FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Ruffing, AM AF Ruffing, Anne M. TI RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Free fatty acid biosynthesis; FFA biosynthesis; Cyanobacterial biofuels; Algal biofuels; Cyanobacteria; Free fatty acid; RNA-seq; FFA toxicity ID SYNECHOCYSTIS SP PCC-6803; GENE-EXPRESSION; ESCHERICHIA-COLI; OXIDATIVE STRESS; OSMOTIC-STRESS; HIGH LIGHT; IDENTIFICATION; CHLOROPLAST; ACTIVATION; BIODIESEL AB Background: High-energy-density biofuels are typically derived from the fatty acid pathway, thus establishing free fatty acids (FFAs) as important fuel precursors. FFA production using photosynthetic microorganisms like cyanobacteria allows for direct conversion of carbon dioxide into fuel precursors. Recent studies investigating cyanobacterial FFA production have demonstrated the potential of this process, yet FFA production was also shown to have negative physiological effects on the cyanobacterial host, ultimately limiting high yields of FFAs. Results: Cyanobacterial FFA production was shown to generate reactive oxygen species (ROS) and lead to increased cell membrane permeability. To identify genetic targets that may mitigate these toxic effects, RNA-seq analysis was used to investigate the host response of Synechococcus elongatus PCC 7942. Stress response, nitrogen metabolism, photosynthesis, and protein folding genes were up-regulated during FFA production while genes involved in carbon and hydrogen metabolisms were down-regulated. Select genes were targeted for mutagenesis to confirm their role in mitigating FFA toxicity. Gene knockout of two porins and the overexpression of ROS-degrading proteins and hypothetical proteins reduced the toxic effects of FFA production, allowing for improved growth, physiology, and FFA yields. Comparative transcriptomics, analyzing gene expression changes associated with FFA production and other stress conditions, identified additional key genes involved in cyanobacterial stress response. Conclusions: A total of 15 gene targets were identified to reduce the toxic effects of FFA production. While single-gene targeted mutagenesis led to minor increases in FFA production, the combination of these targeted mutations may yield additional improvement, advancing the development of high-energy-density fuels derived from cyanobacteria. C1 Sandia Natl Labs, Dept Bioenergy & Def Technol, Albuquerque, NM 87185 USA. RP Ruffing, AM (reprint author), Sandia Natl Labs, Dept Bioenergy & Def Technol, MS 1413,POB 5800, Albuquerque, NM 87185 USA. EM aruffin@sandia.gov FU Harry S. Truman Fellowship in National Security Science and Engineering; Laboratory Directed Research and Development program; United States Department of Energy [DE-ACO4-94AL85000] FX This work was supported by the Harry S. Truman Fellowship in National Security Science and Engineering and the Laboratory Directed Research and Development program. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-ACO4-94AL85000. Next-gen sequencing for the RNA-seq analysis was performed at Los Alamos National Laboratory. The author is grateful to Dr. James Laio (University of California, Los Angeles) and Dr. Susan Golden (University of California, San Diego) for providing plasmids pSA126 and pAM2991. The author would also like to acknowledge Bryan Carson for the use of laboratory equipment. NR 42 TC 22 Z9 22 U1 3 U2 40 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD AUG 6 PY 2013 VL 6 AR 113 DI 10.1186/1754-6834-6-113 PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 198EZ UT WOS:000322906200001 PM 23919451 ER PT J AU Gerrish, PJ Colato, A Sniegowski, PD AF Gerrish, Philip J. Colato, Alexandre Sniegowski, Paul D. TI Genomic mutation rates that neutralize adaptive evolution and natural selection SO JOURNAL OF THE ROYAL SOCIETY INTERFACE LA English DT Article DE population genetics; mutagenesis; error threshold; Fisher's fundamental theorem; beneficial mutations ID SINGLE-NUCLEOTIDE SUBSTITUTIONS; IMMUNODEFICIENCY-VIRUS TYPE-1; DYNAMIC FITNESS LANDSCAPES; DEPENDENT RNA-POLYMERASE; QUASI-SPECIES MODEL; ERROR-THRESHOLD; MULLERS RATCHET; LETHAL MUTAGENESIS; ASEXUAL POPULATIONS; SACCHAROMYCES-CEREVISIAE AB When mutation rates are low, natural selection remains effective, and increasing the mutation rate can give rise to an increase in adaptation rate. When mutation rates are high to begin with, however, increasing the mutation rate may have a detrimental effect because of the overwhelming presence of deleterious mutations. Indeed, if mutation rates are high enough: (i) adaptive evolution may be neutralized, resulting in a zero (or negative) adaptation rate despite the continued availability of adaptive and/or compensatory mutations, or (ii) natural selection may be neutralized, because