapp, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sautter, V.] Museum Natl Hist Nat, Lab Mineral & Cosmochim Museum, F-75005 Paris, France. [Le Mouelic, S.; Mangold, N.] Univ Nantes, LPGN, CNRS, UMR6112, F-44322 Nantes, France. [Fabre, C.] Univ Lorraine, GeoRessources, CNRS, UMR7356, F-54506 Vandoeuvre Les Nancy, France. [Goetz, W.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Bish, D.] Indiana Univ, Bloomington, IN 47405 USA. [Ehlmann, B.; Grotzinger, J.; de la Torre, M.] CALTECH, Pasadena, CA 91125 USA. [Ehlmann, B.; Blaney, D.; DeFlores, L.; Mischna, M. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Harri, A-M.] Finnish Meteorol Inst, Earth Observat Res Div, FIN-00101 Helsinki, Finland. [Anderson, R.; Herkenhoff, K.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Rampe, E.; Archer, D.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [McConnochie, T. H.] Univ Maryland, College Pk, MD 20740 USA. [Leveille, R.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Barraclough, B.; Bender, S.; Tokar, R.; Vaniman, D.; Yingst, A.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Blake, D.; Blank, J. G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Johnson, J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Clark, B. C.] Space Sci Inst, Boulder, CO 80301 USA. [Dromart, G.] ENS, F-69007 Lyon, France. [Dyar, M. D.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Fisk, M.] Oregon State Univ, Corvallis, OR 97331 USA. [Gondet, B.; Langevin, Y.] Inst Astrophys Spatiale, F-91405 Orsay, France. [Lacour, J-L.; Sirven, J-B.] Commissariat Energie Atom & Energies Alternat, Ctr Saclay, F-91400 Orsay, France. [Leshin, L.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Lewin, E.] ISTerre, F-38041 Grenoble, France. [Madsen, M. B.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Melikechi, N.; Mezzacappa, A.] Delaware State Univ, Opt Sci Ctr Appl Res, Dover, DE 19901 USA. [Moores, J. E.] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 1P3, Canada. [Newsom, H.; Ollila, A.] Univ New Mexico, Albuquerque, NM 87131 USA. [Perez, R.] Ctr Natl Etud Spatiales, F-31400 Toulouse, France. [Renno, N.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Meslin, PY (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France. EM pmeslin@irap.omp.eu RI LEWIN, Eric/F-1451-2017; Rodriguez-Manfredi, Jose/L-8001-2014; Madsen, Morten/D-2082-2011; Sirven, Jean-Baptiste/H-5782-2013; Gonzalez, Rafael/D-1748-2009; Lemmon, Mark/E-9983-2010; Frydenvang, Jens/D-4781-2013; Balic-Zunic, Tonci/A-6362-2013; de Pablo, Miguel Angel/J-6442-2014; Gomez-Elvira, Javier/K-5829-2014; Ramos, Miguel/K-2230-2014; Gomez, Felipe/L-7315-2014; Hayes, Alexander/P-2024-2014; Gasnault, Olivier/F-4327-2010; Zorzano, Maria-Paz/C-5784-2015; szopa, cyril/C-6865-2015; Martin-Torres, Francisco Javier/G-6329-2015; Blanco, Juan Jose/E-3627-2014; BERGER, Gilles/F-7118-2016; Harri, Ari-Matti/C-7142-2012; Zorzano, Maria-Paz/F-2184-2015; Dworkin, Jason/C-9417-2012; OI Forni, Olivier/0000-0001-6772-9689; Clegg, Sam/0000-0002-0338-0948; Rodriguez-Manfredi, Jose/0000-0003-0461-9815; Madsen, Morten/0000-0001-8909-5111; Sirven, Jean-Baptiste/0000-0002-5523-6809; Lemmon, Mark/0000-0002-4504-5136; Frydenvang, Jens/0000-0001-9294-1227; Balic-Zunic, Tonci/0000-0003-1687-1233; de Pablo, Miguel Angel/0000-0002-4496-2741; Gomez-Elvira, Javier/0000-0002-9068-9846; Ramos, Miguel/0000-0003-3648-6818; Gomez, Felipe/0000-0001-9977-7060; Hayes, Alexander/0000-0001-6397-2630; Gasnault, Olivier/0000-0002-6979-9012; Zorzano, Maria-Paz/0000-0002-4492-9650; szopa, cyril/0000-0002-0090-4056; Martin-Torres, Francisco Javier/0000-0001-6479-2236; Blanco, Juan Jose/0000-0002-8666-0696; Harri, Ari-Matti/0000-0001-8541-2802; Zorzano, Maria-Paz/0000-0002-4492-9650; Dworkin, Jason/0000-0002-3961-8997; Muller, Jan-Peter/0000-0002-5077-3736 FU Centre National d'Etudes Spatiales (CNES); NASA's Mars Program Office; Deutsche Forschungsgemeinschaft [GO 2288/1-1] FX This research was carried out with funding from the Centre National d'Etudes Spatiales (CNES). Work in the United States was carried out under contract from NASA's Mars Program Office. W. G. acknowledges partial funding from Deutsche Forschungsgemeinschaft grant GO 2288/1-1. This team gratefully acknowledges JPL for developing and leading this successful mission. The data reported in this paper are archived at the Planetary Data System, accessible at http://pds-geosciences.wustl.edu/missions/msl/index.htm. NR 64 TC 85 Z9 85 U1 8 U2 145 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 27 PY 2013 VL 341 IS 6153 AR 1238670 DI 10.1126/science.1238670 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 224NS UT WOS:000324894600001 PM 24072924 ER PT J AU Stolper, EM Baker, MB Newcombe, ME Schmidt, ME Treiman, AH Cousin, A Dyar, MD Fisk, MR Gellert, R King, PL Leshin, L Maurice, S McLennan, SM Minitti, ME Perrett, G Rowland, S Sautter, V Wiens, RC AF Stolper, E. M. Baker, M. B. Newcombe, M. E. Schmidt, M. E. Treiman, A. H. Cousin, A. Dyar, M. D. Fisk, M. R. Gellert, R. King, P. L. Leshin, L. Maurice, S. McLennan, S. M. Minitti, M. E. Perrett, G. Rowland, S. Sautter, V. Wiens, R. C. CA MSL Sci Team TI The Petrochemistry of Jake_M: A Martian Mugearite SO SCIENCE LA English DT Article ID OCEAN-ISLAND BASALTS; X-RAY SPECTROMETER; CHEMICAL-COMPOSITION; VOLATILE COMPONENTS; MANTLE METASOMATISM; MELTING EXPERIMENTS; PLANETARY BASALTS; MAGMATIC SYSTEMS; CANARY-ISLANDS; WATER CONTENTS AB "Jake_M," the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (>15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes). C1 [Stolper, E. M.; Baker, M. B.; Newcombe, M. E.] CALTECH, Pasadena, CA 91125 USA. [Schmidt, M. E.] Brock Univ, St Catharines, ON L2T 3V8, Canada. [Treiman, A. H.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Cousin, A.; Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Cousin, A.; Maurice, S.] Inst Rech Astrophys & Planetol, F-31028 Toulouse, France. [Dyar, M. D.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Fisk, M. R.] Oregon State Univ, Corvallis, OR 97331 USA. [Gellert, R.; Perrett, G.] Univ Guelph, Guelph, ON N1G 2W1, Canada. [King, P. L.] Australian Natl Univ, Res Sch Earth Sci, Acton, ACT 0200, Australia. [Leshin, L.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [McLennan, S. M.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Minitti, M. E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Rowland, S.] Univ Hawaii, Honolulu, HI 96822 USA. [Sautter, V.] Lab Mineral & Cosmochim Museum, F-75005 Paris, France. RP Stolper, EM (reprint author), CALTECH, Pasadena, CA 91125 USA. EM ems@gps.caltech.edu RI Martin-Torres, Francisco Javier/G-6329-2015; Blanco, Juan Jose/E-3627-2014; King, Penelope/A-1791-2011; Harri, Ari-Matti/C-7142-2012; Zorzano, Maria-Paz/F-2184-2015; Dworkin, Jason/C-9417-2012; szopa, cyril/C-6865-2015; Gonzalez, Rafael/D-1748-2009; Lemmon, Mark/E-9983-2010; Balic-Zunic, Tonci/A-6362-2013; de Pablo, Miguel Angel/J-6442-2014; Gomez-Elvira, Javier/K-5829-2014; Ramos, Miguel/K-2230-2014; Gomez, Felipe/L-7315-2014; Rodriguez-Manfredi, Jose/L-8001-2014; Hayes, Alexander/P-2024-2014; Zorzano, Maria-Paz/C-5784-2015 OI Muller, Jan-Peter/0000-0002-5077-3736; Martin-Torres, Francisco Javier/0000-0001-6479-2236; Blanco, Juan Jose/0000-0002-8666-0696; King, Penelope/0000-0002-8364-9168; Harri, Ari-Matti/0000-0001-8541-2802; Zorzano, Maria-Paz/0000-0002-4492-9650; Dworkin, Jason/0000-0002-3961-8997; szopa, cyril/0000-0002-0090-4056; Lemmon, Mark/0000-0002-4504-5136; Balic-Zunic, Tonci/0000-0003-1687-1233; de Pablo, Miguel Angel/0000-0002-4496-2741; Gomez-Elvira, Javier/0000-0002-9068-9846; Ramos, Miguel/0000-0003-3648-6818; Gomez, Felipe/0000-0001-9977-7060; Rodriguez-Manfredi, Jose/0000-0003-0461-9815; Hayes, Alexander/0000-0001-6397-2630; Zorzano, Maria-Paz/0000-0002-4492-9650 FU NSF; NASA; Canadian Space Agency; Centre National d'Etudes Spatiales FX P. Antoshechkin provided insight concerning several aspects of MELTS and S. Lambart ran early MELTS calculations and provided initial compilations of terrestrial alkaline lavas. We would also like to thank two anonymous referees for constructive reviews of the manuscript and the MSL Project engineering and management teams for their efforts in making the mission such a success. This work was supported by grants from the NSF, NASA, the Canadian Space Agency, and the Centre National d'Etudes Spatiales. Compositional data for Jake_M are reported in Table 1. NR 80 TC 75 Z9 75 U1 3 U2 63 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 27 PY 2013 VL 341 IS 6153 AR 1239463 DI 10.1126/science.1239463 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 224NS UT WOS:000324894600004 PM 24072927 ER PT J AU Ling, L Chung, PL Youker, A Stepinski, DC Vandegrift, GF Wang, NHL AF Ling, Lei Chung, Pei-Lun Youker, Amanda Stepinski, Dominique C. Vandegrift, George F. Wang, Nien-Hwa Linda TI Capture chromatography for Mo-99 recovery from uranyl sulfate solutions: Minimum-column-volume design method SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Capture chromatography; Mo-99 recovery; Uranyl sulfate; Minimum-column-volume design; Graphical design method ID MASS-TRANSFER; ADSORPTION; BEDS AB Molybdenum-99 (Mo-99), generated from the fission of Uranium-235 (U-235), is the radioactive parent of the most widely used medical isotope, technetium-99 m (Tc-99 m). An efficient, robust, low-pressure process is developed for recovering Mo-99 from uranyl sulfate solutions. The minimum column volume and the maximum column length for required yield, pressure limit, and loading time are determined using a new graphical method. The method is based on dimensionless groups and intrinsic adsorption and diffusion parameters, which are estimated using a small number of experiments and simulations. The design is tested with bench-scale experiments with titania columns. The results show a high capture yield and a high stripping yield (95 +/- 5%). The design can be adapted to changes in design constraints or the variations in feed concentration, feed volume, or material properties. The graph shows clearly how the column utilization is affected by the required yield, loading time, and pressure limit. The cost effectiveness of various sorbent candidates can be evaluated based on the intrinsic parameters. This method can be used more generally for designing other capture chromatography processes. Published by Elsevier B.V. C1 [Ling, Lei; Chung, Pei-Lun; Wang, Nien-Hwa Linda] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Youker, Amanda; Stepinski, Dominique C.; Vandegrift, George F.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wang, NHL (reprint author), Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM wangn@ecn.purdue.edu FU U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Defense Nuclear Nonproliferation, under Contract DE-AC02-06CH11357. NR 33 TC 6 Z9 6 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD SEP 27 PY 2013 VL 1309 BP 1 EP 14 DI 10.1016/j.chroma.2013.08.023 PG 14 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 217IQ UT WOS:000324353600001 PM 23972458 ER PT J AU Shkrob, IA Zhu, Y Marin, TW Abraham, D AF Shkrob, Ilya A. Zhu, Ye Marin, Timothy W. Abraham, Daniel TI Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 1. Spectroscopic Observations of Radical Intermediates Generated in One-Electron Reduction of Carbonates SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; ETHYLENE CARBONATE; PROPYLENE CARBONATE; DEGRADATION-PRODUCTS; GRAPHITE-ELECTRODES; VINYLENE CARBONATE; SURFACE-CHEMISTRY; INTERPHASE SEI; LI; ANODE AB Whereas there are numerous experimental and computational studies of electrochemical reduction leading to the formation of solid-electrolyte interface (SEI) in lithium-ion batteries, so far there have been no direct spectroscopic observations of radical intermediates involved in the SEI formation. In Part 1 of this series, radiolysis and laser photoionization of carbonate electrolytes are used to observe and identify these reaction intermediates using electron paramagnetic resonance spectroscopy. Our study indicates that the suggested scenarios for electrolyte reduction require elaboration. In particular, we establish the occurrence of efficient H abstraction and 1,2-migration involving radicals generated through the reductive ring-opening. Instead of the primary radicals postulated in the current models, secondary and tertiary radicals are generated, biasing the subsequent chemistry to radical disproportionation. The consequences of this bias for radical and anionic polymerization are examined, and it is suggested that branching and the formation of a polymer network is favored. We argue that this chemistry accounts for some of the heretofore unexplained properties of SEI, including the dramatic difference in solvent permeability for SEIs derived from ethylene carbonate and propylene carbonate. C1 [Shkrob, Ilya A.; Zhu, Ye; Marin, Timothy W.; Abraham, Daniel] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marin, Timothy W.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov FU US-DOE Office of Science, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC02-06CH11357] FX I.A.S. thanks P. Fenter, L. Curtiss, P. Zapol, H. Iddir, and A. Gewirth for useful discussions. The work at Argonne was supported by the US-DOE Office of Science, Division of Chemical Sciences, Geosciences and Biosciences under contract nos. DE-AC02-06CH11357. NR 71 TC 50 Z9 50 U1 9 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 26 PY 2013 VL 117 IS 38 BP 19255 EP 19269 DI 10.1021/jp406274e PG 15 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 296CK UT WOS:000330162500001 ER PT J AU Shkrob, IA Zhu, Y Marin, TW Abraham, D AF Shkrob, Ilya A. Zhu, Ye Marin, Timothy W. Abraham, Daniel TI Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically Induced Polymerization of Ethylene Carbonate SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID VINYLENE CARBONATE; DEGRADATION-PRODUCTS; SURFACE-CHEMISTRY; LI; GRAPHITE; MECHANISMS; DENSITY; COPOLYMERIZATION; DECOMPOSITION; ANODES AB Extensive polymerization of ethylene carbonate (EC) leading to the formation of oligomers with masses up to 1 to 2 kDa in electron beam radiolysis is demonstrated using electrospray ionization mass spectrometry and nuclear magnetic resonance. This polymer has a different structure and morphology than the linear chain copolymer of ethylene oxide and EC that is generated in anionic polymerization of intact EC molecules. This radiolytically generated polymer exhibits chain branching and pendant carbonate groups, and it can form a 3D organic network that is additionally cross-linked through lithium ions. Such a morphology is consistent with the occurrence of anionic and radical polymerization that involve the products of recombination and disproportionation of secondary radicals generated in one-electron reduction of EC. Our examination of this chemistry suggests that the same polymer is likely to occur in electrochemical reduction of EC. The formation of this polymeric network qualitatively accounts for some of unexplained properties of the solid-electrolyte interface (SEI) occurring in electrochemical cells with EC-based electrolyte, including common lithium batteries. C1 [Shkrob, Ilya A.; Zhu, Ye; Marin, Timothy W.; Abraham, Daniel] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marin, Timothy W.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov FU US-DOE Office of Science, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC02-06CH11357] FX I.A.S. thanks P. Fenter, L. Curtiss, P. Zapol, H. Iddir, and A. Gewirth for useful discussions. The work at Argonne was supported by the US-DOE Office of Science, Division of Chemical Sciences, Geosciences and Biosciences under contract nos. DE-AC02-06CH11357. NR 42 TC 28 Z9 28 U1 3 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 26 PY 2013 VL 117 IS 38 BP 19270 EP 19279 DI 10.1021/jp406273p PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 296CK UT WOS:000330162500002 ER PT J AU Rojas, GA Ganesh, P Kelly, SJ Sumpter, BG Schlueter, JA Maksymovych, P AF Rojas, Geoffrey A. Ganesh, P. Kelly, Simon J. Sumpter, Bobby G. Schlueter, John A. Maksymovych, Petro TI Ionic Disproportionation of Charge Transfer Salt Driven by Surface Epitaxy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID QUASI-2-DIMENSIONAL ORGANIC SUPERCONDUCTORS; AUGMENTED-WAVE METHOD; BEDT-TTF AB Epitaxial growth of organic charge-transfer salts composed of molecular cations and anions will potentially allow the synthesis of thin films of molecular conductors with strong electron correlations and electron-phonon interactions, highly distinct properties compared to thin organic semiconductors and traditional self-assembled monolayers. Here, we report on ionic decomposition of the charge transfer salt beta ''-(BEDT-TTF)(2)SF5CH2CF2SO3 into two surface-supported phases on Ag(111), each of which has a cation/anion ratio different from the 2:1 stoichiometry of the bulk. The films were grown by thermal evaporation of the bulk crystal. Subsequent reassembly of the constituent bis(ethylenedithio)tetrathiafulvalene molecules (BEDT-TTF) and the SF5CH2CF2SO3 anions into long-range ordered structures on the Ag(111) surface produced well-ordered molecular islands with either 1:1 or 3:1 stoichiometric ratios of BEDT-TTF:SF5CH2CF2SO3. Tunneling spectroscopy revealed that both surface structures could be considered insulating. However, the charge-transfer interaction between cations and anions still persists, producing electronic states that are distinct from those of pure BEDT-TTF molecules on a silver surface. Density functional theory calculations of adsorbed molecules show that they remain ionic, with adsorption and intermolecular binding energies comparable to that of bulk cohesive energies. The diversity of surface-supported multicomponent molecular structures derived from charge-transfer salts and the perseverance of cation and anion molecules despite thermal decomposition of the bulk all provide rich opportunity toward achieving correlated electron properties in ultrathin molecular films. C1 [Rojas, Geoffrey A.; Ganesh, P.; Kelly, Simon J.; Sumpter, Bobby G.; Maksymovych, Petro] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Schlueter, John A.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. RP Maksymovych, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM maksymovychp@ornl.gov RI Ganesh, Panchapakesan/E-3435-2012; Sumpter, Bobby/C-9459-2013; Maksymovych, Petro/C-3922-2016 OI Ganesh, Panchapakesan/0000-0002-7170-2902; Sumpter, Bobby/0000-0001-6341-0355; Maksymovych, Petro/0000-0003-0822-8459 FU Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"); Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This research was conducted at the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Work was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 25 TC 3 Z9 3 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 26 PY 2013 VL 117 IS 38 BP 19402 EP 19408 DI 10.1021/jp404622p PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 296CK UT WOS:000330162500017 ER PT J AU Dong, H Fleming, GR AF Dong, Hui Fleming, Graham R. TI Three-Pulse Photon Echo of Finite Numbers of Molecules: Single-Molecule Traces SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID 2-DIMENSIONAL ELECTRONIC SPECTROSCOPY; QUANTUM COHERENCE; PHYSIOLOGICAL TEMPERATURE; PHOTOSYNTHETIC SYSTEM; SOLVATION DYNAMICS; ENERGY-TRANSFER; COMPLEXES; PROTEINS; SPECTRA; PHASE AB In conventional bulk nonlinear spectroscopy, the contribution from molecules with different environmental conditions sometimes conceals the properties of interest and prevents the assessment of the heterogeneity of complex systems. This is especially true when exploring mechanisms of coherence loss in multicomponent systems [Ishizaki and Fleming, J. Phys. Chem. B 2011, 115, 6227]. To avoid this drawback of ensemble measurements and evaluate single-molecule behavior, a quantum theory is proposed to study the three-pulse photon echo signal of a two-level system in a bath and reveal the fluctuations inherent to single molecules. The current method takes advantage of the coherent state representation to understand the photon echo experiment in a wave function formalism rather than the reduced density matrix. Information regarding the environmental degrees of freedom (DoF) is explicitly encoded in the initial state of the system plus bath. The thermal fluctuations of the initial states induce variation of the photon echo signal, which is clearly different from the ensemble average echo signal. We use our formalism to demonstrate the recovery of the conventional ensemble response signal from the single-molecule signal. C1 [Dong, Hui; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov RI Dong, Hui/A-2306-2011 FU Office of Science, Office of Basic Energy Sciences, of the USA Department of Energy [DE-AC02-05CH11231]; Division of Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences [DE-AC03-76SF000098]; NSF [NSF CHE-1012168]; DARPA [N66001-09-1-2026] FX H.D. thanks Akihito Ishizaki for valuable comments and C. P. Sun for helpful discussion. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the USA Department of Energy under contract DE-AC02-05CH11231 and the Division of Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences through grant DE-AC03-76SF000098 (at LBNL and UC Berkeley), and NSF under Contract No. NSF CHE-1012168, and DARPA under grant number N66001-09-1-2026. NR 35 TC 4 Z9 4 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 26 PY 2013 VL 117 IS 38 SI SI BP 11318 EP 11325 DI 10.1021/jp402768c PG 8 WC Chemistry, Physical SC Chemistry GA 296CC UT WOS:000330161700037 PM 23651242 ER PT J AU Gottardo, R Bailer, RT Korber, BT Gnanakaran, S Phillips, J Shen, XY Tomaras, GD Turk, E Imholte, G Eckler, L Wenschuh, H Zerweck, J Greene, K Gao, HM Berman, PW Francis, D Sinangil, F Lee, C Nitayaphan, S Rerks-Ngarm, S Kaewkungwal, J Pitisuttithum, P Tartaglia, J Robb, ML Michael, NL Kim, JH Zolla-Pazner, S Haynes, BF Mascola, JR Self, S Gilbert, P Montefiori, DC AF Gottardo, Raphael Bailer, Robert T. Korber, Bette T. Gnanakaran, S. Phillips, Joshua Shen, Xiaoying Tomaras, Georgia D. Turk, Ellen Imholte, Gregory Eckler, Larry Wenschuh, Holger Zerweck, Johannes Greene, Kelli Gao, Hongmei Berman, Phillip W. Francis, Donald Sinangil, Faruk Lee, Carter Nitayaphan, Sorachai Rerks-Ngarm, Supachai Kaewkungwal, Jaranit Pitisuttithum, Punnee Tartaglia, James Robb, Merlin L. Michael, Nelson L. Kim, Jerome H. Zolla-Pazner, Susan Haynes, Barton F. Mascola, John R. Self, Steve Gilbert, Peter Montefiori, David C. TI Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial SO PLOS ONE LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; HUMAN MONOCLONAL-ANTIBODIES; DEPENDENT CELLULAR CYTOTOXICITY; RECOMBINANT GLYCOPROTEIN-120 VACCINE; CD4 BINDING-SITE; ENVELOPE PROTEIN; NEUTRALIZING ANTIBODIES; CONFORMATIONAL EPITOPE; TRANSMEMBRANE PROTEIN; BROAD NEUTRALIZATION AB Neutralizing and non-neutralizing antibodies to linear epitopes on HIV-1 envelope glycoproteins have potential to mediate antiviral effector functions that could be beneficial to vaccine-induced protection. Here, plasma IgG responses were assessed in three HIV-1 gp120 vaccine efficacy trials (RV144, Vax003, Vax004) and in HIV-1-infected individuals by using arrays of overlapping peptides spanning the entire consensus gp160 of all major genetic subtypes and circulating recombinant forms (CRFs) of the virus. In RV144, where 31.2% efficacy against HIV-1 infection was seen, dominant responses targeted the C1, V2, V3 and C5 regions of gp120. An analysis of RV144 case-control samples showed that IgG to V2 CRF01_AE significantly inversely correlated with infection risk (OR=0.54, p=0.0042), as did the response to other V2 subtypes (OR=0.60-0.63, p=0.016-0.025). The response to V3 CRF01_AE also inversely correlated with infection risk but only in vaccine recipients who had lower levels of other antibodies, especially Env-specific plasma IgA (OR=0.49, p=0.007) and neutralizing antibodies (OR=0.5, p=0.008). Responses to C1 and C5 showed no significant correlation with infection risk. In Vax003 and Vax004, where no significant protection was seen, serum IgG responses targeted the same epitopes as in RV144 with the exception of an additional C1 reactivity in Vax003 and infrequent V2 reactivity in Vax004. In HIV-1 infected subjects, dominant responses targeted the V3 and C5 regions of gp120, as well as the immunodominant domain, heptad repeat 1 (HR-1) and membrane proximal external region (MPER) of gp41. These results highlight the presence of several dominant linear B cell epitopes on the HIV-1 envelope glycoproteins. They also generate the hypothesis that IgG to linear epitopes in the V2 and V3 regions of gp120 are part of a complex interplay of immune responses that contributed to protection in RV144. C1 [Gottardo, Raphael; Imholte, Gregory; Self, Steve; Gilbert, Peter] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. [Bailer, Robert T.; Turk, Ellen; Mascola, John R.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Korber, Bette T.; Gnanakaran, S.; Phillips, Joshua] Los Alamos Natl Lab, Los Alamos, NM USA. [Shen, Xiaoying; Tomaras, Georgia D.; Greene, Kelli; Gao, Hongmei; Haynes, Barton F.; Montefiori, David C.] Duke Univ, Med Ctr, Durham, NC 27710 USA. [Eckler, Larry; Wenschuh, Holger; Zerweck, Johannes] JPT Peptide Technol GmbH, Berlin, Germany. [Berman, Phillip W.] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. [Francis, Donald; Sinangil, Faruk; Lee, Carter] Global Solut Infect Dis, San Francisco, CA USA. [Nitayaphan, Sorachai] US Army Med Component, Dept Retrovirol, AFRIMS, Bangkok, Thailand. [Rerks-Ngarm, Supachai] Minist Publ Hlth, Dept Dis Control, Nonthaburi, Thailand. [Kaewkungwal, Jaranit] Mahidol Univ, Fac Trop Med, Ctr Excellence Biomed & Publ Hlth Informat BIOPHI, Bangkok, Thailand. [Pitisuttithum, Punnee] Mahidol Univ, Vaccine Trial Ctr, Bangkok 10700, Thailand. [Pitisuttithum, Punnee] Mahidol Univ, Dept Clin Trop Med, Bangkok 10700, Thailand. [Tartaglia, James] Sanofi Pasteur, Dept Res & Dev, Swiftwater, PA USA. [Robb, Merlin L.; Michael, Nelson L.; Kim, Jerome H.] Walter Reed Army Inst Res, US Mil HIV Res Program, Silver Spring, MD USA. [Zolla-Pazner, Susan] Vet Affairs New York Harbor Healthcare Syst, New York, NY USA. [Zolla-Pazner, Susan] NYU, Sch Med, New York, NY USA. RP Montefiori, DC (reprint author), Duke Univ, Med Ctr, Durham, NC 27710 USA. EM david.montefiori@duke.edu RI Tomaras, Georgia/J-5041-2016; OI Gnanakaran, S/0000-0002-9368-3044; Korber, Bette/0000-0002-2026-5757 FU Bill & Melinda Gates Foundation [38619]; U.S. Army Medical Research and Material Command (USAMRMC) [Y1-AI-2642-12]; National Institutes of Allergy and Infectious Diseases [Y1-AI-2642-12]; Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development [Y1-AI-2642-12]; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. [W81XWH-07-2-0067]; U.S. Department of Defense (DOD) [W81XWH-07-2-0067]; New York University School of Medicine [692526] FX This study was funded in part by a grant from the Bill & Melinda Gates Foundation (#38619) to DCM as part of the Collaboration for AIDS Vaccine Discovery (www.cavd.org), and by an Interagency Agreement Y1-AI-2642-12 between U.S. Army Medical Research and Material Command (USAMRMC), the National Institutes of Allergy and Infectious Diseases, and by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development. This work was also supported by a cooperative agreement (W81XWH-07-2-0067) between the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., and the U.S. Department of Defense (DOD) and New York University School of Medicine (Contract No. 692526). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 93 TC 81 Z9 82 U1 0 U2 12 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 26 PY 2013 VL 8 IS 9 AR e75665 DI 10.1371/journal.pone.0075665 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 228VP UT WOS:000325220000034 PM 24086607 ER PT J AU Senatore, L Zaldarriaga, M AF Senatore, Leonardo Zaldarriaga, Matias TI The constancy of zeta in single-clock Inflation at all loops SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Cosmology of Theories beyond the SM; Models of Quantum Gravity; Space-Time Symmetries; Renormalization Regularization and Renormalons AB Studying loop corrections to inflationary perturbations, with particular emphasis on infrared factors, is important to understand the consistency of the inflationary theory, its predictivity and to establish the existence of the slow-roll eternal inflation phenomena and its recently found volume bound. In this paper we show that zeta-correlators are time-independent at large distances at all-loop level in single clock inflation. We write the n-th order correlators of zeta as the time-integral of Green's functions times the correlators of local sources that are function of the lower order fluctuations. The Green's functions are such that only non-vanishing correlators of the sources at late times can lead to non-vanishing correlators for zeta at long distances. When the sources are connected by high wavenumber modes, the correlator is peaked at short distances, and these diagrams cannot lead to a time-dependence by simple diff. invariance arguments. When the sources are connected by long wavenumber modes one can use similar arguments once the constancy of zeta at lower orders was established. Therefore the conservation of zeta at a given order follows from the conservation of zeta at the lower orders. Since at tree-level zeta is constant, this implies constancy at all-loops by induction. C1 [Senatore, Leonardo] CERN, Div Theory, CH-1211 Geneva 23, Switzerland. [Senatore, Leonardo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA. [Senatore, Leonardo] Stanford Univ, Dept Phys, Stanford, CA 94306 USA. [Senatore, Leonardo] SLAC, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Senatore, Leonardo] Stanford Univ, Menlo Pk, CA 94025 USA. [Zaldarriaga, Matias] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. RP Senatore, L (reprint author), CERN, Div Theory, CH-1211 Geneva 23, Switzerland. EM senatore@stanford.edu; matiasz@ias.edu FU DOE [DE-FG02-12ER41854]; National Science Foundation [PHY-1068380, PHY-0855425, AST-0907969, PHY-1213563]; David and Lucile Packard Foundation FX L.S. is supported by by DOE Early Career Award DE-FG02-12ER41854 and the National Science Foundation under PHY-1068380. M.Z. is supported by the National Science Foundation under PHY-0855425, AST-0907969 and PHY-1213563 and by the David and Lucile Packard Foundation. NR 19 TC 19 Z9 19 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 26 PY 2013 IS 9 AR 148 DI 10.1007/JHEP09(2013)148 PG 15 WC Physics, Particles & Fields SC Physics GA 226HD UT WOS:000325024800006 ER PT J AU Bouchard, C Lepage, GP Monahan, C Na, H Shigemitsu, J AF Bouchard, Chris Lepage, G. Peter Monahan, Christopher Na, Heechang Shigemitsu, Junko CA HPQCD Collaboration TI Rare decay B -> Kl(+)l(-) form factors from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID HEAVY AB We calculate, for the first time using unquenched lattice QCD, form factors for the rare decay B -> Kl(+)l(-) in and beyond the Standard Model. Our lattice QCD calculation utilizes a nonrelativistic QCD formulation for the b valence quarks and the highly improved staggered quark formulation for the light valence quarks. We employ the MILC 2 + 1 asqtad ensembles. The form factor results, based on the z expansion, are valid over the full kinematic range of q(2). We construct the ratios f(0)/f(+) and f(T)/f(+), which are useful in constraining new physics and verifying effective theory form factor symmetry relations. We also discuss the calculation of Standard Model observables. C1 [Bouchard, Chris; Shigemitsu, Junko] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Lepage, G. Peter] Cornell Univ, Lab Elementary Particle Phys, Ithaca, NY 14853 USA. [Monahan, Christopher] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Na, Heechang] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. RP Bouchard, C (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM bouchard.18@osu.edu RI Bouchard, Christopher/N-3723-2016 OI Bouchard, Christopher/0000-0003-1639-7164 FU DOE; NSF; Office of Science of the U.S. DOE FX This research was supported by the DOE and NSF. We thank the MILC Collaboration for making their asqtad Nf = 2+1 gauge field configurations available. Computations were carried out at the Ohio Supercomputer Center and on facilities of the USQCD Collaboration funded by the Office of Science of the U.S. DOE. NR 52 TC 42 Z9 42 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 26 PY 2013 VL 88 IS 5 AR 054509 DI 10.1103/PhysRevD.88.054509 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226IX UT WOS:000325030000005 ER PT J AU Buckley, MR Hooper, D Kumar, J AF Buckley, Matthew R. Hooper, Dan Kumar, Jason TI Phenomenology of Dirac neutralino dark matter SO PHYSICAL REVIEW D LA English DT Article ID DYNAMIC SUPERSYMMETRY BREAKING; PARTICLE; MODEL AB In supersymmetric models with an unbroken R symmetry (rather than only R parity), the neutralinos are Dirac fermions rather than Majorana. In this article, we discuss the phenomenology of neutralino dark matter in such models, including the calculation of the thermal relic abundance, and constraints and prospects for direct and indirect searches. Because of the large elastic scattering cross sections with nuclei predicted in R-symmetric models, we are forced to consider a neutralino that is predominantly bino, with very little Higgsino mixing. We find a large region of parameter space in which binolike Dirac neutralinos with masses between 10 and 380 GeV can annihilate through slepton exchange to provide a thermal relic abundance in agreement with the observed cosmological density, without relying on coannihilations or resonant annihilations. The signatures for the indirect detection of Dirac neutralinos are very different than predicted in the Majorana case, with annihilations proceeding dominantly to tau(+)tau(-), mu(+)mu(-) and e(+)e(-) final states, without the standard chirality suppression. And unlike Majorana dark matter candidates, Dirac neutralinos experience spin-independent scattering with nuclei through vector couplings (via Z and squark exchange), leading to potentially large rates at direct detection experiments. These and other characteristics make Dirac neutralinos potentially interesting within the context of recent direct and indirect detection anomalies. We also discuss the case in which the introduction of a small Majorana mass term breaks the R symmetry, splitting the Dirac neutralino into a pair of nearly degenerate Majorana states. C1 [Buckley, Matthew R.; Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kumar, Jason] Univ Hawaii, Dept Phys, Honolulu, HI 96822 USA. RP Buckley, MR (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. OI Buckley, Matthew/0000-0003-1109-3460 FU Aspen Center for Physics; Kavli Center for Theoretical Physics; University of Utah; Center for Theoretical Underground Physics and Related Areas (CETUP); U.S. Department of Energy [DE-FG02-04ER-41291, DE-FG02-13ER-41913] FX The authors are grateful to the Aspen Center for Physics, the Kavli Center for Theoretical Physics, the University of Utah, the Center for Theoretical Underground Physics and Related Areas (CETUP 2013), and the organizers of TeVPA 2012, for their support and hospitality during the completion of this work. We would like to thank Claudia Frugiuele and Paddy Fox for valuable discussions. This work has been supported in part by the U.S. Department of Energy, including Grants No. DE-FG02-04ER-41291 and No. DE-FG02-13ER-41913. NR 70 TC 32 Z9 32 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD SEP 26 PY 2013 VL 88 IS 6 AR 063532 DI 10.1103/PhysRevD.88.063532 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226JU UT WOS:000325032600002 ER PT J AU Dawson, S Lewis, IM Zeng, M AF Dawson, S. Lewis, Ian M. Zeng, Mao TI Threshold resummed and approximate next-to-next-to-leading order results for W+W- pair production at the LHC SO PHYSICAL REVIEW D LA English DT Article ID JET CROSS-SECTIONS; HADRONIC COLLISIONS; HELICITY AMPLITUDES; SOFT GLUONS; FACTORIZATION; QCD; PREDICTIONS; COLLIDERS; ZZ AB The next-to-leading order (NLO) QCD radiative corrections to W+W- production at hadron colliders are well understood. We combine NLO perturbative QCD calculations with soft-gluon resummation of threshold logarithms to find a next-to-next-to-leading logarithmic (NNLL) prediction for the total cross section and the invariant mass distribution at the LHC. We also obtain approximate next-to-next-to-leading order (NNLO) results for the total W+W- cross section at the LHC which includes all contributions from the scale dependent leading singular terms. Our result for the approximate NNLO total cross section is the most precise theoretical prediction available. Uncertainties due to scale variation are shown to be small when the threshold logarithms are included. NNLL threshold resummation increases the W+W- invariant mass distribution by similar to 3%-4% in the peak region for both root S = 8 and 14 TeV. The NNLL threshold resummed and approximate NNLO cross sections increase the NLO cross section by 0.5%-3% for root S = 7, 8, 13, and 14 TeV. C1 [Dawson, S.; Lewis, Ian M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Zeng, Mao] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. RP Dawson, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. OI Dawson, Sally/0000-0002-5598-695X FU U.S. Department of Energy [DE-AC02-98CH10886]; National Science Foundation [PHY-0969739] FX S. D. and I. L. are supported by the U.S. Department of Energy under Grant No. DE-AC02-98CH10886. M. Z. is supported by the National Science Foundation, Grant No. PHY-0969739. We thank George Sterman and Andrea Ferroglia for helpful conversations. NR 56 TC 23 Z9 23 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 26 PY 2013 VL 88 IS 5 AR 054028 DI 10.1103/PhysRevD.88.054028 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226IX UT WOS:000325030000004 ER PT J AU Lake, B Tennant, DA Caux, JS Barthel, T Schollwock, U Nagler, SE Frost, CD AF Lake, B. Tennant, D. A. Caux, J. -S. Barthel, T. Schollwoeck, U. Nagler, S. E. Frost, C. D. TI Multispinon Continua at Zero and Finite Temperature in a Near-Ideal Heisenberg Chain SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMICAL CORRELATION-FUNCTION; ANTIFERROMAGNETIC CHAIN; NEUTRON-SCATTERING; TRANSITION RATES; MAGNETIC-FIELD; COMPOUND KCUF3; ORDERED PHASE; SPIN DYNAMICS; BETHE-ANSATZ; QUANTUM AB The space-and time-dependent response of many-body quantum systems is the most informative aspect of their emergent behavior. The dynamical structure factor, experimentally measurable using neutron scattering, can map this response in wave vector and energy with great detail, allowing theories to be quantitatively tested to high accuracy. Here, we present a comparison between neutron scattering measurements on the one-dimensional spin-1/2 Heisenberg antiferromagnet KCuF3, and recent state-of-the-art theoretical methods based on integrability and density matrix renormalization group simulations. The unprecedented quantitative agreement shows that precise descriptions of strongly correlated states at all distance, time, and temperature scales are now possible, and highlights the need to apply these novel techniques to other problems in low-dimensional magnetism. C1 [Lake, B.; Tennant, D. A.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. [Lake, B.; Tennant, D. A.] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. [Caux, J. -S.] Univ Amsterdam, Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands. [Barthel, T.; Schollwoeck, U.] Univ Munich, Dept Phys, D-80333 Munich, Germany. [Barthel, T.; Schollwoeck, U.] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany. [Nagler, S. E.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Frost, C. D.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Lake, B (reprint author), Helmholtz Zentrum Berlin, Hahn Meitner Pl 1, D-14109 Berlin, Germany. EM bella.lake@helmholtz-berlin.de RI Barthel, T./L-6552-2013; Nagler, Stephen/E-4908-2010; Tennant, David/Q-2497-2015; Schollwock, Ulrich/L-1220-2016; OI Nagler, Stephen/0000-0002-7234-2339; Tennant, David/0000-0002-9575-3368; Lake, Bella/0000-0003-0034-0964 FU U.S. DOE Basic Energy Sciences Division of Scientific User Facilities FX J.-S. C. acknowledges NWO and the FOM foundation of the Netherlands. S. E. N. is supported by U.S. DOE Basic Energy Sciences Division of Scientific User Facilities. NR 53 TC 30 Z9 30 U1 1 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 26 PY 2013 VL 111 IS 13 AR 137205 DI 10.1103/PhysRevLett.111.137205 PG 5 WC Physics, Multidisciplinary SC Physics GA 230SY UT WOS:000325364300020 PM 24116814 ER PT J AU Baca, M Allan, AM Partridge, LD Wilson, MC AF Baca, Michael Allan, Andrea M. Partridge, L. Donald Wilson, Michael C. TI Gene-environment interactions affect long-term depression (LTD) through changes in dopamine receptor affinity in Snap25 deficient mice SO BRAIN RESEARCH LA English DT Article DE SNAP-25; Prenatal nicotine exposure; Dopaminergic D2 receptors (D2Rs); Cannabinoid CB1 receptors (CB1Rs); Short-term depression (STD); Long-term depression (LTD) ID ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; MEDIUM SPINY NEURONS; G-PROTEIN ACTIVATION; HYPERACTIVITY DISORDER; DORSAL STRIATUM; MOUSE MUTANT; CHOLINERGIC INTERNEURONS; SYNAPTIC DEPRESSION; PARKINSONS-DISEASE; MOLECULAR-GENETICS AB Genes and environmental conditions interact in the development of cognitive capacities and each plays an important role in neuropsychiatric disorders such as attention deficit/hyperactivity disorder (ADHD) and schizophrenia. Multiple studies have indicated that the gene for the SNARE protein SNAP-25 is a candidate susceptibility gene for ADHD, as well as schizophrenia, while maternal smoking is a candidate environmental risk factor for ADHD. We utilized mice heterozygous for a Snap25 null allele and deficient in SNAP-25 expression to model genetic effects in combination with prenatal exposure to nicotine to explore genetic and environmental interactions in synaptic plasticity and behavior. We show that SNAP-25 deficient mice exposed to prenatal nicotine exhibit hyperactivity and deficits in social interaction. Using a high frequency stimulus electrophysiological paradigm for long-term depression (LTD) induction, we examined the roles of dopaminergic D2 receptors (D2Rs) and cannabinoid CB1 receptors (CB1Rs), both critical for LTD induction in the striatum. We found that prenatal exposure to nicotine in Snap25 heterozygote null mice produced a deficit in the D2R-dependent induction of LTD, although CB1R regulation of plasticity was not impaired. We also show that prenatal nicotine exposure altered the affinity and/or receptor coupling of D2Rs, but not the number of these receptors in heterozygote null Snap25 mutants. These results refine the observations made in the coloboma mouse mutant, a proposed mouse model of ADHD, and illustrate how gene x environmental influences can interact to perturb neural functions that regulate behavior. (c) 2013 Elsevier B.V. All rights reserved. C1 [Baca, Michael; Allan, Andrea M.; Partridge, L. Donald; Wilson, Michael C.] Univ New Mexico, Sch Med, Dept Neurosci, Albuquerque, NM 87131 USA. [Baca, Michael] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wilson, MC (reprint author), Univ New Mexico, Sch Med, Dept Neurosci, Albuquerque, NM 87131 USA. EM mwilson@salud.unm.edu RI Allan, Andrea/L-8919-2015; OI Allan, Andrea/0000-0002-6745-4352 FU National Institutes of Health [MH 091464]; Sandia National Laboratories FX We are grateful for the expert technical assistance of Amy Lucero in managing the mouse colony, genotyping, nicotine administration, and behavioral testing. We would like to thank Dan D. Savage II and Martina Rosenberg for help and guidance in the receptor signaling studies. We would also like to thank Conrad James for his support and helpful suggestions in all aspects of these studies. We are grateful to Femando Valenzuela and Ellen Hess for their thoughtful comments on the manuscript. This work was supported by National Institutes of Health grant MH 091464 (M.C.W.) and a portion of the salary support for Michael Baca was from Sandia National Laboratories. NR 56 TC 6 Z9 6 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0006-8993 J9 BRAIN RES JI Brain Res. PD SEP 26 PY 2013 VL 1532 BP 85 EP 98 DI 10.1016/j.brainres.2013.08.012 PG 14 WC Neurosciences SC Neurosciences & Neurology GA 228NS UT WOS:000325194100009 PM 23939223 ER PT J AU Pelzer, KM Fidler, AF Griffin, GB Gray, SK Engel, GS AF Pelzer, Kenley M. Fidler, Andrew F. Griffin, Graham B. Gray, Stephen K. Engel, Gregory S. TI The dependence of exciton transport efficiency on spatial patterns of correlation within the spectral bath SO NEW JOURNAL OF PHYSICS LA English DT Article ID GREEN PHOTOSYNTHETIC BACTERIA; MATTHEWS-OLSON COMPLEX; QUANTUM COHERENCE; ENERGY-TRANSFER; EXCITATION TRANSFER; CHLOROBIUM-TEPIDUM; PROSTHECOCHLORIS-AESTUARII; PHYSIOLOGICAL TEMPERATURE; ELECTRONIC SPECTROSCOPY; SULFUR BACTERIA AB Spatial correlations in spectral bath motions have been proposed to explain long-lived coherence in exciton transport. Systems of interest, ranging from photosynthetic complexes to organic photovoltaics, contain inhomogeneous environments. We consider the possibility that the degree of spatial correlation varies throughout an exciton transport system. We model exciton transport in the Fenna-Matthews-Olson complex (FMO), a photosynthetic light-harvesting complex. Although it remains unclear whether significant spatial correlations exist in FMO, its very high exciton transport efficiency makes it an interesting case for studies of exciton transport. We also simulate a highly symmetric ten-site model system. We use an extension of the environment-assisted quantum transport model to simulate transport, allowing the spatial correlation function to vary throughout the system. We demonstrate both via analysis and via simulation that exciton transport efficiency is most sensitive to changes in correlation between the site coupled to the trap and its neighboring sites. This asymmetry in sensitivity is highly robust and appears irrespective of changes in parameters such as transition dipole orientations and initial conditions. Our results suggest that in the design of exciton transport systems, efforts to increase efficiency by controlling spatial correlation should be focused on the region near the site of exciton trapping. C1 [Pelzer, Kenley M.; Fidler, Andrew F.; Griffin, Graham B.; Engel, Gregory S.] Univ Chicago, James Franck Inst, Inst Biophys Dynam, Chicago, IL 60637 USA. [Pelzer, Kenley M.; Fidler, Andrew F.; Griffin, Graham B.; Engel, Gregory S.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Engel, GS (reprint author), Univ Chicago, James Franck Inst, Inst Biophys Dynam, 929 East 57th St, Chicago, IL 60637 USA. EM gsengel@uchicago.edu RI Engel, Gregory/C-1108-2012 OI Engel, Gregory/0000-0002-6740-5243 FU DARPA QuBE program [N66001-10-1-4060]; DTRA [HDTRA1-10-1-0091 P00002]; AFOSR [FA9550-09-1-0117]; NSF MRSEC [DMR 08-02054]; DOE Computational Science Graduate Fellowship; DOE SCGF program; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors gratefully acknowledge support from the DARPA QuBE program (grant no. N66001-10-1-4060), DTRA (grant no. HDTRA1-10-1-0091 P00002), AFOSR (grant no. FA9550-09-1-0117) and the NSF MRSEC (grant no. DMR 08-02054) for supporting portions of this work. KP acknowledges the support of the DOE Computational Science Graduate Fellowship. AF acknowledges the support of the DOE SCGF program. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 62 TC 9 Z9 9 U1 1 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 26 PY 2013 VL 15 AR 095019 DI 10.1088/1367-2630/15/9/095019 PG 21 WC Physics, Multidisciplinary SC Physics GA 224SY UT WOS:000324910900002 ER PT J AU Ke, X Birol, T Misra, R Lee, JH Kirby, BJ Schlom, DG Fennie, CJ Freeland, JW AF Ke, X. Birol, T. Misra, R. Lee, J. -H. Kirby, B. J. Schlom, D. G. Fennie, C. J. Freeland, J. W. TI Structural control of magnetic anisotropy in a strain-driven multiferroic EuTiO3 thin film SO PHYSICAL REVIEW B LA English DT Article ID PEROVSKITES; INSIGHTS; FIELD AB Octahedral distortion plays a key role in engineering the physical properties of heterostructures composed of perovskite oxides. We observe a strong in-plane uniaxial magnetic anisotropy in a strain-enabled multiferroic EuTiO3 thin film epitaxially grown on a (110)(o) DyScO3 substrate. First-principles calculations show that the magnetic anisotropy is closely correlated with the uniaxial TiO6 octahedral tilting and the ferroelectric polarization of the film, indicating potential strong magnetoelectric coupling in the strain-engineered multiferroic system. C1 [Ke, X.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Ke, X.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Birol, T.; Fennie, C. J.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Misra, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Misra, R.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Lee, J. -H.; Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lee, J. -H.; Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Kirby, B. J.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Schlom, D. G.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. RP Ke, X (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM ke@pa.msu.edu RI Birol, Turan/D-1948-2012 OI Birol, Turan/0000-0001-5174-3320 FU Scientific User Facilities Division, Office of Basic Energy Sciences, DOE; US Department of Energy, Office of Science [DE-AC02-06CH11357]; DOE-BES [DESCOO02334]; NSF MRSEC program [DMR-0820404] FX We are grateful for useful discussions with Professor Peter E. Schiffer. X. K. acknowledges the support from the start-up funds at Michigan State University. Work at ORNL was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE, and work at Argonne is supported by the US Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. T. B. and C.J.F. were supported by the DOE-BES under Grant No. DESCOO02334. R. M., J.H.L., and D. G. S. were supported by the NSF MRSEC program (DMR-0820404). NR 43 TC 9 Z9 9 U1 4 U2 64 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 26 PY 2013 VL 88 IS 9 AR 094434 DI 10.1103/PhysRevB.88.094434 PG 5 WC Physics, Condensed Matter SC Physics GA 225BW UT WOS:000324938400001 ER PT J AU Shirer, KR Haraldsen, JT Dioguardi, AP Crocker, J ApRoberts-Warren, N Shockley, AC Lin, CH Nisson, DM Cooley, JC Janoschek, M Huang, K Kanchanavatee, N Maple, MB Graf, MJ Balatsky, AV Curro, NJ AF Shirer, K. R. Haraldsen, J. T. Dioguardi, A. P. Crocker, J. ApRoberts-Warren, N. Shockley, A. C. Lin, C. -H. Nisson, D. M. Cooley, J. C. Janoschek, M. Huang, K. Kanchanavatee, N. Maple, M. B. Graf, M. J. Balatsky, A. V. Curro, N. J. TI Nuclear magnetic resonance studies of pseudospin fluctuations in URu2Si2 SO PHYSICAL REVIEW B LA English DT Article ID POINT-CONTACT SPECTROSCOPY; ELECTRON SUPERCONDUCTOR URU2SI2; FERMION SYSTEM URU2SI2; HIDDEN-ORDER; ANTIFERROMAGNETIC STATE; SURFACE; EXCITATIONS; LATTICE; HEAT AB We report Si-29 nuclear magnetic resonance measurements in single crystals and aligned powders of URu2Si2 in the hidden order and paramagnetic phases. The spin-lattice relaxation data reveal evidence of pseudospin fluctuations of U moments in the paramagnetic phase. We find evidence for partial suppression of the density of states below 30 K and analyze the data in terms of a two-component spin-fermion model. We propose that this behavior is a realization of a pseudogap between the hidden-order transition T-HO and 30 K. This behavior is then compared to other materials that demonstrate precursor fluctuations in a pseudogap regime above a ground state with long-range order. C1 [Shirer, K. R.; Dioguardi, A. P.; Crocker, J.; ApRoberts-Warren, N.; Shockley, A. C.; Lin, C. -H.; Nisson, D. M.; Curro, N. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Haraldsen, J. T.; Graf, M. J.; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Haraldsen, J. T.; Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Cooley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Janoschek, M.; Huang, K.; Kanchanavatee, N.; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Balatsky, A. V.] NORDITA, S-10691 Stockholm, Sweden. RP Shirer, KR (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM curro@physics.ucdavis.edu RI Haraldsen, Jason/B-9809-2012; Janoschek, Marc/M-8871-2015; Curro, Nicholas/D-3413-2009 OI Haraldsen, Jason/0000-0002-8641-5412; Janoschek, Marc/0000-0002-2943-0173; Curro, Nicholas/0000-0001-7829-0237 FU UC Lab Research Fee Program; NNSA through US DOE [DE-FG52-09NA29464]; Center for Integrated Nanotechnologies, an Office of Science User Facility; US DOE Office of Science [DE-AC52-06NA25396]; Nordita; Alexander von Humboldt foundation; US Department of Energy [DE-FG02-04ER46105] FX We thank T. Das, P. Coleman, P. Riseborough, J. Mydosh, and T. Durakiewicz for stimulating discussions. Work at UC Davis and LANL was supported by the UC Lab Research Fee Program and the NNSA under the Stewardship Science Academic Alliances program through US DOE Research Grant No. DE-FG52-09NA29464. J. T. H. and A. V. B. acknowledge support for work performed, in part, by the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US DOE Office of Science by LANL (Contract No. DE-AC52-06NA25396) and A. V. B. acknowledges support by Nordita. M. J. gratefully acknowledges financial support by the Alexander von Humboldt foundation. Research at UCSD was supported by the US Department of Energy under Grant No. DE-FG02-04ER46105. NR 52 TC 10 Z9 10 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 26 PY 2013 VL 88 IS 9 AR 094436 DI 10.1103/PhysRevB.88.094436 PG 5 WC Physics, Condensed Matter SC Physics GA 225BW UT WOS:000324938400003 ER PT J AU Yang, F Wang, F Lee, DH AF Yang, Fan Wang, Fa Lee, Dung-Hai TI Fermiology, orbital order, orbital fluctuations, and Cooper pairing in iron-based superconductors SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; ARSENIDE SUPERCONDUCTOR; FESE SUPERCONDUCTOR; TRANSITION; ANISOTROPY; SYMMETRY AB We address two important issues that arise in recent studies of iron-based superconductivity. (1) Why are the T-c of A(x)Fe(2-y)Se(2) (A = K, Rb, Cs) and the single unit cell FeSe on SrTiO3 so high despite both only having electron pockets? (2) What (if any) are the effects of orbital order and orbital fluctuation on the Cooper pairing. Our main conclusions are the following: (1) removing hole pockets releases frustration of Cooper pairing from their band vorticity, therefore can enhance T-c, and (2) orbital fluctuation has negligible effect on Cooper pairing. C1 [Yang, Fan] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China. [Wang, Fa] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Wang, Fa] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, F (reprint author), Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China. RI Wang, Fa/D-3817-2015 OI Wang, Fa/0000-0002-6220-5349 FU DOE [DE-AC02-05CH11231]; NSFC [11274041]; NCET [NCET-12-0038] FX We acknowledge Jun Zhao, Bob Birgeneau, Alessadra Lanzara, and Qiang-hua Wang for helpful discussions. D.H.L. acknowledges the support by the DOE grant No. DE-AC02-05CH11231. F.Y. is supported by the NSFC under Grant No. 11274041, and the NCET program under Grant No. NCET-12-0038. NR 40 TC 31 Z9 31 U1 0 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 26 PY 2013 VL 88 IS 10 AR 100504 DI 10.1103/PhysRevB.88.100504 PG 5 WC Physics, Condensed Matter SC Physics GA 225DY UT WOS:000324943800001 ER PT J AU Quaglioni, S Romero-Redondo, C Navratil, P AF Quaglioni, Sofia Romero-Redondo, Carolina Navratil, Petr TI Three-cluster dynamics within an ab initio framework SO PHYSICAL REVIEW C LA English DT Article ID RESONATING-GROUP EQUATION; R-MATRIX METHOD; LAGRANGE MESH; CONTINUUM STATES; LIGHT-NUCLEI; SHELL-MODEL; BOUND-STATE; HALO NUCLEI; HE-6; C-12 AB We introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrodinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonicmethod on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalizationgroup evolved chiral nucleon-nucleon potential, we apply the method to a He-4 + n + n description of He-6 and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (He-4) polarization effects. C1 [Quaglioni, Sofia] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Romero-Redondo, Carolina; Navratil, Petr] TRIUMF, Vancouver, BC V6T 2A3, Canada. RP Quaglioni, S (reprint author), Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94551 USA. EM quaglioni1@llnl.gov; cromeroredondo@triumf.ca; navratil@triumf.ca RI Romero-Redondo, Carolina/D-2381-2014 FU LLNL [DE-AC52-07NA27344]; U.S. DOE/SC/NP [SCW1158]; NSERC [401945-2011]; Canadian National Research Council FX We thank G. Hupin for many useful discussions. Computing support for this work came from the LLNL institutional Computing Grand Challenge program and from an INCITE Award on the Titan supercomputer of the Oak Ridge Leadership Computing Facility (OLCF) at ORNL. The work was prepared in part by LLNL under Contract No. DE-AC52-07NA27344. Support from the U.S. DOE/SC/NP (Work Proposal No. SCW1158) and NSERC Grant No. 401945-2011 is acknowledged. TRIUMF receives funding via a contribution through the Canadian National Research Council. NR 55 TC 13 Z9 13 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD SEP 26 PY 2013 VL 88 IS 3 AR 034320 DI 10.1103/PhysRevC.88.034320 PG 14 WC Physics, Nuclear SC Physics GA 226HR UT WOS:000325026500001 ER PT J AU McQuilken, AC Ha, Y Sutherlin, KD Siegler, MA Hodgson, KO Hedman, B Solomon, EI Jameson, GNL Goldberg, DP AF McQuilken, Alison C. Ha, Yang Sutherlin, Kyle D. Siegler, Maxime A. Hodgson, Keith O. Hedman, Britt Solomon, Edward I. Jameson, Guy N. L. Goldberg, David P. TI Preparation of Non-heme {FeNO}(7) Models of Cysteine Dioxygenase: Sulfur versus Nitrogen Ligation and Photorelease of Nitric Oxide SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METAL NITROSYL COMPLEXES; ISOPENICILLIN-N-SYNTHASE; HYDRATASE FE-NHASE; ELECTRONIC-STRUCTURE; S-OXYGENATION; ACTIVE-SITE; O-2 ACTIVATION; IRON; LIGAND; PHOTOLABILITY AB We present the synthesis and spectroscopic characterization of [Fe(NO)(N3PyS)]BF4 (3), the first structural and electronic model of NO-bound cysteine dioxygenase. The nearly isostructural all-N-donor analogue [Fe(NO)(N4Py)](BF4)(2) (4) was also prepared, and comparisons of 3 and 4 provide insight regarding the influence of S vs N ligation in {FeNO}(7) species. One key difference occurs upon photoirradiation, which causes the fully reversible release of NO from 3, but not from 4. C1 [McQuilken, Alison C.; Siegler, Maxime A.; Goldberg, David P.] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA. [Jameson, Guy N. L.] Univ Otago, Dept Chem, Dunedin 9054, New Zealand. [Jameson, Guy N. L.] Univ Otago, MacDiarmid Inst Adv Mat & Nanotechnol, Dunedin 9054, New Zealand. [Ha, Yang; Sutherlin, Kyle D.; Hodgson, Keith O.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Hodgson, Keith O.; Hedman, Britt] Stanford Univ, SLAC, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Solomon, EI (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM edward.solomon@stanford.edu; gjameson@chemistry.otago.ac.nz; dpg@jhu.edu RI Jameson, Guy N. L./J-3258-2015 OI Jameson, Guy N. L./0000-0001-9416-699X FU NIH [GM62309, P41GM103393, GM40392] FX The NIH (GM62309, D.P.G.; P41GM103393, K.O.H.; GM40392, E.I.S.) is acknowledged for financial support. A.C.M. thanks the Harry and Cleio Greer Fellowship. G.N.L.J. thanks the Marsden Fund and The International Mobility Fund administered by Royal Society of New Zealand. NR 44 TC 19 Z9 19 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 25 PY 2013 VL 135 IS 38 BP 14024 EP 14027 DI 10.1021/ja4064487 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 296CO UT WOS:000330162900007 PM 24040838 ER PT J AU Sun, J Teran, AA Liao, XX Balsara, NP Zuckermann, RN AF Sun, Jing Teran, Alexander A. Liao, Xunxun Balsara, Nitash P. Zuckermann, Ronald N. TI Nanoscale Phase Separation in Sequence-Defined Peptoid Diblock Copolymers SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COIL BLOCK-COPOLYMERS; MICROPHASE SEPARATION; SOLID-STATE; PERSISTENCE LENGTH; NANOPHASE SEPARATION; ORDER TRANSITIONS; ROD; ELECTROLYTES; POLYSTYRENE; POLYMERS AB Microphase-separated block copolymer materials have a wide array of potential applications ranging from nanoscale lithography to energy storage. Our understanding of the factors that govern the morphology of these systems is based on comparisons between theory and experiment. The theories generally assume that the chains are perfectly monodisperse; however, typical experimental copolymer preparations have polydispersity indices (PDIs) ranging from 1.01 to 1.10. In contrast, we present a systematic study of the relationship between chemical structure and morphology in the solid state using peptoid diblock copolymers with PDIs of <= 1.00013. A series of comb-like peptoid block copolymers, poly(N-2-(2-(2-methoxyethoxy)ethoxy)ethylglycine)-block-poly(N-(2-ethylhexyl)glycine) (pNte-b-pNeh), were obtained by solid-phase synthesis. The number of monomers per chain was held fixed at 36, while the volume fraction of the Nte block (ON,e) was varied from 0.11 to 0.65. The experimentally determined order-disorder transition temperature exhibited a maximum at phi N-te = 0.24, not phi(Nte) = 0.5 as expected from theory. All of the ordered phases had a lamellar morphology, even in the case of phi(Nte) = 0.11. Our results are in qualitative disagreement with all known theories of microphase separation in block copolymers. This raises new questions about the intertwined roles of monomer architecture and polydispersity in the phase behavior of diblock copolymers. C1 [Sun, Jing; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Sun, Jing; Balsara, Nitash P.; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Teran, Alexander A.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Liao, Xunxun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Teran, Alexander A.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Liao, Xunxun] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu; rnzuckermann@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Soft Matter Electron Microscopy Program; Office of Science, Office of Basic Energy Science, U.S. Department of Energy [xDE-AC02-05CH11231, DE-AC02-05CH11231] FX Funding for this work was provided by the Soft Matter Electron Microscopy Program, supported by the Office of Science, Office of Basic Energy Science, U.S. Department of Energy, under Contract xDE-AC02-05CH11231. The work was carried out at the Molecular Foundry at Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Science, U.S. Department of Energy, under Contract DE-AC02-05CH11231. We thank Dr. Daniel Hallinan and Dr. Adrianne M. Rosales for helpful advice and Dr. Babak Sanii for help with XRD on the project. NR 51 TC 13 Z9 13 U1 7 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 25 PY 2013 VL 135 IS 38 BP 14119 EP 14124 DI 10.1021/ja404233d PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 296CO UT WOS:000330162900030 PM 24001200 ER PT J AU Palomaki, PKB Miller, EM Neale, NR AF Palomaki, Peter K. B. Miller, Elisa M. Neale, Nathan R. TI Control of Plasmonic and Interband Transitions in Colloidal Indium Nitride Nanocrystals SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OPTICAL-ABSORPTION EDGE; DOPED QUANTUM DOTS; OXIDE NANOCRYSTALS; INN; RESONANCES; CHEMISTRY; ELECTRON; GROWTH; RICH; STOICHIOMETRY AB We have developed a colloidal synthesis of 4-10 nm diameter indium nitride (InN) nanocrystals that exhibit both a visible absorption onset (similar to 1.8 eV) and a strong localized surface plasmon resonance absorption in the mid-infrared (similar to 3000 nm). Chemical oxidation and reduction reversibly modulate both the position and intensity of this plasmon feature as well as the band-to-band absorption onset. Chemical oxidation of InN nanocrystals with NOBF, is found to red-shift the absorption onset to similar to 1.3 eV and reduce the plasmon absorption energy (to 3550 nm) and intensity (by an order of magnitude at 2600 nm). Reduction of these oxidized species with Bu4NBH4 fully recovers the original optical properties. Calculations suggest that the carrier density in these InN nanocrystals decreases upon oxidation from 2.89 x 1020 cm(-3) to 2.51 X 10(20) cm(-3), consistent with the removal of similar to 4 electrons per nanocrystal. This study provides a unique example of the ability to tune the optical properties of colloidal nanomaterials, and in particular the LSPR absorption, with reversible redox reactions that do not affect the semiconductor chemical composition or phase. C1 [Palomaki, Peter K. B.; Miller, Elisa M.; Neale, Nathan R.] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Neale, NR (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Nathan.Neale@nrel.gov FU NREL LDRD Director's Fellowship Program; Solar Photochemistry program of the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC36-08GO28308] FX The authors thank Jao van de Lagemaat. (NREL), Joseph M. Luther (NREL), Delia J. Milliron (LBNL), and Craig L. Perkins (NREL) for helpful discussions. X-ray photoelectron spectroscopy was funded by the NREL LDRD Director's Fellowship Program. All other aspects of this work were supported by the Solar Photochemistry program of the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-AC36-08GO28308 to NREL. NR 57 TC 26 Z9 26 U1 7 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 25 PY 2013 VL 135 IS 38 BP 14142 EP 14150 DI 10.1021/ja404599g PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 296CO UT WOS:000330162900033 PM 23972038 ER PT J AU Bell, F Ruan, QN Golan, A Horn, PR Ahmed, M Leone, SR Head-Gordon, M AF Bell, Franziska Ruan, Qiao N. Golan, Amir Horn, Paul R. Ahmed, Musahid Leone, Stephen R. Head-Gordon, Martin TI Dissociative Photoionization of Glycerol and its Dimer Occurs Predominantly via a Ternary Hydrogen-Bridged Ion-Molecule Complex SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBOHYDRATE PYROLYSIS MECHANISMS; ELECTROCYCLIC FRAGMENTATION MECHANISMS; VACUUM-ULTRAVIOLET PHOTOIONIZATION; MASS-SPECTROMETRY; D-GLUCOSE; BASIS-SET; COMBUSTION CHEMISTRY; VUV PHOTOIONIZATION; CARBONYL-COMPOUNDS; IONIZATION-ENERGY AB The photoionization and dissociative photoionization of glycerol are studied experimentally and theoretically. Time-of-flight mass spectrometry combined with vacuum ultraviolet synchrotron radiation ranging from 8 to 15 eV is used to investigate the nature of the major fragments and their corresponding appearance energies. Deuterium (1,1,2,3,3-D5) and C-13 (2-C-13) labeling is employed to narrow down the possible dissociation mechanisms leading to the major fragment ions (C3HxO2+, C2HxO2+, C2HxO+, CHxO+). We find that the primary fragmentation of the glycerol radical cation (m/z 92) occurs only via two routes. The first channel proceeds via a six-membered hydrogen-transfer transition state, leading to a common stable ternary intermediate, comprised of neutral water, neutral formaldehyde, and a vinyl alcohol radical cation, which exhibits a binding energy of approximate to 42 kcal/mol and a very short (1.4 angstrom) hydrogen bond. Fragmentation of this intermediate gives rise to experimentally observed m/z 74, 62, 44, and 45. Fragments m/z 74 and 62 both consist of hydrogen-bridged ion-molecule complexes with binding energy >25 kcal/mol, whereas the m/z 44 species lacks such stabilization. This explains why water- or formaldehyde-loss products are observed first. The second primary fragmentation route arises from cleaving the elongated C-C bond. Also for this channel, intermediates comprised of hydrogen-bridged ion-molecule complexes exhibiting binding energies >24 kcal/mol are observed. Energy decomposition analysis reveals that electrostatic and charge-transfer interactions are equally important in hydrogen-bridged ion-molecule complexes. Furthermore, the dissociative photoionization of the glycerol dimer is investigated and compared to the main pathways for the monomeric species. To a first approximation, the glycerol dimer radical cation can be described as a monomeric glycerol radical cation in the presence of a spectator glycerol, thus giving rise to a dissociation pattern similar to that of the monomer. C1 [Bell, Franziska; Ruan, Qiao N.; Golan, Amir; Horn, Paul R.; Leone, Stephen R.; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Golan, Amir; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bell, Franziska; Ruan, Qiao N.; Golan, Amir; Horn, Paul R.; Ahmed, Musahid; Leone, Stephen R.; Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu RI Ahmed, Musahid/A-8733-2009 FU Office of Science, Office of Basic Energy Sciences, Office of the U.S. Department of Energy through the Chemical Sciences Division [DE-AC02-05CH11231] FX The experiments were carried out at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory; the ALS and authors (F.B., A.G., P.R.H., S.R.L., MA, M.H.G.) are supported by the Office of Science, Office of Basic Energy Sciences, Office of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, through the Chemical Sciences Division. NR 70 TC 14 Z9 14 U1 5 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 25 PY 2013 VL 135 IS 38 BP 14229 EP 14239 DI 10.1021/ja405511v PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 296CO UT WOS:000330162900043 PM 23924376 ER PT J AU Hu, YJ Knope, KE Skanthakumar, S Kanatzidis, MG Mitchell, JF Soderholm, L AF Hu, Yung-Jin Knope, Karah E. Skanthakumar, S. Kanatzidis, Mercouri G. Mitchell, John F. Soderholm, L. TI Understanding the Role of Aqueous Solution Speciation and Its Application to the Directed Syntheses of Complex Oxidic Zr Chlorides and Sulfates SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID X-RAY-SCATTERING; THORIUM(IV) MOLECULAR CLUSTERS; BASIC ZIRCONIUM SULFATE; CRYSTAL-STRUCTURE; AQUA ION; CHEMISTRY; SULPHATES; HYDROLYSIS; BIOMINERALIZATION; POLYMERIZATION AB The lack of an in-depth understanding of solution-phase speciation and its relationship to solid-state phase formation is a grand challenge in synthesis science. It has severely limited the ability of inorganic chemists to predict or rationalize the formation of compounds from solutions. The need to investigate mechanisms that underlie self-assembly has motivated this study of aqueous Zr-sulfate chemistry as a model system, with the goal of understanding the structures of oligomeric clusters present in solution. We used high-energy Xray scattering (HEXS) data to quantify Zr correlations in a series of solutions as a function of sulfate concentration. The pair distribution function (PDF) from the sulfate-free sample reveals that the average oligomeric Zr moiety is larger than the tetrameric building unit, [Zr-4(OH)(8)(H2O)(16)](8+), generally understood to dominate its solution speciation. At sulfate concentrations greater than 1 m (molal), bidentate sulfate is observed, a coordination not seen in Zr(SO4)(2)center dot 4H(2)O (2), which forms upon evaporation. Also seen in solution are correlations consistent with sulfate-bridged Zr dimers and the higher-order oligomers seen in 2. At intermediate sulfate concentrations there are correlations consistent with large Zr hydroxo-/oxo-bridged clusters. Crystals of [Zr-18(OH)(26)O-20(H2O)(23.2)(SO4)(12.7)]Cl-0.6 center dot nH(2)O (3) precipitate from these solutions. The Raman spectrum of 3 has a peak at 1017 cm(-1) that can be used as a signature for its presence in solution. Raman studies on deuterated solutions point to the important role of sulfate in the crystallization process. These solution results emphasize the presence of well-defined prenucleation correlations on length scales of <1 nm, often considered to be within the structurally amorphous regime. C1 [Hu, Yung-Jin; Knope, Karah E.; Skanthakumar, S.; Soderholm, L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Kanatzidis, Mercouri G.; Mitchell, John F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Soderholm, L (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ls@anl.gov FU U.S. DOE, OBES, Chemical Sciences [DE-AC02-06CH11357] FX We thank Dr. Travis H. Bray for technical assistance on related preliminary studies. This work is supported by the U.S. DOE, OBES, Chemical Sciences under Contract DE-AC02-06CH11357. The Advanced Photon Source, used to obtain the HEXS data described in this study, is supported by the U.S. DOE, OBES, Materials Sciences under the same contract number. NR 55 TC 20 Z9 20 U1 4 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 25 PY 2013 VL 135 IS 38 BP 14240 EP 14248 DI 10.1021/ja405555h PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 296CO UT WOS:000330162900044 PM 23968256 ER PT J AU Scheer, AM Welz, O Sasaki, DY Osborn, DL Taatjest, CA AF Scheer, Adam M. Welz, Oliver Sasaki, Darryl Y. Osborn, David L. Taatjest, Craig A. TI Facile Rearrangement of 3-Oxoalkyl Radicals is Evident in Low-Temperature Gas-Phase Oxidation of Ketones SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SET MODEL CHEMISTRY; RING EXPANSION; THERMAL-DECOMPOSITION; COMBUSTION CHEMISTRY; MOLECULAR-OXYGEN; N-2/O-2 DILUENT; GROUP MIGRATION; MECHANISM; ETHYL; PHOTOIONIZATION AB The pulsed photolytic chlorine-initiated oxidation of methyl-tert-butyl ketone (MTbuK), di-tert-butyl ketone (DTbuK), and a series of partially deuterated diethyl ketones (DEK) is studied in the gas phase at 8 Torr and 550-650 K. Products are monitored as a function of reaction time, mass, and photoionization energy using multiplexed photoionization H, mass spectrometry with tunable synchrotron ionizing radiation. The results establish that the primary 3-oxoallcyl radicals of those ketones, formed by abstraction of a hydrogen atom from the carbon atom in gamma-position relative to the carbonyl oxygen, undergo a rapid rearrangement resulting in an effective 1,2-acyl group migration, similar to that in a Dowd-Beckwith ring expansion. Without this rearrangement, peroxy radicals derived from MTbuK and DTbuK cannot undergo HO2 elimination to yield a closed-shell unsaturated hydrocarbon coproduct. However, not only are these coproducts observed, but they represent the dominant oxidation channels of these ketones under the conditions of this study. For MTbuK and DTbuK, the rearrangement yields a more stable tertiary radical, which provides the thermodynamic driving force for this reaction. Even in the absence of such a driving force in the oxidation of partially deuterated DEK, the 1,2-acyl group migration is observed. Quantum chemical (CBS-QB3) calculations show the barrier for gas-phase rearrangement to be on the order of 10 kcal mol(-1). The MTbuK oxidation experiments also show several minor channels, including beta-scission of the initial radicals and cyclic ether formation. C1 [Scheer, Adam M.; Welz, Oliver; Osborn, David L.; Taatjest, Craig A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Sasaki, Darryl Y.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Scheer, AM (reprint author), Sandia Natl Labs, Combust Res Facil, MS 9055, Livermore, CA 94551 USA. EM amschee@sandia.gov; cataatj@sandia.gov RI Welz, Oliver/C-1165-2013 OI Welz, Oliver/0000-0003-1978-2412 FU Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory [DEAC04-94AL85000]; Office of Science, Office of Basic Energy Sciences, of the USDOE [DE-AC02-05CH11231] FX The authors thank Prof. Barry Carpenter, Dr. Judit Zador, and Dr. John D. Savee for useful discussions and Mr. Howard Johnsen for technical support of these experiments. We thank an anonymous reviewer for alerting us to the important work on the Dowd-Beckwith ring expansion. This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy (USDOE)'s National Nuclear Security Administration under contract DEAC04-94AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the USDOE, under contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the USDOE. NR 42 TC 12 Z9 12 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 25 PY 2013 VL 135 IS 38 BP 14256 EP 14265 DI 10.1021/ja405892y PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 296CO UT WOS:000330162900046 PM 23971980 ER PT J AU Thoi, VS Kornienko, N Margarit, CG Yang, PD Chang, CJ AF Thoi, V. Sara Kornienko, Nikolay Margarit, Charles G. Yang, Peidong Chang, Christopher J. TI Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOTOCATALYTIC CO2 REDUCTION; ELECTROCATALYTIC REDUCTION; ELECTROCHEMICAL REDUCTION; PHOTOCHEMICAL REDUCTION; SOLAR-ENERGY; METAL-COMPLEXES; HOMOGENEOUS CATALYSTS; SILICATE SIEVE; PHOTOELECTROCHEMICAL REDUCTION; ARTIFICIAL PHOTOSYNTHESIS AB The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene-amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni((Pr)bimiq1)](2+) (1c, where (Pr)bimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (E-cat = -1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)(3) (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s(-1), respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion. C1 [Thoi, V. Sara; Kornienko, Nikolay; Margarit, Charles G.; Yang, Peidong; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Thoi, V. Sara; Chang, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Chang, CJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM chrischang@berkeley.edu FU DOE/LBNL [403801]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation; Amgen Scholars Program at UC Berkeley; Howard Hughes Medical Institute FX This work was supported by DOE/LBNL Grant 403801 (C.J.C.) and the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (P.Y.). V.S.T. thanks the National Science Foundation for a graduate fellowship, and C.G.M. acknowledges the Amgen Scholars Program at UC Berkeley for a summer research fellowship. C.J.C. is an Investigator with the Howard Hughes Medical Institute. NR 112 TC 71 Z9 72 U1 31 U2 309 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 25 PY 2013 VL 135 IS 38 BP 14413 EP 14424 DI 10.1021/ja4074003 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 296CO UT WOS:000330162900062 PM 24033186 ER PT J AU Sarac, MF Anderson, BD Pearce, RC Railsback, JG Oni, AA White, RM Hensley, DK LeBeau, JM Melechko, AV Tracy, JB AF Sarac, Mehmet F. Anderson, Bryan D. Pearce, Ryan C. Railsback, Justin G. Oni, Adedapo A. White, Ryan M. Hensley, Dale K. LeBeau, James M. Melechko, Anatoli V. Tracy, Joseph B. TI Airbrushed Nickel Nanoparticles for Large-Area Growth of Vertically Aligned Carbon Nanofibers on Metal (Al, Cu, Ti) Surfaces SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE airbrushing; nickel; copper; nanoparticles; catalyst; carbon nanofibers; carbon nanotubes; metal foils ID CHEMICAL-VAPOR-DEPOSITION; GENE DELIVERY ARRAYS; NANOTUBE BUNDLES; SCALE SYNTHESIS; FIELD-EMISSION; DC PLASMA; SCAFFOLDS; DNA; NANOSTRUCTURES; FABRICATION AB Vertically aligned carbon nanofibers (VACNFs) were grown by plasma-enhanced chemical vapor deposition (PECVD) using Ni nanoparticle (NP) catalysts that were deposited by airbrushing onto Si, Al, Cu, and Ti substrates. Airbrushing is a simple method for depositing catalyst NPs over large areas that is compatible with roll-to-roll processing. The distribution and morphology of VACNFs are affected by the airbrushing parameters and the composition of the metal foil. Highly concentrated Ni NPs in heptane give more uniform distributions than pentane and hexanes, resulting in more uniform coverage of VACNFs. For VACNF growth on metal foils, Si micropowder was added as a precursor for Si-enriched coatings formed in situ on the VACNFs that impart mechanical rigidity. Interactions between the catalyst NPs and the metal substrates impart control over the VACNF morphology. Growth of carbon nanostructures on Cu is particularly noteworthy because the miscibility of Ni with Cu poses challenges for VACNF growth, and carbon nanostructures anchored to Cu substrates are desired as anode materials for Li-ion batteries and for thermal interface materials. C1 [Sarac, Mehmet F.; Anderson, Bryan D.; Pearce, Ryan C.; Railsback, Justin G.; Oni, Adedapo A.; White, Ryan M.; LeBeau, James M.; Melechko, Anatoli V.; Tracy, Joseph B.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Hensley, Dale K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Tracy, JB (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM jbtracy@ncsu.edu RI Hensley, Dale/A-6282-2016; White, Ryan/L-5115-2013 OI Hensley, Dale/0000-0001-8763-7765; White, Ryan/0000-0001-9023-4713 FU National Science Foundation [DMR-1056653]; Department of the Defense, Defense Threat Reduction Agency; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Republic of Turkey, Ministry of National Education fellowship FX This research was supported by the National Science Foundation Grant DMR-1056653 (to J.B.T.) and the Department of the Defense, Defense Threat Reduction Agency (to A.V.M). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The content of the information herein does not necessarily reflect the position or the policy of the Federal Government, and no official endorsement should be inferred. M.F.S. acknowledges support from a Republic of Turkey, Ministry of National Education fellowship. We thank Timothy E. McKnight for helpful discussions. This work made use of the Analytical Instrumentation Facility at NCSU. NR 51 TC 1 Z9 2 U1 4 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD SEP 25 PY 2013 VL 5 IS 18 BP 8955 EP 8960 DI 10.1021/am401889t PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 294BD UT WOS:000330016500022 PM 24016419 ER PT J AU Hamedani, HA Lee, SW Al-Sammarraie, A Hesabi, ZR Bhatti, A Alamgir, FM Garmestani, H Khaleel, MA AF Hamedani, Hoda Amani Lee, Simon W. Al-Sammarraie, Abdulkareem Hesabi, Zohreh R. Bhatti, Asim Alamgir, Faisal M. Garmestani, Hamid Khaleel, Mohammad A. TI Synthesis and Growth Mechanism of Thin-Film TiO2 Nanotube Arrays on Focused-Ion-Beam Micropatterned 3D Isolated Regions of Titanium on Silicon SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE thin-film TiO2 nanotubes; electrochemical anodization; micropatterning; focused ion beam; XPS; XRD ID AQUEOUS-SOLUTION; FABRICATION; OXIDE; LAYER AB In this paper, the fabrication and growth mechanism of net-shaped micropatterned self-organized thin-film TiO2 nanotube (TFTN) arrays on a silicon substrate are reported. Electrochemical anodization is used to grow the nanotubes from thin-film titanium sputtered on a silicon substrate with an average diameter of similar to 30 nm and a length of similar to 1.5 mu m using aqueous and organic-based types of electrolytes. The fabrication and growth mechanism of TFTN arrays from micropattemed three-dimensional isolated islands of sputtered titanium on a silicon substrate is demonstrated for the first time using focused-ion-beam (FIB) technique. This work demonstrates the use of the FIB technique as a simple, high-resolution, and maskless method for high-aspect-ratio etching for the creation of isolated islands and shows great promise toward the use of the proposed approach for the development of metal oxide nanostructured devices and their integration with micro- and nanosystems within silicon-based integrated-circuit devices. C1 [Hamedani, Hoda Amani; Lee, Simon W.; Hesabi, Zohreh R.; Alamgir, Faisal M.; Garmestani, Hamid] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Al-Sammarraie, Abdulkareem] Univ Baghdad, Coll Sci, Dept Chem, Jadiriyah Baghdad, Iraq. [Bhatti, Asim] Deakin Univ, CISR, Geelong, Vic 3217, Australia. [Khaleel, Mohammad A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. RP Hamedani, HA (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, 771 Ferst Dr NW, Atlanta, GA 30332 USA. EM hamani3@gatech.edu OI khaleel, mohammad/0000-0001-7048-0749; Alamgir, Faisal/0000-0002-0894-8096; Bhatti, Asim/0000-0001-6876-1437 FU Pacific Northwest National Laboratory; Florida State University Research Foundation; National High Magnetic Field Laboratory [NSF-DMR-0654118]; State of Florida FX This work was funded by Pacific Northwest National Laboratory. The TEM work was carried out at Florida State University (FSU), and the TEM facility at FSU is funded and supported by the Florida State University Research Foundation, National High Magnetic Field Laboratory (Grant NSF-DMR-0654118), and the State of Florida. The authors would like to thank Eric Woods from Georgia Institute of Technology's Institute for Electronics and Nanotechnology (IEN) for the FIB micropatterning advice. NR 25 TC 8 Z9 8 U1 4 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD SEP 25 PY 2013 VL 5 IS 18 BP 9026 EP 9033 DI 10.1021/am402203m PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 294BD UT WOS:000330016500030 PM 23957211 ER PT J AU Song, CK White, AC Zeng, L Leever, BJ Clark, MD Emery, JD Lou, SJ Timalsina, A Chen, LX Bedzyk, MJ Marks, TJ AF Song, Charles Kiseok White, Alicia C. Zeng, Li Leever, Benjamin J. Clark, Michael D. Emery, Jonathan D. Lou, Sylvia J. Timalsina, Amod Chen, Lin X. Bedzyk, Michael J. Marks, Tobin J. TI Systematic Investigation of Organic Photovoltaic Cell Charge Injection/Performance Modulation by Dipolar Organosilane Interfacial Layers SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE self-assembled monolayer; organic photovoltaics; heterogeneous electron transfer rate constant; work function; open circuit voltage; power conversion efficiency ID INDIUM-TIN-OXIDE; SELF-ASSEMBLED MONOLAYERS; POLYMER SOLAR-CELLS; LIGHT-EMITTING-DIODES; SCANNING ELECTROCHEMICAL MICROSCOPY; POTENTIAL SWEEP VOLTAMMOGRAM; DENSITY-FUNCTIONAL THEORY; FIELD-EFFECT TRANSISTORS; PEDOT-PSS FILMS; ELECTRON-TRANSFER AB With the goal of investigating and enhancing anode performance in bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells, the glass/tin-doped indium oxide (ITO) anodes are modified with a series of robust silane-tethered bis(fluoroaryl)amines to form self-assembled interfacial layers (IFLs). The modified ITO anodes are characterized by contact angle measurements, X-ray reflectivity, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, atomic force microscopy, and cyclic voltammetry. These techniques reveal the presence of hydrophobic amorphous monolayers of 6.68 to 9.76 angstrom thickness, and modified anode work functions ranging from 4.66 to 5.27 eV. Two series of glass/ITO/IFL/active layer/LiF/Al BHJ OPVs are fabricated with the active layer = poly(3-hexylthiophene):phenyl-C-71-butyric acid methyl ester (P3HT:PC71BM) or poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)-carbonyl]-thi-eno[3,4-b]thiophenediyl]]:phenyl-C-71-butyric acid methyl ester (PTB7:PC71BM). OPV analysis under AM 1.5G conditions reveals significant performance enhancement versus unmodified glass/ITO anodes. Strong positive correlations between the electrochemically derived heterogeneous electron transport rate constants (k(s)) and the device open circuit voltage (V-oc), short circuit current (J(sc)), hence OPV power conversion efficiency (PCE), are observed for these modified anodes. Furthermore, the strong functional dependence of the device response on k(s) increases as greater densities of charge carriers are generated in the BHJ OPV active layer, and is attributable to enhanced anode carrier extraction in the case of high-k(s) IFLs. C1 [Song, Charles Kiseok; Lou, Sylvia J.; Timalsina, Amod; Chen, Lin X.; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Song, Charles Kiseok; Lou, Sylvia J.; Timalsina, Amod; Chen, Lin X.; Marks, Tobin J.] Northwestern Univ, Argonne Northwestern Solar Energy Res Ctr, Evanston, IL 60208 USA. [White, Alicia C.] Northwestern Univ, Weinberg Coll Arts & Sci, Evanston, IL 60208 USA. [Zeng, Li; Bedzyk, Michael J.] Northwestern Univ, Grad Program Appl Phys, Evanston, IL 60208 USA. [Leever, Benjamin J.; Clark, Michael D.] US Air Force, Res Lab, Wright Patterson AFB, OH 45433 USA. [Emery, Jonathan D.; Bedzyk, Michael J.; Marks, Tobin J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Lou, Sylvia J.; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Marks, TJ (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM l-chen@northwestern.edu; bedzyk@northwestern.edu; t-marks@northwestern.edu RI Bedzyk, Michael/B-7503-2009 FU Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-FG02-08ER46536]; NSF; MRSEC [DMR-1121262] FX Research supported in part Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001059 (S.J.L.; A.T.) and by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award DE-AC02-06CH11357 (L.X.C) and DE-FG02-08ER46536 (C.K.S.). We thank Integrated Molecular Structure Education and Research Center (IMSERC) for characterization facilities supported by Northwestern University (NU) and National Science Foundation (NSF) under NSF CHE-0923236 and CHE-9871268 (1998), Pfizer, State of Illinois, and IMSERC mass spectrometer staffs for analyzing the mass of newly synthesized precursor molecules. Research was also supported in part by the NSF funded MRSEC under DMR-1121262 (Z.L.; J.D.E.; M.J.B.). The XRR measurements were made at the MRSEC X-ray Diffraction Facility located at NU. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. We also thank Prof. R. J. Thomson for synthetic advice, J. L. Song for mathematical derivations, and Dr. J. Smith, Dr. S. M. Yoon, and Dr. M.-G. Kim for helpful discussions. NR 120 TC 18 Z9 19 U1 4 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD SEP 25 PY 2013 VL 5 IS 18 BP 9224 EP 9240 DI 10.1021/am4030609 PG 17 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 294BD UT WOS:000330016500057 PM 23942417 ER PT J AU Datta, S Lin, YPJ Schell, DJ Millard, CS Ahmad, SF Henry, MP Gillenwater, P Fracaro, AT Moradia, A Gwarnicki, ZP Snyder, SW AF Datta, Saurav Lin, Yupo J. Schell, Daniel J. Millard, C. S. Ahmad, Sabeen F. Henry, Michael P. Gillenwater, P. Fracaro, Anthony T. Moradia, A. Gwarnicki, Zofia P. Snyder, Seth W. TI Removal of Acidic Impurities from Corn Stover Hydrolysate Liquor by Resin Wafer Based Electrodeionization SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID DILUTE-SULFURIC-ACID; ION-EXCHANGE-RESINS; INHIBITORY COMPOUNDS; SUGAR SEPARATION; ACETIC-ACID; BIOMASS; PRETREATMENT; DETOXIFICATION; FERMENTATION; HYDROLYZATE AB Dilute acid (sulfuric acid) pretreatment of lignocellulosic biomass releases monomeric xylose, xylo-oligomers, and acetic acid by degradation of hemicellulose. Acids inhibit both the enzymatic hydrolysis of cellulose to monomeric sugars and downstream fermentation of sugars to biofuels. Removal of acetic acid and sulfuric acid, as well as the nonionic toxic impurities, from the hydrolysate liquor prior to enzymatic hydrolysis may improve biofuel yields. Development of an efficient acid separation technique is essential for enhanced process performance and cost-effective biofuel production. We evaluated the use of an electrically driven membrane separation technique, resin wafer based electrodeionization (RW-EDI), for the removal of ionic impurities (acetic acid and sulfuric acid) from corn stover hydrolysate liquor. RW-EDI provides the capability to control solution pH in situ by voltage adjustment. In situ pH control enables pK(a)-selective recovery of acids (or bases). The results indicate that RW-EDI is capable of removing ionic impurities using fewer unit operations and less chemicals and water than the existing process using overliming as a conditioning step to dilute acid pretreatment of corn stover. We report greater than 99 and 95% removal of sulfuric and acetic acids, respectively, from dilute sulfuric acid pretreated corn stover hydrolysate liquor. Sugar retention was greater than 98%. We also report strategies to selectively separate sulfuric acid and acetic acid into two individual acid enriched streams from the hydrolysate liquor by manipulating the operating conditions. These results point toward a deployment strategy with sequential (mineral then organic) acid-removal steps. C1 [Datta, Saurav; Lin, Yupo J.; Millard, C. S.; Ahmad, Sabeen F.; Henry, Michael P.; Gillenwater, P.; Fracaro, Anthony T.; Moradia, A.; Gwarnicki, Zofia P.; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Schell, Daniel J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Gwarnicki, Zofia P.] Northwestern Univ, Master Biotechnol Program, Chicago, IL 60611 USA. RP Snyder, SW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM seth@anl.gov FU DOE EERE Bioenergy Technologies Office; EERE Assistant Secretary Technology Commercialization Fund FX We acknowledge the DOE EERE Bioenergy Technologies Office (primary sponsor) and the EERE Assistant Secretary Technology Commercialization Fund for financial support of this research. NR 37 TC 8 Z9 8 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD SEP 25 PY 2013 VL 52 IS 38 BP 13777 EP 13784 DI 10.1021/ie4017754 PG 8 WC Engineering, Chemical SC Engineering GA 295EF UT WOS:000330098700029 ER PT J AU Li, P Yu, L Matthews, MA Saidi, WA Johnson, JK AF Li, Ping Yu, Lin Matthews, Michael A. Saidi, Wissam A. Johnson, J. Karl TI Deliquescence of NaBH4 from Density Functional Theory and Experiments SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; SODIUM-BOROHYDRIDE; AQUEOUS BOROHYDRIDE; WATER CLUSTERS; HYDROGEN GENERATION; FUEL-CELLS; BASIS-SET; HYDROLYSIS AB We report a theoretical investigation of H2O adsorption on the NaBH4(100) surface based on first principles density functional theory with inclusion of dispersion corrections in order to explore the initial stages of deliquescence at the molecular level. In the zero coverage limit, H2O is found to bind strongly to sodium sites on NaBH4(100) through O center dot center dot center dot Na and O-H center dot center dot center dot H-B attractions. As the coverage increases H2O molecules adsorb on boron sites. H atoms in the adsorbed H2O monomer adopt tilted down (15 degrees-20 degrees) configurations with respect to the NaBH4(100) surface, which undergoes reconstruction in response to adsorbed H2O by rotations of BH4- groups of up to 90 degrees and slight distortions of the positions of Na+ and BH4-. The adsorption energy per H2O is roughly independent of water coverage up to at least a coverage of four monolayers, suggesting that it is energetically feasible for water to condense on the surface, in agreement with experiments. We have experimentally studied the deliquescence of a mixture of NaBH4 with 10 wt % CoCl2. We found that CoCl2 lowers the deliquescence temperature compared to that for pure NaBH4 at a given vapor phase mole fraction of water; i.e., the deliquescence relative humidity is increased because of addition of CoCl2. Thus, while CoCl2 is a catalyst for aqueous phase hydrolysis of NaBH4, it actually inhibits deliquescence and hence delays the onset of steam hydrolysis. C1 [Li, Ping; Saidi, Wissam A.; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Yu, Lin; Matthews, Michael A.] Univ S Carolina, Dept Chem Engn, Swearingen Engn Ctr, Columbia, SC 29208 USA. [Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. EM karlj@pitt.edu RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 FU Extreme Science and Engineering Discovery Environment (XSEDE) [TG-DMR110091]; National Science Foundation [CBET 0756089, CBET 0755937] FX Computational work was performed at Center for Simulation & Modeling of University of Pittsburgh and Extreme Science and Engineering Discovery Environment (XSEDE) under project TG-DMR110091. The experimental work was performed at University of South Carolina. The work was funded by the National Science Foundation (Grants CBET 0756089 and CBET 0755937) as part of a GOALI project between the University of South Carolina, University of Pittsburgh, and Trulite, Inc. (El Dorado Hills, CA). NR 67 TC 1 Z9 1 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD SEP 25 PY 2013 VL 52 IS 38 BP 13849 EP 13861 DI 10.1021/ie401742u PG 13 WC Engineering, Chemical SC Engineering GA 295EF UT WOS:000330098700037 ER PT J AU Kuroki, H Tokarev, I Nykypanchuk, D Zhulina, E Minko, S AF Kuroki, Hidenori Tokarev, Ihor Nykypanchuk, Dmytro Zhulina, Ekaterina Minko, Sergiy TI Stimuli-Responsive Materials with Self-Healing Antifouling Surface via 3D Polymer Grafting SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE stimuli-responsive materials; antifouling surfaces; self-healing; 3D-grafting; polymer brushes ID HYDROXYPROPYL CELLULOSE BACKBONES; TRANSFER RADICAL POLYMERIZATION; PROTEIN ADSORPTION; POLY(ETHYLENE GLYCOL); ASSEMBLED MONOLAYERS; NONFOULING PROPERTIES; SIDE-CHAINS; ZWITTERIONIC MATERIALS; METHACRYLATE) BRUSHES; POLYETHYLENE-GLYCOL AB A novel stimuli-responsive material is reported with the self-healing antifouling surface via 3D polymer grafting. The self-healing surface is generated from a polymer network and polymeric chains grafted both to the surface of the network and inside the host network material. In the conventional approach to an antifouling surface via grafting of polymer brushes, the degradation and detachment of grafted polymeric chains would expose the underlying layer, leading to a loss of the antifouling effect. If a substantial fraction of the grafted polymers is degraded and detached, the proposed material with 3D polymer grafting retains its antifouling property due to the spontaneous (driven by an emerging gradient in a chemical potential) replacement of detached or damaged polymeric chains with segments of the chains stored inside the film in proximity to the interface. The pH-responsive poly(2-vinylpyridine) films with the 3D grafting of poly(ethylene oxide) in physiological conditions (pH 7.4 and 37 degrees C) demonstrate a 4-fold increase in longevity of antifouling behavior than the material with the surface grafted polymer. At the same time, the 3D grafted responsive films retain their pH-responsive properties. The proposed 3D polymer-grafting can be carried out on various surfaces (polymers, nanofiber mats, nanoporous inorganic materials, etc.) and, hence, can aid in the design of advanced biointerfaces for biomedical and biotechnological applications. C1 [Kuroki, Hidenori; Tokarev, Ihor; Minko, Sergiy] Clarkson Univ, Dept Biomol Sci, Potsdam, NY 13699 USA. [Nykypanchuk, Dmytro] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Zhulina, Ekaterina] Russian Acad Sci, Inst Macromol Cpds, St Petersburg 199004, Russia. RP Kuroki, H (reprint author), Clarkson Univ, Dept Biomol Sci, Potsdam, NY 13699 USA. EM sminko@clarkson.edu RI Zhulina, Ekaterina/G-5177-2011; Minko, Sergiy/A-9458-2009 OI Minko, Sergiy/0000-0002-7747-9668 FU Clarkson University; NSF [DMR 1107786]; Japan Society for the Promotion of Science (JSPS, Japan); U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported in part by Clarkson University and NSF award DMR 1107786. H. K. thanks the Japan Society for the Promotion of Science (JSPS, Japan) for the support of his research fellowship. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 64 TC 40 Z9 40 U1 21 U2 193 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD SEP 25 PY 2013 VL 23 IS 36 SI SI BP 4593 EP 4600 DI 10.1002/adfm.201300363 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 258XW UT WOS:000327493000019 ER PT J AU Zupanc, A Adachi, I Aihara, H Arinstein, K Asner, DM Aushev, T Bakich, AM Bala, A Bhuyan, B Bonvicini, G Bozek, A Bracko, M Brodzicka, J Browder, TE Chang, MC Chang, P Chekelian, V Chen, A Chen, P Cheon, BG Chilikin, K Chistov, R Cho, K Chobanova, V Choi, SK Choi, Y Cinabro, D Dalseno, J Danilov, M Dolezal, Z Drasal, Z Dutta, D Eidelman, S Farhat, H Fast, JE Ferber, T Gaur, V Gabyshev, N Ganguly, S Gillard, R Goh, YM Golob, B Haba, J Hara, T Hayasaka, K Hayashii, H Horii, Y Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Inami, K Ishikawa, A Itoh, R Iwasaki, Y Iwashita, T Jaegle, I Julius, T Kato, E Kawai, H Kawasaki, T Kichimi, H Kiesling, C Kim, DY Kim, HO Kim, JB Kim, JH Kim, MJ Kim, YJ Kinoshita, K Klucar, J Ko, BR Kodys, P Korpar, S Krizan, P Krokovny, P Kronenbitter, B Kuhr, T Kumita, T Kuzmin, A Kwon, YJ Lange, JS Lee, SH Li, J Libby, J Liu, ZQ Liventsev, D Lukin, P Miyata, H Mizuk, R Mohanty, GB Moll, A Mussa, R Nakano, E Nakao, M Nedelkovska, E Nisar, NK Nishida, S Nitoh, O Ogawa, S Okuno, S Pakhlova, G Park, CW Park, H Park, HK Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Prim, M Ritter, M Rohrken, M Rostomyan, A Ryu, S Sahoo, H Saito, T Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Savinov, V Schneider, O Schnell, G Schwanda, C Schwartz, AJ Semmler, D Senyo, K Sevior, ME Shapkin, M Shen, CP Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Simon, F Sohn, YS Sokolov, A Solovieva, E Staric, M Steder, M Sumiyoshi, T Tamponi, U Tanida, K Tatishvili, G Teramoto, Y Trabelsi, K Tsuboyama, T Uchida, M Uglov, T Uno, S Usov, Y Vahsen, SE Van Hulse, C Vanhoefer, P Varner, G Vinokurova, A Vorobyev, V Wagner, MN Wang, CH Wang, MZ Wang, P Wang, XL Watanabe, M Watanabe, Y Won, E Yamashita, Y Yashchenko, S Zhang, ZP Zhilich, V Zhulanov, V AF Zupanc, A. Adachi, I. Aihara, H. Arinstein, K. Asner, D. M. Aushev, T. Bakich, A. M. Bala, A. Bhuyan, B. Bonvicini, G. Bozek, A. Bracko, M. Brodzicka, J. Browder, T. E. Chang, M. -C. Chang, P. Chekelian, V. Chen, A. Chen, P. Cheon, B. G. Chilikin, K. Chistov, R. Cho, K. Chobanova, V. Choi, S. -K. Choi, Y. Cinabro, D. Dalseno, J. Danilov, M. Dolezal, Z. Drasal, Z. Dutta, D. Eidelman, S. Farhat, H. Fast, J. E. Ferber, T. Gaur, V. Gabyshev, N. Ganguly, S. Gillard, R. Goh, Y. M. Golob, B. Haba, J. Hara, T. Hayasaka, K. Hayashii, H. Horii, Y. Hoshi, Y. Hou, W. -S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Inami, K. Ishikawa, A. Itoh, R. Iwasaki, Y. Iwashita, T. Jaegle, I. Julius, T. Kato, E. Kawai, H. Kawasaki, T. Kichimi, H. Kiesling, C. Kim, D. Y. Kim, H. O. Kim, J. B. Kim, J. H. Kim, M. J. Kim, Y. J. Kinoshita, K. Klucar, J. Ko, B. R. Kodys, P. Korpar, S. Krizan, P. Krokovny, P. Kronenbitter, B. Kuhr, T. Kumita, T. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, S. -H. Li, J. Libby, J. Liu, Z. Q. Liventsev, D. Lukin, P. Miyata, H. Mizuk, R. Mohanty, G. B. Moll, A. Mussa, R. Nakano, E. Nakao, M. Nedelkovska, E. Nisar, N. K. Nishida, S. Nitoh, O. Ogawa, S. Okuno, S. Pakhlova, G. Park, C. W. Park, H. Park, H. K. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Prim, M. Ritter, M. Roehrken, M. Rostomyan, A. Ryu, S. Sahoo, H. Saito, T. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Schwartz, A. J. Semmler, D. Senyo, K. Sevior, M. E. Shapkin, M. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Simon, F. Sohn, Y. -S. Sokolov, A. Solovieva, E. Staric, M. Steder, M. Sumiyoshi, T. Tamponi, U. Tanida, K. Tatishvili, G. Teramoto, Y. Trabelsi, K. Tsuboyama, T. Uchida, M. Uglov, T. Uno, S. Usov, Y. Vahsen, S. E. Van Hulse, C. Vanhoefer, P. Varner, G. Vinokurova, A. Vorobyev, V. Wagner, M. N. Wang, C. H. Wang, M. -Z. Wang, P. Wang, X. L. Watanabe, M. Watanabe, Y. Won, E. Yamashita, Y. Yashchenko, S. Zhang, Z. P. Zhilich, V. Zhulanov, V. CA BELLE Collaboration TI Measurements of branching fractions of leptonic and hadronic D-s(+) meson decays and extraction of the D-s(+) meson decay constant SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE e plus -e- Experiments; Charm physics; Branching fraction; Flavor physics; Rare decay ID PACKAGE AB We present measurements of absolute branching fractions of hadronic and leptonic D-s(+) decays to K-K+pi(+), ($) over bar (0) ($) over bar (+), eta pi(+), mu(+)nu(mu) and tau(+)nu(tau) and report a search for the leptonic D-s(+) -> e(+) nu(e) decays. The results are obtained from a data sample of 913 fb(-1) collected at or near the gamma (4S) and gamma (5S) resonances with the Belle detector at the KEKB asymmetric- energy e(+)e(-) collider. The branching fractions of hadronic decays are measured to be B(D-s(+) -> K-K+pi(+)) = (5.06 +/- 0: 15 +/- 0.21)%, B(D-s(+) -> ($) over bar (0) ($) over bar (+)) = (2.95 +/- 0.11 +/- 0.09)%, B(D-s(+) -> eta pi(+)) = (1.82 +/- 0.14 +/- 0.07)%, where the fi rst and second uncertainties are statistical and systematic, respectively. The branching fractions of leptonic decays are measured to be B(D-s(+) -> mu(+)nu(mu)) = (0.531 +/- 0.028 +/- 0.020)%, B(D-s(+) -> tau(+)nu(tau)) = (5.70 +/- 0.21(-0.30)(+0.31))%, which are combined to determine the D-s(+) meson decay constant fD(s) = (255.5 +/- 4.2 +/- 5.1) MeV. We find no significant signal for D-s(+) -> e(+)nu(e) decays and set an upper limit of B(D-s(+) -> e(+)nu(e)) < 1.0(0.83) +/- 10(-4) at 95% (90%) con fi dence level. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China. [Arinstein, K.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Arinstein, K.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Kawai, H.] Chiba Univ, Chiba 2638522, Japan. [Kinoshita, K.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Rostomyan, A.; Steder, M.; Yashchenko, S.] DESY, D-22607 Hamburg, Germany. [Chang, M. -C.] Fu Jen Catholic Univ, Dept Phys, Taipei 24205, Taiwan. [Lange, J. S.; Semmler, D.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Choi, S. -K.] Gyeongsang Natl Univ, Chinju 660701, South Korea. [Cheon, B. G.; Goh, Y. M.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Danilov, M.; Jaegle, I.; Sahoo, H.; Solovieva, E.; Vahsen, S. E.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Iwasaki, Y.; Kichimi, H.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Tsuboyama, T.; Uno, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Ikerbasque, Bilbao 48011, Spain. [Bhuyan, B.; Dutta, D.; Libby, J.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Liu, Z. Q.; Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Mussa, R.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Chilikin, K.; Chistov, R.; Mizuk, R.; Pakhlova, G.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Staric, M.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Zupanc, A.; Kronenbitter, B.; Kuhr, T.; Prim, M.; Roehrken, M.] Karlsruher Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kim, H. O.; Kim, M. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chekelian, V.; Chobanova, V.; Dalseno, J.; Kiesling, C.; Moll, A.; Nedelkovska, E.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Danilov, M.; Mizuk, R.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Inami, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Horii, Y.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Hayashii, H.; Iwashita, T.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Chang, P.; Chen, P.; Hou, W. -S.; Hsiung, Y. B.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Brodzicka, J.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Kawasaki, T.; Miyata, H.; Watanabe, M.] Niigata Univ, Niigata 9502181, Japan. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Fast, J. E.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bala, A.] Panjab Univ, Chandigarh 160014, India. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, J.; Ryu, S.; Tanida, K.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.; Park, C. W.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Bala, A.; Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Kato, E.; Saito, T.; Sanuki, T.; Sato, Y.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo 1848588, Japan. [Tamponi, U.] Univ Torino, I-10124 Turin, Italy. [Piilonen, L. E.; Wang, X. L.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kwon, Y. -J.; Sohn, Y. -S.] Yonsei Univ, Seoul 120749, South Korea. RP Zupanc, A (reprint author), Karlsruher Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. EM anze.zupanc@ijs.si RI Nitoh, Osamu/C-3522-2013; Aihara, Hiroaki/F-3854-2010; Ishikawa, Akimasa/G-6916-2012; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chilikin, Kirill/B-4402-2014; Chistov, Ruslan/B-4893-2014; Pakhlova, Galina/C-5378-2014; Solovieva, Elena/B-2449-2014; OI Trabelsi, Karim/0000-0001-6567-3036; Mussa, Roberto/0000-0002-0294-9071; CHANG, PAO-TI/0000-0003-4064-388X; HSIUNG, YEE/0000-0003-4801-1238; Aihara, Hiroaki/0000-0002-1907-5964; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Chilikin, Kirill/0000-0001-7620-2053; Chistov, Ruslan/0000-0003-1439-8390; Pakhlova, Galina/0000-0001-7518-3022; Solovieva, Elena/0000-0002-5735-4059; WANG, MIN-ZU/0000-0002-0979-8341 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund [P 22742-N16]; National Natural Science Foundation of China [10575109, 10775142, 10875115, 10825524]; Ministry of Education, Youth and Sports of the Czech Republic [MSM0021620859]; Carl Zeiss Foundation; Deutsche Forschungsgemeinschaft and the VolkswagenStiftung; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; BK21 and WCU program of the Ministry Education Science and Technology, National Research Foundation of Korea [2010-0021174, 2011-0029457, 2012-0008143, 2012R1A1A2008330]; BRL program under NRF [KRF-2011-0020333]; GSDC of the Korea Institute of Science and Technology Information; Polish Ministry of Science and Higher Education and the National Science Center; Ministry of Education and Science of the Russian Federation; Russian Federal Agency for Atomic Energy; Slovenian Research Agency; Basque Foundation for Science (IKERBASQUE); UPV/EHU under program UFI [11/55]; Swiss National Science Foundation; National Science Council; Ministry of Education of Taiwan; U.S. Department of Energy; National Science Foundation; MEXT for Science Research in a Priority Area ("New Development of Flavor Physics"); JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics") FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund under Grant No. P 22742-N16; the National Natural Science Foundation of China under contract No. 10575109, 10775142, 10875115 and 10825524; the Ministry of Education, Youth and Sports of the Czech Republic under contract No. MSM0021620859; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; The BK21 and WCU program of the Ministry Education Science and Technology, National Research Foundation of Korea Grant No. 2010-0021174, 2011-0029457, 2012-0008143, 2012R1A1A2008330, BRL program under NRF Grant No. KRF-2011-0020333, and GSDC of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Basque Foundation for Science (IKERBASQUE) and the UPV/EHU under program UFI 11/55; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics"), and from JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics"). NR 45 TC 15 Z9 15 U1 0 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 25 PY 2013 IS 9 AR 139 DI 10.1007/JHEP09(2013)139 PG 35 WC Physics, Particles & Fields SC Physics GA 226GW UT WOS:000325024000003 ER PT J AU Riscassi, AL Scanlon, TM AF Riscassi, Ami L. Scanlon, Todd M. TI Particulate and dissolved mercury export in streamwater within three mid-Appalachian forested watersheds in the US SO JOURNAL OF HYDROLOGY LA English DT Article DE Mercury; Streamwater flux; Episodic transport; Forested; Watershed; Shenandoah National Park ID SHENANDOAH NATIONAL-PARK; ORGANIC-CARBON; METHYL MERCURY; TRANSPORT; DEPOSITION; CATCHMENTS; METHYLMERCURY; WISCONSIN; ECOSYSTEM; VIRGINIA AB Forested uplands retain Hg in soils from atmospheric deposition and are a potential long-term source of Hg to downstream waters. Accurate estimates of dissolved and particulate mercury (Hg-D, and Hg-P, respectively) streamwater fluxes are needed to track the movement and storage of Hg in these ecosystems. It is well established that frequent sampling during high-flow events, when Hg concentrations can vary by orders of magnitude, is necessary to quantify Hg export in these systems. However, in part due to the difficulties of consistently sampling during these short-duration periods, and lack of alternative surrogate measures, no studies have quantified Hg-D, and Hg-P export during storm flow relative to the total annual flux. At three mid-Appalachian forested watersheds, we sampled streamwater bi-weekly and hourly during storm events using both manual and automated techniques for 18 months and investigated the feasibility of using turbidity measured with an in situ sonde as a surrogate measure for Hg-P. We determined turbidity had a much stronger correlation to Hg-P (r(2) = 0.78-0.98) as compared to specific discharge (r(2) = 0.36-0.55), making it an effective high-frequency surrogate at each site. For the year-long study, we found that approximately 80% of the total Hg (Hg-T) flux was exported during the high-flow periods corresponding to approximately 1% of the time. Particulate Hg accounted for the majority of annual Hg-T fluxes at all three sites (58-85%) as a consequence of being more strongly flow-activated relative to the dissolved form. Despite being associated with relatively low dissolved organic carbon (DOC) concentrations, the Hg-T fluxes from these forested Appalachian watersheds, which ranged from 1.26 to 3.71 mu g m(-2) yr(-1), were comparable to fluxes reported in other regions of the world (C) 2013 Elsevier B.V. All rights reserved. C1 [Riscassi, Ami L.; Scanlon, Todd M.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. RP Riscassi, AL (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM riscassial@oml.gov; tms2v@virginia.edu FU Environmental Protection Agency (EPA) [EPA-STAR- FP916941]; National Science Foundation (NSF) [EAR-0645697]; National Park Service; U.S. Environmental Protection Agency; U.S.D.A. Forest Service; Virginia Department of Game and Inland Fisheries; Trout Unlimited FX Funding was provided by the Environmental Protection Agency (EPA) Science to Achieve Results (STAR) graduate fellowship (EPA-STAR- FP916941) to A.L.R., and a National Science Foundation (NSF) Hydrologic Science Program grant (EAR-0645697) to T.M.S. The National Park Service Mid-Atlantic Network provided the three water quality sondes used in this study. This research is a contribution to the Shenandoah Watershed Study and the Virginia Trout Stream Sensitivity Study. Funding and support for these programs has been provided by the National Park Service, the U.S. Environmental Protection Agency, the U.S.D.A. Forest Service, the Virginia Department of Game and Inland Fisheries, and Trout Unlimited. Susie Maben, Frank Deviney and Rick Webb of the Shenandoah Watershed Study provided stage and discharge data as well as sonde calibration materials. We acknowledge the thoughtful comments of three anonymous reviewers that improved the clarity of this paper. The U.S. EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of the EPA. NR 40 TC 5 Z9 5 U1 2 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD SEP 25 PY 2013 VL 501 BP 92 EP 100 DI 10.1016/j.jhydrol.2013.07.041 PG 9 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 231BP UT WOS:000325388300008 ER PT J AU Mau, Y Haim, L Hagberg, A Meron, E AF Mau, Yair Haim, Lev Hagberg, Aric Meron, Ehud TI Competing resonances in spatially forced pattern-forming systems SO PHYSICAL REVIEW E LA English DT Article ID NONEQUILIBRIUM SYSTEMS; OSCILLATORY SYSTEMS; BANDED VEGETATION; PHASE-LOCKING; ENTRAINMENT; COMMENSURATE; MODULATION; DIFFUSION; BREAKING; WAVES AB Spatial periodic forcing can entrain a pattern-forming system in the same way as temporal periodic forcing can entrain an oscillator. The forcing can lock the pattern's wave number to a fraction of the forcing wave number within tonguelike domains in the forcing parameter plane, it can increase the pattern's amplitude, and it can also create patterns below their onset. We derive these results using a multiple-scale analysis of a spatially forced Swift-Hohenberg equation in one spatial dimension. In two spatial dimensions the one-dimensional forcing can induce a symmetry-breaking instability that leads to two-dimensional (2D) patterns, rectangular or oblique. These patterns resonate with the forcing by locking their wave-vector component in the forcing direction to half the forcing wave number. The range of this type of 2:1 resonance overlaps with the 1:1 resonance tongue of stripe patterns. Using a multiple-scale analysis in the overlap region we show that the 2D patterns can destabilize the 1:1 resonant stripes even at exact resonance. This result sheds new light on the use of spatial periodic forcing for controlling patterns. C1 [Mau, Yair; Haim, Lev; Meron, Ehud] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. [Hagberg, Aric] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Meron, Ehud] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Dept Solar Energy & Environm Phys, IL-84990 Sede Boqer, Israel. RP Mau, Y (reprint author), Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. EM yairmau@gmail.com RI MERON, EHUD/F-1810-2012 FU United States-Israel Binational Science Foundation [2008241]; Laboratory Directed Research and Development program at Los Alamos National Laboratory under the Department of Energy [DE-AC52-06NA25396] FX The support of the United States-Israel Binational Science Foundation (Grant No. 2008241) is gratefully acknowledged. Part of this work was funded by the Laboratory Directed Research and Development program at Los Alamos National Laboratory under the Department of Energy Contract No. DE-AC52-06NA25396. NR 47 TC 13 Z9 13 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD SEP 25 PY 2013 VL 88 IS 3 AR 032917 DI 10.1103/PhysRevE.88.032917 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 228DB UT WOS:000325164400005 PM 24125335 ER PT J AU Antipov, S Babzien, M Jing, C Fedurin, M Gai, W Kanareykin, A Kusche, K Yakimenko, V Zholents, A AF Antipov, S. Babzien, M. Jing, C. Fedurin, M. Gai, W. Kanareykin, A. Kusche, K. Yakimenko, V. Zholents, A. TI Subpicosecond Bunch Train Production for a Tunable mJ Level THz Source SO PHYSICAL REVIEW LETTERS LA English DT Article ID CAPABILITIES; FACILITY AB A strong energy modulation in an electron bunch passing through a dielectric-lined waveguide was recently demonstrated in Antipov et al., Phys. Rev. Lett. 108, 144801 (2012). In this Letter, we demonstrate a successful conversion of this energy modulation into a beam density modulation, and the formation of a series of microbunches with a subpicosecond periodicity by means of magnetic optics (chicane). A strong coherent transition radiation signal produced by the microbunches is obtained and the tunability of its carrier frequency in the 0.68-0.9 THz range by regulating the energy chirp in the incoming electron bunch is demonstrated using infrared interferometry. A tabletop, compact, tunable, and narrow-band source of intense THz radiation based on this technology is proposed. C1 [Antipov, S.; Jing, C.; Kanareykin, A.] Euclid Techlabs LLC, Solon, OH 44139 USA. [Babzien, M.; Fedurin, M.; Kusche, K.; Yakimenko, V.] Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA. [Antipov, S.; Jing, C.; Gai, W.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Zholents, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Kanareykin, A.] St Petersburg Electrotech Univ LETI, St Petersburg 197376, Russia. RP Antipov, S (reprint author), Euclid Techlabs LLC, Solon, OH 44139 USA. FU DOE SBIR program [DE-SC0006299]; U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX Euclid Techlabs LLC acknowledges support from the DOE SBIR program Grant No. DE-SC0006299 and U.S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357. The authors thank G. Andonian, O. Williams, S. Barber, B. O'Shea, and J. Rosenzweig of UCLA for providing the RadiaBeam BLIS interferometer and other essential experimental hardware. NR 24 TC 18 Z9 18 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 25 PY 2013 VL 111 IS 13 AR 134802 DI 10.1103/PhysRevLett.111.134802 PG 5 WC Physics, Multidisciplinary SC Physics GA 230SG UT WOS:000325362500008 PM 24116784 ER PT J AU Zhou, L Dimakis, E Hathwar, R Aoki, T Smith, DJ Moustakas, TD Goodnick, SM McCartney, MR AF Zhou, Lin Dimakis, E. Hathwar, R. Aoki, Toshihiro Smith, David J. Moustakas, T. D. Goodnick, S. M. McCartney, Martha R. TI Measurement and effects of polarization fields on one-monolayer-thick InN/GaN multiple quantum wells SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-BEAM EPITAXY; GROUP-III NITRIDES; ELECTRONIC-STRUCTURES; PHASE-SEPARATION; INN; GROWTH; HOLOGRAPHY; FILMS; GAN AB Polarization fields associated with one-monolayer-thick InN/GaN multiple quantum wells (MQWs) cause shifts of the photoluminescence peak that depend on the GaN barrier layer thickness. Diffraction contrast and aberration-corrected scanning transmission electron microscopy show that the InN QWs are well defined and coherently strained. Mapping of electrostatic potential using off-axis electron holography shows that the electric fields inside the GaN barriers decrease from similar to 0.7 to similar to 0.2 MV/cm as the barrier layer thickness increases from 5 to 20 nm. Atomistic tight-binding calculations agree closely with experiment, and confirm that changes in optical emission of these III-nitride quantum wells result from changes in the spontaneous and piezoelectric polarization fields in the InN quantum wells and the GaN barrier layers. Overall, this QW system provides the basis for InN-based light-emitting devices operating across a useful band of wavelengths at room temperature. C1 [Zhou, Lin; Smith, David J.; McCartney, Martha R.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Dimakis, E.; Moustakas, T. D.] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. [Hathwar, R.; Goodnick, S. M.] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. [Aoki, Toshihiro] Arizona State Univ, LeRoy Eyring Ctr Solid State Sci, Tempe, AZ 85287 USA. [Zhou, Lin] US DOE, Ames Lab, Div Engn & Mat Sci, Ames, IA 50011 USA. RP Zhou, L (reprint author), Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. EM linzhou@ameslab.gov RI Aoki, Toshihiro/I-4852-2015; Moustakas, Theodore/D-9249-2016 OI Moustakas, Theodore/0000-0001-8556-884X FU DOE Grant [DE-FG02-04ER46168, DE-FG02-06ER46332]; NSF Grant [DMR-0821796] FX The electron holography studies at Arizona State University were partially supported by DOE Grant No. DE-FG02-04ER46168 and the work at Boston University was supported by the DOE Grant No. DE-FG02-06ER46332. We acknowledge use of facilities in the John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University. Acquisition of the JEM-ARM 200F was supported by NSF Grant No. DMR-0821796. NR 20 TC 5 Z9 5 U1 2 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 25 PY 2013 VL 88 IS 12 AR 125310 DI 10.1103/PhysRevB.88.125310 PG 5 WC Physics, Condensed Matter SC Physics GA 225HN UT WOS:000324953200003 ER PT J AU Prelovsek, S Leskovec, L Lang, CB Mohler, D AF Prelovsek, Sasa Leskovec, Luka Lang, C. B. Mohler, Daniel TI K pi scattering and the K* decay width from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; QUANTUM-FIELD THEORIES; FINITE-VOLUME; PARTICLE STATES; MATRIX; RESONANCE; MESON AB K* mesons and in particular the K*(892) were frequently addressed in lattice simulations, but always while ignoring that the K*(892) decays strongly. We present an exploratory extraction of the masses and widths for the K* resonances by simulating K pi scattering in p waves with I 1/2 on the lattice. The K pi system with total momenta P = 2 pi/Le(z), 2 pi/L(e(x) + e(y)), and 0, that allows the extraction of phase shifts at several values of K pi relative momenta, is studied. A Breit-Wigner fit of the phase renders a K*(892) resonance mass m(lat) = 891 +/- 14 MeV and the K*(892) -> K pi coupling g(lat) = 5.7 +/- 1.6 compared to the experimental values m(exp) approximate to 892 MeV and g(exp) = 5.72 +/- 0: 06, where g parametrizes the K* -> K pi width. When extracting the phase shift around the K*(1410) and K-2*(1430) resonances, we take into account the mixing of p waves with d waves and assume that the scattering is elastic in our simulation. This gives us an estimate of the K*(1410) resonance mass m(lat) = 1.33 +/- 0.02 GeV compared to m(exp) = 1.414 -> 0.0015 GeV, assuming the experimental K*(1410)-> K pi coupling. We contrast the resonant I = 1/2 channel with the repulsive nonresonant I = 3/2 channel, where the phase is found to be negative and small, in agreement with experiment. C1 [Prelovsek, Sasa] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Prelovsek, Sasa; Leskovec, Luka] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Lang, C. B.] Graz Univ, Inst Phys, A-8010 Graz, Austria. [Mohler, Daniel] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Prelovsek, S (reprint author), Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. EM sasa.prelovsek@ijs.si; luka.leskovec@ijs.si; christian.lang@uni-graz.at; dmohler@fnal.gov OI Mohler, Daniel/0000-0003-1852-9562 FU Slovenian Research Agency; Fermi Research Alliance, LLC [De-AC02- 07CH11359]; United States Department of Energy FX We thank Anna Hasenfratz for providing the gauge configurations used for this work. We would like to thank J. Bulava, S. Descotes-Genon, C. Morningstar, and C. Thomas for valuable discussions. The calculations were performed at Jozef Stefan Institute. This work is supported by the Slovenian Research Agency. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02- 07CH11359 with the United States Department of Energy. NR 50 TC 19 Z9 20 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 25 PY 2013 VL 88 IS 5 AR 054508 DI 10.1103/PhysRevD.88.054508 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 226IN UT WOS:000325029000002 ER PT J AU Xing, CH Jensen, C Folsom, C Ban, H Marshall, DW AF Xing, Changhu Jensen, Colby Folsom, Charles Ban, Heng Marshall, Douglas W. TI An optimal guarding scheme for thermal conductivity measurement using a guarded cut-bar technique, part 2 guarding mechanism SO APPLIED THERMAL ENGINEERING LA English DT Article DE Thermal conductivity; Guarded cut-bar technique; Optimal guarding; Finite element ID APPARATUS AB In measuring thermal conductivity using the guarded cut-bar technique, three guarding schemes have been recommended in literature including isothermal, linear-matched, and continuous-matched. However, no comprehensive evaluation or guidance is given to describe their influence on measurement accuracy. Using finite-element simulations, each of these guarding conditions is analyzed in detail. Depending on system parameters, the recommended guarding schemes are shown to result in systematic errors ranging from 4% to 49% for isothermal, -5% to 17% for linear-matched, and up to 6% for continuous-matched, with potential for greater error outside the parameters used in this study. A newly proposed, optimal guarding scheme is described while providing a comparison of the heat transfer mechanisms behind each of the guarding methods. Various system geometries, including ratios of sample to meter bar length, insulation thickness to sample diameter, and sample aspect ratio, have been studied to verify the validity of the optimal guarding method and show the influence of each parameter on the optimal condition. The practical insignificance of the average temperature difference between guard and sample column is verified and explained showing that the optimal guarding condition is really related to the guard temperature gradient. Direction is given for implementing the optimal guarding scheme to any configuration with the creation of an optimal guarding chart which is a function of sample to meter bar thermal conductivity ratio. The chart is verified experimentally using results from measurements on certified Pyroceram 9606 (<1.3% deviation), stainless steel (<1% deviation), and iron (<3.2% deviation). Following the optimal guarding scheme for the experimental system studied, the temperature gradient ratios between guard and sample column are around 1.8 for Pyroceram, unity for stainless steel and 0.55-0.6 for iron, respectively, at the studied temperatures (also see Part 1 of this work). (C) 2013 Elsevier Ltd. All rights reserved. C1 [Xing, Changhu; Jensen, Colby; Folsom, Charles; Ban, Heng] Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT 84322 USA. [Marshall, Douglas W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Xing, CH (reprint author), Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT 84322 USA. EM changhu.xing@usu.edu OI Jensen, Colby/0000-0001-8925-7758 FU U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517]; Department of Energy Nuclear Energy University Programs Graduate Fellowship FX The work is supported by U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office, contract DE-AC07-05ID14517. Work performed by Colby Jensen is supported under a Department of Energy Nuclear Energy University Programs Graduate Fellowship. NR 21 TC 4 Z9 4 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-4311 J9 APPL THERM ENG JI Appl. Therm. Eng. PD SEP 25 PY 2013 VL 59 IS 1-2 BP 504 EP 514 DI 10.1016/j.applthermaleng.2013.06.021 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Mechanical; Mechanics SC Thermodynamics; Energy & Fuels; Engineering; Mechanics GA 213RR UT WOS:000324077800056 ER PT J AU Durand, AM Belanger, DP Booth, CH Ye, F Chi, S Fernandez-Baca, JA Bhat, M AF Durand, A. M. Belanger, D. P. Booth, C. H. Ye, F. Chi, S. Fernandez-Baca, J. A. Bhat, M. TI Magnetism and phase transitions in LaCoO3 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SPIN-STATE; NANOPARTICLES; LA1-XSRXCOO3; LA1-XSR(X)COO3; TEMPERATURE AB Neutron scattering and magnetometry measurements have been used to study phase transitions in LaCoO3 (LCO). For H <= 100 Oe, evidence for a ferromagnetic (FM) transition is observed at T-c approximate to 87 K. For 1 kOe <= H <= 60 kOe, no transition is apparent. For all H, Curie-Weiss analysis shows predominantly antiferromagnetic (AFM) interactions for T > T-c, but the lack of long-range AFM order indicates magnetic frustration. We argue that the weak ferromagnetism in bulk LCO is induced by lattice strain, as is the case with thin films and nanoparticles. The lattice strain is present at the bulk surfaces and at the interfaces between the LCO and a trace cobalt oxide phase. The ferromagnetic ordering in the LCO bulk is strongly affected by the Co-O-Co angle (gamma), in agreement with recent band calculations which predict that ferromagnetic long-range order can only take place above a critical value, gamma C. Consistent with recent thin film estimations, we find gamma C = 162.8 degrees. For gamma > gamma C, we observe power-law behavior in the structural parameters. gamma decreases with T until the critical temperature, T-o approximate to 37 K; below T-o the rate of change becomes very small. For T < T-o, FM order appears to be confined to regions close to the surfaces, likely due to the lattice strain keeping the local Co-O-Co angle above gamma C. C1 [Durand, A. M.; Belanger, D. P.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Booth, C. H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Ye, F.; Chi, S.; Fernandez-Baca, J. A.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Bhat, M.] Castilleja Sch, Palo Alto, CA 94301 USA. RP Durand, AM (reprint author), Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. EM dave@dave.ucsc.edu RI Fernandez-Baca, Jaime/C-3984-2014; Ye, Feng/B-3210-2010; Chi, Songxue/A-6713-2013 OI Fernandez-Baca, Jaime/0000-0001-9080-5096; Ye, Feng/0000-0001-7477-4648; Chi, Songxue/0000-0002-3851-9153 FU NSF Major Research Instrumentation (MRI) Program [DMR-1126845]; DOE BES Office of Scientific User Facilities; Office of Science (OS), Office of Basic Energy Sciences (OBES), of the US Department of Energy (DOE) [DE-AC02-05CH11231] FX We thank Y Abdollahian, F Bridges, C de la Cruz, A Elvin, B Harmon, J Howe, S Shastry, and N Sundaram for helpful discussions and/or assistance with measurements. X-ray characterizations were done on an instrument supported by the NSF Major Research Instrumentation (MRI) Program under Grant DMR-1126845. The work at ORNL is supported by the DOE BES Office of Scientific User Facilities. Work at Lawrence Berkeley National Laboratory was supported by the Director, Office of Science (OS), Office of Basic Energy Sciences (OBES), of the US Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. NR 55 TC 13 Z9 13 U1 15 U2 100 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 25 PY 2013 VL 25 IS 38 AR 382203 DI 10.1088/0953-8984/25/38/382203 PG 6 WC Physics, Condensed Matter SC Physics GA 210FW UT WOS:000323816400003 PM 23988608 ER PT J AU Trukhin, AN Shmits, K Jansons, JL Boatner, LA AF Trukhin, Anatoly N. Shmits, Krishjanis Jansons, Janis L. Boatner, Lynn A. TI Ultraviolet luminescence of ScPO4, AlPO4 and GaPO4 crystals SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SELF-TRAPPED EXCITONS AB The luminescence of self-trapped excitons (STEs) was previously observed and described for the case of tetragonal-symmetry ScPO4 single crystals. The subject band in this material is situated in the UV spectral range of similar to 210 nm or similar to 5.8 eV. In the present work, we are both expanding this earlier luminescence study and seeking to identify similar luminescence phenomena in other orthophosphate crystals, i.e., AlPO4 and GaPO4. These efforts have proven to be successful-in spite of the structural differences between these materials and ScPO4. Specifically we have found that for AlPO4 and GaPO4, in addition to an alpha-quartz-like STE, there is a UV luminescence band that is similar in position and decay properties to that of ScPO4 crystals. Potentially this represents an STE in AlPO4 and GaPO4 crystals that is analogous to the STE of ScPO4 and other orthophosphates. The decay kinetics of the UV luminescence of ScPO4 was studied over a wide temperature range from 8 to 300 K, and they exhibited some unusual decay characteristics when subjected to pulses from an F-2 excimer laser (157 nm). These features could be ascribed to a triplet state of the STE that is split in a zero magnetic field. A fast decay of the STE was detected as well, and therefore, we conclude that, in addition to the slow luminescence corresponding to a transition from the triplet state, there are singlet-singlet transitions of the STE. Time-resolved spectra of the slow and fast decay exhibit a small shift (similar to 0.15 eV) indicating that the singlet-triplet splitting is small and the corresponding wavefunction of the STE is widely distributed over the atoms of the ScPO4 crystal where the STE is created. C1 [Trukhin, Anatoly N.; Shmits, Krishjanis; Jansons, Janis L.] Univ Latvia, Inst Solid State Phys, LV-1063 Riga, Latvia. [Boatner, Lynn A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Trukhin, AN (reprint author), Univ Latvia, Inst Solid State Phys, 8 Kengaraga St, LV-1063 Riga, Latvia. EM truhins@cfi.lu.lv RI Trukhin, Anatoly/H-6265-2014; Boatner, Lynn/I-6428-2013 OI Boatner, Lynn/0000-0002-0235-7594 FU Latvian Council [2013.10-5/014]; Latvian National program 'IMIS'; US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work is supported by the Latvian Council grant 2013.10-5/014 as well as Latvian National program 'IMIS'. Research at the Oak Ridge National Laboratory (LAB) was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. The samples of AlPO4 and GaPO4 were presented by Professor J Valbis. NR 10 TC 1 Z9 1 U1 4 U2 34 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 25 PY 2013 VL 25 IS 38 AR 385502 DI 10.1088/0953-8984/2/38/385502 PG 6 WC Physics, Condensed Matter SC Physics GA 210FW UT WOS:000323816400013 PM 23988905 ER PT J AU Meyers, D Moon, EJ Kareev, M Tung, IC Gray, BA Liu, J Bedzyk, MJ Freeland, JW Chakhalian, J AF Meyers, D. Moon, E. J. Kareev, M. Tung, I. C. Gray, B. A. Liu, Jian Bedzyk, M. J. Freeland, J. W. Chakhalian, J. TI Epitaxial stabilization of ultra-thin films of EuNiO3 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID METAL-INSULATOR-TRANSITION; NDNIO3; EARTH AB We report on the synthesis of ultra-thin films of highly distorted EuNiO3 (ENO) grown by interrupted pulse laser epitaxy on YAlO3 perovskite (YAP) substrates. Samples were then investigated with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, reciprocal space mapping, and x-ray absorption spectroscopy. Combined, the measurements revealed the samples exhibited high structural and electronic quality that is of critical importance to the observed electronic and magnetic properties of the rare-earth nickelates. Growth of ultra-thin films of this highly distorted nickelate system in precisely controlled environments provides the ability to thoroughly investigate electronic phases with decoupled metal-to-insulator/charge-order and anti-ferromagnetic transitions. C1 [Meyers, D.; Moon, E. J.; Kareev, M.; Gray, B. A.; Liu, Jian; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Tung, I. C.; Bedzyk, M. J.] Northwestern Univ, Evanston, IL 60208 USA. [Liu, Jian] Lawrence Berkele, Adv Light Source, Berkeley, CA 94720 USA. [Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Moon, E. J.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Liu, Jian] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Meyers, D (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM dmeyers@uark.edu RI Bedzyk, Michael/K-6903-2013; Liu, Jian/I-6746-2013; Moon, Eun Ju/C-7856-2014; Bedzyk, Michael/B-7503-2009; Chakhalian, Jak/F-2274-2015 OI Liu, Jian/0000-0001-7962-2547; FU DOD-ARO [W911NF-11-1-0200]; NSF [DMR-0747808]; US Department of Energy, Office of Science [DEAC02-06CH11357]; MRSEC programme of the National Science Foundation at the Materials Research Center of Northwestern University [DMR-1121262] FX JC was funded by grants from majority DOD-ARO (W911NF-11-1-0200) and partially NSF (DMR-0747808). Work at the Advanced Photon Source is supported by the US Department of Energy, Office of Science under grant No DEAC02-06CH11357. This work made use of the J B Cohen X-Ray Diffraction Facility supported by the MRSEC programme of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University. NR 46 TC 5 Z9 5 U1 3 U2 56 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD SEP 25 PY 2013 VL 46 IS 38 AR 385303 DI 10.1088/0022-3727/46/38/385303 PG 4 WC Physics, Applied SC Physics GA 213ZJ UT WOS:000324099000013 ER PT J AU Vieira, EMF Martin-Sanchez, J Roldan, MA Varela, M Buljan, M Bernstorff, S Barradas, NP Franco, N Correia, MR Rolo, AG Pennycook, SJ Molina, SI Alves, E Chahboun, A Gomes, MJM AF Vieira, E. M. F. Martin-Sanchez, J. Roldan, M. A. Varela, M. Buljan, M. Bernstorff, S. Barradas, N. P. Franco, N. Correia, M. R. Rolo, A. G. Pennycook, S. J. Molina, S. I. Alves, E. Chahboun, A. Gomes, M. J. M. TI Influence of RF-sputtering power on formation of vertically stacked Si1-xGex nanocrystals between ultra-thin amorphous Al2O3 layers: structural and photoluminescence properties SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID GE NANOCRYSTALS; LUMINESCENCE; MULTILAYERS; DEPOSITION; DEFECTS; MATRIX AB In this work, we investigate the structural and photoluminescence (PL) properties of (SiGe+Al2O3)/Al2O3 multi-layer films with layer thicknesses in the range of a few nanometres. The films were prepared by magnetron sputtering deposition at room temperature followed by an annealing process to promote the formation of small SiGe nanocrystals (NCs) (similar to 3 to 5 nm) embedded between ultra-thin (similar to 6 nm thickness) Al2O3 layers. Our results show that the structural and compositional properties of the films can be tuned by changing the RF-power. It is found that nearly spherical and well confined isolated SiGe NCs (similar to 5 nm) are obtained for an RF-power value of 80 W. The PL properties of the films were studied and optical emission in the blue visible wavelength region was observed. C1 [Vieira, E. M. F.; Rolo, A. G.; Chahboun, A.; Gomes, M. J. M.] Univ Minho, Ctr Phys, P-4710057 Braga, Portugal. [Vieira, E. M. F.; Rolo, A. G.; Chahboun, A.; Gomes, M. J. M.] Univ Minho, Dept Phys, P-4710057 Braga, Portugal. [Martin-Sanchez, J.] CSIC, Inst Opt, Laser Proc Grp, E-28006 Madrid, Spain. [Roldan, M. A.; Varela, M.] Univ Complutense Madrid, Dept Fis Aplicada 3, E-28040 Madrid, Spain. [Varela, M.; Pennycook, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Buljan, M.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Bernstorff, S.] Elettra Sincrotrone Trieste, I-34149 Basovizza, Italy. [Barradas, N. P.] Univ Lisbon, Ctr Ciencias & Tecnol Nucl, Inst Super Tecn, P-2695066 Bobadela Lrs, Portugal. [Franco, N.; Alves, E.] Univ Lisbon, Inst Plasma & Fusao Nucl, Inst Super Tecn, P-1049001 Lisbon, Portugal. [Correia, M. R.] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal. [Correia, M. R.] Univ Aveiro, I3N, P-3810193 Aveiro, Portugal. [Molina, S. I.] Univ Cadiz, Dept Ciencia Mat & Ing Metalurg, Cadiz, Spain. [Molina, S. I.] Univ Cadiz, IQ, Cadiz, Spain. [Chahboun, A.] FST Tanger, Dept Phys, Tanger, Morocco. RP Vieira, EMF (reprint author), Univ Minho, Ctr Phys, P-4710057 Braga, Portugal. EM eliana_vieira@fisica.uminho.pt; mjesus@fisica.uminho.pt RI Universidade Aveiro, Departamento Fisica/E-4128-2013; Pessoa Barradas, Nuno/B-8295-2012; Alves, Eduardo/K-2481-2013; Franco, Nuno/N-8396-2013; Varela, Maria/E-2472-2014; Varela, Maria/H-2648-2012; Molina, Sergio/A-8241-2008; Vieira, Eliana/O-2386-2016; OI Gomes, Maria de Jesus de Matos/0000-0002-5793-2074; Chahboun, Adil/0000-0002-8043-5850; Correia, Maria Rosario/0000-0003-3781-0085; Rolo, Anabela/0000-0003-2078-8627; Pessoa Barradas, Nuno/0000-0001-7795-8573; Alves, Eduardo/0000-0003-0633-8937; Franco, Nuno/0000-0002-2393-8726; Varela, Maria/0000-0002-6582-7004; Molina, Sergio/0000-0002-5221-2852; Vieira, Eliana/0000-0001-8198-6024; Chahboun, Adil A./0000-0002-3113-316X FU ELETTRA Synchrotron Radiation Center; FEDER through the COMPETE Programme; Portuguese Foundation for Science and Technology (FCT) [PEst-C/FIS/UI607/2011, PEst-C/CTM/LA0025/2011]; European COST Actions [MP0901-NanoTP, MP0903-NanoAlloy]; European Community [227012]; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy; Croatian Ministry of Science, Higher Education and Sport [098-0982886-2895]; Karlsruhe Nano Micro Facility (KNMF); Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT); FCT; POPH [SFRH/BD/45410/2008]; Spanish CSIC [JAE-DOC-070/01]; FSE; Spanish MICINN/MEC [TEC2011-29120-C05-03, CSD2009-00013]; Junta de Andalucia (PAI research group TEP-120) [P08-TEP-03516]; European Research Council FX This study has been partially funded by: (i) ELETTRA Synchrotron Radiation Center for the measurements at the SAXS beamline; (ii) FEDER through the COMPETE Programme and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEst-C/FIS/UI607/2011 and PEst-C/CTM/LA0025/2011; (iii) European COST Actions MP0901-NanoTP and MP0903-NanoAlloy. This work has been supported by the European Community as an Integrating Activity 'Support of Public and Industrial Research Using Ion Beam Technology (SPIRIT)' under EC contract no. 227012. Electron microscopy work at ORNL was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy (SJP, MV). MB acknowledges support from the Croatian Ministry of Science, Higher Education and Sport, (project number 098-0982886-2895). AGR thanks the support of the Karlsruhe Nano Micro Facility (KNMF, www.kit.edu/knmf), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu). EMFV is grateful for financial support through the FCT and POPH grant SFRH/BD/45410/2008. JMS is grateful for financial support through the Spanish CSIC JAE-DOC-070/01 programme co-funded by FSE. SIM acknowledges support by the Spanish MICINN/MEC (projects TEC2011-29120-C05-03 and CONSOLIDER INGENIO CSD2009-00013) and the Junta de Andalucia (PAI research group TEP-120; project P08-TEP-03516). MR acknowledges financial support from the European Research Council Starting Investigator Award 'STEMOX'. The authors would like to thank Professor David J Barber (University of Essex) for his helpful discussions and critical reading of this manuscript, and Engineer Jose Santos for technical support at Thin Film Laboratory. NR 31 TC 0 Z9 0 U1 1 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD SEP 25 PY 2013 VL 46 IS 38 AR 385301 DI 10.1088/0022-3727/46/38/385301 PG 10 WC Physics, Applied SC Physics GA 213ZJ UT WOS:000324099000011 ER PT J AU D'Eramo, F Thaler, J Thomas, Z AF D'Eramo, Francesco Thaler, Jesse Thomas, Zachary TI Anomaly mediation from unbroken supergravity SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID YANG-MILLS MATTER; CONFORMAL SUPERGRAVITY; SUPERSYMMETRY BREAKING; EFFECTIVE LAGRANGIANS; N=1 SUPERGRAVITY; CHIRAL MATTER; ONE-LOOP; RENORMALIZATION; INVARIANCE AB When supergravity (SUGRA) is spontaneously broken, it is well known that anomaly mediation generates sparticle soft masses proportional to the gravitino mass. Recently, we showed that one-loop anomaly-mediated gaugino masses should be associated with unbroken supersymmetry (SUSY). This counterintuitive result arises because the underlying symmetry structure of (broken) SUGRA in flat space is in fact (unbroken) SUSY in anti-de Sitter (AdS) space. When quantum corrections are regulated in a way that preserves SUGRA, the underlying AdS curvature (proportional to the gravitino mass) necessarily appears in the regulated action, yielding soft masses without corresponding goldstino couplings. In this paper, we extend our analysis of anomaly mediation to sfermion soft masses. Already at tree-level we encounter a number of surprises, including the fact that zero soft masses correspond to broken (AdS) SUSY. At one-loop, we explain how anomaly mediation appears when regulating SUGRA in a way that preserves super-Weyl invariance. We find that recent claims in the literature about the non-existence of anomaly mediation were based on a Wilsonian effective action with residual gauge dependence, and the gauge-invariant 1PI effective action contains the expected anomaly-mediated spectrum. Finally, we calculate the sfermion spectrum to all orders, and use supertrace relations to derive the familiar two-loop soft masses from minimal anomaly mediation, as well as unfamiliar tree-level and one-loop goldstino couplings consistent with renormalization group invariance. C1 [D'Eramo, Francesco] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [D'Eramo, Francesco] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Thaler, Jesse; Thomas, Zachary] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP D'Eramo, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fraderamo@berkeley.edu; jthaler@mit.edu; ztt@mit.edu OI Thaler, Jesse/0000-0002-2406-8160; D'Eramo, Francesco/0000-0001-8499-7685 FU U.S. Department of Energy (DOE) [DE-FG02-05ER-41360]; DOE [DE-FG02-11ER-41741]; Miller Institute for Basic Research in Science FX We benefited from conversations with Allan Adams, Daniel Freedman, Markus Luty, Yasunori Nomura, Riccardo Rattazzi, and Raman Sundrum. We thank Senarath de Alwis for vigorous discussions on these issues. J. T. and Z. T. are supported by the U.S. Department of Energy (DOE) under cooperative research agreement DE-FG02-05ER-41360. J. T. is also supported by the DOE under the Early Career research program DE-FG02-11ER-41741. F. D. is supported by the Miller Institute for Basic Research in Science. NR 60 TC 11 Z9 11 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 24 PY 2013 IS 9 AR 125 DI 10.1007/JHEP09(2013)125 PG 43 WC Physics, Particles & Fields SC Physics GA AA5FQ UT WOS:000331121900003 ER PT J AU Kweon, H Yiacoumi, S Lee, I McFarlane, J Tsouris, C AF Kweon, Hyojin Yiacoumi, Sotira Lee, Ida McFarlane, Joanna Tsouris, Costas TI Influence of Surface Potential on the Adhesive Force of Radioactive Gold Surfaces SO LANGMUIR LA English DT Article ID CHERNOBYL EXCLUSION ZONE; VAPOR ADSORPTION; CAPILLARY FORCE; FOREST-FIRES; MICROSCOPY; AEROSOLS; WATER; MICA; REDISTRIBUTION; RADIONUCLIDES AB Radioactive particles may acquire surface potential through self-charging, and thus can behave differently from natural aerosols in atmospheric systems with respect to aggregation, deposition, resuspension, and transport to areas surrounding a radioactive source. This work focuses on the adhesive force between radioactive particles and metallic surfaces, which relates to the deposition and resuspension of particles on surrounding surfaces. Scanning surface potential microscopy was employed to measure the surface potential of radioactive gold foil. Atomic force microscopy was used to investigate the adhesive force for gold that acquired surface charge either by irradiation or by application of an equivalent electrical bias. Overall, the adhesive force increases with increasing surface potential or relative humidity. However, a behavior that does not follow the general trend was observed for the irradiated gold at a high decay rate. A comparison between experimental measurements and calculated values revealed that the surface potential promotes adhesion. The contribution of the electrostatic force at high levels of relative humidity was lower than the one found using theoretical calculations due to the effects caused by enhanced adsorption rate of water molecules under a high surface charge density. The results of this study can be used to provide a better understanding of the behavior of radioactive particles in atmospheric systems. C1 [Kweon, Hyojin; Yiacoumi, Sotira; Tsouris, Costas] Georgia Inst Technol, Atlanta, GA 30332 USA. [Lee, Ida] Univ Tennessee, Knoxville, TN 37996 USA. [McFarlane, Joanna; Tsouris, Costas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsouris, C (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. EM tsourisc@ornl.gov RI Tsouris, Costas/C-2544-2016; McFarlane, Joanna/C-5998-2016 OI Tsouris, Costas/0000-0002-0522-1027; McFarlane, Joanna/0000-0002-4112-5104 FU Defense Threat Reduction Agency [HDTRA1-08-10-BRCWMD-BAA]; U.S. Department of Energy [DE-AC05-00OK22725] FX This work was supported by the Defense Threat Reduction Agency under Grant Number HDTRA1-08-10-BRCWMD-BAA. The manuscript has been coauthored by UT-Battelle, LLC, under Contract No. DE-AC05-00OK22725 with the U.S. Department of Energy. We are also thankful to Amy Harkey for editing the manuscript and Mr. Yong-ha Kim for reviewing the manuscript. NR 39 TC 5 Z9 5 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 24 PY 2013 VL 29 IS 38 BP 11876 EP 11883 DI 10.1021/la4008476 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 295XA UT WOS:000330148500008 PM 23971793 ER PT J AU Uhrig, D Morar, GC Goswami, M Huang, JS Sumpter, BG Zhou, J Kilbey, SM Pickel, DL AF Uhrig, David Morar, George C. Goswami, Monojoy Huang, Jingsong Sumpter, Bobby G. Zhou, Jia Kilbey, S. Michael, II Pickel, Deanna L. TI Molecular Heterogeneity of Polystyrene-Modified Fullerene Core Stars SO MACROMOLECULES LA English DT Article ID GRADIENT INTERACTION CHROMATOGRAPHY; 2-DIMENSIONAL LIQUID-CHROMATOGRAPHY; POLYMER-SUBSTITUTED FULLERENES; AUGMENTED-WAVE METHOD; COMPLEX POLYMERS; C-60 CORE; ANIONIC-POLYMERIZATION; SYNTHETIC-POLYMERS; THERMAL-STABILITY; BRANCHED POLYMER AB Structure-property relationships of polymeric materials require careful characterization of macromolecular properties. In this work we use 2-dimensional chromatography, coupling temperature gradient interaction and size exclusion chromatography, as well as density functional theory calculations to clarify that when poly(styryl)lithium anions are reacted with stringently purified C-60, stars with greater than six arms can be attained, in contrast to prior reports. We attribute this apparent contradiction to the limited ability of size exclusion chromatography to separate polymers having branched architectures. These results clarify the chemistry of anionically modified fullerenes and also show that more sophisticated separation techniques are necessary when characterizing architecturally complex polymers. C1 [Uhrig, David; Morar, George C.; Goswami, Monojoy; Huang, Jingsong; Sumpter, Bobby G.; Zhou, Jia; Kilbey, S. Michael, II; Pickel, Deanna L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Goswami, Monojoy; Huang, Jingsong; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Kilbey, S. Michael, II] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Pickel, DL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM deannapickel@gmail.com RI Sumpter, Bobby/C-9459-2013; Goswami, Monojoy/G-7943-2012; Uhrig, David/A-7458-2016; Huang, Jingsong/A-2789-2008 OI Sumpter, Bobby/0000-0001-6341-0355; Goswami, Monojoy/0000-0002-4473-4888; Uhrig, David/0000-0001-8447-6708; Huang, Jingsong/0000-0001-8993-2506 FU Oak Ridge National Laboratory by the Office of Science, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22750, DE-AC02-05CH11231] FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Science, U.S. Department of Energy. The theoretical research used resources of Oak Ridge National Laboratory and of the National Energy Research Scientific Computing Center, which are supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22750 and Contract No. DE-AC02-05CH11231, respectively. The authors also thank Taihyun Chang for helpful discussions on setting up the TGIC system. NR 60 TC 2 Z9 2 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD SEP 24 PY 2013 VL 46 IS 18 BP 7451 EP 7457 DI 10.1021/ma4010499 PG 7 WC Polymer Science SC Polymer Science GA 295VY UT WOS:000330145700034 ER PT J AU Dangkulwanich, M Ishibashi, T Liu, SX Kireeva, ML Lubkowska, L Kashlev, M Bustamante, CJ AF Dangkulwanich, Manchuta Ishibashi, Toyotaka Liu, Shixin Kireeva, Maria L. Lubkowska, Lucyna Kashlev, Mikhail Bustamante, Carlos J. TI Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism SO ELIFE LA English DT Article ID STRUCTURAL BASIS; ESCHERICHIA-COLI; SINGLE-MOLECULE; TRIGGER LOOP; NUCLEOSIDE TRIPHOSPHATES; ALLOSTERIC BINDING; DNA TRANSLOCATION; DYNAMICS; FIDELITY; BARRIER AB During transcription elongation, RNA polymerase has been assumed to attain equilibrium between pre- and post-translocated states rapidly relative to the subsequent catalysis. Under this assumption, recent single-molecule studies proposed a branched Brownian ratchet mechanism that necessitates a putative secondary nucleotide binding site on the enzyme. By challenging individual yeast RNA polymerase II with a nucleosomal barrier, we separately measured the forward and reverse translocation rates. Surprisingly, we found that the forward translocation rate is comparable to the catalysis rate. This finding reveals a linear, non-branched ratchet mechanism for the nucleotide addition cycle in which translocation is one of the rate-limiting steps. We further determined all the major on- and off-pathway kinetic parameters in the elongation cycle. The resulting translocation energy landscape shows that the off-pathway states are favored thermodynamically but not kinetically over the on-pathway states, conferring the enzyme its propensity to pause and furnishing the physical basis for transcriptional regulation. C1 [Dangkulwanich, Manchuta; Ishibashi, Toyotaka; Liu, Shixin; Bustamante, Carlos J.] Univ Calif Berkeley, Jason L Choy Lab Single Mol Biophys, Berkeley, CA 94720 USA. [Dangkulwanich, Manchuta; Bustamante, Carlos J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ishibashi, Toyotaka; Bustamante, Carlos J.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Liu, Shixin; Bustamante, Carlos J.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Phys, Berkeley, CA 94720 USA. [Kireeva, Maria L.; Lubkowska, Lucyna; Kashlev, Mikhail] NCI, Gene Regulat & Chromosome Biol Lab, Ctr Canc Res, Frederick, MD 21701 USA. [Bustamante, Carlos J.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bustamante, Carlos J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Bustamante, CJ (reprint author), Univ Calif Berkeley, Jason L Choy Lab Single Mol Biophys, Berkeley, CA 94720 USA. EM carlos@alice.berkeley.edu OI Ishibashi, Toyotaka/0000-0001-8015-2319 FU National Institutes of Health [R01-GM032543]; Department of Energy [DE-AC02-05CH11231]; Howard Hughes Medical Institute FX National Institutes of Health R01-GM032543 Carlos J Bustamante; Department of Energy DE-AC02-05CH11231 Carlos J Bustamante; Howard Hughes Medical Institute Carlos J Bustamante NR 73 TC 32 Z9 32 U1 1 U2 14 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD SEP 24 PY 2013 VL 2 AR e00971 DI 10.7554/eLife.00971 PG 22 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 274SY UT WOS:000328627700003 PM 24066225 ER PT J AU Oliveros, AFO Sahu, S Sanabria, JC AF Osorio Oliveros, Andres Felipe Sahu, Sarira Carlos Sanabria, Juan TI Oscillation of high energy neutrinos in choked GRBs SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; 3 FLAVORS; MATTER; DECOHERENCE; EVOLUTION; SN-1987A; DENSITY AB It is believed that choked gamma-ray bursts (CGRBs) are the potential candidates for the production of high energy neutrinos in GeV-TeV energy range. These CGRBs outnumber the successful GRBs by many orders. So it is important to observe neutrinos from these cosmological objects with the presently operating neutrino telescope Ice-Cube. We study the three-flavor neutrino oscillation of these high energy neutrinos in the presupernova star environment which is responsible for the CGRB. For the presupernova star we consider three different models and calculate the neutrino oscillation probabilities, as well as neutrino flux on the surface of these star. The matter effect modifies the neutrino flux of different flavors on the surface of the star. We have also calculated the flux of these high energy neutrinos on the surface of the Earth. We found that for neutrino energies below <= 10 TeV the flux ratio does not amount to 1: 1: 1, whereas for higher energy neutrinos it does. C1 [Osorio Oliveros, Andres Felipe; Carlos Sanabria, Juan] Univ Los Andes, Bogota, Colombia. [Osorio Oliveros, Andres Felipe] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sahu, Sarira] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, CU, Mexico City 04510, DF, Mexico. RP Oliveros, AFO (reprint author), Univ Los Andes, Bogota, Colombia. EM sarira@nucleares.unam.mx FU DGAPA-UNAM (Mexico) [IN103812] FX We are thankful to the anonymous referee for his valuable comments and suggestions. S. S. is thankful to Departamento de Fisica de Universidad de Los Andes, Bogota, Colombia, for their kind hospitality during his several visits. We thank Karla Patricia Varela for helpful discussions. This work is partially supported by DGAPA-UNAM (Mexico) Project No. IN103812. NR 38 TC 4 Z9 4 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD SEP 24 PY 2013 VL 73 IS 9 AR 2574 DI 10.1140/epjc/s10052-013-2574-8 PG 10 WC Physics, Particles & Fields SC Physics GA 223AS UT WOS:000324775700001 ER PT J AU Miernik, K Rykaczewski, KP Gross, CJ Grzywacz, R Madurga, M Miller, D Batchelder, JC Borzov, IN Brewer, NT Jost, C Korgul, A Mazzocchi, C Mendez, AJ Liu, Y Paulauskas, SV Stracener, DW Winger, JA Wolinska-Cichocka, M Zganjar, EF AF Miernik, K. Rykaczewski, K. P. Gross, C. J. Grzywacz, R. Madurga, M. Miller, D. Batchelder, J. C. Borzov, I. N. Brewer, N. T. Jost, C. Korgul, A. Mazzocchi, C. Mendez, A. J., II Liu, Y. Paulauskas, S. V. Stracener, D. W. Winger, J. A. Wolinska-Cichocka, M. Zganjar, E. F. TI Large beta-Delayed One and Two Neutron Emission Rates in the Decay of Ga-86 SO PHYSICAL REVIEW LETTERS LA English DT Article ID HALF-LIVES; RADIOACTIVITY; NUCLEI AB Beta decay of Ga-86 was studied by means of beta-neutron-gamma spectroscopy. An isotopically pure Ga-86 beam was produced at the Holifield Radioactive Ion Beam Facility using a resonance ionization laser ion source and high-resolution electromagnetic separation. The decay of Ga-86 revealed a half-life of 43(-15)(+21) ms and large beta-delayed one-neutron and two-neutron branching ratios of P-1n = 60(10)% and P-2n = 20(10)%. The beta gamma decay of Ga-86 populated a 527 keV transition that is interpreted as the deexcitation of the first 2(+) state in the N = 54 isotone Ge-86 and suggests a quick onset of deformation in Ge isotopes beyond N = 50. C1 [Miernik, K.; Rykaczewski, K. P.; Gross, C. J.; Grzywacz, R.; Borzov, I. N.; Mendez, A. J., II; Liu, Y.; Stracener, D. W.; Wolinska-Cichocka, M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA. [Miernik, K.; Korgul, A.; Mazzocchi, C.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Grzywacz, R.; Madurga, M.; Miller, D.; Brewer, N. T.; Jost, C.; Paulauskas, S. V.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Batchelder, J. C.; Wolinska-Cichocka, M.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Borzov, I. N.] Joint Inst Nucl Res, Dubna 141980, Russia. [Brewer, N. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Winger, J. A.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. [Wolinska-Cichocka, M.] Univ Warsaw, Heavy Ion Lab, PL-02093 Warsaw, Poland. [Zganjar, E. F.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Miernik, K (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA. EM krzysztof.miernik@fuw.edu.pl RI Miller, David/B-5372-2012 OI Miller, David/0000-0002-0426-974X FU U.S. Department of Energy [DE-AC05-00OR22725]; Office of Nuclear Physics, U.S. Department of Energy [DE-AC05-00OR22725, DE-FG02-96ER41006, DE-FG02-96ER40983, DE-AC05-06OR23100]; National Science Center of the Polish Ministry of Science and Higher Education [2011/01/B/ST2/02476]; Helmholtz Alliance EMMI; IN2P3-RFBR [110291054]; National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE [DE-FG52-08NA28552] FX We would like to thank the HRIBF operations staff for the production of excellent radioactive ion beams. K. Miernik's research was performed as a Eugene P. Wigner Fellow and staff member at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. This research is sponsored by the Office of Nuclear Physics, U.S. Department of Energy under Contracts No. DE-AC05-00OR22725 (ORNL), No. DE-FG02-96ER41006(MSU), No. DE-FG02-96ER40983 (UTK), and No. DE-AC05-06OR23100(ORAU). The authors from the University of Warsaw acknowledge the support of National Science Center of the Polish Ministry of Science and Higher Education, Grant No. 2011/01/B/ST2/02476. I. B. is partially supported by Helmholtz Alliance EMMI and the Grant by IN2P3-RFBR under Agreement No. 110291054. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552. NR 25 TC 22 Z9 22 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 24 PY 2013 VL 111 IS 13 AR 132502 DI 10.1103/PhysRevLett.111.132502 PG 5 WC Physics, Multidisciplinary SC Physics GA 222WH UT WOS:000324762300007 PM 24116772 ER PT J AU Sobota, JA Yang, SL Kemper, AF Lee, JJ Schmitt, FT Li, W Moore, RG Analytis, JG Fisher, IR Kirchmann, PS Devereaux, TP Shen, ZX AF Sobota, J. A. Yang, S. -L. Kemper, A. F. Lee, J. J. Schmitt, F. T. Li, W. Moore, R. G. Analytis, J. G. Fisher, I. R. Kirchmann, P. S. Devereaux, T. P. Shen, Z. -X. TI Direct Optical Coupling to an Unoccupied Dirac Surface State in the Topological Insulator Bi2Se3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESOLVED 2-PHOTON PHOTOEMISSION; BI2TE3; CONE; DYNAMICS AB We characterize the occupied and unoccupied electronic structure of the topological insulator Bi2Se3 by one-photon and two-photon angle-resolved photoemission spectroscopy and slab band structure calculations. We reveal a second, unoccupied Dirac surface state with similar electronic structure and physical origin to the well-known topological surface state. This state is energetically located 1.5 eV above the conduction band, which permits it to be directly excited by the output of a Ti:sapphire laser. This discovery demonstrates the feasibility of direct ultrafast optical coupling to a topologically protected, spin-textured surface state. C1 [Sobota, J. A.; Yang, S. -L.; Lee, J. J.; Schmitt, F. T.; Li, W.; Moore, R. G.; Fisher, I. R.; Kirchmann, P. S.; Devereaux, T. P.; Shen, Z. -X.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Sobota, J. A.; Yang, S. -L.; Lee, J. J.; Schmitt, F. T.; Li, W.; Moore, R. G.; Fisher, I. R.; Devereaux, T. P.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Sobota, J. A.; Yang, S. -L.; Lee, J. J.; Shen, Z. -X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kemper, A. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Analytis, J. G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Sobota, JA (reprint author), Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM kirchman@stanford.edu; zxshen@stanford.edu RI Kirchmann, Patrick/C-1195-2008; Kemper, Alexander/F-8243-2016; OI Kirchmann, Patrick/0000-0002-4835-0654; Kemper, Alexander/0000-0002-5426-5181; Yang, Shuolong/0000-0002-8200-9898 FU Department of Energy, Office of Basic Energy Sciences, Division of Materials Science; Stanford Graduate Fellowship; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science. J. A. S. acknowledges support by the Stanford Graduate Fellowship. A. F. K. is supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the U.S. Department of Energy Contract No. DE-AC02-05CH11231. NR 34 TC 44 Z9 44 U1 10 U2 90 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 24 PY 2013 VL 111 IS 13 AR 136802 DI 10.1103/PhysRevLett.111.136802 PG 5 WC Physics, Multidisciplinary SC Physics GA 222WH UT WOS:000324762300016 PM 24116801 ER PT J AU Nyyssonen, M Tran, HM Karaoz, U Weihe, C Hadi, MZ Martiny, JBH Martiny, AC Brodie, EL AF Nyyssoenen, Mari Tran, Huu M. Karaoz, Ulas Weihe, Claudia Hadi, Masood Z. Martiny, Jennifer B. H. Martiny, Adam C. Brodie, Eoin L. TI Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE functional metagenomics; carbon cycling; trait-based modeling; gene annotation; microbial communities; decomposers; metagenomics; enzyme activity ID MICROBIAL COMMUNITIES; LITTER DECOMPOSITION; EXPRESSION CLONING; ESCHERICHIA-COLI; INTERACTIVE TREE; SOIL; GENES; REVEALS; ANNOTATION; RESISTANCE AB Recent advances in sequencing technologies generate new predictions and hypotheses about the functional roles of environmental microorganisms. Yet, until we can test these predictions at a scale that matches our ability to generate them, most of them will remain as hypotheses. Function-based mining of metagenomic libraries can provide direct linkages between genes, metabolic traits and microbial taxa and thus bridge this gap between sequence data generation and functional predictions. Here we developed high-throughput screening assays for function-based characterization of activities involved in plant polymer decomposition from environmental metagenomic libraries. The multiplexed assays use fluorogenic and chromogenic substrates, combine automated liquid handling and use a genetically modified expression host to enable simultaneous screening of 12,160 clones for 14 activities in a total of 170,240 reactions. Using this platform we identified 374 (0.26%) cellulose, hemicellulose, chitin, starch, phosphate and protein hydrolyzing clones from fosmid libraries prepared from decomposing leaf litter. Sequencing on the Illumina MiSeq platform, followed by assembly and gene prediction of a subset of 95 fosmid clones, identified a broad range of bacterial phyla, including Actinobacteria, Bacteroidetes, multiple Proteobacteria sub-phyla in addition to some Fungi. Carbohydrate-active enzyme genes from 20 different glycoside hydrolase (GH) families were detected. Using tetranucleotide frequency (TNF) binning of fosmid sequences, multiple enzyme activities from distinct fosmids were linked, demonstrating how biochemically-confirmed functional traits in environmental metagenomes may be attributed to groups of specific organisms. Overall, our results demonstrate how functional screening of metagenomic libraries can be used to connect microbial functionality to community composition and, as a result, complement large-scale metagenomic sequencing efforts. C1 [Nyyssoenen, Mari; Karaoz, Ulas; Brodie, Eoin L.] Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. [Tran, Huu M.; Hadi, Masood Z.] Joint BioEnergy Inst, Emeryville, CA USA. [Tran, Huu M.] Sandia Natl Labs, Livermore, CA USA. [Weihe, Claudia; Martiny, Jennifer B. H.; Martiny, Adam C.] Univ Calif Irvine, Dept Ecol & Evolut Biol, Irvine, CA 92717 USA. [Martiny, Adam C.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Brodie, Eoin L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP Brodie, EL (reprint author), Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, 1 Cyclotron Rd MS 70A-3317, Berkeley, CA 94720 USA. EM elbrodie@lbl.gov RI Brodie, Eoin/A-7853-2008; Karaoz, Ulas/J-7093-2014; OI Brodie, Eoin/0000-0002-8453-8435; Martiny, Jennifer/0000-0002-2415-1247 FU Department of Energy, Office of Science, BER Biological Systems Sciences Division; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was funded by the Department of Energy, Office of Science, BER Biological Systems Sciences Division under the Genomic Sciences program. Part of this work was performed at the Lawrence Berkeley National Laboratory under contract number DE-AC02-05CH11231. We thank Paul Adams for access to the JBEI robotics facility, Adam Arkin for use of MiSeq sequencer and Steven Allison for comments on earlier versions of this manuscript. NR 76 TC 19 Z9 19 U1 10 U2 98 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD SEP 23 PY 2013 VL 4 AR 282 DI 10.3389/fmicb.2013.00282 PG 14 WC Microbiology SC Microbiology GA AA9WG UT WOS:000331443100001 PM 24069019 ER PT J AU van der Eide, EF Yang, P Bullock, RM AF van der Eide, Edwin F. Yang, Ping Bullock, R. Morris TI Isolation of Two Agostic Isomers of an Organometallic Cation: Different Structures and Colors SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE agostic interactions; density functional calculations; isomers; molybdenum; structure elucidation ID C-H BOND; HYDROGEN COMPLEXES; TRANSITION-METALS; ALKANE COMPLEXES; COORDINATION; PRECURSORS; LIGANDS; BINDING; ANIONS C1 [van der Eide, Edwin F.; Bullock, R. Morris] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Yang, Ping] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Yang, P (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM ping.yang@pnnl.gov; morris.bullock@pnnl.gov RI Bullock, R. Morris/L-6802-2016; OI Bullock, R. Morris/0000-0001-6306-4851; Yang, Ping/0000-0003-4726-2860 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences FX We thank the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for support of this work. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The computational studies were performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. We thank Dr. Birgit Schwenzer for assistance with recording solid-state Vis/NIR spectra, and Nat Saenz and Shelley J. Carlson for assistance with optical microscopy. We also thank Dr. Jonathan M. Darmon for designing the Frontispiece. NR 34 TC 10 Z9 10 U1 0 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD SEP 23 PY 2013 VL 52 IS 39 BP 10190 EP 10194 DI 10.1002/anie.201305032 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 282AG UT WOS:000329141800003 PM 23897712 ER PT J AU Ghidiu, MJ Pistner, AJ Yap, GPA Lutterman, DA Rosenthal, J AF Ghidiu, Michael J. Pistner, Allen J. Yap, Glenn P. A. Lutterman, Daniel A. Rosenthal, Joel TI Thermal versus Photochemical Reductive Elimination of Aryl Chlorides from NHC-Gold Complexes SO ORGANOMETALLICS LA English DT Article ID N-HETEROCYCLIC CARBENES; BOND FORMATION; ORGANOGOLD COMPLEXES; HALIDE-COMPLEXES; CATALYSIS; REACTIVITY; ACIDS; ISOMERIZATION; MECHANISM; FLUORIDE AB Two homologous complexes of the type [(NHC)Au-I-Ar], in which the aryl substituent was either phenyl or pentafluorphenyl, were prepared. Treatment of [(IPr)(AuC6F5)-C-I] with PhICl2 leads directly to the expected Au-III oxidation addition product [(IPr)-Au-III(Cl)(2)C6F5]. This complex is thermally stable but undergoes photochemical reductive elimination to deliver [(IPr)(AuCl)-Cl-I] and C6F5Cl. In contrast, the reaction of [(IPr)(AuPh)-Ph-I] with PhICl2 does not deliver an isolable Au-III oxidation addition product but rather leads directly to the formation of [(IPr)(AuCl)-Cl-I] and PhCl, presumably via a [(IPr)Au-III(Cl)(2)Ph] intermediate. These related reactivity pathways are rationalized on the basis of the electronic structures of the two [(NHC)Au-I-Ar] complexes. C1 [Ghidiu, Michael J.; Pistner, Allen J.; Yap, Glenn P. A.; Rosenthal, Joel] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. [Lutterman, Daniel A.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. RP Rosenthal, J (reprint author), Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. EM joelr@udel.edu RI Lutterman, Daniel/C-9704-2016 OI Lutterman, Daniel/0000-0002-4875-6056 FU University of Delaware Research Foundation; UD Plastino Summer Fellowship; Division of Chemical Sciences, Geosciences, and Biosciences, Office of BES, U.S. DOE; American Chemical Society FX We thank Gabriel A. Andrade (UD) for assistance with X-ray crystallography. Research reported in this publication was supported by the University of Delaware Research Foundation and the donors of the American Chemical Society's Petroleum Research Fund. M.J.G. was supported through a UD Plastino Summer Fellowship, and D.A.L. was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of BES, U.S. DOE. Data were acquired using instrumentation obtained with assistance from the NSF (CHE-0421224, CHE-0840401, CHE-1048367, and CHE-1229234). D.A.L. also thanks the Ohio Supercomputing Center. NR 36 TC 12 Z9 12 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 EI 1520-6041 J9 ORGANOMETALLICS JI Organometallics PD SEP 23 PY 2013 VL 32 IS 18 BP 5026 EP 5029 DI 10.1021/om400701f PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 242SB UT WOS:000326261200004 ER PT J AU Vennam, PR Fisher, N Krzyaniak, MD Kramer, DM Bowman, MK AF Vennam, Preethi R. Fisher, Nicholas Krzyaniak, Matthew D. Kramer, David M. Bowman, Michael K. TI A Caged, Destabilized, Free Radical Intermediate in the Q-Cycle SO CHEMBIOCHEM LA English DT Article DE bc complex; complex III; paramagnetic relaxation enhancement; pulsed EPR; Q-cycle ID CYTOCHROME BC(1) COMPLEX; BACTERIAL REACTION CENTERS; IRON-SULFUR PROTEIN; PHOTOSYNTHETIC REACTION CENTERS; QUINOL OXIDATION SITE; Q(O) SITE; ELECTRON-TRANSFER; ESCHERICHIA-COLI; BC COMPLEXES; UBIQUINOL OXIDATION AB The Rieske/cytochrome b complexes, also known as cytochrome bc complexes, catalyze a unique oxidant-induced reduction reaction at their quinol oxidase (Q(o)) sites, in which substrate hydroquinone reduces two distinct electron transfer chains, one through a series of high-potential electron carriers, the second through low-potential cytochrome b. This reaction is a critical step in energy storage by the Q-cycle. The semiquinone intermediate in this reaction can reduce O-2 to produce deleterious superoxide. It is yet unknown how the enzyme controls this reaction, though numerous models have been proposed. In previous work, we trapped a Q-cycle semiquinone anion intermediate, termed SQ(o), in bacterial cytochrome bc(1) by rapid freeze-quenching. In this work, we apply pulsed-EPR techniques to determine the location and properties of SQ(o) in the mitochondrial complex. In contrast to semiquinone inter-mediates in other enzymes, SQ(o) is not thermodynamically stabilized, and can even be destabilized with respect to solution. It is trapped in Q(o) at a site that is distinct from previously described inhibitor-binding sites, yet sufficiently close to cytochrome b(L) to allow rapid electron transfer. The binding site and EPR analyses show that SQ(o) is not stabilized by hydrogen bonds to proteins. The formation of SQ(o) involves "stripping" of both substrate -OH protons during the initial oxidation step, as well as conformational changes of the semiquinone and Q(o) proteins. The resulting charged radical is kinetically trapped, rather than thermodynamically stabilized (as in most enzymatic semiquinone species), conserving redox energy to drive electron transfer to cytochrome b(L) while minimizing certain Q-cycle bypass reactions, including oxidation of prereduced cytochrome b and reduction of O-2. C1 [Vennam, Preethi R.; Krzyaniak, Matthew D.; Bowman, Michael K.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Fisher, Nicholas; Kramer, David M.] Michigan State Univ, E Lansing, MI 48824 USA. [Fisher, Nicholas; Kramer, David M.] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Bowman, MK (reprint author), Univ Alabama, Dept Chem, Box 870336, Tuscaloosa, AL 35487 USA. EM mkbowman@as.ua.edu RI Bowman, Michael/F-4265-2011 OI Bowman, Michael/0000-0003-3464-9409 FU National Institute of General Medical Sciences of the National Institutes of Health [R01GM061904] FX Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM061904. The authors thank Dr. Jonathan Cape (Bend Research, Bend, Oregon), Dr. Isaac Forquer (Oregon Health and Science University, Portland, Oregon) and Professor Mark Schumaker for interesting discussions, Dr. Alexander Maryasov (V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia) for advice on PRE, and Dr. Qiang Xu (Washington State University, Pullman, WA) for assistance in setting up the freeze-quench apparatus. NR 71 TC 7 Z9 7 U1 1 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1439-4227 EI 1439-7633 J9 CHEMBIOCHEM JI ChemBioChem PD SEP 23 PY 2013 VL 14 IS 14 BP 1745 EP 1753 DI 10.1002/cbic.201300265 PG 9 WC Biochemistry & Molecular Biology; Chemistry, Medicinal SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy GA 237ER UT WOS:000325851800009 PM 24009094 ER PT J AU Guggenmos, A Rauhut, R Hofstetter, M Hertrich, S Nickel, B Schmidt, J Gullikson, EM Seibald, M Schnick, W Kleineberg, U AF Guggenmos, Alexander Rauhut, Roman Hofstetter, Michael Hertrich, Samira Nickel, Bert Schmidt, Juergen Gullikson, Eric M. Seibald, Markus Schnick, Wolfgang Kleineberg, Ulf TI Aperiodic CrSc multilayer mirrors for attosecond water window pulses SO OPTICS EXPRESS LA English DT Article ID X-RAY MULTILAYERS; CHIRPED MIRRORS; REFLECTION; DESIGN; OPTICS; CR/SC; OPTIMIZATION; GENERATION; RANGE AB Extending single attosecond pulse technology from currently sub-200 eV to the so called 'water window' spectral range may enable for the first time the unique investigation of ultrafast electronic processes within the core states of bio-molecules as proteins or other organic materials. Aperiodic multilayer mirrors serve as key components to shape these attosecond pulses with a high degree of freedom and enable tailored short pulse pump-probe experiments. Here, we report on chirped CrSc multilayer mirrors, fabricated by ion beam deposition with sub-angstrom precision, designed for attosecond pulse shaping in the 'water window' spectral range. (c) 2013 Optical Society of America C1 [Guggenmos, Alexander; Rauhut, Roman; Hofstetter, Michael; Hertrich, Samira; Nickel, Bert; Schmidt, Juergen; Kleineberg, Ulf] Univ Munich, Fak Phys, D-85748 Garching, Germany. [Guggenmos, Alexander; Hofstetter, Michael; Kleineberg, Ulf] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Gullikson, Eric M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Seibald, Markus] Univ Munich, Dept Chem, D-81377 Munich, Germany. RP Guggenmos, A (reprint author), Univ Munich, Fak Phys, Coulombwall 1, D-85748 Garching, Germany. EM alexander.guggenmos@physik.uni-muenchen.de RI Schnick, Wolfgang/D-3064-2013; Nickel, Bert/A-2095-2009 OI Schnick, Wolfgang/0000-0003-4571-8035; Nickel, Bert/0000-0002-0254-8841 FU DFG Excellence Cluster "Munich-Centre for Advanced Photonics" (MAP) FX We thankfully acknowledge scientific support and valuable discussions by F. Krausz (MPQ, LMU). This work was supported by the DFG Excellence Cluster "Munich-Centre for Advanced Photonics" (MAP). NR 43 TC 11 Z9 12 U1 0 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 23 PY 2013 VL 21 IS 19 BP 21728 EP 21740 DI 10.1364/OE.21.021728 PG 13 WC Optics SC Optics GA 233DY UT WOS:000325547200002 PM 24104067 ER PT J AU Zhang, BS Seaberg, MD Adams, DE Gardner, DF Shanblatt, ER Shaw, JM Chao, WL Gullikson, EM Salmassi, F Kapteyn, HC Murnane, MM AF Zhang, Bosheng Seaberg, Matthew D. Adams, Daniel E. Gardner, Dennis F. Shanblatt, Elisabeth R. Shaw, Justin M. Chao, Weilun Gullikson, Eric M. Salmassi, Farhad Kapteyn, Henry C. Murnane, Margaret M. TI Full field tabletop EUV coherent diffractive imaging in a transmission geometry SO OPTICS EXPRESS LA English DT Article ID PHASE RETRIEVAL ALGORITHMS; X-RAY CRYSTALLOGRAPHY; IN-LINE HOLOGRAPHY; ITERATIVE ALGORITHMS; NM RESOLUTION; MICROSCOPY; ELECTRON; RECONSTRUCTION; GENERATION; ALLOW AB We demonstrate the first general tabletop EUV coherent microscope that can image extended, non-isolated, non-periodic, objects. By implementing keyhole coherent diffractive imaging with curved mirrors and a tabletop high harmonic source, we achieve improved efficiency of the imaging system as well as more uniform illumination at the sample, when compared with what is possible using Fresnel zone plates. Moreover, we show that the unscattered light from a semi-transparent sample can be used as a holographic reference wave, allowing quantitative information about the thickness of the sample to be extracted from the retrieved image. Finally, we show that excellent tabletop image fidelity is achieved by comparing the retrieved images with scanning electron and atomic force microscopy images, and show superior capabilities in some cases. (C) 2013 Optical Society of America C1 [Zhang, Bosheng; Seaberg, Matthew D.; Adams, Daniel E.; Gardner, Dennis F.; Shanblatt, Elisabeth R.; Kapteyn, Henry C.; Murnane, Margaret M.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Shaw, Justin M.] NIST, Electromagnet Div, Boulder, CO 80305 USA. [Chao, Weilun; Gullikson, Eric M.; Salmassi, Farhad] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Zhang, BS (reprint author), Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA. EM Bosheng.Zhang@colorado.edu RI Shaw, Justin/C-1845-2008; Kapteyn, Henry/H-6559-2011; Zhang, Bosheng/F-6122-2016 OI Shaw, Justin/0000-0003-2027-1521; Kapteyn, Henry/0000-0001-8386-6317; Zhang, Bosheng/0000-0001-7027-833X FU National Security Science and Engineering Faculty Fellowship; National Science Foundation Engineering Research Center in EUV Science and Technology; NSF IGERT program FX We thank David Alchenberger for assistance in acquiring the AFM image and Paul Rice for use of the focused ion beam system. We also gratefully acknowledge support from a National Security Science and Engineering Faculty Fellowship and from the National Science Foundation Engineering Research Center in EUV Science and Technology. M. Seaberg, D. Gardner, and E. Shanblatt acknowledge support from an NSF IGERT program. NR 49 TC 17 Z9 17 U1 2 U2 35 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 23 PY 2013 VL 21 IS 19 BP 21970 EP 21980 DI 10.1364/OE.21.021970 PG 11 WC Optics SC Optics GA 233DY UT WOS:000325547200025 PM 24104090 ER PT J AU Hill, SC Pan, YL Williamson, C Santarpia, JL Hill, HH AF Hill, Steven C. Pan, Yong-Le Williamson, Chatt Santarpia, Joshua L. Hill, Hanna H. TI Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria SO OPTICS EXPRESS LA English DT Article ID BIOLOGICAL AEROSOL-PARTICLES; LASER-INDUCED FLUORESCENCE; ESCHERICHIA-COLI; BACILLUS-SUBTILIS; ASPARTATE-AMINOTRANSFERASE; CROSS-SECTIONS; OPTICAL-PROPERTIES; MU-M; SERINE PALMITOYLTRANSFERASE; INTRINSIC FLUORESCENCE AB This paper describes a mathematical model of fluorescent biological particles composed of bacteria, viruses, or proteins. The fluorescent and/or light absorbing molecules included in the model are amino acids (tryptophan, etc.); nucleic acids (DNA, RNA, etc.); coenzymes (nicotinamide adenine dinucleotides, flavins, and vitamins B-6 and K and variants of these); and dipicolinates. The concentrations, absorptivities, and fluorescence quantum yields are estimated from the literature, often with large uncertainties. The bioparticles in the model are spherical and homogeneous. Calculated fluorescence cross sections for particles excited at 266, 280, and 355 nm are compared with measured values from the literature for several bacteria, bacterial spores and albumins. The calculated 266- and 280-nm excited fluorescence is within a factor of 3.2 of the measurements for the vegetative cells and proteins, but overestimates the fluorescence of spores by a factor of 10 or more. This is the first reported modeling of the fluorescence of bioaerosols in which the primary fluorophores and absorbing molecules are included. (c) 2013 Optical Society of America. C1 [Hill, Steven C.; Pan, Yong-Le; Williamson, Chatt] US Army Res Lab, Adelphi, MD 20783 USA. [Santarpia, Joshua L.] Sandia Natl Labs, Albuquerque, NM USA. [Hill, Hanna H.] Univ Maryland, College Pk, MD 20742 USA. RP Hill, SC (reprint author), US Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA. EM steven.c.hill32.civ@mail.mil FU Defense Threat and Reduction Agency (DTRA) Basic and Supporting Science Program; US Army Research Laboratory mission funds FX Supported by the Defense Threat and Reduction Agency (DTRA) Basic and Supporting Science Program and US Army Research Laboratory mission funds. NR 138 TC 14 Z9 14 U1 4 U2 31 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 23 PY 2013 VL 21 IS 19 BP 22285 EP 22313 DI 10.1364/OE.21.022285 PG 29 WC Optics SC Optics GA 233DY UT WOS:000325547200055 PM 24104120 ER PT J AU Aaltonen, T Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Askew, A Atkins, S Auerbach, B Augsten, K Aurisano, A Avila, C Azfar, F Badaud, F Badgett, W Bae, T Bagby, L Baldin, B Bandurin, DV Banerjee, S Barbaro-Galtieri, A Barberis, E Baringer, P Barnes, VE Barnett, BA da Costa, JG Barria, P Bartlett, JF Bartos, P Bassler, U Bauce, M Bazterra, V Bean, A Bedeschi, F Beecher, D Begalli, M Behari, S Bellantoni, L Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Bhatti, A Bizjak, I Bland, KR Blazey, G Blessing, S Bloom, K Blumenfeld, B Bocci, A Bodek, A Boehnlein, A Boline, D Boos, EE Borissov, G Bortoletto, D Boudreau, J Boveia, A Brandt, A Brandt, O Brigliadori, L Brock, R Bromberg, C Bross, A Brown, D Brucken, E Bu, XB Budagov, J Budd, HS Buehler, M Buescher, V Bunichev, V Burdin, S Burkett, K Busetto, G Bussey, P Buszello, CP Butti, P Buzatu, A Calamba, A Camacho-Perez, E Camarda, S Campanelli, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Casey, BCK Castilla-Valdez, H Castro, A Catastini, P Caughron, S Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Cho, SW Choi, S Chokheli, D Choudhary, B Cihangir, S Claes, D Clark, A Clarke, C Clutter, J Convery, ME Conway, J Cooke, M Cooper, WE Corbo, M Corcoran, M Cordelli, M Couderc, F Cousinou, MC Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R Cutts, D Das, A d'Ascenzo, N Datta, M Davies, G de Barbaro, P de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Demortier, L Deninno, M Denisov, D Denisov, SP D'Errico, M Desai, S Deterre, C DeVaughan, K Devoto, F Di Canto, A Di Ruzza, B Diehl, HT Diesburg, M Ding, PF Dittmann, JR Dominguez, A Donati, S D'Onofrio, M Dorigo, M Driutti, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Ebina, K Edgar, R Edmunds, D Elagin, A Ellison, J Elvira, VD Enari, Y Erbacher, R Errede, S Esham, B Eusebi, R Evans, H Evdokimov, VN Farrington, S Feng, L Ferbel, T Ramos, JPF Fiedler, F Field, R Filthaut, F Fisher, W Fisk, HE Flanagan, G Forrest, R Fortner, M Fox, H Franklin, M Freeman, JC Frisch, H Fuess, S Funakoshi, Y Galloni, C Garcia-Bellido, A Garcia-Gonzalez, JA Garfinkel, AF Garosi, P Gavrilov, V Geng, W Gerber, CE Gerberich, H Gerchtein, E Gershtein, Y Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Ginther, G Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Golovanov, G Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grannis, PD Greder, S Greenlee, H Grenier, G Grinstein, S Gris, P Grivaz, JF Grohsjean, A Grosso-Pilcher, C Group, RC Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Hahn, SR Haley, J Han, JY Han, L Happacher, F Hara, K Harder, K Hare, M Harel, A Harr, RF Harrington-Taber, T Hatakeyama, K Hauptman, JM Hays, C Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinrich, J Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herndon, M Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hocker, A Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Hong, Z Hopkins, W Hou, S Howley, I Hubacek, Z Hughes, RE Husemann, U Hussein, M Huston, J Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Introzzi, G Iori, M Ito, AS Ivanov, A Jabeen, S Jaffre, M James, E Jang, D Jayasinghe, A Jayatilaka, B Jeon, EJ Jeong, MS Jesik, R Jiang, P Jindariani, S Johns, K Johnson, E Johnson, M Jonckheere, A Jones, M Jonsson, P Joo, KK Joshi, J Jun, SY Jung, AW Junk, TR Juste, A Kajfasz, E Kambeitz, M Kamon, T Karchin, PE Karmanov, D Kasmi, A Kato, Y Katsanos, I Kehoe, R Kermiche, S Ketchum, W Keung, J Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SH Kim, SB Kim, YJ Kim, YK Kimura, N Kirby, M Kiselevich, I Knoepfel, K Kohli, JM Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kozelov, AV Kraus, J Kreps, M Kroll, J Kruse, M Kuhr, T Kumar, A Kupco, A Kurata, M Kurca, T Kuzmin, VA Laasanen, AT Lammel, S Lammers, S Lancaster, M Lannon, K Latino, G Lebrun, P Lee, HS Lee, HS Lee, JS Lee, SW Lee, WM Lei, X Lellouch, J Leo, S Leone, S Lewis, JD Li, D Li, H Li, L Li, QZ Lim, JK Limosani, A Lincoln, D Linnemann, J Lipaev, VV Lipeles, E Lipton, R Lister, A Liu, H Liu, H Liu, Q Liu, T Liu, Y Lobodenko, A Lockwitz, S Loginov, A Lokajicek, M de Sa, RL Lucchesi, D Luca, A Lueck, J Lujan, P Lukens, P Luna-Garcia, R Lungu, G Lyon, AL Lys, J Lysak, R Maciel, AKA Madar, R Madrak, R Maestro, P Magana-Villalba, R Malik, S Malik, S Malyshev, VL Manca, G Manousakis-Katsikakis, A Mansour, J Marchese, L Margaroli, F Marino, P Martinez-Ortega, J Martinez, M Matera, K Mattson, ME Mazzacane, A Mazzanti, P McCarthy, R McGivern, CL McNulty, R Mehta, A Mehtala, P Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Mesropian, C Meyer, A Meyer, J Miao, T Miconi, F Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondal, NK Montgomery, HE Moon, CS Moore, R Morello, MJ Mukherjee, A Mulhearn, M Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nagy, E Nakano, I Napier, A Narain, M Nayyar, R Neal, HA Negret, JP Nett, J Neu, C Neustroev, P Nguyen, HT Nigmanov, T Nodulman, L Noh, SY Norniella, O Nunnemann, T Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Orduna, J Ortolan, L Osman, N Osta, J Pagliarone, C Pal, A Palencia, E Palni, P Papadimitriou, V Parashar, N Parihar, V Park, SK Parker, W Partridge, R Parua, N Patwa, A Pauletta, G Paulini, M Paus, AC Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pleier, MA Podstavkov, VM Pondrom, L Popov, AV Poprocki, S Potamianos, K Pranko, A Prewitt, M Price, D Prokopenko, N Prokoshin, F Ptohos, F Punzi, G Qian, J Quadt, A Quinn, B Ranjan, N Ratoff, PN Razumov, I Fernandez, IR Renton, P Rescigno, M Riddick, T Rimondi, F Ripp-Baudot, I Ristori, L Rizatdinova, F Robson, A Rodriguez, T Rolli, S Rominsky, M Ronzani, M Roser, R Rosner, JL Ross, A Royon, C Rubinov, P Ruchti, R Ruffini, F Ruiz, A Russ, J Rusu, V Sajot, G Sakumoto, WK Sakurai, Y Sanchez-Hernandez, A Sanders, MP Santi, L Santos, AS Sato, K Savage, G Saveliev, V Savoy-Navarro, A Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schlabach, P Schmidt, EE Schwanenberger, C Schwarz, T Schwienhorst, R Scodellaro, L Scuri, F Seidel, S Seiya, Y Sekaric, J Semenov, A Severini, H Sforza, F Shabalina, E Shalhout, SZ Shary, V Shaw, S Shchukin, AA Shears, T Shekhar, R Shepard, PF Shimojima, M Shochet, M Simak, V Simonenko, A Skubic, P Slattery, P Sliwa, K Smirnov, D Smith, JR Snider, FD Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, H Sonnenschein, L Sorin, V Soustruznik, K St Denis, R Stancari, M Stark, J Stelzer-Chilton, O Stentz, D Stoyanova, DA Strauss, M Strologas, J Sudo, Y Sukhanov, A Suslov, I Suter, L Svoisky, P Takemasa, K Takeuchi, Y Tang, J Tecchio, M Shreyber-Tecker, I Teng, PK Thom, J Thompson, DS Thomson, E Thukral, V Titov, M Toback, D Tokar, S Tokmenin, VV Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tsai, YT Tsybychev, D Tuchming, B Tully, C Ukegawa, F Uozumi, S Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Velev, G Vellidis, C Verkheev, AY Vernieri, C Vertogradov, LS Verzocchi, M Vesterinen, M Vidal, M Vilanova, D Vilar, R Vizan, J Vogel, M Vokac, P Volpi, G Vazquez, F Wagner, P Wahl, HD Wallny, R Wang, MHLS Wang, SM Warchol, J Waters, D Watts, G Wayne, M Weichert, J Welty-Rieger, L Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Williams, MRJ Wilson, GW Wilson, JS Wilson, P Winer, BL Wittich, P Wobisch, M Wolbers, S Wolfe, H Wood, DR Wright, T Wu, X Wu, Z Wyatt, TR Xie, Y Yacoob, S Yamada, R Yamamoto, K Yamato, D Yang, S Yang, T Yang, UK Yang, YC Yao, WM Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yeh, GP Yi, K Yin, H Yip, K Yoh, J Yorita, K Yoshida, T Youn, SW Yu, GB Yu, I Yu, JM Zanetti, AM Zeng, Y Zennamo, J Zhao, TG Zhou, B Zhou, C Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zucchelli, S AF Aaltonen, T. Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Askew, A. Atkins, S. Auerbach, B. Augsten, K. Aurisano, A. Avila, C. Azfar, F. Badaud, F. Badgett, W. Bae, T. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barbaro-Galtieri, A. Barberis, E. Baringer, P. Barnes, V. E. Barnett, B. A. da Costa, J. Guimaraes Barria, P. Bartlett, J. F. Bartos, P. Bassler, U. Bauce, M. Bazterra, V. Bean, A. Bedeschi, F. Beecher, D. Begalli, M. Behari, S. Bellantoni, L. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Bhatti, A. Bizjak, I. Bland, K. R. Blazey, G. Blessing, S. Bloom, K. Blumenfeld, B. Bocci, A. Bodek, A. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Bortoletto, D. Boudreau, J. Boveia, A. Brandt, A. Brandt, O. Brigliadori, L. Brock, R. Bromberg, C. Bross, A. Brown, D. Brucken, E. Bu, X. B. Budagov, J. Budd, H. S. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burkett, K. Busetto, G. Bussey, P. Buszello, C. P. Butti, P. Buzatu, A. Calamba, A. Camacho-Perez, E. Camarda, S. Campanelli, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Casey, B. C. K. Castilla-Valdez, H. Castro, A. Catastini, P. Caughron, S. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Cho, S. W. Choi, S. Chokheli, D. Choudhary, B. Cihangir, S. Claes, D. Clark, A. Clarke, C. Clutter, J. Convery, M. E. Conway, J. Cooke, M. Cooper, W. E. Corbo, M. Corcoran, M. Cordelli, M. Couderc, F. Cousinou, M. -C. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. Cutts, D. Das, A. d'Ascenzo, N. Datta, M. Davies, G. de Barbaro, P. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Demortier, L. Deninno, M. Denisov, D. Denisov, S. P. D'Errico, M. Desai, S. Deterre, C. DeVaughan, K. Devoto, F. Di Canto, A. Di Ruzza, B. Diehl, H. T. Diesburg, M. Ding, P. F. Dittmann, J. R. Dominguez, A. Donati, S. D'Onofrio, M. Dorigo, M. Driutti, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Ebina, K. Edgar, R. Edmunds, D. Elagin, A. Ellison, J. Elvira, V. D. Enari, Y. Erbacher, R. Errede, S. Esham, B. Eusebi, R. Evans, H. Evdokimov, V. N. Farrington, S. Feng, L. Ferbel, T. Fernandez Ramos, J. P. Fiedler, F. Field, R. Filthaut, F. Fisher, W. Fisk, H. E. Flanagan, G. Forrest, R. Fortner, M. Fox, H. Franklin, M. Freeman, J. C. Frisch, H. Fuess, S. Funakoshi, Y. Galloni, C. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Garfinkel, A. F. Garosi, P. Gavrilov, V. Geng, W. Gerber, C. E. Gerberich, H. Gerchtein, E. Gershtein, Y. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Ginther, G. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Golovanov, G. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grosso-Pilcher, C. Group, R. C. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Hahn, S. R. Haley, J. Han, J. Y. Han, L. Happacher, F. Hara, K. Harder, K. Hare, M. Harel, A. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hauptman, J. M. Hays, C. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinrich, J. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herndon, M. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hocker, A. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Hong, Z. Hopkins, W. Hou, S. Howley, I. Hubacek, Z. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Introzzi, G. Iori, M. Ito, A. S. Ivanov, A. Jabeen, S. Jaffre, M. James, E. Jang, D. Jayasinghe, A. Jayatilaka, B. Jeon, E. J. Jeong, M. S. Jesik, R. Jiang, P. Jindariani, S. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jones, M. Jonsson, P. Joo, K. K. Joshi, J. Jun, S. Y. Jung, A. W. Junk, T. R. Juste, A. Kajfasz, E. Kambeitz, M. Kamon, T. Karchin, P. E. Karmanov, D. Kasmi, A. Kato, Y. Katsanos, I. Kehoe, R. Kermiche, S. Ketchum, W. Keung, J. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. H. Kim, S. B. Kim, Y. J. Kim, Y. K. Kimura, N. Kirby, M. Kiselevich, I. Knoepfel, K. Kohli, J. M. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kozelov, A. V. Kraus, J. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kumar, A. Kupco, A. Kurata, M. Kurca, T. Kuzmin, V. A. Laasanen, A. T. Lammel, S. Lammers, S. Lancaster, M. Lannon, K. Latino, G. Lebrun, P. Lee, H. S. Lee, H. S. Lee, J. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Leo, S. Leone, S. Lewis, J. D. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Limosani, A. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipeles, E. Lipton, R. Lister, A. Liu, H. Liu, H. Liu, Q. Liu, T. Liu, Y. Lobodenko, A. Lockwitz, S. Loginov, A. Lokajicek, M. de Sa, R. Lopes Lucchesi, D. Luca, A. Lueck, J. Lujan, P. Lukens, P. Luna-Garcia, R. Lungu, G. Lyon, A. L. Lys, J. Lysak, R. Maciel, A. K. A. Madar, R. Madrak, R. Maestro, P. Magana-Villalba, R. Malik, S. Malik, S. Malyshev, V. L. Manca, G. Manousakis-Katsikakis, A. Mansour, J. Marchese, L. Margaroli, F. Marino, P. Martinez-Ortega, J. Martinez, M. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McCarthy, R. McGivern, C. L. McNulty, R. Mehta, A. Mehtala, P. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Mesropian, C. Meyer, A. Meyer, J. Miao, T. Miconi, F. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondal, N. K. Montgomery, H. E. Moon, C. S. Moore, R. Morello, M. J. Mukherjee, A. Mulhearn, M. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nagy, E. Nakano, I. Napier, A. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Nett, J. Neu, C. Neustroev, P. Nguyen, H. T. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Nunnemann, T. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Orduna, J. Ortolan, L. Osman, N. Osta, J. Pagliarone, C. Pal, A. Palencia, E. Palni, P. Papadimitriou, V. Parashar, N. Parihar, V. Park, S. K. Parker, W. Partridge, R. Parua, N. Patwa, A. Pauletta, G. Paulini, M. Paus, A. C. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pleier, M. -A. Podstavkov, V. M. Pondrom, L. Popov, A. V. Poprocki, S. Potamianos, K. Pranko, A. Prewitt, M. Price, D. Prokopenko, N. Prokoshin, F. Ptohos, F. Punzi, G. Qian, J. Quadt, A. Quinn, B. Ranjan, N. Ratoff, P. N. Razumov, I. Redondo Fernandez, I. Renton, P. Rescigno, M. Riddick, T. Rimondi, F. Ripp-Baudot, I. Ristori, L. Rizatdinova, F. Robson, A. Rodriguez, T. Rolli, S. Rominsky, M. Ronzani, M. Roser, R. Rosner, J. L. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Sajot, G. Sakumoto, W. K. Sakurai, Y. Sanchez-Hernandez, A. Sanders, M. P. Santi, L. Santos, A. S. Sato, K. Savage, G. Saveliev, V. Savoy-Navarro, A. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schlabach, P. Schmidt, E. E. Schwanenberger, C. Schwarz, T. Schwienhorst, R. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Sekaric, J. Semenov, A. Severini, H. Sforza, F. Shabalina, E. Shalhout, S. Z. Shary, V. Shaw, S. Shchukin, A. A. Shears, T. Shekhar, R. Shepard, P. F. Shimojima, M. Shochet, M. Simak, V. Simonenko, A. Skubic, P. Slattery, P. Sliwa, K. Smirnov, D. Smith, J. R. Snider, F. D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Song, H. Sonnenschein, L. Sorin, V. Soustruznik, K. St Denis, R. Stancari, M. Stark, J. Stelzer-Chilton, O. Stentz, D. Stoyanova, D. A. Strauss, M. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Suter, L. Svoisky, P. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Shreyber-Tecker, I. Teng, P. K. Thom, J. Thompson, D. S. Thomson, E. Thukral, V. Titov, M. Toback, D. Tokar, S. Tokmenin, V. V. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Ukegawa, F. Uozumi, S. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Velev, G. Vellidis, C. Verkheev, A. Y. Vernieri, C. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vidal, M. Vilanova, D. Vilar, R. Vizan, J. Vogel, M. Vokac, P. Volpi, G. Vazquez, F. Wagner, P. Wahl, H. D. Wallny, R. Wang, M. H. L. S. Wang, S. M. Warchol, J. Waters, D. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Williams, M. R. J. Wilson, G. W. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wobisch, M. Wolbers, S. Wolfe, H. Wood, D. R. Wright, T. Wu, X. Wu, Z. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yamamoto, K. Yamato, D. Yang, S. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yeh, G. P. Yi, K. Yin, H. Yip, K. Yoh, J. Yorita, K. Yoshida, T. Youn, S. W. Yu, G. B. Yu, I. Yu, J. M. Zanetti, A. M. Zeng, Y. Zennamo, J. Zhao, T. G. Zhou, B. Zhou, C. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zucchelli, S. CA CDF Collaboration D0 Collaboration TI Combination of CDF and D0 W-Boson mass measurements SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; LHC; DETECTOR AB We summarize and combine direct measurements of the mass of the W boson in root s = 1.96 TeV proton-antiproton collision data collected by CDF and D0 experiments at the Fermilab Tevatron Collider. Earlier measurements from CDF and D0 are combined with the two latest, more precise measurements: a CDF measurement in the electron and muon channels using data corresponding to 2.2 fb(-1) of integrated luminosity, and a D0 measurement in the electron channel using data corresponding to 4.3 fb(-1) of integrated luminosity. The resulting Tevatron average for the mass of the W boson is M-W = 80387 +/- 16 MeV. Including measurements obtained in electron-positron collisions at LEP yields the most precise value of M-W = 80385 +/- 15 MeV. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, ICREA, E-08193 Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Marchese, L.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Pilot, J.; Shalhout, S. Z.; Smith, J. R.; Wilbur, S.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Casal, B.; Cuevas, J.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vizan, J.; Vogel, M.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Thompson, D. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Abazov, V. M.; Alexeev, G. D.; Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.; Tokmenin, V. V.; Vernieri, C.; Verzocchi, M.; Yatsunenko, Y. A.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Shekhar, R.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Behari, S.; Bellantoni, L.; Beretvas, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Burkett, K.; Casey, B. C. K.; Chlachidze, G.; Cihangir, S.; Convery, M. E.; Cooke, M.; Cooper, W. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Denisov, D.; Desai, S.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Flanagan, G.; Freeman, J. C.; Fuess, S.; Gerchtein, E.; Ginsburg, C. M.; Ginther, G.; Glenzinski, D.; Golossanov, A.; Greenlee, H.; Group, R. C.; Gruenendahl, S.; Gutierrez, G.; Hahn, S. R.; Harrington-Taber, T.; Herner, K.; Hocker, A.; Hopkins, W.; Illingworth, R.; Ito, A. S.; James, E.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Junk, T. R.; Khalatyan, N.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Liu, T.; Lukens, P.; Lyon, A. L.; Madrak, R.; Mazzacane, A.; Melnitchouk, A.; Miao, T.; Moed, S.; Montgomery, H. E.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Penning, B.; Podstavkov, V. M.; Poprocki, S.; Ristori, L.; Rominsky, M.; Roser, R.; Rubinov, P.; Rusu, V.; Savage, G.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Vellidis, C.; Verkheev, A. Y.; Vesterinen, M.; Wallny, R.; Wang, M. H. L. S.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Xie, Y.; Yamada, R.; Yang, T.; Yasuda, T.; Ye, Z.; Yeh, G. P.; Yi, K.; Yin, H.; Yoh, J.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Velev, G.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Luca, A.; Ptohos, F.; Torre, S.; Vazquez, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [da Costa, J. Guimaraes; Catastini, P.; Franklin, M.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Nurse, E.; Riddick, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, A. C.] MIT, Cambridge, MA 02139 USA. [Stelzer-Chilton, O.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Stelzer-Chilton, O.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Stelzer-Chilton, O.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Stelzer-Chilton, O.