the fitness of lineages bearing adaptive and/or compensatory mutations-whether established or newly arising-is eroded by excessive mutation, causing such lineages to decline in frequency. We apply these two criteria to a standard model of asexual adaptive evolution and derive mathematical expressions-some new, some old in new guise-delineating the mutation rates under which either adaptive evolution or natural selection is neutralized. The expressions are simple and require no a priori knowledge of organism- and/or environment-specific parameters. Our discussion connects these results to each other and to previous theory, showing convergence or equivalence of the different results in most cases. C1 [Gerrish, Philip J.] Univ New Mexico, Dept Biol, Ctr Evolutionary & Theoret Immunol, Albuquerque, NM 87131 USA. [Gerrish, Philip J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Colato, Alexandre] Fed Univ Sao Carlos UFSCar, Dept Ciencias Nat Matemat & Educ, Araras, Brazil. [Sniegowski, Paul D.] Univ Penn, Dept Biol, Leidy Labs 213, Philadelphia, PA 19104 USA. RP Gerrish, PJ (reprint author), Univ New Mexico, Dept Biol, Ctr Evolutionary & Theoret Immunol, 230 Castetter Hall,MSC03-2020, Albuquerque, NM 87131 USA. EM pgerrish@unm.edu RI Colato, Alexandre/G-6818-2012; OI Colato, Alexandre/0000-0003-0076-007X; Gerrish, Philip/0000-0001-6393-0553 FU US National Institutes of Health [R01 GM079843-01, R01 GM079483-02S1, 1P20RR18754, UM1-AI100645-01]; European Commission [FP7 231807] FX Special thanks to Cristian Batista for insightful explanations of the error threshold as a phase transition, to Isabel Gordo for helping make connections among the different theories and to Claus Wilke for helpful comments and clarifications. We also thank Michael Lassig, Paul Joyce, Alan Perelson, Boris Shraiman, Sidhartha Goyal, Daniel Balick, Nico Stollenwerk, Gabriela Gomes, Ana Margarida Sousa, Jorge Carneiro and Josep Sardanyes for helpful discussions, and two anonymous reviewers for helpful comments. Much of this research was developed thanks to fertile environments provided by two institutes: the Kavli Institute for Theoretical Physics in Santa Barbara, CA (2011 Microbial and Viral Evolution workshop), and the Instituto Gulbenkian de Ciencias in Oeiras, Portugal. This work was supported by the US National Institutes of Health grants: R01 GM079843-01 (P.J.G./P.D.S.), R01 GM079483-02S1 (P.J.G./P.D.S.), a seed grant through 1P20RR18754 (Center for Evolutionary and Theoretical Immunology) (P.J.G.), UM1-AI100645-01 (Center for HIV/AIDS Vaccine Immunology-Immunogen Design; P.J.G.); and European Commission grant no. FP7 231807 (P.J.G.). NR 86 TC 4 Z9 4 U1 2 U2 31 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1742-5689 J9 J R SOC INTERFACE JI J. R. Soc. Interface PD AUG 6 PY 2013 VL 10 IS 85 AR 20130329 DI 10.1098/rsif.2013.0329 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 167DL UT WOS:000320610700017 PM 23720539 ER PT J AU Aaltonen, T Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Bae, T Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bedeschi, F Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Bland, KR Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Bromberg, C Brucken, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Butti, P Buzatu, A Calamba, A Camarda, S Campanelli, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastin, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Ciocci, MA Clark, A Clarke, C Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R d'Ascenzo, N Datta, M De Barbaro, P Demortier, L Deninno, M d'Errico, M Devoto, F Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dorigo, M Driutti, A Ebina, K Edgar, R Elagin, A Erbacher, R Errede, S Esham, B Eusebi, R Farrington, S Ramos, JPF Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Frisch, H Funakoshi, Y Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Hahn, SR Han, JY Happacher, F Hara, K Hare, M Harr, RF Harrington-Taber, T Hatakeyama, K Hays, C Heinrich, J Herndon, M Hocker, A Hong, Z Hopkins, W Hou, S Hughes, RE Husemann, U Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kambeitz, M Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YJ Kim, YK Kimura, N Kirby, M Knoepfel, K Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Kruse, M Kuhr, T Kurata, M Laasanen, AT Lammel, S Lancaster, M Lannon, K Latino, G Lee, HS Lee, JS Leo, S Leone, S Lewis, JD Limosani, A Lipeles, E Lister, A Liu, H Liu, Q Liu, T Lockwitz, S Loginov, A Luca, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maestro, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, P Martinez, M Matera, K Mattson, ME Mazzacane, A Mazzanti, P McFarland, KS McNulty, R Mehta, A