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Alton, A.; Amidei, D.; Edgar, R.; Mietlicki, D.; Neal, H. A.; Qian, J.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Bromberg, C.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Hussein, M.; Huston, J.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gavrilov, V.; Kiselevich, I.; Shreyber-Tecker, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vokac, P.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 5588585, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; D'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Amerio, S.; Bauce, M.; Busetto, G.; D'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Cremonesi, M.; Di Canto, A.; Donati, S.; Galloni, C.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vertogradov, L. S.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Galloni, C.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vertogradov, L. S.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vilanova, D.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; de Barbaro, P.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Han, J. Y.; Harel, A.; Petrillo, G.; Sakumoto, W. K.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Cauz, D.; Driutti, A.; Pauletta, G.; Santi, L.] Grp Collegato Udine, I-34127 Trieste, Italy. [Cauz, D.; Driutti, A.; Pauletta, G.] Univ Udine, I-33100 Udine, Italy. [Dorigo, M.; Santi, L.] Univ Trieste, I-34127 Trieste, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. [Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Volpi, G.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, LPSC,Inst Natl Polytech Grenoble, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilar, R.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, IPNL, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Mansour, J.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Phys Inst 2, Gttingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lim, J. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] ICREA, Barcelona, Spain. [Juste, A.] IFAE, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Agnew, J. P.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vidal, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Yip, Kin/D-6860-2013; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; Merkin, Mikhail/D-6809-2012; Prokoshin, Fedor/E-2795-2012; Ruiz, Alberto/E-4473-2011; Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; Moon, Chang-Seong/J-3619-2014; Kozelov, Alexander/J-3812-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Lei, Xiaowen/O-4348-2014; Russ, James/P-3092-2014; vilar, rocio/P-8480-2014; Gutierrez, Phillip/C-1161-2011; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Shabalina, Elizaveta/M-2227-2013; Dudko, Lev/D-7127-2012; Lysak, Roman/H-2995-2014; Fisher, Wade/N-4491-2013; Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; maestro, paolo/E-3280-2010; Santos, Angelo/K-5552-2012; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Chiarelli, Giorgio/E-8953-2012; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014 OI Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Canelli, Florencia/0000-0001-6361-2117; Williams, Mark/0000-0001-5448-4213; Grohsjean, Alexander/0000-0003-0748-8494; Dorigo, Mirco/0000-0002-0681-6946; Brucken, Jens Erik/0000-0001-6066-8756; Chapon, Emilien/0000-0001-6968-9828; Melnychuk, Oleksandr/0000-0002-2089-8685; Ding, Pengfei/0000-0002-4050-1753; Torre, Stefano/0000-0002-7565-0118; Bassler, Ursula/0000-0002-9041-3057; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Yip, Kin/0000-0002-8576-4311; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Vidal Marono, Miguel/0000-0002-2590-5987; MARTINEZ, MARIO/0000-0002-3135-945X; Hays, Chris/0000-0003-2371-9723; de Jong, Sijbrand/0000-0002-3120-3367; Latino, Giuseppe/0000-0002-4098-3502; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; iori, maurizio/0000-0002-6349-0380; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Ruiz, Alberto/0000-0002-3639-0368; Li, Liang/0000-0001-6411-6107; Toback, David/0000-0003-3457-4144; Jun, Soon Yung/0000-0003-3370-6109; Margaroli, Fabrizio/0000-0002-3869-0153; Group, Robert/0000-0002-4097-5254; Bean, Alice/0000-0001-5967-8674; Simonenko, Alexander/0000-0001-6580-3638; Lancaster, Mark/0000-0002-8872-7292; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Casarsa, Massimo/0000-0002-1353-8964; Juste, Aurelio/0000-0002-1558-3291; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Lei, Xiaowen/0000-0002-2564-8351; Russ, James/0000-0001-9856-9155; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Dudko, Lev/0000-0002-4462-3192; maestro, paolo/0000-0002-4193-1288; Sharyy, Viatcheslav/0000-0002-7161-2616; Chiarelli, Giorgio/0000-0001-9851-4816; FU DOE (U.S.A.); NSF (U.S.A.); ARC (Australia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); NSERC (Canada); CAS (China); CNSF (China); Colciencias (Colombia); MSMT (Czech Republic); GACR (Czech Republic); Academy of Finland; CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); DAE (India); DST (India); SFI (Ireland); INFN (Italy); MEXT (Japan); Korean World Class University Program (Korea); NRF (Korea); CONACyT (Mexico); FOM (The Netherlands); MON (Russia); NRC KI (Russia); RFBR (Russia); Slovak R&D Agency (Slovakia); Ministerio de Ciencia e Innovacion (Spain); Programa Consolider-Ingenio (Spain); Swedish Research Council (Sweden); SNSF (Switzerland); STFC (United Kingdom); Royal Society (United Kingdom); A. P. Sloan Foundation (U.S.A.) FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions and acknowledge support from the DOE and NSF (U.S.A.); ARC (Australia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); NSERC (Canada); CAS and CNSF (China); Colciencias (Colombia); MSMT and GACR (Czech Republic); the Academy of Finland; CEA and CNRS/IN2P3 (France); BMBF and DFG (Germany); DAE and DST (India); SFI (Ireland); INFN (Italy); MEXT (Japan); the Korean World Class University Program and NRF (Korea); CONACyT (Mexico); FOM (The Netherlands); MON, NRC KI, and RFBR (Russia); the Slovak R&D Agency (Slovakia); the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010 (Spain); the Swedish Research Council (Sweden); SNSF (Switzerland); STFC and the Royal Society (United Kingdom); and the A. P. Sloan Foundation (U.S.A.). NR 38 TC 24 Z9 24 U1 2 U2 41 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD SEP 23 PY 2013 VL 88 IS 5 AR 052018 DI 10.1103/PhysRevD.88.052018 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 221WM UT WOS:000324691000002 ER PT J AU Anselmino, M Boglione, M D'Alesio, U Melis, S Murgia, F Prokudin, A AF Anselmino, M. Boglione, M. D'Alesio, U. Melis, S. Murgia, F. Prokudin, A. TI Sivers effect and the single spin asymmetry A(N) in p(up arrow)p -> hX processes SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; HADRONIC PION-PRODUCTION; CHIRAL-ODD CONTRIBUTION; POLARIZED PROTON-BEAM; DRELL-YAN PROCESSES; TRANSVERSE-MOMENTUM; HARD-SCATTERING; PARTON DISTRIBUTIONS; STATE INTERACTIONS; ANALYZING POWER AB The single spin asymmetry A(N), for large P-T single inclusive particle production in p(up arrow)p collisions, is considered within a generalized parton model and a transverse momentum dependent factorization scheme. The focus is on the Sivers effect and the study of its potential contribution to A(N), based on a careful analysis of the Sivers functions extracted from azimuthal asymmetries in semi-inclusive deep inelastic scattering processes. It is found that such Sivers functions could explain most features of the A(N) data, including some recent STAR results which show the persistence of a nonzero A(N) up to surprisingly large P-T values. C1 [Anselmino, M.; Boglione, M.; Melis, S.] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy. [Anselmino, M.; Boglione, M.; Melis, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [D'Alesio, U.] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, CA, Italy. [D'Alesio, U.; Murgia, F.] Ist Nazl Fis Nucl, Sez Cagliari, I-09042 Monserrato, CA, Italy. [Prokudin, A.] Jefferson Lab, Newport News, VA 23606 USA. RP Anselmino, M (reprint author), Univ Turin, Dipartimento Fis Teor, Via P Giuria 1, I-10125 Turin, Italy. OI Melis, Stefano/0000-0001-7316-4346; Anselmino, Mauro/0000-0003-0900-8001 FU European Community [283286]; MIUR FX We would like to thank L. Bland for information on the ANDY data and S. Heppelmann for information on the STAR data on AN at 500 GeV. We acknowledge support of the European Community under the FP7 "Capacities-Research Infrastructures" program (HadronPhysics3, Grant Agreement No. 283286). Some of us (M. A., M. B., U. D., F. M.) acknowledge partial support from MIUR under Cofinanziamento PRIN 2008. U. D. is grateful to the Department of Theoretical Physics II of the Universidad Complutense of Madrid for the kind hospitality extended to him during the completion of this work. NR 86 TC 31 Z9 31 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD SEP 23 PY 2013 VL 88 IS 5 AR 054023 DI 10.1103/PhysRevD.88.054023 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 221WM UT WOS:000324691000005 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Aguilo, E Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Pernicka, M Rabady, D Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Reis, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Pereira, AV Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zhang, L Zou, W Avila, C Gomez, JP Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Mekterovic, D Morovic, S Attikis, A Galanti, M Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Mahrous, A Radi, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Juillot, P Le Bihan, AC Van Hove, P Fassi, F Mercier, D Beauceron, S Beaupere, N Bondu, O Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Mirabito, L Lethuillier, M Perries, S Sgandurra, L Sordini, V Tschudi, Y Verdier, P Viret, S Tsamalaidze, Z Autermann, C Beranek, S Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Bontenackels, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Martin, MA Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Costanza, F Dammann, D Pardos, CD Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Ron, E Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Walsh, R Wissing, C Blobel, V Enderle, H Erfle, J Gebbert, U Gorner, M Gosselink, M Haller, J Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Nowak, F Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Vanelderen, L Barth, C Berger, J Boser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Oehler, A Ott, J Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Gurtu, A Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Gasparini, F Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Triossi, A Vanini, S Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Taroni, S Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Sigamani, M Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Casasso, S Costa, M Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Schizzi, A Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kong, DJ Park, H Son, DC Son, T Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Roh, Y Choi, M Kim, JH Park, C Park, C Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Seixas, J Varela, J Vischia, P Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Lychkovskaya, N Popov, V Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Popov, A Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC D'Enterria, D Dabrowski, A De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Gundacker, S Hammer, J Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lee, YJ Lenzi, P Lourenco, C Magini, N Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Musella, P Nesvold, E Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Eugster, J Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Kilminster, B Mejias, BM Otiougova, P Robmann, P Snoek, H Tupputi, S Verzetti, M Chang, YH Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Singh, AP Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wan, X Wang, M Asavapibhop, B Srimanobhas, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Karaman, T Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Cankocak, K Levchuk, L Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Charaf, O Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Yohay, R Andreev, V Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Traczyk, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Golf, F Incandela, J Justus, C Kalavase, P Kovalskyi, D Krutelyov, V Lowette, S Villalba, RM Mccoll, N Pavlunin, V Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Chen, Y Di Marco, E Duarte, J Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Vaughan, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Elvira, VD Fisk, I Freeman, J Gao, Y Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Leonidopoulos, C Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Park, M Remington, R Rinkevicius, A Sellers, P Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Yumiceva, F Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Blumenfeld, B Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Kim, Y Klute, M Krajczar, K Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Ckli, FS Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Cooper, SI Dahmes, B De Benedetti, A Franzoni, G Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Keller, J Kravchenko, I Lazo-Flores, J Malik, S Snow, GR Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Winer, BL Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Akgun, B Boulahouache, C Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Walker, M Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Florez, C Greene, S Gurrola, A Johns, W Kurt, P Maguire, C Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Loveless, R Mohapatra, A Ojalvo, I Palmonari, F Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Aguilo, E. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Pernicka, M. Rabady, D. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Reis, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Soares Jorge, L. Sznajder, A. Vilela Pereira, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zhang, L. Zou, W. Avila, C. Gomez, J. P. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Attikis, A. Galanti, M. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Mahrous, A. Radi, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Juillot, P. Le Bihan, A. -C. Van Hove, P. Fassi, F. Mercier, D. Beauceron, S. Beaupere, N. Bondu, O. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Mirabito, L. Lethuillier, M. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Verdier, P. Viret, S. Tsamalaidze, Z. Autermann, C. Beranek, S. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Bontenackels, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Martin, M. Aldaya Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Costanza, F. Dammann, D. Pardos, C. Diez Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Walsh, R. Wissing, C. Blobel, V. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Gosselink, M. Haller, J. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Nowak, F. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Vanelderen, L. Barth, C. Berger, J. Boeser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Gurtu, A. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Gasparini, F. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Triossi, A. Vanini, S. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Taroni, S. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Sigamani, M. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kong, D. J. Park, H. Son, D. C. Son, T. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Seixas, J. Varela, J. Vischia, P. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Popov, A. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa D'Enterria, D. Dabrowski, A. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Gundacker, S. Hammer, J. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lee, Y. -J. Lenzi, P. Lourenco, C. Magini, N. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Musella, P. Nesvold, E. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Eugster, J. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Tupputi, S. Verzetti, M. Chang, Y. H. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Singh, A. P. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Asavapibhop, B. Srimanobhas, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Cankocak, K. Levchuk, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Charaf, O. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Yohay, R. Andreev, V. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Golf, F. Incandela, J. Justus, C. Kalavase, P. Kovalskyi, D. Krutelyov, V. Lowette, S. Villalba, R. Magana Mccoll, N. Pavlunin, V. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Park, M. Remington, R. Rinkevicius, A. Sellers, P. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Yumiceva, F. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Griffiths, S. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Kim, Y. Klute, M. Krajczar, K. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Ckli, F. Sto Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Cooper, S. I. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Snow, G. R. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Winer, B. L. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Akgun, B. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Walker, M. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Florez, C. Greene, S. Gurrola, A. Johns, W. Kurt, P. Maguire, C. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Loveless, R. Mohapatra, A. Ojalvo, I. Palmonari, F. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Interpretation of searches for supersymmetry with simplified models SO PHYSICAL REVIEW D LA English DT Article ID MISSING TRANSVERSE ENERGY; HADRON COLLIDERS; GRAND UNIFICATION; MEASURING MASSES; PP COLLISIONS; ROOT-S=7 TEV; PHYSICS; EVENTS; SQUARK; JETS AB The results of searches for supersymmetry by the CMS experiment are interpreted in the framework of simplified models. The results are based on data corresponding to an integrated luminosity of 4.73 to 4.98 fb(-1). The data were collected at the LHC in proton-proton collisions at a center-of-mass energy of 7 TeV. This paper describes the method of interpretation and provides upper limits on the product of the production cross section and branching fraction as a function of new particle masses for a number of simplified models. These limits and the corresponding experimental acceptance calculations can be used to constrain other theoretical models and to compare different supersymmetry-inspired analyses. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Wang, J.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Mahrous, A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, Univ Strasbourg, CNRS IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, CNRS, IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Mirabito, L.; Lethuillier, M.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B3, Aachen, Germany. [Friedl, M.; Krammer, M.; Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Boeser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Krajczar, K.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, EHEP, Bombay 400005, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dugad, S.] Tata Inst Fundamental Res, HECR, Bombay 400005, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Dogangun, O.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Tosi, S.; Bisello, D.; Branca, A.; Carlin, R.; Gasparini, F.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Taroni, S.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Rolandi, G.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Fanelli, C.; Grassi, M.; Longo, E.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Casasso, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; Heredia-de La Cruz, I.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Bodek, A.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] CIEMAT, E-28040 Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Autonoma Madrid, Madrid, Spain. [Suarez, R. Gonzalez; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Oviedo, Oviedo, Spain. Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Van Mulders, P.; Genchev, V.; Iaydjiev, P.; Sharma, A.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Gundacker, S.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenco, C.; Magini, N.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Srimanobhas, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Basso, L.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Abdulsalam, A.; Alimena, J.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Lowette, S.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Spiridonov, A.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Plestina, R.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Joshi, U.; Klima, B.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Ckli, F. Sto; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Stoykova, S.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, IN USA. [Li, W.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Thomas, L.; Park, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Sharma, A.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Mahrous, A.] Helwan Univ, Cairo, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Arfaei, H.; Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Hashemi, M.] Shiraz Univ, Shiraz, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Meola, S.] Univ Guglielmo Marconi, Rome, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Serban, A. T.] Univ Bucharest, Fac Phys, Bucharest, Romania. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Ozturk, S.] Univ Iowa, Iowa City, IA USA. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Belyaev, A.; Basso, L.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Univ Perugia, Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Arce, Pedro/L-1268-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Dahms, Torsten/A-8453-2015; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Bernardes, Cesar Augusto/D-2408-2015; Mundim, Luiz/A-1291-2012; Santoro, Alberto/E-7932-2014; Ligabue, Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Codispoti, Giuseppe/F-6574-2014; Tinti, Gemma/I-5886-2013; Montanari, Alessandro/J-2420-2012; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Venturi, Andrea/J-1877-2012; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Fassi, Farida/F-3571-2016; Wimpenny, Stephen/K-8848-2013; Dermenev, Alexander/M-4979-2013; Dogangun, Oktay/L-9252-2013; Tinoco Mendes, Andre David/D-4314-2011; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Bartalini, Paolo/E-2512-2014; Alves, Gilvan/C-4007-2013; Petrushanko, Sergey/D-6880-2012; Lokhtin, Igor/D-7004-2012; Dudko, Lev/D-7127-2012; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Popov, Andrey/E-1052-2012; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Yazgan, Efe/C-4521-2014; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016 OI CHANG, PAO-TI/0000-0003-4064-388X; Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641; Sogut, Kenan/0000-0002-9682-2855; Grassi, Marco/0000-0003-2422-6736; Mercier, Damien/0000-0001-5063-7067; Gallinaro, Michele/0000-0003-1261-2277; Ulrich, Ralf/0000-0002-2535-402X; Lenzi, Piergiulio/0000-0002-6927-8807; Gutsche, Oliver/0000-0002-8015-9622; Raval, Amita/0000-0003-0164-4337; Torassa, Ezio/0000-0003-2321-0599; Verdier, Patrice/0000-0003-3090-2948; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Arce, Pedro/0000-0003-3009-0484; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Gonzi, Sandro/0000-0003-4754-645X; HSIUNG, YEE/0000-0003-4801-1238; Levchenko, Petr/0000-0003-4913-0538; Mundim, Luiz/0000-0001-9964-7805; Vidal Marono, Miguel/0000-0002-2590-5987; Faccioli, Pietro/0000-0003-1849-6692; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Staiano, Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Beuselinck, Raymond/0000-0003-2613-7446; Stober, Fred/0000-0003-2620-3159; Fiorendi, Sara/0000-0003-3273-9419; Toback, David/0000-0003-3457-4144; Martelli, Arabella/0000-0003-3530-2255; Abbiendi, Giovanni/0000-0003-4499-7562; Ligabue, Franco/0000-0002-1549-7107; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Codispoti, Giuseppe/0000-0003-0217-7021; Montanari, Alessandro/0000-0003-2748-6373; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Tricomi, Alessia Rita/0000-0002-5071-5501; Malik, Sudhir/0000-0002-6356-2655; Fassi, Farida/0000-0002-6423-7213; Leonidopoulos, Christos/0000-0002-7241-2114; Blekman, Freya/0000-0002-7366-7098; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Wimpenny, Stephen/0000-0003-0505-4908; Dogangun, Oktay/0000-0002-1255-2211; Tinoco Mendes, Andre David/0000-0001-5854-7699; de Jesus Damiao, Dilson/0000-0002-3769-1680; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; Tosi, Nicolo/0000-0002-0474-0247; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; WANG, MIN-ZU/0000-0002-0979-8341; Popov, Andrey/0000-0002-1207-0984; Casarsa, Massimo/0000-0002-1353-8964; Diemoz, Marcella/0000-0002-3810-8530; Landsberg, Greg/0000-0002-4184-9380; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Costa, Salvatore/0000-0001-9919-0569; Lloret Iglesias, Lara/0000-0002-0157-4765; Kasemann, Matthias/0000-0002-0429-2448; Yazgan, Efe/0000-0001-5732-7950; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175 FU Austrian Federal Ministry of Science and Research; Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; CNPq; CAPES; FAPERJ; FAPESP; Bulgarian Ministry of Education, Youth and Science; CERN; Chinese Academy of Sciences, Ministry of Science and Technology; National Natural Science Foundation of China; COLCIENCIAS; Croatian Ministry of Science, Education and Sport; Research Promotion Foundation, Cyprus; Ministry of Education and Research [SF0690030s09]; European Regional Development Fund, Estonia; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules/CNRS; Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation; National Office for Research and Technology, Hungary; Department of Atomic Energy, India; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Korean Ministry of Education, Science and Technology; World Class University program of NRF, Republic of Korea; Lithuanian Academy of Sciences; CINVESTAV; CONACYT; SEP; UASLP-FAI; Ministry of Science and Innovation, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Science and Technological Development of Serbia; Secretaria de Estado de Investigacion, Desarrollo e Innovacion; Programa Consolider-Ingenio, Spain; ETH Board; ETH Zurich; PSI; SNF; UniZH; Canton Zurich; SER; National Science Council, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; Science and Technology Facilities Council, UK; U.S. Department of Energy; U.S. National Science Foundation; Marie-Curie program; European Research Council (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS program of Foundation for Polish Science; European Union, Regional Development Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education, Youth and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent Financing Contract No. SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the U.S. Department of Energy, and the U.S. National Science Foundation.; Individuals have received support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. NR 50 TC 13 Z9 13 U1 3 U2 109 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD SEP 23 PY 2013 VL 88 IS 5 AR 052017 DI 10.1103/PhysRevD.88.052017 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 221WM UT WOS:000324691000001 ER PT J AU Garratt, E AlFaify, S Cassidy, DP Dissanayake, A Mancini, DC Ghantasala, MK Kayani, A AF Garratt, E. AlFaify, S. Cassidy, D. P. Dissanayake, A. Mancini, D. C. Ghantasala, M. K. Kayani, A. TI Depth profiling of nitrogen within N-15-incorporated nano-crystalline diamond thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID DOPED ULTRANANOCRYSTALLINE DIAMOND; NANOCRYSTALLINE DIAMOND; ELECTRONIC-STRUCTURE; RAMAN-SPECTROSCOPY; NUCLEATION; SPECTRA; GROWTH; CARBON; MEMS; CVD AB Nano-Crystalline Diamond (NCD) thin films are a topic of recent interest due to their excellent mechanical and electrical properties. The inclusion of nitrogen is a specific interest as its presence within NCD modifies its conductive properties. The methodology adopted for the characterization of nitrogen incorporated NCD films grown on a chromium underlayer determined a correlation between the chromium and nitrogen concentrations as well as a variation in the concentration profile of elements. Additionally, the concentration of nitrogen was found to be more than three times greater for these films versus those grown on a silicon substrate. (C) 2013 AIP Publishing LLC. C1 [Garratt, E.; AlFaify, S.; Dissanayake, A.; Kayani, A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [AlFaify, S.] King Khalid Univ, Fac Sci, Dept Phys, Abha, Saudi Arabia. [Cassidy, D. P.] Western Michigan Univ, Mallinson Inst Sci Educ, Kalamazoo, MI 49008 USA. [Mancini, D. C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ghantasala, M. K.] Western Michigan Univ, Dept Mech & Aerosp Engn, Kalamazoo, MI 49008 USA. RP Garratt, E (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM egarrat@sandia.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE AC02-06CH11357] FX Use of the Center for Nanoscale Materials (CNM) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE AC02-06CH11357. The authors would also like to thank Benjamin Gaudio, Allan Kern, and Rick Welch for providing technical assistance for this work. NR 37 TC 1 Z9 1 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 23 PY 2013 VL 103 IS 13 AR 131602 DI 10.1063/1.4822266 PG 5 WC Physics, Applied SC Physics GA 229RJ UT WOS:000325284500018 ER PT J AU Kim, KH Fried, LE Yoh, JJ AF Kim, Ki-Hong Fried, Laurence E. Yoh, Jack J. TI Understanding the anisotropic initiation sensitivity of shocked pentaerythritol tetranitrate single crystals SO APPLIED PHYSICS LETTERS LA English DT Article ID DETONATION; SIMULATIONS; MECHANISM AB Shock initiation experiments of single crystals of pentaerythritol tetranitrate (PETN) have revealed that they show anisotropic sensitivity to mechanical impact. An ignition and growth model is developed based on the empirical observations of these impact studies. Because this model is independent of the direction of compression, the anisotropic material response of single crystals has not been addressed. Here, we present a complete description of the anisotropic ignition and growth of PETN and provide quantitative validations using the experimental data. The model is appropriate for use in single crystal studies of explosive initiation, or in grain scale simulations of composites. (C) 2013 AIP Publishing LLC. C1 [Kim, Ki-Hong; Yoh, Jack J.] Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 151744, South Korea. [Kim, Ki-Hong; Fried, Laurence E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Yoh, JJ (reprint author), Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 151744, South Korea. EM jjyoh@snu.ac.kr RI Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 FU NRF; NRF-ADD through IAAT at SNU; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Kim is supported by the NRF postdoctoral fellowship, and Yoh is supported by NRF-ADD projects contracted through IAAT at SNU. This research was partly funded under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The authors are grateful to each grant providing agency. NR 15 TC 2 Z9 2 U1 3 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 23 PY 2013 VL 103 IS 13 AR 131912 DI 10.1063/1.4823796 PG 5 WC Physics, Applied SC Physics GA 229RJ UT WOS:000325284500033 ER PT J AU Sivaramakrishnan, S Mardilovich, P Mason, A Roelofs, A Schmitz-Kempen, T Tiedke, S AF Sivaramakrishnan, S. Mardilovich, P. Mason, A. Roelofs, A. Schmitz-Kempen, T. Tiedke, S. TI Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry SO APPLIED PHYSICS LETTERS LA English DT Article ID COEFFICIENTS AB The electrode size dependence of the effective large signal piezoelectric response coefficient (d(33,f)) of lead zirconate titanate (PZT) thin films is investigated by using double beam laser interferometer measurements and finite element modeling. The experimentally observed electrode size dependence is shown to arise from a contribution from the substrate. The intrinsic PZT contribution to d(33,f) is independent of electrode size and is equal to the theoretical value derived assuming a rigid substrate. The substrate contribution is strongly dependent on the relative size of the electrode with respect to the substrate thickness. For electrode sizes larger than the substrate thickness, the substrate contribution is positive and for electrode sizes smaller than the substrate thickness, the substrate contribution is negative. In the case of silicon substrates, if the electrode size is equal to the substrate thickness, the substrate contribution vanishes, and the measured value of d(33,f) is equal to the theoretical value under the rigid substrate assumption. (C) 2013 AIP Publishing LLC. C1 [Sivaramakrishnan, S.; Mardilovich, P.] Hewlett Packard Corp, Corvallis, OR 97330 USA. [Mason, A.] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. [Roelofs, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Schmitz-Kempen, T.; Tiedke, S.] AixACCT Syst GmbH, D-52068 Aachen, Germany. RP Sivaramakrishnan, S (reprint author), Hewlett Packard Corp, 1070 NE Circle Blvd, Corvallis, OR 97330 USA. RI Roelofs, Andreas/H-1742-2011 OI Roelofs, Andreas/0000-0003-4141-3082 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357] FX The authors wish to acknowledge the encouragement and the management support from HP. In addition, the authors would like to thank OSU Professor Brady J. Gibbons for valuable discussions. A part of this work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. NR 7 TC 11 Z9 11 U1 3 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 23 PY 2013 VL 103 IS 13 AR 132904 DI 10.1063/1.4821948 PG 4 WC Physics, Applied SC Physics GA 229RJ UT WOS:000325284500061 ER PT J AU Coh, S Vanderbilt, D AF Coh, Sinisa Vanderbilt, David TI Canonical magnetic insulators with isotropic magnetoelectric coupling SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON-DIFFRACTION; OXYGEN VACANCIES; PYROCHLORES; NI AB We have performed a systematic representation-theory-based search for the simplest structures allowing isotropic magnetoelectric coupling. We find 30 such structures, all sharing a common pattern of atomic displacements in the direction of atomic magnetic moments. We focus on one of these 30 canonical structures and find that it is generically realized in a class of fractionally substituted pyrochlore compounds with an all-in-all-out magnetic order. Furthermore, we find that these substituted pyrochlore compounds have a substantial Chern-Simons orbital magnetoelectric component (theta = 0.1-0.2). While this component is also formally present in strong Z(2) topological insulators (theta = pi), its effects are observable there only if time-reversal symmetry is broken at the surface. C1 [Coh, Sinisa] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Coh, Sinisa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Vanderbilt, David] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. RP Coh, S (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM sinisa@civet.berkeley.edu OI Vanderbilt, David/0000-0002-2465-9091 FU Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; NSF [DMR-10-05838] FX We acknowledge discussions with S.-W. Cheong, D. G. Schlom, and Weida Wu. S.C. acknowledges support by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231, which provided for the density-functional theory calculations. D.V. acknowledges support from NSF Grant No. DMR-10-05838. NR 30 TC 9 Z9 9 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 23 PY 2013 VL 88 IS 12 AR 121106 DI 10.1103/PhysRevB.88.121106 PG 5 WC Physics, Condensed Matter SC Physics GA 221WI UT WOS:000324690500001 ER PT J AU Alioli, S Bauer, CW Berggren, C Hornig, A Tackmann, FJ Vermilion, CK Walsh, JR Zuberi, S AF Alioli, Simone Bauer, Christian W. Berggren, Calvin Hornig, Andrew Tackmann, Frank J. Vermilion, Christopher K. Walsh, Jonathan R. Zuberi, Saba TI Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Monte Carlo Simulations; NLO Computations ID JET CROSS-SECTIONS; TO-LEADING ORDER; QUANTUM CHROMODYNAMICS; E+E-ANNIHILATION; QCD; MASS; DISTRIBUTIONS; MOMENTS AB We extend the lowest-order matching of tree-level matrix elements with parton showers to give a complete description at the next higher perturbative accuracy in alpha(s) at both small and large jet resolutions, which has not been achieved so far. This requires the combination of the higher-order resummation of large Sudakov logarithms at small values of the jet resolution variable with the full next-to-leading-order (NLO) matrix-element corrections at large values. As a by-product, this combination naturally leads to a smooth connection of the NLO calculations for different jet multiplicities. In this paper, we focus on the general construction of our method and discuss its application to e(+)e(-) and pp collisions. We present first results of the implementation in the G en e v a Monte Carlo framework. We employ N-jettiness as the jet resolution variable, combining its next-to-next-to-leading logarithmic resummation with fully exclusive NLO matrix elements, and PYTHIA 8 as the backend for further parton showering and hadronization. For hadronic collisions, we take Drell-Yan production as an example to apply our construction. For e(+)e(-) -> jets, taking alpha(s) (m(Z)) = 0.1135 from fits to LEP thrust data, together with the PYTHIA 8 hadronization model, we obtain good agreement with LEP data for a variety of 2-jet observables. C1 [Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Vermilion, Christopher K.; Walsh, Jonathan R.; Zuberi, Saba] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hornig, Andrew] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Tackmann, Frank J.] Deutsch Elektronen Synchrotron DESY, Theory Grp, D-22607 Hamburg, Germany. RP Alioli, S (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM salioli@lbl.gov; cwbauer@lbl.gov; cjberggren@lbl.gov; ahornig@uw.edu; frank.tackmann@desy.de; ckvermilion@lbl.gov; jwalsh@lbl.gov; szuberi@lbl.gov RI Alioli, Simone/Q-4971-2016 OI Alioli, Simone/0000-0001-8234-2247 FU Department of Energy [DE-PS02-09ER09-26]; US Department of Energy [DE-FGO2-96ER40956]; DFG [TA 867/1-1]; National Science Foundation [NSF-PHY-0705682, NSF-PHY-0969510]; Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The primary support for SA, CWB, CB, CKV, and SZ comes from a Department of Energy Early Career Award with Funding Opportunity No. DE-PS02-09ER09-26. AH is supported by the US Department of Energy under Grant No. DE-FGO2-96ER40956. FT is supported by the DFG under Emmy-Noether Grant No. TA 867/1-1. CKV and JRW are partially supported by the National Science Foundation under Grant Nos. NSF-PHY-0705682, NSF-PHY-0969510 (LHC Theory Initiative, Jonathan Bagger, PI). Additional support comes from the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 91 TC 31 Z9 31 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 23 PY 2013 IS 9 AR 120 DI 10.1007/JHEP09(2013)120 PG 61 WC Physics, Particles & Fields SC Physics GA 224MA UT WOS:000324889100001 ER PT J AU Lingnau, B Chow, WW Scholl, E Ludge, K AF Lingnau, Benjamin Chow, Weng W. Schoell, Eckehard Luedge, Kathy TI Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis SO NEW JOURNAL OF PHYSICS LA English DT Article ID LINEWIDTH ENHANCEMENT FACTOR; SEMICONDUCTOR-LASERS; OPTICAL FEEDBACK; IMPACT-IONIZATION; NONLINEAR DYNAMICS; OSCILLATORS; SYNCHRONIZATION; AMPLIFIERS; GAIN; SIMULATION AB We employ a nonequilibrium energy balance and carrier rate equation model based on microscopic semiconductor theory to describe the quantum-dot (QD) laser dynamics under optical injection and time-delayed feedback. The model goes beyond typical phenomenological approximations of rate equations, such as the alpha-factor, yet allows for a thorough numerical bifurcation analysis, which would not be possible with the computationally demanding microscopic equations. We find that with QD lasers, independent amplitude and phase dynamics may lead to less complicated scenarios under optical perturbations than predicted by conventional models using the alpha-factor to describe the carrier-induced refractive index change. For instance, in the short external cavity feedback regime, higher critical feedback strength is actually required to induce instabilities. Generally, the alpha-factor should only be used when the carrier distribution can follow the QD laser dynamics adiabatically. C1 [Lingnau, Benjamin; Schoell, Eckehard; Luedge, Kathy] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany. [Chow, Weng W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lingnau, B (reprint author), Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany. EM lingnau@mailbox.tu-berlin.de FU DFG [SFB 787]; US Department of Energy's National Nuclear Security Administration [DE-ACD4-94AL85000]; Sandia's Solid-State Lighting Science Center, an Energy Frontier Research Center (EFRC); US Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by DFG within SFB 787, the US Department of Energy's National Nuclear Security Administration under contract no. DE-ACD4-94AL85000, and Sandia's Solid-State Lighting Science Center, an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 73 TC 20 Z9 20 U1 2 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 23 PY 2013 VL 15 AR 093031 DI 10.1088/1367-2630/15/9/093031 PG 25 WC Physics, Multidisciplinary SC Physics GA 222KF UT WOS:000324729000001 ER PT J AU Chung, JH Song, YS Kim, JH Suzuki, T Katsufuji, T Matsuda, M Lee, SH AF Chung, Jae-Ho Song, Young-Sang Kim, J. -H. Suzuki, T. Katsufuji, T. Matsuda, M. Lee, S. -H. TI Dynamic spin correlations in the frustrated cubic phase of MnV2O4 SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE-DEPENDENCE; MAGNETIC EXCITATIONS; 1ST-ORDER TRANSITION; CLASSICAL-THEORY; STATE; CHROMITE; NICKEL; WAVES; POINT; NEEL AB The ferrimagnetic spinel MnV2O4 undergoes an orbital-induced cubic-to-tetragonal distortion at T-YK = 58 K, below which noncollinear commensurate ferrimagnetic ordering occurs. Using inelastic neutron scattering, we investigated low-energy dynamics in its cubic phase above TYK. We observed two types of coexisting short-range magnetic excitations: the dispersive spin waves centered around the Brillouin-zone centers, k(0) = (0, 0, 0), and quasielastic spin fluctuations centered at incommensurate wave vectors, k(incom) = (xi,xi, 0). The coexistence of the two distinct features can be understood as a dynamic realization of the conical spiral order observed in cubic spinels such as CoCr2O4. C1 [Chung, Jae-Ho; Song, Young-Sang] Korea Univ, Dept Phys, Seoul 136713, South Korea. [Kim, J. -H.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Kim, J. -H.; Lee, S. -H.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Suzuki, T.; Katsufuji, T.] Waseda Univ, Dept Phys, Tokyo 1698555, Japan. [Matsuda, M.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Chung, JH (reprint author), Korea Univ, Dept Phys, Seoul 136713, South Korea. EM jaehc@korea.ac.kr RI Suzuki, Takehito/B-3038-2013; Matsuda, Masaaki/A-6902-2016; Katsufuji, Takuro/B-6283-2016 OI Matsuda, Masaaki/0000-0003-2209-9526; Katsufuji, Takuro/0000-0002-3199-1228 FU National Research Foundation of Korea through the ARCNEX [2011-0031933]; Nuclear RD Program [2012-025968, 2012-029621]; US Department of Energy; Basic Energy Research [DE-FG02-07ER46384]; National Institute of Standards and Technology; US Department of Commerce; Scientific User Facilities Division FX This work was supported by National Research Foundation of Korea through the ARCNEX (Grant No. 2011-0031933) and the Nuclear R&D Program (Grants No. 2012-025968 and No. 2012-029621). S.H.L. acknowledges support from the US Department of Energy, Basic Energy Research, through Grant No. DE-FG02-07ER46384. We acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providing the neutron research facilities used in this work. Research conducted at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 38 TC 3 Z9 3 U1 3 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 23 PY 2013 VL 88 IS 9 AR 094430 DI 10.1103/PhysRevB.88.094430 PG 6 WC Physics, Condensed Matter SC Physics GA 221WD UT WOS:000324689900005 ER PT J AU Conradson, SD Durakiewicz, T Espinosa-Faller, FJ An, YQ Andersson, DA Bishop, AR Boland, KS Bradley, JA Byler, DD Clark, DL Conradson, DR Conradson, LL Costello, AL Hess, NJ Lander, GH Llobet, A Martucci, MB de Leon, JM Nordlund, D Lezama-Pacheco, JS Proffen, TE Rodriguez, G Schwarz, DE Seidler, GT Taylor, AJ Trugman, SA Tyson, TA Valdez, JA AF Conradson, Steven D. Durakiewicz, Tomasz Espinosa-Faller, Francisco J. An, Yong Q. Andersson, David A. Bishop, Alan R. Boland, Kevin S. Bradley, Joseph A. Byler, Darrin D. Clark, David L. Conradson, Dylan R. Conradson, Leilani L. Costello, Alison L. Hess, Nancy J. Lander, Gerard H. Llobet, Anna Martucci, Mary B. Mustre de Leon, Jose Nordlund, Dennis Lezama-Pacheco, Juan S. Proffen, Thomas E. Rodriguez, George Schwarz, Daniel E. Seidler, Gerald T. Taylor, Antoinette J. Trugman, Stuart A. Tyson, Trevor A. Valdez, James A. TI Possible Bose-condensate behavior in a quantum phase originating in a collective excitation in the chemically and optically doped Mott-Hubbard system UO2+x SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-ABSORPTION; INELASTIC NEUTRON-SCATTERING; CENTERED LATTICE INSTABILITIES; CUBOCTAHEDRAL OXYGEN CLUSTERS; CORRELATED ELECTRON MATERIALS; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; URANIUM-DIOXIDE; AXIAL OXYGEN AB X-ray pair distribution function (pdf) and U L-3 extended x-ray absorption fine structure (EXAFS) and neutron pdf measurements that give identical results for UO2 show U(VI)-oxo moieties with x rays for mixed valence U4O9 and U3O7, in contrast to the neutron data that indicate only U(V) sites with no short U-O bonds as well as other differences. In addition, although the EXAFS spectra of UO2 are essentially identical at 30, 100, and 200 K, those of the UO2+x compounds exhibit different nearest-neighbor U-O distributions at each temperature. Further tunneling polaron-type behavior is found in the broadening of the features of the O K-edge x-ray absorption spectra (XAS) of the UO2+x compounds. Raman spectra of powders also show a large increase in scattering cross section with increasing O content that would originate in a change in the electronic structure that increases the overall polarizability. The XAS and Raman also show that U4O9 does not behave as a linear combination of the UO2 and U3O7 fluorite endpoints. The properties induced by mobile rather than static charged quasiparticles were explored by optical pumping of the metal-to-metal charge-transfer transition. The temperature dependence of 4.71 eV pump-1.57 eV probe reflectivity on UO2 that initially populates the U 6d-dominated portion of the upper Hubbard band (UHB) shows a sharp 28-mu sec lifetime peak at 25 K that may be associated with the fluctuations of its antiferromagnetic transition. Pumping at 3.14 eV into the 5f -dominated portion of the UHB shows an analogous 2.8-mu sec peak but also a plateau bracketing this peak that ends in a cusp at 50-60 K and an abrupt change in the hardening rate of a novel 12-15 GHz phonon that is the signature for the quasiparticle quantum phase. The different results for the different excitation channels indicate a highly specific nonthermal relaxation mechanism. These results constitute the first observation of a distinct phase of photoinduced quasiparticles that is sufficiently coupled to the lattice to undergo a gap-opening transition. When the intragap state is probed with a terahertz time domain spectroscopy (TTDS) measurement 33 psec after a 3.14 excitation pulse, it shows increased absorption in the 0.5-1.1 THz range with a decrease in temperature from similar to 30 to 10 K instead of the expected decrease, a result consistent with the presence of a condensate. These results are too extreme to originate in the dynamical, nonadiabatic, coupled charge-transfer-phonon/tunneling polaron scenario previously used for doped Mott-Hubbard insulators with intermediate electron-phonon coupling and therefore indicate novel physics. One possibility that could cause all of these behaviors is that a collective, dynamical, charge transfer-coupled Peierls distortion involving the 2U(V) <-> U(IV)+ U(VI)-oxo excitation occurs coherently over an entire domain to cause the atoms in this domain to condense into a system with Bose-Einstein or Bose-Einstein-Hubbard properties. C1 [Conradson, Steven D.; Durakiewicz, Tomasz; An, Yong Q.; Andersson, David A.; Bishop, Alan R.; Boland, Kevin S.; Bradley, Joseph A.; Byler, Darrin D.; Clark, David L.; Conradson, Dylan R.; Conradson, Leilani L.; Costello, Alison L.; Llobet, Anna; Martucci, Mary B.; Lezama-Pacheco, Juan S.; Proffen, Thomas E.; Rodriguez, George; Schwarz, Daniel E.; Taylor, Antoinette J.; Trugman, Stuart A.; Valdez, James A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Espinosa-Faller, Francisco J.] Univ Marista Merida, Merida 97300, Yucatan, Mexico. [Bradley, Joseph A.; Seidler, Gerald T.] Univ Washington, Seattle, WA 98195 USA. [Hess, Nancy J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lander, Gerard H.] Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76344 Karlsruhe, Germany. [Mustre de Leon, Jose] CINVESTAV, Merida 97310, Yucatan, Mexico. [Nordlund, Dennis] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Tyson, Trevor A.] New Jersey Inst Technol, Newark, NJ 07102 USA. RP Conradson, SD (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM conradson@lanl.gov RI An, Yong/N-7479-2013; Nordlund, Dennis/A-8902-2008; Llobet, Anna/B-1672-2010; Proffen, Thomas/B-3585-2009; Rodriguez, George/G-7571-2012; OI Nordlund, Dennis/0000-0001-9524-6908; Proffen, Thomas/0000-0002-1408-6031; Rodriguez, George/0000-0002-6044-9462; Trugman, Stuart/0000-0002-6688-7228; Hess, Nancy/0000-0002-8930-9500 FU Division of Chemical Sciences; Geosciences; Biosciences; Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Basic Energy Sciences; Environmental Molecular Science Laboratory; National Nuclear Security Administration of U.S. Department of Energy [DE-AC52-06NA25396]; U.S. Department of Energy-Basic Energy Sciences; NSERC; University of Washington, Simon Fraser University; Advanced Photon Source FX This work was supported at Los Alamos by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy under the Heavy Element Chemistry and Material Science and Engineering Programs at LANL, and the Los Alamos Laboratory Directed Research and Development Program. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, the Lujan Neutron Scattering Center, the Advanced Photon Source, and at the Center for Integrated Nanotechnologies, all of which are national user facilities supported by the U.S. Department of Energy, Office of Basic Energy Sciences, and at the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy under Contract No. DE-AC52-06NA25396. PNC/XOR facilities at the Advanced Photon Source, and research at these facilities, are supported by the U.S. Department of Energy-Basic Energy Sciences, a Major Resources Support grant from NSERC, the University of Washington, Simon Fraser University, and the Advanced Photon Source. NR 150 TC 9 Z9 9 U1 4 U2 64 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 23 PY 2013 VL 88 IS 11 AR UNSP 115135 DI 10.1103/PhysRevB.88.115135 PG 21 WC Physics, Condensed Matter SC Physics GA 221WH UT WOS:000324690400001 ER PT J AU Ren, J Zhu, JX AF Ren, Jie Zhu, Jian-Xin TI Theory of asymmetric and negative differential magnon tunneling under temperature bias: Towards a spin Seebeck diode and transistor SO PHYSICAL REVIEW B LA English DT Article ID SPINTRONICS; FERROMAGNET; INSULATOR AB We study the nonequilibrium transport for the asymmetric and negative differential magnon tunneling driven by temperature bias. We demonstrate that the many-body magnon interaction that makes the magnonic spectrum temperature-dependent is the crucial factor for the emergence of rectification and negative differential spin Seebeck effects in magnon tunneling junctions. When magnonic junctions have temperature-dependent density of states, reversing the temperature bias is able to give asymmetric spin currents and increasing temperature bias could give an anomalously decreasing magnonic spin current. We show that these properties are relevant for building spin Seebeck diodes and transistors, which could play important roles in controlling information and energy in magnonics and spin caloritronics. C1 [Ren, Jie; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Ren, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM renjie@lanl.gov RI Ren, Jie/G-5314-2010; OI Ren, Jie/0000-0003-2806-7226; Zhu, Jianxin/0000-0001-7991-3918 FU National Nuclear Security Administration of the US DOE at LANL [DE-AC52-06NA25396]; LDRD Program at LANL; Center for Integrated Nanotechnologies, a US DOE Office of Basic Energy Sciences FX This work was supported by the National Nuclear Security Administration of the US DOE at LANL under Contract No. DE-AC52-06NA25396, and the LDRD Program at LANL (J.R.) and in part by the Center for Integrated Nanotechnologies, a US DOE Office of Basic Energy Sciences user facility (J.-X.Z.). NR 46 TC 12 Z9 12 U1 3 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 23 PY 2013 VL 88 IS 9 AR 094427 DI 10.1103/PhysRevB.88.094427 PG 7 WC Physics, Condensed Matter SC Physics GA 221WD UT WOS:000324689900002 ER PT J AU Spaldin, NA Fechner, M Bousquet, E Balatsky, A Nordstrom, L AF Spaldin, Nicola A. Fechner, Michael Bousquet, Eric Balatsky, Alexander Nordstrom, Lars TI Monopole-based formalism for the diagonal magnetoelectric response SO PHYSICAL REVIEW B LA English DT Article ID QUADRUPOLE MAGNETIC-FIELD; ELECTRIC POLARIZATION; LIFEPO4; LINIPO4; PHASE; LIMNPO4; LICOPO4; CR2O3 AB We develop the formalism of the macroscopic monopolization-that is, the magnetoelectric monopole moment per unit volume-in periodic solids, and discuss its relationship to the magnetoelectric effect. For the series of lithium transition metal phosphate compounds, we use first-principles density functional theory to calculate the contributions to the macroscopic monopolization from the global distribution of magnetic moments within the unit cell, as well as from the distribution of magnetization around the atomic sites. We find one example within the series (LiMnPO4) that shows a macroscopic monopolization corresponding to a ferromonopolar ordering consistent with its diagonal magnetoelectric response. The other members of the series (LiMPO4, with M = Co, Fe, and Ni) have zero net monopolization but have antiferromonopolar orderings that should lead to q-dependent diagonal magnetoelectric effects. C1 [Spaldin, Nicola A.; Fechner, Michael; Bousquet, Eric] ETH, CH-8093 Zurich, Switzerland. [Bousquet, Eric] Univ Liege, B-4000 Sart Tilman Par Liege, Belgium. [Balatsky, Alexander] KTH Royal Inst Technol, NORDITA, S-10691 Stockholm, Sweden. [Balatsky, Alexander] Stockholm Univ, S-10691 Stockholm, Sweden. [Balatsky, Alexander] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, Alexander] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Nordstrom, Lars] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. RP Spaldin, NA (reprint author), ETH, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. RI Spaldin, Nicola/A-1017-2010 OI Spaldin, Nicola/0000-0003-0709-9499 FU ETH Zurich; ERC Advanced Grant program [291151]; Max Rossler Prize of the ETH Zurich; Nordita; US DoE; Swedish Research Council; Research Associate of the Fonds de la Recherche Scientifique, FNRS, Belgium FX This work was supported financially by the ETH Zurich (N.A.S., M.F. and E.B.), by the ERC Advanced Grant program, No. 291151 (N.A.S. and E.B.), by the Max Rossler Prize of the ETH Zurich (N.A.S.), Nordita (A.B.), US DoE (A.B.), and the Swedish Research Council (A.B. and L.N.). E. B. is a Research Associate of the Fonds de la Recherche Scientifique, FNRS, Belgium. NAS thanks Nordita, the Nordic Institute for Theoretical Physics, for their hospitality during a visit where much of this work was performed. We thank Urs Staub, Valerio Scagnoli, Stephen Lovesey, Daniel Khomskii, Claude Ederer, Manfred Fiebig, Hans Schmid, Igor Dzyaloshinskii, David Vanderbilt, and Friedrich Hehl for useful discussions and comments. NR 51 TC 18 Z9 18 U1 8 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 23 PY 2013 VL 88 IS 9 AR 094429 DI 10.1103/PhysRevB.88.094429 PG 13 WC Physics, Condensed Matter SC Physics GA 221WD UT WOS:000324689900004 ER PT J AU Hagen, G Hagen, P Hammer, HW Platter, L AF Hagen, G. Hagen, P. Hammer, H. -W. Platter, L. TI Efimov Physics Around the Neutron-Rich Ca-60 Isotope SO PHYSICAL REVIEW LETTERS LA English DT Article ID EFFECTIVE-FIELD THEORY; HALO NUCLEI; 3-BODY SYSTEM; STATES AB We calculate the neutron-Ca-60 S-wave scattering phase shifts using state of the art coupled-cluster theory combined with modern ab initio interactions derived from chiral effective theory. Effects of three-nucleon forces are included schematically as density dependent nucleon-nucleon interactions. This information is combined with halo effective field theory in order to investigate the Ca-60-neutron-neutron system. We predict correlations between different three-body observables and the two-neutron separation energy of Ca-62. This provides evidence of Efimov physics along the calcium isotope chain. Experimental key observables that facilitate a test of our findings are discussed. C1 [Hagen, G.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Hagen, G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hagen, P.; Hammer, H. -W.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany. [Hagen, P.; Hammer, H. -W.] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Platter, L.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Platter, L.] Chalmers, Dept Fundamental Phys, S-41296 Gothenburg, Sweden. RP Hagen, G (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Platter, Lucas/N-3887-2013 OI Platter, Lucas/0000-0001-6632-8250 FU Office of Nuclear Physics, U.S. Department of Energy [DE-AC02- 06CH11357, DE-AC05-00OR22725, DE-SC0008499]; DFG; NSFC; BMBF [05P12PDFTE] FX We thank T. Papenbrock for useful discussions. This work was supported by the Office of Nuclear Physics, U.S. Department of Energy under Contracts No. DE-AC02- 06CH11357, No. DE-AC05-00OR22725, and No. DE-SC0008499 (NUCLEI SciDAC), by the DFG and the NSFC through funds provided to the Sino-German CRC 110 "Symmetries and the emergence of structure in QCD,'' and by the BMBF under Contract No. 05P12PDFTE. Computer time was provided by the Innovative and Novel Computational Impact of Theory and Experiment (INCITE) program. This research used computational resources of the Oak Ridge Leadership Computing Facility and of the National Center for Computational Sciences, the National Institute for Computational Science. NR 39 TC 21 Z9 21 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 23 PY 2013 VL 111 IS 13 AR 132501 DI 10.1103/PhysRevLett.111.132501 PG 5 WC Physics, Multidisciplinary SC Physics GA 221XF UT WOS:000324693100005 PM 24116771 ER PT J AU Stratakis, D Fernow, RC Berg, JS Palmer, RB AF Stratakis, Diktys Fernow, Richard C. Berg, J. Scott Palmer, Robert B. TI Tapered channel for six-dimensional muon cooling towards micron-scale emittances SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A high-luminosity muon collider requires a significant reduction of the six-dimensional emittance prior to acceleration. Obtaining the desired final emittances requires transporting the muon beam through long sections of a beam channel containing rf cavities, absorbers, and focusing solenoids. Here we propose a new scheme to improve the performance of the channel, consequently increasing the number of transmitted muons and the lattice cooling efficiency. The key idea of our scheme is to tune progressively the main lattice parameters, such as the cell dimensions, rf frequency, and coil strengths, while always keeping the beam emittance significantly above the equilibrium value. We adopt this approach for a new cooling lattice design for a muon collider, and examine its performance numerically. We show that with tapering the cooling rate is not only higher than conventional designs, but also maintains its performance through the channel, resulting in a notable 6D emittance decrease by 3 orders of magnitude. We also review important lattice parameters, such as the required focusing fields, absorber length, cavity frequency, and voltage. C1 [Stratakis, Diktys; Fernow, Richard C.; Berg, J. Scott; Palmer, Robert B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Stratakis, D (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Berg, Joseph/E-8371-2014 OI Berg, Joseph/0000-0002-5955-6973 FU U.S. Department of Energy [DE-AC02-98CH10886] FX The authors are grateful to H. Witte and R. Ryne for useful discussions. This work is supported by the U.S. Department of Energy, Contract No. DE-AC02-98CH10886. NR 29 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD SEP 23 PY 2013 VL 16 IS 9 AR 091001 DI 10.1103/PhysRevSTAB.16.091001 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 221XH UT WOS:000324693300001 ER PT J AU Cheon, JY Kim, T Choi, Y Jeong, HY Kim, MG Sa, YJ Kim, J Lee, Z Yang, TH Kwon, K Terasaki, O Park, GG Adzic, RR Joo, SH AF Cheon, Jae Yeong Kim, Taeyoung Choi, YongMan Jeong, Hu Young Kim, Min Gyu Sa, Young Jin Kim, Jaesik Lee, Zonghoon Yang, Tae-Hyun Kwon, Kyungjung Terasaki, Osamu Park, Gu-Gon Adzic, Radoslav R. Joo, Sang Hoon TI Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction SO SCIENTIFIC REPORTS LA English DT Article ID MEMBRANE FUEL-CELLS; METAL-CATALYSTS; NONPLATINUM CATALYSTS; CATHODE CATALYST; PLATINUM; IRON; ELECTROREDUCTION; POLYANILINE; CHALLENGES; MONOLAYER AB The high cost of the platinum-based cathode catalysts for the oxygen reduction reaction (ORR) has impeded the widespread application of polymer electrolyte fuel cells. We report on a new family of non-precious metal catalysts based on ordered mesoporous porphyrinic carbons (M-OMPC; M = Fe, Co, or FeCo) with high surface areas and tunable pore structures, which were prepared by nanocasting mesoporous silica templates with metalloporphyrin precursors. The FeCo-OMPC catalyst exhibited an excellent ORR activity in an acidic medium, higher than other non-precious metal catalysts. It showed higher kinetic current at 0.9 V than Pt/C catalysts, as well as superior long-term durability and MeOH-tolerance. Density functional theory calculations in combination with extended X-ray absorption fine structure analysis revealed a weakening of the interaction between oxygen atom and FeCo-OMPC compared to Pt/C. This effect and high surface area of FeCo-OMPC appear responsible for its significantly high ORR activity. C1 [Cheon, Jae Yeong; Sa, Young Jin; Kim, Jaesik; Joo, Sang Hoon] Ulsan Natl Inst Sci & Technol, Sch Nanobiosci & Chem Engn, KIER UNIST Adv Ctr Energy, Dept Chem, Ulsan 689798, South Korea. [Cheon, Jae Yeong; Sa, Young Jin; Kim, Jaesik; Joo, Sang Hoon] Ulsan Natl Inst Sci & Technol, Low Dimens Carbon Mat Ctr, Ulsan 689798, South Korea. [Kim, Taeyoung; Yang, Tae-Hyun; Park, Gu-Gon] Korea Inst Energy Res, Fuel Cell Res Ctr, Taejon 305343, South Korea. [Choi, YongMan] SABIC Technol Ctr, Riyadh 11551, Saudi Arabia. [Jeong, Hu Young] UNIST, UNIST Cent Res Facil, Ulsan 689798, South Korea. [Jeong, Hu Young; Lee, Zonghoon] UNIST, Sch Mech & Adv Mat Engn, Ulsan 689798, South Korea. [Kim, Min Gyu] Pohang Accelerator Lab, Beamline Res Div, Pohang 790784, South Korea. [Kwon, Kyungjung] Sejong Univ, Dept Energy & Mineral Resources Engn, Seoul 143747, South Korea. [Terasaki, Osamu] Korea Adv Inst Sci & Technol, Grad Sch EEWS WCU, Taejon 305701, South Korea. [Terasaki, Osamu] Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden. [Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Joo, SH (reprint author), Ulsan Natl Inst Sci & Technol, Sch Nanobiosci & Chem Engn, KIER UNIST Adv Ctr Energy, Dept Chem, 50 UNIST Gil, Ulsan 689798, South Korea. EM gugon@kier.re.kr; adzic@bnl.gov; shjoo@unist.ac.kr RI Joo, Sang Hoon/E-5898-2010; Lee, Zonghoon/G-1474-2011; Cheon, Jae Yeong/E-8996-2011; Choi, YongMan/N-3559-2014; Jeong, Hu Young/H-4413-2016; Park, Gu-Gon/A-6175-2013; Kim, Min-Gyu/D-8949-2013 OI Lee, Zonghoon/0000-0003-3246-4072; Choi, YongMan/0000-0003-4276-1599; Park, Gu-Gon/0000-0002-4606-0661; Kim, Min-Gyu/0000-0002-2366-6898 FU Basic Science Research Program through the National Research Foundation (NRF) of Korea; Ministry of Education [NRF-2013R1A1A2012960, NRF-2013R1A1A2010795]; TJ Park Junior Faculty Fellowship; Korea Institute of Energy Research (KIER) [B3-2415]; U.S. Department of Energy (DOE), Divisions of Chemical and Material Sciences [DE-AC02-98CH10886]; WCU (Korea) [R-31-2008-000-10035-0]; Berzelii EXSELENT; 3DEM-NATUR (Sweden); Basic Science Research Program through the NRF; Ministry of Education; Mid-career Researcher Program through the NRF; Ministry of Science, ICT & Future Planning [NRF-2011-0029412]; National Junior Research Fellowship [NRF-2013H1A8A1003741]; Global Ph.D. Fellowship [NRF-2013H1A2A1032644]; POSTECH FX S.H.J. was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea, funded by the Ministry of Education (NRF-2013R1A1A2012960) and the TJ Park Junior Faculty Fellowship. G.-G.P. acknowledges the support from Korea Institute of Energy Research (KIER, B3-2415). R.R.A. was supported by U.S. Department of Energy (DOE), Divisions of Chemical and Material Sciences, under the Contract No. DE-AC02-98CH10886. O.T. acknowledges WCU (R-31-2008-000-10035-0, Korea), Berzelii EXSELENT and 3DEM-NATUR (Sweden) for financial support. K.K. was supported by Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2013R1A1A2010795). Z. Lee was supported by Mid-career Researcher Program through the NRF funded by the Ministry of Science, ICT & Future Planning (NRF-2011-0029412). J.Y.C. and Y.J.S. were supported by the National Junior Research Fellowship (NRF-2013H1A8A1003741) and the Global Ph.D. Fellowship (NRF-2013H1A2A1032644), respectively. The EXAFS experiments performed at Pohang Light Source (PLS) were supported in part by the Ministry of Education and POSTECH. We thank the National Energy Research Scientific Computing Center (NERSC) and KAUST Supercomputing Laboratory (KSL) for computational time, and Prof. S. J. Hwang (Ewha Womans Univ.) and Prof. M. Choi (KAIST) for their help in EXAFS experiments. NR 49 TC 116 Z9 117 U1 26 U2 233 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 23 PY 2013 VL 3 AR 2715 DI 10.1038/srep02715 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 221XP UT WOS:000324694200001 PM 24056308 ER PT J AU Piazza, L Masiel, DJ LaGrange, T Reed, BW Barwick, B Carbone, F AF Piazza, L. Masiel, D. J. LaGrange, T. Reed, B. W. Barwick, B. Carbone, Fabrizio TI Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology SO CHEMICAL PHYSICS LA English DT Article DE Ultrafast electron microscopy; Photon-induced near field electron microscopy PINEM; fs-Resolved transmission electron microscopy; Dynamic transmission electron microscopy ID TRANSIENT STRUCTURES; IN-SITU; ENERGY; VISUALIZATION; DIFFRACTION; DYNAMICS; SPACE; TIME AB In this paper, the design and implementation of a femtosecond-resolved ultrafast transmission electron microscope is presented, based on a thermionic gun geometry. Utilizing an additional magnetic lens between the electron acceleration and the nominal condenser lens system, a larger percentage of the electrons created at the cathode are delivered to the specimen without degrading temporal, spatial and energy resolution significantly, while at the same time maintaining the femtosecond temporal resolution. Using the photon-induced near field electron microscopy effect (PINEM) on silver nanowires the cross-correlation between the light and electron pulses was measured, showing the impact of the gun settings and initiating laser pulse duration on the electron bunch properties. Tuneable electron pulses between 300 fs and several ps can be obtained, and an overall energy resolution around 1 eV was achieved. (C) 2013 Elsevier B.V. All rights reserved. C1 [Piazza, L.; Carbone, Fabrizio] Ecole Polytech Fed Lausanne, LUMES, ICMP, CH-1015 Lausanne, Switzerland. [Masiel, D. J.] Integrated Dynam Elect Solut Inc, Danville, CA 94526 USA. [LaGrange, T.; Reed, B. W.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Barwick, B.] Trinity Coll, Dept Phys, Hartford, CT 06106 USA. RP Piazza, L (reprint author), Ecole Polytech Fed Lausanne, LUMES, ICMP, CH-1015 Lausanne, Switzerland. EM luca.piazza@epfl.ch RI Carbone, Fabrizio/A-2969-2012 FU ERC starting grant; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Trinity College FRC FX This work was supported through an ERC starting grant. TL and BR acknowledge support from the auspices of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. BB acknowledges support from the Trinity College FRC. NR 32 TC 29 Z9 29 U1 4 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD SEP 23 PY 2013 VL 423 BP 79 EP 84 DI 10.1016/j.chemphys.2013.06.026 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 216UY UT WOS:000324311800012 ER PT J AU Hang, T Nash, CA Aleman, SE AF Hang, T. Nash, C. A. Aleman, S. E. TI Modeling Ion-Exchange Processing with Spherical Resins for Cesium Removal SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article DE cesium removal; ion-exchange; process modeling; radioactive waste; spherical resins ID BEDS AB The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig (R) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig (R) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, thereby significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind cesium bleed is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into an otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SuperLig (R) 644 resin. C1 [Hang, T.; Nash, C. A.; Aleman, S. E.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Hang, T (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM thong.hang@srnl.doe.gov NR 23 TC 2 Z9 2 U1 1 U2 25 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0149-6395 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD SEP 22 PY 2013 VL 48 IS 14 BP 2090 EP 2098 DI 10.1080/01496395.2013.787627 PG 9 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA 197RD UT WOS:000322867400002 ER PT J AU Russell, TH Counce, RM Watson, JS Spencer, BB Del Cul, GD AF Russell, Travis H. Counce, Robert M. Watson, Jack S. Spencer, Barry B. Del Cul, Guillermo D. TI Water Content of Organic Solvents and their Relationship to Extraction of Nitric and Acetic Acid from UREX plus Streams SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article DE acetic acid; 1; 2 Dichloroethane; n-Dodecane; extraction; nitric acid; phenyltrifluoromethyl sulfone; tributyl phosphate; UREX; water content ID N-BUTYL PHOSPHATE; TRIBUTYL-PHOSPHATE; MONOCARBOXYLIC ACIDS; DODECANE; TBP; EQUILIBRIUM; DILUENT; SYSTEM; PHASE AB This study investigates the equilibrium absorption of water in various solvents and solvent-mixtures being considered for the counter-current solvent extraction of acetic acid from improved Uranium Extraction (UREX+) process solutions. It then seeks to determine if there is any correlation between the equilibrium water content of these solvents and their equilibrium extraction of 0.25M nitric and 0.025M acetic acid. The UREX+ process is a proliferation resistant version of the Plutonium Uranium Extraction (PUREX) process. The solvents studied were n-Dodecane (nDD), 1,2 Dichloroethane (DCE), and Phenyltrifluoromethyl Sulfone (FS-13), and mixtures of these solvents with Tributyl Phosphate (TBP). After studying both pure water and acidified aqueous systems, it seems the water absorption mechanism is independent of the diluent used and remains constant with the addition of the 0.25M nitric and 0.025M acetic acid. C1 [Russell, Travis H.; Counce, Robert M.; Watson, Jack S.] Univ Tennessee, Knoxville, TN 37996 USA. [Spencer, Barry B.; Del Cul, Guillermo D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Russell, TH (reprint author), Univ Tennessee, 1512 Middle Dr, Knoxville, TN 37996 USA. EM trusse18@utk.edu FU U.S. Department of Energy, NERI program, under DOE [DE-PS07-05ID14713]; Oak Ridge National Laboratory FX The authors thank Jessica Mitchell, Jared Johnson, Christina Karni, and Jon Garrison for their support, advice, and hard work during the course of this study. This research was supported by the U.S. Department of Energy, NERI program, under DOE Contract No. DE-PS07-05ID14713 with Oak Ridge National Laboratory. NR 18 TC 0 Z9 0 U1 3 U2 10 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0149-6395 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD SEP 22 PY 2013 VL 48 IS 14 BP 2164 EP 2169 DI 10.1080/01496395.2013.794361 PG 6 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA 197RD UT WOS:000322867400011 ER PT J AU Brant, AT Giles, NC Yang, S Sarker, MAR Watauchi, S Nagao, M Tanaka, I Tryk, DA Manivannan, A Halliburton, LE AF Brant, A. T. Giles, N. C. Yang, Shan Sarker, M. A. R. Watauchi, S. Nagao, M. Tanaka, I. Tryk, D. A. Manivannan, A. Halliburton, L. E. TI Ground state of the singly ionized oxygen vacancy in rutile TiO2 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELECTRON-PARAMAGNETIC-RESONANCE; DEFECTS; ANATASE; SURFACE; PHOTOCATALYSIS; POLYMORPHS; PARAMETERS; BEHAVIOR; CENTERS; EPR AB Results from electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) experiments are used to establish the model for the ground state of the singly ionized oxygen vacancy in the interior of bulk rutile TiO2 crystals. Hyperfine from Ti-47 and Ti-49 nuclei show that the unpaired electron in this S = 1/2 defect is localized on one titanium ion adjacent to the oxygen vacancy (i.e., the spin is not shared by two titanium ions). These defects are formed at low temperature (similar to 35 K) in as-grown oxidized crystals when sub-band-gap 442 nm laser light converts doubly ionized nonparamagnetic oxygen vacancies to the singly ionized paramagnetic charge state. The g matrix is obtained from EPR spectra and the Ti-47 and Ti-49 hyperfine and nuclear electric quadrupole matrices (A and Q) are obtained from ENDOR spectra. Principal values of the Ti-47 and Ti-49 hyperfine matrices are 64.54, 11.57, and 33.34 MHz. All the matrices have a principal axis along the [001] direction. In the basal plane, principal axes of the hyperfine and quadrupole matrices also coincide. The principal axes of the g matrix in the basal plane, however, deviate significantly from those of the A and Q matrices, thus indicating mixing of d orbitals due to the low symmetry at the Ti3+ ion site and participation of excited-state orbitals. (C) 2013 AIP Publishing LLC. C1 [Brant, A. T.; Giles, N. C.] Air Force Inst Technol, Dept Engn Phys, Wright Patterson AFB, OH 45433 USA. [Yang, Shan; Halliburton, L. E.] W Virginia Univ, Dept Phys, Morgantown, WV 26505 USA. [Sarker, M. A. R.; Watauchi, S.; Nagao, M.; Tanaka, I.] Univ Yamanashi, Ctr Crystal Sci & Technol, Kofu, Yamanashi 4008511, Japan. [Tryk, D. A.] Univ Yamanashi, Fuel Cell Nanomat Ctr, Kofu, Yamanashi 4000021, Japan. [Manivannan, A.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Sarker, M. A. R.] Rajshahi Univ, Dept Phys, Rajshahi 6205, Bangladesh. RP Halliburton, LE (reprint author), W Virginia Univ, Dept Phys, Morgantown, WV 26505 USA. EM larry.halliburton@mail.wvu.edu RI Tryk, Donald/D-5931-2012 OI Tryk, Donald/0000-0003-4660-9674 FU National Research Council FX One of the authors (A. T. B.) acknowledges support as a National Research Council Postdoctoral Fellow. NR 43 TC 12 Z9 12 U1 4 U2 59 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 21 PY 2013 VL 114 IS 11 AR 113702 DI 10.1063/1.4819805 PG 10 WC Physics, Applied SC Physics GA 223RU UT WOS:000324827200027 ER PT J AU Ji, HW Stokes, RA Alegria, LD Blomberg, EC Tanatar, MA Reijnders, A Schoop, LM Liang, T Prozorov, R Burch, KS Ong, NP Petta, JR Cava, RJ AF Ji, Huiwen Stokes, R. A. Alegria, L. D. Blomberg, E. C. Tanatar, M. A. Reijnders, Anjan Schoop, L. M. Liang, Tian Prozorov, R. Burch, K. S. Ong, N. P. Petta, J. R. Cava, R. J. TI A ferromagnetic insulating substrate for the epitaxial growth of topological insulators SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CRYSTAL-STRUCTURE; SURFACE-STATES; REALIZATION AB Cr2Ge2Te6 is proposed as an insulating ferromagnetic substrate for the growth of tetradymite-type topological insulators, based on a refined characterization of its transport, magnetic, optical, and calculated electronic properties. It is found to be a soft ferromagnet with no visible magnetic domains over relatively large length scales and to be highly insulating with an indirect band gap and low carrier concentration. Further we present the fabrication of Bi2Te3-Cr2Ge2Te6 heterostructure samples by chemical vapor deposition and show that crystals of the two phases are oriented such that the hexagonal Te planes are aligned at their interfaces. (C) 2013 AIP Publishing LLC. C1 [Ji, Huiwen; Stokes, R. A.; Schoop, L. M.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Alegria, L. D.; Liang, Tian; Ong, N. P.; Petta, J. R.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Blomberg, E. C.; Tanatar, M. A.; Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Reijnders, Anjan; Burch, K. S.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Reijnders, Anjan; Burch, K. S.] Univ Toronto, Inst Opt Sci, Toronto, ON M5S 1A7, Canada. [Burch, K. S.] Dept Mat Sci & Engn, Toronto, ON M53 3E4, Canada. RP Ji, HW (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RI Schoop, Leslie/A-4627-2013; Ji, Huiwen/O-5145-2014; Petta, Jason/J-6663-2013 OI Schoop, Leslie/0000-0003-3459-4241; Petta, Jason/0000-0002-6416-0789 FU NSF [DMR-0819860]; SPAWAR [N66001-11-1-4110]; Ontario Research Fund; Natural Sciences and Engineering Research council of Canada; Canada Foundation for Innovation; Prins Bernhard Cultuurfonds; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358] FX The research at Princeton University was supported by grants NSF DMR-0819860 and SPAWAR grant N66001-11-1-4110. The work in Toronto was funded by the Ontario Research Fund, the Natural Sciences and Engineering Research council of Canada, and the Canada Foundation for Innovation. A. A. Reijnders was supported by the Prins Bernhard Cultuurfonds. The work at Ames was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. NR 27 TC 10 Z9 10 U1 7 U2 49 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 21 PY 2013 VL 114 IS 11 AR 114907 DI 10.1063/1.4822092 PG 7 WC Physics, Applied SC Physics GA 223RU UT WOS:000324827200082 ER PT J AU Meinert, M Hubner, T Schmalhorst, J Reiss, G Arenholz, E AF Meinert, Markus Huebner, Torsten Schmalhorst, Jan Reiss, Guenter Arenholz, Elke TI Phase separation in Fe2CrSi thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB Thin films of a nominal Fe2CrSi alloy have been deposited by magnetron co-sputtering with various heat treatments on MgO and MgAl2O4 substrates. After heat treatment, the films were found to decompose into a nearly epitaxial Fe3Si film with the D0(3) structure and Cr3Si precipitates with the A15 structure. We explain the experimental results on the basis of ab initio calculations, which reveal that this decomposition is energetically highly favorable. (C) 2013 AIP Publishing LLC. C1 [Meinert, Markus; Huebner, Torsten; Schmalhorst, Jan; Reiss, Guenter] Univ Bielefeld, Dept Phys, D-33501 Bielefeld, Germany. [Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Meinert, M (reprint author), Univ Bielefeld, Dept Phys, D-33501 Bielefeld, Germany. EM meinert@physik.uni-bielefeld.de RI Meinert, Markus/E-8794-2011; Reiss, Gunter/A-3423-2010 OI Meinert, Markus/0000-0002-7813-600X; Reiss, Gunter/0000-0002-0918-5940 FU Deutsche Forschungsgemeinschaft (DFG); Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Financial support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. We thank Dr. Karsten Rott for help with EDX mappings, Alexander Bohnke for AFM measurements, and Manuel Glas for XAS/XMCD measurements. The Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 13 TC 3 Z9 3 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 21 PY 2013 VL 114 IS 11 AR 113908 DI 10.1063/1.4821972 PG 4 WC Physics, Applied SC Physics GA 223RU UT WOS:000324827200045 ER PT J AU Sandoval, LA Surh, MP Chernov, AA Richards, DF AF Sandoval, Luis A. Surh, Michael P. Chernov, Alexander A. Richards, David F. TI Growth of deformation twins in tantalum via coherent twin boundary migration SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DISLOCATION NUCLEATION; METALS; STRENGTH; KINETICS; STRESS AB In order to investigate the process of twinning growth, the nucleation of twinning dislocation loops on the coherent boundary of a Tantalum twin superlattice is studied via a molecular dynamics approach. We get homogeneous nucleation rates by means of a stationarity test and the mean first-passage method. We study their dependence on driving force and temperature in a framework given by the Kolgomorov-Johnson-Mehl-Avrami theory. Correspondingly, the contribution to the twinning growth dictated by this nucleation mechanism, as compared to the pole mechanism, is discussed. The homogeneous loop nucleation and growth mechanism can be relevant to twinning in high strain-rate experiments as in shock waves. (C) 2013 AIP Publishing LLC. C1 [Sandoval, Luis A.; Surh, Michael P.; Chernov, Alexander A.; Richards, David F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Sandoval, LA (reprint author), Los Alamos Natl Lab, Theoret Div T 1, POB 1663, Los Alamos, NM 87545 USA. RI Sandoval, Luis/B-2221-2009 OI Sandoval, Luis/0000-0002-1172-7972 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-638982)] FX The authors gratefully acknowledge Robert Rudd, Mukul Kumar, Nathan Barton, Jim Belak, Kyle Caspersen, Vasily Bulatov, and Frederick Streitz for their contributions and fruitful discussions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-638982). NR 27 TC 3 Z9 3 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 21 PY 2013 VL 114 IS 11 AR 113511 DI 10.1063/1.4821956 PG 6 WC Physics, Applied SC Physics GA 223RU UT WOS:000324827200024 ER PT J AU Tuttle, BR Aichinger, T Lenahan, PM Pantelides, ST AF Tuttle, B. R. Aichinger, T. Lenahan, P. M. Pantelides, S. T. TI Theory of hyperfine active nitrogen complexes observed in 4H-SiC diodes SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DEFECTS; SILICON AB Nitrogen complexes have been implicated as defects that limit the performance of SiC-based electronics. Here, we use density functional methods to explore the properties of nitrogen vacancy complexes in bulk 4H-SiC. The stability, electronic levels and hyperfine signatures of defect complexes are reported. A nitrogen substitutional/carbon-antisite complex is found to be the strongest candidate for recently observed hyperfine active defects in 4H-SiC diodes. (C) 2013 AIP Publishing LLC. C1 [Tuttle, B. R.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Tuttle, B. R.] Penn State Univ, Behrend Coll, Penn State Erie, Dept Phys, Erie, PA 16563 USA. [Aichinger, T.; Lenahan, P. M.] Penn State Univ, Dept Engn Sci, University Pk, PA 16802 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Pantelides, S. T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. RP Tuttle, BR (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. FU National Science Foundation [DMR-0907385]; McMinn Endowment; PSU Collaboration Fellowship; Infineon Technologies, Austria; U.S. Army Research Laboratory; General Electric under the U. S. Department of Commerce [NIST 60NANB10D109] FX Work at Vanderbilt was supported by National Science Foundation Grant No. DMR-0907385 and by the McMinn Endowment. Blair Tuttle was also supported by the PSU Collaboration Fellowship. Work at Penn State was supported in part by the Infineon Technologies, Austria, the U.S. Army Research Laboratory, and through General Electric under the U. S. Department of Commerce under Award No. NIST 60NANB10D109. Computational support for this research was provided by the Research Computing and Cyberinfrastructure (RCC) group, a unit of ITS at Penn State-specifically, calculations were performed on the Lion-X supercomputer. NR 24 TC 3 Z9 3 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 21 PY 2013 VL 114 IS 11 AR 113712 DI 10.1063/1.4821799 PG 4 WC Physics, Applied SC Physics GA 223RU UT WOS:000324827200037 ER PT J AU Miliordos, E Apra, E Xantheas, SS AF Miliordos, Evangelos Apra, Edoardo Xantheas, Sotiris S. TI Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)(n), n=2-6, and several hexamer local minima at the CCSD(T) level of theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; POTENTIAL-ENERGY SURFACE; AB-INITIO CALCULATIONS; CONSISTENT BASIS-SETS; BINDING-ENERGIES; WAVE-FUNCTIONS; INTERMOLECULAR INTERACTION; THEORETICAL INVESTIGATIONS; INTERNUCLEAR DISTANCES AB We report the first optimum geometries and harmonic vibrational frequencies for the ring pentamer and several water hexamer (prism, cage, cyclic and two book) at the coupled-cluster including single, double, and full perturbative triple excitations (CCSD(T))/aug-cc-pVDZ level of theory. All five examined hexamer isomer minima previously reported by Moller-Plesset perturbation theory (MP2) are also minima on the CCSD(T) potential energy surface (PES). In addition, all CCSD(T) minimum energy structures for the n = 2-6 cluster isomers are quite close to the ones previously obtained by MP2 on the respective PESs, as confirmed by a modified Procrustes analysis that quantifies the difference between any two cluster geometries. The CCSD(T) results confirm the cooperative effect of the homodromic ring networks (systematic contraction of the nearest-neighbor (nn) intermolecular separations with cluster size) previously reported by MP2, albeit with O-O distances shorter by similar to 0.02 angstrom, indicating that MP2 overcorrects this effect. The harmonic frequencies at the minimum geometries were obtained by the double differentiation of the CCSD(T) energy using an efficient scheme based on internal coordinates that reduces the number of required single point energy evaluations by similar to 15% when compared to the corresponding double differentiation using Cartesian coordinates. Negligible differences between MP2 and CCSD(T) frequencies are found for the librational modes, while uniform increases of similar to 15 and similar to 25 cm(-1) are observed for the bending and "free" OH harmonic frequencies. The largest differences between CCSD(T) and MP2 are observed for the harmonic hydrogen bonded frequencies, for which the former produces larger absolute values than the latter. Their CCSD(T) redshifts from the monomer values (Delta omega) are smaller than the MP2 ones, due to the fact that CCSD(T) produces shorter elongations (Delta R) of the respective hydrogen bonded OH lengths from the monomer value with respect to MP2. Both the MP2 and CCSD(T) results for the hydrogen bonded frequencies were found to closely follow the relation -Delta omega = s . Delta R, with a rate of s = 20.2 cm(-1)/0.001 angstrom for hydrogen bonded frequencies with IR intensities >400 km/mol. The CCSD(T) harmonic frequencies, when corrected using the MP2 anharmonicities obtained from second order vibrational perturbation theory, produce anharmonic CCSD(T) estimates that are within <60 cm(-1) from the measured infrared (IR) active bands of the n = 2-6 clusters. Furthermore, the CCSD(T) harmonic redshifts (with respect to the monomer) trace the measured ones quite accurately. The energetic order between the various hexamer isomers on the PES (prism has the lowest energy) previously reported at MP2 was found to be preserved at the CCSD(T) level, whereas the inclusion of anharmonic corrections further stabilizes the cage among the hexamer isomers. (C) 2013 AIP Publishing LLC. C1 [Miliordos, Evangelos; Xantheas, Sotiris S.] Pacific NW Natl Lab, Phys Sci Div, Richland, WA 99352 USA. [Apra, Edoardo] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Xantheas, SS (reprint author), Pacific NW Natl Lab, Phys Sci Div, 902 Battelle Blvd,POB 999,MS K1-83, Richland, WA 99352 USA. EM sotiris.xantheas@pnnl.gov RI Apra, Edoardo/F-2135-2010; Xantheas, Sotiris/L-1239-2015; OI Apra, Edoardo/0000-0001-5955-0734; Xantheas, Sotiris/0000-0002-6303-1037 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; Department of Energy's Office of Biological and Environmental Research; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences (E.M. and S.S.X.). Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. A portion of this research was performed using the Molecular Science Computing Facility (MSCF) in EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 105 TC 36 Z9 36 U1 1 U2 74 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2013 VL 139 IS 11 AR 114302 DI 10.1063/1.4820448 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 223RZ UT WOS:000324827800016 PM 24070285 ER PT J AU Reuter, MG Harrison, RJ AF Reuter, Matthew G. Harrison, Robert J. TI Rethinking first-principles electron transport theories with projection operators: The problems caused by partitioning the basis set SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CURRENT-VOLTAGE CHARACTERISTICS; MOLECULAR WIRE JUNCTIONS; POPULATION ANALYSIS; CHARGE-TRANSFER; HILBERT-SPACE; BOND ORDERS; LOCAL SPIN; CONDUCTANCE; FORMALISM; TRANSMISSION AB We revisit the derivation of electron transport theories with a focus on the projection operators chosen to partition the system. The prevailing choice of assigning each computational basis function to a region causes two problems. First, this choice generally results in oblique projection operators, which are non-Hermitian and violate implicit assumptions in the derivation. Second, these operators are defined with the physically insignificant basis set and, as such, preclude a well-defined basis set limit. We thus advocate for the selection of physically motivated, orthogonal projection operators (which are Hermitian) and present an operator-based derivation of electron transport theories. Unlike the conventional, matrix-based approaches, this derivation requires no knowledge of the computational basis set. In this process, we also find that common transport formalisms for nonorthogonal basis sets improperly decouple the exterior regions, leading to a short circuit through the system. We finally discuss the implications of these results for first-principles calculations of electron transport. (C) 2013 AIP Publishing LLC. C1 [Reuter, Matthew G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Reuter, Matthew G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Harrison, Robert J.] SUNY Stony Brook, Inst Adv Computat Sci, Stony Brook, NY 11794 USA. [Harrison, Robert J.] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. RP Reuter, MG (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM mgreuter@u.northwestern.edu FU U.S. Department of Energy [DE-AC05-00OR22725] FX We thank Mark Ratner, Jay Bardhan, Thorsten Hansen, Scott Thornton, Qin Wu, Carmen Herrmann, and an anonymous reviewer for helpful comments. M. G. R. was supported as a Wigner Fellow at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The figures were prepared with the LevelScheme package.42 NR 68 TC 7 Z9 7 U1 2 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2013 VL 139 IS 11 AR 114104 DI 10.1063/1.4821176 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 223RZ UT WOS:000324827800007 PM 24070276 ER PT J AU Siegel, DA Chueh, WC El Gabaly, F McCarty, KF de la Figuera, J Blanco-Rey, M AF Siegel, David A. Chueh, William C. El Gabaly, Farid McCarty, Kevin F. de la Figuera, Juan Blanco-Rey, Maria TI Determination of the surface structure of CeO2(111) by low-energy electron diffraction SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; DENSITY-FUNCTIONAL THEORY; CERIUM OXIDE; LATTICE-PARAMETER; DEFECT STRUCTURE; TENSOR LEED; FUEL-CELL; FILMS; CEO2; BULK AB We determine the atomic structure of the (111) surface of an epitaxial ceria film using low-energy electron diffraction (LEED). The 3-fold-symmetric LEED patterns are consistent with a bulk-like termination of the (111) surface. By comparing the experimental dependence of diffraction intensity on electron energy (LEED-I(V) data) with simulations of dynamic scattering from different surface structures, we find that the CeO2(111) surface is terminated by a plane of oxygen atoms. We also find that the bond lengths in the top few surface layers of CeO2(111) are mostly undistorted from their bulk values, in general agreement with theoretical predictions. However, the topmost oxygen layer is further from the underlying cerium layer than the true bulk termination, an expansion that differs from theoretical predictions. (C) 2013 AIP Publishing LLC. C1 [Siegel, David A.; Chueh, William C.; El Gabaly, Farid; McCarty, Kevin F.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94551 USA. [de la Figuera, Juan] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain. [Blanco-Rey, Maria] Univ Basque Country, Fac Quim, Dept Fis Mat, Donostia San Sebastian, Spain. [Blanco-Rey, Maria] Univ Pais Vasco UPV EHU, Donostia Int Phys Ctr, Donostia San Sebastian 20018, Spain. RP Siegel, DA (reprint author), Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94551 USA. EM dasiege@sandia.gov RI de la Figuera, Juan/E-7046-2010; Blanco-Rey, Maria/E-5245-2011; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014 OI de la Figuera, Juan/0000-0002-7014-4777; FU Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, (U.S.) Department of Energy (DOE) [DE-AC04-94AL85000]; Spanish Ministry of Science and Innovation [MAT2009-14578-C03-0]; Gipuzkoako Foru Aldundia; European Commission [FP7-PEOPLE-2010-RG276921] FX This research was supported by the Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, (U.S.) Department of Energy (DOE) under Contract No. DE-AC04-94AL85000, the Spanish Ministry of Science and Innovation through Project No. MAT2009-14578-C03-0. M.B.-R. acknowledges financial support from the Gipuzkoako Foru Aldundia and the European Commission through Grant No. FP7-PEOPLE-2010-RG276921. Professor P. L. de Andres is acknowledged for useful discussions. NR 54 TC 3 Z9 3 U1 5 U2 54 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2013 VL 139 IS 11 AR 114703 DI 10.1063/1.4820826 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 223RZ UT WOS:000324827800032 PM 24070301 ER PT J AU Wang, J Apte, PA Morris, JR Zeng, XC AF Wang, Jun Apte, Pankaj A. Morris, James R. Zeng, Xiao Cheng TI Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: A molecular dynamics simulation study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MODEL POLAR CLUSTERS; DISORDERED HEXAGONAL ICE; ION SOLVATION DYNAMICS; LENNARD-JONES CRYSTAL; NUMERICAL SIMULATIONS; ELECTROLYTE-SOLUTIONS; DIELECTRIC-PROPERTIES; POLARIZABLE DIPOLAR; COMPUTER-SIMULATION; MELTING TEMPERATURE AB Stockmayer fluids are a prototype model system for dipolar fluids. We have computed the freezing temperatures of Stockmayer fluids at zero pressure using three different molecular-dynamics simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature two-phase coexistence method, and the constant-pressure and constant-enthalpy two-phase coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with the dimensionless dipole moment mu* = 1, root 2, root 3 is 0.656 +/- 0.001, 0.726 +/- 0.002, and 0.835 +/- 0.005, respectively. The freezing temperature increases with the dipolar strength. Moreover, for the first time, the solid-liquid interfacial free energies gamma of the fcc (111), (110), and (100) interfaces are computed using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, i.e., gamma(100) > gamma(110) > gamma(111). (C) 2013 AIP Publishing LLC. C1 [Wang, Jun; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Apte, Pankaj A.] Indian Inst Technol, Dept Chem Engn, Kanpur 208016, Uttar Pradesh, India. [Morris, James R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Morris, James R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Wang, J (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. EM xzeng1@unl.edu RI Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 FU DOE [DE-FG02-04ER46164]; Nebraska Research Initiative; Holland Computing Center at University of Nebraska; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; Department of Science and Technology, India FX We are grateful to Dr. Soohaeng Yoo Willow for valuable discussions. X.C.Z. was supported by grants from DOE (DE-FG02-04ER46164), the Nebraska Research Initiative and by the Holland Computing Center at University of Nebraska. Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (J.R.M.). Support to P.A.A. by fast-track scheme for young scientists, Department of Science and Technology, India is gratefully acknowledged. NR 58 TC 6 Z9 6 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2013 VL 139 IS 11 AR 114705 DI 10.1063/1.4821455 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 223RZ UT WOS:000324827800034 PM 24070303 ER PT J AU Kameya, Y Lee, KO AF Kameya, Yuki Lee, Kyeong O. TI Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Ultra-small-angle X-ray scattering; Diesel particulate filter; Gasoline-direct-injection engine soot; Soot cake; Particle deposition; Unified fits method ID DIESEL PARTICULATE FILTERS; MASS-FRACTAL DIMENSION; CARBON-BLACK; EMISSIONS; NANOPARTICLES; REGENERATION; COMPOSITES; MORPHOLOGY; VEHICLES; ENGINES AB Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed. C1 [Kameya, Yuki; Lee, Kyeong O.] Argonne Natl Lab, Ctr Transportat Res, Lemont, IL 60439 USA. RP Kameya, Y (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 South Cass Ave, Lemont, IL 60439 USA. EM ykameya@anl.gov RI USAXS, APS/D-4198-2013; OI Kameya, Yuki/0000-0002-7811-9971 FU Advanced Combustion Engines Program at the US Department of Energy, Office of Vehicle Technologies; National Science Foundation/Department of Energy [NSF/CHE-0822838]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Advanced Combustion Engines Program at the US Department of Energy, Office of Vehicle Technologies. The authors would like to thank Dr. Jan Ilavsky for helpful advice on USAXS experiment and data analysis, Dr. Seungmok Choi for help with engine soot sampling, and Dr. Rachel E. Koritala for assistance with microscopy at Argonne National Laboratory. ChemMatCARS Sector15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source, the Center for Nanoscale Materials, and the Electron Microscopy Center, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 40 TC 7 Z9 7 U1 3 U2 35 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD SEP 21 PY 2013 VL 15 IS 10 DI 10.1007/s11051-013-2006-6 PG 12 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 221GT UT WOS:000324646700001 ER PT J AU Frankle, CM Dale, GE AF Frankle, C. M. Dale, G. E. TI Unconventional neutron sources for oil well logging SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron spectrum; Oil well logging; MCNP; Porosity; C/O ratio ID SPECTRUM AB Americium-Beryllium (AmBe) radiological neutron sources have been widely used in the petroleum industry for well logging purposes. There is strong desire on the part of various governmental and regulatory bodies to find alternate sources due to the high activity and small size of AmBe sources. Other neutron sources are available, both radiological (Cf-252 and electronic accelerator driven (D-D and D-T). All of these, however, have substantially different neutron energy spectra from AmBe and thus cause significantly different responses in well logging tools. We report on simulations performed using unconventional sources and techniques to attempt to better replicate the porosity and carbon/oxygen ratio responses a well logging tool would see from AmBe neutrons. The AmBe response of these two types of tools is compared to the response from Cf-252, D-D, D-T, filtered D-T, and T-T sources. (C) 2013 Elsevier B.V. All rights reserved. C1 [Frankle, C. M.; Dale, G. E.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Frankle, CM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM cfrankle@lanl.gov FU Office of Nonproliferation Research and Development [USDOE/NA-22] FX This work was funded by the USDOE/NA-22 Office of Nonproliferation Research and Development. NR 14 TC 2 Z9 2 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2013 VL 723 BP 24 EP 29 DI 10.1016/j.nima.2013.05.012 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 181ZN UT WOS:000321709700005 ER PT J AU Blyth, SC Chan, YL Chen, XC Ch, MC Hahn, RL Ho, TH Hsiung, YB Hug, BZ Kwan, KK Kwok, MW Kwok, T Lau, YP Lee, KP Leung, JKC Leung, KY Lin, GL Lin, YC Luk, KB Luk, WH Ngai, HY Ngan, SY Pun, CSJ Shih, K Tam, YH Tsang, RHM Wang, CH Wong, CM Wong, HL Wong, HHC Wong, KK Yeh, M AF Blyth, S. C. Chan, Y. L. Chen, X. C. Ch, M. C. Hahn, R. L. Ho, T. H. Hsiung, Y. B. Hug, B. Z. Kwan, K. K. Kwok, M. W. Kwok, T. Lau, Y. P. Lee, K. P. Leung, J. K. C. Leung, K. Y. Lin, G. L. Lin, Y. C. Luk, K. B. Luk, W. H. Ngai, H. Y. Ngan, S. Y. Pun, C. S. J. Shih, K. Tam, Y. H. Tsang, R. H. M. Wang, C. H. Wong, C. M. Wong, H. L. Wong, H. H. C. Wong, K. K. Yeh, M. TI An apparatus for studying spallation neutrons in the Aberdeen Tunnel laboratory SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Aberdeen Tunnel; Hong Kong; Underground; Cosmic-ray muon; Neutron ID COSMIC-RAY MUONS; INTENSITY CURVE AB In this paper, we describe the design, construction and performance of an apparatus installed in the Aberdeen Tunnel laboratory in Hong Kong for studying spallation neutrons induced by cosmic-ray muons under a vertical rock overburden of 611 m water equivalent (m.w.e.). The apparatus comprises six horizontal layers of plastic-scintillator hodoscopes for determining the direction and position of the incident cosmic-ray muons. Sandwiched between the hodoscope planes is a neutron detector filled with 650 kg of liquid scintillator doped with about 0.06% of Gadolinium by weight for improving the efficiency of detecting the spallation neutrons. Performance of the apparatus is also presented. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hahn, R. L.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Blyth, S. C.; Wang, C. H.] Natl United Univ, Dept Electroopt Engn, Miaoli, Taiwan. [Ho, T. H.; Hsiung, Y. B.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Chan, Y. L.; Chen, X. C.; Ch, M. C.; Kwan, K. K.; Kwok, M. W.; Lin, Y. C.; Luk, W. H.; Ngan, S. Y.; Shih, K.; Tam, Y. H.; Wong, C. M.; Wong, K. K.] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Kwok, T.; Lau, Y. P.; Lee, K. P.; Leung, J. K. C.; Leung, K. Y.; Ngai, H. Y.; Pun, C. S. J.; Tsang, R. H. M.; Wong, H. L.; Wong, H. H. C.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Luk, K. B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hug, B. Z.; Lin, G. L.] Natl Chiao Tung Univ, Inst Phys, Hsinchu, Taiwan. RP Kwok, T (reprint author), Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. EM goodtalent@gmail.com OI Ngai, Ho Yin/0000-0003-0336-2165; HSIUNG, YEE/0000-0003-4801-1238 FU Research Grant Council of the Hong Kong Special Administrative Region, China [HKU703307P, HKU704007P, CUHK 1/07C, CUHK3/CRF/10]; University Development Fund of The University of Hong Kong; Office of Nuclear Physics, Office of High Energy Physics, Office of Science, US Department of Energy [DE-AC-02-05CH1123, DE-AC-02-98CH10886]; National Science Council in Taiwan; MOE program for Research of Excellence at National Taiwan University; National Chiao-Tung University FX This work is partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project nos. HKU703307P, HKU704007P, CUHK 1/07C and CUHK3/CRF/10), University Development Fund of The University of Hong Kong, and the Office of Nuclear Physics, Office of High Energy Physics, Office of Science, US Department of Energy under the Contract nos DE-AC-02-05CH1123 and DE-AC-02-98CH10886, as well as the National Science Council in Taiwan and MOE program for Research of Excellence at National Taiwan University and National Chiao-Tung University. NR 28 TC 5 Z9 5 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2013 VL 723 BP 67 EP 82 DI 10.1016/j.nima.2013.04.035 PG 16 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 181ZN UT WOS:000321709700010 ER PT J AU Loher, B Derya, V Aumann, T Beller, J Cooper, N Duchene, M Endres, J Fiori, E Isaak, J Kelley, J Knooerzer, M Pietralla, N Romig, C Savran, D Scheck, M Scheit, H Silva, J Tonchev, A Tornow, W Weller, H Werner, V Zilges, A AF Loeher, B. Derya, V. Aumann, T. Beller, J. Cooper, N. Duchene, M. Endres, J. Fiori, E. Isaak, J. Kelley, J. Knoerzer, M. Pietralla, N. Romig, C. Savran, D. Scheck, M. Scheit, H. Silva, J. Tonchev, A. Tornow, W. Weller, H. Werner, V. Zilges, A. TI The high-efficiency gamma-ray spectroscopy setup gamma(3) at HI gamma S SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE gamma-ray spectroscopy; Lanthanum bromide; High-purity germanium; High efficiency; Coincidence measurement; Nuclear resonance fluorescence ID DIPOLE EXCITATIONS; FACILITY; SCATTERING; RESONANCE; MODES AB The existing Nuclear Resonance Fluorescence (NRF) setup at the HI gamma S facility at the Triangle Universities Nuclear Laboratory at Duke University has been extended in order to perform gamma-gamma coincidence experiments. The new setup combines large volume LaBr3:Ce detectors and high resolution HPGe detectors in a very close geometry to offer high efficiency, high energy resolution as well as high count rate capabilities at the same time. The combination of a highly efficient gamma-ray spectroscopy setup with the mono-energetic high-intensity photon beam of HI gamma S provides a worldwide unique experimental facility to investigate the gamma-decay pattern of dipole excitations in atomic nuclei. The performance of the new setup has been assessed by studying the nucleus S-32 at 8.125 MeV beam energy. The relative gamma-decay branching ratio from the 1(+) level at 8125.4 keV to the first excited 2(+) state was determined to 15.7(3)%. (C) 2013 Elsevier B.V. All rights reserved. C1 [Loeher, B.; Fiori, E.; Isaak, J.; Savran, D.; Silva, J.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, D-64291 Darmstadt, Germany. Duke Univ, Triangle Univ Nucl Lab, Dept Phys, Durham, NC 27708 USA. [Loeher, B.; Fiori, E.; Isaak, J.; Savran, D.; Silva, J.] Frankfurt Inst Adv StudiesFIAS, D-60438 Frankfurt, Germany. [Tonchev, A.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Kelley, J.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Aumann, T.; Beller, J.; Duchene, M.; Knoerzer, M.; Pietralla, N.; Romig, C.; Scheck, M.; Scheit, H.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Cooper, N.; Werner, V.] Yale Univ, WNSL, New Haven, CT 06520 USA. RP Loher, B (reprint author), GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Planckstr 1, D-64291 Darmstadt, Germany. EM b.loeher@gsi.de RI Aumann, Thomas/B-1455-2012; Scheit, Heiko/B-4779-2008; Werner, Volker/C-1181-2017 OI Scheit, Heiko/0000-0002-8937-1101; Werner, Volker/0000-0003-4001-0150 FU Alliance Program of the Helmholtz Association [HA216/EMMI]; DFG [SFB 634, ZI 510/4-2]; U.S. DOE [DE-FG02-91ER-40609, DE-FG02-97ER-41033] FX The authors thank the TUNL and HI gamma S technical administration and staff and the mechanical workshop for their great help in setting up the gamma3 system. The work described in this article is supported by the Alliance Program of the Helmholtz Association (HA216/EMMI), the DFG (SFB 634 and ZI 510/4-2) and U.S. DOE grants no. DE-FG02-91ER-40609 and no. DE-FG02-97ER-41033. NR 29 TC 14 Z9 14 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2013 VL 723 BP 136 EP 142 DI 10.1016/j.nima.2013.04.087 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 181ZN UT WOS:000321709700018 ER PT J AU Neudecker, D Capote, R Leeb, H AF Neudecker, D. Capote, R. Leeb, H. TI Impact of model defect and experimental uncertainties on evaluated output SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Nuclear data evaluation; Small evaluated uncertainties; Model defect uncertainties; Experimental uncertainties; (55)mn ID TOTAL CROSS SECTIONS; MEV NEUTRONS; MN-55; COVARIANCES; BI AB One of the current major problems in nuclear data evaluation is the unreasonably small evaluated uncertainties often obtained. These small uncertainties are partly attributed to missing correlations of experimental uncertainties as well as to deficiencies of the model employed for the prior information. In this article, both uncertainty sources are included in an evaluation of Mn-55 cross-sections for incident neutrons. Their impact on the evaluated output is studied using a prior obtained by the Full Bayesian Evaluation Technique and a prior obtained by the nuclear model program EMPIRE. It is shown analytically and by means of an evaluation that unreasonably small evaluated uncertainties can be obtained not only if correlated systematic uncertainties of the experiment are neglected but also if prior uncertainties are smaller or about the same magnitude as the experimental ones. Furthermore, it is shown that including model defect uncertainties in the evaluation of Mn-55 leads to larger evaluated uncertainties for channels where the model is deficient. It is concluded that including correlated experimental uncertainties is equally important as model defect uncertainties, if the model calculations deviate significantly from the measurements. (C) 2013 Elsevier By B.V. All rights reserved. C1 [Neudecker, D.] Los Alamos Natl Lab, Nucl Theory Grp T 2, Los Alamos, NM 87545 USA. [Neudecker, D.; Leeb, H.] Vienna Univ Technol, Atominst, A-1040 Vienna, Austria. [Capote, R.] Vienna Int Ctr, IAEA Vienna, Nucl Data Sect, A-1400 Vienna, Austria. RP Neudecker, D (reprint author), Los Alamos Natl Lab, Nucl Theory Grp T 2, POB 1663,MS-B283, Los Alamos, NM 87545 USA. EM dneudecker@lanl.gov; r.capotenoy@iaea.org; leeb@kph.tuwien.ac.at RI Capote Noy, Roberto/M-1245-2014 OI Capote Noy, Roberto/0000-0002-1799-3438 FU EURATOM project ANDES [249671] FX One of the authors (D.N.) wants to thank Patrick Talou for helpful and insightful discussions before and during preparation of this article. This work was partly supported by the EURATOM project ANDES, project number 249671. NR 37 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2013 VL 723 BP 163 EP 172 DI 10.1016/j.nima.2013.05.005 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 181ZN UT WOS:000321709700021 ER PT J AU Shaw, S Cademartiri, L AF Shaw, Santosh Cademartiri, Ludovico TI Nanowires and Nanostructures that Grow like Polymer Molecules SO ADVANCED MATERIALS LA English DT Article DE nanowires; polymers; crystallization; nanostructures; self-assembly ID MAGIC-SIZED CDSE; ORIENTED ATTACHMENT MECHANISM; MONODISPERSED SILICA POWDERS; GOLD-NANOPARTICLE DIMERS; NANOROD LIQUID-CRYSTALS; ULTRATHIN NANOWIRES; NANOCRYSTAL GROWTH; QUANTUM DOTS; RADICAL POLYMERIZATION; ANISOTROPIC NANOCRYSTALS AB Unique properties (e.g., rubber elasticity, viscoelasticity, folding, reptation) determine the utility of polymer molecules and derive from their morphology (i.e., one-dimensional connectivity and large aspect ratios) and flexibility. Crystals do not display similar properties because they have smaller aspect ratios, they are rigid, and they are often too large and heavy to be colloidally stable. We argue, with the support of recent experimental studies, that these limitations are not fundamental and that they might be overcome by growth processes that mimic polymerization. Furthermore, we (i) discuss the similarities between crystallization and polymerization, (ii) critically review the existing experimental evidence of polymer-like growth kinetic and behavior in crystals and nanostructures, and (iii) propose heuristic guidelines for the synthesis of polymer-like crystals and assemblies. Understanding these anisotropic materials at the boundary between molecules and solids will determine whether we can confer the unique properties of polymer molecules to crystals, expanding them with topology, dynamics, and information and not just tuning them with size. C1 [Shaw, Santosh; Cademartiri, Ludovico] Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Cademartiri, Ludovico] Iowa State Univ Sci & Technol, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Cademartiri, Ludovico] US DOE, Ames Lab, Ames, IA 50011 USA. RP Cademartiri, L (reprint author), Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, 2220 Hoover Hall, Ames, IA 50011 USA. EM lcademar@iastate.edu RI Cademartiri, Ludovico/A-4142-2008 OI Cademartiri, Ludovico/0000-0001-8805-9434 FU Iowa State University of Science and Technology FX The authors acknowledge V. Kitaev and G. A. Ozin for valuable discussion. This work was supported by Iowa State University of Science and Technology. NR 145 TC 12 Z9 12 U1 10 U2 135 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD SEP 20 PY 2013 VL 25 IS 35 BP 4829 EP 4844 DI 10.1002/adma.201300850 PG 16 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 261VN UT WOS:000327692800003 PM 23794436 ER PT J AU Hagen, P Hammer, HW Platter, L AF Hagen, P. Hammer, H-W Platter, L. TI Charge form factors of two-neutron halo nuclei in halo EFT SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID EFFECTIVE-FIELD THEORY; EFIMOV STATES; DEUTERON SCATTERING; UNIVERSAL ASPECTS; RANGE CORRECTIONS; 3-BODY SYSTEM; CHANNEL; FORCES; LENGTH AB We set up a formalism to calculate the charge form factors of two-neutron halo nuclei with S-wave neutron-core interactions in the framework of the halo effective field theory. The method is applied to some known and suspected halo nuclei. In particular, we calculate the form factors and charge radii relative to the core to leading order in the halo EFT and compare to experiments where they are available. Moreover, we investigate the general dependence of the charge radius on the core mass and the one-and two-neutron separation energies. C1 [Hagen, P.; Hammer, H-W] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Hagen, P.; Hammer, H-W] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Platter, L.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Platter, L.] Chalmers, Dept Fundamental Phys, SE-41296 Gothenburg, Sweden. RP Hagen, P (reprint author), Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. EM hammer@hiskp.uni-bonn.de RI Platter, Lucas/N-3887-2013 OI Platter, Lucas/0000-0001-6632-8250 FU DFG; NSFC; BMBF [05P12PDFTE]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We thank D.R. Phillips for discussions and B. Acharya for comments on the manuscript. This work was supported in part by the DFG and the NSFC through funds provided to the Sino-German CRC 110 "Symmetries and the emergence of structure in QCD", by the BMBF under contract 05P12PDFTE, and by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 47 TC 15 Z9 15 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD SEP 20 PY 2013 VL 49 IS 9 AR 118 DI 10.1140/epja/i2013-13118-4 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 229JF UT WOS:000325258400001 ER PT J AU Aliu, E Archambault, S Arlen, T Aune, T Beilicke, M Benbow, W Bird, R Bottcher, M Bouvier, A Bugaev, V Byrum, K Cesarini, A Ciupik, L Collins-Hughes, E Connolly, MP Cui, W Dickherber, R Duke, C Dumm, J Errando, M Falcone, A Federici, S Feng, Q Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Griffin, S Grube, J Gyuk, G Hanna, D Holder, J Hughes, G Humensky, TB Kaaret, P Kertzman, M Khassen, Y Kieda, D Krawczynski, H Krennrich, F Lang, MJ Madhavan, AS Maier, G Majumdar, P McArthur, S McCann, A Moriarty, P Mukherjee, R Nelson, T de Bhroithe, AO Ong, RA Orr, M Otte, AN Park, N Perkins, JS Pichel, A Pohl, M Popkow, A Prokoph, H Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Saxon, DB Schroedter, M Sembroski, GH Skole, C Smith, AW Staszak, D Telezhinsky, I Theiling, M Tyler, J Varlotta, A Vassiliev, VV Wakely, SP Weekes, TC Weinstein, A Welsing, R Williams, DA Zitzer, B AF Aliu, E. Archambault, S. Arlen, T. Aune, T. Beilicke, M. Benbow, W. Bird, R. Boettcher, M. Bouvier, A. Bugaev, V. Byrum, K. Cesarini, A. Ciupik, L. Collins-Hughes, E. Connolly, M. P. Cui, W. Dickherber, R. Duke, C. Dumm, J. Errando, M. Falcone, A. Federici, S. Feng, Q. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Griffin, S. Grube, J. Gyuk, G. Hanna, D. Holder, J. Hughes, G. Humensky, T. B. Kaaret, P. Kertzman, M. Khassen, Y. Kieda, D. Krawczynski, H. Krennrich, F. Lang, M. J. Madhavan, A. S. Maier, G. Majumdar, P. McArthur, S. McCann, A. Moriarty, P. Mukherjee, R. Nelson, T. de Bhroithe, A. O'Faolain Ong, R. A. Orr, M. Otte, A. N. Park, N. Perkins, J. S. Pichel, A. Pohl, M. Popkow, A. Prokoph, H. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Saxon, D. B. Schroedter, M. Sembroski, G. H. Skole, C. Smith, A. W. Staszak, D. Telezhinsky, I. Theiling, M. Tyler, J. Varlotta, A. Vassiliev, V. V. Wakely, S. P. Weekes, T. C. Weinstein, A. Welsing, R. Williams, D. A. Zitzer, B. TI MULTIWAVELENGTH OBSERVATIONS AND MODELING OF 1ES 1959+650 IN A LOW FLUX STATE SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; BL Lacertae objects: individual (1ES 1959+650=VER J1959+651); galaxies: active; gamma rays: galaxies ID BL-LACERTAE OBJECTS; SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; LARGE-AREA TELESCOPE; GAMMA-RAYS; BLAZAR 1ES-1959+650; RELATIVISTIC JET; SOURCE CATALOG; LAC OBJECTS; TEV-FLARE; RADIATION AB We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation (sigma) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan gamma-ray flare exhibited by this source in 2002, the X-ray flux of the source is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of less than or similar to 2 in the high energy (E > 1MeV) and very high energy (E > 100 GeV) gamma-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves. C1 [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Arlen, T.; Aune, T.; Majumdar, P.; Ong, R. A.; Popkow, A.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Beilicke, M.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Galante, N.; Roache, E.; Schroedter, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.; Collins-Hughes, E.; Khassen, Y.; de Bhroithe, A. O'Faolain; Quinn, J.] Natl Univ Ireland Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Boettcher, M.] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA. [Boettcher, M.] North West Univ, Ctr Space Res, ZA-2531 Potchefstroom, South Africa. [Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Byrum, K.; Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cesarini, A.; Connolly, M. P.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Theiling, M.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Dumm, J.; Fortson, L.; Nelson, T.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Federici, S.; Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.; Skole, C.; Telezhinsky, I.; Welsing, R.] DESY, D-15738 Zeuthen, Germany. [Federici, S.; Pohl, M.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Finnegan, G.; Kieda, D.; Smith, A. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Gall, D.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Holder, J.; Saxon, D. B.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Saxon, D. B.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Humensky, T. B.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kertzman, M.] DePauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Krennrich, F.; Madhavan, A. S.; Orr, M.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Majumdar, P.] Saha Inst Nucl Phys, Kolkata 700064, India. [McArthur, S.; Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [McCann, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Otte, A. N.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Otte, A. N.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Perkins, J. S.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Perkins, J. S.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Perkins, J. S.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Pichel, A.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Aliu, E (reprint author), Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. RI Khassen, Yerbol/I-3806-2015; OI Khassen, Yerbol/0000-0002-7296-3100; Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Lang, Mark/0000-0003-4641-4201; Bird, Ralph/0000-0002-4596-8563 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NARC'S in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; STFC in the U.K.; Irish Research Council "Embark Initiative" FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, by NARC'S in Canada, by Science Foundation Ireland (SFI 10/RFP/AST2748), and by STFC in the U.K. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument.; Anna O'Faolain de Bhroithe acknowledges the support of the Irish Research Council "Embark Initiative." NR 59 TC 7 Z9 7 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2013 VL 775 IS 1 AR 3 DI 10.1088/0004-637X/775/1/3 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 220VU UT WOS:000324615800003 ER PT J AU Barnes, J Kasen, D AF Barnes, Jennifer Kasen, Daniel TI EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE atomic data; nuclear reactions, nucleosynthesis, abundances; opacity; radiative transfer; stars: neutron; supernovae: general ID NEUTRON-STAR MERGERS; GAMMA-RAY BURSTS; R-PROCESS NUCLEOSYNTHESIS; I SUPER-NOVAE; ELECTROMAGNETIC COUNTERPARTS; MASS EJECTION; BLACK-HOLES; BINARIES; SPECTRA; EQUATION AB The coalescence of compact objects is a promising astrophysical source of detectable gravitational wave signals. The ejection of r-process material from such mergers may lead to a radioactively powered electromagnetic counterpart signal which, if discovered, would enhance the science returns. As very little is known about the optical properties of heavy r-process elements, previous light-curve models have adopted opacities similar to those of iron group elements. Here we consider the effect of heavier elements, particularly the lanthanides, which increase the ejecta opacity by several orders of magnitude. We include these higher opacities in time-dependent, multi-wavelength radiative transport calculations to predict the broadband light curves of one-dimensional models over a range of parameters (ejecta masses similar to 10(-3)-10(-1) M-circle dot and velocities similar to 0.1-0.3 c). We find that the higher opacities lead to much longer duration light curves which can last a week or more. The emission is shifted toward the infrared bands due to strong optical line blanketing, and the colors at later times are representative of a blackbody near the recombination temperature of the lanthanides (T similar to 2500 K). We further consider the case in which a second mass outflow, composed of Ni-56, is ejected from a disk wind, and show that the net result is a distinctive two component spectral energy distribution, with a bright optical peak due to Ni-56 and an infrared peak due to r-process ejecta. We briefly consider the prospects for detection and identification of these transients. C1 [Barnes, Jennifer; Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Barnes, Jennifer; Kasen, Daniel] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Barnes, Jennifer; Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Barnes, J (reprint author), Univ Calif Berkeley, Dept Phys, 366 LeConte Hall, Berkeley, CA 94720 USA. FU Department of Energy Office of Nuclear Physics Early Career Award; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF Division of Astronomical Sciences collaborative research grant [AST-120697] FX This research was supported by a Department of Energy Office of Nuclear Physics Early Career Award, and by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. This work is supported in part by an NSF Division of Astronomical Sciences collaborative research grant AST-120697. We are grateful for computer time provided by ORNL through an INCITE award and by NERSC. NR 54 TC 127 Z9 128 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2013 VL 775 IS 1 AR 18 DI 10.1088/0004-637X/775/1/18 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 220VU UT WOS:000324615800018 ER PT J AU Miyasaka, H Bachetti, M Harrison, FA Furst, F Barret, D Bellm, EC Boggs, SE Chakrabarty, D Chenevez, J Christensen, FE Craig, WW Grefenstette, BW Hailey, CJ Madsen, KK Natalucci, L Pottschmidt, K Stern, D Tomsick, JA Walton, DJ Wilms, J Zhang, W AF Miyasaka, Hiromasa Bachetti, Matteo Harrison, Fiona A. Fuerst, Felix Barret, Didier Bellm, Eric C. Boggs, Steven E. Chakrabarty, Deepto Chenevez, Jerome Christensen, Finn E. Craig, William W. Grefenstette, Brian W. Hailey, Charles J. Madsen, Kristin K. Natalucci, Lorenzo Pottschmidt, Katja Stern, Daniel Tomsick, John A. Walton, Dominic J. Wilms, Joern Zhang, William TI NuSTAR DETECTION OF HARD X-RAY PHASE LAGS FROM THE ACCRETING PULSAR GS 0834-430 SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; pulsars: individual (GS 0834-430); stars: neutron; X-rays: binaries ID QUASI-PERIODIC OSCILLATIONS; CYGNUS X-1; MAGNETIC-FIELDS; TIMING-EXPLORER; TIME-LAGS; MODEL; STAR; COMPTONIZATION; VARIABILITY; RADIATION AB The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834-430 during its 2012 outburst-the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of similar to 12.29 s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry. C1 [Miyasaka, Hiromasa; Harrison, Fiona A.; Fuerst, Felix; Bellm, Eric C.; Grefenstette, Brian W.; Madsen, Kristin K.; Walton, Dominic J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Bachetti, Matteo; Barret, Didier] Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. [Bachetti, Matteo; Barret, Didier] Inst Rech Astrophys & Planetol, CNRS, F-31028 Toulouse 4, France. [Boggs, Steven E.; Craig, William W.; Tomsick, John A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Chakrabarty, Deepto] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Chenevez, Jerome; Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Natalucci, Lorenzo] INAF, Ist Astrofis & Planetol Spaziali, I-00133 Rome, Italy. [Pottschmidt, Katja] UMBC, CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] NASA GSFC, Greenbelt, MD 20771 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wilms, Joern] Dr Karl Remeis Sternwarte & ECAP, D-96049 Bamberg, Germany. [Zhang, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Miyasaka, H (reprint author), CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. EM miyasaka@srl.caltech.edu RI Wilms, Joern/C-8116-2013; Boggs, Steven/E-4170-2015; OI Wilms, Joern/0000-0003-2065-5410; Boggs, Steven/0000-0001-9567-4224; Bachetti, Matteo/0000-0002-4576-9337; Madsen, Kristin/0000-0003-1252-4891 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; Centre National d'Etudes Spatiales (CNES); [ASI/INAF I/037/12/0] FX This work was supported under NASA contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). Matteo Bachetti wishes to acknowledge the support from the Centre National d'Etudes Spatiales (CNES). Lorenzo Natalucci acknowledges financial support through contract ASI/INAF I/037/12/0. NR 67 TC 5 Z9 5 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2013 VL 775 IS 1 AR 65 DI 10.1088/0004-637X/775/1/65 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 220VU UT WOS:000324615800065 ER PT J AU Cao, Y Kasliwal, MM Arcavi, I Horesh, A Hancock, P Valenti, S Cenko, SB Kulkarni, SR Gal-Yam, A Gorbikov, E Ofek, EO Sand, D Yaron, O Graham, M Silverman, JM Wheeler, JC Marion, GH Walker, ES Mazzali, P Howell, DA Li, KL Kong, AKH Bloom, JS Nugent, PE Surace, J Masci, F Carpenter, J Degenaar, N Gelino, CR AF Cao, Yi Kasliwal, Mansi M. Arcavi, Iair Horesh, Assaf Hancock, Paul Valenti, Stefano Cenko, S. Bradley Kulkarni, S. R. Gal-Yam, Avishay Gorbikov, Evgeny Ofek, Eran O. Sand, David Yaron, Ofer Graham, Melissa Silverman, Jeffrey M. Wheeler, J. Craig Marion, G. H. Walker, Emma S. Mazzali, Paolo Howell, D. Andrew Li, K. L. Kong, A. K. H. Bloom, Joshua S. Nugent, Peter E. Surace, Jason Masci, Frank Carpenter, John Degenaar, Nathalie Gelino, Christopher R. TI DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE instrumentation: adaptive optics; shock waves; stars: Wolf-Rayet; supernovae: individual (iPTF13bvn); surveys ID CORE-COLLAPSE SUPERNOVA; X-RAY; ECHELLE SPECTROMETER; IC SUPERNOVAE; LIGHT CURVES; TELESCOPE; RADIO; STAR; SPECTROGRAPH; ABSORPTION AB The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2 sigma error circle of 80 mas (8.7 pc). The candidate has an M-B luminosity of -5.52 +/- 0.39 mag and a B-I color of 0.25 +/- 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3x10(12) g cm(-1). Assuming a wind velocity of 10(3) km s(-1), we derive a progenitor mass-loss rate of 3 x 10(-5) M-circle dot yr(-1). Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn. C1 [Cao, Yi; Horesh, Assaf; Kulkarni, S. R.; Carpenter, John] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Kasliwal, Mansi M.] Carnegie Inst Sci, Pasadena, CA 91101 USA. [Arcavi, Iair; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Yaron, Ofer] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Hancock, Paul] Univ Sydney, Sydney Inst Astron SIfA, Sch Phys, Sydney, NSW 2006, Australia. [Hancock, Paul] Univ Sydney, ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW 2006, Australia. [Valenti, Stefano; Graham, Melissa; Howell, D. Andrew] Global Telescope Network, Las Cumbres Observ, Goleta, CA 93117 USA. [Valenti, Stefano; Graham, Melissa; Howell, D. Andrew; Nugent, Peter E.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Cenko, S. Bradley] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sand, David] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Walker, Emma S.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Mazzali, Paolo] INAF Padova Astron Observ, I-35122 Padua, Italy. [Mazzali, Paolo] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5UX, Merseyside, England. [Mazzali, Paolo] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Li, K. L.; Kong, A. K. H.] Natl Tsing Hua Univ, Inst Astron, Hsinchu 30013, Taiwan. [Li, K. L.; Kong, A. K. H.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Bloom, Joshua S.; Nugent, Peter E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Nugent, Peter E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Computat Res Div, Berkeley, CA 94720 USA. [Surace, Jason] CALTECH, Spitzer Sci Ctr, Jet Prop Lab, Pasadena, CA 91125 USA. [Masci, Frank; Gelino, Christopher R.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Degenaar, Nathalie] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. RP Cao, Y (reprint author), CALTECH, Dept Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM ycao@astro.caltech.edu RI Horesh, Assaf/O-9873-2016 OI Horesh, Assaf/0000-0002-5936-1156 FU Hubble Fellowship; Carnegie-Princeton Fellowship; NSF [AST-1302771, AST 11-09801]; ISF; BSF; GIF; Minerva; EU/FP7 via an ERC; Kimmel award; Office of Science of the U.S. Department of Energy; Commonwealth of Australia; Australian Research Council [FS100100033]; National Science Foundation; CARMA partner universities; [CE110001020] FX M.M.K. acknowledges generous support from the Hubble Fellowship and Carnegie-Princeton Fellowship. J.M.S. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1302771. N.D. acknowledges the Hubble Fellowship. Research by A.G.Y. and his group was supported by grants from the ISF, BSF, GIF, Minerva, the EU/FP7 via an ERC grant and the Kimmel award. The research of J.C.W. is supported by NSF Grant AST 11-09801.; The National Energy Research Scientific Computing Center, supported by the Office of Science of the U.S. Department of Energy, provided staff, computational resources, and data storage for this project. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This research has been supported by the Australian Research Council through Super Science Fellowship grant FS100100033. The Centre for All-sky Astrophysics is an Australian Research Council Centre of Excellence, funded by grant CE110001020. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. NR 49 TC 55 Z9 55 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2013 VL 775 IS 1 AR L7 DI 10.1088/2041-8205/775/1/L7 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 217ET UT WOS:000324340500007 ER PT J AU Garibaldi, F Bydzovsky, P Cisbani, E Cusanno, F De Leo, R Frullani, S Iodice, M LeRose, JJ Markowitz, P Millener, DJ Urciuoli, GM AF Garibaldi, F. Bydzovsky, P. Cisbani, E. Cusanno, F. De Leo, R. Frullani, S. Iodice, M. LeRose, J. J. Markowitz, P. Millener, D. J. Urciuoli, G. M. CA Hall A Collaboration TI High resolution hypernuclear spectroscopy at Jefferson Lab Hall A SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 11th International Conference on Hypernuclear and Strange Particle Physics CY OCT 01-05, 2012 CL Barcelona, SPAIN DE Hypernuclei; Electroproduction reactions AB The characteristics of the Jefferson Lab electron beam, together with those of the experimental equipment, offer a unique opportunity to study hypernuclear spectroscopy via electromagnetic induced (e, e' K+) reactions. Experiment 94-107 started a systematic study on 1p-shell targets, C-12, Be-9 and O-16. For C-12 for the first time measurable strength in the core-excited part of the spectrum between the ground state and the p state was shown in the B-12(Lambda) spectrum. For O-16 a high-quality N-16(Lambda) spectrum was produced for the first time with sub-MeV energy resolution. A very precise A binding energy value for N-16(Lambda), calibrated against the elementary (e, e'K+) reaction on hydrogen, has also been obtained. Preliminary data on the Li-9(Lambda) spectrum shows some disagreement in strength for the second and third doublet with respect to the theory. (c) 2013 Elsevier B.V. All rights reserved. C1 [Garibaldi, F.; Urciuoli, G. M.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Garibaldi, F.; Cisbani, E.; Frullani, S.] INFN Gr Sanita Coll, Sez Roma, Rome, Italy. [Garibaldi, F.; Cisbani, E.; Frullani, S.] Ist Super Sanita, I-00161 Rome, Italy. [Bydzovsky, P.] Inst Nucl Phys, Rez Near Prague, Czech Republic. [Cusanno, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [De Leo, R.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [De Leo, R.] Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Iodice, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [LeRose, J. J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Markowitz, P.] Florida Int Univ, Miami, FL 32306 USA. [Millener, D. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Garibaldi, F (reprint author), Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. EM franco.garibaldi@iss.infn.it; bydz@ujf.cas.cz; millener@bnl.gov RI Bydzovsky, Petr/G-8600-2014; Cisbani, Evaristo/C-9249-2011 OI Cisbani, Evaristo/0000-0002-6774-8473 FU US Department of Energy under Jefferson Science Associates LLC [DE-AC05-84ER40150]; Italian Istituto Nazionale di Fisica Nucleare (INFN); GACR [P203/12/2126]; French CEA [CNRS/IN2P]; US Department of Energy [W-31-109-ENG-38, DE-FG02-99ER41110, DE-AC02-98-CH10886] FX This work was supported by US Department of Energy contract DE-AC05-84ER40150 Modification No. M175 under which formerly the Southeastern Universities Research Association and presently the Jefferson Science Associates LLC operates the Thomas Jefferson National Accelerator Facility, by the Italian Istituto Nazionale di Fisica Nucleare (INFN), by the US Department of Energy under contracts W-31-109-ENG-38, DE-FG02-99ER41110, and DE-AC02-98-CH10886, by the GACR Grant No. P203/12/2126, and by the French CEA and CNRS/IN2P3. NR 11 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD SEP 20 PY 2013 VL 914 BP 34 EP 40 DI 10.1016/j.nuclphysa.2013.02.054 PG 7 WC Physics, Nuclear SC Physics GA 223YF UT WOS:000324847700005 ER PT J AU Millener, DJ AF Millener, D. J. TI Shell-model calculations applied to the gamma-ray spectroscopy of light Lambda hypernuclei SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 11th International Conference on Hypernuclear and Strange Particle Physics CY OCT 01-05, 2012 CL Barcelona, SPAIN DE Hypernuclei; Shell-model ID J-PARC; C-12(LAMBDA); TRANSITIONS; DECAY AB The interpretation of hypernuclear gamma-ray data for p-shell hypernuclei in terms of shell-model calculations that include the coupling of Lambda- and Sigma-hypernuclear states is briefly reviewed with emphasis on the successes and outstanding problems. The extension of the shell-model calculations to sd-shell hypernuclei, motivated by an experiment with a F-19 target to be performed at J-PARC with the new Hyperball-J, is outlined including a discussion of both positive-parity and negative-parity states in (19)(Lambda) F. (C) 2013 Published by Elsevier B.V. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Millener, DJ (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM millener@bnl.gov FU US Department of Energy [DE-AC02-98CH10886]; Brookhaven National Laboratory FX This work has been supported by the US Department of Energy under Contract No. DE-AC02-98CH10886 with Brookhaven National Laboratory. NR 29 TC 7 Z9 7 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD SEP 20 PY 2013 VL 914 BP 109 EP 118 DI 10.1016/j.nuclphysa.2013.01.023 PG 10 WC Physics, Nuclear SC Physics GA 223YF UT WOS:000324847700015 ER PT J AU Gibson, BF Afnan, IR AF Gibson, B. F. Afnan, I. R. TI A H-4(Lambda)+n+n model of H-6(Lambda) SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 11th International Conference on Hypernuclear and Strange Particle Physics CY OCT 01-05, 2012 CL Barcelona, SPAIN DE Halo hypemuclei; 3-body model ID LI-6 AB A three-body calculation for the He-6(Lambda) and H-6(Lambda) hypemuclei, in which the respective cores are He-4 and H-4(Lambda) has been initiated. The interactions in the He-6(Lambda) system are reasonably well known. For example, the Lambda n interaction is approximately determined by bubble-chamber Lambda-p scattering data, the He-4-Lambda interaction can be fitted to the He-5(Lambda) binding energy, and the He-4-n interaction can be fitted to alpha-n scattering data. For He-4-n the s-wave can be modeled alternatively as a repulsive potential (Eskandarian and Afnan, 1992 [1]) or as an attractive potential with a forbidden bound state (Lehman, 1982 [2]). We examine the effect of these alternatives on He-6 and Li-6, because the interaction comes into play in modeling He-6(Lambda) as well as in our H-4(Lambda) + n +n model of H-6(Lambda), where the valence neutrons are Pauli blocked from the s-shell of the core. (C) 2013 Elsevier B.V. All rights reserved. C1 [Gibson, B. F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Afnan, I. R.] Flinders Univ S Australia, Sch Chem & Phys Sci, Adelaide, SA 5001, Australia. RP Gibson, BF (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM bfgibson@lanl.gov FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The work of B.F.G. was performed under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 12 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD SEP 20 PY 2013 VL 914 BP 179 EP 183 DI 10.1016/j.nuclphysa.2013.02.017 PG 5 WC Physics, Nuclear SC Physics GA 223YF UT WOS:000324847700022 ER PT J AU Lonardoni, D Pederiva, F Gandolfi, S AF Lonardoni, Diego Pederiva, Francesco Gandolfi, Stefano TI Auxiliary Field Diffusion Monte Carlo study of the hyperon-nucleon interaction in Lambda-hypernuclei SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 11th International Conference on Hypernuclear and Strange Particle Physics CY OCT 01-05, 2012 CL Barcelona, SPAIN DE Lambda N interaction; Lambda-hypernuclei; Lambda-separation energy; Auxiliary Field Diffusion Monte Carlo (AFDMC) ID NEUTRON-STAR; MAXIMUM MASS AB We investigate the role of two- and three-body Lambda-nucleon forces by computing the ground state of a few Lambda-hypernuclei with the Auxiliary Field Diffusion Monte Carlo algorithm. Calculations have been performed for masses up to A = 41, including some open-shell hypernuclei. The results show that the use of a bare hyperon nucleon force fitted on the available scattering data yields a consistent overestimate of the Lambda-separation energy B-Lambda. The inclusion of a hyperon-nucleon-nucleon interaction systematically reduces B Lambda, leading to a qualitatively good agreement with experimental data over the range of masses investigated. (C) 2012 Elsevier B.V. All rights reserved. C1 [Lonardoni, Diego; Pederiva, Francesco] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy. [Lonardoni, Diego; Pederiva, Francesco] Ist Nazl Fis Nucl, Grp Coll Trento, I-38123 Trento, Italy. [Gandolfi, Stefano] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lonardoni, D (reprint author), Univ Trento, Dipartimento Fis, Via Sommarive 14, I-38123 Trento, Italy. EM lonardoni@science.unitn.it; pederiva@science.unitn.it; stefano@lanl.gov OI Gandolfi, Stefano/0000-0002-0430-9035 FU PAT; INFN; Los Alamos Open Supercomputing; National Energy Research Scientific Computing Center (NERSC); DOE Office of Science; UNEDF; NUCLEI SciDAC programs; LANL LDRD program FX Computer time was made available by the AuroraScience project (funded by PAT and INFN) in Trento, by Los Alamos Open Supercomputing, and by the National Energy Research Scientific Computing Center (NERSC). The work of S.G. is supported by the Nuclear Physics program at the DOE Office of Science, UNEDF and NUCLEI SciDAC programs, and by the LANL LDRD program. NR 23 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD SEP 20 PY 2013 VL 914 BP 243 EP 247 DI 10.1016/j.nuclphysa.2012.12.001 PG 5 WC Physics, Nuclear SC Physics GA 223YF UT WOS:000324847700032 ER PT J AU Sandorfi, AM Hoblit, S AF Sandorfi, A. M. Hoblit, S. TI Hyperon photoproduction from polarized H and D towards a complete N* experiment SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 11th International Conference on Hypernuclear and Strange Particle Physics CY OCT 01-05, 2012 CL Barcelona, SPAIN DE Meson photo-production; Baryon resonances; Multipole analysis; Polarization ID OBSERVABLES; DIQUARKS AB New complete experiments in pseudoscalar meson photo-production are being pursued at several laboratories. Here the designation of complete refers to measurements of most if not all of the possible reaction observables, of which there are 16 involving spins of the beam, target and recoil baryon. Hyperon production to A or Sigma(+) final states affords attractive opportunities, since their weak decays provide an efficient self-analysis of their polarization. When the beam and target are also polarized, the resulting triple polarization measurements determine the full suite of observables with a single target orientation. This has been a focus at Jefferson Lab in the recently completed g9/FROST and g14/HDice experiments now under analysis. Multipole analyses of gamma p -> K+ A have been carried out with a large though incomplete set of recently published polarization data, and the uniqueness of the extracted amplitudes has been studied. Experiments with realistically achievable uncertainties require a significantly greater number of spin asymmetries than the in-principle minimum needed for a mathematical solution of the amplitude. (C) 2013 Elsevier B.V. All rights reserved. C1 [Sandorfi, A. M.] Thomas Jefferson Natl Accelerator Facil, Div Phys, Newport News, VA 23606 USA. [Hoblit, S.] Assoc Univ Inc, Brookhaven Natl LabNatl Nucl Data Ctr, Upton, NY 11973 USA. RP Hoblit, S (reprint author), Assoc Univ Inc, Brookhaven Natl LabNatl Nucl Data Ctr, Upton, NY 11973 USA. EM hoblit@bnl.gov FU US Department of Energy, Office of Nuclear Physics Division [DE-AC05-060R23177]; US Department of Energy [DE-AC02-98CH10886] FX This work was supported by the US Department of Energy, Office of Nuclear Physics Division, under contract DE-AC05-060R23177 under which Jefferson Science Associates operate Jefferson Laboratory, and also US Department of Energy contract DE-AC02-98CH10886. NR 16 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD SEP 20 PY 2013 VL 914 BP 538 EP 542 DI 10.1016/j.nuclphysa.2013.01.009 PG 5 WC Physics, Nuclear SC Physics GA 223YF UT WOS:000324847700076 ER PT J AU Avci, S Allred, JM Chmaissem, O Chung, DY Rosenkranz, S Schlueter, JA Claus, H Daoud-Aladine, A Khalyavin, DD Manuel, P Llobet, A Suchomel, MR Kanatzidis, MG Osborn, R AF Avci, S. Allred, J. M. Chmaissem, O. Chung, D. Y. Rosenkranz, S. Schlueter, J. A. Claus, H. Daoud-Aladine, A. Khalyavin, D. D. Manuel, P. Llobet, A. Suchomel, M. R. Kanatzidis, M. G. Osborn, R. TI Structural, magnetic, and superconducting properties of Ba1-xNaxFe2As2 SO PHYSICAL REVIEW B LA English DT Article ID IRON PNICTIDES; CHALCOGENIDES; COEXISTENCE; BAFE2AS2 AB We report the results of a systematic investigation of the phase diagram of the iron-based superconductor system, Ba1-xNaxFe2As2, from x = 0.1 to x = 1.0 using high-resolution neutron and x-ray diffraction and magnetization measurements. We find that the coincident structural and magnetic phase transition to an orthorhombic structure with space group Fmmm and a striped antiferromagnet with space group F(C)mm'm' in Ba1-xNaxFe2As2 is of first order. A complete suppression of the magnetic phase is observed by x = 30%, and bulk superconductivity occurs at a critical concentration near 15%. We compare our findings to the previously reported results of the hole-doped Ba1-xKxFe2As2 solid solution in order to resolve the differing effects of band filling and A-site cation size on the properties of the magnetic and superconducting ground states. The substantial size difference between Na and K causes various changes in the lattice trends, yet the overarching property phase diagram from the Ba1-xKxFe2As2 phase diagram carries over to the Ba1-xNaxFe2As2 solid solution. We note that the composition dependence of the c axis turns over from positive to negative around x = 0.35, unlike the K-substituted materials. We show that this can be understood by invoking steric effects; primarily the Fe2As2 layer shape is dictated mostly by the electronic filling, which secondarily induces an interlayer spacing adjusted to compensate for the given cation volume. This exemplifies the primacy of even subtle features in the Fe2As2 layer in controlling both the structure and properties in the uncollapsed 122 phases. C1 [Avci, S.; Allred, J. M.; Chmaissem, O.; Chung, D. Y.; Rosenkranz, S.; Schlueter, J. A.; Claus, H.; Kanatzidis, M. G.; Osborn, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chmaissem, O.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Daoud-Aladine, A.; Khalyavin, D. D.; Manuel, P.] Rutherford Appleton Lab, ISIS Pulsed Neutron & Muon Source, Didcot OX11 0QX, Oxon, England. [Llobet, A.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Suchomel, M. R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Avci, S (reprint author), Afyon Kocatepe Univ, Dept Mat Sci & Engn, TR-03200 Afyon, Turkey. RI Rosenkranz, Stephan/E-4672-2011; Llobet, Anna/B-1672-2010; Suchomel, Matthew/C-5491-2015; Allred, Jared/N-4719-2014; Khalyavin, Dmitry/E-4335-2017; OI Rosenkranz, Stephan/0000-0002-5659-0383; Allred, Jared/0000-0002-5953-300X; Khalyavin, Dmitry/0000-0002-6724-7695; SUCHOMEL, Matthew/0000-0002-9500-5079 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE Office of Basic Energy Sciences [DE-AC52-06NA25396] FX Work at the Materials Science Division and Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at the Lujan Center at Los Alamos Neutron Science Center, was funded by DOE Office of Basic Energy Sciences under DOE Contract No. DE-AC52-06NA25396. Experiments at the ISIS Pulsed Neutron and Muon Source were supported by a beam time allocation from the Science and Technology Facilities Council. NR 32 TC 33 Z9 33 U1 5 U2 65 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 20 PY 2013 VL 88 IS 9 AR 094510 DI 10.1103/PhysRevB.88.094510 PG 8 WC Physics, Condensed Matter SC Physics GA 221BB UT WOS:000324631000002 ER PT J AU Bossoni, L Carretta, P Halperin, WP Oh, S Reyes, A Kuhns, P Canfield, PC AF Bossoni, L. Carretta, P. Halperin, W. P. Oh, S. Reyes, A. Kuhns, P. Canfield, P. C. TI Evidence of unconventional low-frequency dynamics in the normal phase of Ba(Fe1-xRhx)(2)As-2 iron-based superconductors SO PHYSICAL REVIEW B LA English DT Article ID SPIN-ECHO DECAY; TRANSVERSE RELAXATION RATE; VORTEX LATTICE; NMR; YBA2CU3O7-DELTA; SUSCEPTIBILITY; TRANSITION; MOTION; ORDER AB This work presents As-75 NMR spin-echo decay rate (1/T-2) measurements in Ba(Fe1-xRhx)(2)As-2 superconductors, for 0.041 <= x <= 0.094. It is shown that 1/T-2 increases upon cooling, in the normal phase, suggesting the onset of an unconventional very low-frequency activated dynamic. The correlation times of the fluctuations and their energy barriers are derived. The motion is favored at large Rh content, while it is hindered by the application of a magnetic field perpendicular to the FeAs layers. The same dynamic is observed in the spin-lattice relaxation rate, in a quantitatively consistent manner. These results are discussed in the light of nematic fluctuations involving domain wall motion. The analogies with the behavior observed in the cuprates are also outlined. C1 [Bossoni, L.; Carretta, P.] Univ Pavia, Dept Phys, CNISM, I-27100 Pavia, Italy. [Bossoni, L.] Univ Roma Tre, Dept Phys E Amaldi, CNISM, I-00146 Rome, Italy. [Halperin, W. P.; Oh, S.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Reyes, A.; Kuhns, P.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Canfield, P. C.] Iowa State Univ, Ames Lab US DOE, Ames, IA 50011 USA. [Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Bossoni, L (reprint author), Univ Pavia, Dept Phys, CNISM, Via Palestro 3, I-27100 Pavia, Italy. RI Canfield, Paul/H-2698-2014 FU Fondazione Cariplo [2011-0266]; US DOE, Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering (MSE) [DE-FG02-05ER46248]; US DOE, BES Office, MSE Division [DE-AC02-07CH11358]; National Science Foundation [DMR-0654118]; State of Florida; US DOE FX We would like to thank A. Mounce, J.P. Lee, F. Hammerath, and S.-J. Yuan for their help and useful discussions. The research activity in Pavia was supported by Fondazione Cariplo (Research Grant No. 2011-0266). Research at NU was supported by the US DOE, Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering (MSE), Award No. DE-FG02-05ER46248. Work done in Ames Laboratory (P.C.C.) was supported by the US DOE, BES Office, MSE Division under Contract No. DE-AC02-07CH11358. A portion of this work was performed at the NHMFL, which is supported by National Science Foundation Cooperative Agreement No. DMR-0654118, the State of Florida, and the US DOE. NR 36 TC 9 Z9 9 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 20 PY 2013 VL 88 IS 10 AR 100503 DI 10.1103/PhysRevB.88.100503 PG 4 WC Physics, Condensed Matter SC Physics GA 221BD UT WOS:000324631200002 ER PT J AU Chtchelkatchev, NM Glatz, A Beloborodov, IS AF Chtchelkatchev, N. M. Glatz, A. Beloborodov, I. S. TI Universality and quantization of the power-to-heat ratio in nanogranular systems SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-ELECTRON TRANSISTOR; TUNNEL-JUNCTIONS AB We study heating and dissipation effects in granular nanosystems in the regime of weak coupling between the grains. We focus on the cotunneling regime and solve the heat-dissipation problem in an array of grains exactly. We show that the power to heat ratio has a universal quantized value, which is geometrically protected: It depends only on the number of grains. C1 [Chtchelkatchev, N. M.] Russian Acad Sci, Inst High Pressure Phys, Moscow 142190, Russia. [Chtchelkatchev, N. M.] Russian Acad Sci, LD Landau Inst Theoret Phys, Moscow 117940, Russia. [Chtchelkatchev, N. M.] Moscow Inst Phys & Technol, Dept Theoret Phys, Moscow 141700, Russia. [Chtchelkatchev, N. M.; Beloborodov, I. S.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. [Glatz, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Glatz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Chtchelkatchev, NM (reprint author), Russian Acad Sci, Inst High Pressure Phys, Moscow 142190, Russia. RI Chtchelkatchev, Nikolay/L-1273-2013 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483 FU RFBR [13-02-00579, 13-02-91177]; Russian Federation [6170.2012.2]; RAS presidium program; Russian Federal Government program; U.S. Department of Energy Office of Science [DE-AC02-06CH11357]; NSF [DMR 1158666] FX N.C. was supported by RFBR No. 13-02-00579 and No. 13-02-91177, the Grant of President of Russian Federation for support of Leading Scientific Schools No. 6170.2012.2, RAS presidium and Russian Federal Government programs. A.G. was supported by the U.S. Department of Energy Office of Science under the Contract No. DE-AC02-06CH11357. I.B. was supported by NSF Grant No. DMR 1158666. NR 38 TC 4 Z9 4 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 20 PY 2013 VL 88 IS 12 AR 125130 DI 10.1103/PhysRevB.88.125130 PG 7 WC Physics, Condensed Matter SC Physics GA 221BL UT WOS:000324632100003 ER PT J AU Fishman, RS AF Fishman, Randy S. TI Orientation dependence of the critical magnetic field for multiferroic BiFeO3 SO PHYSICAL REVIEW B LA English DT Article ID BISMUTH FERRITE AB Multiferroic BiFeO3 undergoes a transition from a distorted spiral phase to a G-type antiferromagnet above a critical field H-c that depends on the field orientation m. We show that H-c(m) has a maximum when oriented along a cubic diagonal parallel to the electric polarization P and a minimum in the equatorial plane normal to P when two magnetic domains with the highest critical fields are degenerate. The orientational dependence of H-c(m) is more complex than indicated by earlier work, which did not consider the competition between magnetic domains. Some recent measurements might be explained by a mixture of magnetic domains. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. FU US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX I gratefully acknowledge conversations and technical assistance from Steven Hahn, Satoshi Okamoto, and Toomas Room. This research was sponsored by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 36 TC 3 Z9 3 U1 1 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 20 PY 2013 VL 88 IS 10 AR 104419 DI 10.1103/PhysRevB.88.104419 PG 5 WC Physics, Condensed Matter SC Physics GA 221BD UT WOS:000324631200005 ER PT J AU Kernreiter, T Governale, M Winkler, R Zulicke, U AF Kernreiter, T. Governale, M. Winkler, R. Zuelicke, U. TI Suppression of Coulomb exchange energy in quasi-two-dimensional hole systems SO PHYSICAL REVIEW B LA English DT Article ID INVERSION-LAYERS; ELECTRON-GAS; QUANTUM RESONANCES; VALENCE BANDS; SEMICONDUCTORS; HETEROJUNCTIONS; CYCLOTRON; GERMANIUM; EXCITONS; WELL AB We have calculated the exchange-energy contribution to the total energy of quasi-two-dimensional hole systems realized by a hard-wall quantum-well confinement of valence-band states in typical semiconductors. The magnitude of the exchange energy turns out to be suppressed from the value expected for analogous conduction-band systems whenever the mixing between heavy-hole and light-hole components is strong. Our results are obtained using a very general formalism for calculating the exchange energy of many-particle systems where single-particle states are spinors. We have applied this formalism to obtain analytical results for spin-3/2 hole systems in limiting cases. C1 [Kernreiter, T.; Governale, M.; Zuelicke, U.] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington 6140, New Zealand. [Kernreiter, T.; Governale, M.; Zuelicke, U.] Victoria Univ Wellington, MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6140, New Zealand. [Winkler, R.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Winkler, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kernreiter, T (reprint author), Victoria Univ Wellington, Sch Chem & Phys Sci, POB 600, Wellington 6140, New Zealand. EM uli.zuelicke@vuw.ac.nz RI Zuelicke, Ulrich/B-1287-2009 OI Zuelicke, Ulrich/0000-0001-5055-3330 FU DOE BES [DE-AC02-06CH11357] FX Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357. NR 40 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 20 PY 2013 VL 88 IS 12 AR 125309 DI 10.1103/PhysRevB.88.125309 PG 8 WC Physics, Condensed Matter SC Physics GA 221BL UT WOS:000324632100004 ER PT J AU Bonventre, R LaTorre, A Klein, JR Gann, GDO Seibert, S Wasalski, O AF Bonventre, R. LaTorre, A. Klein, J. R. Gann, G. D. Orebi Seibert, S. Wasalski, O. TI Nonstandard models, solar neutrinos, and large theta(13) SO PHYSICAL REVIEW D LA English DT Article ID OSCILLATIONS; MATTER; DECAY; SUN AB Solar neutrino experiments have yet to see directly the transition region between matter-enhanced and vacuum oscillations. The transition region is particularly sensitive to models of nonstandard neutrino interactions and propagation. We examine several such nonstandard models, which predict a lower-energy transition region and a flatter survival probability for the B-8 solar neutrinos than the standard large-mixing angle (LMA) model. We find that while some of the nonstandard models provide a better fit to the solar neutrino data set, the large measured value of theta(13) and the size of the experimental uncertainties lead to a low statistical significance for these fits. We have also examined whether simple changes to the solar density profile can lead to a flatter B-8 survival probability than the LMA prediction, but find that this is not the case for reasonable changes. We conclude that the data in this critical region are still too poor to determine whether any of these models, or the LMA model, is the best description of the data. C1 [Bonventre, R.; Klein, J. R.; Seibert, S.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [LaTorre, A.; Gann, G. D. Orebi; Wasalski, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gann, G. D. Orebi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Bonventre, R (reprint author), Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. FU US Department of Energy, Office of Nuclear Physics; University of California at Berkeley; Lawrence Berkeley National Laboratory FX We would like to thank the SNO Collaboration for their helpful comments and for allowing us to spot check our code against theirs, and in particular Nuno Barros for many helpful suggestions. We also would like to thank Aldo Serenelli for providing us with information on the solar models used in this paper, Stefano Davini for details on Borexino's pep results, and Alex Friedland and Michael Smy for helpful and interesting conversations. This work has been supported by the US Department of Energy, Office of Nuclear Physics, the University of California at Berkeley, and Lawrence Berkeley National Laboratory. NR 50 TC 10 Z9 10 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 20 PY 2013 VL 88 IS 5 AR 053010 DI 10.1103/PhysRevD.88.053010 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 221CW UT WOS:000324636100002 ER PT J AU Krokovny, P Bondar, A Adachi, I Aihara, H Arinstein, K Asner, DM Aulchenko, V Aushev, T Aziz, T Bakich, AM Bala, A Bay, A Bhardwaj, V Bhuyan, B Bonvicini, G Bookwalter, C Bozek, A Bracko, M Browder, TE Chang, P Chen, A Chen, P Cheon, BG Chilikin, K Chistov, R Cho, IS Cho, K Chobanova, V Choi, SK Choi, Y Cinabro, D Dalseno, J Danilov, M Dingfelder, J Dolezal, Z Drasal, Z Drutskoy, A Dutta, D Eidelman, S Epifanov, D Farhat, H Fast, JE Feindt, M Ferber, T Frey, A Gaur, V Gabyshev, N Ganguly, S Garmash, A Gillard, R Goh, YM Golob, B Haba, J Hara, T Hayasaka, K Hayashii, H Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Ishikawa, A Itoh, R Iwasaki, Y Julius, T Kah, DH Kang, JH Kato, E Kawai, H Kawasaki, T Kiesling, C Kim, DY Kim, HO Kim, JB Kim, JH Kim, YJ Kinoshita, K Klucar, J Ko, BR Kodys, P Korpar, S Krizan, P Kuhr, T Kumita, T Kuzmin, A Kwon, YJ Lange, JS Lee, SH Li, J Li, Y Libby, J Liu, Y Liu, ZQ Liventsev, D Lukin, P Matvienko, D Miyabayashi, K Miyata, H Mizuk, R Mohanty, GB Moll, A Muramatsu, N Mussa, R Nagasaka, Y Nakao, M Nayak, M Nedelkovska, E Ng, C Nisar, NK Nishida, S Nitoh, O Ogawa, S Oswald, C Pakhlova, G Park, CW Park, H Park, HK Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Poluektov, A Ritter, M Rohrken, M Rostomyan, A Ryu, S Sahoo, H Saito, T Sakai, K Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Savinov, V Schneider, O Schnell, G Schwanda, C Semmler, D Senyo, K Seon, O Sevior, ME Shapkin, M Shebalin, V Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Simon, F Sohn, YS Sokolov, A Solovieva, E Stanic, S Staric, M Steder, M Sumiyoshi, T Tamponi, U Tanida, K Tatishvili, G Teramoto, Y Trabelsi, K Tsuboyama, T Uchida, M Uehara, S Uglov, T Unno, Y Uno, S Urquijo, P Vahsen, SE Van Hulse, C Vanhoefer, P Varner, G Vorobyev, V Wagner, MN Wang, CH Wang, MZ Wang, P Wang, XL Watanabe, Y Williams, KM Won, E Yamashita, Y Yashchenko, S Yook, Y Yuan, CZ Yusa, Y Zhang, CC Zhang, ZP Zhilich, V Zhulanov, V Zupanc, A AF Krokovny, P. Bondar, A. Adachi, I. Aihara, H. Arinstein, K. Asner, D. M. Aulchenko, V. Aushev, T. Aziz, T. Bakich, A. M. Bala, A. Bay, A. Bhardwaj, V. Bhuyan, B. Bonvicini, G. Bookwalter, C. Bozek, A. Bracko, M. Browder, T. E. Chang, P. Chen, A. Chen, P. Cheon, B. G. Chilikin, K. Chistov, R. Cho, I. -S. Cho, K. Chobanova, V. Choi, S. -K. Choi, Y. Cinabro, D. Dalseno, J. Danilov, M. Dingfelder, J. Dolezal, Z. Drasal, Z. Drutskoy, A. Dutta, D. Eidelman, S. Epifanov, D. Farhat, H. Fast, J. E. Feindt, M. Ferber, T. Frey, A. Gaur, V. Gabyshev, N. Ganguly, S. Garmash, A. Gillard, R. Goh, Y. M. Golob, B. Haba, J. Hara, T. Hayasaka, K. Hayashii, H. Hoshi, Y. Hou, W. -S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Ishikawa, A. Itoh, R. Iwasaki, Y. Julius, T. Kah, D. H. Kang, J. H. Kato, E. Kawai, H. Kawasaki, T. Kiesling, C. Kim, D. Y. Kim, H. O. Kim, J. B. Kim, J. H. Kim, Y. J. Kinoshita, K. Klucar, J. Ko, B. R. Kodys, P. Korpar, S. Krizan, P. Kuhr, T. Kumita, T. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, S. -H. Li, J. Li, Y. Libby, J. Liu, Y. Liu, Z. Q. Liventsev, D. Lukin, P. Matvienko, D. Miyabayashi, K. Miyata, H. Mizuk, R. Mohanty, G. B. Moll, A. Muramatsu, N. Mussa, R. Nagasaka, Y. Nakao, M. Nayak, M. Nedelkovska, E. Ng, C. Nisar, N. K. Nishida, S. Nitoh, O. Ogawa, S. Oswald, C. Pakhlova, G. Park, C. W. Park, H. Park, H. K. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Poluektov, A. Ritter, M. Roehrken, M. Rostomyan, A. Ryu, S. Sahoo, H. Saito, T. Sakai, K. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Semmler, D. Senyo, K. Seon, O. Sevior, M. E. Shapkin, M. Shebalin, V. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Simon, F. Sohn, Y. -S. Sokolov, A. Solovieva, E. Stanic, S. Staric, M. Steder, M. Sumiyoshi, T. Tamponi, U. Tanida, K. Tatishvili, G. Teramoto, Y. Trabelsi, K. Tsuboyama, T. Uchida, M. Uehara, S. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Vahsen, S. E. Van Hulse, C. Vanhoefer, P. Varner, G. Vorobyev, V. Wagner, M. N. Wang, C. H. Wang, M. -Z. Wang, P. Wang, X. L. Watanabe, Y. Williams, K. M. Won, E. Yamashita, Y. Yashchenko, S. Yook, Y. Yuan, C. Z. Yusa, Y. Zhang, C. C. Zhang, Z. P. Zhilich, V. Zhulanov, V. Zupanc, A. CA Belle Collaboration TI First observation of the Z(b)(0)(10610) in a Dalitz analysis of Upsilon(10860) -> Upsilon(nS)pi(0)pi(0) SO PHYSICAL REVIEW D LA English DT Article ID BELLE; IDENTIFICATION; KEKB AB We report the first observation of Upsilon(10860) -> Upsilon(1, 2, 3S)pi(0)pi(0) decays. The neutral partner of the Z(1/b)(10610), the Z(b)(0)(10610) decaying to Upsilon(2, 3S)pi(0), is observed for the first time with a 6.5 sigma significance using a Dalitz analysis of Upsilon(10860) -> Upsilon (2, 3S)pi(0)pi(0) decays. The results are obtained with a 121.4 fb(-1) data sample collected with the Belle detector at the Upsilon(10860) resonance at the KEKB asymmetric- energy e(+)e(-) collider. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Dingfelder, J.; Oswald, C.; Urquijo, P.] Univ Bonn, D-53115 Bonn, Germany. [Krokovny, P.; Bondar, A.; Arinstein, K.; Aulchenko, V.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Poluektov, A.; Shebalin, V.; Shwartz, B.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Krokovny, P.; Bondar, A.; Arinstein, K.; Aulchenko, V.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Poluektov, A.; Shebalin, V.; Shwartz, B.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Kawai, H.] Chiba Univ, Chiba 2638522, Japan. [Kinoshita, K.; Liu, Y.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Rostomyan, A.; Steder, M.; Yashchenko, S.] DESY, D-22607 Hamburg, Germany. [Lange, J. S.; Semmler, D.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Frey, A.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Choi, S. -K.] Gyeongsang Natl Univ, Chinju 660701, South Korea. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Sahoo, H.; Vahsen, S. E.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, K.; Sakai, Y.; Trabelsi, K.; Tsuboyama, T.; Uehara, S.; Uno, S.] Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Hiroshima 7315193, Japan. [Schnell, G.] Ikerbasque, Bilbao 48011, Spain. [Bhuyan, B.; Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Libby, J.; Nayak, M.] Indian Inst Technol, Madras 600036, Tamil Nadu, India. [Liu, Z. Q.; Wang, P.; Yuan, C. Z.; Zhang, C. C.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Mussa, R.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Chilikin, K.; Chistov, R.; Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlova, G.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Staric, M.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Feindt, M.; Kuhr, T.; Roehrken, M.; Zupanc, A.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol, Taejon 305806, South Korea. [Kim, J. B.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kah, D. H.; Kim, H. O.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Bay, A.; Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chobanova, V.; Dalseno, J.; Kiesling, C.; Moll, A.; Nedelkovska, E.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Danilov, M.; Drutskoy, A.; Mizuk, R.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Seon, O.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Bhardwaj, V.; Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, P.; Chen, P.; Hou, W. -S.; Hsiung, Y. B.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Kawasaki, T.; Miyata, H.; Yusa, Y.] Niigata Univ, Niigata 9502181, Japan. [Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Bookwalter, C.; Fast, J. E.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bala, A.] Panjab Univ, Chandigarh 160014, India. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Muramatsu, N.] Tohoku Univ, Res Ctr Elect Photon Sci, Sendai, Miyagi 9808578, Japan. [Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, J.; Ryu, S.; Tanida, K.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.; Park, C. W.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Aziz, T.; Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Kato, E.; Saito, T.; Sanuki, T.; Sato, Y.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.; Epifanov, D.; Ng, C.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Koganei, Tokyo 1848588, Japan. [Tamponi, U.] Univ Turin, I-10124 Turin, Italy. [Li, J.; Piilonen, L. E.; Wang, X. L.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Cho, I. -S.; Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.; Yook, Y.] Yonsei Univ, Seoul 120749, South Korea. RP Krokovny, P (reprint author), Univ Basque Country UPV EHU, Bilbao 48080, Spain. RI Nitoh, Osamu/C-3522-2013; Mizuk, Roman/B-3751-2014; Aihara, Hiroaki/F-3854-2010; Krokovny, Pavel/G-4421-2016; Chilikin, Kirill/B-4402-2014; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014; Solovieva, Elena/B-2449-2014; Ishikawa, Akimasa/G-6916-2012; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014 OI Aihara, Hiroaki/0000-0002-1907-5964; Krokovny, Pavel/0000-0002-1236-4667; Chilikin, Kirill/0000-0001-7620-2053; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022; Solovieva, Elena/0000-0002-5735-4059; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund [P 22742-N16]; National Natural Science Foundation of China [10575109, 10775142, 10875115, 10825524]; Ministry of Education, Youth and Sports of the Czech Republic [MSM0021620859]; Carl Zeiss Foundation; Deutsche Forschungsgemeinschaft, and the VolkswagenStiftung; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; BK21 and WCU program of the Ministry Education Science and Technology, National Research Foundation of Korea [20100021174, 2011-0029457, 2012-0008143, 2012R1A1A2008330]; NRF [KRF-2011-0020333]; GSDC of the Korea Institute of Science and Technology Information; Polish Ministry of Science and Higher Education; National Science Center; Ministry of Education and Science of the Russian Federation; Russian Federal Agency for Atomic Energy; Slovenian Research Agency; Basque Foundation for Science (IKERBASQUE); UPV/EHU [UFI 11/55]; Swiss National Science Foundation; National Science Council; Ministry of Education of Taiwan; U.S. Department of Energy; National Science Foundation; JSPS for Creative Scientific Research ("Evolution of Tau-Lepton Physics''); Russian Foundation for Basic Research [12-02-00862, 12-02-01296, 12-02-01032, 12-02-33015]; Russian Federation government [11.G34.31.0047] FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund under Grant No. P 22742-N16; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115, and No. 10825524; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. MSM0021620859; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the BK21 and WCU program of the Ministry Education Science and Technology, National Research Foundation of Korea Grants No. 20100021174, No. 2011-0029457, No. 2012-0008143, No. 2012R1A1A2008330, BRL program under NRF Grant No. KRF-2011-0020333, and GSDC of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Basque Foundation for Science (IKERBASQUE) and the UPV/EHU under program UFI 11/55; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics''), and from JSPS for Creative Scientific Research ("Evolution of Tau-Lepton Physics''). This work is partially supported by grants of the Russian Foundation for Basic Research, Grants No. 12-02-00862, No. 12-02-01296, No. 12-02-01032, and No. 12-02-33015, and by the grant of the Russian Federation government, Grant No. 11.G34.31.0047. NR 23 TC 27 Z9 28 U1 0 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 20 PY 2013 VL 88 IS 5 AR 052016 DI 10.1103/PhysRevD.88.052016 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 221CW UT WOS:000324636100001 ER PT J AU Smith, D Dumitru, A Pisarski, R von Smekal, L AF Smith, Dominik Dumitru, Adrian Pisarski, Robert von Smekal, Lorenz TI Effective potential for SU(2) Polyakov loops and Wilson loop eigenvalues SO PHYSICAL REVIEW D LA English DT Article ID LATTICE GAUGE-THEORY; QUARK CONFINEMENT; HIGH-TEMPERATURE; MONTE-CARLO; YANG-MILLS; LIBERATION; PARAMETER AB We simulate SU(2) gauge theory at temperatures ranging from slightly below T-c to roughly 2T(c) for two different values of the gauge coupling. Using a histogram method, we extract the effective potential for the Polyakov loop and for the phases of the eigenvalues of the thermal Wilson loop, in both the fundamental and adjoint representations. We show that the classical potential of the fundamental loop can be parametrized within a simple model which includes a Vandermonde potential and terms linear and quadratic in the Polyakov loop. We discuss how parametrizations for the other cases can be obtained from this model. C1 [Smith, Dominik; von Smekal, Lorenz] Tech Univ Darmstadt, Inst Kernphys, Theoriezentrum, D-64289 Darmstadt, Germany. [Dumitru, Adrian] Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Dumitru, Adrian; Pisarski, Robert] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Pisarski, Robert] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [von Smekal, Lorenz] Univ Giessen, Inst Theoret Phys, D-35392 Giessen, Germany. RP Smith, D (reprint author), Tech Univ Darmstadt, Inst Kernphys, Theoriezentrum, Petersenstr 30, D-64289 Darmstadt, Germany. OI Smith, Dominik/0000-0002-7422-1477 FU Deutsche Forschungsgemeinschaft [SFB 634]; Helmholtz International Center for FAIR within the LOEWE initiative of the State of Hesse; U.S. Department of Energy [DE-FG0209ER41620, DE-AC02-98CH10886]; City University of New York through the PSC-CUNY Research Award Program [66514-00 44]; European Commission [249203] FX We thank David Scheffler for helpful discussions, for proofreading, and for a script to create histograms. This work was supported by the Deutsche Forschungsgemeinschaft within SFB 634, by the Helmholtz International Center for FAIR within the LOEWE initiative of the State of Hesse, by the U.S. Department of Energy under Awards No. # DE-FG0209ER41620 and No. # DE-AC02-98CH10886, by The City University of New York through the PSC-CUNY Research Award Program, Grant No. 66514-00 44, and by the European Commission, Grants No. FP7-PEOPLE-2009-RG, No. 249203. All results presented here were obtained using Nvidia GeForce GTX 580 graphics cards. NR 46 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 20 PY 2013 VL 88 IS 5 AR 054020 DI 10.1103/PhysRevD.88.054020 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 221CW UT WOS:000324636100004 ER PT J AU Batra, J Soares, AS Mehner, C Radisky, ES AF Batra, Jyotica Soares, Alexei S. Mehner, Christine Radisky, Evette S. TI Matrix Metalloproteinase-10/TIMP-2 Structure and Analyses Define Conserved Core Interactions and Diverse Exosite Interactions in MMP/TIMP Complexes SO PLOS ONE LA English DT Article ID TISSUE INHIBITOR; CRYSTAL-STRUCTURE; GELATINASE-A; 1-MATRIX METALLOPROTEINASE; CATALYTIC DOMAIN; KINETIC-ANALYSIS; TIMP-2; MMP-10; MATRIX-METALLOPROTEINASE-10; STROMELYSIN-2 AB Matrix metalloproteinases (MMPs) play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 angstrom resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology. C1 [Batra, Jyotica; Mehner, Christine; Radisky, Evette S.] Mayo Clin, Ctr Canc, Dept Canc Biol, Jacksonville, FL 32224 USA. [Soares, Alexei S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Radisky, ES (reprint author), Mayo Clin, Ctr Canc, Dept Canc Biol, Jacksonville, FL 32224 USA. EM radisky.evette@mayo.edu FU Florida Department of Health [08KN12, 09BB17, 1BD01]; Mayo Clinic Breast Cancer Specialized Program of Research Excellence (SPORE) grant [P50 CA116201]; Office of Biological and Environmental Research of the US Department of Energy; Office of Basic Energy Sciences of the US Department of Energy; National Center for Research Resources of the National Institutes of Health FX This work was supported by Florida Department of Health grants 08KN12 and 09BB17 (to ESR) and 1BD01 (to JB), and by the Mayo Clinic Breast Cancer Specialized Program of Research Excellence (SPORE) grant P50 CA116201 (PI James Ingle). Diffraction data were measured at beamline X29 of the National Synchrotron Light Source, which is supported by the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy, and the National Center for Research Resources of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 62 TC 7 Z9 7 U1 2 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 20 PY 2013 VL 8 IS 9 AR e75836 DI 10.1371/journal.pone.0075836 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 222YC UT WOS:000324768000090 PM 24073280 ER PT J AU DeAngelis, KM Sharma, D Varney, R Simmons, B Isern, NG Markilllie, LM Nicora, C Norbeck, AD Taylor, RC Aldrich, JT Robinson, EW AF DeAngelis, Kristen M. Sharma, Deepak Varney, Rebecca Simmons, Blake Isern, Nancy G. Markilllie, Lye Meng Nicora, Carrie Norbeck, Angela D. Taylor, Ronald C. Aldrich, Joshua T. Robinson, Errol W. TI Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1 SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE decomposition; anaerobic metabolism; phenol degradation; 4-hydroxyphenylacetate degradation pathway; catalase/peroxidase enzymes; glutathione S-transferase proteins ID LONG-TERM DECOMPOSITION; TROPICAL FOREST SOIL; MICROBIAL COMMUNITIES; ESCHERICHIA-COLI; AROMATIC-COMPOUNDS; IONIC LIQUID; PHANEROCHAETE-CHRYSOSPORIUM; SPOROTRICHUM-PULVERULENTUM; MASS-SPECTROMETRY; BINDING-PROTEINS AB Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells. The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by tropical soil bacteria make these organisms useful templates for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1 was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source of the isolate was tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play an important role in decomposition. We have used transcriptomics and proteomics to examine the observed increased growth of SCF1 grown on media amended with lignin compared to unamended growth. Proteomics suggested accelerated xylose uptake and metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. This suggested the use of lignin as terminal electron acceptor. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate moderately significant decreased xylose concentrations as well as increased metabolic products acetate and formate in stationary phase in lignin-amended compared to unamended growth conditions. Our data show the advantages of a multi-omics approach toward providing insights as to how lignin may be used in nature by microorganisms coping with poor carbon availability. C1 [DeAngelis, Kristen M.; Sharma, Deepak; Varney, Rebecca] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Simmons, Blake] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. [Simmons, Blake] Sandia Natl Labs, Livermore, CA USA. [Isern, Nancy G.; Markilllie, Lye Meng; Nicora, Carrie; Norbeck, Angela D.; Taylor, Ronald C.; Aldrich, Joshua T.; Robinson, Errol W.] Envrionm Mol Sci Lab, Richland, WA USA. RP DeAngelis, KM (reprint author), Univ Massachusetts, Dept Microbiol, 639 North Pleasant St,203N Morrill IVN, Amherst, MA 01003 USA. EM deangelis@microbio.umass.edu OI Taylor, Ronald/0000-0001-9777-9767; DeAngelis, Kristen/0000-0002-5585-4551 FU University of Massachusetts, Amherst; Environmental Molecular Sciences Laboratory (EMSL); US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was partially funded by the University of Massachusetts, Amherst, and by a user award from the Environmental Molecular Sciences Laboratory (EMSL). This work was also conducted in part by the Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, under Contract No. DE-AC02-05CH11231. NR 97 TC 13 Z9 13 U1 5 U2 61 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD SEP 19 PY 2013 VL 4 AR 280 DI 10.3389/fmicb.2013.00280 PG 14 WC Microbiology SC Microbiology GA AA9VZ UT WOS:000331442400001 PM 24065962 ER PT J AU Klippenstein, SJ Harding, LB Glarborg, P Gao, YD Hu, HZ Marshall, P AF Klippenstein, Stephen J. Harding, Lawrence B. Glarborg, Peter Gao, Yide Hu, Huanzhen Marshall, Paul TI Rate Constant and Branching Fraction for the NH2 + NO2 Reaction SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; TRANSITION-STATE THEORY; GAUSSIAN-BASIS SETS; NH2+NO2 REACTION; AB-INITIO; FLOW REACTOR; GAS-PHASE; THERMAL-DECOMPOSITION; ROAMING RADICALS; WAVE-FUNCTIONS AB The NH2 + NO2 reaction has been studied experimentally and theoretically. On the basis of laser photolysis/LIF experiments, the total rate constant was determined over the temperature range 295-625 K as k(1,exp)(T) = 9.5 X 10(-7)(T/K)(-2.05) exp(-404 KIT) cm(3) molecule(-1) s(-1). This value is in the upper range of data reported for this temperature range. The reactions on the NH2 + NO2 potential energy surface were studied using high level ab initio transition state theory (TST) based master equation methods, yielding a rate constant of k(1, theory)(T) = 7.5 X 10(-12)(T/K)(-0.172) exp(687 KIT) cm(3) molecule(-1) s(-1), in good agreement with the experimental value in the overlapping temperature range. The two entrance channel adducts H2NNO2 and H2NONO lead to formation of N2O + H2O (R1a) and H2NO + NO (R1b), respectively. The pathways through H2NNO2 and H2NONO are essentially unconnected, even though roaming may facilitate a small flux between the adducts. High-and low-pressure limit rate coefficients for the various product channels of NH2 + NO2 are determined from the ab initio TST-based master equation calculations for the temperature range 300-2000 K. The theoretical predictions are in good agreement with the measured overall rate constant but tend to overestimate the branching ratio defined as beta = k(1a)/(k(1a) + k(1b)) at lower temperatures. Modest adjustments of the attractive potentials for the reaction yield values of k(1a) = 4.3 x 10(-6)(T/K)(-2.191) exp(-229 KIT) cm(3) molecule(-1) s(-1) and k(1b) = 1.5 X 10(-12)(T/K)(0.032) exp(761 KIT) cm(3) molecule(-1) s(-1), in good agreement with experiment, and we recommend these rate coefficients for use in modeling. C1 [Klippenstein, Stephen J.; Harding, Lawrence B.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Glarborg, Peter] Tech Univ Denmark, DTU Chem Engn, DK-2800 Lyngby, Denmark. [Gao, Yide; Hu, Huanzhen; Marshall, Paul] Univ N Texas, Dept Chem, Denton, TX 76203 USA. RP Glarborg, P (reprint author), Tech Univ Denmark, DTU Chem Engn, DK-2800 Lyngby, Denmark. OI Klippenstein, Stephen/0000-0001-6297-9187 FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]; RA Welch Foundation [B-1174]; National Science Foundation [CBET-0756144]; Energinet.dk as part of the Eranet. Bioenergy program FX The work at Argonne was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Contract No. DE-AC02-06CH11357. The work at UNT was supported by the RA Welch Foundation (grant B-1174) and the National Science Foundation (grant CBET-0756144). The work at DTU was funded by Energinet.dk as part of the Eranet. Bioenergy program. NR 64 TC 6 Z9 6 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 19 PY 2013 VL 117 IS 37 BP 9011 EP 9022 DI 10.1021/jp4068069 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 287YT UT WOS:000329579200003 PM 23968399 ER PT J AU Lin, YC Beckham, GT Himmel, ME Crowley, MF Chu, JW AF Lin, Yuchun Beckham, Gregg T. Himmel, Michael E. Crowley, Michael F. Chu, Jhih-Wei TI Endoglucanase Peripheral Loops Facilitate Complexation of Glucan Chains on Cellulose via Adaptive Coupling to the Emergent Substrate Structures SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID NEUTRON FIBER DIFFRACTION; CRYSTAL-STRUCTURES REVEAL; HYDROGEN-BONDING SYSTEM; SYNCHROTRON X-RAY; BIOMASS RECALCITRANCE; TRICHODERMA-REESEI; MOLECULAR-DYNAMICS; FORCE-FIELDS; HYDROLYSIS; ENZYMES AB We examine how the catalytic domain of a glycoside hydrolase family 7 endoglucanase catalytic domain (Cel7B CD) facilitates complexation of cellulose chains from a crystal surface. With direct relevance to the science of biofuel production, this problem also represents a model system of biopolymer processing by proteins in Nature. Interactions of Cel7B CD with a cellulose microfibril along different paths of complexation are characterized by mapping the atomistic fluctuations recorded in free-energy simulations onto the parameters of a coarse-grain model. The resulting patterns of protein-biopolymer couplings also uncover the sequence signatures of the enzyme in peeling off glucan chains from the microfibril substrate. We show that the semiopen active site of Cel7B CD exhibits similar barriers and free energies of complexation over two distinct routes; namely, scooping of a chain into the active-site cleft and threading from the chain end into the channel. On the other hand, the complexation energetics strongly depends on the surface packing of the targeted chain and the resulting interaction sites with the enzyme. A revealed principle is that Cel7B CD facilitates cellulose deconstruction via adaptive coupling to the emergent substrate. The flexible, peripheral segments of the protein outside of the active-site cleft are able to accommodate the varying features of cellulose along the simulated paths of complexation. The general strategy of linking physics-based molecular interactions to protein sequence could also be helpful in elucidating how other protein machines process biopolymers. C1 [Lin, Yuchun; Chu, Jhih-Wei] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94704 USA. [Lin, Yuchun] Sichuan Univ, West China Hosp Stomatol, State Key Lab Oral Dis, Chengdu 610041, Sichuan, Peoples R China. [Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Himmel, Michael E.; Crowley, Michael F.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Beckham, Gregg T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Chu, Jhih-Wei] Natl Chiao Tung Univ, Dept Biol Sci & Technol, Hsinchu, Taiwan. [Chu, Jhih-Wei] Natl Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu, Taiwan. RP Chu, JW (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94704 USA. EM jwchu@nctu.edu.tw FU DOE Office of the Biomass Program [ZGB-0-40593-01]; National Renewable Energy Laboratory, the College of Chemistry, University of California, Berkeley; National Chiao Tung University, Hsinchu, Taiwan; NERSC; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Texas Advanced Computing Center Ranger cluster under the National Science Foundation Teragrid grant [TG-MCB090159]; Environmental Molecular Sciences Laboratory [25651] FX We acknowledge the financial support from the DOE Office of the Biomass Program, subcontract ZGB-0-40593-01 from the National Renewable Energy Laboratory, the College of Chemistry, University of California, Berkeley, and the National Chiao Tung University, Hsinchu, Taiwan. We also acknowledge the computational resources provided by NERSC, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, the Texas Advanced Computing Center Ranger cluster under the National Science Foundation Teragrid grant number TG-MCB090159, and the Environmental Molecular Sciences Laboratory under the proposal number 25651. NR 40 TC 8 Z9 8 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 19 PY 2013 VL 117 IS 37 BP 10750 EP 10758 DI 10.1021/jp405897q PG 9 WC Chemistry, Physical SC Chemistry GA 287CD UT WOS:000329515200008 PM 23972069 ER PT J AU Maerzke, KA Goff, GS Runde, WH Schneider, WF Maginn, EJ AF Maerzke, Katie A. Goff, George S. Runde, Wolfgang H. Schneider, William F. Maginn, Edward J. TI Structure and Dynamics of Uranyl(VI) and Plutonyl(VI) Cations in Ionic Liquid/Water Mixtures via Molecular Dynamics Simulations SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID HOMOLEPTIC BIS(TRIFLUOROMETHANESULFONYL)AMIDE COMPLEX; ABSORPTION FINE-STRUCTURE; WATER-EXCHANGE MECHANISM; QUANTUM-CHEMICAL METHODS; X-RAY-DIFFRACTION; AQUEOUS-SOLUTION; FREE-ENERGY; NANOSTRUCTURAL ORGANIZATION; COORDINATION ENVIRONMENT; TRANSPORT-PROPERTIES AB A fundamental understanding of the behavior of actinides in ionic liquids is required to develop advanced separation technologies. Spectroscopic measurements indicate a change in the coordination of uranyl in the hydrophobic ionic liquid 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ([EMIM][Tf2ND]) as water is added to the system. Molecular dynamics simulations of dilute uranyl (UO22+) and plutonyl (PuO22+) solutions in [EMIM]] [Tf2N] as water mixtures have been performed in order to examine the molecular-level coordination and dynamics of the actinyl cation (AnO(2)(2+)); An = U, Pu) as the amount of water in the system changes. The simulations show that the actinyl cation has a strong preference for a first solvation shell with five oxygen atoms, although a higher coordination number is possible in mixtures with little or no water. Water is a much stronger ligand for the actinyl cation than Tf2N, with even very small amounts of water displacing Tf2N from the first solvation shell. When enough water is present, the inner coordination sphere of each actinyl cation contains five water molecules without any Tf2N. Water also populates the second solvation shell, although it does not completely displace the Tf2N. At high water concentrations, a significant fraction of the water is found in the bulk ionic liquid, where it primarily coordinates with the Tf2N anion. Potential of mean force simulations show that the progressive addition of up to five water molecules to uranyl is very favorable, with Delta G ranging from -52.3 kJ/mol for the addition of the first water molecule to -37.6 kJ/mol for the addition of the fifth. Uranyl and plutonyl dimers formed via bridging Tf2N ligands are found in [EMIM][Tf2N] and in mixtures with very small amounts of water. Potential of mean force calculations confirm that the dimeric complexes are stable, with relative free energies of up to -9 kJ/mol in pure [EMIM]][Tf2N]. We find that the self-diffusion coefficients for all the components in the mixture increase as the water content increases, with the largest increase for water and the smallest increase for the ionic liquid cation and anion. The velocity autocorrelation functions also indicate changes in structure and dynamics as the water content changes. C1 [Maerzke, Katie A.; Schneider, William F.; Maginn, Edward J.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. [Goff, George S.; Runde, Wolfgang H.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Schneider, William F.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Maginn, EJ (reprint author), Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. EM ed@nd.edu RI Maginn, Edward/F-7584-2014 FU Los Alamos Laboratory Directed Research and Development Program FX The authors gratefully acknowledge the Los Alamos Laboratory Directed Research and Development Program for financial support during this project. The computer resources were provided by the Center for Research Computing at the University of Notre Dame. NR 138 TC 13 Z9 13 U1 3 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 19 PY 2013 VL 117 IS 37 BP 10852 EP 10868 DI 10.1021/jp405473b PG 17 WC Chemistry, Physical SC Chemistry GA 287CD UT WOS:000329515200020 PM 23964666 ER PT J AU Sellner, B Valiev, M Kathmann, SM AF Sellner, Bernhard Valiev, Marat Kathmann, Shawn M. TI Charge and Electric Field Fluctuations in Aqueous NaCl Electrolytes SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; SODIUM-CHLORIDE SOLUTIONS; LIQUID WATER; CONCENTRATED ELECTROLYTES; SUPERCRITICAL CONDITIONS; INFRARED-SPECTROSCOPY; POLARIZABLE WATER; ION CONCENTRATION; CLUSTER STRUCTURE; FREE-ENERGY AB Crystalloluminescence, the long-lived emission of visible light during the crystallization of certain salts, was first observed over 200 years ago; however, the origin of this luminescence is still not well understood. The observations suggest that the process of crystallization may not be purely classical but also involves an essential electronic structure component. Strong electric field fluctuations may play an important role in this process by providing the necessary driving force for the observed electronic structure changes. The main objective of this work is to provide a basic understanding of the fluctuations in charge, electric potentials, and electric fields for concentrated aqueous NaCl electrolytes. Our charge analysis reveals that the water molecules in the first solvation shell of the ions serve as a sink for electron density originating on Cl-. We find that the electric fields inside aqueous electrolytes are extremely large (up to several V/angstrom) and thus may alter the ground and excited electronic states in the condensed phase. Furthermore, our results show that the potential and field distributions are largely independent of concentration. We also find the field component distributions to be Gaussian for the ions and non-Gaussian for the 0 and H sites (computed in the lab frame of reference), however, these non-Gaussian distributions are readily modeled via an orientationally averaged nonzero mean Gaussian plus a zero mean Gaussian. These calculations and analyses provide the first steps toward understanding the magnitude and fluctuations of charge, electric potentials, and fields in aqueous electrolytes and what role these fields may play in driving charge redistribution/transfer during crystalloluminescence. C1 [Sellner, Bernhard; Kathmann, Shawn M.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Valiev, Marat] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kathmann, SM (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge helpful discussions with Christopher J. Mundy and Gregory K. Schenter. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 66 TC 20 Z9 20 U1 9 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 19 PY 2013 VL 117 IS 37 BP 10869 EP 10882 DI 10.1021/jp405578w PG 14 WC Chemistry, Physical SC Chemistry GA 287CD UT WOS:000329515200021 PM 23906325 ER PT J AU Lee, D Grimaud, A Crumlin, EJ Mezghani, K Habib, MA Feng, ZX Hong, WT Biegalski, MD Christen, HM Shao-Horn, Y AF Lee, Dongkyu Grimaud, Alexis Crumlin, Ethan J. Mezghani, Khaled Habib, Mohamed A. Feng, Zhenxing Hong, Wesley T. Biegalski, Michael D. Christen, Hans M. Shao-Horn, Yang TI Strain Influence on the Oxygen Electrocatalysis of the (100)-Oriented Epitaxial La2NiO4+delta Thin Films at Elevated Temperatures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXIDE FUEL-CELLS; NEUTRON-DIFFRACTION; LA1-XSRXMN1-YCOYO3+/-DELTA PEROVSKITES; ELECTRICAL-CONDUCTIVITY; TRANSPORT-PROPERTIES; SURFACE EXCHANGE; REDUCTION; DIFFUSION; KINETICS; LA2-XSRXNIO4+DELTA AB Ruddlesden-Popper materials such as La2NiO4+delta (LNO) have high activities for surface oxygen exchange kinetics promising for solid oxide fuel cells and oxygen permeation membranes. Here we report the synthesis of the (100)(tetragonal)-oriented epitaxial LNO thin films prepared by pulsed laser deposition. The surface oxygen exchange kinetics determined from electrochemical impedance spectroscopy (EIS) were found to increase with decreasing film thickness from 390 to 14 nm. No significant change of the surface chemistry with different film thicknesses was observed using ex situ auger electron spectroscopy (AES). Increasing volumetric strains in the LNO films at elevated temperatures determined from in situ high-resolution X-ray diffraction (HRXRD) were correlated with increasing surface exchange kinetics and decreasing film thickness. Volumetric strains may alter the formation energy of interstitial oxygen and influence on the surface oxygen exchange kinetics of the LNO films. C1 [Lee, Dongkyu; Grimaud, Alexis; Crumlin, Ethan J.; Feng, Zhenxing; Hong, Wesley T.; Shao-Horn, Yang] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA. [Mezghani, Khaled; Habib, Mohamed A.] King Fahd Univ Petr & Minerals, Dept Mech Engn, Dhahran 31261, Saudi Arabia. [Biegalski, Michael D.; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Shao-Horn, Y (reprint author), MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI Hong, Wesley/H-1102-2014; Feng, Zhenxing/J-7457-2013; Christen, Hans/H-6551-2013; OI Feng, Zhenxing/0000-0001-7598-5076; Christen, Hans/0000-0001-8187-7469; Lee, Dongkyu/0000-0003-4700-5047 FU DOE [SISGR DESC0002633]; King Abdullah University of Science and Technology; King Fand University of Petroleum and Minerals in Dharam, Saudi Arabia; KFUPM; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported in part by DOE (SISGR DESC0002633) and King Abdullah University of Science and Technology. The authors like to thank the King Fand University of Petroleum and Minerals in Dharam, Saudi Arabia, for funding the research reported in this paper through the Center for Clean Water and Clean Energy at MIT and KFUPM. The PLD was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 42 TC 12 Z9 12 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 19 PY 2013 VL 117 IS 37 BP 18789 EP 18795 DI 10.1021/jp404121p PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 296CL UT WOS:000330162600001 ER PT J AU Pelliccione, CJ Timofeeva, EV Katsoudas, JP Segre, CU AF Pelliccione, Christopher J. Timofeeva, Elena V. Katsoudas, John P. Segre, Carlo U. TI In Situ Ru K-Edge X-ray Absorption Spectroscopy Study of Methanol Oxidation Mechanisms on Model Submonolayer Ru on Pt Nanoparticle Electrocatalyst SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FUEL-CELL CATALYSTS; RUTHENIUM SURFACE-AREAS; PTRU ELECTRODES; UNDERPOTENTIAL DEPOSITION; ALLOY ELECTROCATALYSTS; CYCLIC VOLTAMMETRY; CO; ELECTROOXIDATION; ADSORPTION; PLATINUM AB In situ X-ray absorption spectroscopy (XAS) with electrochemical reaction control has enabled a detailed investigation of the mechanism of the methanol electrooxidation by a bimetallic PtRu catalyst. By the use of an original electrodeposition technique, ca. 0.3 monolayer of Ru was deposited on the surface of unsupported Pt nanoparticles (Ru@Pt). The presence of Ru atoms only at the surface of nanoparticles turns a bulk sensitive XAS technique into a surface methodology which permits correlation of the X-ray absorption fine structure at the Ru K-edge to the role of Ru atoms in the methanol oxidation process. In situ XAS spectra of the Ru@Pt nanoparticles were collected at various electrode potentials in background electrolyte, and then in 1 M solution of methanol (CH3OH) in the same electrolyte. Significant differences in the catalyst state have been revealed between these two environments. In the background electrolyte, Ru gradually oxidizes from mostly metallic to a Ru(III)/Ru(IV) mixture at the highest potentials. In the presence of CH3OH, the Ru oxidation state remains a mixture of metallic and Ru(III) even at the highest potentials. CO-type species were found adsorbed on Ru atoms at all potentials and coadsorbed with OH species at potentials 0.175 V vs Ag/AgCl and higher with steady number of near neighbors. The same potential correlates to the beginning of methanol oxidation reaction observed electrochemically. Therefore coadsorption of CO and OH groups on Ru atoms appears to be critical in the methanol oxidation process. The need for OH groups for CO removal from Pt sites was previously suggested by the bifunctional CH3OH oxidation mechanism; however, occupancy of Ru atoms with CO species and direct structural observations of the coadsorption of CO and OH on the same Ru atom is a novel finding resulting from this study. Other changes in the catalyst environment were observed, including decreased Ru Ru and Ru Pt bond distances, increased numbers of Ru Pt near neighbors, and decreased number of Ru Ru near neighbors. C1 [Pelliccione, Christopher J.; Katsoudas, John P.; Segre, Carlo U.] IIT, Dept Phys, Chicago, IL 60616 USA. [Pelliccione, Christopher J.; Katsoudas, John P.; Segre, Carlo U.] IIT, CSRRI, Chicago, IL 60616 USA. [Timofeeva, Elena V.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Segre, CU (reprint author), IIT, Dept Phys, Life Sci Bldg Room 166A,3101 South Dearborn St, Chicago, IL 60616 USA. EM segre@iit.edu RI Timofeeva, Elena/E-6391-2010; Segre, Carlo/B-1548-2009; ID, MRCAT/G-7586-2011; OI Segre, Carlo/0000-0001-7664-1574; Timofeeva, Elena V./0000-0001-7839-2727 FU Department of Education GAANN Fellowship [P200A090137]; Department of Energy; MRCAT member institutions; U.S. Department of Energy [DE-AC02-06CH11357] FX C.J.P. was supported by a Department of Education GAANN Fellowship, award P200A090137. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Use of the Argonne National Laboratory, Advanced Photon Source and Electron Microscopy Center is supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. NR 48 TC 9 Z9 9 U1 7 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 19 PY 2013 VL 117 IS 37 BP 18904 EP 18912 DI 10.1021/jp404342z PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 296CL UT WOS:000330162600014 ER PT J AU Vlassiouk, I Smirnov, S Regmi, M Surwade, SP Srivastava, N Feenstra, R Eres, G Parish, C Lavrik, N Datskos, P Dai, S Fulvio, P AF Vlassiouk, Ivan Smirnov, Sergei Regmi, Murari Surwade, Sumedh P. Srivastava, Nishtha Feenstra, Randall Eres, Gyula Parish, Chad Lavrik, Nick Datskos, Panos Dai, Sheng Fulvio, Pasquale TI Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SINGLE-CRYSTAL GRAPHENE; CU SURFACES; POLYCRYSTALLINE CU; GROWTH; FILMS; FOILS; SIZE; DOMAINS; GRAINS AB In this paper we discuss the effect of background pressure and synthesis temperature on the graphene crystal sizes in chemical vapor deposition (CVD) on copper catalyst. For the first time, we quantitatively demonstrate a fundamental role of the background pressure and provide the activation energy for graphene nucleation in atmospheric pressure CVD (9 eV), which is substantially higher than for the low pressure CVD (4 eV). We attribute the difference to a greater importance of copper sublimation in the low pressure CVD, where severe copper evaporation likely dictates the desorption rate of active carbon from the surface. At atmospheric pressure, where copper evaporation is suppressed, the activation energy is assigned to the desorption energy of carbon clusters instead. The highest possible temperature, close to the melting point of copper, should be used for large single crystal graphene synthesis. Using these conditions, we have synthesized graphene single crystals with sizes over 0.5 mm. Single crystal nature of synthesized graphene was confirmed by low-energy electron diffraction. We also demonstrate that CVD of graphene at temperatures below 1000 degrees C shows higher nucleation density on (111) than on (100) and (101) copper surfaces, but there is no identifiable preference at higher temperatures. C1 [Vlassiouk, Ivan; Regmi, Murari; Surwade, Sumedh P.; Eres, Gyula; Parish, Chad; Lavrik, Nick; Datskos, Panos; Dai, Sheng; Fulvio, Pasquale] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Smirnov, Sergei] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. [Srivastava, Nishtha; Feenstra, Randall] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Vlassiouk, I (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM vlassioukiv@ornl.gov; snsm@nmsu.edu RI Parish, Chad/J-8381-2013; Fulvio, Pasquale/B-2968-2014; Feenstra, Randall/P-2530-2014; Lavrik, Nickolay/B-5268-2011; Smirnov, Sergei/H-8774-2016; Vlassiouk, Ivan/F-9587-2010; Dai, Sheng/K-8411-2015; Eres, Gyula/C-4656-2017 OI Fulvio, Pasquale/0000-0001-7580-727X; Feenstra, Randall/0000-0001-7120-5685; Lavrik, Nickolay/0000-0002-9543-5634; Vlassiouk, Ivan/0000-0002-5494-0386; Dai, Sheng/0000-0002-8046-3931; Eres, Gyula/0000-0003-2690-5214 FU National Science Foundation [DMR-0856240]; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Shared Research Equipment (ShaRE) User Program; Office of Basic Energy Sciences, U.S. Department of Energy; Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX The LEEM/LEED work at CMU was supported by the National Science Foundation, grant DMR-0856240. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy and at the Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. PFF and SD were supported as part of the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The contribution by M.R. and G.E. was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 43 TC 66 Z9 66 U1 8 U2 128 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 19 PY 2013 VL 117 IS 37 BP 18919 EP 18926 DI 10.1021/jp4047648 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 296CL UT WOS:000330162600016 ER PT J AU Teng, BT Lang, JJ Wen, XD Zhang, C Fan, MH Harris, HG AF Teng, Bo-Tao Lang, Jia-Jian Wen, Xiao-Dong Zhang, Ce Fan, Maohong Harris, H. Gordon TI O-2 Adsorption and Oxidative Activity on Gold-Based Catalysts with and without a Ceria Support SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; WATER-GAS SHIFT; CO OXIDATION; OXYGEN-ADSORPTION; MOLECULAR-OXYGEN; AU CLUSTERS; ELECTRONIC-STRUCTURE; CARBON-MONOXIDE AB Understanding the O-2 adsorption and oxidative activity on gold-based catalysts is of great significance for gold catalysis. According to the adsorption behaviors of O-2 on Au(111)(+), 3Au/Au(111)(+), Au-19(+), and Au-9/CeO2(111), the electronic, nature of why O-2 weakly interacts with free positively charged Au substrate while it strongly interacts with Au cluster supported on ceria is well-explained herein. The ceria support serves as an electronic repository, where it gains and stores electrons from the supported metal cluster and releases them when the metal cluster interacts with molecular O-2. The possible oxygen species on gold-based catalysts have been systematically confirmed for the first time. On the Au-9/CeO2 modeling catalyst, a peroxide species forms when O-2 locates at the hollow site of Au-9, while a superoxide forms for O-2 at the top site of a Ce atom. It is very interesting to find that Ce3+ ion distributions in Au /CeO2 catalysts have diverse possibilities. The superoxide close to Au-9 has the highest oxidative activity. The interface between the Au cluster and ceria surface is the active site for Au /CeO2 catalysts. The present work sheds light on understanding the oxidative mechanism of metal/support catalysts, as well as the development of new catalysts with high performance at relatively low temperature. C1 [Teng, Bo-Tao; Lang, Jia-Jian; Zhang, Ce] Zhejiang Normal Univ, Coll Chem & Life Sci, Jinhua 321004, Peoples R China. [Teng, Bo-Tao; Fan, Maohong; Harris, H. Gordon] Univ Wyoming, Dept Chem & Petr Engn, Laramie, WY 82071 USA. [Wen, Xiao-Dong] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Teng, BT (reprint author), Zhejiang Normal Univ, Coll Chem & Life Sci, Jinhua 321004, Peoples R China. EM tbt@zjnu.cn; mfan@uwyo.edu FU National Natural Science Foundation of China [21373187, 20903081]; Natural Foundation of Zhejiang Province, China [Y407163]; Opening Foundation of the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University [201308]; Seaborg Institute Fellowship (the LDRD program at LANL); U.S. Department of Energy [DE-AC5206NA25396] FX This work is supported by the National Natural Science Foundation of China (Grant No. 21373187, 20903081), the Natural Foundation of Zhejiang Province, China (Grant No.Y407163), and the Opening Foundation of the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (Grant No.201308). X.-D.W. gratefully acknowledges a Seaborg Institute Fellowship (the LDRD program at LANL). The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC5206NA25396. NR 59 TC 12 Z9 12 U1 3 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 19 PY 2013 VL 117 IS 37 BP 18986 EP 18993 DI 10.1021/jp4056279 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 296CL UT WOS:000330162600023 ER PT J AU Luo, GM Bu, W Mihaylov, M Kuzmenko, I Schlossman, ML Soderholm, L AF Luo, Guangming Bu, Wei Mihaylov, Miroslav Kuzmenko, Ivan Schlossman, Mark L. Soderholm, L. TI X-ray Reflectivity Reveals a Nonmonotonic Ion-Density Profile Perpendicular to the Surface of ErCl3 Aqueous Solutions SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AIR/WATER INTERFACE; SALT-SOLUTIONS; ATMOSPHERIC CHEMISTRY; ELECTROLYTE-SOLUTIONS; CHLORIDE COMPLEXES; LIQUID INTERFACES; EWALD SUMMATION; TENSION; WATER; HYDRATION AB Complex interactions that determine ionic ordering in the bulk of electrolyte solutions are modified by surface-region inhomogeneities. We present results from an investigation of surface-ionic profiles that provide insights into the underlying physical chemistry in this region. X-ray reflectivity measurements from the liquid surfaces of aqueous ErCl3 solutions reveal in unprecedented detail a nonmonotonic electron density profile, which is interpreted in terms of a nonmonotonic surface distribution of cations (Er3+) and their relationship to the bulk. The combination of a heavy, multivalent Er3+ and a lighter, monovalent anion (Cl-) results in a significant cation depletion layer at the surface followed by a subsurface region of notably enhanced Er3+. Studying a series of solutions as a function of solute concentration reveals marked changes in Er3+ distribution, the most notable of which are the depletion layer thickness variation from 7.8 angstrom at 0.2 M to 5.5 angstrom at 1.0 M and the damped, oscillatory, cation concentrations indicative of solute multilayering in the subsurface region. This nonmonotonic profile is consistent with an analysis of surface tension measurements by the Gibbs adsorption equation that predicts negative adsorption. Molecular dynamics simulations provide physical insight into the observed behavior, implicating the high charge on erbium for its nonmonotonic variation with depth. This work suggests that future studies employing higher-valent cations will enhance the understanding of liquid/vapor interfaces and their widespread importance in areas ranging from atmospheric chemistry to metal-ion separations. C1 [Luo, Guangming; Soderholm, L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Kuzmenko, Ivan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bu, Wei; Mihaylov, Miroslav; Schlossman, Mark L.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Soderholm, L (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Schloss@uic.edu; LS@anl.gov RI Bu, Wei/Q-1390-2016 OI Bu, Wei/0000-0002-9996-3733 FU U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division (Heavy Elements Chemistry) [DE-AC02-06CH11357]; Office of Basic Energy Sciences, Materials Sciences [DE-AC02-06CH11357]; National Science Foundation Division of Chemistry [0910825]; National Science Foundation Chemistry; U.S. Department of Energy [CHE-0822838] FX This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division (Heavy Elements Chemistry) under Contract No. DE-AC02-06CH11357. The Advanced Photon Source is supported by Office of Basic Energy Sciences, Materials Sciences, under the same contract number. MLS acknowledges support from National Science Foundation Division of Chemistry under Grant No. 0910825. Drs. Binhua Lin and Mati Meron of ChemMatCARS are acknowledged for assistance with the measurement of preliminary data. ChemMatCARS (Sector 15 of the Advanced Photon Source, Argonne National Laboratory) is supported by National Science Foundation Chemistry and U.S. Department of Energy under CHE-0822838. NR 47 TC 12 Z9 12 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 19 PY 2013 VL 117 IS 37 BP 19082 EP 19090 DI 10.1021/jp4067247 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 296CL UT WOS:000330162600034 ER PT J AU Tan, X Zapol, P AF Tan, Xin Zapol, Peter TI Regioselective Oxidation of Strained Graphene for Controllable Synthesis of Nanoribbons SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CARBON NANOTUBES; GRAPHITE; POINTS; OXIDE; FORM AB We propose a regioselective unzipping and cutting of strained graphene by oxidation to form graphene nanoribbons (GNRs) of controllable width with well-defined and smooth edges at low temperature. The proposed process is based on first-principles calculations involving a uniaxial external compressive strain along the armchair direction. The process consists of three steps: (i) compressive strain engineering of graphene into periodic ID sinusoidal ripple patterns, (ii) oxidation of a strained ripple, which leads to the unzipped graphene ripple with curvature-directed linear alignment of ether chains along the zigzag (ZZ) directions perpendicular to the strain, and (iii) subsequent further oxidation of the highly ordered unzipped ripple, which cuts it into uniform-width ZZ-GNRs. This method offers a potentially high level of control of the ZZ-GNRs width at low temperature. C1 [Tan, Xin; Zapol, Peter] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Zapol, P (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zapol@anl.gov RI Zapol, Peter/G-1810-2012 OI Zapol, Peter/0000-0003-0570-9169 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357. We acknowledge grants of computer time from the ANL Center for Nanoscale Materials and the ANL Laboratory Computing Resource Center (LCRC). NR 35 TC 2 Z9 2 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 19 PY 2013 VL 117 IS 37 BP 19160 EP 19166 DI 10.1021/jp402312k PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 296CL UT WOS:000330162600045 ER PT J AU Jiang, XK Huang, JS Sumpter, BG Qiao, R AF Jiang, Xikai Huang, Jingsong Sumpter, Bobby G. Qiao, Rui TI Electro-Induced Dewetting and Concomitant Ionic Current Avalanche in Nanopores SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID FIELD-CONTROLLED WATER; MOLECULAR SIMULATION; CURRENT RECTIFICATION; NANOFLUIDIC DIODE; SILICA NANOPORES; SURFACE-CHARGE; SLIT NANOPORE; PORE-SIZE; TRANSPORT; LIQUID AB Electrically driven ionic transport of room-temperature ionic liquids (RTILs) through nanopores is studied using atomistic simulations. The results show that in nanopores wetted by RTILs a gradual dewetting transition occurs upon increasing the applied voltage, which is accompanied by a sharp increase in ionic current. These phenomena originate from the solvent-free nature of RTILs and are in stark contrast with the transport of conventional electrolytes through nanopores. Amplification is possible by controlling the properties of the nanopore and RTILs, and we show that it is especially pronounced in charged nanopores. The results highlight the unique physics of nonequilibrium transport of RTILs in confined geometries and point to potential experimental approaches for manipulating ionic transport in nanopores, which can benefit diverse techniques including nanofluidic circuitry and nanopore analytics. C1 [Jiang, Xikai; Qiao, Rui] Clemson Univ, Coll Engn & Sci, Clemson, SC 29634 USA. [Huang, Jingsong; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Huang, Jingsong; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Qiao, R (reprint author), Clemson Univ, Coll Engn & Sci, 237 Fluor Daniel Bldg, Clemson, SC 29634 USA. EM rqiao@clemson.edu RI Qiao, Rui/B-2350-2009; Sumpter, Bobby/C-9459-2013; Huang, Jingsong/A-2789-2008 OI Qiao, Rui/0000-0001-5219-5530; Sumpter, Bobby/0000-0001-6341-0355; Huang, Jingsong/0000-0001-8993-2506 FU NSF [CBET-1264578]; Center for Nanophase Materials Sciences; Office of Basic Energy Sciences, U.S. Department of Energy FX We thank the Clemson-CCIT office for providing computer time. The Clemson authors acknowledge support from NSF under Grant No. CBET-1264578. R.Q, was partially supported by an appointment to the HERE program for faculty at the Oak Ridge National Laboratory (ORNL) administered by ORISE. The authors at ORNL acknowledge the support from the Center for Nanophase Materials Sciences, which is sponsored at ORNL by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 36 TC 5 Z9 5 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 19 PY 2013 VL 4 IS 18 BP 3120 EP 3126 DI 10.1021/jz401539j PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 294BZ UT WOS:000330018700016 ER PT J AU Blaschke, DN Gieres, F Heindl, F Schweda, M Wohlgenannt, M AF Blaschke, Daniel N. Gieres, Francois Heindl, Franz Schweda, Manfred Wohlgenannt, Michael TI BPHZ renormalization and its application to non-commutative field theory SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID ZERO-MASS PROPAGATORS; INDUCED GAUGE-THEORY; YANG-MILLS THEORY; FORMULATION; MODEL; CONVERGENCE; SPACE AB In a recent work a modified BPHZ scheme has been introduced and applied to one-loop Feynman graphs in non-commutative I center dot (4)-theory. In the present paper, we first review the BPHZ method and then we apply the modified BPHZ scheme as well as Zimmermann's forest formula to the sunrise graph, i.e. a typical higher-loop graph involving overlapping divergences. Furthermore, we show that the application of the modified BPHZ scheme to the IR-singularities appearing in non-planar graphs (UV/IR mixing problem) leads to the introduction of a 1/p (2) term and thereby to a renormalizable model. Finally, we address the application of this approach to gauge field theories. C1 [Blaschke, Daniel N.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. [Gieres, Francois] Univ Lyon 1, Inst Phys Nucl, F-69622 Villeurbanne, France. [Gieres, Francois] CNRS, IN2P3, F-69622 Villeurbanne, France. [Heindl, Franz; Schweda, Manfred] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. [Wohlgenannt, Michael] TU Vienna, Austro Ukrainian Inst Sci & Technol, A-1040 Vienna, Austria. RP Blaschke, DN (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. EM dblaschke@lanl.gov; gieres@ipnl.in2p3.fr; franz.m.heindl@gmail.com; mschweda@tph.tuwien.ac.at; michael.wohlgenannt@univie.ac.at FU APART fellowship of the Austrian Academy of Sciences; theory division of LANL FX D.N. Blaschke is a recipient of an APART fellowship of the Austrian Academy of Sciences, and is also grateful for the hospitality of the theory division of LANL and its partial financial support. F. Gieres wishes the express his gratitude to S. Theisen for valuable discussions. M. Schweda thanks C. Becchi for useful comments. NR 57 TC 1 Z9 1 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD SEP 19 PY 2013 VL 73 IS 9 AR 2566 DI 10.1140/epjc/s10052-013-2566-8 PG 16 WC Physics, Particles & Fields SC Physics GA 223RT UT WOS:000324827000001 ER PT J AU Adamczyk, L Adkins, JK Agakishiev, G Aggarwal, MM Ahammed, Z Alekseev, I Alford, J Anson, CD Aparin, A Arkhipkin, D Aschenauer, E Averichev, GS Balewski, J Banerjee, A Barnovska, Z Beavis, DR Bellwied, R Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bhattarai Bichsel, H Bielcik, J Bielcikova, J Bland, LC Bordyuzhin, IG Borowski, W Bouchet, J Brandin, AV Brovko, SG Bruna, E Bultmann, S Bunzarov, I Burton, TP Butterworth, J Caines, H Sanchez, MCD Cebra, D Cendejas, R Cervantes, MC Chaloupka, P Chang, Z Chattopadhyay, S Chen, HF Chen, JH Chen, JY Chen, L Cheng, J Cherney, M Chikanian, A Christie, W Chung, P Chwastowski, J Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Cui, X Das, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG Deng, J De Souza, RD Dhamija, S di Ruzza, B Didenko, L Dilks Ding, F Dion, A Djawotho, P Dong, X Drachenberg, JL Draper, JE Du, CM Dunkelberger, LE Dunlop, JC Efimov, LG Elnimr, M Engelage, J Engle, KS Eppley, G Eun, L Evdokimov, O Fatemi, R Fazio, S Fedorisin, J Fersch, RG Filip, P Finch, E Fisyak, Y Flores, CE Gagliardi, CA Gangadharan, DR Garand, D Geurts, F Gibson, A Gliske, S Grebenyuk, G Grosnick, D Guo, Y Gupta, A Gupta, S Guryn, W Haag, B Hajkova, O Hamed, A Han, LX Haque, R Harris, JW Hays-Wehle, JP Heppelmann, S Hirsch, A Hoffmann, GW Hofman, DJ Horvat, S Huang, B Huang, HZ Huck, P Humanic, TJ Igo, G Jacobs, WW Jena, C Judd, EG Kabana, S Kang, K Kauder, K Ke, HW Keane, D Kechechyan, A Kesich, A Kikola, DP Kiryluk, J Kisel, I Kisiel, A Koetke, DD Kollegger, T Konzer, J Koralt, I Korsch, W Kotchenda, L Kravtsov, P Krueger, K Kulakov, I Kumar, L Kycia, RA Lamont, MAC Landgraf, JM Landry, KD LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, JH Leight, W LeVine, MJ Li, C Li, W Li, X Li, X Li, Y Li, ZM Lima, LM Lisa, MA Liu, F Ljubicic, T Llope, WJ Longacre, RS Luo, X Ma, GL Ma, YG Don, DMMDM Mahapatra, DP Majka, R Margetis, S Markert, C Masui, H Matis, HS McDonald, D McShane, TS Mioduszewski, S Mitrovski, MK Mohammed, Y Mohanty, B Mondal, MM Munhoz, MG Mustafa, MK Naglis, M Nandi, BK Nasim, M Nayak, TK Nelson, JM Nogach, LV Novak, J Odyniec, G Ogawa, A Oh, K Ohlson, A Okorokov, V Oldag, EW Oliveira, RAN Olson, D Pachr, M Page, BS Pal, SK Pan, YX Pandit, Y Panebratsev, Y Pawlak, T Pawlik, B Pei, H Perkins, C Peryt, W Pile, P Planinic, M Pluta, J Plyku, D Poljak, N Porter, J Poskanzer, AM Powell, CB Pruneau, C Pruthi, NK Przybycien, M Pujahari, PR Putschke, J Qiu, H Ramachandran, S Raniwala, R Raniwala, S Ray, RL Riley, CK Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Ross, JF Roy, A Ruan, L Rusnak, J Sahoo, NR Sahu, PK Sakrejda, I Salur, S Sandacz, A Sandweiss, J Sangaline, E Sarkar, A Schambach, J Scharenberg, RP Schmah, AM Schmidke, B Schmitz, N Schuster, TR Seger, J Seyboth, P Shah, N Shahaliev, E Shao, M Sharma, B Sharma, M Shen, WQ Shi, SS Shou, QY Sichtermann, EP Singaraju, RN Skoby, MJ Smirnov, D Smirnov, N Solanki, D Sorensen, P deSouza, UG Spinka, HM Srivastava, B Stanislaus, TDS Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Svirida, DN Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thomas, JH Timmins, AR Tlusty, D Tokarev, M Trentalange, S Tribble, RE Tribedy, P Trzeciak, BA Tsai, OD Turnau, J Ullrich, T Underwood, DG Van Buren, G van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Vertesi, R Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Vossen, A Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Wieman, H Wissink, SW Witt, R Wu, YF Xiao, Z Xie, W Xin, K Xu, H Xu, N Xu, QH Xu, W Xu, Y Xu, Z Yan Yang, C Yang, Y Yang, Y Yepes, P Yi, L Yip, K Yoo, IK Zawisza, Y Zbroszczyk, H Zha, W Zhang, JB Zhang, S Zhang, XP Zhang, Y Zhang, ZP Zhao, F Zhao, J Zhong, C Zhu, X Zhu, YH Zoulkarneeva, Y Zyzak, M AF Adamczyk, L. Adkins, J. K. Agakishiev, G. Aggarwal, M. M. Ahammed, Z. Alekseev, I. Alford, J. Anson, C. D. Aparin, A. Arkhipkin, D. Aschenauer, E. Averichev, G. S. Balewski, J. Banerjee, A. Barnovska, Z. Beavis, D. R. Bellwied, R. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bhattarai Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Bordyuzhin, I. G. Borowski, W. Bouchet, J. Brandin, A. V. Brovko, S. G. Bruna, E. Bueltmann, S. Bunzarov, I. Burton, T. P. Butterworth, J. Caines, H. Sanchez, M. Calderon de la Barca Cebra, D. Cendejas, R. Cervantes, M. C. Chaloupka, P. Chang, Z. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Chen, L. Cheng, J. Cherney, M. Chikanian, A. Christie, W. Chung, P. Chwastowski, J. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Cui, X. Das, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. Deng, J. Derradi De Souza, R. Dhamija, S. di Ruzza, B. Didenko, L. Dilks Ding, F. Dion, A. Djawotho, P. Dong, X. Drachenberg, J. L. Draper, J. E. Du, C. M. Dunkelberger, L. E. Dunlop, J. C. Efimov, L. G. Elnimr, M. Engelage, J. Engle, K. S. Eppley, G. Eun, L. Evdokimov, O. Fatemi, R. Fazio, S. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fisyak, Y. Flores, C. E. Gagliardi, C. A. Gangadharan, D. R. Garand, D. Geurts, F. Gibson, A. Gliske, S. Grebenyuk, G. Grosnick, D. Guo, Y. Gupta, A. Gupta, S. Guryn, W. Haag, B. Hajkova, O. Hamed, A. Han, L-X. Haque, R. Harris, J. W. Hays-Wehle, J. P. Heppelmann, S. Hirsch, A. Hoffmann, G. W. Hofman, D. J. Horvat, S. Huang, B. Huang, H. Z. Huck, P. Humanic, T. J. Igo, G. Jacobs, W. W. Jena, C. Judd, E. G. Kabana, S. Kang, K. Kauder, K. Ke, H. W. Keane, D. Kechechyan, A. Kesich, A. Kikola, D. P. Kiryluk, J. Kisel, I. Kisiel, A. Koetke, D. D. Kollegger, T. Konzer, J. Koralt, I. Korsch, W. Kotchenda, L. Kravtsov, P. Krueger, K. Kulakov, I. Kumar, L. Kycia, R. A. Lamont, M. A. C. Landgraf, J. M. Landry, K. D. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, W. Li, X. Li, X. Li, Y. Li, Z. M. Lima, L. M. Lisa, M. A. Liu, F. Ljubicic, T. Llope, W. J. Longacre, R. S. Luo, X. Ma, G. L. Ma, Y. G. Don, D. M. M. D. Madagodagettige Mahapatra, D. P. Majka, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. McDonald, D. McShane, T. S. Mioduszewski, S. Mitrovski, M. K. Mohammed, Y. Mohanty, B. Mondal, M. M. Munhoz, M. G. Mustafa, M. K. Naglis, M. Nandi, B. K. Nasim, Md. Nayak, T. K. Nelson, J. M. Nogach, L. V. Novak, J. Odyniec, G. Ogawa, A. Oh, K. Ohlson, A. Okorokov, V. Oldag, E. W. Oliveira, R. A. N. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pan, Y. X. Pandit, Y. Panebratsev, Y. Pawlak, T. Pawlik, B. Pei, H. Perkins, C. Peryt, W. Pile, P. Planinic, M. Pluta, J. Plyku, D. Poljak, N. Porter, J. Poskanzer, A. M. Powell, C. B. Pruneau, C. Pruthi, N. K. Przybycien, M. Pujahari, P. R. Putschke, J. Qiu, H. Ramachandran, S. Raniwala, R. Raniwala, S. Ray, R. L. Riley, C. K. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Ross, J. F. Roy, A. Ruan, L. Rusnak, J. Sahoo, N. R. Sahu, P. K. Sakrejda, I. Salur, S. Sandacz, A. Sandweiss, J. Sangaline, E. Sarkar, A. Schambach, J. Scharenberg, R. P. Schmah, A. M. Schmidke, B. Schmitz, N. Schuster, T. R. Seger, J. Seyboth, P. Shah, N. Shahaliev, E. Shao, M. Sharma, B. Sharma, M. Shen, W. Q. Shi, S. S. Shou, Q. Y. Sichtermann, E. P. Singaraju, R. N. Skoby, M. J. Smirnov, D. Smirnov, N. Solanki, D. Sorensen, P. deSouza, U. G. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Svirida, D. N. Symons, T. J. M. Szanto de Toledo, A. Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thomas, J. H. Timmins, A. R. Tlusty, D. Tokarev, M. Trentalange, S. Tribble, R. E. Tribedy, P. Trzeciak, B. A. Tsai, O. D. Turnau, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vertesi, R. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Vossen, A. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. F. Xiao, Z. Xie, W. Xin, K. Xu, H. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Yan Yang, C. Yang, Y. Yang, Y. Yepes, P. Yi, L. Yip, K. Yoo, I-K. Zawisza, Y. Zbroszczyk, H. Zha, W. Zhang, J. B. Zhang, S. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, F. Zhao, J. Zhong, C. Zhu, X. Zhu, Y. H. Zoulkarneeva, Y. Zyzak, M. CA STAR Collaboration TI Freeze-out dynamics via charged kaon femtoscopy in root sNN=200 GeV central Au plus Au collisions SO PHYSICAL REVIEW C LA English DT Article ID BOSE-EINSTEIN CORRELATIONS; QUARK-GLUON PLASMA; COLLABORATION; PERSPECTIVE AB We present measurements of three-dimensional correlation functions of like-sign, low-transverse-momentum kaon pairs from root sNN = 200 GeV Au + Au collisions. A Cartesian surface-spherical harmonic decomposition technique was used to extract the kaon source function. The latter was found to have a three-dimensional Gaussian shape and can be adequately reproduced by Therminator event-generator simulations with resonance contributions taken into account. Compared to the pion one, the kaon source function is generally narrower and does not have the long tail along the pair transverse momentum direction. The kaon Gaussian radii display a monotonic decrease with increasing transverse mass m(T) over the interval of 0.55 <= mT <= 1.15 GeV/c(2). While the kaon radii are adequately described by the m(T) -scaling in the outward and sideward directions, in the longitudinal direction the lowest m(T) value exceeds the expectations from a pure hydrodynamical model prediction. C1 [Adamczyk, L.; Przybycien, M.] AGH Univ Sci & Technol, Krakow, Poland. [Gliske, S.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Aschenauer, E.; Beavis, D. R.; Bland, L. C.; Burton, T. P.; Christie, W.; Debbe, R. R.; di Ruzza, B.; Didenko, L.; Dion, A.; Dunlop, J. C.; Fazio, S.; Fisyak, Y.; Guryn, W.; Huang, B.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Mitrovski, M. K.; Ogawa, A.; Pile, P.; Ruan, L.; Schmidke, B.; Smirnov, D.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Wang, H.; Webb, J. C.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Brovko, S. G.; Sanchez, M. Calderon de la Barca; Cebra, D.; Ding, F.; Draper, J. E.; Flores, C. E.; Haag, B.; Kesich, A.; Romero, J. L.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Dunkelberger, L. E.; Huang, H. Z.; Igo, G.; Landry, K. D.; Pan, Y. X.; Shah, N.; Trentalange, S.; Tsai, O. D.; Wang, G.; Xu, W.; Zhao, F.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Derradi De Souza, R.; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Chen, J. Y.; Chen, L.; Huck, P.; Ke, H. W.; Li, Z. M.; Liu, F.; Luo, X.; Pei, H.; Shi, S. S.; Wu, Y. F.; Yang, Y.; Zhang, J. B.] Cent China Normal Univ HZNU, Wuhan 430079, Peoples R China. [Betts, R. R.; Evdokimov, O.; Hofman, D. J.; Kauder, K.; Pandit, Y.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Chwastowski, J.; Kycia, R. A.] Cracow Univ Technol, Krakow, Poland. [Cherney, M.; Don, D. M. M. D. Madagodagettige; McShane, T. S.; Ross, J. F.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Chaloupka, P.; Hajkova, O.; Pachr, M.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Barnovska, Z.; Bielcikova, J.; Chung, P.; Rusnak, J.; Sumbera, M.; Tlusty, D.; Vertesi, R.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Kollegger, T.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany. [Das, S.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Sarkar, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Dhamija, S.; Jacobs, W. W.; Page, B. S.; Skoby, M. J.; Vossen, A.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Bordyuzhin, I. G.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [Bhasin, A.; Gupta, A.; Gupta, S.] Univ Jammu, Jammu 180001, India. [Agakishiev, G.; Aparin, A.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Alford, J.; Bouchet, J.; Keane, D.; Kumar, L.; Margetis, S.; Vanfossen, J. A., Jr.] Kent State Univ, Kent, OH 44242 USA. [Adkins, J. K.; Fatemi, R.; Fersch, R. G.; Korsch, W.; Ramachandran, S.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Du, C. M.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Eun, L.; Grebenyuk, G.; Kiryluk, J.; Kisel, I.; Kulakov, I.; Masui, H.; Matis, H. S.; Naglis, M.; Odyniec, G.; Olson, D.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Qiu, H.; Ritter, H. G.; Sakrejda, I.; Salur, S.; Schmah, A. M.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Wieman, H.; Xu, N.; Zyzak, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Leight, W.; Stevens, J. R.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Novak, J.; Tarnowsky, T.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Strikhanov, M.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Jena, C.; Mohanty, B.] Natl Inst Sci Educ & Res, Bhubaneswar 751005, Orissa, India. [Anson, C. D.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Pawlik, B.; Turnau, J.] Inst Nucl Phys PAN, Krakow, Poland. [Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.; Sharma, B.] Panjab Univ, Chandigarh 160014, India. [Cendejas, R.; Dilks; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Nogach, L. V.] Inst High Energy Phys, Protvino, Russia. [Garand, D.; Hirsch, A.; Kikola, D. P.; Konzer, J.; Li, X.; Mustafa, M. K.; Scharenberg, R. P.; Srivastava, B.; Stringfellow, B.; Wang, F.; Wang, Q.; Xie, W.; Yi, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Oh, K.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.; Solanki, D.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Butterworth, J.; Eppley, G.; Geurts, F.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Xin, K.; Yepes, P.] Rice Univ, Houston, TX 77251 USA. [Lima, L. M.; Munhoz, M. G.; Oliveira, R. A. N.; deSouza, U. G.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Cui, X.; Guo, Y.; Li, C.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zawisza, Y.; Zha, W.; Zhang, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Deng, J.; Xu, Q. H.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Chen, J. H.; Han, L-X.; Li, W.; Ma, G. L.; Ma, Y. G.; Shen, W. Q.; Shou, Q. Y.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Borowski, W.; Kabana, S.] SUBATECH, Nantes, France. [Li, X.; Surrow, B.] Temple Univ, Philadelphia, PA 19122 USA. [Cervantes, M. C.; Chang, Z.; Djawotho, P.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Mohammed, Y.; Mondal, M. M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Bhattarai; Codrington, M. J. M.; Leyva, A. Davila; Hoffmann, G. W.; Markert, C.; Oldag, E. W.; Ray, R. L.; Schambach, J.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Bellwied, R.; De Silva, L. C.; Timmins, A. R.] Univ Houston, Houston, TX 77204 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, Y.; Xiao, Z.; Yan; Zhang, X. P.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Engle, K. S.; Witt, R.] US Naval Acad, Annapolis, MD 21402 USA. [Drachenberg, J. L.; Gibson, A.; Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Banerjee, A.; Chattopadhyay, S.; Haque, R.; Nasim, Md.; Nayak, T. K.; Pal, S. K.; Roy, A.; Sahoo, N. R.; Singaraju, R. N.; Tribedy, P.; Viyogi, Y. P.] Variable Energy Cyclotron Ctr, Kolkata 700064, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Sandacz, A.; Trzeciak, B. A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.] Univ Washington, Seattle, WA 98195 USA. [Elnimr, M.; LaPointe, S.; Pruneau, C.; Putschke, J.; Sharma, M.; Tarini, L. H.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Bruna, E.; Caines, H.; Chikanian, A.; Finch, E.; Harris, J. W.; Horvat, S.; Majka, R.; Ohlson, A.; Riley, C. K.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, Krakow, Poland. RI Kycia, Radoslaw/J-4397-2015; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Xin, Kefeng/O-9195-2016; Yi, Li/Q-1705-2016; Svirida, Dmitry/R-4909-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Aparecido Negrao de Oliveira, Renato/G-9133-2015; Takahashi, Jun/B-2946-2012; Fazio, Salvatore /G-5156-2010; Yang, Yanyun/B-9485-2014; Lednicky, Richard/K-4164-2013; Bruna, Elena/C-4939-2014; Rusnak, Jan/G-8462-2014; Bielcikova, Jana/G-9342-2014; Alekseev, Igor/J-8070-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Xu, Wenqin/H-7553-2014; XIAO, Zhigang/C-3788-2015 OI Kycia, Radoslaw/0000-0002-6390-4627; Huang, Bingchu/0000-0002-3253-3210; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Xin, Kefeng/0000-0003-4853-9219; Yi, Li/0000-0002-7512-2657; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Takahashi, Jun/0000-0002-4091-1779; Yang, Yanyun/0000-0002-5982-1706; Bruna, Elena/0000-0001-5427-1461; Alekseev, Igor/0000-0003-3358-9635; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Xu, Wenqin/0000-0002-5976-4991; FU RHIC Operations Group; RCF at BNL; NERSC Center at LBNL; Open Science Grid consortium; Offices of NP; HEP within the U.S. DOE Office of Science; U.S. NSF; Sloan Foundation [CNRS/IN2P3]; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC; CAS; MoST; MoE of China; GA; MSMT of the Czech Republic; FOM and NWO of the Netherlands; DAE; DST; CSIR of India; PolishMinistry of Science and Higher Education; National Research Foundation [2012004024]; Ministry of Science, Education and Sports of the Republic of Croatia; RosAtom of Russia FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, CNRS/IN2P3; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC, CAS, MoST, and MoE of China; GA and MSMT of the Czech Republic; FOM and NWO of the Netherlands; DAE, DST, and CSIR of India; PolishMinistry of Science and Higher Education, National Research Foundation (NRF-2012004024); Ministry of Science, Education and Sports of the Republic of Croatia; and RosAtom of Russia. NR 24 TC 9 Z9 9 U1 0 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 19 PY 2013 VL 88 IS 3 AR 034906 DI 10.1103/PhysRevC.88.034906 PG 8 WC Physics, Nuclear SC Physics GA 221CD UT WOS:000324634100004 ER PT J AU Kroll, J Baramsai, B Mitchell, GE Agvaanluvsan, U Becvar, F Bredeweg, TA Chyzh, A Couture, A Dashdorj, D Haight, RC Jandel, M Keksis, AL Krticka, M O'Donnell, JM Parker, W Rundberg, RS Ullmann, JL Valenta, S Vieira, DJ Walker, C Wu, CY AF Kroll, J. Baramsai, B. Mitchell, G. E. Agvaanluvsan, U. Becvar, F. Bredeweg, T. A. Chyzh, A. Couture, A. Dashdorj, D. Haight, R. C. Jandel, M. Keksis, A. L. Krticka, M. O'Donnell, J. M. Parker, W. Rundberg, R. S. Ullmann, J. L. Valenta, S. Vieira, D. J. Walker, C. Wu, C. Y. TI Strength of the scissors mode in odd-mass Gd isotopes from the radiative capture of resonance neutrons SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; ELECTRON-SCATTERING; DIPOLE STRENGTH; DEFORMED-NUCLEI; EXCITATION MODE; GAMMA-CASCADES; DANCE ARRAY; DEFORMATION; TRANSITIONS; SYSTEMATICS AB Radiative neutron capture reaction was measured in the resolved resonance region for Gd-152,Gd-154,Gd-156,Gd-158 targets with the Detector for Advanced Neutron Capture Experiments gamma-ray calorimeter at the Los Alamos Neutron Science Center. The gamma-ray energy spectra for different multiplicities were obtained for several s-wave resonances in each nucleus. These spectra were analyzed within the extreme statistical model to provide unique information on the photon strength functions and especially on the scissors mode in odd Gd isotopes. The main result of this analysis is that in all nuclei scissors-mode resonances are built on excited levels and not only on their ground states. The strength of the mode found in Gd-153 and Gd-155 is comparable to the strength observed in well-deformed even-even Gd isotopes while it is substantially higher in Gd-157,Gd-159. The difference in observed strengths of the scissors mode indicates an existence of an even-odd effect in this quantity. C1 [Kroll, J.; Becvar, F.; Krticka, M.; Valenta, S.] Charles Univ Prague, CZ-18000 Prague 8, Czech Republic. [Baramsai, B.; Mitchell, G. E.; Chyzh, A.; Walker, C.] N Carolina State Univ, Raleigh, NC 27695 USA. [Baramsai, B.; Mitchell, G. E.; Chyzh, A.; Walker, C.] Triangle Univ Nucl Lab, Durham, NC 27706 USA. [Agvaanluvsan, U.; Dashdorj, D.] MonAme Sci Res Ctr, Ulaanbaatar, Mongol Peo Rep. [Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Parker, W.; Wu, C. Y.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kroll, J (reprint author), Charles Univ Prague, CZ-18000 Prague 8, Czech Republic. EM kroll@ipnp.troja.mff.cuni.cz FU U.S. Department of Energy [DE-NA0001784, DE-FG02-97ER41042]; U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC [DE-AC52-06NA25396]; LLNL [DE-AC52-07NA27344]; Ministry of Education of the Czech Republic [MSM 0021620859]; Czech Science Foundation [13-07117S] FX This work was supported in part by the U.S. Department of Energy Grants No. DE-NA0001784 and No. DE-FG02-97ER41042. This work benefited from the use of the LANSCE accelerator and was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and LLNL Contract No. DE-AC52-07NA27344. It was also supported by the research plan MSM 0021620859 of the Ministry of Education of the Czech Republic, and Grant No. 13-07117S of the Czech Science Foundation. NR 54 TC 12 Z9 12 U1 3 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 19 PY 2013 VL 88 IS 3 AR 034317 DI 10.1103/PhysRevC.88.034317 PG 15 WC Physics, Nuclear SC Physics GA 221CD UT WOS:000324634100002 ER PT J AU Mohanto, G Madhavan, N Nath, S Gehlot, J Mukul, I Jhingan, A Varughese, T Roy, A Bhowmik, RK Mazumdar, I Gothe, DA Chavan, PB Sadhukhan, J Pal, S Kaur, M Singh, V Sinha, AK Ramamurthy, VS AF Mohanto, G. Madhavan, N. Nath, S. Gehlot, J. Mukul, Ish Jhingan, A. Varughese, T. Roy, A. Bhowmik, R. K. Mazumdar, I. Gothe, D. A. Chavan, P. B. Sadhukhan, J. Pal, S. Kaur, Maninder Singh, Varinderjit Sinha, A. K. Ramamurthy, V. S. TI Evaporation residue excitation function and spin distribution for P-31+Er-170 SO PHYSICAL REVIEW C LA English DT Article ID FISSION; NUCLEI AB Background: Synthesis of a doubly magic spherical nucleus beyond (208)(82) Pb-126 is a key question in contemporary nuclear physics. Such nuclei can exist solely because of shell stabilization. As the formation cross section of super heavy elements is prohibitively low, attempts have been made to understand stabilizing effects of closed proton (Z) and neutron (N) shells in the vicinity of (208)(82) Pb-126. Purpose: The present work attempts to elucidate the stabilizing effect of shell closure, in general, and the same of Z = 82, in particular. Methods: The evaporation residue (ER) excitation function and ER-gated. gamma-multiplicity distribution have been measured for the reaction P-31 + Er-170 at a laboratory energy range of 134-172 MeV. The measurements have been carried out using the HYbrid Recoil mass Analyzer (HYRA) in gas-filled mode and a 4 pi spin spectrometer consisting of 29 NaI(Tl) detectors. Results of the present reaction have been compared with those of the reaction Si-30 + Er-170. Statistical model calculation has been performed for both the systems. Results: The two reactions, induced by Si-30 and P-31 projectiles, resulted in compound nuclei (CN) Pb-200 (Z = 82) and Bi-201 (Z = 83), respectively. To reproduce experimental ER cross sections, the liquid drop fission barrier (B-f) had to be scaled in the statistical model calculation. The scaling factor (K-f) varies from 0.75 to 1.05 and 0.90 to 1.05 for 30Si and 31P induced reactions, respectively. No significant differences have been found between gamma-multiplicity distribution and the distribution moments of the two systems. Conclusions: No clear signature has been observed in favor of extra stability of the ERs with closed proton shell (Z = 82) as K-f values of the two systems match within errors. More exclusive measurements and comparison between more systems forming CN/ER around Z = 82 are desirable. C1 [Mohanto, G.; Madhavan, N.; Nath, S.; Gehlot, J.; Mukul, Ish; Jhingan, A.; Varughese, T.; Roy, A.; Bhowmik, R. K.] Inter Univ Accelerator Ctr, New Delhi 110067, India. [Mazumdar, I.; Gothe, D. A.; Chavan, P. B.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Sadhukhan, J.] Univ Tennessee, Dept Phys & Astrophys, Knoxville, TN 37996 USA. [Sadhukhan, J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kaur, Maninder; Singh, Varinderjit] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Sinha, A. K.] UGC DAE CSR, Kolkata Ctr, Kolkata 700098, India. [Ramamurthy, V. S.] Natl Inst Adv Studies, Bangalore 560012, Karnataka, India. RP Mohanto, G (reprint author), Inter Univ Accelerator Ctr, Aruna Asaf Ali Marg, New Delhi 110067, India. EM gayatrimohanto@gmail.com RI Mukul, Ish/A-1365-2015 OI Mukul, Ish/0000-0002-6494-9915 FU Council of Scientific and Industrial Research (CSIR), Government of India FX The authors are thankful to the accelerator staff of IUAC for providing good quality beams and S. R. Abhilash for his cooperation during target fabrication. One of the authors (G.M.) acknowledges financial support from the Council of Scientific and Industrial Research (CSIR), Government of India. NR 24 TC 8 Z9 8 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 19 PY 2013 VL 88 IS 3 AR 034606 DI 10.1103/PhysRevC.88.034606 PG 7 WC Physics, Nuclear SC Physics GA 221CD UT WOS:000324634100003 ER PT J AU Segovia, J Chen, C Roberts, CD Wan, SL AF Segovia, Jorge Chen, Chen Roberts, Craig D. Wan, Shaolong TI Insights into the gamma*N -> Delta transition SO PHYSICAL REVIEW C LA English DT Article ID QUARK-DIQUARK MODEL; FORM-FACTORS; NUCLEON; QCD; ELECTROPRODUCTION; MASSES AB The gamma*N -> Delta(1232) transition is a window onto hadron shape deformation, the applicability of perturbative QCD at moderate momentum transfers, and the influence of nonperturbative phenomena on hadronic observables. We explain that the Ash-convention magnetic transition form factor must fall faster than the neutron's magnetic form factor and that nonzero values for the associated quadrupole ratios reveal the impact of quark orbital angular momentum within the nucleon and Delta(1232); and we show that these quadrupole ratios do approach their predicted asymptotic limits, albeit slowly. C1 [Segovia, Jorge; Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chen, Chen; Wan, Shaolong] Univ Sci & Technol China, Inst Theoret Phys, Hefei 230026, Peoples R China. [Chen, Chen; Wan, Shaolong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. RP Segovia, J (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Chen, Chen/H-2756-2015; Segovia, Jorge/C-7202-2015 OI Segovia, Jorge/0000-0001-5838-7103 FU China Scholarship Council [2010634019]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We are grateful for valuable input from R. Gothe and V. Mokeev. C.C. acknowledges the support of the China Scholarship Council (File No. 2010634019). This work was otherwise supported by US Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357. NR 49 TC 17 Z9 17 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 19 PY 2013 VL 88 IS 3 AR 032201 DI 10.1103/PhysRevC.88.032201 PG 6 WC Physics, Nuclear SC Physics GA 221CD UT WOS:000324634100001 ER PT J AU Meng, JQ Oppeneer, PM Mydosh, JA Riseborough, PS Gofryk, K Joyce, JJ Bauer, ED Li, YW Durakiewicz, T AF Meng, Jian-Qiao Oppeneer, Peter M. Mydosh, John A. Riseborough, Peter S. Gofryk, Krzysztof Joyce, John J. Bauer, Eric D. Li, Yinwan Durakiewicz, Tomasz TI Imaging the Three-Dimensional Fermi-Surface Pairing near the Hidden-Order Transition in URu2Si2 Using Angle-Resolved Photoemission Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON SUPERCONDUCTOR URU2SI2; SYMMETRY-BREAKING; COMPOUND URU2SI2; MAGNETIC ORDER; DENSITY-WAVE; LATTICE; SYSTEM; PHASE; FIELD AB We report angle-resolved photoemission spectroscopy experiments probing deep into the hidden-order state of URu2Si2, utilizing tunable photon energies with sufficient energy and momentum resolution to detect the near Fermi-surface (FS) behavior. Our results reveal (i) the full itinerancy of the 5f electrons, (ii) the crucial three-dimensional k-space nature of the FS and its critical nesting vectors, in good comparison with density-functional theory calculations, and (iii) the existence of hot-spot lines and pairing of states at the FS, leading to FS gapping in the hidden-order phase. C1 [Meng, Jian-Qiao; Gofryk, Krzysztof; Joyce, John J.; Bauer, Eric D.; Durakiewicz, Tomasz] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87545 USA. [Oppeneer, Peter M.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Mydosh, John A.] Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. [Riseborough, Peter S.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Li, Yinwan] Wolfram Res Inc, Champaign, IL 61820 USA. RP Durakiewicz, T (reprint author), Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87545 USA. EM tomasz@lanl.gov RI Riseborough, Peter/D-4689-2011; Gofryk, Krzysztof/F-8755-2014; Meng, Jianqiao/D-2667-2013; OI Meng, Jianqiao/0000-0003-3168-9819; Gofryk, Krzysztof/0000-0002-8681-6857; Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy, BES, DMSE; LANL LDRD Programs; Swedish Research Council (VR); U.S. DOE BES [DEFG02-84ER45872] FX We thank A. F. Santander-Syro, F. Boariu, C. Bareille, A. V. Balatsky, Y. Dubi, J. Lawrence, and J. Denlinger for constructive criticism. This work was performed at Los Alamos National Laboratory under the auspices of the U.S. Department of Energy, BES, DMSE, and LANL LDRD Programs. P. M. O. was supported through the Swedish Research Council (VR), and P. R. was supported by the U.S. DOE BES Award No. DEFG02-84ER45872. NR 48 TC 32 Z9 32 U1 6 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 19 PY 2013 VL 111 IS 12 AR 127002 DI 10.1103/PhysRevLett.111.127002 PG 5 WC Physics, Multidisciplinary SC Physics GA 221DV UT WOS:000324638700007 PM 24093292 ER PT J AU Guo, SJ Zhang, S Su, D Sun, SH AF Guo, Shaojun Zhang, Sen Su, Dong Sun, Shouheng TI Seed-Mediated Synthesis of Core/Shell FePtM/FePt (M = Pd, Au) Nanowires and Their Electrocatalysis for Oxygen Reduction Reaction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METAL-FREE ELECTROCATALYSTS; FORMIC-ACID OXIDATION; FUEL-CELLS; FEPT NANOPARTICLES; CATALYSTS; GRAPHENE; NANOCRYSTALS; NANOTUBES; NANOCUBES; METHANOL AB We report a new seed-mediated growth of FePt over 2.5 nm wide FePtM (M = Pd, Au) nanowires (NWs) into core/shell FePtM/FePt NWs with controlled FePt shell thickness from 0.3 to 1.3 nm. These FePtM/FePt NWs show shell thickness and core composition-dependent electrocatalytic activity for oxygen reduction reaction (ORR) in 0.1 M HClO4. These core/shell FePtM/FePt NWs are generally more active and durable than the corresponding alloy NWs. Among FePtM/FePt NWs, FePt NWs, FePtPd NWs, and commercial Pt studied, the FePtPd/FePt NWs (0.8 nm shell) show the specific activity of 3.47 mA.cm(-2) and the mass activity of 1.68 A/mg Pt at 0.5 V (vs. Ag/AgCl), superior to all other NWs (less than 1.59 mA/cm(2) and 0.82 A/mg Pt for FePtAu/FePt and FePt) as well as the commercial Pt (0.24 mA/cm(2) and 0.141 A/mg Pt). The FePtM/FePt (0.8 nm shell) NWs are also stable in the ORR condition and show no activity decrease after 5000 potential sweeps between 0.4 and 0.8 V (vs Ag/AgCl). They are the most efficient nanocatalyst ever reported for ORR. C1 [Guo, Shaojun; Zhang, Sen; Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sun, SH (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA. EM ssun@brown.edu RI Guo, Shaojun/A-8449-2011; Zhang, Sen/E-4226-2015; Su, Dong/A-8233-2013 OI Guo, Shaojun/0000-0002-5941-414X; Su, Dong/0000-0002-1921-6683 FU U.S. Army Research Laboratory; U.S. Army Research Office under the Multi University Research Initiative (MURI) [W911NF-11-1-0353]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was upported by the U.S. Army Research Laboratory and the U.S. Army Research Office under the Multi University Research Initiative (MURI, grant number W911NF-11-1-0353) on "Stress-Controlled Catalysis via Engineered Nanostructures", and by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program. Electron microscopy work carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 56 TC 111 Z9 112 U1 40 U2 341 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 18 PY 2013 VL 135 IS 37 BP 13879 EP 13884 DI 10.1021/ja406091p PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 296CP UT WOS:000330163000041 PM 23978233 ER PT J AU Lu, XJ Hu, QY Yang, WG Bai, LG Sheng, H Wang, L Huang, FQ Wen, JG Miller, DJ Zhao, YS AF Lu, Xujie Hu, Qingyang Yang, Wenge Bai, Ligang Sheng, Howard Wang, Lin Huang, Fuqiang Wen, Jianguo Miller, Dean J. Zhao, Yusheng TI Pressure-Induced Amorphization in Single-Crystal Ta2O5 Nanowires: A Kinetic Mechanism and Improved Electrical Conductivity SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID THIN-FILMS; TANTALUM PENTOXIDE; RAMAN-SCATTERING; TEMPERATURE FORM; OXIDE; ENERGY; NANOPARTICLES; LOCALIZATION; TRANSITION; NANOSHEETS AB Pressure-induced amorphization (PIA) in singlecrystal Ta2O5 nanowires is observed at 19 GPa, and the obtained amorphous Ta2O5 nanowires show significant improvement in electrical conductivity. The phase transition process is unveiled by monitoring structural evolution with in situ synchrotron X-ray diffraction, pair distribution function, Raman spectroscopy, and transmission electron microscopy. The first principles calculations reveal the phonon modes softening during compression at particular bonds, and the analysis on the electron localization function also shows bond strength weakening at the same positions. On the basis of the experimental and theoretical results, a kinetic PIA mechanism is proposed and demonstrated systematically that amorphization is initiated by the disruption of connectivity between polyhedra (Ta2O6 octahedra or Ta2O7 bipyramids) at the particular weak-bonding positions along the a axis in the unit cell. The one-dimensional morphology is well-preserved for the pressure-induced amorphous Ta2O5, and the electrical conductivity is improved by an order of magnitude compared to traditional amorphous forms. Such pressure-induced amorphous nanomaterials with unique properties surpassing those in either crystalline or conventional amorphous phases hold great promise for numerous applications in the future. C1 [Lu, Xujie; Bai, Ligang; Zhao, Yusheng] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Lu, Xujie; Yang, Wenge; Wang, Lin] Carnegie Inst Sci, High Pressure Synerget Consortium, Geophys Lab, Argonne, IL 60439 USA. [Hu, Qingyang; Sheng, Howard] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Huang, Fuqiang] Chinese Acad Sci, CAS Key Lab Mat Energy Convers, Shanghai Inst Ceram, Shanghai 200050, Peoples R China. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Electron Microscopy Ctr, Argonne, IL 60439 USA. RP Lu, XJ (reprint author), Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. EM xujie@aps.anl.gov; wyang@ciw.edu; yusheng.zhao@unlv.edu RI WANG, LIN/G-7884-2012; Bai, Ligang/E-9371-2015; Lu, Xujie/L-9672-2014 OI Lu, Xujie/0000-0001-8402-7160 FU EFree, an Energy Frontier Research Center; DOE-BES [DE-SC0001057, DE-FG02-99ER45775, DE-AC02-06CH11357]; DOE-NNSA [DE-NA0001974]; NSF; UChicago Argonne, LLC [DE-AC02-06CH11357]; [DE-NA0001982]; [EAR-1128799]; [DE-FG02-94ER14466] FX The UNLV High Pressure Science and Engineering Center (HiPSEC) is a DOE-NNSA Center of Excellence supported by Cooperative Agreement DE-NA0001982. HPSynC is supported by the EFree, an Energy Frontier Research Center funded by DOE-BES under Grant DE-SC0001057. HPCAT operations are supported by DOE-NNSA under Award DE-NA0001974 and DOE-BES under Award DE-FG02-99ER45775, with partial instrumentation funding by NSF. Part of the work was performed at 11 ID-B, APS, ANL. APS is supported by DOE-BES, under Contract DE-AC02-06CH11357. The electron microscopy was accomplished at the Electron Microscopy Center at Argonne National Laboratory, a DOE-BES Facility supported under Contract DE-AC02-06CH11357 by UChicago Argonne, LLC. The gas loading was performed at GeoSoilEnviroCARS, APS, ANL, supported by EAR-1128799 and DE-FG02-94ER14466. The authors thank the crew of the Center for Computational Materials Science of the Institute for Materials Research, Tohoku University, for their support of the SR16000 supercomputing facilities. We thank H. K. Mao, Y. Ding, M. Baldini, J. Y. Wang, K. Li, R. Ferry, Y. Meng, C. Park, J. Smith, S. Sinogeikin, E. Rod, Q. S. Zeng, B. Lavina, and S. Tkachev for their technical support and valuable suggestions. NR 49 TC 25 Z9 25 U1 9 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 18 PY 2013 VL 135 IS 37 BP 13947 EP 13953 DI 10.1021/ja407108u PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 296CP UT WOS:000330163000049 PM 23968372 ER PT J AU Ward, AL Buckley, HL Lukens, WW Arnold, J AF Ward, Ashleigh L. Buckley, Heather L. Lukens, Wayne W. Arnold, John TI Synthesis and Characterization of Thorium(IV) and Uranium(IV) Corrole Complexes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CRYSTAL-STRUCTURE; BIS(ALKYL) COMPLEXES; CHEMISTRY; REACTIVITY; REDUCTION; LIGANDS; LANTHANIDES; PORPHYRINS; ACTINIDES; CATALYSIS AB The first examples of actinide complexes incorporating corrole ligands are presented. Thorium(IV) and uranium(IV) macrocycles of Mes(2)(p-OMePh)corrole were synthesized via salt metathesis with the corresponding lithium corrole in remarkably high yields (93% and 83%, respectively). Characterization by single-crystal X-ray diffraction revealed both complexes to be dimeric, having two metal centers bridged via bis(mu-chlorido) linkages. In each case, the corrole ring showed a large distortion from planarity, with the Th(IV) and U(IV) ions residing unusually far (1.403 and 1.330 angstrom, respectively) from the N-4 plane of the ligand. H-1 NMR spectroscopy of both the Th and U dimers revealed dynamic solution behavior. In the case of the diamagnetic thorium corrole, variable-temperature, DOSY (diffusion-ordered) and EXSY (exhange) H-1 NMR spectroscopy was employed and supported that this behavior was due to an intrinsic pseudorotational mode of the corrole ring about the M-M axis. Additionally, the electronic structure of the actinide corroles was assessed using UV-vis spectroscopy, cyclic voltammetry, and variable-temperature magnetic susceptibility. This novel class of macrocyclic complexes provides a rich platform in an underdeveloped area for the study of nonaqueous actinide bonding and reactivity. C1 [Ward, Ashleigh L.; Buckley, Heather L.; Arnold, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Lukens, Wayne W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Arnold, J (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM arnold@berkeley.edu RI Arnold, John/F-3963-2012 OI Arnold, John/0000-0001-9671-227X FU NSF for a GFRP fellowship; International Fulbright Science & Technology Fellowship; U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX A.L.W. acknowledges the NSF for a GFRP fellowship. H.L.B. acknowledges the International Fulbright Science & Technology Fellowship for support. We are grateful to Antonio DiPasquale (XRD), Thomas Gianetti (NMR), Andy Nguyen (CV), and Zhongrui Zhou (MS) for assistance with instrumentation, as well as Prof. Daniel Gryko and Drs. Casey Brown and Greg Nocton for helpful discussions. This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division, and a portion was performed at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 64 TC 29 Z9 29 U1 2 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 18 PY 2013 VL 135 IS 37 BP 13965 EP 13971 DI 10.1021/ja407203s PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 296CP UT WOS:000330163000051 PM 24004416 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Keaveney, J Maes, M Olbrechts, A Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Reis, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Selvaggi, M Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Manganote, EJT Pereira, AV Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Asawatangtrakuldee, C Ban, Y Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Kamel, AE Awad, AMK Mahmoud, MA Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Korpela, A Tuuva, T Besancon, M Choudhury, S Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Beauceron, S Beaupere, N Bondu, O Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Tschudi, Y Vander Donckt, M Verdier, P Viret, S Tsamalaidze, Z Autermann, C Beranek, S Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Bontenackels, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Costanza, F Dammann, D Pardos, CD Dorland, T Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Ron, E Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Walsh, R Wissing, C Blobel, V Enderle, H Erfle, J Gebbert, U Gorner, M Gosselink, M Haller, J Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Vanelderen, L Barth, C Baus, C Berger, J Boser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Kornmayer, A Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Ott, J Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Radics, B Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Saxena, P Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Chatterjee, RM Ganguly, S Guchait, M Gurtu, A Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Maron, G Meneguzzo, AT Nespolo, M Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Ventura, S Zotto, P Zumerle, G Gabusi, M Ratti, SP Riccardi, C Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Taroni, S Azzurri, P Bagliesi, G Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Casasso, S Costa, M Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Schizzi, A Zanetti, A Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kim, JE Kong, DJ Oh, YD Park, H Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Grigelionis, I Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Seixas, J Varela, J Vischia, P Bunin, P Golutvin, I Gorbunov, I Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Shulha, S Skatchkov, N Smirnov, V Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bendavid, J Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC d'Enterria, D Dabrowski, A De Roeck, A De Visscher, S Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lee, YJ Loureno, C Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mulders, M Musella, P Nesvold, E Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Stoye, M Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Bachmair, F Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Amsler, C Chiochia, V Favaro, C Rikova, MI Kilminster, B Mejias, BM Otiougova, P Robmann, P Snoek, H Tupputi, S Verzetti, M Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Lucas, C Meng, Z Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G Sanchez, MCD Caulfield, M Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Nelson, R Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Yohay, R Andreev, V Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Traczyk, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P George, C Golf, F Incandela, J Justus, C Kalavase, P Kovalskyi, D Krutelyov, V Lowette, S Villalba, RM Mccoll, N Pavlunin, V Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Gutsche, O Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Lacroix, F O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Ogul, H Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Hu, G Maksimovic, P Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Kim, Y Klute, M Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Keller, J Kravchenko, I Lazo-Flores, J Malik, S Snow, GR Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Antonelli, L Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Williams, G Winer, BL Wolfe, H Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Walker, M Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Loveless, R Mohapatra, A Mozer, MU Ojalvo, I Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Keaveney, J. Maes, M. Olbrechts, A. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Reis, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Selvaggi, M. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Soares Jorge, L. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, S. S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zhang, L. Zou, W. Avila, C. Carrillo Montoya, C. A. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Awad, A. M. Kuotb Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J-M Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A-C. Van Hove, P. Beauceron, S. Beaupere, N. Bondu, O. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Vander Donckt, M. Verdier, P. Viret, S. Tsamalaidze, Z. Autermann, C. Beranek, S. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Bontenackels, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Costanza, F. Dammann, D. Pardos, C. Diez Dorland, T. Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I-A Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Walsh, R. Wissing, C. Blobel, V. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Gosselink, M. Haller, J. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Kornmayer, A. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th Niegel, M. Nuernberg, A. Oberst, O. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Radics, B. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Saxena, P. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Guchait, M. Gurtu, A. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Maron, G. Meneguzzo, A. T. Nespolo, M. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Ventura, S. Zotto, P. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Taroni, S. Azzurri, P. Bagliesi, G. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Zanetti, A. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Oh, Y. D. Park, H. Son, D. C. Kim, J. Y. Kim, Z. J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Grigelionis, I. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Seixas, J. Varela, J. Vischia, P. Bunin, P. Golutvin, I. Gorbunov, I. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An Andreev, Yu Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Maestre, J. Alcaraz Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bendavid, J. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa d'Enterria, D. Dabrowski, A. De Roeck, A. De Visscher, S. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lee, Y. -J. Loureno, C. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mulders, M. Musella, P. Nesvold, E. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Stoye, M. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Amsler, C. Chiochia, V. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Tupputi, S. Verzetti, M. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Lucas, C. Meng, Z. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lyons, L. Magnan, A-M Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Caulfield, M. Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Nelson, R. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Yohay, R. Andreev, V. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Kalavase, P. Kovalskyi, D. Krutelyov, V. Lowette, S. Villalba, R. Magana Mccoll, N. Pavlunin, V. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gutsche, O. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Lacroix, F. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Griffiths, S. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Ogul, H. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Hu, G. Maksimovic, P. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Kim, Y. Klute, M. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Snow, G. R. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Antonelli, L. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Williams, G. Winer, B. L. Wolfe, H. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Walker, M. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Loveless, R. Mohapatra, A. Mozer, M. U. Ojalvo, I. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Search for supersymmetry in hadronic final states with missing transverse energy using the variables alpha(T) and b-quark multiplicity in pp collisions at root s=8 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID GRAND UNIFICATION; STANDARD MODEL; SUPERGRAVITY; PARTICLE; PHYSICS; SQUARK; SU(5); BOSON; MASS; LHC AB An inclusive search for supersymmetric processes that produce final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of 8 TeV. The data sample corresponds to an integrated luminosity of 11.7 fb(-1) collected by the CMS experiment at the LHC. In this search, a dimensionless kinematic variable, alpha(T), is used to discriminate between events with genuine and misreconstructed missing transverse energy. The search is based on an examination of the number of reconstructed jets per event, the scalar sum of transverse energies of these jets, and the number of these jets identified as originating from bottom quarks. No significant excess of events over the standard model expectation is found. Exclusion limits are set in the parameter space of simplified models, with a special emphasis on both compressed-spectrum scenarios and direct or gluino-induced production of third-generation squarks. For the case of gluino-mediated squark production, gluino masses up to 950-1125 GeV are excluded depending on the assumed model. For the direct pair-production of squarks, masses up to 450 GeV are excluded for a single light first-or second-generation squark, increasing to 600 GeV for bottom squarks. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, S. S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Awad, A. M. Kuotb; Mahmoud, M. A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Giammanco, A.; Attikis, A.; Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J-M; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A-C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Vander Donckt, M.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I-A; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Gosselink, M.; Haller, J.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th; Niegel, M.; Nuernberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Radics, B.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, EHEP, Mumbai 400005, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dugad, S.] Tata Inst Fundamental Res, HECR, Mumbai 400005, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Catania Univ, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Dogangun, O.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Taroni, S.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Rovelli, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Fanelli, C.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Casasso, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Oh, Y. D.; Park, H.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Z. J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Grigelionis, I.; Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Montoya, C. A.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Bloch, D.; Chierici, R.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Sharma, A.; Mohanty, A. K.; Mohanty, G. B.; Calabria, C.; De Filippis, N.; Meneghelli, M.; Di Matteo, L.; Lucchini, M. T.; De Cosa, A.; Meola, S.; Paolucci, P.; Bacchetta, N.; D'Agnolo, R. T.; Fiori, F.; Grassi, M.; Meridiani, P.; Mariotti, C.; Musich, M.; Cossutti, F.; Marone, M.; Seixas, J.; Chamizo Llatas, M.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; d'Enterria, D.; Dabrowski, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y. -J.; Loureno, C.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Lucas, C.; Meng, Z.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lyons, L.; Magnan, A-M; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Caulfield, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Squires, M.; Tripathi, M.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bellan, P.; Barge, D.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Kim, Y.; Klute, M.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Wolf, M.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Williams, G.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Li, W.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Awad, A. M. Kuotb; Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Arfaei, H.; Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Maron, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Bahtiyar, H.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, TR-46050 Kahramanmaras, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Univ Perugia, INFN, Sez Perugia, I-06100 Perugia, Italy. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [CMS Collaboration] CERN, Geneva, Switzerland. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Wulz, Claudia-Elisabeth/H-5657-2011; Montanari, Alessandro/J-2420-2012; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Venturi, Andrea/J-1877-2012; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Manganote, Edmilson/K-8251-2013; Markina, Anastasia/E-3390-2012; Dermenev, Alexander/M-4979-2013; Wolszczak, Weronika/N-3113-2013; Lokhtin, Igor/D-7004-2012; Tinoco Mendes, Andre David/D-4314-2011; Dudko, Lev/D-7127-2012; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Bartalini, Paolo/E-2512-2014; Santoro, Alberto/E-7932-2014; Ligabue, Franco/F-3432-2014; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Dahms, Torsten/A-8453-2015; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014 OI Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Montanari, Alessandro/0000-0003-2748-6373; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Tinoco Mendes, Andre David/0000-0001-5854-7699; Dudko, Lev/0000-0002-4462-3192; de Jesus Damiao, Dilson/0000-0002-3769-1680; Novaes, Sergio/0000-0003-0471-8549; Ligabue, Franco/0000-0002-1549-7107; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Casarsa, Massimo/0000-0002-1353-8964; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087 FU Austrian Federal Ministry of Science and Research; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; CNPq; CAPES; FAPERJ; FAPESP; Bulgarian Ministry of Education, Youth and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Research Promotion Foundation, Cyprus; Ministry of Education and Research [SF0690030s09]; European Regional Development Fund, Estonia; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules/CNRS; Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation; National Office for Research and Technology, Hungary; Department of Atomic Energy; Department of Science and Technology, India; nstitute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Korean Ministry of Education, Science and Technology; World Class University program of NRF, Republic of Korea; Lithuanian Academy of Sciences; CINVESTAV; CONACYT; SEP; UASLP-FAI; Ministry of Science and Innovation, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Science and Technological Development of Serbia; Secretaria de Estado de Investigacion; Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain; ETH Board; ETH Zurich; PSI; SNF; UniZH; Canton Zurich; SER; National Science Council, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; US Department of Energy; US National Science Foundation; Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; European Union, Regional Development Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education, Youth and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing contract SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation.; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. NR 62 TC 29 Z9 29 U1 3 U2 76 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD SEP 18 PY 2013 VL 73 IS 9 AR 2568 DI 10.1140/epjc/s10052-013-2568-6 PG 31 WC Physics, Particles & Fields SC Physics GA 223RW UT WOS:000324827400001 ER PT J AU Carena, M Heinemeyer, S Stal, O Wagner, CEM Weiglein, G AF Carena, M. Heinemeyer, S. Stal, O. Wagner, C. E. M. Weiglein, G. TI MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID SUPERSYMMETRIC STANDARD MODEL; ELECTROWEAK SYMMETRY-BREAKING; HIGH-PRECISION PREDICTIONS; EXPLICIT CP VIOLATION; COMPUTATIONAL TOOL; ATLAS DETECTOR; 2-LOOP LEVEL; MASS; DECAYS; LEP AB A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). We propose new low-energy MSSM benchmark scenarios that, over a wide parameter range, are compatible with the mass and production rates of the observed signal. These scenarios also exhibit interesting phenomenology for the MSSM Higgs sector. We propose a slightly updated version of the well-known scenario, and a modified scenario (), where the light -even Higgs boson can be interpreted as the LHC signal in large parts of the M (A) -tan beta plane. Furthermore, we define a light stop scenario that leads to a suppression of the lightest -even Higgs gluon fusion rate, and a light stau scenario with an enhanced decay rate of h ->gamma gamma at large tan beta. We also suggest a tau-phobic Higgs scenario in which the lightest Higgs can have suppressed couplings to down-type fermions. We propose to supplement the specified value of the mu parameter in some of these scenarios with additional values of both signs. This has a significant impact on the interpretation of searches for the non-SM-like MSSM Higgs bosons. We also discuss the sensitivity of the searches to heavy Higgs decays into light charginos and neutralinos, and to decays of the form H -> hh. Finally, in addition to all the other scenarios where the lightest -even Higgs is interpreted as the LHC signal, we propose a low-M (H) scenario, where instead the heavy -even Higgs boson corresponds to the new state around 125.5 GeV. C1 [Carena, M.] Fermilab Natl Accelerator Lab, Theoret Phys Dept, Batavia, IL 60510 USA. [Carena, M.; Wagner, C. E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carena, M.; Wagner, C. E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Dept Phys, Chicago, IL 60637 USA. [Heinemeyer, S.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Stal, O.] Stockholm Univ, Oskar Klein Ctr, Dept Phys, S-10691 Stockholm, Sweden. [Wagner, C. E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Weiglein, G.] DESY, D-22607 Hamburg, Germany. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, Theoret Phys Dept, Batavia, IL 60510 USA. EM carena@fnal.gov; Sven.Heinemeyer@cern.ch; oscar.stal@fysik.su.se; cwagner@hep.anl.gov; Georg.Weiglein@desy.de FU Collaborative Research Center SFB676 of the DFG; CICYT [FPA 2010-22163-C02-01]; Spanish MICINN [CSD2009-00064]; Swedish Research Council (VR) through the Oskar Klein Centre; U.S. Department of Energy [AC02-07CH11359, DE-AC02-06CH11357] FX We thank C. Acereda Ortiz for discussions on the decay rates of H -> hh and Y. Linke for discussions on the mhmod and low-MH scenarios. We thank P. Bechtle and T. Stefaniak for discussions on HiggsBounds. This work has been supported by the Collaborative Research Center SFB676 of the DFG, "Particles, Strings, and the Early Universe". The work of S. H. was partially supported by CICYT (grant FPA 2010-22163-C02-01) and by the Spanish MICINN's Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009-00064. The work of O.S. is supported by the Swedish Research Council (VR) through the Oskar Klein Centre. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Work at ANL is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 138 TC 89 Z9 90 U1 1 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD SEP 18 PY 2013 VL 73 IS 9 AR 2552 DI 10.1140/epjc/s10052-013-2552-1 PG 20 WC Physics, Particles & Fields SC Physics GA 223RR UT WOS:000324826600001 ER PT J AU Safronova, UI Safronova, AS Beiersdorfer, P AF Safronova, U. I. Safronova, A. S. Beiersdorfer, P. TI Contribution of the 4 f -core-excited states in determination of atomic properties in the promethium isoelectronic sequence SO PHYSICAL REVIEW A LA English DT Article ID TUNGSTEN; SPECTROSCOPY; SPECTRA; IONS AB The atomic properties of Pm-like ions were comprehensively studied using relativistic atomic codes. Excitation energies of the 4f(14)nl (with nl = 5s, 6s, 5p, 6p, 5d, 6d, and 5f) states in Pm-like ions with nuclear charge Z ranging from 74 to 100 are evaluated within the framework of relativistic many-body theory (RMBPT). First- and second-order Coulomb energies and first-and second-order Breit corrections to the energies are calculated. Two alternative treatments of the Breit interaction are investigated. In the first approach we omit Breit contributions to the Dirac-Fock potential and evaluate Coulomb and Breit-Coulomb corrections through second order perturbatively. In the second approach were included both Coulomb and Breit contributions on the same footing via the Breit-Dirac-Fock potential and then treat the residual Breit and Coulomb interactions perturbatively. The results obtained from the two approaches are compared and discussed. The important question of what is the ground state in Pm-like ions was answered. Properties of the 4f-core-excited states are evaluated using the multiconfiguration relativistic Hebrew University Lawrence Livermore atomic code (HULLAC code) and the Hartree-Fock-relativistic method (COWAN code). We evaluate excitation energies and transition rates in Pm-like ions with nuclear charge Z ranging from 74 to 92. Our large scale calculations include the following set of configurations: 4f(14)5s, 4f(14)5p, 4f(13)5s(2), 4f(13)5p(2), 4f(13)5s(5)p, 4f(12)5s(2)5p, 4f(12)5s5p(2), and 4f(12)5p(3). Trends of excitation energies as function of Z are shown graphically for selected states. Excitation energies, transition rates, and lifetimes in Pm-like tungsten are evaluated with additional inclusion of the 4f(11)5s(2)5p(2), 4f(11)5s5p(3), 4f(10)5s(2)5p(3), and 4f(10)5s5p(4) configurations. This represents an unusual example of an atomic system where the even-parity complex [4f(14)5s + 4f(13)5s5p + 4f(12)5s5p(2) + 4f(11)5s5p(3) + 4f(10)5s5p(4)] and the odd-parity complex [4f(14)5p + 4f(13)5s(2) + 4f(12)5s(2)5p + 4f(11)5s(2)5p(2) + 4f(10)5s(2)5p(3)] include so different configurations. Wavelengths of the 4f(14)5s S-2(1/2)-4f(14)5p P-2(J) transition obtained by the COWAN, HULLAC, and RMBPT codes are compared with other theoretical results and available measurements. C1 [Safronova, U. I.; Safronova, A. S.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Beiersdorfer, P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. RP Safronova, UI (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. FU DOE under the OFES Grant [DE-FG02-08ER54951]; NNSA [DE-NA0001984]; DOE [DE-AC5-207NA-27344] FX This research was sponsored by DOE under the OFES Grant No. DE-FG02-08ER54951 and in part under the NNSA Cooperative Agreement No. DE-NA0001984. Work at the Lawrence Livermore National Laboratory was performed under auspices of the DOE under Contract No. DE-AC5-207NA-27344. NR 36 TC 0 Z9 0 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP 18 PY 2013 VL 88 IS 3 DI 10.1103/PhysRevA.88.032512 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 219VJ UT WOS:000324538800005 ER PT J AU Chang, YJ Moreschini, L Bostwick, A Gaines, GA Kim, YS Walter, AL Freelon, B Tebano, A Horn, K Rotenberg, E AF Chang, Young Jun Moreschini, Luca Bostwick, Aaron Gaines, Geoffrey A. Kim, Yong Su Walter, Andrew L. Freelon, Byron Tebano, Antonello Horn, Karsten Rotenberg, Eli TI Layer-by-Layer Evolution of a Two-Dimensional Electron Gas Near an Oxide Interface SO PHYSICAL REVIEW LETTERS LA English DT Article ID SURFACE; HETEROSTRUCTURES; HETEROINTERFACE; SUPERCONDUCTORS; RECONSTRUCTION; SRTIO3 AB We report the momentum-resolved measurement of a two-dimensional electron gas at the LaTiO3/SrTiO3 interface by angle-resolved photoemission spectroscopy (ARPES). Thanks to an advanced sample preparation technique, the orbital character of the conduction electrons and the electronic correlations can be accessed quantitatively as each unit cell layer is added. We find that all of these quantities change dramatically with distance from the interface. These findings open the way to analogous studies on other heterostructures, which are traditionally a forbidden field for ARPES. C1 [Chang, Young Jun; Moreschini, Luca; Bostwick, Aaron; Gaines, Geoffrey A.; Kim, Yong Su; Walter, Andrew L.; Freelon, Byron; Rotenberg, Eli] EO Lawrence Berkeley Natl Lab, Adv Light Source ALS, Berkeley, CA 94720 USA. [Chang, Young Jun; Walter, Andrew L.; Horn, Karsten] Fritz Haber Inst Max Planck Gesell, Dept Phys Chem, D-14195 Berlin, Germany. [Chang, Young Jun] Univ Seoul, Dept Phys, Seoul 130743, South Korea. [Tebano, Antonello] Univ Roma Tor Vergata, CNR SPIN, I-00133 Rome, Italy. [Tebano, Antonello] Univ Roma Tor Vergata, Dept Civil Engn & Comp Sci Engn, I-00133 Rome, Italy. RP Chang, YJ (reprint author), EO Lawrence Berkeley Natl Lab, Adv Light Source ALS, Berkeley, CA 94720 USA. EM erotenberg@lbl.gov RI Rotenberg, Eli/B-3700-2009; Chang, Young Jun/N-3440-2014; Walter, Andrew/B-9235-2011; OI Rotenberg, Eli/0000-0002-3979-8844; Chang, Young Jun/0000-0001-5538-0643; TEBANO, ANTONELLO/0000-0002-0229-671X FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Max Planck Society; National Research Foundation of Korea [NRF-2012R1A1A2043619]; Swiss National Science Foundation (SNSF) [PBELP2-125484] FX The ALS is supported by the director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Y. J. C., A. L. W., and K. H. acknowledge the support by the Max Planck Society. Y. J. C. acknowledges support from National Research Foundation of Korea under Grant No. NRF-2012R1A1A2043619. L. M. acknowledge support by a grant from the Swiss National Science Foundation (SNSF) (Project No. PBELP2-125484). NR 34 TC 20 Z9 21 U1 9 U2 110 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 18 PY 2013 VL 111 IS 12 AR 126401 DI 10.1103/PhysRevLett.111.126401 PG 5 WC Physics, Multidisciplinary SC Physics GA 219WS UT WOS:000324542900013 PM 24093281 ER PT J AU Graesser, ML Shelton, J AF Graesser, Michael L. Shelton, Jessie TI Hunting Mixed Top Squark Decays SO PHYSICAL REVIEW LETTERS LA English DT Article AB We point out that, in the irreducible natural supersymmetric spectrum, top squarks have comparable branching fractions to chargino-bottom and neutralino-top final states in the vast bulk of parameter space, provided only that both decay modes are kinematically accessible. The total top squark pair branching fractions into t (t) over bar + MET (MET = missing transverse energy) can therefore be reduced to O(50%), whereas b (b) over bar + X branching fractions are typically much smaller, O(10%), thus limiting the reach of traditional top squark searches. We propose a new top squark search targeting the asymmetric final state (t) over tilde(t) over tilde* -> t chi(0)(b) over bar chi(-) + H.c., which can restore sensitivity to natural top squarks in the 7 and 8 TeV LHC runs. In addition, we present a new variable, topness, which efficiently suppresses the dominant top backgrounds to semileptonic top partner searches. We demonstrate the utility of topness in both our asymmetric search channel and traditional (t) over tilde(t) over tilde* -> t (t) over bar + MET searches and show that it matches or outperforms existing variables. C1 [Graesser, Michael L.] Los Alamos Natl Lab, Theory Div T 2, Los Alamos, NM 87545 USA. [Shelton, Jessie] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Graesser, ML (reprint author), Los Alamos Natl Lab, Theory Div T 2, POB 1663, Los Alamos, NM 87545 USA. FU DOE Office of Science; LDRD program at Los Alamos National Laboratory; DOE Grant [DE-FG02-92ER40704]; NSF Grant [PHY-1067976]; LHC Theory Initiative [NSF-PHY-0969510]; Aspen Center for Physics [NSF-PHY-1066293]; Galileo Galilei Institute; INFN FX We thank J. Gallicchio, T. Golling, and M. Peskin for discussions. M. G. acknowledges support by the DOE Office of Science and the LDRD program at Los Alamos National Laboratory. J. S. is supported by DOE Grant No. DE-FG02-92ER40704, NSF Grant No. PHY-1067976, and the LHC Theory Initiative under Grant No. NSF-PHY-0969510. J. S. thanks the Aspen Center for Physics, under Grant No. NSF-PHY-1066293, as well as the Galileo Galilei Institute and the INFN, for hospitality and partial support during the completion of this work. NR 21 TC 26 Z9 26 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 18 PY 2013 VL 111 IS 12 AR 121802 DI 10.1103/PhysRevLett.111.121802 PG 5 WC Physics, Multidisciplinary SC Physics GA 219WS UT WOS:000324542900005 PM 24093249 ER PT J AU Pilon, DV Lui, CH Han, TH Shrekenhamer, D Frenzel, AJ Padilla, WJ Lee, YS Gedik, N AF Pilon, D. V. Lui, C. H. Han, T. -H. Shrekenhamer, D. Frenzel, A. J. Padilla, W. J. Lee, Y. S. Gedik, N. TI Spin-Induced Optical Conductivity in the Spin-Liquid Candidate Herbertsmithite SO PHYSICAL REVIEW LETTERS LA English DT Article ID STATE; ANTIFERROMAGNET; EXCITATIONS; PHYSICS AB We report a direct measurement of the low-frequency optical conductivity of large-area single-crystal herbertsmithite, a promising spin-liquid candidate material, by means of terahertz time-domain spectroscopy. In the spectral range below 1.4 THz, we observe a contribution to the real part of the in-plane conductivity sigma(ab)(omega) from the spin degree of freedom. This spin-induced conductivity exhibits a power-law dependence on frequency sigma(ab)(omega) similar to omega(beta) with beta approximate to 1.4. Our observation is consistent with the theoretically predicted low-frequency conductivity arising from an emergent gauge field of a gapless U(1) Dirac spin liquid. C1 [Pilon, D. V.; Lui, C. H.; Han, T. -H.; Frenzel, A. J.; Lee, Y. S.; Gedik, N.] MIT, Cambridge, MA 02139 USA. [Shrekenhamer, D.; Padilla, W. J.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Frenzel, A. J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Han, T. -H.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Han, T. -H.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Han, T. -H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Gedik, N (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM gedik@mit.edu RI Padilla, Willie/A-7235-2008; Frenzel, Alex/E-4133-2015 OI Padilla, Willie/0000-0001-7734-8847; FU US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering [DE-FG02-08ER46521, DE-SC0006423, DE-FG02-07ER46134] FX We thank P. A. Lee, A. Potter, T. Senthil, and C. Wang for discussions. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering: Grants No. DE-FG02-08ER46521 (optical characterization), No. DE-SC0006423 (technique development), and No. DE-FG02-07ER46134 (material synthesis). NR 30 TC 18 Z9 18 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 18 PY 2013 VL 111 IS 12 AR 127401 DI 10.1103/PhysRevLett.111.127401 PG 5 WC Physics, Multidisciplinary SC Physics GA 219WS UT WOS:000324542900017 PM 24093299 ER PT J AU Yi, D Liu, J Okamoto, S Jagannatha, S Chen, YC Yu, P Chu, YH Arenholz, E Ramesh, R AF Yi, Di Liu, Jian Okamoto, Satoshi Jagannatha, Suresha Chen, Yi-Chun Yu, Pu Chu, Ying-Hao Arenholz, Elke Ramesh, R. TI Tuning the Competition between Ferromagnetism and Antiferromagnetism in a Half-Doped Manganite through Magnetoelectric Coupling SO PHYSICAL REVIEW LETTERS LA English DT Article ID OXIDE INTERFACE; THIN-FILMS; CHARGE; PHASE; FIELD; MULTIFERROICS; POLARIZATION; TRANSITION AB We investigate the possibility of controlling the magnetic phase transition of the heterointerface between a half-doped manganite La0.5Ca0.5MnO3 and a multiferroic BiFeO3 (BFO) through magnetoelectric coupling. Using macroscopic magnetometry and element-selective x-ray magnetic circular dichroism at the Mn and Fe L edges, we discover that the ferroelectric polarization of BFO controls simultaneously the magnetization of BFO and La0.5Ca0.5MnO3 (LCMO). X-ray absorption spectra at the oxygen K edge and linear dichroism at the Mn L edge suggest that the interfacial coupling is mainly derived from the superexchange between Mn and Fe t(2g) spins. The combination of x-ray absorption spectroscopy and mean-field theory calculations reveals that the d-electron modulation of Mn cations changes the magnetic coupling in LCMO, which controls the enhanced canted moments of interfacial BFO via the interfacial coupling. Our results demonstrate that the competition between ferromagnetic and antiferromagnetic instability can be modulated by an electric field at the heterointerface, providing another pathway for the electrical field control of magnetism. C1 [Yi, Di; Liu, Jian; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yi, Di; Liu, Jian; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Liu, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Okamoto, Satoshi] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Jagannatha, Suresha] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Chen, Yi-Chun] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan. [Yu, Pu] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Yi, D (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM yid@berkeley.edu; jian.liu@berkeley.edu RI Ying-Hao, Chu/A-4204-2008; Okamoto, Satoshi/G-5390-2011; Liu, Jian/I-6746-2013; Yu, Pu/F-1594-2014 OI Ying-Hao, Chu/0000-0002-3435-9084; Okamoto, Satoshi/0000-0002-0493-7568; Liu, Jian/0000-0001-7962-2547; FU National Science Foundation through the Penn State MRSEC; Quantum Material program in the Materials Sciences Division in Lawrence Berkeley National Laboratory; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; National Science Council, R. O. C. [NSC-1012119-M-009003-MY2]; Ministry of Education, R. O. C. [MOE-ATU 101W961]; Center for interdisciplinary science of National Chiao Tung University FX The authors acknowledge fruitful discussions with G. Bhalla, J. H. Chu, and G. Palsson. Research at Berkeley was sponsored by the National Science Foundation through the Penn State MRSEC. J. L. thanks the support from the Quantum Material program in the Materials Sciences Division in Lawrence Berkeley National Laboratory. The work at ORNL was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. The work at National Chiao Tung University was supported by the National Science Council, R. O. C. (NSC-1012119-M-009003-MY2), Ministry of Education, R. O. C. (MOE-ATU 101W961), and Center for interdisciplinary science of National Chiao Tung University. NR 33 TC 39 Z9 39 U1 11 U2 188 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 18 PY 2013 VL 111 IS 12 AR 127601 DI 10.1103/PhysRevLett.111.127601 PG 5 WC Physics, Multidisciplinary SC Physics GA 219WS UT WOS:000324542900018 PM 24093300 ER PT J AU Castro, JB Ramanathan, A Chennubhotla, CS AF Castro, Jason B. Ramanathan, Arvind Chennubhotla, Chakra S. TI Categorical Dimensions of Human Odor Descriptor Space Revealed by Non-Negative Matrix Factorization SO PLOS ONE LA English DT Article ID OLFACTORY PERCEPTION; NEURAL ACTIVITY; QUALITY; MAPS; CODE; IDENTIFICATION; DISCOVERY AB In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain unclear. Here, we use non-negative matrix factorization (NMF) - a dimensionality reduction technique - to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor dimensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures. C1 [Castro, Jason B.] Bates Coll, Dept Psychol, Lewiston, ME 04240 USA. [Castro, Jason B.] Bates Coll, Program Neurosci, Lewiston, ME 04240 USA. [Ramanathan, Arvind] Oak Ridge Natl Lab, Computat Data Analyt Grp, Computat Sci & Engn Div, Oak Ridge, TN USA. [Chennubhotla, Chakra S.] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA USA. RP Castro, JB (reprint author), Bates Coll, Dept Psychol, Lewiston, ME 04240 USA. EM jcastro@bates.edu; chakracs@pitt.edu FU NIH [GM086238] FX CSC was partially supported by NIH GM086238. No additional external funding was received for this study. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript. NR 34 TC 19 Z9 19 U1 1 U2 19 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 18 PY 2013 VL 8 IS 9 AR e73289 DI 10.1371/journal.pone.0073289 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 221YD UT WOS:000324695900010 PM 24058466 ER PT J AU HONG, M SCHMIDT-ROHR, K AF HONG, MEI SCHMIDT-ROHR, KLAUS TI Magic-Angle-Spinning NMR Techniques for Measuring Long-Range Distances in Biological Macromolecules SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Article ID SOLID-STATE NMR; HAIRPIN ANTIMICROBIAL PEPTIDE; WATER-PROTEIN INTERACTIONS; CELL-PENETRATING PEPTIDE; LIPID-BILAYERS; PORE FORMATION; MEMBRANE PEPTIDE; DIFFUSION NMR; SPECTROSCOPY; ARGININE AB The determination of molecular structures using solid-state NMR spectroscopy requires distance measurement through nuclear-spin dipole dipole couplings.However, most dipole-coupling techniques compete with the transverse (T subset of 2 subset of)relaxation of the nuclear spins, whose time constants are at most several tens of milliseconds, which limits the ability to measure weak dipolar couplings or long distances. In the last 10 years, we have developed a number of magic-angle-spinning (MAS) solid-state NMR techniques to measure distances of 15-20 angstrom A. These methods take advantage of the high gyromagnetic ratios of H-1 and F-19 spins, multispin effects that speed up dipolar dephasing, and H-1 and F-19 spin diffusion that probes distances in the nanometer range. Third-spin heteronuclear detection provides a method for determining H-1 dipolar couplings to heteronuclear spins.We have used this technique to measure hydrogen-bond lengths, torsion angles, the distribution of protein conformations, and the oligomeric assembly of proteins. We developed a new pulse sequence, HARDSHIP, to determine weak long-range H-1-heteronuclear dipolar couplings in the presence of strong short-range couplings. This experiment allows us to determine crystallite thicknesses in biological anocomposites such as bone.The rotational-echo double-resonance (REDOR) technique allows us to detect multispin C-13-P-31 and C-13-H-2 dipolar couplings.Quantitative analysis of these couplings provides information about the structure of peptides bound to phospholipid bilayers and the geometry of ligand-binding sites in proteins. Finally, we also use relayed magnetization transfer, or spin diffusion, to measure long distances. z-Magnetization can diffuse over several nanometers because its long T subset of 1 subset of relaxation times allow it to survive for hundreds of milliseconds. We developed H-1 spin diffusion to probe the depths of protein insertion into the lipid bilayer and protein-water interactions. On the other hand, (19F) spin diffusion of site-specifically fluorinated molecules allowed us to elucidate the oligomeric structures of membrane peptides. C1 [HONG, MEI; SCHMIDT-ROHR, KLAUS] Iowa State Univ, Dept Chem, Ames, IA USA. [HONG, MEI; SCHMIDT-ROHR, KLAUS] Iowa State Univ, Ames Lab, Ames, IA USA. RP HONG, M (reprint author), Iowa State Univ, Dept Chem, Ames, IA USA. EM mhong@iastate.edu FU NIGMS NIH HHS [R01 GM066976, R01 GM088204] NR 31 TC 17 Z9 17 U1 7 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD SEP 17 PY 2013 VL 46 IS 9 BP 2154 EP 2163 DI 10.1021/ar300294x PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 294BO UT WOS:000330017600025 PM 23387532 ER PT J AU Darkins, R Sushko, ML Liu, J Duffy, DM AF Darkins, Robert Sushko, Maria L. Liu, Jun Duffy, Dorothy M. TI Adhesion of Sodium Dodecyl Sulfate Surfactant Mono layers with TiO2 (Rutile and Anatase) Surfaces SO LANGMUIR LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; LI-ION INSERTION; ATOMISTIC SIMULATION; TITANIA; CRYSTALLIZATION; TRANSITION; NUCLEATION; TEMPLATES; CALCITE; OXIDES AB Surfactants are widely used as templates to control the nucleation and growth of nanostructured metal oxides such as titania. To gain insight into the origin of the surfactant-titania interactions responsible for polymorph and orientation selection, we simulate the self-assembly of an anionic surfactant monolayer on various low-index titania surfaces, for a range of densities. We characterize the binding in each case and compute the adhesion energies, finding anatase (100) and rutile (110) to be the strongest-binding surfaces. The sodium counterions in the monolayer are found to dominate the adhesion. It is also observed that the assembly is directed predominantly by surface-monolayer electrostatic complementarity. Incorporating water displacement into the calculations does not alter the general findings but does cause the adhesion energies to fall within a smaller range. C1 [Darkins, Robert; Duffy, Dorothy M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Sushko, Maria L.; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Duffy, DM (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM d.duffy@ucl.ac.uk RI Sushko, Maria/C-8285-2014 OI Sushko, Maria/0000-0002-7229-7072 FU EPSRC under Molecular Modelling and Materials Science Industrial Doctorate Centre; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE; DOE by Battelle [DE-AC05-76RL01830] FX R.D. acknowledges funding from EPSRC under the Molecular Modelling and Materials Science Industrial Doctorate Centre and the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, via Grant KC020105-FWP12152. M.L.S. and J.L. acknowledge DOE support under the same award. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the DOE by Battelle under Contract DE-AC05-76RL01830. NR 29 TC 3 Z9 3 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 17 PY 2013 VL 29 IS 37 BP 11609 EP 11614 DI 10.1021/la401469f PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 295WX UT WOS:000330148200009 PM 24004277 ER PT J AU Stevens, ME Tipple, CA Smith, PA Cho, DS Mustacich, RV Eckenrode, BA AF Stevens, Michael E., Jr. Tipple, Christopher A. Smith, Philip A. Cho, David S. Mustacich, Robert V. Eckenrode, Brian A. TI Application of a High Surface Area Solid-Phase Microextraction Air Sampling Device: Collection and Analysis of Chemical Warfare Agent Surrogate and Degradation Compounds SO ANALYTICAL CHEMISTRY LA English DT Article ID CHROMATOGRAPHY-MASS-SPECTROMETRY; GAS-CHROMATOGRAPHY; O-ETHYL; VX; IDENTIFICATION; QUANTITATION; VOLATILES; STREAMS AB This work examines a recently improved, dynamic air sampling technique, high surface area solid-phase microextraction (HSA-SPME), developed for time-critical, high-volume sampling and analysis scenarios. The previously reported HSA-SPME sampling device, which provides 10-fold greater surface area compared to commercially available SPME fibers, allowed for an increased analyte uptake per unit time relative to exhaustive sampling through a standard sorbent tube. This sampling device has been improved with the addition of a type-K thermocouple and a custom heater control circuit for direct heating, providing precise (relative standard deviation similar to 1%) temperature control of the desorption process for trapped analytes. Power requirements for the HSA-SPME desorption process were 30-fold lower than those for conventional sorbent-bed-based desorption devices, an important quality for a device that could be used for field analysis. Comparisons of the HSA-SPME device when using fixed sampling times for the chemical warfare agent (CWA) surrogate compound, diisopropyl methylphosphonate (DIMP), demonstrated that the HSA-SPME device yielded a greater chromatographic response (up to 50%) relative to a sorbent-bed method. Another HSA-SPME air sampling approach, in which two devices are joined in tandem, was also evaluated for very rapid, low-level, and representative analysis when using discrete sampling times for the compounds of interest. The results indicated that subparts per billion by volume concentration levels of DIMP were detectable with short sampling times (similar to 15 s). Finally, the tandem HSA-SPME device was employed for the headspace sampling of a CWA degradation compound, 2-(diisopropylaminoethyl) ethyl sulfide, present on cloth material, which demonstrated the capability to detect trace amounts of a CWA degradation product that is estimated to be less volatile than sarin. The rapid and highly sensitive detection features of this device may be beneficial in decision making for law enforcement, military, and civilian emergency organizations and responders, providing critical information in a contaminated environment scenario when time is of the essence. C1 [Stevens, Michael E., Jr.] Fed Bur Invest Lab, Counterterrorism & Forens Sci Res Unit, Oak Ridge Inst Sci & Educ, Visiting Scientist Program, Quantico, VA 22135 USA. [Tipple, Christopher A.; Eckenrode, Brian A.] Fed Bur Invest Lab, Counterterrorism & Forens Sci Res Unit, Quantico, VA 22135 USA. [Smith, Philip A.] Uniformed Serv Univ Hlth Sci, Dept Prevent Med & Biometr, Bethesda, MD 20814 USA. [Cho, David S.] Fed Bur Invest Lab, Counterterrorism & Forens Sci Res Unit, Oak Ridge Inst Sci & Educ, Quantico, VA 22135 USA. [Mustacich, Robert V.] Agilent Technol, Santa Clara, CA 95051 USA. RP Eckenrode, BA (reprint author), Fed Bur Invest Lab, Counterterrorism & Forens Sci Res Unit, Quantico, VA 22135 USA. EM brian.eckenrode@ic.fbi.gov FU U.S. Marine Corps Systems Command FX Considerable gratitude is extended to the Federal Bureau of Investigation's Counterterrorism and Forensic Science Research Unit (CFSRU) for providing material and technical support during this effort, with a special thanks to Eugene Peters, Dr. Mark Sabo, and Dennis Maslanka. The manuscript number 12-05 has been assigned by the Laboratory Division; names of commercial manufacturers are provided for identification purposes only, and inclusion does not imply endorsement of the manufacturer, or its products or services, by the FBI. Funding to accomplish this research was provided in part by the U.S. Marine Corps Systems Command. The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the United States Department of Defense, Department of Justice/FBI, or the Uniformed Services University of the Health Sciences. NR 23 TC 4 Z9 4 U1 2 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD SEP 17 PY 2013 VL 85 IS 18 BP 8626 EP 8633 DI 10.1021/ac401033a PG 8 WC Chemistry, Analytical SC Chemistry GA 294BM UT WOS:000330017400022 PM 23902152 ER PT J AU Goble, AM Toro, R Li, X Ornelas, A Fan, H Eswaramoorthy, S Patskovsky, Y Hillerich, B Seidel, R Sali, A Shoichet, BK Almo, SC Swaminathan, S Tanner, ME Raushel, FM AF Goble, Alissa M. Toro, Rafael Li, Xu Ornelas, Argentina Fan, Hao Eswaramoorthy, Subramaniam Patskovsky, Yury Hillerich, Brandan Seidel, Ron Sali, Andrej Shoichet, Brian K. Almo, Steven C. Swaminathan, Subramanyam Tanner, Martin E. Raushel, Frank M. TI Deamination of 6-Aminodeoxyfutalosine in Menaquinone Biosynthesis by Distantly Related Enzymes SO BIOCHEMISTRY LA English DT Article ID STREPTOMYCES-COELICOLOR A3(2); MULTIPLE SEQUENCE ALIGNMENT; ADENOSINE-DEAMINASE; CONFORMATIONAL-CHANGE; UNKNOWN FUNCTION; DOCKING; REFINEMENT; PREDICTION; INHIBITORS; ACTIVATION AB Proteins of unknown function belonging to cog1816 and cog0402 were characterized. Sav2595 from Steptomyces avermitilis MA-4680, Ace10264 from Acidothermus cellulolyticus 11B, Nis0429 from Nitratiruptor sp. SB155-2 and Dr0824 from Deinococcus radiodurans R1 were cloned, purified, and their substrate profiles determined. These enzymes were previously incorrectly annotated as adenosine deaminases or chlorohydrolases. It was shown here that these enzymes actually deaminate 6-aminodeoxyfutalosine. The deamination of 6-aminodeoxyfutalosine is part of an alternative menaquinone biosynthetic pathway that involves the formation of futalosine. 6-Aminodeoxyfutalosine is deaminated by these enzymes with catalytic efficiencies greater than 106 M-1 s(-1), Km values of 0.9-6.0 mu M, and k(cat) values of 1.2-8.6 Adenosine, 2'-deoxyadenosine, thiomethyladenosine, and S-adenosylhomocysteine are deaminated at least an order of magnitude slower than 6-aminodeoxyfutalosine. The crystal structure of Nis0429 was determined and the substrate, 6-aminodeoxyfutalosine, was positioned in the active site on the basis of the presence of adventitiously bound benzoic acid. In this model, Ser-145 interacts with the carboxylate moiety of the substrate. The structure of.Dr0824 was also determined, but a collapsed active site pocket prevented docking of substrates. A computational model of Sav2595 was built on the basis of the crystal structure of adenosine deaminase and substrates were docked. The model predicted a conserved arginine after beta-strand 1 to be partially responsible for the substrate specificity of Sav2595. C1 [Goble, Alissa M.; Ornelas, Argentina; Raushel, Frank M.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Fan, Hao; Sali, Andrej] Univ Calif San Francisco, Dept Bioengn & Theraput Sci, San Francisco, CA 94158 USA. [Fan, Hao; Shoichet, Brian K.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. [Fan, Hao; Sali, Andrej; Shoichet, Brian K.] Univ Calif San Francisco, Calif Inst Quantitat Biosci, San Francisco, CA 94158 USA. [Eswaramoorthy, Subramaniam; Swaminathan, Subramanyam] Brookhaven Natl Lab, Biol Dept, Upton, NY 11973 USA. [Li, Xu; Tanner, Martin E.] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada. [Toro, Rafael; Patskovsky, Yury; Hillerich, Brandan; Seidel, Ron; Almo, Steven C.] Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA. RP Raushel, FM (reprint author), Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77843 USA. EM raushel@tamu.edu RI Raushel, Frank/B-7125-2015 OI Raushel, Frank/0000-0002-5918-3089 FU Robert A. Welch Foundation [A-840]; National Institutes of Health [GM 71790]; Center for Synchrotron Biosciences [P30-EB-009998]; National Institute of Biomedical Imaging and Bioengineering (NIBIB); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported in part by the Robert A. Welch Foundation (A-840) and the National Institutes of Health (GM 71790). This work was made possible by a Center for Synchrotron Biosciences grant, P30-EB-009998, from the National Institute of Biomedical Imaging and Bioengineering (NIBIB). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 49 TC 1 Z9 5 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 17 PY 2013 VL 52 IS 37 BP 6525 EP 6536 DI 10.1021/bi400750a PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 295EO UT WOS:000330099600022 PM 23972005 ER PT J AU Choung, S Um, W Kim, M Kim, MG AF Choung, Sungwook Um, Wooyong Kim, Minkyung Kim, Min-Gyu TI Uptake Mechanism for Iodine Species to Black Carbon SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID NATURAL ORGANIC-MATTER; SAVANNA RIVER SITE; HUMIC SUBSTANCES; RADIOIODINE I-129; MOLECULAR ENVIRONMENT; CHINESE SOILS; SEDIMENTS; ADSORPTION; OXIDATION; SORPTION AB Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I-) and iodate (IO3-) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of similar to 3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., K-d values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC. C1 [Choung, Sungwook; Um, Wooyong; Kim, Minkyung] Pohang Univ Sci & Technol POSTECH, Div Adv Nucl Engn, Pohang 790784, South Korea. [Um, Wooyong] Pacific NW Natl Lab, Energy & Environm Directory, Richland, WA 99354 USA. [Kim, Min-Gyu] Pohang Accelerator Lab PAL, Pohang 790784, South Korea. RP Um, W (reprint author), Pohang Univ Sci & Technol POSTECH, Div Adv Nucl Engn, Pohang 790784, South Korea. EM Wooyong.um@pnnl.gov RI Kim, Min-Gyu/D-8949-2013 OI Kim, Min-Gyu/0000-0002-2366-6898 FU World Class University (WCU) Program through the National Research Foundation of Korea (NRF) [R31-30005]; Basic Science Research Program through the National Research Foundation of Korea (NRF) [2012R1A1A2044287]; Ministry of Education, Science, and Technology FX Authors appreciate specially three anonymous reviewers for their valuable and helpful comments. Dr. J. S. Yang in KIST at Gangneung for his ICP-MS analyses and Dr. S. A. Chae in KBSI at Daegu for her 13C NMR analyses are deeply appreciated. This research project was supported by World Class University (WCU) Program (grant no. R31-30005) and Basic Science Research Program (NRF-2012R1A1A2044287) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology. NR 48 TC 9 Z9 11 U1 5 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 17 PY 2013 VL 47 IS 18 BP 10349 EP 10355 DI 10.1021/es401570a PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 295DE UT WOS:000330096000035 PM 23941630 ER PT J AU Leen, JB Yu, XY Gupta, M Baer, DS Hubbe, JM Kluzek, CD Tomlinson, JM Hubbell, MR AF Leen, J. Brian Yu, Xiao-Ying Gupta, Manish Baer, Douglas S. Hubbe, John M. Kluzek, Celine D. Tomlinson, Jason M. Hubbell, Mike R., II TI Fast In Situ Airborne Measurement of Ammonia Using a Mid-Infrared Off-Axis ICOS Spectrometer SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID QUANTUM CASCADE LASERS; MEASURING EMISSION RATES; DISSOCIATION-CONSTANT; SPATIAL-DISTRIBUTION; ATMOSPHERIC AMMONIA; LIVESTOCK BUILDINGS; LOWER TROPOSPHERE; GASEOUS AMMONIA; MANURE STORES; UNITED-STATES AB A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 mu m. Excellent linearity is obtained over a wide dynamic range (0-101 ppb) with a response rate (1/e) of 2 Hz and a precision of +/-90 ppt(v) (1 sigma in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation. C1 [Leen, J. Brian; Gupta, Manish; Baer, Douglas S.] Los Gatos Res Inc, Mountain View, CA 94041 USA. [Yu, Xiao-Ying; Hubbe, John M.; Kluzek, Celine D.; Tomlinson, Jason M.; Hubbell, Mike R., II] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Leen, JB (reprint author), Los Gatos Res Inc, 67 E Evelyn Ave,Suite 3, Mountain View, CA 94041 USA. EM b.leen@lgrinc.com; xiaoying.yu@pnnl.gov RI Tomlinson, Jason/C-6566-2009; Yu, Xiao-Ying/L-9385-2013 OI Yu, Xiao-Ying/0000-0002-9861-3109 FU U.S. Department of Energy (DOE) under Small Business Innovation Research; Atmospheric System Research Program [DE-FG02-07ER84896, 61685]; DOE Biological and Environmental Research (OBER) FX X.-Y.Yu thanks Dr. G. H. Mount of Washington State University for his advice and kind discussion concerning ammonia emissions and flight planning in the state of Washington. The work was supported by the U.S. Department of Energy (DOE) under the auspices of a Small Business Innovation Research contract associated with the Atmospheric System Research Program to Los Gatos Research Inc. (Contract #DE-FG02-07ER84896) and a subcontract 61685 to the DOE ARM Aerial Facility, a DOE Biological and Environmental Research (OBER) user facility located at the Pacific Northwest National Laboratory. NR 46 TC 11 Z9 11 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 17 PY 2013 VL 47 IS 18 BP 10446 EP 10453 DI 10.1021/es401134u PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 295DE UT WOS:000330096000047 PM 23869496 ER PT J AU Yuan, SH Chen, MJ Mao, XH Alshawabkeh, AN AF Yuan, Songhu Chen, Mingjie Mao, Xuhui Alshawabkeh, Akram N. TI Effects of Reduced Sulfur Compounds on Pd-Catalytic Hydrodechlorination of Trichloroethylene in Groundwater by Cathodic H-2 under Electrochemically Induced Oxidizing Conditions SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CHLORINATED-HYDROCARBON CONTAMINANTS; AQUEOUS-PHASE HYDRODECHLORINATION; BORON-DOPED DIAMOND; HYDROGEN-PEROXIDE; HYDROXYL RADICALS; CHEMILUMINESCENCE REACTION; REDUCTIVE DEHALOGENATION; TCE DECHLORINATION; REACTION-MECHANISM; ACIDIC-SOLUTION AB Reduced sulfur compounds (RSCs) poison Pd catalysts for catalytic hydrodechlorination of contaminants in anoxic groundwater. This study investigates the effects of RSCs On Pd catalytic hydrodechlorination, of trichloroethylene (TCE) in oxic groundwater. Water electrolysis in an undivided electrolytic cell is used to produce H-2 for TCE hydrodechlorination under oxidizing conditions. TCE is efficiently hydrodechlorinated to ethane, with significant accumulation of H2O2 under acidic conditions. The presence of sulfide at concentrations less than 93.8 mu M moderately inhibits TCE hydrodechlorination and H2O2 production. The presence of sulfite at low concentrations (<= 1 mM) significantly enhances TCE decay, while at high concentration (3 mM) inhibits initially and enhances afterward when sulfite concentration declines to less than 1 mM. Using radical scavenging experiments and an electron spin resonance assay, SO3 center dot-, which is generated from sulfite under oxidizing conditions, is validated as the new reactive species contributing to the enhancement. This study reveals a distinct mechanism of effect of sulfite on TCE hydrodechlorination by Pd and H-2 in oxic groundwater and presents an alternative approach to increasing resistance of Pd to RSCs poisoning. C1 [Yuan, Songhu] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Hubei, Peoples R China. [Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N.] Northeastern Univ, Dept Civil & Environm Engn, Boston, MA 02115 USA. [Chen, Mingjie] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP Yuan, SH (reprint author), China Univ Geosci, State Key Lab Biogeol & Environm Geol, 388 Lumo Rd, Wuhan 430074, Hubei, Peoples R China. EM yuansonghu622@hotmail.com; aalsha@coe.neu.edu OI Mao, Xuhui/0000-0003-1720-255X FU National Institute of Environmental Health Sciences (NIEHS) [P42ES017198]; Natural Science Foundation of China (NSFC) [41172220]; State Key Lab of Biogeology and Environmental Geology, China University of Geosciences (Wuhan) [GBL11204] FX This work was supported by the National Institute of Environmental Health Sciences (NIEHS, Grant No. P42ES017198), the Natural Science Foundation of China (NSFC, No. 41172220), and State Key Lab of Biogeology and Environmental Geology, China University of Geosciences (Wuhan) (No. GBL11204). We appreciate the assistance with the ESR assay by Prof. David Budil and Mr. Xianzhe Wang in Department of Chemistry and Chemical Biology, Northeastern University. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIEHS or the National Institutes of Health or Lawrence Livermore National Security, LLC. We appreciate valuable suggestions from the editor and three anonymous reviewers. NR 50 TC 5 Z9 7 U1 6 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 17 PY 2013 VL 47 IS 18 BP 10502 EP 10509 DI 10.1021/es402169d PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 295DE UT WOS:000330096000054 PM 23962132 ER PT J AU An, J Park, JS Koh, AL Lee, HB Jung, HJ Schoonman, J Sinclair, R Gur, TM Prinz, FB AF An, Jihwan Park, Joong Sun Koh, Ai Leen Lee, Hark B. Jung, Hee Joon Schoonman, Joop Sinclair, Robert Guer, Turgut M. Prinz, Fritz B. TI Atomic Scale Verification of Oxide-Ion Vacancy Distribution near a Single Grain Boundary in YSZ SO SCIENTIFIC REPORTS LA English DT Article ID YTTRIA-STABILIZED ZIRCONIA; ELECTRON-MICROSCOPY; SOLUTE SEGREGATION; OXYGEN; SIMULATIONS; BICRYSTAL; CERAMICS AB This study presents atomic scale characterization of grain boundary defect structure in a functional oxide with implications for a wide range of electrochemical and electronic behavior. Indeed, grain boundary engineering can alter transport and kinetic properties by several orders of magnitude. Here we report experimental observation and determination of oxide-ion vacancy concentration near the Sigma 13 (510)/[001] symmetric tilt grain-boundary of YSZ bicrystal using aberration-corrected TEM operated under negative spherical aberration coefficient imaging condition. We show significant oxygen deficiency due to segregation of oxide-ion vacancies near the grain-boundary core with half-width < 0.6 nm. Electron energy loss spectroscopy measurements with scanning TEM indicated increased oxide-ion vacancy concentration at the grain boundary core. Oxide-ion density distribution near a grain boundary simulated by molecular dynamics corroborated well with experimental results. Such column-by-column quantification of defect concentration in functional materials can provide new insights that may lead to engineered grain boundaries designed for specific functionalities. C1 [An, Jihwan; Park, Joong Sun; Lee, Hark B.; Prinz, Fritz B.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Park, Joong Sun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm & Energy Technol Div, Berkeley, CA 94720 USA. [Koh, Ai Leen] Stanford Univ, Stanford Nanocharacterizat Lab, Stanford, CA 94305 USA. [Jung, Hee Joon; Sinclair, Robert; Guer, Turgut M.; Prinz, Fritz B.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Schoonman, Joop] Delft Univ Technol, Dept Chem Engn ChemE, NL-2628 BL Delft, Netherlands. RP An, J (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. EM jihwanan@stanford.edu RI Pinz, Franz/C-5797-2011 OI Pinz, Franz/0000-0001-7848-1412 FU Center on Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001060]; Kwanjeong Educational Foundation; Energy Frontier Research Center FX This work was supported as part of the Center on Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001060. J.A. gratefully acknowledges partial financial support from Kwanjeong Educational Foundation. NR 20 TC 23 Z9 23 U1 5 U2 71 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 17 PY 2013 VL 3 AR 2680 DI 10.1038/srep02680 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 218VF UT WOS:000324459900002 PM 24042150 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Brandt, A Brandt, O Brock, R Bross, A Brown, D Brown, J Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Facini, G Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Gonzalez, JA Garcia-Guerra, GA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Padilla, M Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Salcido, P Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Shivpuri, RK Simak, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Brown, J. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Facini, G. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Garcia-Guerra, G. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Padilla, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Salcido, P. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Shivpuri, R. K. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for the Higgs boson in lepton, tau, and jets final states SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; D0 COLLABORATION; DETECTOR; LHC AB We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with two or more jets using 9:7 fb(-1) of Run II Fermilab Tevatron Collider data collected with the D0 detector. The analysis is sensitive to Higgs boson production via gluon fusion, associated vector boson production, and vector boson fusion, followed by the Higgs boson decay to tau lepton pairs or to W boson pairs. The ratios of 95% C.L. upper limits on the cross section times branching ratio to those predicted by the standard model are obtained for orthogonal subsamples that are enriched in either H -> tau tau decays or H -> WW decays, and for the combination of these subsample limits. The observed and expected limit ratios for the combined subsamples at a Higgs boson mass of 125 GeV are 11.3 and 9.0, respectively. C1 [Maciel, A. K. A.; Rangel, M. S.; Santos, A. S.; Zivkovic, L.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA Saclay, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Garcia-Guerra, G. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [Abazov, V. M.; Alexeev, G. D.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Padilla, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Kasper, P. A.; Khalatyan, N.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Salcido, P.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zielinski, M.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Maravin, Y.] Kansas State Univ, Manhattan, KS 66506 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Facini, G.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K. J.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Landsberg, G.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Juste, Aurelio/I-2531-2015; Li, Liang/O-1107-2015; Yip, Kin/D-6860-2013; Kozelov, Alexander/J-3812-2014; Lei, Xiaowen/O-4348-2014; Gutierrez, Phillip/C-1161-2011; Merkin, Mikhail/D-6809-2012; Shabalina, Elizaveta/M-2227-2013; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; Santos, Angelo/K-5552-2012; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014 OI Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Price, Darren/0000-0003-2750-9977; Verdier, Patrice/0000-0003-3090-2948; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Bean, Alice/0000-0001-5967-8674; Sawyer, Lee/0000-0001-8295-0605; Juste, Aurelio/0000-0002-1558-3291; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Qian, Jianming/0000-0003-4813-8167; Williams, Mark/0000-0001-5448-4213; Grohsjean, Alexander/0000-0003-0748-8494; Chapon, Emilien/0000-0001-6968-9828; Li, Liang/0000-0001-6411-6107; Hedin, David/0000-0001-9984-215X; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Yip, Kin/0000-0002-8576-4311; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Lei, Xiaowen/0000-0002-2564-8351; Dudko, Lev/0000-0002-4462-3192; Sharyy, Viatcheslav/0000-0002-7161-2616; FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); MON (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM(The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM(The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 42 TC 5 Z9 5 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2013 VL 88 IS 5 AR 052005 DI 10.1103/PhysRevD.88.052005 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219DX UT WOS:000324487000001 ER PT J AU Mehrbod, M Trisno, S Mofrad, MRK AF Mehrbod, Mehrdad Trisno, Stephen Mofrad, Mohammad R. K. TI On the Activation of Integrin alpha IIb beta 3: Outside-in and Inside-out Pathways SO BIOPHYSICAL JOURNAL LA English DT Article ID MOLECULAR-DYNAMICS; STRUCTURAL BASIS; LIGAND-BINDING; CRYSTAL-STRUCTURE; EXTRACELLULAR SEGMENT; VINCULIN ACTIVATION; TALIN BINDING; ALPHA(IIB)BETA(3); CONFORMATION; FIBRINOGEN AB Integrin alpha IIb beta 3 is a member of the integrin family of transnnembrane proteins present on the plasma membrane of platelets. Integrin alpha IIb beta 3 is widely known to regulate the process of thrombosis via activation at its cytoplasmic side by talin and interaction with the soluble fibrinogen. It is also reported that three groups of interactions restrain integrin family members in the inactive state, including a set of salt bridges on the cytoplasmic side of the transmembrane domain of the integrin alpha- and beta-subunits known as the inner membrane clasp, hydrophobic packing of a few transmembrane residues on the extracellular side between the alpha- and beta-subunits that is known as the outer membrane clasp, and the key interaction group of the beta A domain (located on the beta-subunit head domain) with the beta TD (proximal to the plasma membrane on the beta-subunit). However, molecular details of this key interaction group as well as events that lead to detachment of the beta TD and beta A domains have remained ambiguous. In this study, we use molecular dynamics models to take a comprehensive outside-in and inside-out approach at exploring how integrin alpha IIb beta 3 is activated. First, we show that talin's interaction with the membrane-proximal and membrane-distal regions of integrin cytoplasmic-transmembrane domains significantly loosens the inner membrane clasp. Talin also interacts with an additional salt bridge (R734-E1006), which facilitates integrin activation through the separation of the integrin's alpha- and beta-subunits. The second part of our study classifies three types of interactions between RGD peptides and the extracellular domains of integrin alpha IIb beta 3. Finally, we show that the interaction of the Arg of the ROD sequence may activate integrin via disrupting the key interaction group between K350 on the beta A domain and S673/S674 on the beta TD. C1 [Mofrad, Mohammad R. K.] Univ Calif Berkeley, Dept Bioengn, Mol Cell Biomech Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Mofrad, MRK (reprint author), Univ Calif Berkeley, Dept Bioengn, Mol Cell Biomech Lab, Berkeley, CA 94720 USA. EM mofrad@berkeley.edu FU National Science Foundation through a CAREER award [CBET 0955291] FX Financial support by National Science Foundation through a CAREER award to M.R.K.M. (CBET 0955291) is gratefully acknowledged. NR 63 TC 13 Z9 15 U1 0 U2 9 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD SEP 17 PY 2013 VL 105 IS 6 BP 1304 EP 1315 DI 10.1016/j.bpj.2013.07.055 PG 12 WC Biophysics SC Biophysics GA 220SD UT WOS:000324606300005 PM 24047981 ER PT J AU Tang, JKH Saikin, SK Pingali, SV Enriquez, MM Huh, J Frank, HA Urban, VS Aspuru-Guzik, A AF Tang, Joseph Kuo-Hsiang Saikin, Semion K. Pingali, Sai Venkatesh Enriquez, Miriam M. Huh, Joonsuk Frank, Harry A. Urban, Volker S. Aspuru-Guzik, Alan TI Temperature and Carbon Assimilation Regulate the Chlorosome Biogenesis in Green Sulfur Bacteria SO BIOPHYSICAL JOURNAL LA English DT Article ID LIGHT-HARVESTING COMPLEXES; COMPLETE GENOME SEQUENCE; CHLOROFLEXUS-AURANTIACUS; BACTERIOCHLOROPHYLL-C; CHLOROBIUM-TEPIDUM; CHLOROBACULUM-TEPIDUM; PHOTOSYNTHETIC BACTERIUM; CIRCULAR-DICHROISM; LINEAR DICHROISM; FLUORESCENCE MICROSCOPY AB Green photosynthetic bacteria adjust the structure and functionality of the chlorosome-the light-absorbing antenna complex-in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl cm the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Q(y) absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis. C1 [Tang, Joseph Kuo-Hsiang] Clark Univ, Sch Chem & Biochem, Worcester, MA 01610 USA. [Saikin, Semion K.; Huh, Joonsuk; Aspuru-Guzik, Alan] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Pingali, Sai Venkatesh; Urban, Volker S.] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Biol & Soft Matter Div, Oak Ridge, TN USA. [Enriquez, Miriam M.; Frank, Harry A.] Univ Connecticut, Dept Chem, Storrs, CT USA. RP Tang, JKH (reprint author), Clark Univ, Sch Chem & Biochem, Worcester, MA 01610 USA. EM jtang@clarku.edu RI Saikin, Semion/A-3989-2010; Urban, Volker/N-5361-2015; OI Saikin, Semion/0000-0003-1924-3961; Urban, Volker/0000-0002-7962-3408; Pingali, Sai Venkatesh/0000-0001-7961-4176 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Project [ERKP291]; National Science Foundation [MCB-1243565]; University of Connecticut Research Foundation FX The authors thank Dr. Xing Xu and Dr. Sun W. Tam at Nuclea Biotechnologies for assisting mass spectral measurements and Professor Gang Han at the University of Massachusetts Medical School for the access to his dynamic light-scattering instrument. Bio-SANS CG-3 is a resource of the Center for Structural Molecular Biology at Oak Ridge National Laboratory supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Project ERKP291. Work in the laboratory of H.A.F. was supported by grants from the National Science Foundation (MCB-1243565) and the University of Connecticut Research Foundation. A.A.-G. and J.H. acknowledge support from the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences under Award DESC0001088. A.A.-G. and S.K.S. acknowledge Defense Threat Reduction Agency Grant HDTRA1-10-1-0046. A.A.-G. also thanks the Corning Foundation for its generous support. J.K.T. is supported by start-up funds and faculty development fund from Clark University. NR 61 TC 9 Z9 9 U1 1 U2 15 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD SEP 17 PY 2013 VL 105 IS 6 BP 1346 EP 1356 DI 10.1016/j.bpj.2013.07.027 PG 11 WC Biophysics SC Biophysics GA 220SD UT WOS:000324606300009 PM 24047985 ER PT J AU Tunuguntla, R Bangar, M Kim, K Stroeve, P Ajo-Franklin, CM Noy, A AF Tunuguntla, Ramya Bangar, Mangesh Kim, Kyunghoon Stroeve, Pieter Ajo-Franklin, Caroline M. Noy, Aleksandr TI Lipid Bilayer Composition Can Influence the Orientation of Proteorhodopsin in Artificial Membranes SO BIOPHYSICAL JOURNAL LA English DT Article ID DRIVEN PROTON PUMP; PROTEIN; RECONSTITUTION; LIPOSOMES; BACTERIORHODOPSIN; CHANNEL; PH; PROTEOLYSIS; RHODOPSIN; INSERTION AB Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex vivo devices such as electronic biosensors, thin-film protein arrays, or biofuel cells. Given that most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In this work, we explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified the vectorial nature of ion transport in this system. Our results indicate that the manipulation of lipid composition can indeed control orientation of an asymmetrically charged membrane protein, proteorhodopsin, in liposomes. C1 [Tunuguntla, Ramya; Stroeve, Pieter] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Tunuguntla, Ramya; Bangar, Mangesh; Ajo-Franklin, Caroline M.; Noy, Aleksandr] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ajo-Franklin, Caroline M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kim, Kyunghoon] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Noy, Aleksandr] Univ Calif, Sch Nat Sci, Merced, CA USA. [Tunuguntla, Ramya; Noy, Aleksandr] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. RP Noy, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM noy1@llnl.gov RI Foundry, Molecular/G-9968-2014 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; LSP program at Lawrence Livermore National Laboratory FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Parts of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. R.T. acknowledges support from the LSP program at Lawrence Livermore National Laboratory. NR 34 TC 11 Z9 11 U1 4 U2 54 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD SEP 17 PY 2013 VL 105 IS 6 BP 1388 EP 1396 DI 10.1016/j.bpj.2013.07.043 PG 9 WC Biophysics SC Biophysics GA 220SD UT WOS:000324606300014 PM 24047990 ER PT J AU Hussain, S Molloy, JE Khan, SM AF Hussain, Saman Molloy, Justin E. Khan, Shahid M. TI Spatiotemporal Dynamics of Actomyosin Networks SO BIOPHYSICAL JOURNAL LA English DT Article ID ACTIN-FILAMENTS; SELF-ORGANIZATION; MYOSIN-II; THERMAL FLUCTUATIONS; DENDRITIC SPINES; CELL BIOLOGY; MOTORS; MICROTUBULES; MOTILITY; SHAPE AB Rhodamine-phalloidin-labeled actin filaments were visualized gliding over a skeletal heavy meromyosin (HMM)-coated surface. Experiments at low filament densities showed that when two filaments collided, their paths were affected in a manner that depended on collision angle. Some collisions resulted in complete alignment of the filament paths; in others, the filaments crossed over one another. Filament crossover or alignment was equally probable at similar to 40 degrees contact angle. Filaments often underwent significant bending during collision and analysis of filament shape indicated an energy requirement of similar to 13 k(B)T. Experiments were performed over a wide range of HMM surface density and actin filament bulk concentration. Actin filament gliding speed and path persistence plateaued above a critical HMM surface density, and at high (micromolar) actin filament concentrations, filament motion became dramatically aligned in a common direction. Spatiotemporal features of alignment behavior were determined by correlation analysis, supported by simulations. The thermal drift of individual filament tracks was suppressed as the population became more oriented. Spatial correlation analysis revealed that long-range alignment was due to incremental recruitment rather than fusion of locally ordered seed domains. The global alignment of filament movement, described by an "order parameter," peaked at optimal actin concentrations and myosin surface densities, in contrast to previous predictions of a critical phase transition. Either hydrodynamic coupling or exchange of filaments between the surface bound and adjacent bulk phase layers might degrade order at high actin filament concentration, and high HMM surface densities might decrease alignment probability during collisions. Our results are compatible with generation of long-range order from mechanical interaction between individual actin filaments. Furthermore, we show that randomly oriented myosin motors align relatively short, submicrometer actin filaments into motile surface domains that extend over many tens of micrometers and these patterns persist for several minutes. C1 [Hussain, Saman; Khan, Shahid M.] LUMS Sch Sci & Engn, Sect U DHA, Lahore, Pakistan. [Molloy, Justin E.] Natl Inst Med Res, MRC, Ridgeway, London NW7 1AA, England. [Khan, Shahid M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biol Consortium, Berkeley, CA 94720 USA. RP Khan, SM (reprint author), LUMS Sch Sci & Engn, Sect U DHA, Lahore, Pakistan. EM khan@mbc-als.org OI Hussain, Saman/0000-0001-6687-7591 FU Medical Research Council; Royal Society Collaborative Exchange Grant [U1175.70592] FX This work was supported by a Medical Research Council Grant-in-Aid (J.E.M.) and Royal Society Collaborative Exchange Grant U1175.70592. We thank Dr. Tanniemola Liverpool (University of Bristol) for discussion and critical reading of the manuscript; and Hina Iftikhar (LUMS School of Science and Engineering) for assistance with the data analysis. The MATLAB codes used in this study are available on request. NR 44 TC 3 Z9 3 U1 1 U2 20 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD SEP 17 PY 2013 VL 105 IS 6 BP 1456 EP 1465 DI 10.1016/j.bpj.2013.08.001 PG 10 WC Biophysics SC Biophysics GA 220SD UT WOS:000324606300021 PM 24047997 ER PT J AU Aschenauer, EC Fazio, S Kumericki, K Muller, D AF Aschenauer, E. C. Fazio, S. Kumericki, K. Mueller, D. TI Deeply virtual Compton scattering at a proposed high-luminosity Electron-Ion Collider SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE QCD Phenomenology; Deep Inelastic Scattering (Phenomenology) ID GENERALIZED PARTON DISTRIBUTIONS; HARD EXCLUSIVE ELECTROPRODUCTION; VECTOR-MESON ELECTROPRODUCTION; TO-LEADING ORDER; ELASTIC ELECTROPRODUCTION; J/PSI MESONS; EVOLUTION KERNELS; HADRON STRUCTURE; PHI-MESONS; HERA AB Several observables for the deeply virtual Compton scattering process have been simulated in the kinematic regime of a proposed Electron-Ion Collider to explore the possible impact of such measurements for the phenomenological access of generalized parton distributions. In particular, emphasis is given to the transverse distribution of sea quarks and gluons and how such measurements can provide information on the angular momentum sum rule. The exact lepton energy loss dependence for the unpolarized t-differential electroproduction cross section, needed for a Rosenbluth separation, is also reported. C1 [Aschenauer, E. C.; Fazio, S.; Mueller, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kumericki, K.] Univ Zagreb, Dept Phys, Zagreb 10002, Croatia. [Mueller, D.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. RP Aschenauer, EC (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM elke@bnl.gov; sfazio@bnl.gov; kkumer@phy.hr; Dieter.Mueller@tp2.ruhr-uni-bochum.de RI Fazio, Salvatore /G-5156-2010; OI Mueller, Dieter/0000-0003-0341-0446; Kumericki, Kresimir/0000-0001-9758-5647 FU U.S. Department of Energy [DE-AC02-98CH10886]; Croatian Ministry of Science, Education and Sport [119-0982930-1016]; Joint Research Activity Study of Strongly Interacting Matter (acronym Hadron-Physics3) under the Seventh Framework Program of the European Community [283286] FX We are grateful to M. Diehl for many useful discussions. D. M. and K. K. thank the Nuclear Physics group at Brookhaven National Laboratory for the warm hospitality during their stay, where this project has been staged and mostly completed. This work was supported in part by the U.S. Department of Energy under contract number DE-AC02-98CH10886, by Croatian Ministry of Science, Education and Sport, contract no. 119-0982930-1016, and the Joint Research Activity Study of Strongly Interacting Matter (acronym Hadron-Physics3, Grant Agreement No. 283286) under the Seventh Framework Program of the European Community. NR 156 TC 7 Z9 7 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 17 PY 2013 IS 9 BP 1 EP 59 AR 093 DI 10.1007/JHEP09(2013)093 PG 59 WC Physics, Particles & Fields SC Physics GA 221IY UT WOS:000324652700001 ER PT J AU Ruderman, JT Slatyer, TR Weiner, N AF Ruderman, Joshua T. Slatyer, Tracy R. Weiner, Neal TI A collective breaking of R-parity SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID DOUBLE-BETA DECAY; SUPERSYMMETRIC PARTICLES; E(+)E(-) COLLISIONS; FLAVOR VIOLATION; STANDARD MODEL; CONSTRAINTS; PHYSICS; SEARCH; COUPLINGS; BOUNDS AB Supersymmetric theories with an R-parity generally yield a striking missing energy signature, with cascade decays concluding in a neutralino that escapes the detector. In theories where R-parity is broken the missing energy is replaced with additional jets or leptons, often making traditional search strategies ineffective. Such R-parity violation is very constrained, however, by resulting B and L violating signals. The R-parity violating couplings must be so small that there is tension for LSP decays to occur within the detector, unless couplings to different flavors are strongly hierarchical. In theories with additional matter fields, R-parity can be broken collectively, such that R-parity is not broken by any single coupling, but only by an ensemble of couplings. Cascade decays can proceed normally, with each step only sensitive to one or two couplings at a time, but B and L violation requires the full set, yielding a highly suppressed constraint. s-channel production of new scalar states, typically small for standard RPV, can be large when RPV is broken collectively. While missing energy is absent, making these models difficult to discover by traditional SUSY searches, they produce complicated many object resonances (MORes), with many different possible numbers of jets and leptons. We outline a simple model and discuss its discoverability at the LHC. C1 [Ruderman, Joshua T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ruderman, Joshua T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Slatyer, Tracy R.; Weiner, Neal] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Weiner, Neal] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. RP Ruderman, JT (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM ruderman@berkeley.edu; tslatyer@ias.edu; neal.weiner@nyu.edu FU NSF [0947827, PHY-0969448, AST-0807444]; Miller Institute for Basic Research in Science FX We thank Spencer Chang, Clifford Cheung, Richard Gipstein and Michele Papucci for helpful conversations. We also thank the KITP for its hospitality while this work was initiated. NW is supported by NSF grant #0947827. JTR is supported by a fellowship from the Miller Institute for Basic Research in Science. TRS is supported by NSF grants PHY-0969448 and AST-0807444. NR 61 TC 10 Z9 10 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 17 PY 2013 IS 9 AR 094 DI 10.1007/JHEP09(2013)094 PG 28 WC Physics, Particles & Fields SC Physics GA 224NB UT WOS:000324892700001 ER PT J AU Aaltonen, T Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Bae, T Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bedeschi, F Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Bromberg, C Brucken, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Butti, P Buzatu, A Calamba, A Camarda, S Campanelli, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Ciocci, MA Clark, A Clarke, C Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R d'Ascenzo, N Datta, M De Barbaro, P Demortier, L Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dorigo, M Driutti, A Ebina, K Edgar, R Elagin, A Erbacher, R Errede, S Esham, B Eusebi, R Farrington, S Ramos, JPF Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Frisch, H Funakoshi, Y Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Hahn, SR Han, JY Happacher, F Hara, K Hare, M Harr, RF Harrington-Taber, T Hatakeyama, K Hays, C Heinrich, J Herndon, M Hocker, A Hong, Z Hopkins, W Hou, S Hughes, RE Husemann, U Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kambeitz, M Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kim, YJ Kimura, N Kirby, M Knoepfel, K Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Kruse, M Kuhr, T Kurata, M Laasanen, AT Lammel, S Lancaster, M Lannon, K Latino, G Lee, HS Lee, JS Leo, S Leone, S Lewis, JD Limosani, A Lipeles, E Liu, H Liu, Q Liu, T Lockwitz, S Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maestro, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, P Martinez, M Matera, K Mattson, ME Mazzacane, A Mazzanti, P McNulty, R Mehta, A Mehtala, P Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, MJ Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Nigmanov, T Nodulman, L Noh, SY Norniella, O Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Pagliarone, C Palencia, E Palni, P Papadimitriou, V Parker, W Pauletta, G Paulini, M Paus, C Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Prokoshin, F Pranko, A Ptohos, F Punzi, G Ranjan, N Fernandez, IR Renton, P Rescigno, M Riddick, T Rimondi, F Ristori, L Robson, A Rodriguez, T Rolli, S Ronzani, M Roser, R Rosner, JL Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, EE Schwarz, T Scodellaro, L Scuri, F Seidel, S Seiya, Y Semenov, A Sforza, F Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simonenko, A Sinervo, P Sliwa, K Smith, JR Snider, FD Sorin, V Song, H Stancari, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thomson, E Thukral, V Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Ukegawa, F Uozumi, S Vazquez, F Velev, G Vellidis, C Vernieri, C Vidal, M Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wallny, R Wang, SM Warburton, A Waters, D Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamato, D Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Zanetti, AM Zeng, Y Zhou, C Zucchelli, S AF Aaltonen, T. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Bae, T. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Bromberg, C. Brucken, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Butti, P. Buzatu, A. Calamba, A. Camarda, S. Campanelli, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Ciocci, M. A. Clark, A. Clarke, C. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. d'Ascenzo, N. Datta, M. De Barbaro, P. Demortier, L. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dorigo, M. Driutti, A. Ebina, K. Edgar, R. Elagin, A. Erbacher, R. Errede, S. Esham, B. Eusebi, R. Farrington, S. Fernandez Ramos, J. P. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Frisch, H. Funakoshi, Y. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Hahn, S. R. Han, J. Y. Happacher, F. Hara, K. Hare, M. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hays, C. Heinrich, J. Herndon, M. Hocker, A. Hong, Z. Hopkins, W. Hou, S. Hughes, R. E. Husemann, U. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kambeitz, M. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kim, Y. J. Kimura, N. Kirby, M. Knoepfel, K. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kurata, M. Laasanen, A. T. Lammel, S. Lancaster, M. Lannon, K. Latino, G. Lee, H. S. Lee, J. S. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lipeles, E. Liu, H. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maestro, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, P. Martinez, M. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McNulty, R. Mehta, A. Mehtala, P. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Pagliarone, C. Palencia, E. Palni, P. Papadimitriou, V. Parker, W. Pauletta, G. Paulini, M. Paus, C. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Prokoshin, F. Pranko, A. Ptohos, F. Punzi, G. Ranjan, N. Redondo Fernandez, I. Renton, P. Rescigno, M. Riddick, T. Rimondi, F. Ristori, L. Robson, A. Rodriguez, T. Rolli, S. Ronzani, M. Roser, R. Rosner, J. L. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schwarz, T. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simonenko, A. Sinervo, P. Sliwa, K. Smith, J. R. Snider, F. D. Sorin, V. Song, H. Stancari, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thomson, E. Thukral, V. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Ukegawa, F. Uozumi, S. Vazquez, F. Velev, G. Vellidis, C. Vernieri, C. Vidal, M. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamato, D. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Zanetti, A. M. Zeng, Y. Zhou, C. Zucchelli, S. CA CDF Collaboration TI Combination of searches for the Higgs boson using the full CDF data set SO PHYSICAL REVIEW D LA English DT Article ID STANDARD-MODEL; HADRON COLLIDERS; ATLAS DETECTOR; PP COLLISIONS; ROOT-S=7 TEV; P(P)OVER-BAR COLLISIONS; PARTON DISTRIBUTIONS; NNLO QCD; LHC; DECAY AB We present a combination of searches for the standard model Higgs boson using the full CDF run II data set, which corresponds to an integrated luminosity of 9.45-10.0 fb(-1) collected from root s = 1.96 TeV p (p) over bar collisions at the Fermilab Tevatron. The searches consider Higgs boson production from gluon-gluon fusion, vector-boson fusion, and associated production with either a W or Z boson or a t (t) over bar pair. Depending on the production mode, Higgs boson decays to W+W-, ZZ, b (b) over bar, tau(+)tau(-), and gamma gamma are examined. We search for a Higgs boson with masses (m(H)) in the range 90-200 GeV/c(2). In the absence of a signal, we expect based on combined search sensitivity to exclude at the 95% credibility level the mass regions 90 < m(H) < 94 GeV/c(2), 96 < m(H) < 106 GeV/c(2), and 153 < m(H) < 175 GeV/c(2). The observed exclusion regions are 90 < m(H) < 102 GeV/c(2) and 149 < m(H) < 172 GeV/c(2). A moderate excess of signal-like events relative to the background expectation at the level of 2.0 standard deviations is present in the data for the m(H) = 125 GeV/c(2) search hypothesis. We also present interpretations of the data within the context of a fermiophobic model and an alternative standard model incorporating a fourth generation of fermions. Finally, for the hypothesis of a new particle with mass 125 GeV/c(2), we constrain the coupling strengths of the new particle to W-+/- bosons, Z bosons, and fermions. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Canelli, F.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Riddick, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Cremonesi, M.; Di Canto, A.; Donati, S.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; De Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Safonov, A.; Thukral, V.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste Udine, I-34127 Trieste, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; vilar, rocio/P-8480-2014; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; maestro, paolo/E-3280-2010; Chiarelli, Giorgio/E-8953-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014 OI Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Brucken, Jens Erik/0000-0001-6066-8756; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Simonenko, Alexander/0000-0001-6580-3638; Lancaster, Mark/0000-0002-8872-7292; Warburton, Andreas/0000-0002-2298-7315; maestro, paolo/0000-0002-4193-1288; Chiarelli, Giorgio/0000-0001-9851-4816; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, United Kingdom; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC); EU community Marie Curie Fellowship [302103] FX We would like to thank the authors of the HAWK program for adapting it to the Tevatron. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103. NR 108 TC 16 Z9 16 U1 3 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2013 VL 88 IS 5 AR 052013 DI 10.1103/PhysRevD.88.052013 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219DX UT WOS:000324487000009 ER PT J AU Aaltonen, T Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Askew, A Atkins, S Auerbach, B Augsten, K Aurisano, A Avila, C Azfar, F Badaud, F Badgett, W Bae, T Bagby, L Baldin, B Bandurin, DV Banerjee, S Barbaro-Galtieri, A Barberis, E Baringer, P Barnes, VE Barnett, BA Barria, P Bartlett, JF Bartos, P Bassler, U Bauce, M Bazterra, V Bean, A Bedeschi, F Begalli, M Behari, S Bellantoni, L Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Bhatti, A Bland, KR Blazey, G Blessing, S Bloom, K Blumenfeld, B Bocci, A Bodek, A Boehnlein, A Boline, D Boos, EE Borissov, G Bortoletto, D Boudreau, J Boveia, A Brandt, A Brandt, O Brigliadori, L Brock, R Bromberg, C Bross, A Brown, D Brucken, E Budagov, J Bu, XB Budd, HS Buehler, M Buescher, V Bunichev, V Burdin, S Burkett, K Busetto, G Bussey, P Buszello, CP Butti, P Buzatu, A Calamba, A Camacho-Perez, E Camarda, S Campanelli, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Casey, BCK Castilla-Valdez, H Castro, A Catastini, P Caughron, S Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Cho, SW Choi, S Chokheli, D Choudhary, B Cihangir, S Ciocci, MA Claes, D Clark, A Clarke, C Clutter, J Convery, ME Conway, J Cooke, M Cooper, WE Corbo, M Corcoran, M Cordelli, M Couderc, F Cousinou, MC Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R Cutts, D d'Ascenzo, N Das, A Datta, M Davies, G De Barbaro, P de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Demortier, L Deninno, M Denisov, D Denisov, SP d'Errico, M Desai, S Deterre, C DeVaughan, K Devoto, F Di Canto, A Di Ruzza, B Diehl, HT Diesburg, M Ding, PF Dittmann, JR Dominguez, A Donati, S D'Onofrio, M Dorigo, M Driutti, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Ebina, K Edgar, R Edmunds, D Elagin, A Ellison, J Elvira, VD Enari, Y Erbacher, R Errede, S Esham, B Eusebi, R Evans, H Evdokimov, VN Facini, G Farrington, S Faure, A Feng, L Ferbel, T Ramos, JPF Fiedler, F Field, R Filthaut, F Fisher, W Fisk, HE Flanagan, G Forrest, R Fortner, M Fox, H Franklin, M Freeman, JC Frisch, H Fuess, S Funakoshi, Y Garcia-Bellido, A Garcia-Gonzalez, JA Garfinkel, AF Garosi, P Gavrilov, V Geng, W Gerber, CE Gerberich, H Gerchtein, E Gershtein, Y Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Ginther, G Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Golovanov, G Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grannis, PD Greder, S Greenlee, H Grenier, G Grinstein, S Gris, P Grivaz, JF Grohsjean, A Grosso-Pilcher, C Group, RC Grunendahl, S Grunewald, MW Guillemin, T da Costa, JG Gutierrez, G Gutierrez, P Hahn, SR Haley, J Han, JY Han, L Happacher, F Hara, K Harder, K Hare, M Harel, A Harr, RF Harrington-Taber, T Hatakeyama, K Hauptman, JM Hays, C Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinrich, J Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herndon, M Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hocker, A Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Hong, Z Hopkins, W Hou, S Howley, I Hubacek, Z Hughes, RE Husemann, U Hussein, M Huston, J Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Introzzi, G Iori, M Ito, AS Ivanov, A Jabeen, S Jaffre, M James, E Jang, D Jayasinghe, A Jayatilaka, B Jeon, EJ Jeong, MS Jesik, R Jiang, P Jindariani, S Johns, K Johnson, E Johnson, M Jonckheere, A Jones, M Jonsson, P Joo, KK Joshi, J Jun, SY Jung, AW Junk, TR Juste, A Kajfasz, E Kambeitz, M Kamon, T Karchin, PE Karmanov, D Kasmi, A Kato, Y Katsanos, I Kehoe, R Kermiche, S Ketchum, W Keung, J Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YJ Kim, YK Kimura, N Kirby, M Kiselevich, I Knoepfel, K Kohli, JM Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kozelov, AV Kraus, J Kreps, M Kroll, J Kruse, M Kuhr, T Kumar, A Kupco, A Kurata, M Kurca, T Kuzmin, VA Laasanen, AT Lammel, S Lammers, S Lancaster, M Lannon, K Latino, G Lebrun, P Lee, HS Lee, HS Lee, JS Lee, SW Lee, WM Lei, X Lellouch, J Leo, S Leone, S Lewis, JD Li, D Li, H Li, L Li, QZ Lim, JK Limosani, A Lincoln, D Linnemann, J Lipaev, VV Lipeles, E Lipton, R Lister, A Liu, H Liu, H Liu, Q Liu, T Liu, Y Lobodenko, A Lockwitz, S Loginov, A Lokajicek, M de Sa, RL Lucchesi, D Lueck, J Lujan, P Lukens, P Luna-Garcia, R Lungu, G Lyon, AL Lys, J Lysak, R Maciel, AKA Madar, R Madrak, R Maestro, P Magana-Villalba, R Malik, S Malik, S Malyshev, VL Manca, G Manousakis-Katsikakis, A Mansour, J Margaroli, F Marino, P Martinez, M Martinez-Ortega, J Matera, K Mattson, ME Mazzacane, A Mazzanti, P McCarthy, R McGivern, CL McNulty, R Mehta, A Mehtala, P Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Mesropian, C Meyer, A Meyer, J Miao, T Miconi, F Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondal, NK Moon, CS Moore, R Morello, MJ Mukherjee, A Mulhearn, M Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nagy, E Nakano, I Napier, A Narain, M Nayyar, R Neal, HA Negret, JP Nett, J Neu, C Neustroev, P Nguyen, HT Nigmanov, T Nodulman, L Noh, SY Norniella, O Nunnemann, T Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Orduna, J Ortolan, L Osman, N Osta, J Pagliarone, C Pal, A Palencia, E Palni, P Papadimitriou, V Parashar, N Parihar, V Park, SK Parker, W Partridge, R Parua, N Patwa, A Pauletta, G Paulini, M Paus, C Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pleier, MA Podstavkov, VM Pondrom, L Popov, AV Poprocki, S Potamianos, K Pranko, A Prewitt, M Price, D Prokopenko, N Prokoshin, F Ptohos, F Punzi, G Qian, J Quadt, A Quinn, B Ranjan, N Ratoff, PN Razumov, I Fernandez, IR Renton, P Rescigno, M Rimondi, F Ripp-Baudot, I Ristori, L Rizatdinova, F Robson, A Rodriguez, T Rolli, S Rominsky, M Ronzani, M Roser, R Rosner, JL Ross, A Royon, C Rubinov, P Ruchti, R Ruffini, F Ruiz, A Russ, J Rusu, V Sajot, G Sakumoto, WK Sakurai, Y Sanchez-Hernandez, A Sanders, MP Santi, L Santos, AS Sato, K Savage, G Saveliev, V Savoy-Navarro, A Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schlabach, P Schmidt, EE Schwanenberger, C Schwarz, T Schwienhorst, R Scodellaro, L Scuri, F Seidel, S Seiya, Y Sekaric, J Semenov, A Severini, H Sforza, F Shabalina, E Shalhout, SZ Shary, V Shaw, S Shchukin, AA Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simak, V Simonenko, A Sinervo, P Skubic, P Slattery, P Sliwa, K Smirnov, D Smith, JR Snider, FD Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, H Sonnenschein, L Sorin, V Soustruznik, K Stancari, M St Denis, R Stark, J Stelzer, B Stelzer-Chilton, O Stentz, D Stoyanova, DA Strauss, M Strologas, J Sudo, Y Sukhanov, A Suslov, I Suter, L Svoisky, P Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thomson, E Thukral, V Titov, M Toback, D Tokar, S Tokmenin, VV Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tsai, YT Tsybychev, D Tuchming, B Tully, C Ukegawa, F Uozumi, S Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vazquez, F Velev, G Vellidis, C Verkheev, AY Vernieri, C Vertogradov, LS Verzocchi, M Vesterinen, M Vidal, M Vilanova, D Vilar, R Vizan, J Vogel, M Vokac, P Volpi, G Wagner, P Wahl, HD Wallny, R Wang, SM Wang, MHLS Wang, RJ Warburton, A Warchol, J Waters, D Watts, G Wayne, M Weichert, J Welty-Rieger, L Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Williams, MRJ Wilson, GW Wilson, JS Wilson, P Winer, BL Wittich, P Wobisch, M Wolbers, S Wolfe, H Wood, DR Wright, T Wu, X Wu, Z Wyatt, TR Xie, Y Yamada, R Yamamoto, K Yamato, D Yang, S Yang, T Yang, UK Yang, YC Yao, WM Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yeh, GP Yi, K Yin, H Yip, K Yoh, J Yorita, K Yoshida, T Youn, SW Yu, GB Yu, I Yu, JM Zanetti, A Zeng, Y Zennamo, J Zhao, TG Zhou, B Zhou, C Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zucchelli, S AF Aaltonen, T. Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Askew, A. Atkins, S. Auerbach, B. Augsten, K. Aurisano, A. Avila, C. Azfar, F. Badaud, F. Badgett, W. Bae, T. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barbaro-Galtieri, A. Barberis, E. Baringer, P. Barnes, V. E. Barnett, B. A. Barria, P. Bartlett, J. F. Bartos, P. Bassler, U. Bauce, M. Bazterra, V. Bean, A. Bedeschi, F. Begalli, M. Behari, S. Bellantoni, L. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Bhatti, A. Bland, K. R. Blazey, G. Blessing, S. Bloom, K. Blumenfeld, B. Bocci, A. Bodek, A. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Bortoletto, D. Boudreau, J. Boveia, A. Brandt, A. Brandt, O. Brigliadori, L. Brock, R. Bromberg, C. Bross, A. Brown, D. Brucken, E. Budagov, J. Bu, X. B. Budd, H. S. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burkett, K. Busetto, G. Bussey, P. Buszello, C. P. Butti, P. Buzatu, A. Calamba, A. Camacho-Perez, E. Camarda, S. Campanelli, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Casey, B. C. K. Castilla-Valdez, H. Castro, A. Catastini, P. Caughron, S. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Cho, S. W. Choi, S. Chokheli, D. Choudhary, B. Cihangir, S. Ciocci, M. A. Claes, D. Clark, A. Clarke, C. Clutter, J. Convery, M. E. Conway, J. Cooke, M. Cooper, W. E. Corbo, M. Corcoran, M. Cordelli, M. Couderc, F. Cousinou, M. -C. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. Cutts, D. d'Ascenzo, N. Das, A. Datta, M. Davies, G. De Barbaro, P. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Demortier, L. Deninno, M. Denisov, D. Denisov, S. P. d'Errico, M. Desai, S. Deterre, C. DeVaughan, K. Devoto, F. Di Canto, A. Di Ruzza, B. Diehl, H. T. Diesburg, M. Ding, P. F. Dittmann, J. R. Dominguez, A. Donati, S. D'Onofrio, M. Dorigo, M. Driutti, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Ebina, K. Edgar, R. Edmunds, D. Elagin, A. Ellison, J. Elvira, V. D. Enari, Y. Erbacher, R. Errede, S. Esham, B. Eusebi, R. Evans, H. Evdokimov, V. N. Facini, G. Farrington, S. Faure, A. Feng, L. Ferbel, T. Fernandez Ramos, J. P. Fiedler, F. Field, R. Filthaut, F. Fisher, W. Fisk, H. E. Flanagan, G. Forrest, R. Fortner, M. Fox, H. Franklin, M. Freeman, J. C. Frisch, H. Fuess, S. Funakoshi, Y. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Garfinkel, A. F. Garosi, P. Gavrilov, V. Geng, W. Gerber, C. E. Gerberich, H. Gerchtein, E. Gershtein, Y. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Ginther, G. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Golovanov, G. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grosso-Pilcher, C. Group, R. C. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. da Costa, J. Guimaraes Gutierrez, G. Gutierrez, P. Hahn, S. R. Haley, J. Han, J. Y. Han, L. Happacher, F. Hara, K. Harder, K. Hare, M. Harel, A. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hauptman, J. M. Hays, C. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinrich, J. Heinson, A. P. Heintz, U. Hensel, C. La Cruz, I. Heredia-De Herndon, M. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hocker, A. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Hong, Z. Hopkins, W. Hou, S. Howley, I. Hubacek, Z. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Introzzi, G. Iori, M. Ito, A. S. Ivanov, A. Jabeen, S. Jaffre, M. James, E. Jang, D. Jayasinghe, A. Jayatilaka, B. Jeon, E. J. Jeong, M. S. Jesik, R. Jiang, P. Jindariani, S. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jones, M. Jonsson, P. Joo, K. K. Joshi, J. Jun, S. Y. Jung, A. W. Junk, T. R. Juste, A. Kajfasz, E. Kambeitz, M. Kamon, T. Karchin, P. E. Karmanov, D. Kasmi, A. Kato, Y. Katsanos, I. Kehoe, R. Kermiche, S. Ketchum, W. Keung, J. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. J. Kim, Y. K. Kimura, N. Kirby, M. Kiselevich, I. Knoepfel, K. Kohli, J. M. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kozelov, A. V. Kraus, J. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kumar, A. Kupco, A. Kurata, M. Kurca, T. Kuzmin, V. A. Laasanen, A. T. Lammel, S. Lammers, S. Lancaster, M. Lannon, K. Latino, G. Lebrun, P. Lee, H. S. Lee, H. S. Lee, J. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Leo, S. Leone, S. Lewis, J. D. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Limosani, A. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipeles, E. Lipton, R. Lister, A. Liu, H. Liu, H. Liu, Q. Liu, T. Liu, Y. Lobodenko, A. Lockwitz, S. Loginov, A. Lokajicek, M. de Sa, R. Lopes Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Luna-Garcia, R. Lungu, G. Lyon, A. L. Lys, J. Lysak, R. Maciel, A. K. A. Madar, R. Madrak, R. Maestro, P. Magana-Villalba, R. Malik, S. Malik, S. Malyshev, V. L. Manca, G. Manousakis-Katsikakis, A. Mansour, J. Margaroli, F. Marino, P. Martinez, M. Martinez-Ortega, J. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McCarthy, R. McGivern, C. L. McNulty, R. Mehta, A. Mehtala, P. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Mesropian, C. Meyer, A. Meyer, J. Miao, T. Miconi, F. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondal, N. K. Moon, C. S. Moore, R. Morello, M. J. Mukherjee, A. Mulhearn, M. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nagy, E. Nakano, I. Napier, A. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Nett, J. Neu, C. Neustroev, P. Nguyen, H. T. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Nunnemann, T. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Orduna, J. Ortolan, L. Osman, N. Osta, J. Pagliarone, C. Pal, A. Palencia, E. Palni, P. Papadimitriou, V. Parashar, N. Parihar, V. Park, S. K. Parker, W. Partridge, R. Parua, N. Patwa, A. Pauletta, G. Paulini, M. Paus, C. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pleier, M. -A. Podstavkov, V. M. Pondrom, L. Popov, A. V. Poprocki, S. Potamianos, K. Pranko, A. Prewitt, M. Price, D. Prokopenko, N. Prokoshin, F. Ptohos, F. Punzi, G. Qian, J. Quadt, A. Quinn, B. Ranjan, N. Ratoff, P. N. Razumov, I. Redondo Fernandez, I. Renton, P. Rescigno, M. Rimondi, F. Ripp-Baudot, I. Ristori, L. Rizatdinova, F. Robson, A. Rodriguez, T. Rolli, S. Rominsky, M. Ronzani, M. Roser, R. Rosner, J. L. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Sajot, G. Sakumoto, W. K. Sakurai, Y. Sanchez-Hernandez, A. Sanders, M. P. Santi, L. Santos, A. S. Sato, K. Savage, G. Saveliev, V. Savoy-Navarro, A. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schlabach, P. Schmidt, E. E. Schwanenberger, C. Schwarz, T. Schwienhorst, R. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Sekaric, J. Semenov, A. Severini, H. Sforza, F. Shabalina, E. Shalhout, S. Z. Shary, V. Shaw, S. Shchukin, A. A. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simak, V. Simonenko, A. Sinervo, P. Skubic, P. Slattery, P. Sliwa, K. Smirnov, D. Smith, J. R. Snider, F. D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Song, H. Sonnenschein, L. Sorin, V. Soustruznik, K. Stancari, M. St Denis, R. Stark, J. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Stoyanova, D. A. Strauss, M. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Suter, L. Svoisky, P. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thomson, E. Thukral, V. Titov, M. Toback, D. Tokar, S. Tokmenin, V. V. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Ukegawa, F. Uozumi, S. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vazquez, F. Velev, G. Vellidis, C. Verkheev, A. Y. Vernieri, C. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vidal, M. Vilanova, D. Vilar, R. Vizan, J. Vogel, M. Vokac, P. Volpi, G. Wagner, P. Wahl, H. D. Wallny, R. Wang, S. M. Wang, M. H. L. S. Wang, R. -J. Warburton, A. Warchol, J. Waters, D. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Williams, M. R. J. Wilson, G. W. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wobisch, M. Wolbers, S. Wolfe, H. Wood, D. R. Wright, T. Wu, X. Wu, Z. Wyatt, T. R. Xie, Y. Yamada, R. Yamamoto, K. Yamato, D. Yang, S. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yeh, G. P. Yi, K. Yin, H. Yip, K. Yoh, J. Yorita, K. Yoshida, T. Youn, S. W. Yu, G. B. Yu, I. Yu, J. M. Zanetti, A. Zeng, Y. Zennamo, J. Zhao, T. G. Zhou, B. Zhou, C. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zucchelli, S. CA CDF Collaboration D0 Collaboration TI Higgs boson studies at the Tevatron SO PHYSICAL REVIEW D LA English DT Article ID B-JET IDENTIFICATION; STANDARD MODEL; ATLAS DETECTOR; PP COLLISIONS; P(P)OVER-BAR COLLISIONS; PARTON DISTRIBUTIONS; ROOT-S=1.96 TEV; SEARCH; LHC; SYMMETRIES AB We combine searches by the CDF and D0 Collaborations for the standard model Higgs boson with mass in the range 90-200 GeV/c(2) produced in the gluon-gluon fusion, WH, ZH, t (t) over barH, and vector boson fusion processes, and decaying in the H -> b (b) over bar, H -> W+W-, H -> ZZ, H -> tau(+)tau(-), and H -> gamma gamma modes. The data correspond to integrated luminosities of up to 10 fb(-1) and were collected at the Fermilab Tevatron in p (p) over bar collisions at root s = 1.96 TeV. The searches are also interpreted in the context of fermiophobic and fourth generation models. We observe a significant excess of events in the mass range between 115 and 140 GeV/c(2). The local significance corresponds to 3.0 standard deviations at m(H) = 125 GeV/c(2), consistent with the mass of the Higgs boson observed at the LHC, and we expect a local significance of 1.9 standard deviations. We separately combine searches for H -> b (b) over bar, H -> W+W-, H -> tau(+)tau(-), and H -> gamma gamma. The observed signal strengths in all channels are consistent with the presence of a standard model Higgs boson with a mass of 125 GeV/c(2). C1 [Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Faure, A.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA Saclay, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Mansour, J.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Univ Maine, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amerio, S.; Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Cremonesi, M.; Di Canto, A.; Donati, S.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34127 Trieste, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; La Cruz, I. Heredia-De; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.; Shreyber-Tecker, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Juste, A.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Clark, A.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [D'Onofrio, M.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Waters, D.] UCL, London WC1E 6BT, England. [Agnew, J. P.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Behari, S.; Bellantoni, L.; Beretvas, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Burkett, K.; Casey, B. C. K.; Chlachidze, G.; Cihangir, S.; Convery, M. E.; Cooke, M.; Cooper, W. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Denisov, D.; Desai, S.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Flanagan, G.; Freeman, J. C.; Fuess, S.; Gerchtein, E.; Ginsburg, C. M.; Ginther, G.; Glenzinski, D.; Golossanov, A.; Greenlee, H.; Group, R. C.; Gruenendahl, S.; Gutierrez, G.; Hahn, S. R.; Harrington-Taber, T.; Herner, K.; Hocker, A.; Hopkins, W.; Illingworth, R.; Ito, A. S.; James, E.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Junk, T. R.; Khalatyan, N.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Liu, T.; Lukens, P.; Lyon, A. L.; Madrak, R.; Mazzacane, A.; Melnitchouk, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Penning, B.; Podstavkov, V. M.; Poprocki, S.; Ristori, L.; Rominsky, M.; Roser, R.; Rubinov, P.; Rusu, V.; Savage, G.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Verzocchi, M.; Wang, M. H. L. S.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Xie, Y.; Yamada, R.; Yang, T.; Yasuda, T.; Ye, Z.; Yeh, G. P.; Yi, K.; Yin, H.; Yoh, J.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Barberis, E.; Facini, G.; Haley, J.; Wang, R. -J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Alton, A.; Amidei, D.; Edgar, R.; Mietlicki, D.; Neal, H. A.; Qian, J.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Brock, R.; Bromberg, C.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Hussein, M.; Huston, J.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Bodek, A.; Budd, H. S.; De Barbaro, P.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Han, J. Y.; Harel, A.; Petrillo, G.; Sakumoto, W. K.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Group, R. C.; Hirosky, R.; Li, H.; Liu, H.; Mulhearn, M.; Neu, C.; Nguyen, H. T.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; Merkin, Mikhail/D-6809-2012; Prokoshin, Fedor/E-2795-2012; Martinez, Mario /I-3549-2015; Li, Liang/O-1107-2015; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Kozelov, Alexander/J-3812-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Lei, Xiaowen/O-4348-2014; Russ, James/P-3092-2014; vilar, rocio/P-8480-2014; Gutierrez, Phillip/C-1161-2011; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Shabalina, Elizaveta/M-2227-2013; Dudko, Lev/D-7127-2012; Kupco, Alexander/G-9713-2014; Fisher, Wade/N-4491-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; maestro, paolo/E-3280-2010; Santos, Angelo/K-5552-2012; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Chiarelli, Giorgio/E-8953-2012; Lokajicek, Milos/G-7800-2014; Yip, Kin/D-6860-2013; Juste, Aurelio/I-2531-2015; OI Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Li, Liang/0000-0001-6411-6107; de Jong, Sijbrand/0000-0002-3120-3367; Jun, Soon Yung/0000-0003-3370-6109; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Lei, Xiaowen/0000-0002-2564-8351; Russ, James/0000-0001-9856-9155; ciocci, maria agnese /0000-0003-0002-5462; Dudko, Lev/0000-0002-4462-3192; Warburton, Andreas/0000-0002-2298-7315; maestro, paolo/0000-0002-4193-1288; Sharyy, Viatcheslav/0000-0002-7161-2616; Chiarelli, Giorgio/0000-0001-9851-4816; Bassler, Ursula/0000-0002-9041-3057; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Williams, Mark/0000-0001-5448-4213; Grohsjean, Alexander/0000-0003-0748-8494; Dorigo, Mirco/0000-0002-0681-6946; Brucken, Jens Erik/0000-0001-6066-8756; Chapon, Emilien/0000-0001-6968-9828; Melnychuk, Oleksandr/0000-0002-2089-8685; Bloom, Kenneth/0000-0002-4272-8900; Torre, Stefano/0000-0002-7565-0118; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Yip, Kin/0000-0002-8576-4311; Beuselinck, Raymond/0000-0003-2613-7446; Toback, David/0000-0003-3457-4144; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Vidal Marono, Miguel/0000-0002-2590-5987; MARTINEZ, MARIO/0000-0002-3135-945X; Casarsa, Massimo/0000-0002-1353-8964; Juste, Aurelio/0000-0002-1558-3291; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; iori, maurizio/0000-0002-6349-0380; Blazey, Gerald/0000-0002-7435-5758; Group, Robert/0000-0002-4097-5254; Bean, Alice/0000-0001-5967-8674; Simonenko, Alexander/0000-0001-6580-3638; Lancaster, Mark/0000-0002-8872-7292; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401 FU DOE (USA); NSF (USA); ARC (Australia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); NSERC (Canada); NSC (China); CAS (China); CNSF (China); Colciencias (Colombia); MSMT (Czech Republic); GACR (Czech Republic); Academy of Finland; CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); DAE (India); DST (India); SFI (Ireland); INFN (Italy); MEXT (Japan); Korean World Class University Program (Korea); NRF (Korea); CONACyT (Mexico); FOM (Netherlands); MON (Russia); NRC KI (Russia); RFBR (Russia); Slovak RD Agency; Ministerio de Ciencia e Innovacion (Spain); Programa Consolider-Ingenio (Spain); Swedish Research Council (Sweden); SNSF (Switzerland); STFC (United Kingdom); Royal Society (United Kingdom); A. P. Sloan Foundation (USA); EU community Marie Curie Fellowship [302103] FX We thank the Fermilab staff and technical staffs of the participating institutions for their vital contributions. We acknowledge support from the DOE and NSF (USA), ARC (Australia), CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), NSERC (Canada), NSC, CAS and CNSF (China), Colciencias (Colombia), MSMT and GACR (Czech Republic), the Academy of Finland, CEA and CNRS/IN2P3 (France), BMBF and DFG (Germany), DAE and DST (India), SFI (Ireland), INFN (Italy), MEXT (Japan), the Korean World Class University Program and NRF (Korea), CONACyT (Mexico), FOM (Netherlands), MON, NRC KI and RFBR (Russia), the Slovak R&D Agency, the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010 (Spain), The Swedish Research Council (Sweden), SNSF (Switzerland), STFC and the Royal Society (United Kingdom), the A. P. Sloan Foundation (USA), and the EU community Marie Curie Fellowship Contract No. 302103. NR 109 TC 59 Z9 59 U1 11 U2 76 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2013 VL 88 IS 5 AR 052014 DI 10.1103/PhysRevD.88.052014 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219DX UT WOS:000324487000010 ER PT J AU Aaltonen, T Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Bae, T Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bedeschi, F Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bertoli, G Bhatti, A Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Bromberg, C Brucken, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Butti, P Buzatu, A Calamba, A Camarda, S Campanelli, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Ciocci, MA Clark, A Clarke, C Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R d'Ascenzo, N Datta, M De Barbaro, P Demortier, L Deninno, M d'Errico, M Devoto, F Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dorigo, M Driutti, A Ebina, K Edgar, R Elagin, A Erbacher, R Errede, S Esham, B Eusebi, R Farrington, S Ramos, JPF Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Frisch, H Funakoshi, Y Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Hahn, SR Han, JY Happacher, F Hara, K Hare, M Harr, RF Harrington-Taber, T Hatakeyama, K Hays, C Heinrich, J Herndon, M Hidas, D Hocker, A Hong, Z Hopkins, W Hou, S Hsu, SC Hughes, RE Husemann, U Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kambeitz, M Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YJ Kim, YK Kimura, N Kirby, M Knoepfel, K Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Kruse, M Kuhr, T Kurata, M Laasanen, AT Lammel, S Lancaster, M Lannon, K Latino, G Lee, HS Lee, JS Leo, S Leone, S Lewis, JD Limosani, A Lipeles, E Lister, A Liu, H Liu, Q Liu, T Lockwitz, S Loginov, A Luca, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maestro, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, P Martinez, M Matera, K Mattson, ME Mazzacane, A Mazzanti, P McNulty, R Mehta, A Mehtala, P Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, MJ Mrenna, S Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nigmanov, T Nodulman, L Noh, SY Norniella, O Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Palni, P Papadimitriou, V Parker, W Pauletta, G Paulini, M Paus, C Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Pranko, A Prokoshin, F Ptohos, F Punzi, G Pursley, J Ranjan, N Fernandez, IR Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodriguez, T Rolli, S Ronzani, M Roser, R Rosner, JL Ruffini, F Ruiz, A Russ, J Rusu, V Sakumoto, WK Sakurai, Y Santi, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, EE Schwarz, T Scodellaro, L Scuri, F Seidel, S Seiya, Y Semenov, A Sforza, F Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simonenko, A Sinervo, P Sliwa, K Smith, JR Snider, FD Song, H Sorin, V Stancari, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thompson, AS Thomson, E Thukral, V Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Ukegawa, F Uozumi, S Vazquez, F Velev, G Vellidis, C Vernieri, C Vidal, M Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wallny, R Wang, SM Warburton, A Waters, D Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Wurthwein, F Yamamoto, K Yamato, D Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Zanetti, AM Zeng, Y Zhou, C Zucchelli, S AF Aaltonen, T. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Bae, T. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bertoli, G. Bhatti, A. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Bromberg, C. Brucken, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Butti, P. Buzatu, A. Calamba, A. Camarda, S. Campanelli, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Ciocci, M. A. Clark, A. Clarke, C. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. d'Ascenzo, N. Datta, M. De Barbaro, P. Demortier, L. Deninno, M. d'Errico, M. Devoto, F. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dorigo, M. Driutti, A. Ebina, K. Edgar, R. Elagin, A. Erbacher, R. Errede, S. Esham, B. Eusebi, R. Farrington, S. Fernandez Ramos, J. P. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Frisch, H. Funakoshi, Y. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Hahn, S. R. Han, J. Y. Happacher, F. Hara, K. Hare, M. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hays, C. Heinrich, J. Herndon, M. Hidas, D. Hocker, A. Hong, Z. Hopkins, W. Hou, S. Hsu, S. -C. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kambeitz, M. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. J. Kim, Y. K. Kimura, N. Kirby, M. Knoepfel, K. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kurata, M. Laasanen, A. T. Lammel, S. Lancaster, M. Lannon, K. Latino, G. Lee, H. S. Lee, J. S. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lipeles, E. Lister, A. Liu, H. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Luca, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maestro, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, P. Martinez, M. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McNulty, R. Mehta, A. Mehtala, P. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Mrenna, S. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Palni, P. Papadimitriou, V. Parker, W. Pauletta, G. Paulini, M. Paus, C. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Pranko, A. Prokoshin, F. Ptohos, F. Punzi, G. Pursley, J. Ranjan, N. Redondo Fernandez, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodriguez, T. Rolli, S. Ronzani, M. Roser, R. Rosner, J. L. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Sakumoto, W. K. Sakurai, Y. Santi, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schwarz, T. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simonenko, A. Sinervo, P. Sliwa, K. Smith, J. R. Snider, F. D. Song, H. Sorin, V. Stancari, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thompson, A. S. Thomson, E. Thukral, V. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Ukegawa, F. Uozumi, S. Vazquez, F. Velev, G. Vellidis, C. Vernieri, C. Vidal, M. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Wuerthwein, F. Yamamoto, K. Yamato, D. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Zanetti, A. M. Zeng, Y. Zhou, C. Zucchelli, S. CA CDF Collaboration TI Searches for the Higgs boson decaying to W+W- -> l(+)nu l(-)(nu)over-bar with the CDF II detector SO PHYSICAL REVIEW D LA English DT Article ID STANDARD-MODEL; PARTON DISTRIBUTIONS; HADRON COLLIDERS; ELECTROMAGNETIC CALORIMETER; P(P)OVER-BAR COLLISIONS; MASSLESS PARTICLES; BROKEN SYMMETRIES; ROOT-S=1.96 TEV; QCD CORRECTIONS; NNLO QCD AB We present a search for a standard model Higgs boson decaying to two W bosons that decay to leptons using the full data set collected with the CDF II detector in root s = 1.96 TeV p (p) over bar collisions at the Fermilab Tevatron, corresponding to an integrated luminosity of 9.7 fb(-1). We obtain no evidence for production of a standard model Higgs boson with mass between 110 and 200 GeV/c(2), and place upper limits on the production cross section within this range. We exclude standard model Higgs boson production at the 95% confidence level in the mass range between 149 and 172 GeV/c(2), while expecting to exclude, in the absence of signal, the range between 155 and 175 GeV/c(2). We also interpret the search in terms of standard model Higgs boson production in the presence of a fourth generation of fermions and within the context of a fermiophobic Higgs boson model. For the specific case of a standard-model-like Higgs boson in the presence of fourth-generation fermions, we exclude at the 95% confidence level Higgs boson production in the mass range between 124 and 200 GeV/c(2), while expecting to exclude, in the absence of signal, the range between 124 and 221 GeV/c(2). C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Wuerthwein, F.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Canelli, F.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mrenna, S.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Luca, A.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Neubauer, M. S.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kamon, T.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Hsu, S. -C.; Lujan, P.; Lys, J.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Canepa, A.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Canepa, A.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Canepa, A.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Canepa, A.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Cremonesi, M.; Di Canto, A.; Donati, S.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; De Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Hidas, D.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Bertoli, G.; Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste Udine, I-34127 Trieste, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Group, R. C.; Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.; Pursley, J.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Martinez, Mario /I-3549-2015; Russ, James/P-3092-2014; Warburton, Andreas/N-8028-2013; vilar, rocio/P-8480-2014; Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; maestro, paolo/E-3280-2010; Chiarelli, Giorgio/E-8953-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014 OI ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Russ, James/0000-0001-9856-9155; Warburton, Andreas/0000-0002-2298-7315; maestro, paolo/0000-0002-4193-1288; Chiarelli, Giorgio/0000-0001-9851-4816; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, U.K.; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC); EU community Marie Curie Fellowship [302103] FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, U.K.; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103. NR 126 TC 5 Z9 5 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2013 VL 88 IS 5 AR 052012 DI 10.1103/PhysRevD.88.052012 PG 47 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219DX UT WOS:000324487000008 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Brandt, A Brandt, O Brock, R Bross, A Brown, D Brown, J Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Facini, G Faure, A Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Gonzalez, JA Garcia-Guerra, GA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Padilla, M Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Salcido, P Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Shivpuri, RK Simak, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Brown, J. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Facini, G. Faure, A. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Garcia-Guerra, G. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Padilla, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Salcido, P. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Shivpuri, R. K. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for Higgs boson production in oppositely charged dilepton and missing energy final states in 9.7 fb(-1) of p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; ATLAS DETECTOR; PP COLLISIONS; 2 PHOTONS; LHC; TEVATRON; PARTICLE; DECAYS; LEP AB We present a search for the Higgs boson in final states with two oppositely charged leptons and large missing transverse energy as expected in H -> WW -> lvl(1)v(1)decays. The events are selected from the full Run II data sample of 9.7 fb(-1) of p (p) over bar collisions collected with the D0 detector at the Fermilab Tevatron Collider at root s = 1.96 TeV. To validate our search methodology, we measure the nonresonant WW production cross section and find sigma(WW) 11.6 +/- 0.7 pb, in agreement with the standard model prediction. In the Higgs boson search, no significant excess above the background expectation is observed. Upper limits at the 95% confidence level on the Higgs boson production cross section are therefore derived. Within the standard model, the Higgs boson mass range 159 < M-H < 176 GeV is excluded while the expected exclusion sensitivity is 156 < M-H < 172 GeV. For a mass hypothesis of M-H = 125 GeV, we exclude Higgs boson production cross sections 4.1 times larger than the standard model expectation, which is compatible with the presence of a Higgs boson at this mass. Within a theoretical framework with a fourth generation of fermions, the mass range 125 < M-H < 218 GeV is excluded. The search results are also interpreted in the context of fermiophobic Higgs boson couplings, which yields an exclusion of fermiophobic Higgs boson production cross sections 3.1 times larger than the expectation for M-H = 125 GeV. C1 [Maciel, A. K. A.; Rangel, M. S.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSN, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Faure, A.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA Saclay, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Hebbeker, T.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Hebbeker, T.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Garcia-Guerra, G. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Denisov, S. P.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.; Padilla, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Kasper, P. A.; Khalatyan, N.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Salcido, P.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Maravin, Y.] Kansas State Univ, Manhattan, KS 66506 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Facini, G.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K. J.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Landsberg, G.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Chandra, A.; Ilchenko, Y.; Kehoe, R.; Liu, H.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Merkin, Mikhail/D-6809-2012; Shabalina, Elizaveta/M-2227-2013; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; Santos, Angelo/K-5552-2012; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Lei, Xiaowen/O-4348-2014; Gutierrez, Phillip/C-1161-2011 OI Li, Liang/0000-0001-6411-6107; Dudko, Lev/0000-0002-4462-3192; Sharyy, Viatcheslav/0000-0002-7161-2616; Lei, Xiaowen/0000-0002-2564-8351; FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); MON (Russia); NRC KI (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 72 TC 6 Z9 6 U1 3 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2013 VL 88 IS 5 AR 052006 DI 10.1103/PhysRevD.88.052006 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219DX UT WOS:000324487000002 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Gonzalez, JA Garcia-Guerra, GA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Padilla, M Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Rangel, MS Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Salcido, P Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Shivpuri, RK Simak, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Garcia-Guerra, G. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Padilla, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Salcido, P. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Shivpuri, R. K. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for a Higgs boson in diphoton final states with the D0 detector in 9.6 fb(-1) of p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID PHOTON PAIR PRODUCTION; STANDARD MODEL; CROSS-SECTIONS; PP COLLISIONS; LHC; SYMMETRIES; COUPLINGS; DECAYS; GAMMA; MASS AB We present a search for a Higgs boson decaying into a pair of photons based on 9.6 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The search employs multivariate techniques to discriminate signal from the nonresonant background and is separately optimized for a standard model and a fermiophobic Higgs boson. No significant excess of data above the background prediction is observed and upper limits on the product of the cross section and branching fraction are derived at the 95% confidence level as a function of Higgs boson mass. For a standard model Higgs boson with mass of 125 GeV, the observed (expected) upper limits are a factor of 12.8 (8.7) above the standard model prediction. The existence of a fermiophobic Higgs boson with mass in the 100-113 GeV range is excluded at the 95% confidence level. C1 [Maciel, A. K. A.; Rangel, M. S.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA Saclay, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Mansour, J.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Garcia-Guerra, G. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.; Padilla, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Salcido, P.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K. J.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Merkin, Mikhail/D-6809-2012; Shabalina, Elizaveta/M-2227-2013; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; Santos, Angelo/K-5552-2012; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Lei, Xiaowen/O-4348-2014; Gutierrez, Phillip/C-1161-2011 OI Li, Liang/0000-0001-6411-6107; Dudko, Lev/0000-0002-4462-3192; Sharyy, Viatcheslav/0000-0002-7161-2616; Lei, Xiaowen/0000-0002-2564-8351; FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); MON, (Russia); NRC KI (Russia); RFBR (Russia); CNPq, (Brazil); FAPERJ, (Brazil); FAPESP, (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 67 TC 7 Z9 7 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2013 VL 88 IS 5 AR 052007 DI 10.1103/PhysRevD.88.052007 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219DX UT WOS:000324487000003 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Gonzalez, JA Garcia-Guerra, GA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Padilla, M Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Rangel, MS Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Salcido, P Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Shivpuri, RK Simak, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Garcia-Guerra, G. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Padilla, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Salcido, P. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Shivpuri, R. K. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for Higgs boson production in trilepton and like-charge electron-muon final states with the D0 detector SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; 2 PHOTONS; LHC; PARTICLE; DECAYS AB We present a search for Higgs bosons in multilepton final states in p (p) over bar collisions at root s = 1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider, using the full Run II data set with integrated luminosities of up to 9.7 fb(-1). The multilepton states considered are ee mu, e mu mu, mu tau(h)tau(h) , and like-charge e(+/-) mu(+/-) pairs. These channels directly probe the HVV (V = W, Z) coupling of the Higgs boson in production and decay. The mu tau(h)tau(h) channel is also sensitive to H -> tau(+)tau(-) decays. Upper limits at the 95% C.L on the rate of standard model Higgs boson production are derived in the mass range 100 <= M-H <= 200 GeV. The expected and observed limits are a factor of 6.3 and 8.4 above the predicted standard model cross section at M-H = 125 GeV. We also interpret the data in a fermiophobic Higgs boson model. C1 [Maciel, A. K. A.; Rangel, M. S.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA Saclay, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Mansour, J.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Garcia-Guerra, G. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; McGivern, C. L.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.; Padilla, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Salcido, P.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K. J.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Juste, Aurelio/I-2531-2015; Li, Liang/O-1107-2015; Yip, Kin/D-6860-2013; Shabalina, Elizaveta/M-2227-2013; Gutierrez, Phillip/C-1161-2011; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; Santos, Angelo/K-5552-2012; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Lei, Xiaowen/O-4348-2014 OI Ding, Pengfei/0000-0002-4050-1753; Bassler, Ursula/0000-0002-9041-3057; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Bean, Alice/0000-0001-5967-8674; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Malik, Sudhir/0000-0002-6356-2655; Williams, Mark/0000-0001-5448-4213; Grohsjean, Alexander/0000-0003-0748-8494; Chapon, Emilien/0000-0001-6968-9828; Melnychuk, Oleksandr/0000-0002-2089-8685; Li, Liang/0000-0001-6411-6107; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Blessing, Susan/0000-0002-4455-7279; Hoeneisen, Bruce/0000-0002-6059-4256; Yip, Kin/0000-0002-8576-4311; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Blazey, Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Dudko, Lev/0000-0002-4462-3192; Sharyy, Viatcheslav/0000-0002-7161-2616; Lei, Xiaowen/0000-0002-2564-8351 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); MON (Russia); NRC KI (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 48 TC 5 Z9 5 U1 4 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2013 VL 88 IS 5 AR 052009 DI 10.1103/PhysRevD.88.052009 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219DX UT WOS:000324487000005 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Facini, G Faure, A Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Gonzalez, JA Garcia-Guerra, GA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Padilla, M Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Rangel, MS Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Salcido, P Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Shivpuri, RK Simak, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Wang, RJ Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Facini, G. Faure, A. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Garcia-Guerra, G. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Padilla, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Salcido, P. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Shivpuri, R. K. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Wang, R. -J. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Combined search for the Higgs boson with the D0 experiment SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; HADRON COLLIDERS; ATLAS DETECTOR; P(P)OVER-BAR COLLISIONS; MASSLESS PARTICLES; BROKEN SYMMETRIES; ROOT-S=1.96 TEV; PP COLLISIONS; NNLO QCD; LHC AB We perform a combination of searches for standard model Higgs boson production in p (p) over bar collisions recorded by the D0 detector at the Fermilab Tevatron Collider at a center of mass energy of root s = 1.96 TeV. The different production and decay channels have been analyzed separately, with integrated luminosities of up to 9.7 fb(-1) and for Higgs boson masses 90 <= M-H <= 200 GeV. We combine these final states to achieve optimal sensitivity to the production of the Higgs boson. We also interpret the combination in terms of models with a fourth generation of fermions, and models with suppressed Higgs boson couplings to fermions. The result excludes a standard model Higgs boson at 95% C.L. in the ranges 90 < M-H < 101 GeV and 157 < M-H < 178 GeV, with an expected exclusion of 155 < M-H < 175 GeV. In the range 120 < M-H < 145 GeV, the data exhibit an excess over the expected background of up to 2 standard deviations, consistent with the presence of a standard model Higgs boson of mass 125 GeV. C1 [Maciel, A. K. A.; Rangel, M. S.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, LPC, IN2P3, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Faure, A.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Mansour, J.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buehler, M.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Garcia-Guerra, G. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] ICREA, Barcelona, Spain. [Juste, A.] IFAE, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.; Padilla, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Facini, G.; Haley, J.; Wang, R. -J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K. J.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, G.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Yip, Kin/D-6860-2013; Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; Shabalina, Elizaveta/M-2227-2013; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; Santos, Angelo/K-5552-2012; Merkin, Mikhail/D-6809-2012; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Lei, Xiaowen/O-4348-2014; Gutierrez, Phillip/C-1161-2011; OI Blazey, Gerald/0000-0002-7435-5758; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Yip, Kin/0000-0002-8576-4311; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Williams, Mark/0000-0001-5448-4213; Grohsjean, Alexander/0000-0003-0748-8494; Chapon, Emilien/0000-0001-6968-9828; Melnychuk, Oleksandr/0000-0002-2089-8685; Li, Liang/0000-0001-6411-6107; Sawyer, Lee/0000-0001-8295-0605; Juste, Aurelio/0000-0002-1558-3291; Qian, Jianming/0000-0003-4813-8167; Bean, Alice/0000-0001-5967-8674; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; de Jong, Sijbrand/0000-0002-3120-3367; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Dudko, Lev/0000-0002-4462-3192; Sharyy, Viatcheslav/0000-0002-7161-2616; Lei, Xiaowen/0000-0002-2564-8351; Ding, Pengfei/0000-0002-4050-1753; Bloom, Kenneth/0000-0002-4272-8900; Bassler, Ursula/0000-0002-9041-3057; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); MON (Russia); NRC KI (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 97 TC 15 Z9 15 U1 5 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2013 VL 88 IS 5 AR 052011 DI 10.1103/PhysRevD.88.052011 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219DX UT WOS:000324487000007 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Gonzalez, JA Garcia-Guerra, GA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffree, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Padilla, M Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Rangel, MS Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Salcido, P Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Shivpuri, RK Simak, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Garcia-Guerra, G. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Padilla, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Salcido, P. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Shivpuri, R. K. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for ZH -> l(+)l(-)b(b)over-bar production in 9.7 fb(-1) of p(p)over-bar collisions with the D0 detector SO PHYSICAL REVIEW D LA English DT Article ID MODEL HIGGS-BOSON; MASS; LHC; TEV AB We present a search for the standard model Higgs boson produced in association with a Z boson in 9.7 fb(-1) of p (p) over bar collisions collected with the D0 detector at the Fermilab Tevatron Collider at root s = 1.96 TeV. Selected events contain one reconstructed Z -> e(+)e(-) or Z -> mu(+)mu(-) candidate and at least two jets, including at least one jet likely to contain a b quark. To validate the search procedure, we also measure the cross section for ZZ production and find that it is consistent with the standard model expectation. We set upper limits at the 95% C.L. on the product of the ZH production cross section and branching ratio B(H -> b (b) over bar) for Higgs boson masses 90 <= M-H <= 150 GeV. The observed (expected) limit for M-H = 125 GeV is a factor of 7.1 (5.1) larger than the standard model prediction. C1 [Maciel, A. K. A.; Rangel, M. S.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Mansour, J.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Garcia-Guerra, G. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] ICREA, Barcelona, Spain. [Juste, A.] IFAE, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.; Padilla, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, E.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Salcido, P.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K. J.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Gutierrez, Phillip/C-1161-2011; Merkin, Mikhail/D-6809-2012; Shabalina, Elizaveta/M-2227-2013; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; Santos, Angelo/K-5552-2012; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Lei, Xiaowen/O-4348-2014; Li, Liang/O-1107-2015 OI Dudko, Lev/0000-0002-4462-3192; Sharyy, Viatcheslav/0000-0002-7161-2616; Lei, Xiaowen/0000-0002-2564-8351; Li, Liang/0000-0001-6411-6107 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC Program (Canada); NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 52 TC 7 Z9 7 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2013 VL 88 IS 5 AR 052010 DI 10.1103/PhysRevD.88.052010 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219DX UT WOS:000324487000006 ER PT J AU Abazov, VM Abbinante, A Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Gonzalez, JA Garcia-Guerra, GA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Padilla, M Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podesta-Lerma, PLM Podkowa, A Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Rangel, MS Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Salcido, P Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Shivpuri, RK Simak, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbinante, A. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Garcia-Guerra, G. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Padilla, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podesta-Lerma, P. L. M. Podkowa, A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Salcido, P. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Shivpuri, R. K. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for the standard model Higgs boson in lv plus jets final states in 9.7 fb(-1) of p(p)over-bar collisions with the D0 detector SO PHYSICAL REVIEW D LA English DT Article ID ROOT-S=1.96 TEV; ATLAS DETECTOR; PP COLLISIONS; PARTON DISTRIBUTIONS; LHC; EVENTS; DECAYS; MASS AB We present, in detail, a search for the standard model Higgs boson, H, in final states with a charged lepton (electron or muon), missing energy, and two or more jets in data corresponding to 9.7 fb(-1) of integrated luminosity collected at a center-of-mass energy of root s = 1.96 TeV with the D0 detector at the Fermilab Tevatron p (p) over bar Collider. The search uses b-jet identification to categorize events for improved signal versus background separation and is sensitive to associated production of the H with a W boson, WH -> lvb(b)over bar>; gluon fusion with the Higgs decaying to W-boson pairs, H -> WW -> lvjj; and associated production with a vector boson where the Higgs decays to W-boson pairs, VH -> VWW -> lvjjjj production (where V = W or Z). We observe good agreement between data and expected background. We test our method by measuring WZ and ZZ production with Z -> b(b)over bar> and find production rates consistent with the standard model prediction. For a Higgs boson mass of 125 GeV, we set a 95% C. L. upper limit on the production of a standard model Higgs boson of 5.8 sigma(SM) SM, where sigma(SM) is the standard model Higgs boson production cross section, while the expected limit is 4.7 X sigma(SM). We also interpret the data considering models with fourth generation fermions, or a fermiophobic Higgs boson. C1 [Maciel, A. K. A.; Rangel, M. S.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA Saclay, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Mansour, J.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Garcia-Guerra, G. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.; Padilla, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Abbinante, A.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podkowa, A.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Salcido, P.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K. J.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Shabalina, Elizaveta/M-2227-2013; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Lei, Xiaowen/O-4348-2014; Gutierrez, Phillip/C-1161-2011; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; Santos, Angelo/K-5552-2012; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014 OI Li, Liang/0000-0001-6411-6107; Lei, Xiaowen/0000-0002-2564-8351; Dudko, Lev/0000-0002-4462-3192; Sharyy, Viatcheslav/0000-0002-7161-2616 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); MON, (Russia); NRC KI (Russia); RFBR (Russia); CNPq, (Brazil); FAPERJ, (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 78 TC 9 Z9 9 U1 2 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2013 VL 88 IS 5 AR 052008 DI 10.1103/PhysRevD.88.052008 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219DX UT WOS:000324487000004 ER PT J AU Dumitru, A Nara, Y Petreska, E AF Dumitru, Adrian Nara, Yasushi Petreska, Elena TI Magnetic flux loop in high-energy heavy-ion collisions SO PHYSICAL REVIEW D LA English DT Article ID GLUON DISTRIBUTION-FUNCTIONS; MCLERRAN-VENUGOPALAN MODEL; LARGE NUCLEI; TRANSVERSE-MOMENTUM; SMALL X; GLASMA AB We consider the expectation value of a chromomagnetic flux loop in the immediate forward light cone of collisions of heavy nuclei at high energies. Such collisions are characterized by a nonlinear scale Q(s) where color fields become strong. We find that loops of area greater than similar to 1.5/Q(s)(2) exhibit area-law behavior, which determines the scale of elementary flux excitations ("vortices"). We also estimate the magnetic string tension, sigma(M) similar or equal to 0.12Q(s)(2). By the time t similar to 1/Q(s) even small loops satisfy area-law scaling. We describe corrections to the propagator of semihard particles at very early times in the background of fluctuating magnetic fields. C1 [Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Dumitru, Adrian; Petreska, Elena] CUNY, Dept Nat Sci, Baruch Coll, New York, NY 10010 USA. [Dumitru, Adrian; Petreska, Elena] CUNY, Grad Sch, New York, NY 10016 USA. [Dumitru, Adrian; Petreska, Elena] CUNY, Univ Ctr, New York, NY 10016 USA. [Nara, Yasushi] Akita Int Univ, Akita 0101292, Japan. RP Dumitru, A (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. FU DOE Office of Nuclear Physics [DE-FG02-09ER41620]; City University of New York through the PSC-CUNY Research Grant [66514-00 44] FX We thank A. Kovner, L. McLerran, P. Orland and R. Pisarski for helpful comments. A. D. and E. P. gratefully acknowledge support by the DOE Office of Nuclear Physics through Grant No. DE-FG02-09ER41620, and from The City University of New York through the PSC-CUNY Research Grant 66514-00 44. NR 24 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2013 VL 88 IS 5 AR 054016 DI 10.1103/PhysRevD.88.054016 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 219DX UT WOS:000324487000014 ER PT J AU Bacca, S Barnea, N Hagen, G Orlandini, G Papenbrock, T AF Bacca, S. Barnea, N. Hagen, G. Orlandini, G. Papenbrock, T. TI First Principles Description of the Giant Dipole Resonance in O-16 SO PHYSICAL REVIEW LETTERS LA English DT Article ID LORENTZ INTEGRAL TRANSFORM; PHOTOABSORPTION CROSS-SECTION; OXYGEN ISOTOPES; RESPONSE FUNCTIONS; FORCES; EXCITATIONS; MODEL; HE-4 AB We present a calculation of the giant dipole resonance in O-16 based on a nucleon-nucleon (NN) interaction from chiral effective field theory that reproduces NN scattering data with high accuracy. By merging the Lorentz integral transform and the coupled-cluster methods, we extend the previous theoretical limits for breakup observables in light nuclei with mass numbers (A <= 7) and address the collective giant dipole resonance of O-16. We successfully benchmark the new approach against virtually exact results from the hyperspherical harmonics method in He-4. Our results for 16O reproduce the position and the total strength (bremsstrahlung sum rule) of the dipole response very well. When compared to the cross section from photoabsorption experiments, the theoretical curve exhibits a smeared form of the peak. The tail region between 40 and 100 MeV is reproduced within uncertainties. C1 [Bacca, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Barnea, N.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Hagen, G.; Papenbrock, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Hagen, G.; Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Orlandini, G.] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy. [Orlandini, G.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38123 Trento, Italy. RP Bacca, S (reprint author), TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. RI Barnea, Nir/F-8960-2011 OI Barnea, Nir/0000-0001-8036-3052 FU Natural Sciences and Engineering Research Council (NSERC); National Research Council of Canada; Israel Science Foundation [954/09]; MIUR [PRIN-2009TWL3MX]; Office of Nuclear Physics, U.S. Department of Energy (Oak Ridge National Laboratory); Office of Science of the Department of Energy [DE-AC05-00OR22725]; Office of Nuclear Physics, U.S. Department of Energy (University of Tennessee) [DE-FG02-96ER40963]; Office of Nuclear Physics, U.S. Department of Energy (UNEDF SciDAC Collaboration) [DE-FC02-07ER41457]; Office of Nuclear Physics, U.S. Department of Energy (NUCLEI SciDAC Collaboration) [DE-SC0008499] FX We thank Winfried Leidemann for helpful discussions. This work was supported in parts by the Natural Sciences and Engineering Research Council (NSERC), the National Research Council of Canada, the Israel Science Foundation (Grant No. 954/09), MIUR Grant No. PRIN-2009TWL3MX, and the Office of Nuclear Physics, U.S. Department of Energy (Oak Ridge National Laboratory), under Grants No. DE-FG02-96ER40963 (University of Tennessee), No. DE-FC02-07ER41457 (UNEDF SciDAC Collaboration), and No. DE-SC0008499 (NUCLEI SciDAC Collaboration). Computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) Program. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract No. DE-AC05-00OR22725, and used computational resources of the National Center for Computational Sciences, the National Institute for Computational Sciences, and TRIUMF. NR 45 TC 19 Z9 19 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 17 PY 2013 VL 111 IS 12 AR 122502 DI 10.1103/PhysRevLett.111.122502 PG 5 WC Physics, Multidisciplinary SC Physics GA 219EP UT WOS:000324489200007 PM 24093253 ER PT J AU Rice, JE Podpaly, YA Reinke, ML Mumgaard, R Scott, SD Shiraiwa, S Wallace, GM Chouli, B Fenzi-Bonizec, C Nave, MFF Diamond, PH Gao, C Granetz, RS Hughes, JW Parker, RR Bonoli, PT Delgado-Aparicio, L Eriksson, LG Giroud, C Greenwald, MJ Hubbard, AE Hutchinson, IH Irby, JH Kirov, K Mailloux, J Marmar, ES Wolfe, SM AF Rice, J. E. Podpaly, Y. A. Reinke, M. L. Mumgaard, R. Scott, S. D. Shiraiwa, S. Wallace, G. M. Chouli, B. Fenzi-Bonizec, C. Nave, M. F. F. Diamond, P. H. Gao, C. Granetz, R. S. Hughes, J. W. Parker, R. R. Bonoli, P. T. Delgado-Aparicio, L. Eriksson, L. -G. Giroud, C. Greenwald, M. J. Hubbard, A. E. Hutchinson, I. H. Irby, J. H. Kirov, K. Mailloux, J. Marmar, E. S. Wolfe, S. M. TI Effects of Magnetic Shear on Toroidal Rotation in Tokamak Plasmas with Lower Hybrid Current Drive SO PHYSICAL REVIEW LETTERS LA English DT Article AB Application of lower hybrid (LH) current drive in tokamak plasmas can induce both co-and countercurrent directed changes in toroidal rotation, depending on the core q profile. For discharges with q(0) < 1, rotation increments in the countercurrent direction are observed. If the LH-driven current is sufficient to suppress sawteeth and increase q(0) above unity, the core toroidal rotation change is in the cocurrent direction. This change in sign of the rotation increment is consistent with a change in sign of the residual stress (the divergence of which constitutes an intrinsic torque that drives the flow) through its dependence on magnetic shear. C1 [Rice, J. E.; Podpaly, Y. A.; Reinke, M. L.; Mumgaard, R.; Shiraiwa, S.; Wallace, G. M.; Gao, C.; Granetz, R. S.; Hughes, J. W.; Parker, R. R.; Bonoli, P. T.; Greenwald, M. J.; Hubbard, A. E.; Hutchinson, I. H.; Irby, J. H.; Marmar, E. S.; Wolfe, S. M.] PSFC MIT, Cambridge, MA 02139 USA. [Scott, S. D.; Delgado-Aparicio, L.] PPPL, Princeton, NJ 08543 USA. [Chouli, B.; Fenzi-Bonizec, C.] CEA Cadarache, F-13108 St Paul Les Durance, France. [Nave, M. F. F.] Univ Tecn Lisboa, Assoc EURATOM IST, P-1049001 Lisbon, Portugal. [Diamond, P. H.] Univ Calif San Diego, CMTFO, San Diego, CA 92903 USA. [Eriksson, L. -G.] Commiss European Communities, Res Directorate Gen, B-1049 Brussels, Belgium. [Giroud, C.; Kirov, K.; Mailloux, J.] CCFE Euratom Fus Assoc, Abingdon OX14 3DB, Oxon, England. RP Rice, JE (reprint author), PSFC MIT, Cambridge, MA 02139 USA. RI Nave, Maria/A-5581-2013; OI Nave, Maria/0000-0003-2078-6584; Greenwald, Martin/0000-0002-4438-729X FU MIT by DOE [DE-FC02-99ER54512]; U.S. DOE Fusion Energy Postdoctoral Research Program; EURATOM FX The authors thank M. Yoshida, S. Koide, and Y. Shi for information regarding LHCD rotation, N. Fisch for enlightening discussions, and the Alcator C-Mod operations and LH groups for expert running of the tokamak. This work was supported at MIT by DOE Contract No. DE-FC02-99ER54512 and in part by an appointment to the U.S. DOE Fusion Energy Postdoctoral Research Program administered by ORISE. This work supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was done under the JET-EFDA workprogramme [30]. NR 28 TC 17 Z9 17 U1 4 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 17 PY 2013 VL 111 IS 12 AR 125003 DI 10.1103/PhysRevLett.111.125003 PG 5 WC Physics, Multidisciplinary SC Physics GA 219EP UT WOS:000324489200013 PM 24093268 ER PT J AU Higginbotham, A Suggit, MJ Bringa, EM Erhart, P Hawreliak, JA Mogni, G Park, N Remington, BA Wark, JS AF Higginbotham, A. Suggit, M. J. Bringa, E. M. Erhart, P. Hawreliak, J. A. Mogni, G. Park, N. Remington, B. A. Wark, J. S. TI Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal SO PHYSICAL REVIEW B LA English DT Article ID TANTALUM SINGLE-CRYSTALS; COPPER; DIFFRACTION; ALLOYS; BCC AB Despite a number of previous nonequilibrium molecular dynamics (MD) studies into plasticity in face-centered-cubic metals, and phase transitions in body-centered-cubic (bcc) metals, the plastic response to rapid compression of bcc metals remains largely unexplored. Key questions remain as to the relative importance of dislocation motion and twinning in shear stress release and consequent strength. We present here large scale MD simulations of shock compressed bcc metal, using an extended Finnis-Sinclair potential for tantalum, and demonstrate the presence of significant deformation twinning for pressures above the Hugoniot elastic limit for shock waves propagating along the [001] direction. The twinned variants are separately identified by a per atom order parameter, allowing the strain and stress states of the rotated material to be studied. The atomic motion during twinning, and thus its mechanism, for this potential, is identified by use of a three-dimensional pair-correlation function. C1 [Higginbotham, A.; Suggit, M. J.; Mogni, G.; Wark, J. S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Bringa, E. M.] Univ Nacl Cuyo, CONICET, RA-5500 Mendoza, Argentina. [Bringa, E. M.] Univ Nacl Cuyo, Inst Ciencias Basicas, RA-5500 Mendoza, Argentina. [Erhart, P.; Hawreliak, J. A.; Remington, B. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Park, N.] Atom Weap Estab, Reading RG7 4PR, Berks, England. RP Higginbotham, A (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM m.suggit1@physics.ox.ac.uk RI Erhart, Paul/G-6260-2011 OI Erhart, Paul/0000-0002-2516-6061 FU AWE; [PICT2008-1325] FX A.H. and M.S. are grateful for support from AWE. E.M.B. is thankful for support from PICT2008-1325. The authors thank Yizhe Tang for useful discussions. NR 37 TC 14 Z9 14 U1 4 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 17 PY 2013 VL 88 IS 10 AR 104105 DI 10.1103/PhysRevB.88.104105 PG 8 WC Physics, Condensed Matter SC Physics GA 219DN UT WOS:000324485900001 ER PT J AU Manuel, P Chapon, LC Trimarchi, G Todorov, IS Chung, DY Ouladdiaf, B Gutmann, MJ Freeman, AJ Kanatzidis, MG AF Manuel, P. Chapon, L. C. Trimarchi, G. Todorov, I. S. Chung, D. Y. Ouladdiaf, B. Gutmann, M. J. Freeman, A. J. Kanatzidis, M. G. TI Influence of Cr doping on the magnetic structure of the FeAs-strips compound CaFe4As3: A single-crystal neutron diffraction study SO PHYSICAL REVIEW B LA English DT Article ID WAVE AB We have studied the magnetic structure of a Cr-doped iron-arsenide compound CaFe4As3 by means of single crystal neutron diffraction. The neutron data reveal that below 90 K, an antiferromagnetic structure with propagation vector k = 0 is adopted. Refinement of the magnetic structure using one of the modes allowed by symmetry analysis indicates that two of the four Fe sites, including the one where the selective substitution Fe/Cr happens, bear reduced magnetic moments. Density functional theory calculations confirm the stability of such a magnetic arrangement. C1 [Manuel, P.; Chapon, L. C.; Gutmann, M. J.] STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Chapon, L. C.; Ouladdiaf, B.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Trimarchi, G.; Freeman, A. J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Todorov, I. S.; Chung, D. Y.; Kanatzidis, M. G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Manuel, P (reprint author), STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RI Trimarchi, Giancarlo/A-8225-2010 OI Trimarchi, Giancarlo/0000-0002-0365-3221 FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank the Science and Technology Facilities Council for providing the neutron beam time at the ILL and Marek Jura for assistance with preliminary x-ray diffraction (XRD) data. The work at Argonne National Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 21 TC 1 Z9 1 U1 0 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 17 PY 2013 VL 88 IS 10 AR 104414 DI 10.1103/PhysRevB.88.104414 PG 4 WC Physics, Condensed Matter SC Physics GA 219DN UT WOS:000324485900002 ER PT J AU Vasudevan, RK Okatan, MB Rajapaksa, I Kim, Y Marincel, D Trolier-McKinstry, S Jesse, S Valanoor, N Kalinin, SV AF Vasudevan, R. K. Okatan, M. Baris Rajapaksa, I. Kim, Y. Marincel, D. Trolier-McKinstry, S. Jesse, S. Valanoor, N. Kalinin, S. V. TI Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution SO SCIENTIFIC REPORTS LA English DT Article ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; THIN-FILMS; POLYCRYSTALLINE FERROELECTRICS; FREQUENCY-DEPENDENCE; STATISTICAL-THEORY; SIGNAL RESPONSE; DOMAIN-WALLS; CERAMICS; ELECTROSTRICTION; POLARIZATION AB Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, insight into the nonlinear behavior can be gleaned through exploration of higher order harmonics. Here, a method using band excitation scanning probe microscopy (SPM) to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The technique is demonstrated by probing the first three harmonics of strain for a Pb(Zr1-xTix) O-3 (PZT) ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, measurements of the second harmonic reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of nth order harmonic SPM detection methods in exploring nonlinear phenomena in nanoscale materials. C1 [Vasudevan, R. K.; Okatan, M. Baris; Valanoor, N.] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Rajapaksa, I.; Kim, Y.; Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Marincel, D.; Trolier-McKinstry, S.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI valanoor, nagarajan/B-4159-2012; Vasudevan, Rama/Q-2530-2015; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Okatan, M. Baris/E-1913-2016; OI Vasudevan, Rama/0000-0003-4692-8579; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Okatan, M. Baris/0000-0002-9421-7846; Trolier-McKinstry, Susan/0000-0002-7267-9281 FU National Science Foundation [DMR 1005771]; National Security Science and Engineering Faculty Fellowship; ARC Discovery Project scheme; Australian Nanotechnology Network and the user facilities at ORNL-CNMS under user proposal [2011-281]; Nanophase Materials Sciences; Oak Ridge National Laboratory by the Division of Scientific User Facilities; U.S. Department of Energy FX STM and DM gratefully acknowledge support from the National Science Foundation (DMR 1005771) and a National Security Science and Engineering Faculty Fellowship. R.K.V., M.B.O. and N.V. acknowledge support from the ARC Discovery Project scheme. R.K. V. and V.N. acknowledge an Overseas Travel Fellowship by the Australian Nanotechnology Network and the user facilities at ORNL-CNMS under user proposal No. 2011-281. The research at ORNL (Y.K., S.J., S.V.K.) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 47 TC 8 Z9 8 U1 0 U2 40 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 17 PY 2013 VL 3 AR 2677 DI 10.1038/srep02677 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 218VC UT WOS:000324459600001 PM 24045269 ER PT J AU Crawford, CL Hill, HH AF Crawford, C. L. Hill, H. H., Jr. TI Evaluation of false positive responses by mass spectrometry and ion mobility spectrometry for the detection of trace explosives in complex samples SO ANALYTICA CHIMICA ACTA LA English DT Article DE Ion mobility spectrometry; Mass spectrometry; Secondary electrospray ionization source; Interferences; Personal care products ID ELECTROSPRAY-IONIZATION; EMERGING CONTAMINANTS; PLASMA CHROMATOGRAPHY; INTERFERENCES; CHEMISTRY; DEFENSE AB Secondary electrospray ionization-ion mobility-time of flight mass spectrometry (SESI-IM-TOFMS) was used to evaluate common household products and food ingredients for any mass or mobility responses that produced false positives for explosives. These products contained ingredients which shared the same mass and mobility drift time ranges as the analyte ions for common explosives. The results of this study showed that the vast array of compounds in these products can cause either mass or mobility false positive responses. This work also found that two ingredients caused either enhanced or reduced ionization of the target analytes. Another result showed that an IMS can provide real-time separation of ion species that impede accurate mass identifications due to overlapping isotope peak patterns. The final result of this study showed that, when mass and mobility values were used to identify an ion, no false responses were found for the target explosives. The wider implication of these results is that the possibility exists for even greater occurrences of false responses from complex mixtures found in common products. Neither IMS nor MS alone can provide 100% assurance from false responses. IMS, due to its low cost, ease of operation, rugged reliability, high sensitivity and tunable selectivity, will remain the field method of choice for the near future but, when combined with MS, can also reduce the false positive rate for explosive analyses. (C) 2013 Elsevier B.V. All rights reserved. C1 [Crawford, C. L.; Hill, H. H., Jr.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. RP Crawford, CL (reprint author), Sandia Natl Labs, POB 5800,MS1455, Albuquerque, NM 87185 USA. EM clcrawf@sandia.gov FU U.S. National Science Foundation [0731306] FX The authors would like to acknowledge Dr. Prabha Dwivedi for advice on conducting the initial SESI-IM-TOFMS experiments with trace explosives. This project was funded in part by Grant No. 0731306 from the U.S. National Science Foundation. NR 43 TC 5 Z9 5 U1 3 U2 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD SEP 17 PY 2013 VL 795 BP 36 EP 43 DI 10.1016/j.aca.2013.07.070 PG 8 WC Chemistry, Analytical SC Chemistry GA 211VD UT WOS:000323938500005 PM 23998535 ER PT J AU Wu, YF Cai, YH Sun, Y Xu, RX Yu, HN Han, XJ Lou, HX Cheng, AX AF Wu, Yifeng Cai, Yuanheng Sun, Yi Xu, Ruixue Yu, Haina Han, Xiaojuan Lou, Hongxiang Cheng, Aixia TI A single amino acid determines the catalytic efficiency of two alkenal double bond reductases produced by the liverwort Plagiochasma appendiculatum SO FEBS LETTERS LA English DT Article DE Alkenal double bond reductase; Hydroxycinnamyl aldehyde; Molecular modeling; Site-directed mutagenesis; Plagiochasma appendiculatum ID BENZYLIC ETHER REDUCTASES; SECOISOLARICIRESINOL DEHYDROGENASE; PLANT DEFENSE; PINORESINOL-LARICIRESINOL; ISOFLAVONE REDUCTASES; CRYSTAL-STRUCTURES; PURIFICATION; ARABIDOPSIS; MECHANISMS; EXPRESSION AB Alkenal double bond reductases (DBRs) catalyze the NADPH-dependent reduction of the alpha,beta-unsaturated double bond of many secondary metabolites. Two alkenal double bond reductase genes PaDBR1 and PaDBR2 were isolated from the liverwort species Plagiochasma appendiculatum. Recombinant PaDBR2 protein had a higher catalytic activity than PaDBR1 with respect to the reduction of the double bond present in hydroxycinnamyl aldehydes. The residue at position 56 appeared to be responsible for this difference in enzyme activity. The functionality of a C56 to Y56 mutation in PaDBR1 was similar to that of PaDBR2. Further site-directed mutagenesis and structural modeling suggested that the phenol ring stacking between this residue and the substrate was an important determinant of catalytic efficiency. (C) 2013 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved. C1 [Wu, Yifeng; Sun, Yi; Xu, Ruixue; Yu, Haina; Han, Xiaojuan; Lou, Hongxiang; Cheng, Aixia] Shandong Univ, Sch Pharmaceut Sci, Minist Educ, Key Lab Chem Biol Nat Prod, Jinan 250012, Peoples R China. [Cai, Yuanheng] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. RP Cheng, AX (reprint author), Shandong Univ, Sch Pharmaceut Sci, Minist Educ, Key Lab Chem Biol Nat Prod, Jinan 250012, Peoples R China. EM aixiacheng@sdu.edu.cn FU National Natural Science Foundation of China [31170280]; Young Scientists Foundation Grant of Shandong Province [BS2010SW019] FX We are grateful for the support of the National Natural Science Foundation of China (No. 31170280), Young Scientists Foundation Grant of Shandong Province (No. BS2010SW019). NR 23 TC 2 Z9 2 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD SEP 17 PY 2013 VL 587 IS 18 BP 3122 EP 3128 DI 10.1016/j.febslet.2013.07.051 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 213DG UT WOS:000324033700036 PM 23954295 ER PT J AU de Sahb, C Watson, LA Nadas, J Hay, BP AF de Sahb, Charles Watson, Lori A. Nadas, Janos Hay, Benjamin P. TI Design Criteria for Polyazine Extractants To Separate An(III) from Ln(III) SO INORGANIC CHEMISTRY LA English DT Article ID EFFECTIVE CORE POTENTIALS; MM3 FORCE-FIELD; HETEROCYCLIC N-DONORS; MOLECULAR CALCULATIONS; SELECTIVE LIGANDS; AQUEOUS-SOLUTION; COMPLEXATION; ACTINIDES; HYDROCARBONS; LANTHANIDES AB Although polyazine extractants have been extensively studied as agents for partitioning trivalent actinides from lanthanides, an explanation for why certain azine compositions succeed and others fail is lacking. To address this issue, density functional theory calculations were used to evaluate fundamental properties (intrinsic binding affinity for a representative trivalent f-block metal, basicity, and hardness) for prototype azine donors pyridine, pyridazine, pyrimidine, pyrazine, 1,2,3-triazine, 1,2,4-triazine, and 1,3,5-triazine, as well as perform conformational analyses of bisazine chelates formed by directly connecting two donors together. The results provide criteria that both rationalize the behavior of known extractants, TERPY, TPTZ, hemi-BTP, BTP, BTBP, and BTPhen, and predict a new class of extractants based on pyridazine donor groups. C1 [de Sahb, Charles; Nadas, Janos; Hay, Benjamin P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Watson, Lori A.] Earlham Coll, Dept Chem, Richmond, IN 47374 USA. RP Hay, BP (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM haybp@ornl.gov FU Fuel Cycle Research and Development Program, Office of Nuclear Energy, U.S. Department of Energy FX This research was sponsored by the Fuel Cycle Research and Development Program, Office of Nuclear Energy, U.S. Department of Energy. NR 50 TC 13 Z9 13 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 16 PY 2013 VL 52 IS 18 BP 10632 EP 10642 DI 10.1021/1c401666m PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 295EB UT WOS:000330098300052 PM 23971900 ER PT J AU Lei, HC Wang, KF Abeykoon, M Bozin, ES Petrovic, C AF Lei, Hechang Wang, Kefeng Abeykoon, Milinda Bozin, Emil S. Petrovic, Cedomir TI New Layered Fluorosulfide SrFBiS2 SO INORGANIC CHEMISTRY LA English DT Article ID SUPERCONDUCTIVITY; BI4O4S3 AB We have synthesized a new layered BiS2-based compound, SrFBiS2. This compound has a similar structure to LaOBiS2. It is built up by stacking up SrF layers and NaCl-type BiS2 layers alternatively along the c axis. Electric transport measurement indicates that SrFBiS2 is a semiconductor. Thermal transport measurement shows that SrFBiS2 has a small thermal conductivity and large Seebeck coefficient. First principle calculations are in agreement with experimental results and show that SrFBiS2 is very similar to LaOBiS2, which becomes a superconductor with F doping. Therefore, SrFBiS2 may be a parent compound of new superconductors. C1 [Lei, Hechang; Wang, Kefeng; Abeykoon, Milinda; Bozin, Emil S.; Petrovic, Cedomir] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Petrovic, C (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM petrovic@bnl.gov RI Wang, Kefeng/E-7683-2011; Petrovic, Cedomir/A-8789-2009; LEI, Hechang/H-3278-2016 OI Wang, Kefeng/0000-0002-8449-9720; Petrovic, Cedomir/0000-0001-6063-1881; FU U.S. DOE [DE-ACO2-98CH10886]; Center for Emergent Superconductivity, an Energy Frontier Research Center; U.S. DOE, Office for Basic Energy Science FX We thank John Warren for help with SEM measurements. Work at Brookhaven is supported by the U.S. DOE under Contract No. DE-ACO2-98CH10886 and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office for Basic Energy Science (HI. and C.P.). This work benefited from usage of X17A beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. We gratefully acknowledge Zhong Zhong and Jonathan Hanson for their help with the X17A experiment setup. NR 36 TC 42 Z9 42 U1 0 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 16 PY 2013 VL 52 IS 18 BP 10685 EP 10689 DI 10.1021/ic4018135 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 295EB UT WOS:000330098300057 PM 23987520 ER PT J AU Jones, A Haywood, JM Alterskjaer, K Boucher, O Cole, JNS Curry, CL Irvine, PJ Ji, DY Kravitz, B Kristjansson, JE Moore, JC Niemeier, U Robock, A Schmidt, H Singh, B Tilmes, S Watanabe, S Yoon, JH AF Jones, Andy Haywood, Jim M. Alterskjaer, Kari Boucher, Olivier Cole, Jason N. S. Curry, Charles L. Irvine, Peter J. Ji, Duoying Kravitz, Ben Kristjansson, Jon Egill Moore, John C. Niemeier, Ulrike Robock, Alan Schmidt, Hauke Singh, Balwinder Tilmes, Simone Watanabe, Shingo Yoon, Jin-Ho TI The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE geoengineering; termination; climate change; climate model; intercomparison; GeoMIP ID STRATOSPHERIC SULFUR INJECTIONS; CLIMATE AB We have examined changes in climate which result from the sudden termination of geoengineering after 50 years of offsetting a 1% per annum increase in CO2 concentrations by a reduction of solar radiation, as simulated by 11 different climate models in experiment G2 of the Geoengineering Model Intercomparison Project. The models agree on a rapid increase in global-mean temperature following termination accompanied by increases in global-mean precipitation rate and decreases in sea-ice cover. There is no agreement on the impact of geoengineering termination on the rate of change of global-mean plant net primary productivity. There is a considerable degree of consensus for the geographical distribution of temperature change following termination, with faster warming at high latitudes and over land. There is also considerable agreement regarding the distribution of reductions in Arctic sea-ice, but less so for the Antarctic. There is much less agreement regarding the patterns of change in precipitation and net primary productivity, with a greater degree of consensus at higher latitudes. C1 [Jones, Andy; Haywood, Jim M.] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. [Haywood, Jim M.] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England. [Alterskjaer, Kari; Kristjansson, Jon Egill] Univ Oslo, Dept Geosci, Oslo, Norway. [Boucher, Olivier] UPMC, CNRS, IPSL, Meteorol Dynam Lab, Paris, France. [Cole, Jason N. S.] Environm Canada, Canadian Ctr Climate Modeling & Anal, Toronto, ON, Canada. [Curry, Charles L.] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada. [Irvine, Peter J.] Inst Adv Sustainabil Studies, Potsdam, Germany. [Ji, Duoying; Moore, John C.] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Earth Surface Processes & Resource, Beijing 100875, Peoples R China. [Kravitz, Ben; Singh, Balwinder; Yoon, Jin-Ho] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Niemeier, Ulrike; Schmidt, Hauke] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Robock, Alan] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Tilmes, Simone] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Watanabe, Shingo] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan. RP Jones, A (reprint author), Met Off Hadley Ctr, Fitzroy Rd, Exeter EX1 3PB, Devon, England. EM andy.jones@metoffice.gov.uk RI Watanabe, Shingo/L-9689-2014; Moore, John/B-2868-2013; YOON, JIN-HO/A-1672-2009; Kravitz, Ben/P-7925-2014; Robock, Alan/B-6385-2016 OI Watanabe, Shingo/0000-0002-2228-0088; Cole, Jason/0000-0003-0450-2748; Moore, John/0000-0001-8271-5787; YOON, JIN-HO/0000-0002-4939-8078; Kravitz, Ben/0000-0001-6318-1150; FU Joint DECC/Defra Met Office Hadley Centre Climate Programme [GA01101]; European Union Seventh Framework Programme through the EUTRACE project [306395]; European Union Seventh Framework Programme through the IMPLICC project [226567]; Norwegian Research Council's program for supercomputing (NOTUR); FP7 EuTRACE project [306395]; Fund for Innovative Climate and Energy Research; NASA High-End Computing (HEC) program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center; U.S. Department of Energy [DE-AC05-76RL01830]; NSF [AGS-1157525, CBET-1240507]; U.S. National Center for Atmospheric Research; U.S. National Science Foundation; SOUSEI program, MEXT, JAPAN FX We thank all participants of the Geoengineering Model Intercomparison Project and their model development teams, the CLIVAR/WCRP Working Group on Coupled Modeling for endorsing GeoMIP, and the scientists managing the Earth System Grid data nodes who have assisted in making GeoMIP output available. We also acknowledge the WCRP's Working Group on Coupled Modeling for being responsible for CMIP and we thank the CMIP5 modeling groups for producing and making available their model output. The U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provided coordinating support for CMIP and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. A.J. would also like to thank the Met Office team responsible for the managecmip software, without which this work would not have been possible. A.J. and J.M.H. were supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and their contributions are (c) crown copyright. J.M.H. has also received funding from the European Union Seventh Framework Programme through the EUTRACE project (306395). K. A., J.E.K., U.N., and H. S. have received funding from the European Union Seventh Framework Programme through the IMPLICC project (226567). K. A. and J.E.K. were also partly funded by the Norwegian Research Council's program for supercomputing (NOTUR). O.B. would like to acknowledge partial support from the FP7 EuTRACE project grant agreement (306395). D.J. and J.M. thank all members of the BNU-ESM model group, as well as the Center of Information and Network Technology at Beijing Normal University for assistance in publishing the GeoMIP data set. B. K. is supported by the Fund for Innovative Climate and Energy Research and B.K.'s simulations were supported by the NASA High-End Computing (HEC) program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. A. R. is supported by NSF grants AGS-1157525 and CBET-1240507. S. T. is supported by the U.S. National Center for Atmospheric Research which is funded by the U.S. National Science Foundation. S. W. was supported by the SOUSEI program, MEXT, JAPAN. NR 22 TC 54 Z9 55 U1 5 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 16 PY 2013 VL 118 IS 17 BP 9743 EP 9752 DI 10.1002/jgrd.50762 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 232JH UT WOS:000325489300032 ER PT J AU Leng, GY Huang, MY Tang, QH Sacks, WJ Lei, HM Leung, LR AF Leng, Guoyong Huang, Maoyi Tang, Qiuhong Sacks, William J. Lei, Huimin Leung, L. Ruby TI Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to input data and model parameters SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE irrigation; CLM4; uncertainties ID RIVER-BASINS; WATER-VAPOR; HIGH-PLAINS; TEMPERATURE; CLIMATE; SUMMER; AREAS; MAP; US; PRECIPITATION AB Previous studies on irrigation impacts on land surface fluxes/states were mainly conducted as sensitivity experiments, with limited analysis of uncertainties from the input data and model irrigation schemes used. In this study, we calibrated and evaluated the performance of irrigation water use simulated by the Community Land Model version 4 (CLM4) against observations from agriculture census. We investigated the impacts of irrigation on land surface fluxes and states over the conterminous United States (CONUS) and explored possible directions of improvement. Specifically, we found large uncertainty in the irrigation area data from two widely used sources and CLM4 tended to produce unrealistically large temporal variations of irrigation demand for applications at the water resources region scale over CONUS. At seasonal to interannual time scales, the effects of irrigation on surface energy partitioning appeared to be large and persistent, and more pronounced in dry than wet years. Even with model calibration to yield overall good agreement with the irrigation amounts from the National Agricultural Statistics Service, differences between the two irrigation area data sets still dominate the differences in the interannual variability of land surface responses to irrigation. Our results suggest that irrigation amount simulated by CLM4 can be improved by calibrating model parameter values and accurate representation of the spatial distribution and intensity of irrigated areas. Furthermore, through a set of numerical experiments, the deficiency in the current parameterization is evaluated and a critical path forward to a realistic assessment of irrigation impacts using an earth system modeling approach is recommended. C1 [Leng, Guoyong; Tang, Qiuhong] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China. [Leng, Guoyong; Huang, Maoyi; Lei, Huimin; Leung, L. Ruby] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Leng, Guoyong] Univ Chinese Acad Sci, Beijing, Peoples R China. [Sacks, William J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Lei, Huimin] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China. RP Huang, MY (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM maoyi.huang@pnnl.gov RI Huang, Maoyi/I-8599-2012; Lei, Huimin/H-9596-2015; OI Huang, Maoyi/0000-0001-9154-9485; Lei, Huimin/0000-0002-1175-2334; Tang, Qiuhong/0000-0002-0886-6699 FU Integrated Earth System Modeling (iESM) project; Department of Energy Earth System Modeling program; U.S. Department of Energy [DE-AC05-76RLO1830]; National Natural Science Foundation of China [41171031]; National Basic Research Program of China [2012CB955403] FX This study was supported by the Integrated Earth System Modeling (iESM) project funded by Department of Energy Earth System Modeling program. The Pacific Northwest National Laboratory (PNNL) Platform for Regional Integrated Modeling and Analysis (PRIMA) Initiative provided the model configuration and data sets used in the numerical experiments. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RLO1830. This work was also partly funded by the National Natural Science Foundation of China (41171031) and the National Basic Research Program of China (2012CB955403). NR 63 TC 29 Z9 29 U1 2 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 16 PY 2013 VL 118 IS 17 BP 9789 EP 9803 DI 10.1002/jgrd.50792 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 232JH UT WOS:000325489300036 ER PT J AU Rosenfeld, D Chemke, R DeMott, P Sullivan, RC Rasmussen, R McDonough, F Comstock, J Schmid, B Tomlinson, J Jonsson, H Suski, K Cazorla, A Prather, K AF Rosenfeld, Daniel Chemke, Rei DeMott, Paul Sullivan, Ryan C. Rasmussen, Roy McDonough, Frank Comstock, Jennifer Schmid, Beat Tomlinson, Jason Jonsson, Haflidi Suski, Kaitlyn Cazorla, Alberto Prather, Kimberly TI The common occurrence of highly supercooled drizzle and rain near the coastal regions of the western United States SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE Supercooled rain; Supercooled drizzle; Cloud aerosol interactions ID AIRCRAFT ICING ENVIRONMENTS; MIXED-PHASE CLOUDS; FREEZING DRIZZLE; SIERRA-NEVADA; LIQUID WATER; LARGE DROPS; PRECIPITATION DEVELOPMENT; CONVECTIVE CLOUDS; ICE NUCLEI; PART I AB Highly supercooled rain and drizzle from cloud tops at -12 to -21 degrees C down to the 0 degrees isotherm was documented by aircraft observations in clouds over a wide range of meteorological situations under relatively pristine marine aerosol conditions. The Gulfstream-1 aircraft during the CalWater campaign in February and early March 2011 measured clouds over the coastal waters of northern California, orographically triggered convective clouds over the foothills of the Sierra Nevada, and orographic layer clouds over Yosemite National Park. Supercooled drizzle in layer clouds near Juneau, Alaska, was measured by the Wyoming King Air as part of a FAA project to study aircraft icing in this region. Low concentrations of cloud condensation nuclei (CCN) were commonly observed in all of these clouds, allowing for the formation of clouds with small concentrations of mostly large drops that coalesced into supercooled drizzle and raindrops. Another common observation was the absence of ice nuclei (IN) and/or ice crystals in measurable concentrations, associated with persistent supercooled drizzle and rain. Average ice crystal concentrations were 0.007l(-1) at the top of convective clouds at -12 degrees C and 0.03l(-1) in the case of layer clouds at -21 degrees C. In combination, these two conditions of low concentrations of CCN and very few IN provide ideal conditions for the formation of highly supercooled drizzle and rain. These results help explain the anomalously high incidences of aircraft icing at cold temperatures in U.S. west coast clouds and highlight the need to include aerosol effects when simulating aircraft icing with cloud models. C1 [Rosenfeld, Daniel; Chemke, Rei] Hebrew Univ Jerusalem, IL-91904 Jerusalem, Israel. [DeMott, Paul] Colorado State Univ, Ft Collins, CO 80523 USA. [Sullivan, Ryan C.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Rasmussen, Roy; McDonough, Frank] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Comstock, Jennifer; Schmid, Beat; Tomlinson, Jason] Pacific NW Natl Lab, Richland, WA 99352 USA. [Jonsson, Haflidi] Naval Postgrad Sch, Monterey, CA USA. [Suski, Kaitlyn; Cazorla, Alberto; Prather, Kimberly] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Rosenfeld, D (reprint author), Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. EM daniel.rosenfeld@huji.ac.il RI Sullivan, Ryan/B-4674-2008; Rosenfeld, Daniel/F-6077-2016; Prather, Kimberly/A-3892-2008 OI Sullivan, Ryan/0000-0003-0701-7158; Rosenfeld, Daniel/0000-0002-0784-7656; Prather, Kimberly/0000-0003-3048-9890 FU California Energy Commission [500-09-032]; U.S. Department of Energy (DOE) Office of Science (BER) Atmospheric System Research program FX The deployment of the G-1 aircraft and associated PNNL pilots and researchers augmented with staff from CIRPAS was funded by the California Energy Commission under grant 500-09-032. The first author was partially supported for this study by the U.S. Department of Energy (DOE) Office of Science (BER) Atmospheric System Research program. NR 43 TC 12 Z9 12 U1 2 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 16 PY 2013 VL 118 IS 17 BP 9819 EP 9833 DI 10.1002/jgrd.50529 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 232JH UT WOS:000325489300038 ER PT J AU Hosseini, S Urbanski, SP Dixit, P Qi, L Burling, IR Yokelson, RJ Johnson, TJ Shrivastava, M Jung, HS Weise, DR Miller, JW Cocker, DR AF Hosseini, S. Urbanski, S. P. Dixit, P. Qi, L. Burling, I. R. Yokelson, R. J. Johnson, T. J. Shrivastava, M. Jung, H. S. Weise, D. R. Miller, J. W. Cocker, D. R., III TI Laboratory characterization of PM emissions from combustion of wildland biomass fuels SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE biomass burning; emissions; levoglucosan; polycyclic aromatic hydrocarbons; wood; prescribed burns ID AIR-POLLUTION SOURCES; TRACE GASES; BURNING EMISSIONS; ORGANIC-COMPOUNDS; UNITED-STATES; PARTICLE EMISSIONS; OCCUPATIONAL EXPOSURES; PARTICULATE-EMISSIONS; OPTICAL-PROPERTIES; ELEMENTAL CARBON AB Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S. fuel types during 77 controlled laboratory burns are presented. The fuels include SW vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush, manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland, as well as SE vegetation types: 1 year, 2 year rough, pocosin, chipped understory, understory hardwood, and pine litter. The SW fuels burned at higher modified combustion efficiency (MCE) than the SE fuels resulting in lower particulate matter mass emission factor. Particle mass distributions for six fuels and particle number emission for all fuels are reported. Excellent mass closure (slope=1.00, r(2)=0.94) between ions, metals, and carbon with total weight was obtained. Organic carbon emission factors inversely correlated (R-2=0.72) with average MCE, while elemental carbon (EC) had little correlation with average MCE (R-2=0.10). The EC/total carbon ratio sharply increased with MCE for MCEs exceeding 0.94. The average levoglucosan and total polycyclic aromatic hydrocarbon (PAH) emissions factors ranged from 25 to 1272mg/kg fuel and 1.8 to 11.3mg/kg fuel, respectively. No correlation between average MCE and emissions of PAHs/levoglucosan was found. Additionally, PAH diagnostic ratios were observed to be poor indicators of biomass burning. Large fuel type and regional dependency were observed in the emission rates of ammonium, nitrate, chloride, sodium, and potassium. C1 [Hosseini, S.; Dixit, P.; Qi, L.; Jung, H. S.; Miller, J. W.; Cocker, D. R., III] Univ Calif Riverside, Bourns Coll Engn, Riverside, CA 92507 USA. [Urbanski, S. P.] US Forest Serv, Fire Sci Lab, Rocky Mt Res Stn, USDA, Missoula, MT USA. [Qi, L.] Natl Res Ctr Environm Anal & Measurement, Beijing, Peoples R China. [Burling, I. R.; Yokelson, R. J.] Univ Montana, Dept Chem, Missoula, MT 59812 USA. [Johnson, T. J.; Shrivastava, M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Weise, D. R.] US Forest Serv, Forest Fire Lab, Pacific Southwest Res Stn, USDA, Riverside, CA USA. RP Cocker, DR (reprint author), Univ Calif Riverside, Bourns Coll Engn, 1084 Columbia Ave, Riverside, CA 92507 USA. EM dcocker@engr.ucr.edu RI Yokelson, Robert/C-9971-2011; Cocker, David/F-4442-2010; OI Yokelson, Robert/0000-0002-8415-6808; Cocker, David/0000-0002-0586-0769; Jung, Heejung/0000-0003-0366-7284 FU Department of Defense [RC-1648, RC-1649] FX This work was supported by the Department of Defense's Strategic Environmental Research and Development Program (SERDP), resources conservation projects RC-1648 and RC-1649 and we thank our sponsors for their support. NR 89 TC 15 Z9 15 U1 8 U2 45 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 16 PY 2013 VL 118 IS 17 BP 9914 EP 9929 DI 10.1002/jgrd.50481 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 232JH UT WOS:000325489300045 ER PT J AU Kajino, M Easter, RC Ghan, SJ AF Kajino, Mizuo Easter, Richard C. Ghan, Steven J. TI Modal Bin Hybrid Model: A surface area consistent, triple-moment sectional method for use in process-oriented modeling of atmospheric aerosols SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE aerosol dynamics; sectional and modal methods; cloud condensation nuclei; wet deposition; aerosol mixing state; multiple category approach ID PARTICLE-SIZE RANGE; MIXING STATE; CLIMATE MODEL; BLACK CARBON; GAS UPTAKE; CONDENSATION; NUCLEATION; DYNAMICS; MODULE; PARAMETERIZATION AB A triple-moment sectional (TMS) aerosol dynamics model, Modal Bin Hybrid Model (MBHM), has been developed. In addition to number and mass (volume), surface area is predicted (and preserved), which is important for aerosol processes and properties such as gas-to-particle mass transfer, heterogeneous reaction, and light extinction cross section. The performance of MBHM was evaluated against double-moment sectional (DMS) models with coarse (BIN4) to very fine (BIN256) size resolutions for simulating evolution of particles under simultaneously occurring nucleation, condensation, and coagulation processes (BINx resolution uses x sections to cover the 1 nm to 1 mu m size range). Because MBHM gives a physically consistent form of the intrasectional distributions, errors and biases of MBHM at BIN4-8 resolution were almost equivalent to those of DMS at BIN16-32 resolution for various important variables such as the moments M-k (k: 0, 2, 3), dM(k)/dt, and the number and volume of particles larger than a certain diameter. Another important feature of MBHM is that only a single bin is adequate to simulate full aerosol dynamics for particles whose size distribution can be approximated by a single lognormal mode. This flexibility is useful for process-oriented (multicategory and/or mixing state) modeling: Primary aerosols whose size parameters would not differ substantially in time and space can be expressed by a single or a small number of modes, whereas secondary aerosols whose size changes drastically from 1 to several hundred nanometers can be expressed by a number of modes. Added dimensions can be applied to MBHM to represent mixing state or photochemical age for aerosol mixing state studies. C1 [Kajino, Mizuo] Japan Meteorol Agcy, Meteorol Res Inst, Atmospher Environm & Appl Meteorol Res Dept, Tsukuba, Ibaraki 3050052, Japan. [Kajino, Mizuo; Easter, Richard C.; Ghan, Steven J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kajino, M (reprint author), Japan Meteorol Agcy, Meteorol Res Inst, Atmospher Environm & Appl Meteorol Res Dept, 1-1 Nagamine, Tsukuba, Ibaraki 3050052, Japan. EM kajino@mri-jma.go.jp RI Ghan, Steven/H-4301-2011 OI Ghan, Steven/0000-0001-8355-8699 FU Japan Society for Promotion of Science (JSPS); Ministry of Education, Science, Sports, and Culture (MEXT) [24110002, 24340115, 23310018]; Environment Research and Technology Development Fund of the Ministry of the Environment of Japan (MOE) [A-1101]; U.S. Department of Energy Atmospheric Systems Research program; U.S. Department of Energy [DE-AC05-76RL01830] FX M. Kajino was supported by the Japan Society for Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad. This research was partly supported by the Ministry of Education, Science, Sports, and Culture (MEXT) Grant-in-Aid for Scientific Research on Innovative Areas 24110002, (B) 24340115, and (B) 23310018; and the Environment Research and Technology Development Fund (project A-1101) of the Ministry of the Environment of Japan (MOE). S. J. Ghan and R. C. Easter were funded by the U.S. Department of Energy Atmospheric Systems Research program. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830. The authors thank Naga Oshima of Meteorological Research Institute, Japan, and Rahul A. Zaveri of Pacific Northwest National Laboratory, USA, for useful discussions. NR 62 TC 0 Z9 0 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 16 PY 2013 VL 118 IS 17 BP 10011 EP 10040 DI 10.1002/jgrd.50685 PG 30 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 232JH UT WOS:000325489300013 ER PT J AU Berkelhammer, M Hu, J Bailey, A Noone, DC Still, CJ Barnard, H Gochis, D Hsiao, GS Rahn, T Turnipseed, A AF Berkelhammer, M. Hu, J. Bailey, A. Noone, D. C. Still, C. J. Barnard, H. Gochis, D. Hsiao, G. S. Rahn, T. Turnipseed, A. TI The nocturnal water cycle in an open-canopy forest SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE water isotopes; dewfall; nocturnal boundary layer; forest hydrology ID RATIO INFRARED-SPECTROSCOPY; STABLE-ISOTOPE ANALYSIS; CARBON-DIOXIDE; EDDY COVARIANCE; LEAF WATER; SAP FLOW; FOLIAR ABSORPTION; MASS-SPECTROMETRY; DEW FORMATION; SOIL-WATER AB The movement of moisture into, out-of, and within forest ecosystems is modulated by feedbacks that stem from processes which couple plants, soil, and the atmosphere. While an understanding of these processes has been gleaned from Eddy Covariance techniques, the reliability of the method suffers at night because of weak turbulence. During the summer of 2011, continuous profiles of the isotopic composition (i.e., delta O-18 and delta D) of water vapor and periodic measurements of soil, leaf, and precipitation pools were measured in an open-canopy ponderosa pine forest in central Colorado to study within-canopy nocturnal water cycling. The isotopic composition of the nocturnal water vapor varies significantly based on the relative contributions of the three major hydrological processes acting on the forest: dewfall, exchange of moisture between leaf waters and canopy vapor, and periodic mixing between the canopy and background air. Dewfall proved to be surprisingly common (similar to 30% of the nights) and detectable on both the surface and within the canopy through the isotopic measurements. While surface dew could be observed using leaf wetness and soil moisture sensors, dew in the foliage was only measurable through isotopic analysis of the vapor and often occurred even when no dew accumulated on the surface. Nocturnal moisture cycling plays a critical role in water availability in forest ecosystems through foliar absorption and transpiration, and assessing these dynamics, as done here, is necessary for fully characterizing the hydrological controls on terrestrial productivity. C1 [Berkelhammer, M.; Bailey, A.; Noone, D. C.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Berkelhammer, M.; Bailey, A.; Noone, D. C.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Hu, J.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [Still, C. J.] Oregon State Univ, Corvallis, OR 97331 USA. [Barnard, H.] Univ Colorado, Inst Arctic & Alpine Res, Dept Geog, Boulder, CO 80309 USA. [Gochis, D.] Natl Ctr Atmospher Res, Res Applicat Lab, Boulder, CO 80307 USA. [Hsiao, G. S.] Picarro Inc, Santa Clara, CA USA. [Rahn, T.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Turnipseed, A.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. RP Berkelhammer, M (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, UCB 216, Boulder, CO 80309 USA. EM max.berkelhammer@colorado.edu RI Rahn, Thom/C-5211-2012; Bailey, Adriana/J-2066-2015; OI Bailey, Adriana/0000-0002-2614-1560; Rahn, Thomas/0000-0001-8634-1348 FU CIRES; National Science Foundation [AGS-0955841, EAR-0910831]; Los Alamos National Laboratory Directed Research and Development Project entitled Isotopic Tracer for Climate Relevant Secondary Organic Aerosol [20090425ER] FX The authors would like to thank Mariel Herzog and Francina Dominguez for assistance with the liquid analysis, Peter Harley and Russ Monson for assistance with the MEF facilities and field support. C.J.S. acknowledges the support of a CIRES Visiting Faculty Fellowship. M. B., A. B., and D.N. were supported by the National Science Foundation Climate and Large Scale Dynamics program as part of an Faculty Early Career Development award (AGS-0955841). Support for David Gochis and Andrew Turnipseed was provided by the National Science Foundation through its support of NCAR and for NCAR technical staff through NSF grant EAR-0910831. The reported research was partially supported by Los Alamos National Laboratory Directed Research and Development Project entitled Isotopic Tracer for Climate Relevant Secondary Organic Aerosol (20090425ER). NR 99 TC 23 Z9 24 U1 4 U2 58 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 16 PY 2013 VL 118 IS 17 BP 10225 EP 10242 DI 10.1002/jgrd.50701 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 232JH UT WOS:000325489300006 ER PT J AU Fournier, KB May, MJ Colvin, JD Barrios, MA Patterson, JR Regan, SP AF Fournier, K. B. May, M. J. Colvin, J. D. Barrios, M. A. Patterson, J. R. Regan, S. P. TI Demonstration of a 13-keV Kr K-shell x-ray source at the National Ignition Facility SO PHYSICAL REVIEW E LA English DT Article ID CONVERSION EFFICIENCY; LASER; SYSTEM AB We report 3% conversion efficiency of laser energy into Kr K-shell (approximate to 13 keV) radiation, consistent with theoretical predictions. This is approximate to 10x greater than previous work. The emission was produced from a 4.1-mm-diameter, 4-mm-tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the National Ignition Facility laser beams deposited approximate to 700 kJ of 3 omega light into the target in an approximate to 140 TW, 5.0-ns-duration square pulse. The Dante diagnostics measured similar to 5 TW into 4 pi solid angle of >= 12 keV x rays for approximate to 4 ns, which includes both continuum emission and flux in the Kr He-alpha line at 13 keV. C1 [Fournier, K. B.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Patterson, J. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Regan, S. P.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Fournier, KB (reprint author), Lawrence Livermore Natl Lab, POB 808,L-481, Livermore, CA 94550 USA. FU US Department of Energy by University of California Lawrence Livermore National Laboratory [W-7405-Eng-48]; Defense Threat Reduction Agency [10027-1420, 10027-6167] FX This work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. This work was also supported by the Defense Threat Reduction Agency under the interagency agreements No. 10027-1420 and No. 10027-6167. NR 32 TC 10 Z9 10 U1 5 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD SEP 16 PY 2013 VL 88 IS 3 AR 033104 DI 10.1103/PhysRevE.88.033104 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 217YZ UT WOS:000324400800006 PM 24125368 ER PT J AU Whitehead, GFS Moro, F Timco, GA Wernsdorfer, W Teat, SJ Winpenny, REP AF Whitehead, George F. S. Moro, Fabrizio Timco, Grigore A. Wernsdorfer, Wolfgang Teat, Simon J. Winpenny, Richard E. P. TI A Ring of Rings and Other Multicomponent Assemblies of Cages SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE metallocycles; nanoscale assemblies; polymetallic species; rings; supramolecular chemistry ID SINGLE-MOLECULE MAGNETS; CLUSTERS; CHEMISTRY; SIZE C1 [Whitehead, George F. S.; Moro, Fabrizio; Timco, Grigore A.; Winpenny, Richard E. P.] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. [Whitehead, George F. S.; Moro, Fabrizio; Timco, Grigore A.; Winpenny, Richard E. P.] Univ Manchester, Photon Sci Inst, Manchester M13 9PL, Lancs, England. [Wernsdorfer, Wolfgang] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Wernsdorfer, Wolfgang] UJF, F-38042 Grenoble 9, France. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Winpenny, REP (reprint author), Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England. EM richard.winpenny@manchester.ac.uk RI Moro, Fabrizio/I-8072-2015; Wernsdorfer, Wolfgang/M-2280-2016; Whitehead, George/E-6639-2017 OI Moro, Fabrizio/0000-0002-6381-0479; Wernsdorfer, Wolfgang/0000-0003-4602-5257; Whitehead, George/0000-0003-1949-4250 FU EPSRC (UK); ERC [226558]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Royal Society FX This work is supported by the EPSRC (UK) and the ERC through the Advanced Grant MolNanoSpin No. 226558 to W. W. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. R. E. P. W. is grateful to the Royal Society for a Wolfson Merit Award. NR 25 TC 37 Z9 37 U1 0 U2 50 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD SEP 16 PY 2013 VL 52 IS 38 BP 9932 EP 9935 DI 10.1002/anie.201304817 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 216UI UT WOS:000324309900011 PM 23904348 ER PT J AU Kwak, JH Lee, JH Burton, SD Lipton, AS Peden, CHF Szanyi, J AF Kwak, Ja Hun Lee, Jong H. Burton, Sarah D. Lipton, Andrew S. Peden, Charles H. F. Szanyi, Janos TI A Common Intermediate for N-2 Formation in Enzymes and Zeolites: Side-On Cu-Nitrosyl Complexes SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE IR spectroscopy; NMR spectroscopy; reaction mechanisms; reduction; zeolites ID SELECTIVE CATALYTIC-REDUCTION; NITRIC-OXIDE; CU-SSZ-13; NOX; NH3; COORDINATION; CHEMISTRY; OXIDATION; CRYSTALS; EXCHANGE C1 [Kwak, Ja Hun] UNIST, Sch Nanobiosci & Chem Engn, Ulsan 689798, South Korea. [Lee, Jong H.; Peden, Charles H. F.; Szanyi, Janos] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. [Burton, Sarah D.; Lipton, Andrew S.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Kwak, JH (reprint author), UNIST, Sch Nanobiosci & Chem Engn, Ulsan 689798, South Korea. EM jhkwak@unist.ac.kr; janos.szanyi@pnnl.gov RI Kwak, Ja Hun/J-4894-2014; OI Peden, Charles/0000-0001-6754-9928 FU US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program; DOE's Office of Biological and Environmental Research FX The authors acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute. NR 24 TC 36 Z9 36 U1 6 U2 63 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD SEP 16 PY 2013 VL 52 IS 38 BP 9985 EP 9989 DI 10.1002/anie.201303498 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 216UI UT WOS:000324309900023 PM 23939905 ER PT J AU Jung, HB Um, WY Cantrell, KJ AF Jung, Hun Bok Um, Wooyong Cantrell, Kirk J. TI Effect of oxygen co-injected with carbon dioxide on Gothic shale caprock-CO2-brine interaction during geologic carbon sequestration SO CHEMICAL GEOLOGY LA English DT Article DE Gothic shale; Carbon sequestration; Oxygen; Pyrite oxidation; Metal mobilization ID SURFACE COMPLEXATION MODEL; AQUEOUS PYRITE OXIDATION; PLATINUM-GROUP ELEMENTS; DEEP SALINE AQUIFERS; DISSOLUTION KINETICS; SEDIMENTARY BASINS; SUPERCRITICAL CO2; ROCK INTERACTIONS; OXIDE MINERALS; TRACE-METALS AB Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at -10 MPa and similar to 75 degrees C. A range of relative volume percentages of O-2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO4.2H(2)O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to similar to 8-14 mu g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations. (C) 2013 Elsevier B. V. All rights reserved. C1 [Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.] Pacific Northwest Natl Lab, Richland, WA 99354 USA. RP Cantrell, KJ (reprint author), Pacific Northwest Natl Lab, POB 999,K6-81,902 Battelle Blvd, Richland, WA 99354 USA. EM kirk.cantrell@pnnl.gov FU National Risk Assessment Partnership (NRAP) in the U.S. Department of Energy Office of Fossil Energy's Carbon Sequestration Program; U.S. DOE [DE-AC06-76RLO 1830] FX The authors thank Paul Martin for his experimental support, Steven Baum for ICP-OES analysis, and David Woodbury for ICP-MS analysis. The authors also would like to express gratitude to Laxmikant Saraf for SEM-EDS analysis in EMSL (Environmental Molecular Sciences Laboratory), a DOE national scientific user facility at Pacific Northwest National Laboratory (PNNL). Funding for this research was provided by the National Risk Assessment Partnership (NRAP) in the U.S. Department of Energy Office of Fossil Energy's Carbon Sequestration Program. PNNL is operated by Battelle for the U.S. DOE under contract DE-AC06-76RLO 1830. NR 90 TC 14 Z9 14 U1 3 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD SEP 16 PY 2013 VL 354 BP 1 EP 14 DI 10.1016/j.chemgeo.2013.06.019 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 235WE UT WOS:000325751200001 ER PT J AU Parthasarathy, H Dzombak, DA Karamalidis, AK AF Parthasarathy, Hariprasad Dzombak, David A. Karamalidis, Athanasios K. TI A small-scale flow-through column system to determine the rates of mineral dissolution at high temperature and pressure SO CHEMICAL GEOLOGY LA English DT Article DE High-pressure; Temperature; Dissolution; Arsenopyrite; Flow-through ID AQUEOUS-SOLUTIONS; OXIDATIVE DISSOLUTION; ELECTROLYTE-SOLUTIONS; ARSENOPYRITE FEASS; KINETICS; QUARTZ; PYRITE; 25-DEGREES-C; DEPENDENCE; REACTOR AB Mineral dissolution is a critical phenomenon in many geochemical systems, including those of geologic CO2 storage. It affects the mobilization, fate and transport of toxic metals in subsurface waters. A small-scale plug-flow system was designed and demonstrated for use in determining dissolution rates and simulating mineral-water interactions under awide range of conditions, including high pressure (P, up to 300 bar) and temperature (T, up to 120 degrees C). The system enables rapid achievement of steady-state rates, and minimizes the experimental time to study suchmineral-water systems. The performance of the systemwas evaluated through study of the oxidative dissolution of arsenopyrite (FeAsS (s)). Rates of arsenic release induced by dissolved Fe3+ (10(-4) M) in anoxic systems at 25 degrees C and pressures of 1 bar and 100 bar were measured. The performance testing confirmed the ability to obtain reproducible results under the wide range of conditions tested, and to obtain similar results to certain benchmark cases, e. g., the FeAsS (s) dissolution rate of 10(-8.09) mol As/m(2) s at 25 degrees Cand 1 bar was comparable to previously reported values. Potentialmass-transfer limitations associatedwith the system were studied and results indicate such limitations can be avoided at flow-rates higher than 0.8 mL/min. (C) 2013 Elsevier B. V. All rights reserved. C1 [Parthasarathy, Hariprasad; Karamalidis, Athanasios K.] Reg Univ Alliance, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Parthasarathy, Hariprasad; Dzombak, David A.; Karamalidis, Athanasios K.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. RP Karamalidis, AK (reprint author), Carnegie Mellon Univ, Dept Civil & Environm Engn, 119 L Porter Hall,5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM akaramal@andrew.cmu.edu OI Parthasarathy, Hariprasad/0000-0002-5479-5633 FU National Energy Technology Laboratory's Regional University Alliance (NETL-RUA) [DE-FE0004000] FX This projectwas performed as part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA) under the RES contract DE-FE0004000. We gratefully acknowledge Dr. Gregory Lowry of Carnegie Mellon University for his insights and helpful comments. We thank Drs. J. Alexandra Hakala and Karl Schroeder of the National Energy Technology Laboratory for reviewing the manuscript and Drs. Andy Wall, Brian Stewart and Rosemary Capo of the University of Pittsburgh for their help with arsenic analysis. We also thank Drs. Donald J. Rimstidt, Jeremy Fein and an anonymous reviewer for their helpful comments. NR 35 TC 3 Z9 3 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD SEP 16 PY 2013 VL 354 BP 65 EP 72 DI 10.1016/j.chemgeo.2013.06.020 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 235WE UT WOS:000325751200007 ER PT J AU Claudepierre, SG Mann, IR Takahashi, K Fennell, JF Hudson, MK Blake, JB Roeder, JL Clemmons, JH Spence, HE Reeves, GD Baker, DN Funsten, HO Friedel, RHW Henderson, MG Kletzing, CA Kurth, WS MacDowall, RJ Smith, CW Wygant, JR AF Claudepierre, S. G. Mann, I. R. Takahashi, K. Fennell, J. F. Hudson, M. K. Blake, J. B. Roeder, J. L. Clemmons, J. H. Spence, H. E. Reeves, G. D. Baker, D. N. Funsten, H. O. Friedel, R. H. W. Henderson, M. G. Kletzing, C. A. Kurth, W. S. MacDowall, R. J. Smith, C. W. Wygant, J. R. TI Van Allen Probes observation of localized drift resonance between poloidal mode ultra-low frequency waves and 60 keV electrons SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE drift-resonance; ultra-low frequency; radiation belt electron; radial diffusion; inner magnetosphere ID RADIATION BELT; ACCELERATION; PARTICLES AB We present NASA Van Allen Probes observations of wave-particle interactions between magnetospheric ultra-low frequency (ULF) waves and energetic electrons (20-500 keV) on 31 October 2012. The ULF waves are identified as the fundamental poloidal mode oscillation and are excited following an interplanetary shock impact on the magnetosphere. Large amplitude modulations in energetic electron flux are observed at the same period (approximate to 3 min) as the ULF waves and are consistent with a drift-resonant interaction. The azimuthal mode number of the interacting wave is estimated from the electron measurements to be similar to 40, based on an assumed symmetric drift resonance. The drift-resonant interaction is observed to be localized and occur over 5-6 wave cycles, demonstrating peak electron flux modulations at energies similar to 60 keV. Our observation clearly shows electron drift resonance with the fundamental poloidal mode, the energy dependence of the amplitude and phase of the electron flux modulations providing strong evidence for such an interaction. Significantly, the observation highlights the importance of localized wave-particle interactions for understanding energetic particle dynamics in the inner magnetosphere, through the intermediary of ULF waves. C1 [Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Roeder, J. L.; Clemmons, J. H.] Aerosp Corp, Dept Space Sci, El Segundo, CA 90245 USA. [Mann, I. R.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Takahashi, K.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Hudson, M. K.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Reeves, G. D.; Funsten, H. O.; Friedel, R. H. W.; Henderson, M. G.] Los Alamos Natl Lab, Space & Atmospher Sci Grp, Los Alamos, NM USA. [Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Kletzing, C. A.; Kurth, W. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [MacDowall, R. J.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Smith, C. W.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Smith, C. W.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Wygant, J. R.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Claudepierre, SG (reprint author), Aerosp Corp, Dept Space Sci, El Segundo, CA 90245 USA. EM seth@aero.org RI Friedel, Reiner/D-1410-2012; Funsten, Herbert/A-5702-2015; Reeves, Geoffrey/E-8101-2011; Henderson, Michael/A-3948-2011; Claudepierre, Seth/A-6109-2012; OI Friedel, Reiner/0000-0002-5228-0281; Spence, Harlan/0000-0002-2526-2205; Kurth, William/0000-0002-5471-6202; Funsten, Herbert/0000-0002-6817-1039; Reeves, Geoffrey/0000-0002-7985-8098; Henderson, Michael/0000-0003-4975-9029; Kletzing, Craig/0000-0002-4136-3348; Clemmons, James/0000-0002-5298-5222 FU JHU/APL [967399, 921647]; NASA' [NAS5-01072]; NASA [NNX10AK93G]; Canadian Space Agency; Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization (MAARBLE) consortium; European Community [284520]; Canadian NSERC FX This work was supported by RBSP-ECT funding provided by JHU/APL contract 967399 and EMFISIS funding provided by JHU/APL contract 921647, both under NASA's prime contract NAS5-01072. Work at JHU/APL was supported by NASA grant NNX10AK93G. The OMNI data were obtained from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov. CARISMA is operated by the University of Alberta, funded by the Canadian Space Agency. This work is supported in part by participation in the Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization (MAARBLE) consortium. MAARBLE has received funding from the European Community's Seventh Framework Programme (FP7-SPACE-2010-1, SP1 Cooperation, Collaborative project) under grant agreement 284520. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained herein. I.R.M. is supported by a Discovery grant from Canadian NSERC. One author (S.G.C.) would like to thank Jeremy Faden and all of the developers of Autoplot, and Paul O'Brien for making available useful analysis routines. NR 13 TC 28 Z9 28 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 16 PY 2013 VL 40 IS 17 BP 4491 EP 4497 DI 10.1002/grl.50901 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 232JP UT WOS:000325490300004 ER PT J AU Miyoshi, Y Kataoka, R Kasahara, Y Kumamoto, A Nagai, T Thomsen, MF AF Miyoshi, Y. Kataoka, R. Kasahara, Y. Kumamoto, A. Nagai, T. Thomsen, M. F. TI High-speed solar wind with southward interplanetary magnetic field causes relativistic electron flux enhancement of the outer radiation belt via enhanced condition of whistler waves SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE radiation belts; wave particle interactions ID GEOMAGNETIC STORMS DRIVEN; EXOS-D SATELLITE; ACCELERATION; MAGNETOSPHERE; STREAMS; ORIGIN AB Relativistic electron flux in the outer radiation belt tends to increase during the high-speed solar wind stream (HSS) events. However, HSS events do not always cause large flux enhancement. To determine the HSS events that cause such enhancement and the mechanisms that are responsible for accelerating the electrons, we analyzed long-term plasma data sets, for periods longer than one solar cycle. We demonstrate that during HSS events with the southward interplanetary magnetic field (IMF)-dominant HSS (SBz-HSS), relativistic electrons are accelerated by whistler mode waves; however, during HSS events with the northward IMF-dominant HSS, this acceleration mechanism is not effective. The differences in the responses of the outer radiation belt flux variations are caused by the differences in the whistler mode wave-electron interactions associated with a series of substorms. During SBz-HSS events, hot electron injections occur and the thermal plasma density decreases due to the shrinkage of the plasmapause, causing large flux enhancement of relativistic electrons through whistler mode wave excitation. These results explain why large flux enhancement of relativistic electrons tends to occur during SBz-HSS events. C1 [Miyoshi, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Kataoka, R.] Natl Inst Polar Res, Tachikawa, Tokyo, Japan. [Kasahara, Y.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Kumamoto, A.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Nagai, T.] Tokyo Inst Technol, Tokyo 152, Japan. [Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM USA. [Thomsen, M. F.] Planetary Sci Inst, Tucson, AZ USA. RP Miyoshi, Y (reprint author), Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. EM miyoshi@stelab.nagoya-u.ac.jp RI Miyoshi, Yoshizumi/B-5834-2015 OI Miyoshi, Yoshizumi/0000-0001-7998-1240 FU Japan Society for the Promotion of Science [23340146, 23224011] FX OMNI-2 data were provided by NSSDC. Akebono data were obtained from the SDB of ISAS/JAXA. NOAA and GOES data were provided by NOAA. LANL data were provided by LANL. The geomagnetic indices were obtained from WDC-C2, Kyoto University, Japan. This study was supported by Grants-in-Aid for Scientific Research (23340146, 23224011) of Japan Society for the Promotion of Science. NR 36 TC 31 Z9 31 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 16 PY 2013 VL 40 IS 17 BP 4520 EP 4525 DI 10.1002/grl.50916 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 232JP UT WOS:000325490300009 ER PT J AU O'Malley, D Cushman, JH Johnson, G AF O'Malley, D. Cushman, J. H. Johnson, G. TI Random renormalization groups and Bayesian scaling of dispersion/diffusion in Lake Michigan and the Gulf of Mexico SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Gulf of Mexico; Lake Michigan; scaling laws; renormalization group; data assimilation; diffusion; dispersion ID ANOMALOUS DIFFUSION; DEEP CURRENTS; DYNAMICS; MODEL AB A random renormalization group technique is reviewed, and a related set of Bayesian scaling techniques are presented. The techniques are employed to study the motion of drifters in Lake Michigan on a time scale ranging from 30 min to 5 days and in the Gulf of Mexico on a time scale ranging from 8 h to 85 days. The scaling laws generalize the standard power law scalings. One of the advantages of the Bayesian approach is that scaling laws can be determined even with a paucity of data with the caveat that less data produce greater uncertainty in the scaling laws. C1 [O'Malley, D.; Cushman, J. H.] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [O'Malley, D.] Los Alamos Natl Lab, Computat Earth Sci Grp, Earth & Environm Sci Div, Los Alamos, NM USA. [Cushman, J. H.; Johnson, G.] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA. [Johnson, G.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. RP O'Malley, D (reprint author), Purdue Univ, Dept Earth Atmospher & Planetary Sci, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM omalled@gmail.com OI O'Malley, Daniel/0000-0003-0432-3088 FU National Science Foundation [CMG-0934806, EAR-0838224] FX The authors wish to thank BOEMRE for the Gulf of Mexico float data, Cary Troy and Jun Choi for the Lake Michigan float data, NASA Worldview for the satellite imagery, and the National Science Foundation for supporting this work under grants CMG-0934806 and EAR-0838224. NR 35 TC 2 Z9 2 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 16 PY 2013 VL 40 IS 17 BP 4638 EP 4642 DI 10.1002/grl.50918 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 232JP UT WOS:000325490300032 ER PT J AU Harriman, TA Bi, Z Jia, QX Lucca, DA AF Harriman, T. A. Bi, Z. Jia, Q. X. Lucca, D. A. TI Frequency shifts of the E-2(high) Raman mode due to residual stress in epitaxial ZnO thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID ZINC-OXIDE; SAPPHIRE; ELECTROLUMINESCENCE; PHOTOLUMINESCENCE; ZNO/ALPHA-AL2O3; PARAMETERS; DEPOSITION; SCATTERING; PLASMA AB To investigate the stress effect on the E-2(high) Raman vibration mode, we grew heteroepitaxial ZnO films on c-plane sapphire with different strain states by changing the film thicknesses between 5 and 100 nm. To determine the relationship between the observed frequency of the E-2(high) mode with the biaxial residual stress of the ZnO thin films, the out-of-plane strain of films were measured with x-ray diffraction from which the residual stress was calculated. The biaxial residual stress and E-2(high) frequency were related linearly by a factor of similar to 170 MPa/cm(-1), which is in agreement with reported values from high pressure investigations of bulk ZnO. (C) 2013 AIP Publishing LLC. C1 [Harriman, T. A.; Lucca, D. A.] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. [Bi, Z.; Jia, Q. X.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87522 USA. RP Lucca, DA (reprint author), Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. EM lucca@okstate.edu RI Jia, Q. X./C-5194-2008 FU U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; National Science Foundation [DMI-0529085] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). Financial support by the National Science Foundation under Grant No. DMI-0529085 is also gratefully acknowledged. NR 23 TC 6 Z9 6 U1 4 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 16 PY 2013 VL 103 IS 12 AR 121904 DI 10.1063/1.4821222 PG 4 WC Physics, Applied SC Physics GA 223RM UT WOS:000324826000023 ER PT J AU Jia, Y LeRoux, M Miller, DJ Wen, JG Kwok, WK Welp, U Rupich, MW Li, X Sathyamurthy, S Fleshler, S Malozemoff, AP Kayani, A Ayala-Valenzuela, O Civale, L AF Jia, Y. LeRoux, M. Miller, D. J. Wen, J. G. Kwok, W. K. Welp, U. Rupich, M. W. Li, X. Sathyamurthy, S. Fleshler, S. Malozemoff, A. P. Kayani, A. Ayala-Valenzuela, O. Civale, L. TI Doubling the critical current density of high temperature superconducting coated conductors through proton irradiation SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; YBA2CU3O7-X; DEFECTS; CRYSTALS; WIRES; VORTICES; CREEP AB The in-field critical current of commercial YBa2Cu3O7 coated conductors can be substantially enhanced by post-fabrication irradiation with 4 MeV protons. Irradiation to a fluence of 8 x 10(16) p/cm(2) induces a near doubling of the critical current in fields of 6 T parallel to c at a temperature of 27 K, a field and temperature range of interest for applications, such as rotating machinery. A mixed pinning landscape of preexisting precipitates and twin boundaries and small, finely dispersed irradiation induced defects may account for the improved vortex pinning in high magnetic fields. Our data indicate that there is significant head-room for further enhancements. (C) 2013 AIP Publishing LLC. C1 [Jia, Y.; LeRoux, M.; Miller, D. J.; Wen, J. G.; Kwok, W. K.; Welp, U.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Rupich, M. W.; Li, X.; Sathyamurthy, S.; Fleshler, S.; Malozemoff, A. P.] Amer Superconductor Corp, Devens, MA 01434 USA. [Kayani, A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Ayala-Valenzuela, O.; Civale, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jia, Y (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RI Leroux, Maxime/E-8703-2016; OI Leroux, Maxime/0000-0001-9778-323X; Civale, Leonardo/0000-0003-0806-3113 FU Center for Emergent Superconductivity, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science-Basic Energy Sciences FX This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Y.J., M. L., W. K. K., U. W., O.A.V., L. C.) and by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (D.J.M., J.G.W.). Irradiation of the samples was carried out at the Western Michigan University accelerator laboratory. Microstructural characterization was carried out in the Electron Microscopy Center at Argonne, which is supported by the Office of Science-Basic Energy Sciences. NR 42 TC 21 Z9 22 U1 2 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 16 PY 2013 VL 103 IS 12 AR 122601 DI 10.1063/1.4821440 PG 5 WC Physics, Applied SC Physics GA 223RM UT WOS:000324826000043 ER PT J AU Koren, E Sutter, E Bliznakov, S Ivars-Barcelo, F Sutter, P AF Koren, E. Sutter, E. Bliznakov, S. Ivars-Barcelo, F. Sutter, P. TI Isolation of high quality graphene from Ru by solution phase intercalation SO APPLIED PHYSICS LETTERS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; EPITAXIAL GRAPHENE; SUSPENDED GRAPHENE; LARGE-AREA; FILMS; RU(0001); GROWTH; RUTHENIUM; SIZE; MICROSCOPY AB We introduce a method for isolating graphene grown on epitaxial Ru(0001)/alpha-Al2O3. The strong graphene/Ru(0001) coupling is weakened by electrochemically driven intercalation of hydrogen underpotentially deposited in aqueous KOH solution, which allows the penetration of water molecules at the graphene/Ru(0001) interface. Following these electrochemically driven processes, the graphene can be isolated by electrochemical hydrogen evolution and transferred to arbitrary supports. Raman and transport measurements demonstrate the high quality of the transferred graphene. Our results show that intercalation, typically carried out in vacuum, can be extended to solution environments for graphene processing under ambient conditions. (C) 2013 AIP Publishing LLC. C1 [Koren, E.; Sutter, E.; Ivars-Barcelo, F.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Bliznakov, S.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov RI Ivars-Barcelo, Francisco/J-9560-2015 OI Ivars-Barcelo, Francisco/0000-0002-5896-7623 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This research has been carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 36 TC 5 Z9 5 U1 3 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 16 PY 2013 VL 103 IS 12 AR 121602 DI 10.1063/1.4821269 PG 5 WC Physics, Applied SC Physics GA 223RM UT WOS:000324826000016 ER PT J AU Qi, J Yan, L Zhou, HD Zhu, JX Trugman, SA Taylor, AJ Jia, QX Prasankumar, RP AF Qi, J. Yan, L. Zhou, H. D. Zhu, J. -X. Trugman, S. A. Taylor, A. J. Jia, Q. X. Prasankumar, R. P. TI Coexistence of coupled magnetic phases in epitaxial TbMnO3 films revealed by ultrafast optical spectroscopy (vol 101, 122904, 2012) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Qi, J.; Yan, L.; Trugman, S. A.; Taylor, A. J.; Jia, Q. X.; Prasankumar, R. P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Zhou, H. D.] Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Zhu, J. -X.; Trugman, S. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Prasankumar, RP (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM rpprasan@lanl.gov RI Jia, Q. X./C-5194-2008; Zhou, Haidong/O-4373-2016; OI Trugman, Stuart/0000-0002-6688-7228 NR 1 TC 0 Z9 0 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 16 PY 2013 VL 103 IS 12 AR 129901 DI 10.1063/1.4821740 PG 1 WC Physics, Applied SC Physics GA 223RM UT WOS:000324826000097 ER PT J AU Sheu, YM Trugman, SA Park, YS Lee, S Yi, HT Cheong, SW Jia, QX Taylor, AJ Prasankumar, RP AF Sheu, Y. -M. Trugman, S. A. Park, Y. -S. Lee, S. Yi, H. T. Cheong, S. -W. Jia, Q. X. Taylor, A. J. Prasankumar, R. P. TI Ultrafast carrier dynamics and radiative recombination in multiferroic BiFeO3 (vol 100, 242904, 2012) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Sheu, Y. -M.; Trugman, S. A.; Park, Y. -S.; Jia, Q. X.; Taylor, A. J.; Prasankumar, R. P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Lee, S.] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Yi, H. T.; Cheong, S. -W.] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Yi, H. T.; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Prasankumar, RP (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mississippi K771, Los Alamos, NM 87545 USA. EM rpprasan@lanl.gov RI Jia, Q. X./C-5194-2008; OI Trugman, Stuart/0000-0002-6688-7228 NR 1 TC 0 Z9 0 U1 0 U2 43 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 16 PY 2013 VL 103 IS 12 AR 129902 DI 10.1063/1.4821741 PG 1 WC Physics, Applied SC Physics GA 223RM UT WOS:000324826000098 ER PT J AU Wang, YN Su, ZH Wu, W Nie, S Xie, N Gong, HQ Guo, Y Lee, JH Xing, SR Lu, XX Wang, HY Lu, XH McCarty, K Pei, SS Robles-Hernandez, F Hadjiev, VG Bao, JM AF Wang, Yanan Su, Zhihua Wu, Wei Nie, Shu Xie, Nan Gong, Huiqi Guo, Yang Lee, Joon Hwan Xing, Sirui Lu, Xiaoxiang Wang, Haiyan Lu, Xinghua McCarty, Kevin Pei, Shin-shem Robles-Hernandez, Francisco Hadjiev, Viktor G. Bao, Jiming TI Resonance Raman spectroscopy of G-line and folded phonons in twisted bilayer graphene with large rotation angles SO APPLIED PHYSICS LETTERS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION AB We report the synthesis and systematic Raman study of twisted bilayer graphene (tBLG) with rotation angles from below 10 degrees to nearly 30 degrees. Chemical vapor deposition was used to grow hexagon-shaped tBLG with a rotation angle that can be conveniently determined by relative edge misalignment. Rotation dependent G-line resonances and folded phonons were observed by selecting suitable energies of excitation lasers. The observed phonon frequencies of the tBLG superlattices agree well with our ab initio calculation. (C) 2013 AIP Publishing LLC. C1 [Wang, Yanan; Su, Zhihua; Wu, Wei; Xing, Sirui; Lu, Xiaoxiang; Pei, Shin-shem; Bao, Jiming] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA. [Wu, Wei; Xing, Sirui; Pei, Shin-shem] Univ Houston, Ctr Adv Mat, Houston, TX 77204 USA. [Nie, Shu; McCarty, Kevin] Sandia Natl Labs, Livermore, CA 94550 USA. [Xie, Nan; Gong, Huiqi; Guo, Yang; Lu, Xinghua] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Lee, Joon Hwan; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Robles-Hernandez, Francisco] Univ Houston, Coll Engn Technol, Houston, TX 77204 USA. [Hadjiev, Viktor G.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Hadjiev, Viktor G.] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA. RP Bao, JM (reprint author), Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA. EM jbao@uh.edu RI Wang, Haiyan/P-3550-2014; Hadjiev, Viktor/A-7069-2008; OI Wang, Haiyan/0000-0002-7397-1209; Hadjiev, Viktor/0000-0001-8579-9357; ROBLES HERNANDEZ, FRANCISCO/0000-0001-5587-0802 FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE [DE-AC04-94AL85000]; Delta Electronics Foundation; UH CAM; National Science Foundation [ECCS-1240510, DMR-0907336]; Robert A Welch Foundation [E-1728]; State of Texas through the Texas Center for Superconductivity at the University of Houston; Natural Science Foundation of China [11174347]; National Basic Research Program of China [2012CB933002] FX The work at Sandia National Laboratories was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE under Contract No. DE-AC04-94AL85000. S.-S.P., J.M.B., W. W., and S. R. X. acknowledge support from the Delta Electronics Foundation and UH CAM. J.M.B. acknowledges support from the National Science Foundation (Career Award ECCS-1240510 monitored by Anupama Kaul, DMR-0907336 monitored by Charles Ying) and the Robert A Welch Foundation (E-1728). V. G. H. work was supported by the State of Texas through the Texas Center for Superconductivity at the University of Houston. X. L. and Y.G. acknowledge support from Natural Science Foundation of China under Grant No. 11174347, and National Basic Research Program of China under Grant No. 2012CB933002. NR 24 TC 12 Z9 12 U1 2 U2 53 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 16 PY 2013 VL 103 IS 12 AR 123101 DI 10.1063/1.4821434 PG 4 WC Physics, Applied SC Physics GA 223RM UT WOS:000324826000053 ER PT J AU Granier, T Nelson, RO Ethvignot, T Devlin, M Fotiades, N Garrett, PE Younes, W AF Granier, T. Nelson, R. O. Ethvignot, T. Devlin, M. Fotiades, N. Garrett, P. E. Younes, W. TI Measurement of prompt X-rays in U-238(n,f) from threshold to 400 MeV Investigation of fission charge yield evolution SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID NEUTRON-INDUCED FISSION; EMISSION; U-235; FRAGMENTS; ENERGY; PU-239; CF-252; CF252 AB Prompt K X-ray emission yields in the fission induced by neutrons on U-238 have been measured for the first time for incident energies ranging from below 1 MeV up to 400 MeV. Results are used to investigate the evolution with incident neutron energy of the fragment elemental distribution and the X-ray emission probability per element. The progressive increase of the symmetric fission probability with neutron energy is observed in qualitative agreement with Wahl systematics for the primary fission fragment charge yields. C1 [Granier, T.; Ethvignot, T.] CEA, DAM, DIF, F-91297 Arpajon, France. [Nelson, R. O.; Devlin, M.; Fotiades, N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Garrett, P. E.; Younes, W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Granier, T (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. EM thierry.granier@cea.fr RI Devlin, Matthew/B-5089-2013 OI Devlin, Matthew/0000-0002-6948-2154 FU CEA/DAM; NNSA/DP on cooperation on fundamental science; U.S. Department of Energy by Los Alamos National Security, LLC, Los Alamos National Laboratory [DE-AC52-06NA25396]; Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy [DE-AC52-06NA25396] FX We are grateful to A. Sonzogni of the NNDC, Brookhaven National Laboratory for providing formatted NUDAT data for internal conversion coefficients for the full set of nuclides. The authors wish to acknowledge the role of John A. Becker in the development of GEANIE and in particular in the selection of the planar Ge detectors that were essential for this measurement. This work was performed under the auspices of an agreement between CEA/DAM and NNSA/DP on cooperation on fundamental science. Portions of this work were performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396, and by the Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work has benefited from the use of the Los Alamos Neutron Science Center at LANL. This facility is funded by the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 50 TC 1 Z9 1 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD SEP 16 PY 2013 VL 49 IS 9 AR 114 DI 10.1140/epja/i2013-13114-8 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 229IZ UT WOS:000325257600001 ER PT J AU Pechenezhskiy, IV Hong, XP Nguyen, GD Dahl, JEP Carlson, RMK Wang, F Crommie, MF AF Pechenezhskiy, Ivan V. Hong, Xiaoping Nguyen, Giang D. Dahl, Jeremy E. P. Carlson, Robert M. K. Wang, Feng Crommie, Michael F. TI Infrared Spectroscopy of Molecular Submonolayers on Surfaces by Infrared Scanning Tunneling Microscopy: Tetramantane on Au(111) SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENHANCED RAMAN-SPECTROSCOPY; CARBON-CARBON BONDS; VIBRATIONAL SPECTROSCOPY; HIGHER DIAMONDOIDS; TIP; RESOLUTION AB We have developed a new scanning-tunneling-microscopy-based spectroscopy technique to characterize infrared (IR) absorption of submonolayers of molecules on conducting crystals. The technique employs a scanning tunneling microscope as a precise detector to measure the expansion of a molecule-decorated crystal that is irradiated by IR light from a tunable laser source. Using this technique, we obtain the IR absorption spectra of [121] tetramantane and [123] tetramantane on Au(111). Significant differences between the IR spectra for these two isomers show the power of this new technique to differentiate chemical structures even when single-molecule-resolved scanning tunneling microscopy (STM) images look quite similar. Furthermore, the new technique was found to yield significantly better spectral resolution than STM-based inelastic electron tunneling spectroscopy, and to allow determination of optical absorption cross sections. Compared to IR spectroscopy of bulk tetramantane powders, infrared scanning tunneling microscopy (IRSTM) spectra reveal narrower and blueshifted vibrational peaks for an ordered tetramantane adlayer. Differences between bulk and surface tetramantane vibrational spectra are explained via molecule-molecule interactions. C1 [Pechenezhskiy, Ivan V.; Hong, Xiaoping; Nguyen, Giang D.; Wang, Feng; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Pechenezhskiy, Ivan V.; Crommie, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Dahl, Jeremy E. P.; Carlson, Robert M. K.] Stanford Univ, Stanford Inst Mat & Energy Sci, Stanford, CA 94305 USA. RP Pechenezhskiy, IV (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM crommie@berkeley.edu RI Hong, Xiaoping/G-8673-2013; wang, Feng/I-5727-2015; Nguyen, Giang/R-1287-2016 OI Hong, Xiaoping/0000-0002-5864-4533; Nguyen, Giang/0000-0003-4125-8203 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC03-76SF0098, DE-AC02-76SF00515]; Department of Energy Early Career Award [DE-SC0003949] FX This research was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC03-76SF0098 (STM measurements) and Contract No. DE-AC02-76SF00515 (tetramantane isolation), and by the Department of Energy Early Career Award DE-SC0003949 (development of the IR laser source). I. V. P., X. H., and G. D. N. contributed equally to this work. NR 28 TC 4 Z9 4 U1 2 U2 103 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 16 PY 2013 VL 111 IS 12 AR 126101 DI 10.1103/PhysRevLett.111.126101 PG 5 WC Physics, Multidisciplinary SC Physics GA 219EL UT WOS:000324488700005 PM 24093277 ER PT J AU Cuevas, J Kevrekidis, PG Saxena, A Khare, A AF Cuevas, Jesus Kevrekidis, Panayotis G. Saxena, Avadh Khare, Avinash TI PT-symmetric dimer of coupled nonlinear oscillators SO PHYSICAL REVIEW A LA English DT Article ID NON-HERMITIAN HAMILTONIANS; WAVE-GUIDE; LATTICES; INSTABILITIES; STABILITY; MODES; GAIN AB We provide a systematic analysis of a prototypical nonlinear oscillator system respecting PT symmetry i.e., one of them has gain and the other an equal and opposite amount of loss. Starting from the linear limit of the system, we extend considerations to the nonlinear case for both soft and hard cubic nonlinearities identifying symmetric and antisymmetric breather solutions, as well as symmetry-breaking variants thereof. We propose a reduction of the system to a Schrodinger-type PT-symmetric dimer, whose detailed earlier understanding can explain many of the phenomena observed herein, including the PT phase transition. Nevertheless, there are also significant parametric as well as phenomenological potential differences between the two models and we discuss where these arise and where they are most pronounced. Finally, we also provide examples of the evolution dynamics of the different states in their regimes of instability. C1 [Cuevas, Jesus] Univ Seville, Nonlinear Phys Grp, Dept Fis Aplicada 1, Escuela Politecn Super, Seville 41011, Spain. [Kevrekidis, Panayotis G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Khare, Avinash] IISER, Pune 411008, Maharashtra, India. RP Cuevas, J (reprint author), Univ Seville, Nonlinear Phys Grp, Dept Fis Aplicada 1, Escuela Politecn Super, C Virgen Africa 7, Seville 41011, Spain. RI Cuevas-Maraver, Jesus/A-1255-2008 OI Cuevas-Maraver, Jesus/0000-0002-7162-5759 FU MICINN [FIS2008-04848]; US-NSF [CMMI-1000337]; US-AFOSR [FA9550-12-1-0332]; Binational Science Foundation [2010239]; U.S. Department of Energy FX J.C. acknowledges financial support from the MICINN project FIS2008-04848. P. G. K. gratefully acknowledges support from the US-NSF under grant CMMI-1000337, from the US-AFOSR under grant FA9550-12-1-0332, and from the Binational Science Foundation under grant 2010239. A. S. was supported by the U.S. Department of Energy. A. K. works as Raja Ramanna Fellow at IISER, Pune, India. NR 41 TC 19 Z9 19 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP 16 PY 2013 VL 88 IS 3 AR 032108 DI 10.1103/PhysRevA.88.032108 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 217WO UT WOS:000324393600002 ER PT J AU Huang, YC Karrasch, C Moore, JE AF Huang, Yichen Karrasch, C. Moore, J. E. TI Scaling of electrical and thermal conductivities in an almost integrable chain SO PHYSICAL REVIEW B LA English DT Article ID MATRIX PRODUCT STATES; XXZ SPIN CHAIN; RENORMALIZATION-GROUP; TEMPERATURE; RESONANCE; TRANSPORT; SYSTEMS; MODEL AB Many low-dimensional materials are well described by integrable one-dimensional models such as the Hubbard model of electrons or the Heisenberg model of spins. However, the small perturbations to these models required to describe real materials are expected to have singular effects on transport quantities: integrable models often support dissipationless transport, while weak nonintegrable terms lead to finite conductivities. We use matrix-product-state methods to obtain quantitative values of spin/electrical and thermal conductivities in an almost integrable gapless (XXZ-like) spin chain. At low temperatures, we observe power laws whose exponents are solely determined by the Luttinger liquid parameter. This indicates that our results are independent of the actual model under consideration. C1 [Huang, Yichen; Karrasch, C.; Moore, J. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Karrasch, C.; Moore, J. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Huang, YC (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM yichenhuang@berkeley.edu RI Moore, Joel/O-4959-2016; Karrasch, Christoph/S-5716-2016 OI Moore, Joel/0000-0002-4294-5761; Karrasch, Christoph/0000-0002-6475-3584 FU Deutsche Forschungsgemeinschaft [KA3360-1/1]; Nanostructured Thermoelectrics program of LBNL; AFOSR MURI; ARO via the DARPA OLE program FX The authors thank F. Essler, F. Heidrich-Meisner, A. Rosch, J. Sirker, and M. Zaletel for useful comments and suggestions and acknowledge financial support from the Deutsche Forschungsgemeinschaft via KA3360-1/1 (C. K.), the Nanostructured Thermoelectrics program of LBNL (C. K.), the AFOSR MURI on "Control of Thermal and Electrical Transport" (J. E. M.), and ARO via the DARPA OLE program (Y.H.). NR 48 TC 15 Z9 15 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 16 PY 2013 VL 88 IS 11 AR 115126 DI 10.1103/PhysRevB.88.115126 PG 5 WC Physics, Condensed Matter SC Physics GA 217XW UT WOS:000324397400002 ER PT J AU Lv, WC Moreo, A Dagotto, E AF Lv, Weicheng Moreo, Adriana Dagotto, Elbio TI B-1g-like pairing states in two-leg ladder iron superconductors SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; MAGNETISM; PNICTIDES AB Motivated by the recent report of superconductivity in Fe-based ladder materials, we study the pairing state of a multiorbital t-J model defined on two-leg ladders using the standard mean-field theory. We find that the superconducting order parameters change sign between the d(xz) and d(yz) orbitals in most of the phase diagram. By analogy with the two-dimensional Fe planes, we conclude that the leading pairing channel of this state belongs to the B-1g symmetry class, which is distinct from the common s(+/-) gap with A(1g) symmetry. By smoothly interpolating from planes into ladders, we show that a first-order transition occurs between these two competing phases when the dimension of the system is reduced. C1 [Lv, Weicheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Lv, WC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. FU National Science Foundation [DMR-1104386] FX This work was supported by National Science Foundation Grant No. DMR-1104386. NR 50 TC 5 Z9 5 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 16 PY 2013 VL 88 IS 9 AR 094508 DI 10.1103/PhysRevB.88.094508 PG 9 WC Physics, Condensed Matter SC Physics GA 217WU UT WOS:000324394300006 ER PT J AU Stone, MB Ehlers, G Granroth, GE AF Stone, M. B. Ehlers, G. Granroth, G. E. TI S=2 quasi-one-dimensional spin waves in CrCl2 SO PHYSICAL REVIEW B LA English DT Article ID HALDANE-GAP; NEUTRON-SCATTERING; ANTIFERROMAGNETIC CHAIN; QUANTUM ANTIFERROMAGNET; JAMESONITE FEPB4SB6S14; MAGNETIC-PROPERTIES; FIELD-THEORY; DYNAMICS; CSCRCL3; MODEL AB We examine the magnetic excitation spectrum in the S = 2 Heisenberg antiferromagnet CrCl2. Inelastic neutron scattering measurements on powder samples are able to determine the significant exchange interactions in this system. A large anisotropy gap is observed in the spectrum below the Neel temperature and the ratio of the two largest exchange constants is J(c)/J(b) = 9.1 +/- 2.2. However, no sign of a gapped quantum spin liquid excitation was found in the paramagnetic phase. C1 [Stone, M. B.; Ehlers, G.; Granroth, G. E.] Oak Ridge Natl Lab, Quantum Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Stone, MB (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RI Instrument, CNCS/B-4599-2012; Stone, Matthew/G-3275-2011; Ehlers, Georg/B-5412-2008; Granroth, Garrett/G-3576-2012; BL18, ARCS/A-3000-2012 OI Stone, Matthew/0000-0001-7884-9715; Ehlers, Georg/0000-0003-3513-508X; Granroth, Garrett/0000-0002-7583-8778; FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The research was performed at Oak Ridge National Laboratory's Spallation Neutron Source and was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We are grateful for stimulating discussions with M. W. Meisel and I. Zaliznyak. NR 46 TC 10 Z9 10 U1 2 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 16 PY 2013 VL 88 IS 10 AR 104413 DI 10.1103/PhysRevB.88.104413 PG 6 WC Physics, Condensed Matter SC Physics GA 217XU UT WOS:000324397200003 ER PT J AU Zhang, L Dolev, M Yang, QI Hammond, RH Zhou, B Palevski, A Chen, YL Kapitulnik, A AF Zhang, Li Dolev, Merav Yang, Qi I. Hammond, Robert H. Zhou, Bo Palevski, Alexander Chen, Yulin Kapitulnik, Aharon TI Weak localization effects as evidence for bulk quantization in Bi2Se3 thin films SO PHYSICAL REVIEW B LA English DT Article ID TOPOLOGICAL INSULATORS AB Strong spin-orbit coupling in topological insulators results in the ubiquitously observed weak antilocalization feature in their magnetoresistance. Here we present magnetoresistance measurements in ultrathin films of the topological insulator Bi2Se3 and show that in the two-dimensional quantum limit, in which the topological insulator bulk becomes quantized, an additional negative magnetoresistance feature appears. Detailed analysis associates this feature with weak localization of the quantized bulk channels, thus providing evidence for this quantization. Examination of the dephasing fields at different temperatures indicates different scattering mechanism in the bulk vs the surface states. C1 [Zhang, Li; Dolev, Merav; Kapitulnik, Aharon] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Zhang, Li; Dolev, Merav; Yang, Qi I.; Hammond, Robert H.; Kapitulnik, Aharon] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Yang, Qi I.; Zhou, Bo; Chen, Yulin; Kapitulnik, Aharon] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Zhou, Bo; Chen, Yulin] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Zhou, Bo; Chen, Yulin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Palevski, Alexander] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Zhang, L (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RI Yang, Qi/B-8089-2014 OI Yang, Qi/0000-0002-1551-2151 FU National Science Foundation [DMR-1157490]; state of Florida; US Department of Energy; DARPA MESO [N66001-11-1-4105]; FENA; Department of Energy; Israeli Ministry of Science and Technology [01008080] FX The authors would like to thank Nick Breznay, Boris Spivak, Leonid Glazman, and Ion Garate for fruitful discussions. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the state of Florida, and the US Department of Energy. The authors would also like to thank Alexey V. Suslov and Scott A. Maier for all their time and help at NHMFL. This research project is supported by the DARPA MESO project (Grant No. N66001-11-1-4105), by FENA, and by a seed grant from the Department of Energy for the study of topological insulators. A. P. was partially supported by the Infrastructure program of the Israeli Ministry of Science and Technology under Contract No. 01008080. NR 28 TC 19 Z9 19 U1 3 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 16 PY 2013 VL 88 IS 12 AR 121103 DI 10.1103/PhysRevB.88.121103 PG 4 WC Physics, Condensed Matter SC Physics GA 217XY UT WOS:000324397600001 ER PT J AU Caesar, C Simonis, J Adachi, T Aksyutina, Y Alcantara, J Altstadt, S Alvarez-Pol, H Ashwood, N Aumann, T Avdeichikov, V Barr, M Beceiro, S Bemmerer, D Benlliure, J Bertulani, CA Boretzky, K Borge, MJG Burgunder, G Caamano, M Casarejos, E Catford, W Cederkall, J Chakraborty, S Chartier, M Chulkov, L Cortina-Gil, D Pramanik, UD Fernandez, PD Dillmann, I Elekes, Z Enders, J Ershova, O Estrade, A Farinon, F Fraile, LM Freer, M Freudenberger, M Fynbo, HOU Galaviz, D Geissel, H Gernhauser, R Golubev, P Gonzalez Diaz, D Hagdahl, J Heftrich, T Heil, M Heine, M Heinz, A Henriques, A Holl, M Holt, JD Ickert, G Ignatov, A Jakobsson, B Johansson, HT Jonson, B Kalantar-Nayestanaki, N Kanungo, R Kelic-Heil, A Knobel, R Kroll, T Krucken, R Kurcewicz, J Labiche, M Langer, C Le Bleis, T Lemmon, R Lepyoshkina, O Lindberg, S Machado, J Marganiec, J Maroussov, V Menendez, J Mostazo, M Movsesyan, A Najafi, A Nilsson, T Nociforo, C Panin, V Perea, A Pietri, S Plag, R Prochazka, A Rahaman, A Rastrepina, G Reifarth, R Ribeiro, G Ricciardi, MV Rigollet, C Riisager, K Roder, M Rossi, D del Rio, JS Savran, D Scheit, H Schwenk, A Simon, H Sorlin, O Stoica, V Streicher, B Taylor, J Tengblad, O Terashima, S Thies, R Togano, Y Uberseder, E van de Walle, J Velho, P Volkov, V Wagner, A Wamers, F Weick, H Weigand, M Wheldon, C Wilson, G Wimmer, C Winfield, JS Woods, P Yakorev, D Zhukov, MV Zilges, A Zoric, M Zuber, K AF Caesar, C. Simonis, J. Adachi, T. Aksyutina, Y. Alcantara, J. Altstadt, S. Alvarez-Pol, H. Ashwood, N. Aumann, T. Avdeichikov, V. Barr, M. Beceiro, S. Bemmerer, D. Benlliure, J. Bertulani, C. A. Boretzky, K. Borge, M. J. G. Burgunder, G. Caamano, M. Casarejos, E. Catford, W. Cederkaell, J. Chakraborty, S. Chartier, M. Chulkov, L. Cortina-Gil, D. Pramanik, U. Datta Fernandez, P. Diaz Dillmann, I. Elekes, Z. Enders, J. Ershova, O. Estrade, A. Farinon, F. Fraile, L. M. Freer, M. Freudenberger, M. Fynbo, H. O. U. Galaviz, D. Geissel, H. Gernhaeuser, R. Golubev, P. Gonzalez Diaz, D. Hagdahl, J. Heftrich, T. Heil, M. Heine, M. Heinz, A. Henriques, A. Holl, M. Holt, J. D. Ickert, G. Ignatov, A. Jakobsson, B. Johansson, H. T. Jonson, B. Kalantar-Nayestanaki, N. Kanungo, R. Kelic-Heil, A. Knoebel, R. Kroell, T. Kruecken, R. Kurcewicz, J. Labiche, M. Langer, C. Le Bleis, T. Lemmon, R. Lepyoshkina, O. Lindberg, S. Machado, J. Marganiec, J. Maroussov, V. Menendez, J. Mostazo, M. Movsesyan, A. Najafi, A. Nilsson, T. Nociforo, C. Panin, V. Perea, A. Pietri, S. Plag, R. Prochazka, A. Rahaman, A. Rastrepina, G. Reifarth, R. Ribeiro, G. Ricciardi, M. V. Rigollet, C. Riisager, K. Roeder, M. Rossi, D. del Rio, J. Sanchez Savran, D. Scheit, H. Schwenk, A. Simon, H. Sorlin, O. Stoica, V. Streicher, B. Taylor, J. Tengblad, O. Terashima, S. Thies, R. Togano, Y. Uberseder, E. Van de Walle, J. Velho, P. Volkov, V. Wagner, A. Wamers, F. Weick, H. Weigand, M. Wheldon, C. Wilson, G. Wimmer, C. Winfield, J. S. Woods, P. Yakorev, D. Zhukov, M. V. Zilges, A. Zoric, M. Zuber, K. CA R3B Collaboration TI Beyond the neutron drip line: The unbound oxygen isotopes O-25 and O-26 SO PHYSICAL REVIEW C LA English DT Article ID RELATIVISTIC HEAVY-IONS; PARTICLE STABILITY; RICH NUCLEI; DETECTOR AB The very neutron-rich oxygen isotopes O-25 and O-26 are investigated experimentally and theoretically. The unbound states are populated in an experiment performed at the R3B-LAND setup at GSI via proton-knockout reactions from F-26 and F-27 at relativistic energies around 442 and 414 MeV/nucleon, respectively. From the kinematically complete measurement of the decay into O-24 plus one or two neutrons, the O-25 ground-state energy and width are determined, and upper limits for the O-26 ground-state energy and lifetime are extracted. In addition, the results provide indications for an excited state in O-26 at around 4 MeV. The experimental findings are compared to theoretical shell-model calculations based on chiral two- and three-nucleon (3N) forces, including for the first time residual 3N forces, which are shown to be amplified as valence neutrons are added. C1 [Caesar, C.; Simonis, J.; Aumann, T.; Enders, J.; Freudenberger, M.; Gonzalez Diaz, D.; Heine, M.; Holl, M.; Ignatov, A.; Kroell, T.; Menendez, J.; Movsesyan, A.; Panin, V.; Scheit, H.; Schwenk, A.; Volkov, V.; Wamers, F.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Caesar, C.; Aksyutina, Y.; Aumann, T.; Boretzky, K.; Dillmann, I.; Estrade, A.; Farinon, F.; Geissel, H.; Heil, M.; Ickert, G.; Kelic-Heil, A.; Knoebel, R.; Kurcewicz, J.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rastrepina, G.; Ricciardi, M. V.; Rossi, D.; Simon, H.; Terashima, S.; Weick, H.; Winfield, J. S.; Zoric, M.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Simonis, J.; Aksyutina, Y.; Chulkov, L.; Marganiec, J.; Menendez, J.; Savran, D.; Schwenk, A.; Togano, Y.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Adachi, T.; Kalantar-Nayestanaki, N.; Najafi, A.; Rigollet, C.; Stoica, V.; Streicher, B.; Van de Walle, J.] Univ Groningen, KVI, NL-9747 AA Groningen, Netherlands. [Alcantara, J.; Alvarez-Pol, H.; Beceiro, S.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez, P. Diaz; Mostazo, M.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela 15706, Spain. [Altstadt, S.; Ershova, O.; Heftrich, T.; Langer, C.; Plag, R.; Reifarth, R.; Weigand, M.; Wimmer, C.] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany. [Ashwood, N.; Barr, M.; Freer, M.; Wheldon, C.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Avdeichikov, V.; Cederkaell, J.; Golubev, P.; Jakobsson, B.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Bemmerer, D.; Elekes, Z.; Roeder, M.; Wagner, A.; Yakorev, D.] Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany. [Bertulani, C. A.] Texas A&M Univ Commerce, Dept Phys & Astron, Commerce, TX 75429 USA. [Borge, M. J. G.; Perea, A.; Ribeiro, G.; del Rio, J. Sanchez; Tengblad, O.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain. [Burgunder, G.; Sorlin, O.] CEA DSM CNRS IN2P3, GANIL, F-14076 Caen 5, France. [Casarejos, E.] Univ Vigo, E-36310 Vigo, Spain. [Catford, W.] Univ Surrey, Dept Phys, Guildford GU2 5FH, Surrey, England. [Chakraborty, S.; Pramanik, U. Datta; Rahaman, A.] Saha Inst Nucl Phys, Kolkata 700064, India. [Chartier, M.; Taylor, J.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Chulkov, L.] Kurchatov Inst, RU-123182 Moscow, Russia. [Estrade, A.; Kanungo, R.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Fraile, L. M.] Univ Complutense Madrid, Fac Ciencias Fsicas, E-28040 Madrid, Spain. [Fynbo, H. O. U.; Riisager, K.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Galaviz, D.; Henriques, A.; Machado, J.; Velho, P.] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. [Gernhaeuser, R.; Kruecken, R.; Le Bleis, T.; Lepyoshkina, O.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Hagdahl, J.; Heinz, A.; Johansson, H. T.; Jonson, B.; Lindberg, S.; Nilsson, T.; Thies, R.; Zhukov, M. V.] Chalmers, S-41296 Gothenburg, Sweden. [Holt, J. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Holt, J. D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Labiche, M.; Lemmon, R.] STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Maroussov, V.; Zilges, A.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Roeder, M.; Zuber, K.] Tech Univ, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Savran, D.] Frankfurt Inst Adv Studies FIAS, Frankfurt, Germany. [Stoica, V.] Univ Groningen, Dept Sociol ICS, NL-9712 TG Groningen, Netherlands. [Uberseder, E.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Wilson, G.] Univ Surrey, Dept Phys, Guildford GU2 5XH, Surrey, England. [Woods, P.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. RP Caesar, C (reprint author), Tech Univ Darmstadt, Inst Kernphys, Petersenstr 30, D-64289 Darmstadt, Germany. EM t.aumann@gsi.de RI Langer, Christoph/L-3422-2016; Kruecken, Reiner/A-1640-2013; Datta, Ushasi/B-9032-2015; Gonzalez Diaz, Diego/K-7265-2014; Alcantara Nunez, Juan/J-1232-2014; Machado, Jorge/H-6321-2014; Alvarez Pol, Hector/F-1930-2011; Benlliure, Jose/K-8407-2014; Cortina-Gil, Dolores/H-9626-2015; Casarejos, Enrique/A-5865-2015; Tengblad, Olof/O-5852-2015; Menendez, Javier/A-3533-2016; Kalantar-Nayestanaki, Nasser/A-3582-2016; Wagner, Andreas/G-3127-2013; caamano, manuel/A-1832-2013; Scheit, Heiko/B-4779-2008; Enders, Joachim/B-5501-2009; Nilsson, Thomas/B-7705-2009; Galaviz Redondo, Daniel/A-7325-2008; Rossi, Dominic/B-4728-2011; Jonson, Bjorn/B-2816-2014; Bemmerer, Daniel/C-9092-2013; Langer, Christoph/D-5490-2014; Aumann, Thomas/B-1455-2012; Thies, Ronja/D-9686-2014; Johansson, Hakan/E-2685-2014; Heinz, Andreas/E-3191-2014; Fraile, Luis/B-8668-2011 OI Kruecken, Reiner/0000-0002-2755-8042; Datta, Ushasi/0000-0001-8192-1407; Lemmon, Roy/0000-0002-1259-979X; Holt, Jason/0000-0003-4833-7959; Gonzalez Diaz, Diego/0000-0002-6809-5996; Machado, Jorge/0000-0002-0383-4882; Alvarez Pol, Hector/0000-0001-9643-6252; Benlliure, Jose/0000-0002-5114-1298; Cortina-Gil, Dolores/0000-0001-7672-9912; Casarejos, Enrique/0000-0001-5066-3644; Menendez, Javier/0000-0002-1355-4147; Kalantar-Nayestanaki, Nasser/0000-0002-1033-7200; Wagner, Andreas/0000-0001-7575-3961; caamano, manuel/0000-0002-5045-003X; Scheit, Heiko/0000-0002-8937-1101; Enders, Joachim/0000-0002-8441-378X; Nilsson, Thomas/0000-0002-6990-947X; Galaviz Redondo, Daniel/0000-0003-2992-4496; Rossi, Dominic/0000-0002-2461-0618; Bemmerer, Daniel/0000-0003-0470-8367; Thies, Ronja/0000-0002-6175-8611; Fraile, Luis/0000-0002-6281-3635 FU Helmholtz International Center for FAIR; Helmholtz Alliance Program of the Helmholtz Association [HA216/EMMI]; GSI-TU Darmstadt Cooperation agreement; BMBF [06DA70471, 06DA9040I, 06MT238]; DFG; US DOE [DE-FC02-07ER41457, DE-FG02-96ER40963]; Portuguese FCT [PTDC/FIS/103902/2008] FX We thank B. A. Brown for helpful discussions on the WBP interaction. This work was supported by the Helmholtz International Center for FAIR within the framework of the LOEWE program launched by the state of Hesse; by the Helmholtz Alliance Program of the Helmholtz Association, Contract No. HA216/EMMI "Extremes of Density and Temperature: Cosmic Matter in the Laboratory"; by the GSI-TU Darmstadt Cooperation agreement; by the BMBF under Contracts No. 06DA70471, No. 06DA9040I, and No. 06MT238; by the DFG cluster of excellence Origin and Structure of the Universe; by US DOE Grants No. DE-FC02-07ER41457 and No. DE-FG02-96ER40963, via the GSI-RuG/KVI collaboration agreement; and by the Portuguese FCT, Project No. PTDC/FIS/103902/2008. NR 39 TC 41 Z9 41 U1 4 U2 59 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD SEP 16 PY 2013 VL 88 IS 3 AR 034313 DI 10.1103/PhysRevC.88.034313 PG 8 WC Physics, Nuclear SC Physics GA 217YA UT WOS:000324397800002 ER PT J AU Riera, A Li, HL Speck, C AF Riera, Alberto Li, Huilin Speck, Christian TI The MCM2-7 helicase trapped in complex with its DNA loader SO CELL CYCLE LA English DT Editorial Material ID REPLICATION C1 [Riera, Alberto; Speck, Christian] Univ London Imperial Coll Sci Technol & Med, MRC Clin Sci Ctr, DNA Replicat Grp, London, England. [Li, Huilin] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. RP Li, HL (reprint author), Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. EM hli@bnl.gov; chris.speck@imperial.ac.uk RI Speck, Christian/G-2882-2011 OI Speck, Christian/0000-0001-6646-1692 FU Medical Research Council [MC_U120085811]; NCRR NIH HHS [S10 RR025415]; NIA NIH HHS [R01 AG029979]; NIGMS NIH HHS [R01 GM074985] NR 7 TC 3 Z9 3 U1 0 U2 4 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1538-4101 EI 1551-4005 J9 CELL CYCLE JI Cell Cycle PD SEP 15 PY 2013 VL 12 IS 18 BP 2917 EP 2918 DI 10.4161/cc.26132 PG 2 WC Cell Biology SC Cell Biology GA 301JI UT WOS:000330528200002 PM 23974098 ER PT J AU Bourlat, SJ Borja, A Gilbert, J Taylor, MI Davies, N Weisberg, SB Griffith, JF Lettieri, T Field, D Benzie, J Glockner, FO Rodriguez-Ezpeleta, N Faith, DP Bean, TP Obst, M AF Bourlat, Sarah J. Borja, Angel Gilbert, Jack Taylor, Martin I. Davies, Neil Weisberg, Stephen B. Griffith, John F. Lettieri, Teresa Field, Dawn Benzie, John Gloeckner, Frank Oliver Rodriguez-Ezpeleta, Naiara Faith, Daniel P. Bean, Tim P. Obst, Matthias TI Genomics in marine monitoring: New opportunities for assessing marine health status SO MARINE POLLUTION BULLETIN LA English DT Editorial Material DE Marine monitoring; Marine health status; Genomics; Innovative monitoring methods; Indicators; Genomic observatories ID PHYLOGENETIC DIVERSITY PD; BIODIVERSITY CONSERVATION; DNA; CHALLENGES; ECOSYSTEM; TECHNOLOGY; FRAMEWORK; LIFE; ECOTOXICOLOGY; PROFILES AB This viewpoint paper explores the potential of genomics technology to provide accurate, rapid, and cost efficient observations of the marine environment. The use of such approaches in next generation marine monitoring programs will help achieve the goals of marine legislation implemented world-wide. Genomic methods can yield faster results from monitoring, easier and more reliable taxonomic identification, as well as quicker and better assessment of the environmental status of marine waters. A summary of genomic methods that are ready or show high potential for integration into existing monitoring programs is provided (e.g. qPCR, SNP based methods, DNA barcoding, microarrays, metagenetics, metagenomics, transcriptomics). These approaches are mapped to existing indicators and descriptors and a series of case studies is presented to assess the cost and added value of these molecular techniques in comparison with traditional monitoring systems. Finally, guidelines and recommendations are suggested for how such methods can enter marine monitoring programs in a standardized manner. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved. C1 [Bourlat, Sarah J.; Obst, Matthias] Univ Gothenburg, Dept Biol & Environm Sci, SE-40530 Gothenburg, Sweden. [Borja, Angel; Rodriguez-Ezpeleta, Naiara] AZTI Tecnalia, Div Marine Res, Pasaia 20110, Spain. [Gilbert, Jack] Univ Chicago, Argonne Natl Lab, Argonne, IL 60439 USA. [Taylor, Martin I.] Bangor Univ, Sch Biol Sci, Bangor LL57 2UW, Gwynedd, Wales. [Davies, Neil] Univ Calif Berkeley, Gump South Pacific Res Stn, Moorea, Fr Polynesia. [Davies, Neil; Field, Dawn] Univ Oxford, Dept Zool, Biodivers Inst, Oxford OX1 3PS, England. [Weisberg, Stephen B.; Griffith, John F.] Southern Calif Coastal Water Res Project Author, Costa Mesa, CA 92626 USA. [Lettieri, Teresa] European Commiss, DG Joint Res Ctr, Inst Environm & Sustainabil, Ispra, Italy. [Field, Dawn] Ctr Ecol & Hydrol, Oxford, England. [Benzie, John] Natl Univ Ireland Univ Coll Cork, Sch Biol Earth & Environm Sci, Cork, Ireland. [Benzie, John] WorldFish Ctr, Bayan Lepas 11960, Penang, Malaysia. [Gloeckner, Frank Oliver] Univ Bremen, D-28359 Bremen, Germany. [Gloeckner, Frank Oliver] Max Planck Inst Marine Microbiol, D-28359 Bremen, Germany. [Faith, Daniel P.] Australian Museum, Sydney, NSW 2010, Australia. [Bean, Tim P.] Cefas Weymouth Lab, Ctr Environm Fisheries & Aquaculture Sci, Weymouth DT4 8UB, Dorset, England. RP Bourlat, SJ (reprint author), Univ Gothenburg, Dept Biol & Environm Sci, Box 463, SE-40530 Gothenburg, Sweden. EM sarah.bourlat@bioenv.gu.se RI Rodriguez-Ezpeleta, Naiara/B-7138-2014; Bourlat, Sarah/A-5232-2009; Davies, Neil/E-5863-2012; Bean, Tim/H-6792-2014; Weisberg, Stephen/B-2477-2008 OI Rodriguez-Ezpeleta, Naiara/0000-0001-6735-6755; Bourlat, Sarah/0000-0003-0218-0298; Davies, Neil/0000-0001-8085-5014; Bean, Tim/0000-0002-2544-9918; Weisberg, Stephen/0000-0002-0655-9425 NR 71 TC 42 Z9 44 U1 5 U2 83 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-326X EI 1879-3363 J9 MAR POLLUT BULL JI Mar. Pollut. Bull. PD SEP 15 PY 2013 VL 74 IS 1 BP 19 EP 31 DI 10.1016/j.marpolbul.2013.05.042 PG 13 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 242BE UT WOS:000326211600016 PM 23806673 ER PT J AU Novikova, IV Dharap, A Hennelly, SP Sanbonmatsu, KY AF Novikova, Irina V. Dharap, Ashutosh Hennelly, Scott P. Sanbonmatsu, Karissa Y. TI 3S: Shotgun secondary structure determination of long non-coding RNAs SO METHODS LA English DT Article DE Long non-coding RNA structure; IncRNA structure; IncRNA; Long non-coding RNA; Secondary structure; Steroid receptor RNA activator ID SAM-I RIBOSWITCH; CONSENSUS STRUCTURE PREDICTION; GENE-EXPRESSION; CAPILLARY-ELECTROPHORESIS; S-ADENOSYLMETHIONINE; GENOME; CHROMATIN; THERMODYNAMICS; INFORMATION; RNAALIFOLD AB Long non-coding RNAs (IncRNAs) have emerged as an important class of RNAs playing key roles in development, disease and epigenetics. Knowledge of IncRNA structure may be critical in understanding function for many IncRNA systems. Due to the enormous number of possible folds for these sequences, secondary structure determination presents a significant challenge, both experimentally and computationally. Here, we present a new strategy capable of determining the RNA secondary structure in the wet lab without significant reliance on computational predictions. First, we chemically probe the entire IncRNA. Next, using a shotgun approach, we divide the RNA into overlapping fragments and probe these fragments. We then compare probing profiles of fragments with the profiles of the full RNA and identify similarities. Sequence regions with profiles that are similar in the fragment and full-length transcript possess only base pairing partners within the fragment. Thus, by experimentally folding smaller and smaller fragments of the full RNA and probing these chemically, we are able to isolate modular sub-domains, dramatically reducing the number of possible folds. The method also eliminates the possibility of pseudo-knots within a modular sub-domain. The 3S technique is ideally suited for IncRNAs because it is designed for long RNA sequences. The 3S-determined secondary structure of a specific IncRNA in one species (e.g., human) enables searches for instances of the same IncRNA in other species. (C) 2013 Published by Elsevier Inc. C1 [Novikova, Irina V.; Dharap, Ashutosh; Hennelly, Scott P.; Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sanbonmatsu, KY (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM kys@lanl.gov RI Dharap, Ashutosh/H-7466-2013 FU US Department of Energy via LANL LDRD FX The work was performed under the auspices of the US Department of Energy via LANL LDRD. NR 56 TC 12 Z9 12 U1 0 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 EI 1095-9130 J9 METHODS JI Methods PD SEP 15 PY 2013 VL 63 IS 2 BP 170 EP 177 DI 10.1016/j.ymeth.2013.07.030 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 239EO UT WOS:000326005600010 PM 23927838 ER PT J AU Ilgu, M Wang, TJ Lamm, MH Nilsen-Hamilton, M AF Ilgu, Muslum Wang, Tianjiao Lamm, Monica H. Nilsen-Hamilton, Marit TI Investigating the malleability of RNA aptamers SO METHODS LA English DT Article DE Aptamer; Affinity measurement; Molecular dynamics simulation; Ionic environment effects ID MOLECULAR-DYNAMICS; BINDING-AFFINITY; NEOMYCIN-B; SIMULATION; RESOLUTION; 2-AMINOPURINE; RECOGNITION; ALGORITHMS; DEPENDENCE; COCAINE AB Aptamers are short, single-stranded nucleic acids with structures that frequently change upon ligand binding and are sensitive to the ionic environment. To achieve facile application of aptamers in controlling cellular activities, a better understanding is needed of aptamer ligand binding parameters, structures, intramolecular mobilities and how these structures adapt to different ionic environments with consequent effects on their ligand binding characteristics. Here we discuss the integration of biochemical analysis with NMR spectroscopy and computational modeling to explore the relation between ligand binding and structural malleability of some well-studied aptamers. Several methods for determining aptamer binding affinity and specificity are discussed, including isothermal titration calorimetry, steady state fluorescence of 2-aminopurine substituted aptamers, and dye displacement assays. Also considered are aspects of molecular dynamics simulations specific to aptamers including adding ions and simulating aptamer structure in the absence of ligand when NMR spectroscopy or X-ray crystallography structures of the unoccupied aptamer are not available. We focus specifically on RNA aptamers that bind small molecule ligands as would be applied in sensors or integrated into riboswitches such as to measure the products of metabolic activity. (C) 2013 Elsevier Inc. All rights reserved. C1 [Ilgu, Muslum; Wang, Tianjiao; Nilsen-Hamilton, Marit] US DOE, Ames Lab, Ames, IA 50011 USA. [Lamm, Monica H.] Dept Chem & Biol Engn, Ames, IA USA. [Ilgu, Muslum; Nilsen-Hamilton, Marit] Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA USA. RP Nilsen-Hamilton, M (reprint author), Iowa State Univ, Dept Biochem Biophys & Mol Biol, 3206 Mol Biol Bldg, Ames, IA 50011 USA. EM marit@iastate.edu FU U.S. Department of Energy, Office of Biological and Environmental Research through the Ames Laboratory; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX Financial support for this study was provided by the U.S. Department of Energy, Office of Biological and Environmental Research through the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. We thank Ashish Sachan for providing data relating to the cocaine aptamer and Julia E. Weigand and Beatrix Suess for supplying us with the full length RNA sequence that includes the riboswitch. NR 40 TC 9 Z9 9 U1 3 U2 36 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 EI 1095-9130 J9 METHODS JI Methods PD SEP 15 PY 2013 VL 63 IS 2 BP 178 EP 187 DI 10.1016/j.ymeth.2013.03.016 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 239EO UT WOS:000326005600011 PM 23535583 ER PT J AU Letschert, V Desroches, LB Ke, J McNeil, M AF Letschert, Virginie Desroches, Louis-Benoit Ke, Jing McNeil, Michael TI Energy efficiency - How far can we raise the bar? Revealing the potential of best available technologies SO ENERGY LA English DT Article DE Best available technology; Bottom-up modeling; End-use modeling; Technical potential ID CONSUMPTION; APPLIANCES; STANDARDS AB This paper presents the first attempt to quantify the potential impacts of a massive deployment of state-of-the-art energy-efficient technologies in the most energy-consuming economies in the world: the United States, the European Union, China, and India. We first identified the most efficient technologies that are currently available for a wide range of end uses in the residential and industrial sectors. The technologies we selected are either engineered with the best available existing components or are the most promising emerging technologies believed to be producible on a large scale in the near future. Using a bottom-up energy model developed at Lawrence Berkeley National Laboratory, we modeled the most aggressive foreseeable policy that would result in making the best available technologies mandatory by 2015. We estimate that adoption of the best available technologies would avoid 2600 TWh, or about 20% of the projected energy consumption and 1.5 Gt of carbon dioxide emissions by 2030. We believe that this study, which brings engineering knowledge of technologies together with a rigorous energy model, is the most reliable analysis to date of the maximum potential of energy efficiency. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Letschert, Virginie; Desroches, Louis-Benoit; Ke, Jing; McNeil, Michael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Letschert, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, 1 Cyclotron Rd,MS 90-2000, Berkeley, CA 94720 USA. EM VLetschert@lbl.gov RI Ke, Jing/H-4816-2016 OI Ke, Jing/0000-0002-5972-8042 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Collaborative Labeling and Appliance Standards Program through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Won Park and Nihar Shah from LBNL for their precious guidance and Nan Wishner, our technical editor for this article. NR 42 TC 8 Z9 8 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 J9 ENERGY JI Energy PD SEP 15 PY 2013 VL 59 BP 72 EP 82 DI 10.1016/j.energy.2013.06.067 PG 11 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA 223EN UT WOS:000324787600008 ER PT J AU Schultz, IR Skillman, A Sloan-Evans, S Woodruff, D AF Schultz, Irvin R. Skillman, Ann Sloan-Evans, Siobhan Woodruff, Dana TI Domoic acid toxicokinetics in Dungeness crabs: New insights into mechanisms that regulate bioaccumulation SO AQUATIC TOXICOLOGY LA English DT Article DE Transporters; Disposition; Extracellular; Hepatopancreas ID HARMFUL ALGAL BLOOMS; AMNESIC SHELLFISH TOXIN; PACIFIC RAZOR CLAM; CANCER-MAGISTER; TISSUE DISTRIBUTION; OCTOPUS-VULGARIS; DIGESTIVE GLAND; WASHINGTON COAST; SILIQUA-PATULA; MYTILUS-EDULIS AB Domoic acid (DA) is an excitatory neurotoxic amino acid produced by several marine algal species and is the causative agent of amnesic shellfish poisoning. Profound differences in the toxicokinetics of DA have been identified in a wide variety of shellfish. We characterized the toxicokinetics of DA in Dungeness crabs (Metacarcinus magister) after oral and intravascular dosing (IV) using a variety of doses ranging from 0.1 to 20 mg/kg. After a 1 mg/kg oral dose, DA disappeared from the foregut within 2 h and largely accumulated in the hepatopancreas, with hemolymph and other tissues having 100-1000 times lower concentrations. After IV dosing, hemolymph concentrations of DA were unexpectedly high and toxicokinetic analysis indicated the steady-state volume of distribution (V-ss) was 123-197 ml/kg, which is well below the hemolymph volume of 350 ml/kg for crabs. This indicated only limited extravascular distribution of DA was occurring after IV injection, which is surprising considering the capacity of the hepatopancreas to sequester DA after oral dosing. Additional studies measured the partitioning of DA in hepatopancreas cellular and subcellular fractions. The subcellular distribution of DA was primarily associated with the S8 fraction and could be filtered through a 30,000 MW cut-off filter, indicating DA was not appreciably bound to macromolecules. Interestingly, very little (<0.4%) of the total hepatopancreas DA tissue content was associated with the cellular fraction isolated after dissociation and separation from tissue fragments. The in vivo and in vitro results led us to hypothesize that DA uptake and distribution is regulated by crustacean orthologs of ATP-binding cassette (ABC) type transporters. We tested this hypothesis by co-exposing crabs to DA and known inhibitors of ABC transporters (verapamil, cyclosporine A and MK-571) and through in vitro studies using isolated hepatopancreas tissue and mixed cell suspensions prepared from hepatopancreas tissue. The in vivo results were inconclusive in that the toxicokinetics of DA was not consistently altered by co-administration of the inhibitors. Two exceptions were MK-571, which significantly increased the total body clearance of DA and co-administration of verapamil, which significantly increased the hepatopancreas tissue content of DA 24 h after IV injection. Isolated pieces of hepatopancreas tissue were able to readily absorb DA from incubation media, but mixed cell suspensions did not. The absorption of DA or lack thereof was largely unaffected by co-incubation with verapamil although cell suspensions appeared to accumulate small quantities of DA in the presence of verapamil. Collectively, the results of this study suggest DA accumulates in the extracellular spaces of the hepatopancreas, such as the tubular lumen. Under natural circumstances, crabs feeding on contaminated shellfish would be expected to readily absorb DA, which is then stored and slowly eliminated in urine. If the DA exposure level exceeds the storage capacity of the tissue (as occurred with the 20 mg/kg dose), breakthrough occurs resulting in much higher systemic exposure and potential for DA toxicity. (C) 2013 Elsevier B.V. All rights reserved. C1 [Schultz, Irvin R.; Skillman, Ann; Sloan-Evans, Siobhan; Woodruff, Dana] Battelle Pacific NW Div, Marine Sci Lab, Sequim, WA 98382 USA. RP Schultz, IR (reprint author), Battelle Pacific NW Div, Marine Sci Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382 USA. EM ir_schultz@pnl.gov FU United States Environmental Protection Agency through STAR grant [R831703]; Department of Energy; Marine Advanced Technology Education (MATE) center FX Funding was provided by the United States Environmental Protection Agency through STAR grant R831703. The manuscript has not been subjected to the Agency's required peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred. We thank Michael Cobb, Val Cullinan, Jonathan Lee and Kaitlin Hartman for help on ELISA, statistics and HPLC assays and Chris Morgan and Laura Almaguer for help with crab dosing and sampling. The Department of Energy's student undergraduate intern (SULI) program also provided financial support to Mr. Lee, Mr. Morgan, Ms. Sloan-Evans and Ms. Hartman. The Marine Advanced Technology Education (MATE) center provided financial support for Ms. Almaguer. NR 57 TC 1 Z9 1 U1 3 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-445X J9 AQUAT TOXICOL JI Aquat. Toxicol. PD SEP 15 PY 2013 VL 140 BP 77 EP 88 DI 10.1016/j.aquatox.2013.04.011 PG 12 WC Marine & Freshwater Biology; Toxicology SC Marine & Freshwater Biology; Toxicology GA 224PO UT WOS:000324900800009 PM 23765030 ER PT J AU Buchko, GW Lin, GY Tarasevich, BJ Shaw, WJ AF Buchko, Garry W. Lin, Genyao Tarasevich, Barbara J. Shaw, Wendy J. TI A solution NMR investigation into the impaired self-assembly properties of two murine amelogenins containing the point mutations T21 -> I or P41 -> T SO ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS LA English DT Article DE Amelogenesis imperfecta; Intrinsic disorder; Amelogenin; Enamel; Biomineralization; Nanospheres ID DYNAMIC LIGHT-SCATTERING; ATOMIC-FORCE MICROSCOPY; HYDROXYAPATITE CRYSTALS; RECOMBINANT AMELOGENIN; PROTEIN INTERACTIONS; ENAMEL FORMATION; MATRIX PROTEINS; SECRETORY-STAGE; APATITE BINDING; IN-VITRO AB Amelogenesis imperfecta describes a group of inherited disorders that results in defective tooth enamel. Two disorders associated with human amelogenesis imperfecta are the point mutations T21 -> I or P40 -> T in amelogenin, the dominant protein present during the early stages of enamel biomineralization. The biophysical properties of wildtype murine amelogenin (M180) and two proteins containing the equivalent mutations in murine amelogenin, T21 -> I (M180-I) and P41 -> T (M180-T), were probed by NMR spectroscopy. At low protein concentration (0.1 mM), M180, M180-I, and M180-T are predominately monomeric at pH 3.0 in 2% acetic acid and neither mutation produces a major structural change. Chemical shift perturbation studies as a function of protein (0.1-1.8 mM) or NaCl (0-400 mM) concentrations show that the mutations affect the self-association properties by causing self-assembly at lower protein or salt concentrations, relative to wildtype amelogenin, with the largest effect observed for M180-I. Under both conditions, the premature self-assembly is initiated near the N-terminus, providing further evidence for the importance of this region in the self-assembly process. The self-association of M180-I and M180-T at lower protein concentrations and lower ionic strengths than wildtype M180 may account for the clinical phenotypes of these mutations, defective enamel formation. (C) 2013 Elsevier Inc. All rights reserved. C1 [Buchko, Garry W.; Lin, Genyao; Tarasevich, Barbara J.; Shaw, Wendy J.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Buchko, GW (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Mail Stop K8-98, Richland, WA 99352 USA. EM garry.buchko@pnnl.gov; wendy.shaw@pnnl.gov RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU NIH-NIDCH [DE-015347]; U.S. DOE Biological and Environmental Research program FX This research was supported by NIH-NIDCH Grant number DE-015347. It was performed at the Pacific Northwest National Laboratory, a facility operated by Battelle for the U.S. Department of Energy, and included access to the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. DOE Biological and Environmental Research program. NR 54 TC 4 Z9 4 U1 1 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0003-9861 J9 ARCH BIOCHEM BIOPHYS JI Arch. Biochem. Biophys. PD SEP 15 PY 2013 VL 537 IS 2 BP 217 EP 224 DI 10.1016/j.abb.2013.07.015 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 224PS UT WOS:000324901200008 PM 23896516 ER PT J AU Bascom, JL Radisky, DC Koh, E Fata, JE Lo, A Mori, H Roosta, N Hirai, Y Bissell, MJ AF Bascom, Jamie L. Radisky, Derek C. Koh, Eileen Fata, Jimmie E. Lo, Alvin Mori, Hidetoshi Roosta, Neda Hirai, Yohei Bissell, Mina J. TI Epimorphin Is a Novel Regulator of the Progesterone Receptor Isoform-A SO CANCER RESEARCH LA English DT Article ID MAMMARY-GLAND DEVELOPMENT; TRANSGENIC MICE; BRANCHING MORPHOGENESIS; BREAST-CANCER; EPITHELIAL MORPHOGENESIS; GENE-EXPRESSION; GROWTH-FACTORS; ESTROGEN; DISTINCT; CARCINOGENESIS AB Epimorphin/syntaxin-2 is a membrane-tethered protein localized extracellularly (Epim) and intracellularly (Stx-2). The extracellular form Epim stimulates morphogenic processes in a range of tissues, including in murine mammary glands where its overexpression in luminal epithelial cells is sufficient to drive hyperplasia and neoplasia. We analyzed WAP-Epim transgenic mice to gain insight into how Epim promotes malignancy. Ectopic overexpression of Epim during postnatal mammary gland development led to early side-branching onset, precocious bud formation, and increased proliferation of mammary epithelial cells. Conversely, peptide-based inhibition of Epim function reduced side branching. Because increased side branching and hyperplasia occurs similarly in mice upon overexpression of the progesterone receptor isoform-a (Pgr-a), we investigated whether Epim exhibits these phenotypes through Pgr modulation. Epim overexpression indeed led to a steep upregulation of both total Pgr mRNA and Pgr-a protein levels. Notably, the Pgr antagonist RU486 abrogated Epim-induced ductal side branching, mammary epithelial cell proliferation, and bud formation. Evaluation of Epim signaling in a three-dimensional ex vivo culture system showed that its action was dependent on binding to its extracellular receptor, integrin-aV, and on matrix metalloproteinase 3 activity downstream of Pgr-a. These findings elucidate a hitherto unknown transcriptional regulator of Pgr-a, and shed light on how overexpression of Epim leads to malignancy. (C) 2013 AACR. C1 [Bascom, Jamie L.; Koh, Eileen; Lo, Alvin; Mori, Hidetoshi; Roosta, Neda; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Radisky, Derek C.] Mayo Clin, Ctr Canc, Jacksonville, FL 32224 USA. [Fata, Jimmie E.] CUNY Coll Staten Isl, Staten Isl, NY 10314 USA. [Hirai, Yohei] Kwansei Gakuin Univ, Dept Biosci, Sanda, Japan. RP Bissell, MJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jlbascom@lbl.gov; mjbissell@lbl.gov FU NCI [CA122086]; Susan B. Komen foundation [KG110542]; Mayo Clinic Breast Cancer SPORE [CA116201]; JSPS [24590365]; U.S. Department of Energy, Office of Biological and Environmental Research and Low Dose Scientific Focus Area [DE-AC02-05CH1123]; National Cancer Institute [R37CA064786, R01CA140663, U54CA112970, U01CA143233, U54CA143836]; U.S. Department of Defense [W81XWH0810736]; Breast Cancer Research Foundation FX D.C. Radisky is supported by the NCI (CA122086), the Susan B. Komen foundation (KG110542), and the Mayo Clinic Breast Cancer SPORE (CA116201). Y. Hirai was supported by grant-in aid for Scientific Research (JSPS: KAKENHI 24590365). The work from M.J. Bissell's laboratory is supported by grants from the U.S. Department of Energy, Office of Biological and Environmental Research and Low Dose Scientific Focus Area (contract no. DE-AC02-05CH1123); by National Cancer Institute (awards R37CA064786, R01CA140663, U54CA112970, U01CA143233, and U54CA143836-Bay Area Physical Sciences-Oncology Center, University of California, Berkeley, CA); by U.S. Department of Defense (W81XWH0810736); and in part by a grant from The Breast Cancer Research Foundation. NR 45 TC 3 Z9 3 U1 0 U2 4 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD SEP 15 PY 2013 VL 73 IS 18 BP 5719 EP 5729 DI 10.1158/0008-5472.CAN-13-0021 PG 11 WC Oncology SC Oncology GA 223LK UT WOS:000324806300012 PM 23867473 ER PT J AU Fox, PM Davis, JA Kukkadapu, R Singer, DM Bargar, J Williams, KH AF Fox, Patricia M. Davis, James A. Kukkadapu, Ravi Singer, David M. Bargar, John Williams, Kenneth H. TI Abiotic U(VI) reduction by sorbed Fe(II) on natural sediments SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID URANIUM-CONTAMINATED AQUIFER; MAGNETITE 111 SURFACE; FERROUS IRON; ELECTRON-TRANSFER; AQUEOUS FE(II); ATOM EXCHANGE; GREEN RUST; TERNARY COMPLEXES; WATER INTERFACE; SORPTION AB Laboratory experiments were performed as a function of aqueous Fe(II) concentration to determine the uptake and oxidation of Fe(II), and Fe(II)-mediated abiotic reduction of U(VI) by aquifer sediments from the DOE Rifle field research site in Colorado, USA. Mossbauer analysis of the sediments spiked with aqueous Fe-57(II) showed that Fe-57(II) was oxidized on the mineral surfaces to Fe-57(III) and most likely formed a nano-particulate Fe(III)-oxide or ferrihydrite-like phase. The extent of Fe-57 oxidation decreased with increasing Fe-57(II) uptake, such that 98% was oxidized at 7.3 mu mol/g Fe and 41% at 39.6 mu mol/g Fe, indicating that the sediments had a limited capacity for oxidation of Fe(II). Abiotic U(VI) reduction was observed by XANES spectroscopy only when the Fe(II) uptake was greater than approximately 20 mu mol/g and surface-bound Fe(II) was present, possibly as oligomeric Fe(II) surface species. The degree of U(VI) reduction increased with increasing Fe(II)-loading above this level to a maximum of 18% and 36% U(IV) at pH 7.2 (40.7 mu mol/g Fe) and 8.3 (56.1 mu mol/g Fe), respectively in the presence of 400 ppm CO2. Greater U(VI) reduction was observed in CO2-free systems [up to 44% and 54% at pH 7.2 (17.3 mu mol/g Fe) and 8.3 (54.8 mu mol/g Fe), respectively] compared to 400 ppm CO2 systems, presumably due to differences in aqueous U(VI) speciation. While pH affects the amount of Fe(II) uptake onto the solid phase, with greater Fe(II) uptake at higher pH, similar amounts of U(VI) reduction were observed at pH 7.2 and 8.3 for a similar Fe(II) uptake. Thus, it appears that abiotic U(VI) reduction is controlled primarily by sorbed Fe(II) concentration and aqueous U(VI) speciation. The range of Fe(II) loadings tested in this study are within the range observed in biostimulation experiments at the Rifle site, suggesting that Fe(II)-mediated abiotic U(VI) reduction could play a significant role in field settings. Published by Elsevier Ltd. C1 [Fox, Patricia M.; Davis, James A.; Singer, David M.; Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kukkadapu, Ravi] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA. [Bargar, John] SLAC, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Fox, PM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 74R316C, Berkeley, CA 94720 USA. EM pmfox@lbl.gov RI Williams, Kenneth/O-5181-2014; Fox, Patricia/I-2208-2014; Davis, James/G-2788-2015 OI Williams, Kenneth/0000-0002-3568-1155; Fox, Patricia/0000-0002-5264-1876; FU Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research Program FX Portions of this work were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL) and the Environmental Molecular Sciences Laboratory (EMSL). SSRL is a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. EMSL is a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. This research was supported by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research Program and was conducted as part of the Rifle IFRC project. The Rifle IFRC project is a multidisciplinary, multi-institutional project initially managed by the Pacific Northwest National Laboratory (PNNL) and now by Lawrence Berkeley National Laboratory. The use of trade names does not constitute endorsement by the US government. The authors gratefully acknowledge the assistance of Christopher Fuller at the U.S. Geological Survey for assistance with the gamma-spectroscopy analysis. NR 97 TC 9 Z9 9 U1 11 U2 72 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2013 VL 117 BP 266 EP 282 DI 10.1016/j.gca.2013.05.003 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 213DU UT WOS:000324035300018 ER PT J AU Yang, G Bolotnikov, AE Fochuk, PM Kopach, O Franc, J Belas, E Kim, KH Camarda, GS Hossain, A Cui, Y Adams, AL Radja, A Pinder, R James, RB AF Yang, G. Bolotnikov, A. E. Fochuk, P. M. Kopach, O. Franc, J. Belas, E. Kim, K. H. Camarda, G. S. Hossain, A. Cui, Y. Adams, A. L. Radja, A. Pinder, R. James, R. B. TI Post-growth thermal annealing study of CdZnTe for developing room-temperature X-ray and gamma-ray detectors SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Defect; Radiation detectors; Cadmium compounds; CdZnTe; Semi-conducting II-VI materials ID CRYSTALS; CDTE AB Post-growth annealing is a potentially promising method of improving the properties of CZT for fabricating room-temperature X-ray and gamma-ray detectors. In this paper, we summarize some of our recent research on annealing detector-grade CZT crystals. Our results show that annealing in a Cd vapor effectively removes Te inclusions from CZT. The migration of Te inclusions was also observed for annealing in a temperature-gradient field. We recorded a loss of resistivity of the detector-grade CZT after annealing in a Cd vapor. The underlying mechanism of this loss was discussed, and solutions including two-step annealing (Cd annealing followed by Te annealing) and one-step annealing with Cd and Zn pressure control were proposed to maintain high resistivity. (c) 2012 Elsevier B.V. All rights reserved. C1 [Yang, G.; Bolotnikov, A. E.; Kim, K. H.; Camarda, G. S.; Hossain, A.; Cui, Y.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Fochuk, P. M.; Kopach, O.] Chernivtsi Natl Univ, Chernovtsy, Ukraine. [Franc, J.; Belas, E.] Charles Univ Prague, Inst Phys, CZ-12116 Prague, Czech Republic. [Adams, A. L.] Univ Alabama, Dept Mech Engn, Tuscaloosa, AL USA. [Radja, A.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Adams, A. L.; Pinder, R.] Alabama A&M Univ, Dept Technol, Normal, AL 35762 USA. RP Yang, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM gyang@bnl.gov RI Fochuk, Petro/D-9409-2016; Franc, Jan/C-3802-2017; Kopach, Oleh/C-3993-2017 OI Fochuk, Petro/0000-0002-4149-4882; Franc, Jan/0000-0002-9493-3973; Kopach, Oleh/0000-0002-1513-5261 FU US Department of Energy, Office of Nonproliferation & Verification Research Development [NA-22]; Brookhaven Science Associates, LLC [DE-AC02-98CH1-886]; GIPP program, project STCU [P-406] FX This work was supported by US Department of Energy, Office of Nonproliferation & Verification Research & Development, NA-22. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract no. DE-AC02-98CH1-886 with the US Department of Energy. Also it was supported partly by GIPP program, project STCU #P-406. NR 16 TC 19 Z9 20 U1 3 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 15 PY 2013 VL 379 BP 16 EP 20 DI 10.1016/j.jcrysgro.2012.11.041 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 202CS UT WOS:000323191700005 ER PT J AU Babentsov, V James, RB AF Babentsov, V. James, R. B. TI Anion vacancies in II-VI chalcogenides: Review and critical analysis SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Point defects; Doping; Semiconducting II-VI compounds; Scintillator materials ID DEEP-LEVEL; COMPOUND SEMICONDUCTORS; SULFUR VACANCY; NATIVE-DEFECT; F-CENTRE; PHOTOLUMINESCENCE; CRYSTALS; ZNO; ZNTE; CDTE AB We performed critical analysis and comparison of all EPR, photo-EPR, photosensitive optical absorption, photoluminescence, and photoconductivity data taken on various Zn- and Cd-related II-VI chalcogenides compounds, such as ZnO, ZnS, ZnSe, and ZnTe, and CdS, CdSe, and CdTe. We developed a scheme for the electronic transitions and recombination associated with anion vacancies that is common for all these materials. This scheme explains all known facts obtained to date on quenching and excitation of the EPR signal, optical absorption, photoluminescence and photoconductivity. Based on these data we determined that the location of the energy level of the singly charged anion vacancy, V-A(+), is nearly equal for Zn-related II-VI materials (E-C-1.0 eV) and E-C+0.8 eV for Cd-related materials. For Cd-related chalcogenides most of the data were derived only from photoluminescence- and photoconductivity-spectra, so based on the available data, the position of the energy level of a singly charged anion vacancy in these materials was determined not so convincingly. Nonetheless, these materials have attracted much interest for decades because of their industrial applications as luminescent devices, laser filters and other optical elements, infrared, visible- and (X) gamma-ray-detectors, solar cells, and the like. (c) 2013 Elsevier B.V. All rights reserved. C1 [Babentsov, V.] Inst Semicond Phys, UA-03028 Kiev, Ukraine. [James, R. B.] Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, Upton, NY 11973 USA. RP Babentsov, V (reprint author), Inst Semicond Phys, Pr Nauki 45, UA-03028 Kiev, Ukraine. EM v.babentsov@gmail.com NR 41 TC 5 Z9 6 U1 12 U2 102 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 15 PY 2013 VL 379 BP 21 EP 27 DI 10.1016/j.jcrysgro.2013.04.051 PG 7 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 202CS UT WOS:000323191700006 ER PT J AU Hossain, A Yakimovich, V Bolotnikov, AE Bolton, K Camarda, GS Cui, Y Franc, J Gul, R Kim, KH Pittman, H Yang, G Herpst, R James, RB AF Hossain, A. Yakimovich, V. Bolotnikov, A. E. Bolton, K. Camarda, G. S. Cui, Y. Franc, J. Gul, R. Kim, K-H Pittman, H. Yang, G. Herpst, R. James, R. B. TI Development of Cadmium Magnesium Telluride (Cd1-xMgxTe) for room temperature X- and gamma-ray detectors SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Defects; Etching; Semiconducting II-VI materials ID MOLECULAR-BEAM EPITAXY; CDTE CRYSTALS; GROWTH; CDZNTE; SPECTROSCOPY; DEFECTS; FILMS AB Cadmium Magnesium Telluride (Cd1-xMgxTe/CMgT) offers several pronounced potential advantages over the well-studied CdZnTe and CdMnTe, possibly making it a good alternative for room-temperature X- and gamma-ray detectors. It possesses high crystallinity due to the near-similar lattice structure of CdTe (6.48 angstrom) and MgTe (6.42 angstrom). Its displays good homogeneity as the Mg segregation coefficient in CdTe is nearly 1. Furthermore, inhomogeneities in the crystal due to alloying effects can be minimized, because the optimal energy band-gap can be achieved using less Mg in CdMgTe compared to Zn and Mn needed in CdZnTe and CdMnTe. We recently grew an undoped- and a doped-ingot of CdMgTe, characterized its material properties, and tested its detection performance. We obtained some exciting results that demonstrated some of its potential advantages over the other materials. The band-gap was measured as 1.61 eV at room temperature and 1.73 eV at 4 K. The yield was predominantly single crystals with about two orders-of-magnitude fewer Te inclusions and other growth defects compared to CdZnTe and CdMnTe crystals. The measured resistivity of the undoped annealed crystal was about similar to 10(7) Omega-cm; after doping in a second growth trial, it increased by 2-3 orders-of-magnitude (10(9)-10(10) Omega-cm). We examined the doped as-grown crystal as a radiation detector and acquired reasonably good spectral response to an Am-241 source. The estimated mu-tau value was as high as 7 x 10(-4) cm(2)/V, which is an extraordinarily high value for such an early-phase investigation. We also analyzed point and extended defects using various techniques that will be discussed in this manuscript. (c) 2012 Elsevier B.V. All rights reserved. C1 [Hossain, A.; Bolotnikov, A. E.; Bolton, K.; Camarda, G. S.; Cui, Y.; Gul, R.; Kim, K-H; Pittman, H.; Yang, G.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Yakimovich, V.; Herpst, R.] Int Crystal Labs, Garfield, NJ 07026 USA. [Franc, J.] Charles Univ Prague, Inst Phys, CR-11636 Prague 1, Czech Republic. RP Hossain, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM hossain@bnl.gov RI Franc, Jan/C-3802-2017 OI Franc, Jan/0000-0002-9493-3973 FU U.S. Department of Energy, Office of Nonproliferation Research and Development [NA-22]; Brookhaven Science Associates, LLC [DE-AC02-98CH1-886] FX This work was supported by U.S. Department of Energy, Office of Nonproliferation Research and Development, NA-22. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract no. DE-AC02-98CH1-886 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. NR 16 TC 5 Z9 5 U1 4 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 15 PY 2013 VL 379 BP 34 EP 40 DI 10.1016/j.jcrysgro.2012.11.044 PG 7 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 202CS UT WOS:000323191700008 ER PT J AU Bolotnikov, AE Camarda, GS Cui, Y Yang, G Hossain, A Kim, K James, RB AF Bolotnikov, A. E. Camarda, G. S. Cui, Y. Yang, G. Hossain, A. Kim, K. James, R. B. TI Characterization and evaluation of extended defects in CZT crystals for gamma-ray detectors SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Defects; Volume defects; Radiation; Semiconducting materials ID HIGH-PRESSURE-BRIDGMAN; SEMICONDUCTOR COMPOUND-CRYSTALS; CDZNTE RADIATION DETECTORS; TE INCLUSIONS; PERFORMANCE; GROWTH; CHARGE AB Material homogeneity is critical in achieving high-performance in all types of radiation detectors. This requirement is not inevitably satisfied in today's commercial detector-grade CdZnTe (CZT) material because it contains high concentrations of extended defects, in particular, Te inclusions, dislocation networks, and twin- and subgrain-boundaries that affect the energy resolution and the efficiency of the devices. Defects, such as grain boundaries and cracks that completely block charge-carrier transport are impermissible in CZT radiation-detectors at concentrations exceeding certain threshold values. Our group in Brookhaven National Laboratory (BNL) conducts systematic studies, detailing the roles of crystal defects in CZT detectors and the mechanisms underlying their formation and effects. We employ infrared transmission microscopy, white beam X-ray diffraction topography, and high-spatial-resolution X-ray response mapping to identify particular types of defects and reveal their relationship with the devices' performances. In this article, we summarize some of the most important results that our group obtained over the past 5 years. Published by Elsevier B.V. C1 [Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Yang, G.; Hossain, A.; Kim, K.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bolotnikov, AE (reprint author), 29 Cornell Ave, Upton, NY 11973 USA. EM bolotnik@bnl.gov FU U.S. Department of Energy's Office of Nonproliferation and Treaty Verification [NA22]; U.S. Defense Threat Reduction Agency (DTRA) FX The authors would like to thank Drs. D. Bale and C. Szeles from Endicott Interconnects and Dr. H. Chen from Redlen Technologies for very useful discussions and suggestions. The support by the U.S. Department of Energy's Office of Nonproliferation and Treaty Verification (NA22) and U.S. Defense Threat Reduction Agency (DTRA) is also acknowledged. NR 39 TC 11 Z9 12 U1 3 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 15 PY 2013 VL 379 BP 46 EP 56 DI 10.1016/j.jcrysgro.2013.01.048 PG 11 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 202CS UT WOS:000323191700010 ER PT J AU Roy, UN Burger, A James, RB AF Roy, U. N. Burger, A. James, R. B. TI Growth of CdZnTe crystals by the traveling heater method SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Growth interface; Radiation detector; Crystal growth; THM; CdZnTe ID CADMIUM ZINC TELLURIDE; CDTE SINGLE-CRYSTALS; TE INCLUSIONS; DETECTOR APPLICATIONS; RADIATION DETECTORS; VERTICAL BRIDGMAN; MAGNETIC-FIELD; CZT DETECTORS; THM TECHNIQUE; PERFORMANCE AB Our review offers an overview of the Traveling Heater Method (THM) for growing crystals of CdZnTe, the most important semiconductor material available today for fabricating nuclear detectors operable at room temperature. The review compares the advantages of the THM technique with respect to melt growth techniques, and details the development and improvements in the technique from its start to the present day. It is known that the optimization of the growth parameters is highly dependent on the height of the Te-rich CZT molten zone, which in turn governs the shape of the growth interface. Special attention is paid to understand the effect of the Te-rich CZT molten zone on the growth interface (both microscopic and macroscopic) to improve the uniformity and overall quality of the grown crystals. We conclude that this technique affords us the best method today for consistently producing large homogenous detectors in mass quantities with a thickness up to 15 mm. Such detectors are need for many national-security and medical-imaging applications. (c) 2012 Elsevier B.V. All rights reserved. C1 [Burger, A.] Fisk Univ, Dept Life & Phys Sci, Nashville, TN 37208 USA. [Burger, A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Roy, UN (reprint author), 203 Sweet Gum Lane, Oak Ridge, TN 37830 USA. EM utpalnroy@gmail.com NR 38 TC 8 Z9 8 U1 5 U2 52 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 15 PY 2013 VL 379 BP 57 EP 62 DI 10.1016/j.jcrysgro.2012.11.047 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 202CS UT WOS:000323191700011 ER PT J AU Boatner, LA Ramey, JO Kolopus, JA Hawrami, R Higgins, WM van Loef, E Glodo, J Shah, KS Rowe, E Bhattacharya, P Tupitsyn, E Groza, M Burger, A Cherepy, NJ Payne, SA AF Boatner, L. A. Ramey, J. O. Kolopus, J. A. Hawrami, R. Higgins, W. M. van Loef, E. Glodo, J. Shah, K. S. Rowe, Emmanuel Bhattacharya, Pijush Tupitsyn, Eugene Groza, Michael Burger, Arnold Cherepy, N. J. Payne, S. A. TI Bridgman growth of large SrI2:Eu2+ single crystals: A high-performance scintillator for radiation detection applications SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Bridgman technique; Growth from melt; Halides; Scintillator materials ID SRI2(EU) AB Single-crystal strontium iodide (SrI2) doped with relatively high levels (e.g., 3-6%) of Eu2+ exhibits characteristics that make this material superior, in a number of respects, to other scintillators that are currently used for radiation detection. Specifically, SrI2:Eu2+ has a light yield that is significantly higher than LaBr3:Ce3+-a currently employed commercial high-performance scintillator. Additionally, SrI2:Eu2+ is characterized by an energy resolution as high as 2.6% at the Cs-137 gamma-ray energy of 662 key, and there is no radioactive component in SrI2:Eu2+ unlike LaBr3:Ce3+ that contains La-138. The Ce3+-doped LaBr3 decay time is, however, faster (30 ns) than the 1.2 mu s decay time of SrI2:Eu2+. Due to the relatively low melting point of strontium iodide (similar to 515 degrees C), crystal growth can be carried out in quartz crucibles by the vertical Bridgman technique. Materials-processing and crystal-growth techniques that are specific to the Bridgman growth of europium-doped strontium iodide scintillators are described here. These techniques include the use of a porous quartz frit to physically filter the molten salt from a quartz antechamber into the Bridgman growth crucible and the use of a "bent" or "bulb" grain selector design to suppress multiple grain growth. Single crystals of SrI2:Eu2+ scintillators with good optical quality and scintillation characteristics have been grown in sizes up to 5.0 cm in diameter by applying these techniques. Other aspects of the SrI2:Eu2+ crystal-growth methods and of the still unresolved crystal-growth issues are described here. (c) 2013 Elsevier B.V. All rights reserved. C1 [Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. [Hawrami, R.; Higgins, W. M.; van Loef, E.; Glodo, J.; Shah, K. S.] Radiat Monitoring Devices Inc, Oak Ridge Natl Lab, Watertown, MA 02472 USA. [Rowe, Emmanuel; Bhattacharya, Pijush; Tupitsyn, Eugene; Groza, Michael; Burger, Arnold] Fisk Univ, Dept Life & Phys Sci, Nashville, TN 37208 USA. [Cherepy, N. J.; Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Boatner, LA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM boatnerla@ornl.gov RI Cherepy, Nerine/F-6176-2013; Boatner, Lynn/I-6428-2013 OI Cherepy, Nerine/0000-0001-8561-923X; Boatner, Lynn/0000-0002-0235-7594 FU US Department of Homeland Security, Domestic Nuclear Detection Office [IAA HSHQDC-09-x-00208/P00002]; US DOE [DE-AC05-00OR22725, DE-AC52-07NA27344] FX This work was supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded IAA HSHQDC-09-x-00208/P00002. This work was performed under the auspices of the US DOE. Oak Ridge National Laboratory is managed for the US DOE by UT-Battelle under Contract DE-AC05-00OR22725. Lawrence Livermore is managed for the US DOE under Contract DE-AC52-07NA27344. The authors are indebted to Bryan Chakoumakos for his assistance in the preparation of Fig. 1 and to Dariusz Wisniewski and John Neal for contributions to the early stages of this effort. NR 13 TC 33 Z9 35 U1 6 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 15 PY 2013 VL 379 BP 63 EP 68 DI 10.1016/j.jcrysgro.2013.01.035 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 202CS UT WOS:000323191700012 ER PT J AU Hawrami, R Glodo, J Shah, KS Cherepy, N Payne, S Burger, A Boatner, L AF Hawrami, R. Glodo, J. Shah, K. S. Cherepy, N. Payne, S. Burger, A. Boatner, L. TI Bridgman bulk growth and scintillation measurements of SrI2:Eu2+ SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Single crystal growth; Bridgman technique; Growth from melt; Scintillator material; Large diameter scintillator crystals; SrI2:Eu AB Large diameter Bridgman growth of europium activated strontium iodide SrI2:Eu2+ produces crystals with light yield of up to 115,000 ph/MeV with an excellent light yield proportionality. SrI2:Eu2+ exhibits an outstanding energy resolution of better than 3% FWHM at 662 keV. Its emission is centered at 435 nm. The scintillation decays with a 1 mu s time constant for small samples and up to 5 mu s to larger crystals. This paper presents successful progress made in the vertical Bridgman crystal growth of SrI2:Eu2+ and its scintillator properties. Large diameter, crack-free and transparent SrI2:Eu(2+)single crystals with diameters of 1 in., 1.3 in., 1.5 in. and 2 in. were all successfully grown. (c) 2013 Elsevier B.V. All rights reserved. C1 [Hawrami, R.; Glodo, J.; Shah, K. S.] Radiat Monitoring Devices Inc, Watertown, MA 02472 USA. [Cherepy, N.; Payne, S.] LLNL, Livermore, CA 94550 USA. [Burger, A.] Fisk Univ, Nashville, TN 37208 USA. [Boatner, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hawrami, R (reprint author), Radiat Monitoring Devices Inc, Watertown, MA 02472 USA. EM drh1980@gmail.com RI Cherepy, Nerine/F-6176-2013; Boatner, Lynn/I-6428-2013 OI Cherepy, Nerine/0000-0001-8561-923X; Boatner, Lynn/0000-0002-0235-7594 FU US Department of Homeland Security, Domestic Nuclear Detection Office [HSHQDC-09-X-00208] FX This work was supported by the US Department of Homeland Security, Domestic Nuclear Detection Office under competitively awarded interagency agreement HSHQDC-09-X-00208. NR 12 TC 22 Z9 23 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 15 PY 2013 VL 379 BP 69 EP 72 DI 10.1016/j.jcrysgro.2013.04.035 PG 4 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 202CS UT WOS:000323191700013 ER PT J AU Seeley, ZM Cherepy, NJ Payne, SA AF Seeley, Z. M. Cherepy, N. J. Payne, S. A. TI Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Densification; Sinter-HIP; Garnet; Optical ceramic; Scintillator ID CRYSTALS; GROWTH AB Transparent polycrystalline ceramic scintillators based on the composition Gd1.49Y1.49Ce0.02Ga2.2Al2.8O12 are being developed for gamma spectroscopy detectors. Scintillator light yield and energy resolution depend on the details of various processing steps, including powder calcination, green body formation, and sintering atmosphere. We have found that gallium sublimation during vacuum sintering creates compositional gradients in the ceramic and can degrade the energy resolution. While sintering in oxygen produces ceramics with uniform composition and little afterglow, light yields are reduced, compared to vacuum sintering. By controlling the atmosphere during the various process steps, we were able to minimize the gallium sublimation, resulting in a more homogeneous composition and improved gamma spectroscopy performance. (c) 2012 Elsevier B.V. All rights reserved. C1 [Seeley, Z. M.; Cherepy, N. J.; Payne, S. A.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. RP Seeley, ZM (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, POB 808, Livermore, CA 94550 USA. EM seeley7@llnl.gov RI Cherepy, Nerine/F-6176-2013 OI Cherepy, Nerine/0000-0001-8561-923X FU US Department of Homeland Security, Domestic Nuclear Detection Office [IAA HSHQDC-09-x-00208/P00002]; US DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344. LLNL-JRNL-562854] FX Thanks to Zurong Dai for electron microscopy, Rick Ryerson for electron probe microscopy, Josh Kuntz, Keith Lewis and Lindsey Haselhorst with assistance in ceramics fabrication, Sean O'Neal, Owen Drury and Ben Sturm for gamma ray spectroscopy analysis. Thanks to Scott Fisher for mechanical support and Long Nguyen and Todd Stefanik of Nanocerox Inc. for large scale production of nano-powder. This work has been supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded IAA HSHQDC-09-x-00208/P00002. This support does not constitute an express or implied endorsement on the part of the Government. This work was performed under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-562854. NR 14 TC 7 Z9 8 U1 1 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 15 PY 2013 VL 379 BP 79 EP 83 DI 10.1016/j.jcrysgro.2012.11.042 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 202CS UT WOS:000323191700015 ER PT J AU Lordi, V AF Lordi, Vincenzo TI Point defects in Cd(Zn)Te and TlBr: Theory SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Computer simulation; Diffusion; Doping; Point defects; Halides; Semiconducting materials ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; CADMIUM ZINC TELLURIDE; AUGMENTED-WAVE METHOD; RADIATION DETECTORS; X-RAY; POLARIZATION PHENOMENA; BASIS-SET; CDTE; CRYSTALS AB The effects of various crystal defects on the performances of CdTe, Cd1-xZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects-principally vacancies-on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity. (c) 2013 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lordi, V (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-413, Livermore, CA 94550 USA. EM lordi2@llnl.gov OI Lordi, Vincenzo/0000-0003-2415-4656 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development [NA-22] FX The author gratefully acknowledges contributions from Cedric Rocha Leao, Daniel Aberg, and Paul Erhart. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22. NR 74 TC 10 Z9 10 U1 4 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 15 PY 2013 VL 379 BP 84 EP 92 DI 10.1016/j.jcrysgro.2013.03.003 PG 9 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 202CS UT WOS:000323191700016 ER PT J AU Mao, SS AF Mao, Samuel S. TI High throughput growth and characterization of thin film materials SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Characterization; Physical vapor deposition processes; Alloys; Semiconducting materials ID RADIATION DETECTORS; HYDROGEN STORAGE AB It usually takes more than 10 years for a new material from initial research to its first commercial application. Therefore, accelerating the pace of discovery of new materials is critical to tackling challenges in areas ranging from clean energy to national security. As discovery of new materials has not kept pace with the product design cycles in many sectors of industry, there is a pressing need to develop and utilize high throughput screening and discovery technologies for the growth and characterization of new materials. This article presents two distinctive types of high throughput thin film material growth approaches, along with a number of high throughput characterization techniques, established in the author's group. These approaches include a second-generation "discrete" combinatorial semiconductor discovery technology that enables the creation of arrays of individually separated thin film semiconductor materials of different compositions, and a "continuous" high throughput thin film material screening technology that enables the realization of ternary alloy libraries with continuously varying elemental ratios. Published by Elsevier B.V. C1 [Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Mao, SS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ssmao@lbl.gov FU U.S. Department of Energy, NNSA/ Office of Nonproliferation and Verification Research and Development, Office of Science/ Basic Energy Sciences, and Office of Energy Efficiency and Renewable Energy FX This research has been supported by the U.S. Department of Energy, NNSA/ Office of Nonproliferation and Verification Research and Development, Office of Science/ Basic Energy Sciences, and Office of Energy Efficiency and Renewable Energy. The author acknowledges Z. Ma, P. Xiao, H. Hao, D. Liu, X. Zhang, L. Oehlerking, D. Speaks, K.M. Yu, W. Walukiewicz, P.Y. Yu, S. Barcelo, X. Shen, and J. Melman, for their contribution in various stages of the research. NR 15 TC 2 Z9 5 U1 2 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 15 PY 2013 VL 379 BP 123 EP 130 DI 10.1016/j.jcrysgro.2012.10.051 PG 8 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 202CS UT WOS:000323191700021 ER PT J AU Ames, SK Hysom, DA Gardner, SN Lloyd, GS Gokhale, MB Allen, JE AF Ames, Sasha K. Hysom, David A. Gardner, Shea N. Lloyd, G. Scott Gokhale, Maya B. Allen, Jonathan E. TI Scalable metagenomic taxonomy classification using a reference genome database SO BIOINFORMATICS LA English DT Article ID SEQUENCES; CHALLENGES; ALGORITHM; ACCURATE AB Motivation: Deep metagenomic sequencing of biological samples has the potential to recover otherwise difficult-to-detect microorganisms and accurately characterize biological samples with limited prior knowledge of sample contents. Existing metagenomic taxonomic classification algorithms, however, do not scale well to analyze large metagenomic datasets, and balancing classification accuracy with computational efficiency presents a fundamental challenge. Results: A method is presented to shift computational costs to an off-line computation by creating a taxonomy/genome index that supports scalable metagenomic classification. Scalable performance is demonstrated on real and simulated data to show accurate classification in the presence of novel organisms on samples that include viruses, prokaryotes, fungi and protists. Taxonomic classification of the previously published 150 giga-base Tyrolean Iceman dataset was found to take <20 h on a single node 40 core large memory machine and provide new insights on the metagenomic contents of the sample. C1 [Ames, Sasha K.; Hysom, David A.; Lloyd, G. Scott; Gokhale, Maya B.] Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Ames, Sasha K.; Hysom, David A.; Gardner, Shea N.; Lloyd, G. Scott; Gokhale, Maya B.; Allen, Jonathan E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Gardner, Shea N.; Allen, Jonathan E.] Global Secur Directorate, Livermore, CA 94551 USA. RP Allen, JE (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM allen99@llnl.gov FU Laboratory Directed Research and Development [33-ER-2012, 08-ER-2011]; DOE Office of Science [KJ0402000-SCW1076] FX Laboratory Directed Research and Development (33-ER-2012 and 08-ER-2011); DOE Office of Science (KJ0402000-SCW1076). NR 25 TC 32 Z9 32 U1 1 U2 39 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD SEP 15 PY 2013 VL 29 IS 18 BP 2253 EP 2260 DI 10.1093/bioinformatics/btt389 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 211WT UT WOS:000323943200005 PM 23828782 ER PT J AU Ma, Q Liu, BQ Zhou, C Yin, YB Li, GJ Xu, Y AF Ma, Qin Liu, Bingqiang Zhou, Chuan Yin, Yanbin Li, Guojun Xu, Ying TI An integrated toolkit for accurate prediction and analysis of cis-regulatory motifs at a genome scale SO BIOINFORMATICS LA English DT Article ID AMP RECEPTOR PROTEIN; FACTOR-BINDING SITES; ESCHERICHIA-COLI; CYTR REPRESSOR; EVOLUTIONARY CONSERVATION; GAL REGULON; DISCOVERY; SEQUENCE; NETWORKS; CRP AB Motivation: We present an integrated toolkit, BoBro2.0, for prediction and analysis of cis-regulatory motifs. This toolkit can (i) reliably identify statistically significant cis-regulatory motifs at a genome scale; (ii) accurately scan for all motif instances of a query motif in specified genomic regions using a novel method for P-value estimation; (iii) provide highly reliable comparisons and clustering of identified motifs, which takes into consideration the weak signals from the flanking regions of the motifs; and (iv) analyze co-occurring motifs in the regulatory regions. Results: We have carried out systematic comparisons between motif predictions using BoBro2.0 and the MEME package. The comparison results on Escherichia coli K12 genome and the human genome show that BoBro2.0 can identify the statistically significant motifs at a genome scale more efficiently, identify motif instances more accurately and get more reliable motif clusters than MEME. In addition, BoBro2.0 provides correlational analyses among the identified motifs to facilitate the inference of joint regulation relationships of transcription factors. C1 [Ma, Qin; Zhou, Chuan; Li, Guojun; Xu, Ying] Univ Georgia, Inst Bioinformat, Dept Biochem & Mol Biol, Computat Syst Biol Lab, Athens, GA 30602 USA. [Liu, Bingqiang; Zhou, Chuan; Li, Guojun] Shandong Univ, Sch Math, Jinan 250100, Peoples R China. [Yin, Yanbin] No Illinois Univ, Dept Biol Sci, De Kalb, IL 60115 USA. [Xu, Ying] BioEnergy Sci Ctr, Oak Ridge, TN USA. [Xu, Ying] Jilin Univ, Coll Comp Sci & Technol, Changchun 130023, Jilin, Peoples R China. RP Xu, Y (reprint author), Univ Georgia, Inst Bioinformat, Dept Biochem & Mol Biol, Computat Syst Biol Lab, Athens, GA 30602 USA. EM xyn@bmb.uga.edu RI Ma, Qin/O-1525-2013; Yin, Yanbin/C-9788-2010 OI Ma, Qin/0000-0002-3264-8392; Yin, Yanbin/0000-0001-7667-881X FU National Science Foundation [NSF/MCB-0958172, NSF/DEB-0830024]; National Science Foundation (USG Inter-Institutional Collaborative Grant); U.S. Department of Energy's BioEnergy Science Center (BESC) through the Office of Biological and Environmental Research; NSFC [61070095, 60873207, 61272016]; NSF of Shandong Province, China [ZR2010FM014, ZR2011FQ010, ZR2010AQ018] FX This research was supported in part by National Science Foundation (NSF/MCB-0958172, NSF/DEB-0830024 and USG Inter-Institutional Collaborative Grant) and by the U.S. Department of Energy's BioEnergy Science Center (BESC) grant through the Office of Biological and Environmental Research. G.J.L's work was also supported in part by grants 61070095, 60873207 and 61272016 from NSFC, and ZR2010FM014 from NSF of Shandong Province, China. B.Q.L's work was supported by grants ZR2011FQ010 and ZR2010AQ018 from NSF of Shandong Province, China. NR 52 TC 11 Z9 12 U1 0 U2 17 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD SEP 15 PY 2013 VL 29 IS 18 BP 2261 EP 2268 DI 10.1093/bioinformatics/btt397 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 211WT UT WOS:000323943200006 PM 23846744 ER PT J AU Herrera, G Jimenez-Mier, J Wilks, RG Moewes, A Yang, W Denlinger, J AF Herrera, G. Jimenez-Mier, J. Wilks, R. G. Moewes, A. Yang, W. Denlinger, J. TI Fast electron dynamics in vanadates measured by resonant inelastic x-ray scattering SO MATERIALS LETTERS LA English DT Article ID SPECTROSCOPY; AUGER AB We present experimental data for the decay dynamics of a resonantly-produced 2p(1/2) vanadium core-hole in YVO4. The states produced by the fast Coster-Kronig decay are studied by resonant inelastic x-ray spectroscopy. They form groups of participant normal emission and spectator emission peaks. The spectator emission gives rise to sharp peaks whose shape and energy correspond to a screened resonant 2P(3/2)<-> 3d transition. This behavior is compared with the emission features observed in the less localized system V2O5. The decay lifetime of the 2p(1/2) hole in YVO4 is measured by the broadening of the sharp peaks resulting in a value of the order of 1 fs. (C) 2013 Elsevier B.V. All rights reserved. C1 [Herrera, G.; Jimenez-Mier, J.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Wilks, R. G.; Moewes, A.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. [Yang, W.; Denlinger, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Herrera, G (reprint author), Univ Valencia, Doctor Moliner 50, E-46100 Valencia, Spain. EM guillermo.m.herrera@uv.es RI Jimenez-Mier, Jose/A-5081-2009; Yang, Wanli/D-7183-2011 OI Jimenez-Mier, Jose/0000-0002-5939-9568; Yang, Wanli/0000-0003-0666-8063 FU CONACyT [170588, 129569, 172529, 56764] FX G. Herrera thanks CONACyT for student fellowship Grant nos. 170588; 129569 and 172529. This research was supported by CONACyT Grant no. 56764. NR 14 TC 0 Z9 0 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD SEP 15 PY 2013 VL 107 BP 144 EP 146 DI 10.1016/j.matlet.2013.06.005 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 202SQ UT WOS:000323240300041 ER PT J AU Engle, JW Birnbaum, ER Trellue, HR John, KD Rabin, MW Nortier, FM AF Engle, J. W. Birnbaum, E. R. Trellue, H. R. John, K. D. Rabin, M. W. Nortier, F. M. TI Evaluation of Ho-163 production options for neutrino mass measurements with microcalorimeter detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Ho-163; Ho-166m; Proton irradiation; Neutron irradiation; Electron capture spectroscopy ID PHOTONEUTRON CROSS SECTIONS; ELECTRON-CAPTURE; DECAY AB The rare-earth isotope Ho-163 is of interest for large experiments hoping to improve the precision of neutrino mass measurements to less than 0.1 eV. While a variety of potential production methods exist, production of this isotope in quantities and purities suitable for large-scale neutrino mass measurements is challenging. In particular, the co-production of Ho-166m may limit the utility of a given production method; avoiding this radioactive contaminant is discussed. This work compares available production methods and presents the results of theoretical studies which examine achievable quantity and purity of Ho-163 production in support of the effort to measure neutrino mass. (C) 2013 Elsevier B.V. All rights reserved. C1 [Engle, J. W.; Birnbaum, E. R.; Trellue, H. R.; John, K. D.; Rabin, M. W.; Nortier, F. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Engle, JW (reprint author), Los Alamos Natl Lab, Mail Stop J975,POB 1663, Los Alamos, NM 87544 USA. EM jwengle@lanl.gov RI Engle, Jonathan/D-7734-2012; OI John, Kevin/0000-0002-6181-9330 FU U.S. Department of Energy through the LANL LDRD Program FX We gratefully acknowledge the support of the U.S. Department of Energy through the LANL LDRD Program. NR 33 TC 12 Z9 12 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2013 VL 311 BP 131 EP 138 DI 10.1016/j.nimb.2013.06.017 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 212UF UT WOS:000324007600020 ER PT J AU Sharma, K Mayes, RT Kiggans, JO Yiacoumi, S Gabitto, J DePaoli, DW Dai, S Tsouris, C AF Sharma, K. Mayes, R. T. Kiggans, J. O., Jr. Yiacoumi, S. Gabitto, J. DePaoli, D. W. Dai, S. Tsouris, C. TI Influence of temperature on the electrosorption of ions from aqueous solutions using mesoporous carbon materials SO SEPARATION AND PURIFICATION TECHNOLOGY LA English DT Article DE Capacitive deionization; Desalination; Electrosorption; Electrical double layer; Temperature effects ID COMPOSITE FILM ELECTRODES; CAPACITIVE DEIONIZATION; AEROGEL ELECTRODES; ACTIVATED CARBON; FELT ELECTRODES; WATER-TREATMENT; NANOTUBES; REMOVAL; NACL; ELECTROCHEMISTRY AB Based on the electrosorption of ions by charged electrodes, the capacitive deionization method was considered for ion removal from saline water using mesoporous carbon electrodes. Mesoporous carbon was synthesized via a self-assembly method, with a narrow pore size distribution in the range of 6-10 nm. It was found that the rates of ion sorption and release by mesoporous carbon electrodes increase with an increase in the temperature of the solution. A drift in the conductivity was observed during electrosorption of Instant Ocean solutions, which may be explained as the result of competition between ions of different valence and size. The diffusion coefficient of ions during electrosorption was evaluated as a function of temperature, and a transport model coupled with an electrical-double-layer model was employed to calculate the mass of salt adsorbed by the electrodes. The calculated cumulative mass of salt captured in the electrical double layers of the electrodes was compared to the experimental data at different temperatures. (c) 2013 Elsevier B.V. All rights reserved. C1 [Mayes, R. T.; Kiggans, J. O., Jr.; DePaoli, D. W.; Dai, S.; Tsouris, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sharma, K.; Yiacoumi, S.; Tsouris, C.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Gabitto, J.] Prairie View A&M Univ, Prairie View, TX 77446 USA. RP Tsouris, C (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM tsourisc@ornl.gov RI Tsouris, Costas/C-2544-2016; Dai, Sheng/K-8411-2015; Mayes, Richard/G-1499-2016 OI Tsouris, Costas/0000-0002-0522-1027; Dai, Sheng/0000-0002-8046-3931; Mayes, Richard/0000-0002-7457-3261 FU U.S. DOE Office of Energy Efficiency and Renewable Energy (EERE) [DE-AC05-0096OR22725]; Oak Ridge National Laboratory; U.S. National Science Foundation [CBET-0651683] FX Support for this research was provided by the U.S. DOE Office of Energy Efficiency and Renewable Energy (EERE), under Contract DE-AC05-0096OR22725 with Oak Ridge National Laboratory. Work at Georgia Institute of Technology was supported by the U.S. National Science Foundation, under Grant No. CBET-0651683. The authors are also thankful to Bob Campbell, Tom Dorow, Sunita Kaushik, Bill Bourcier, and Fred Seamon of Campbell Applied Physics, Inc., for frequent discussions on capacitive deionization. NR 40 TC 10 Z9 10 U1 3 U2 68 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5866 J9 SEP PURIF TECHNOL JI Sep. Purif. Technol. PD SEP 15 PY 2013 VL 116 BP 206 EP 213 DI 10.1016/j.seppur.2013.05.038 PG 8 WC Engineering, Chemical SC Engineering GA 204HI UT WOS:000323355800027 ER PT J AU Cai, S Daymond, MR Ren, Y AF Cai, S. Daymond, M. R. Ren, Y. TI Stress induced martensite transformation in Co-28Cr-6Mo alloy during room temperature deformation SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Synchrotron X-ray; Co-Cr-Mo alloy; Stress induced martensite; Texture ID CR-MO ALLOY; MECHANICAL-PROPERTIES; IMPLANT ALLOY; EPSILON-MARTENSITE; SURGICAL IMPLANTS; GRAIN-SIZE; NI-FREE; MICROSTRUCTURE; BEHAVIOR; WROUGHT AB The phase transformation and texture change of two Co-28Cr-6Mo alloys during room temperature deformation were studied by using the in-situ synchrotron X-ray diffraction. It is found that a slight difference in chemical compositions can significantly change the phase constitutions and the mechanical properties. For the material with less Ni, C and N (lower alpha-phase stability), increasing the grain size promotes the athermal martensite transformation during cooling. The kinetics of the Stress Induced Martensite (SIM) phase transformation may be more affected by the athermal martensite instead of the grain size of the alpha-phase. After deformation, similar textures are produced in samples regardless the differences in the initial structures such as the phase constitution and the grain size; while a relatively strong (111) texture and a weak (100) texture are produced in the alpha-phase, a {10 (1) over bar1} fiber texture is gradually developed in the epsilon-phase during uniaxial tension. (C) 2013 Elsevier B.V. All rights reserved. C1 [Cai, S.] Ft Wayne Met Res Prod Corp, Ft Wayne, IN 46809 USA. [Daymond, M. R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Cai, S (reprint author), Ft Wayne Met Res Prod Corp, 9609 Ardmore Ave, Ft Wayne, IN 46809 USA. EM song_cai@fwmetals.com OI Daymond, Mark/0000-0001-6242-7489 FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. Data analysis was performed using FIT2D and Maud software. S.C. thanks his colleagues P. Sims, K. Henry and T. Schumm for making samples, R. Gabet for mechanical testing and the continuous support from Fort Wayne Metals management on this project. NR 32 TC 16 Z9 16 U1 2 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD SEP 15 PY 2013 VL 580 BP 209 EP 216 DI 10.1016/j.msea.2013.05.050 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 195HV UT WOS:000322693800027 ER PT J AU Fan, LW Khodadadi, JM Pesaran, AA AF Fan, Liwu Khodadadi, J. M. Pesaran, A. A. TI A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles SO JOURNAL OF POWER SOURCES LA English DT Article DE Thermal management; Electric vehicle; Lithium-ion battery; Air-cooled module; Temperature rise; Temperature uniformity ID MODEL; SIMULATIONS; REDUCTION; ALGORITHM; BEHAVIOR; DESIGN; POWER AB Three-dimensional transient thermal analyses of an air-cooled module that contains prismatic lithium-ion cells operating under an aggressive driving profile were performed using a commercial computational fluid dynamics code. The existing module utilized air cooling through evenly-spaced channels on both sides of each cell. It was found that lowering the gap spacing and/or higher flow rate of the fan lead to a decrease of the maximum temperature rise. To achieve improved temperature uniformity over the module, the gap spacing should be of a moderate size. For the given module, operating with a uniform gap spacing of 3 mm and an air flow rate of 40.8 m(3) h(-1) appears to be the best choice that satisfies the trade-off requirements of the fan power, maximum temperature rise and temperature uniformity. Using the same gap spacing and air flow rate, a proposed design of one-side cooling is less effective than two-side cooling. Uneven gap spacing affects the temperature distributions, but it does not impact the maximum temperature rise markedly. Considering the variety of the design change options and their combinations, it is concluded that the temperature gradients along the air flow direction can be affected but are generally unavoidable. (C) 2013 Elsevier B.V. All rights reserved. C1 [Fan, Liwu; Khodadadi, J. M.] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA. [Pesaran, A. A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Khodadadi, JM (reprint author), Auburn Univ, Dept Mech Engn, 1418 Wiggins Hall, Auburn, AL 36849 USA. EM liwufan@gmail.com; khodajm@auburn.edu RI Fan, Liwu/J-7257-2012 OI Fan, Liwu/0000-0001-8845-5058 FU National Renewable Energy Laboratory (a Department of Energy national laboratory) [LGC-9-99147-01, DE-AC36-08GO28308] FX This material is based upon work supported by the National Renewable Energy Laboratory (a Department of Energy national laboratory) under Subcontract No., LGC-9-99147-01 (DOE Prime Contract Number DE-AC36-08GO28308). NR 21 TC 55 Z9 58 U1 10 U2 86 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 15 PY 2013 VL 238 BP 301 EP 312 DI 10.1016/j.jpowsour.2013.03.050 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 171CE UT WOS:000320901900041 ER PT J AU Hill, RN Shashkov, M AF Hill, Ryan N. Shashkov, Mikhail TI The Symmetric Moment-of-Fluid interface reconstruction algorithm SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Moment-of-Fluid; Multimaterial interface reconstruction; Symmetric MoF AB The Symmetric Moment-of-Fluid (MoF) interface reconstruction algorithm is proposed. This new scheme modifies the existing MoF scheme to operate in a pairwise manner, utilising both the moment of the material being extracted, and the moment of the materials remaining. The Symmetric MoF scheme is shown, via a number of two- and three-material test cases, to deal with errors in the reference moment data with greater accuracy and robustness. Furthermore, due to the symmetric nature of the scheme, gains in computational efficiency over the existing MoF scheme are seen. (c) 2013 Elsevier Inc. All rights reserved. C1 [Hill, Ryan N.; Shashkov, Mikhail] Los Alamos Natl Lab, XCP Methods & Algorithms Grp 4, X Computat Phys Div, Santa Fe, NM 87501 USA. RP Shashkov, M (reprint author), Los Alamos Natl Lab, XCP Methods & Algorithms Grp 4, X Computat Phys Div, POB 1663, Santa Fe, NM 87501 USA. EM shashkov@lanl.gov FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics; ASC Program at LANL FX This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Authors acknowledge partial support from DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics and ASC Program at LANL. NR 5 TC 4 Z9 4 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 15 PY 2013 VL 249 BP 180 EP 184 DI 10.1016/j.jcp.2013.04.037 PG 5 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 167CI UT WOS:000320607700011 ER PT J AU Tester, CC Wu, CH Krejci, MR Mueller, L Park, A Lai, B Chen, S Sun, CJ Balasubramanian, M Joester, D AF Tester, Chantel C. Wu, Ching-Hsuan Krejci, Minna R. Mueller, Laura Park, Alex Lai, Barry Chen, Si Sun, Chengjun Balasubramanian, Mahaling Joester, Derk TI Time-Resolved Evolution of Short- and Long-Range Order During the Transformation of Amorphous Calcium Carbonate to Calcite in the Sea Urchin Embryo SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE biomineralization; amorphous calcium carbonate; X-ray absorption spectroscopy (XAS); phase transformations ID RAY-ABSORPTION-SPECTROSCOPY; CRYSTALLIZATION; BIOMINERALIZATION; STRONTIUM; PHASE; IFEFFIT; SPICULE; GROWTH; SHELL; MG AB Use of amorphous precursors is a widespread strategy in biomineralization. In sea urchin embryos, controlled transformation of amorphous calcium carbonate (ACC) to calcite results in smoothly curving and branching single crystals. However, the mechanism of the disorder-to-order transformation remains poorly understood. Here, the use of strontium as a probe in X-ray absorption spectroscopy (XAS) greatly facilitates investigation of the evolution of order. In pulse-chase experiments, embryos incorporate Sr2+ from Sr-enriched seawater into small volumes of the growing endoskeleton. During the chase, the Sr-labeled mineral matures under physiological conditions. Based on Sr K-edge spectra of cryo-frozen whole embryos, it is proposed that the transformation occurs in three stages. The initially deposited calcium carbonate has short-range order resembling synthetic hydrated ACC. Within 3 h, the short-range order of calcite is established. Between 3 h and 24 h, the short-range order does not change, while long-range order increases. These results refute the notion that organisms imprint the local order of the final crystal on ACC. Furthermore, it is proposed that the intermediate is more similar to disordered calcite than to anhydrous ACC. Pulse-chase experiments in conjunction with heavy element labeling have great potential to improve understanding of phase transformations during biomineralization. C1 [Tester, Chantel C.; Wu, Ching-Hsuan; Krejci, Minna R.; Mueller, Laura; Park, Alex; Joester, Derk] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Lai, Barry; Chen, Si; Sun, Chengjun; Balasubramanian, Mahaling] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Tester, CC (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM d-joester@northwestern.edu RI Joester, Derk/B-7525-2009; Sun, Cheng/B-7609-2009; Tester, Chantel/G-2393-2015 FU US National Science Foundation [DMR-0805313, DMR-1106208]; International Institute for Nanotechnology; MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern University (NU) [DMR-1121262]; US Department of Energy - Basic Energy Sciences, a Major Resources Support grant from NSERC; University of Washington; Canadian Light Source; Advanced Photon Source; U.S. DOE [DE-AC02-06CH11357]; NASA Ames Research Center [NNA06CB93G] FX This work was supported in part by the US National Science Foundation (DMR-0805313 and DMR-1106208), the International Institute for Nanotechnology, and the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University (NU). PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, are supported by the US Department of Energy - Basic Energy Sciences, a Major Resources Support grant from NSERC, the University of Washington, the Canadian Light Source and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. ICP-MS was performed at the Northwestern University Quantitative Bioelemental Imaging Center supported by NASA Ames Research Center NNA06CB93G. NR 40 TC 9 Z9 9 U1 5 U2 59 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD SEP 14 PY 2013 VL 23 IS 34 BP 4185 EP 4194 DI 10.1002/adfm.201203400 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 258XR UT WOS:000327492500003 ER PT J AU Huijben, M Yu, P Martin, LW Molegraaf, HJA Chu, YH Holcomb, MB Balke, N Rijnders, G Ramesh, R AF Huijben, M. Yu, P. Martin, L. W. Molegraaf, H. J. A. Chu, Y. -H. Holcomb, M. B. Balke, N. Rijnders, G. Ramesh, R. TI Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces SO ADVANCED MATERIALS LA English DT Article DE exchange bias; interface; oxide heterostructure; multiferroic; ferromagnet ID SPACER LAYER; THIN-FILMS; POLARIZATION; BIFEO3; MAGNETORESISTANCE; MULTIFERROICS; FERROMAGNET; DEPENDENCE; ANISOTROPY C1 [Huijben, M.; Molegraaf, H. J. A.; Rijnders, G.] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. [Yu, P.] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Martin, L. W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Martin, L. W.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Chu, Y. -H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Holcomb, M. B.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Balke, N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Huijben, M (reprint author), Univ Twente, MESA Inst Nanotechnol, POB 217, NL-7500 AE Enschede, Netherlands. EM m.huijben@utwente.nl RI Ying-Hao, Chu/A-4204-2008; Martin, Lane/H-2409-2011; Yu, Pu/F-1594-2014; Balke, Nina/Q-2505-2015; OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; Balke, Nina/0000-0001-5865-5892; Holcomb, Mikel/0000-0003-2111-3410 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy [DE-AC02-05CH11231]; Netherlands Organization for Scientific Research (NWO); Army Research Office [W911NF-10-1-0482] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under Contract No.DE-AC02-05CH11231. M. H. and G. R. acknowledge support by the Netherlands Organization for Scientific Research (NWO). L. W. M. acknowledges support from the Army Research Office under grant W911NF-10-1-0482. NR 48 TC 19 Z9 19 U1 9 U2 113 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD SEP 14 PY 2013 VL 25 IS 34 BP 4739 EP 4745 DI 10.1002/adma.201300940 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 261VG UT WOS:000327692100014 PM 23847010 ER PT J AU Root, S Haill, TA Lane, JMD Thompson, AP Grest, GS Schroen, DG Mattsson, TR AF Root, Seth Haill, Thomas A. Lane, J. Matthew D. Thompson, Aidan P. Grest, Gary S. Schroen, Diana G. Mattsson, Thomas R. TI Shock compression of hydrocarbon foam to 200GPa: Experiments, atomistic simulations, and mesoscale hydrodynamic modeling SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; DUCTILE POROUS MATERIALS; REACTIVE FORCE-FIELD; EQUATION-OF-STATE; REAXFF; IMPLOSIONS; ALGORITHMS; VELOCITIES; HOHLRAUMS; PHYSICS AB Hydrocarbon foams are versatile materials extensively used in high energy-density physics (HEDP) experiments. However, little data exist above 100 GPa, where knowledge of the behavior is particularly important for designing, analyzing, and optimizing HEDP experiments. The complex internal structure and properties of foam call for a multi-scale modeling effort validated by experimental data. We present results from experiments, classical molecular dynamics simulations, and mesoscale hydrodynamic modeling of poly(4-methyl-1-pentene) (PMP) foams under strong shock compression. Experiments conducted using the Z-machine at Sandia National Laboratories shock compress similar to 0.300 g/cm(3) density PMP foams to 185 GPa. Molecular dynamics (MD) simulations model shock compressed PMP foam and elucidate behavior of the heterogeneous foams at high pressures. The MD results show quantitative agreement with the experimental data, while providing additional information about local temperature and dissociation. Three-dimensional nm-scale hydrocode simulations of the foam show internal structure of pore collapse as well as provide detailed information on the foam state behind the shock front. Finally, the experimental and MD results are compared to continuum hydrodynamics simulations to assess a potential equation of state model for PMP foams to use in large scale hydrodynamics simulations. (C) 2013 AIP Publishing LLC. C1 [Root, Seth; Haill, Thomas A.; Lane, J. Matthew D.; Thompson, Aidan P.; Grest, Gary S.; Mattsson, Thomas R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Schroen, Diana G.] Gen Atom Co, Albuquerque, NM 87185 USA. RP Root, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sroot@sandia.gov FU NNSA Science Campaigns; Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the NNSA Science Campaigns and by the Laboratory Directed Research and Development program at Sandia National Laboratories. We thank Kyle Cochrane, Dawn Flicker, Marcus Knudson, and Tracy Vogler for many valuable discussions. Finally, we thank the entire Z-operations team for their assistance in performing the experiments. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 53 TC 8 Z9 8 U1 4 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 14 PY 2013 VL 114 IS 10 AR 103502 DI 10.1063/1.4821109 PG 11 WC Physics, Applied SC Physics GA 219GZ UT WOS:000324495600011 ER PT J AU Kalyuzhnyi, YV Cummings, PT AF Kalyuzhnyi, Y. V. Cummings, P. T. TI Two-patch colloidal model with re-entrant phase behaviour SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DIRECTIONAL ATTRACTIVE FORCES; FLUIDS; POLYMERIZATION; MOLECULES; EQUATION; SYSTEMS; PATCHY AB We propose a second-order thermodynamic perturbation theory for a hard-sphere patchy colloidal model with two doubly bondable patches of type A and B. AB bonding results in the formation of a three-dimensional network of the particles and AA and BB bonding promotes chain formation. The theory is applied to study the phase behaviour of the model at different values of the potential model parameters. Competition between network and chain formation gives rise to a re-entrant phase behaviour with upper and lower critical points. The model with an additional van der Waals type of interaction may have a re-entrant phase diagram with three critical points and two separate regions of the liquid-gas phase coexistence. We analyze our results in terms of the fractions of the particles in different bonding states and conclude that re-entrant phase coexistence can be seen as a coexistence between a gas phase rich in chain ends and a liquid phase rich in branch points. (C) 2013 AIP Publishing LLC. C1 [Kalyuzhnyi, Y. V.] Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine. [Cummings, P. T.] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Cummings, P. T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Kalyuzhnyi, YV (reprint author), Inst Condensed Matter Phys, Svientsitskoho 1, UA-79011 Lvov, Ukraine. EM yukal@icmp.lviv.ua NR 24 TC 10 Z9 10 U1 1 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2013 VL 139 IS 10 AR 104905 DI 10.1063/1.4819058 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 217UM UT WOS:000324387400045 PM 24050363 ER PT J AU Kim, JB Weichman, ML Yacovitch, TI Shih, C Neumark, DM AF Kim, Jongjin B. Weichman, Marissa L. Yacovitch, Tara I. Shih, Corey Neumark, Daniel M. TI Slow photoelectron velocity-map imaging spectroscopy of the C9H7 (indenyl) and C13H9 (fluorenyl) anions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; EXCITED-STATES; PHENYL RADICALS; NEGATIVE-IONS; THRESHOLD PHOTOIONIZATION; CONICAL INTERSECTIONS; ELECTRONIC-STRUCTURE; NAPHTHALENE CATION; INFRARED-EMISSION; MOLECULAR ANIONS AB High-resolution photoelectron spectra are reported of the cryogenically cooled indenyl and fluorenyl anions, C9H7- and C13H9-, obtained with slow electron velocity-map imaging. The spectra show well-resolved transitions to the neutral ground states, giving electron affinities of 1.8019(6) eV for indenyl and 1.8751(3) eV for fluorenyl. Numerous vibrations are observed and assigned for the first time in the radical ground states, including several transitions that are allowed only through vibronic coupling. The fluorenyl spectra can be interpreted with a Franck-Condon simulation, but explaining the indenyl spectra requires careful consideration of vibronic coupling and photodetachment threshold effects. Comparison of high-and low-resolution spectra along with measurements of photoelectron angular distributions provide further insights into the interplay between vibronic coupling and the photodetachment dynamics. Transitions to the neutral first excited states are also seen, with term energies of 0.95(5) eV and 1.257(4) eV for indenyl and fluorenyl, respectively. Those peaks are much wider than the experimental resolution, suggesting that nearby conical intersections must be considered to fully understand the vibronic structure of the neutral radicals. (C) 2013 AIP Publishing LLC. C1 [Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Weichman, Marissa/0000-0002-2551-9146 FU Air Force Office of Scientific Research [FA9550-12-1-0160]; Defense University Research Instrumentation Program [FA9550-11-1-0300.]; National Science Foundation FX This research is funded by the Air Force Office of Scientific Research under Grant No. FA9550-12-1-0160 and the Defense University Research Instrumentation Program under Grant No. FA9550-11-1-0300. M.L.W. thanks the National Science Foundation for a graduate research fellowship. NR 110 TC 14 Z9 14 U1 3 U2 38 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2013 VL 139 IS 10 AR 104301 DI 10.1063/1.4820138 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 217UM UT WOS:000324387400020 PM 24050338 ER PT J AU Tucker, AK Stevens, MJ AF Tucker, Ashley K. Stevens, Mark J. TI Study of the structure dependent behavior of polyelectrolyte in water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; POOR-SOLVENT POLYELECTROLYTES; FLEXIBLE POLYELECTROLYTE; AMPHIPHILIC POLYMERS; ARCHITECTURE; MODEL AB We examine the effect of pendant architecture on linear polyelectrolytes in solution using molecular dynamics simulations. A comparison is done between the standard bead-spring polyelectrolyte system and a system which has the charged beads pendant to neutral backbone beads. Recent simulations of ionomer melts have found significant differences in the structure between the two architectures, but we find the structure is not dramatically affected by the different geometry. In general, the backbone architecture is slightly more compact than the pendant architecture. The counterion condensation is typically larger for the backbone systems, which yields the more compact structures. Only when both the Bjerrum length is much larger than the spacing between charges and the spacing between pendants is twice the backbone bead spacing, is the peak in the monomer-counterion radial distribution function larger for the pendant architecture. The radius of gyration for the pendant remains larger than backbone architecture because of the extra excluded volume of the pendant. (C) 2013 AIP Publishing LLC. C1 [Tucker, Ashley K.; Stevens, Mark J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Tucker, AK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM aktucke@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC0203010] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Project KC0203010. NR 29 TC 3 Z9 3 U1 4 U2 47 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2013 VL 139 IS 10 AR 104907 DI 10.1063/1.4820527 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 217UM UT WOS:000324387400047 PM 24050365 ER PT J AU Vasiliou, AK Kim, JH Ormond, TK Piech, KM Urness, KN Scheer, AM Robichaud, DJ Mukarakate, C Nimlos, MR Daily, JW Guan, Q Carstensen, HH Ellison, GB AF Vasiliou, AnGayle K. Kim, Jong Hyun Ormond, Thomas K. Piech, Krzysztof M. Urness, Kimberly N. Scheer, Adam M. Robichaud, David J. Mukarakate, Calvin Nimlos, Mark R. Daily, John W. Guan, Qi Carstensen, Hans-Heinrich Ellison, G. Barney TI Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ENERGY PHOTOELECTRON-SPECTROSCOPY; VIBRONIC LEVEL FLUORESCENCE; BENZENE 260-NM TRANSITION; GAS-PHASE; EXTENDED VIEW; FURAN; RADICALS; PRESSURE; KINETICS; SPECTRUM AB The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 mu sec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 mu Torr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) -> CO + C4H4O. Sequential decomposition of furan leads to the production of HC CH, CH2CO, CH3C=CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) -> C6H5CO + H -> C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO -> [C6H6CHO]* -> C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO. (C) 2013 AIP Publishing LLC. C1 [Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Scheer, Adam M.; Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Vasiliou, AnGayle K.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Vasiliou, AnGayle K.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Urness, Kimberly N.; Daily, John W.; Guan, Qi] Univ Colorado, Dept Mech Engn, Ctr Combust & Environm Res, Boulder, CO 80309 USA. [Carstensen, Hans-Heinrich] Univ Ghent, Chem Technol Lab, B-9052 Zwijnaarde, Belgium. RP Vasiliou, AK (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. FU U.S. Department of Energy's Office of the Biomass Program under National Renewable Energy Laboratory [DE-AC36-99GO10337]; DOE's National Renewal Energy Laboratory [1544759]; National Science Foundation [CHE-0848606, CHE-154-8379] FX This work was funded by the U.S. Department of Energy's Office of the Biomass Program, under Contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory. Experiments at the University of Colorado were supported by the DOE's National Renewal Energy Laboratory (Contract No. 1544759) and from the National Science Foundation (Grant Nos. CHE-0848606 and CHE-154-8379). NR 56 TC 12 Z9 12 U1 8 U2 84 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2013 VL 139 IS 10 AR 104310 DI 10.1063/1.4819788 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 217UM UT WOS:000324387400029 PM 24050347 ER PT J AU Cerri, A AF Cerri, Alessandro TI RECENT HEAVY FLAVOR RESULTS FROM THE ATLAS EXPERIMENT SO MODERN PHYSICS LETTERS A LA English DT Review DE LHC; ATLAS; heavy flavor; B physics ID ROOT-S=7 TEV; CROSS-SECTION; PP COLLISIONS; DECAYS; DETECTOR; SEARCH; PROTON AB This paper provides an overview of the heavy flavor physics program of the ATLAS experiment and its future potential through the discussion of recent published results. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Cerri, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,Mail Stop 50R6008, Berkeley, CA 94720 USA. EM alessandro.cerri@cern.ch NR 78 TC 0 Z9 0 U1 0 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 EI 1793-6632 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD SEP 14 PY 2013 VL 28 IS 28 AR 1330021 DI 10.1142/S0217732313300218 PG 18 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 216HG UT WOS:000324272200001 ER PT J AU Perez-Gonzalez, T Valverde-Tercedor, C Yebra-Rodriguez, A Prozorov, T Gonzalez-Munoz, MT Arias-Penalver, JM Jimenez-Lopez, C AF Perez-Gonzalez, Teresa Valverde-Tercedor, Carmen Yebra-Rodriguez, Africa Prozorov, Tanya Teresa Gonzalez-Munoz, M. Arias-Penalver, Jose M. Jimenez-Lopez, Concepcion TI Chemical Purity of Shewanella oneidensis-Induced Magnetites SO GEOMICROBIOLOGY JOURNAL LA English DT Article DE biomineralization; iron reducing bacteria; magnetite ID HYDROUS FERRIC-OXIDE; FE(III)-REDUCING BACTERIUM; BIOGENIC MAGNETITE; THERMAL-DECOMPOSITION; FE(III) OXIDES; GREEN RUST; IRON; REDUCTION; MINERALIZATION; BIOMINERALIZATION AB Magnetite is a common iron oxide produced both inorganically and biogenically. Biologically-induced magnetite is often originated, under appropriate conditions, as a result of the Fe3+ reduction by dissimilatory iron reducing bacteria, which are usually found in anoxic environments or at the oxic-anoxic interface. Such a Fe3+ bioreduction occurs upon this cation acting as an electron acceptor of an anaerobic respiration, thus creating favorable conditions for magnetite precipitation. This biologically-induced magnetite is an important biomineral in the environments inhabited by iron reducing bacteria. The presence of a variety of cations may influence both the biomineralization process and the resulting biomineral, however this phenomenon has not been investigated extensively. In the present study, we study the effect on the magnetite biomineralization process of the presence of calcium, magnesium and manganese in the culture medium where Shewanella oneidensis lives. We also test the incorporation of these cations into the crystalline structure of inorganic and biogenic magnetite induced by S. oneidensis. According to our findings, manganese ions likely become incorporated into the crystal structure of biologically produced magnetites, while magnesium ions are incorporated in inorganic magnetites, and calcium ions are excluded from the crystal structure of both inorganic and biotic magnetites. We hypothesize that the incorporation of cations into magnetite depends not only on the relative cation radii, but also on the mechanisms of magnetite formation. C1 [Perez-Gonzalez, Teresa; Valverde-Tercedor, Carmen; Teresa Gonzalez-Munoz, M.; Arias-Penalver, Jose M.; Jimenez-Lopez, Concepcion] Univ Granada, Dept Microbiol, E-18071 Granada, Spain. [Yebra-Rodriguez, Africa] Univ Jaen, Dept Geol, Jaen, Spain. [Yebra-Rodriguez, Africa] Univ Jaen, CEACTierra, Jaen, Spain. [Prozorov, Tanya] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Jimenez-Lopez, C (reprint author), Univ Granada, Dept Microbiol, Campus Fuentenueva S-N, E-18071 Granada, Spain. EM cjl@ugr.es RI Yebra-Rodriguez, Africa/K-4662-2013; Gonzalez-Munoz, Maria Teresa/N-1160-2014 OI Yebra-Rodriguez, Africa/0000-0002-1452-1136; Gonzalez-Munoz, Maria Teresa/0000-0001-5170-4604 FU Spanish Ministry of Culture (MEC) [CGL2007-63859, CGL2010-18274]; Junta de Andalucia [GREIB BIO105]; DOE BES [DE-AC02-07CH11358]; [CGL2007-61489] FX Financial funding was provided by grant CGL2007-63859, CGL2010-18274 from the Spanish Ministry of Culture (MEC) and from grant GREIB BIO105 (Junta de Andalucia). J. M. Arias-Penalver thanks project CGL2007-61489. We thank Dr. Alejandro Rodriguez-Navarro for XRD and SAED-based calculations. Thanks the CIC personal from the University of Granada for technical assistance and Juan Santamarina Urbano for assistance in XRD analyses. The authors thank C. S. Romanek and the University of Georgia for providing the Coy Chamber necessary for the experiments. Part of the TEM characterization was carried out at Ames Laboratory and was supported by the DOE BES under Contract No. DE-AC02-07CH11358. We thank two anonymous reviewers for their suggestions that have greatly improved the manuscript. NR 53 TC 4 Z9 4 U1 2 U2 32 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0149-0451 J9 GEOMICROBIOL J JI Geomicrobiol. J. PD SEP 14 PY 2013 VL 30 IS 8 BP 731 EP 748 DI 10.1080/01490451.2013.766286 PG 18 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 171FZ UT WOS:000320911900007 ER EF