Mehtala, P Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, MJ Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Nigmanov, T Nodulman, L Noh, SY Norniella, O Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Pagliarone, C Palencia, E Palni, P Papadimitriou, V Parker, W Pauletta, G Paulini, M Paus, C Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Pranko, A Prokoshin, F Ptohos, F Punzi, G Ranjan, N Fernandez, IR Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodriguez, T Rolli, S Ronzani, M Roser, R Rosner, JL Ruffini, F Ruiz, A Russ, J Rusu, V Sakumoto, WK Sakurai, Y Santi, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, EE Schwarz, T Scodellaro, L Scuri, F Seidel, S Seiya, Y Semenov, A Sforza, F Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simonenko, A Sinervo, P Sliwa, K Smith, JR Snider, FD Song, H Sorin, V Stancari, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thomson, E Thukral, V Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Ukegawa, F Uozumi, S Vazquez, F Velev, G Vellidis, C Vernieri, C Vidal, M Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wallny, R Wang, SM Warburton, A Waters, D Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamato, D Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Zanetti, AM Zeng, Y Zhou, C Zucchelli, S AF Aaltonen, T. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Bae, T. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Bromberg, C. Brucken, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Butti, P. Buzatu, A. Calamba, A. Camarda, S. Campanelli, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastin, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Ciocci, M. A. Clark, A. Clarke, C. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. d'Ascenzo, N. Datta, M. De Barbaro, P. Demortier, L. Deninno, M. d'Errico, M. Devoto, F. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dorigo, M. Driutti, A. Ebina, K. Edgar, R. Elagin, A. Erbacher, R. Errede, S. Esham, B. Eusebi, R. Farrington, S. Fernandez Ramos, J. P. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Frisch, H. Funakoshi, Y. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Hahn, S. R. Han, J. Y. Happacher, F. Hara, K. Hare, M. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hays, C. Heinrich, J. Herndon, M. Hocker, A. Hong, Z. Hopkins, W. Hou, S. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kambeitz, M. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. J. Kim, Y. K. Kimura, N. Kirby, M. Knoepfel, K. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kurata, M. Laasanen, A. T. Lammel, S. Lancaster, M. Lannon, K. Latino, G. Lee, H. S. Lee, J. S. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lipeles, E. Lister, A. Liu, H. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Luca, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maestro, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, P. Martinez, M. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McFarland, K. S. McNulty, R. Mehta, A. Mehtala, P. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Pagliarone, C. Palencia, E. Palni, P. Papadimitriou, V. Parker, W. Pauletta, G. Paulini, M. Paus, C. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Pranko, A. Prokoshin, F. Ptohos, F. Punzi, G. Ranjan, N. Redondo Fernandez, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodriguez, T. Rolli, S. Ronzani, M. Roser, R. Rosner, J. L. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Sakumoto, W. K. Sakurai, Y. Santi, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schwarz, T. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simonenko, A. Sinervo, P. Sliwa, K. Smith, J. R. Snider, F. D. Song, H. Sorin, V. Stancari, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thomson, E. Thukral, V. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Ukegawa, F. Uozumi, S. Vazquez, F. Velev, G. Vellidis, C. Vernieri, C. Vidal, M. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamato, D. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Zanetti, A. M. Zeng, Y. Zhou, C. Zucchelli, S. CA CDF Collaboration TI Exclusion of exotic top-like quarks with-4/3 electric charge using jet-charge tagging in single-lepton t(t)over-bar events at CDF SO PHYSICAL REVIEW D LA English DT Article ID PARTON DISTRIBUTIONS; COLLIDER DETECTOR; CALORIMETER; COLLISIONS; FERMILAB AB We report on a measurement of the top-quark electric charge in t (t) over bar events in which one W boson originating from the top-quark pair decays into leptons and the other into hadrons. The event sample was collected by the CDF II detector in root s = 1.96 TeV proton-antiproton collisions and corresponds to 5.6 fb(-1). We find the data to be consistent with the standard model and exclude the existence of an exotic quark with -4/3 electric charge and mass of the conventional top quark at the 99% confidence level. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Canelli, F.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Luca, A.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastin, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Ristori, L.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Cremonesi, M.; Di Canto, A.; Donati, S.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] INFN Pavia, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; De Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste Udine, I-34127 Trieste, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Group, R. C.; Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Martinez, Mario /I-3549-2015; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; maestro, paolo/E-3280-2010; Chiarelli, Giorgio/E-8953-2012; Lysak, Roman/H-2995-2014; Russ, James/P-3092-2014; vilar, rocio/P-8480-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014 OI Brucken, Jens Erik/0000-0001-6066-8756; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Warburton, Andreas/0000-0002-2298-7315; maestro, paolo/0000-0002-4193-1288; Chiarelli, Giorgio/0000-0001-9851-4816; Russ, James/0000-0001-9856-9155; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program; National Research Foundation of Korea; Royal Society, UK; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC); Science and Technology Facilities Council, UK FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC). NR 38 TC 10 Z9 10 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 5 PY 2013 VL 88 IS 3 AR 032003 DI 10.1103/PhysRevD.88.032003 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 196SU UT WOS:000322797500005 ER PT J AU Yang, YG Xu, MY He, ZL Guo, J Sun, GP Zhou, JZ AF Yang, Yonggang Xu, Meiying He, Zhili Guo, Jun Sun, Guoping Zhou, Jizhong TI Microbial Electricity Generation Enhances Decabromodiphenyl Ether (BDE-209) Degradation SO PLOS ONE LA English DT Article ID POLYBROMINATED DIPHENYL ETHERS; IN-SITU BIOREMEDIATION; FUNCTIONAL GENE MICROARRAYS; ANAEROBIC DEGRADATION; FUEL-CELLS; REDUCTIVE DEBROMINATION; CONTAMINATED SEDIMENTS; ELEVATED CO2; COMMUNITIES; GROUNDWATER AB Due to environmental persistence and biotoxicity of polybrominated diphenyl ethers (PBDEs), it is urgent to develop potential technologies to remediate PBDEs. Introducing electrodes for microbial electricity generation to stimulate the anaerobic degradation of organic pollutants is highly promising for bioremediation. However, it is still not clear whether the degradation of PBDEs could be promoted by this strategy. In this study, we hypothesized that the degradation of PBDEs (e. g., BDE-209) would be enhanced under microbial electricity generation condition. The functional compositions and structures of microbial communities in closed-circuit microbial fuel cell (c-MFC) and open-circuit microbial fuel cell (o-MFC) systems for BDE-209 degradation were detected by a comprehensive functional gene array, GeoChip 4.0, and linked with PBDE degradations. The results indicated that distinctly different microbial community structures were formed between c-MFCs and o-MFCs, and that lower concentrations of BDE-209 and the resulting lower brominated PBDE products were detected in c-MFCs after 70-day performance. The diversity and abundance of a variety of functional genes in c-MFCs were significantly higher than those in o-MFCs. Most genes involved in chlorinated solvent reductive dechlorination, hydroxylation, methoxylation and aromatic hydrocarbon degradation were highly enriched in c-MFCs and significantly positively correlated with the removal of PBDEs. Various other microbial functional genes for carbon, nitrogen, phosphorus and sulfur cycling, as well as energy transformation process, were also significantly increased in c-MFCs. Together, these results suggest that PBDE degradation could be enhanced by introducing the electrodes for microbial electricity generation and by specifically stimulating microbial functional genes. C1 [Yang, Yonggang; Xu, Meiying; Guo, Jun; Sun, Guoping] Guangdong Inst Microbiol, Guangdong Prov Key Lab Microbial Culture Collect, Guangzhou, Guangdong, Peoples R China. [He, Zhili; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Yang, Yonggang; Xu, Meiying; Guo, Jun; Sun, Guoping] South China Minist Prov Joint Dev, State Key Lab Appl Microbiol, Guangzhou, Guangdong, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Xu, MY (reprint author), Guangdong Inst Microbiol, Guangdong Prov Key Lab Microbial Culture Collect, Guangzhou, Guangdong, Peoples R China. EM xumy@gdim.cn FU National Basic Research Program of China (973 Program) [2012CB22307]; Natural Science Foundation of Guangdong, China [9351007002000001]; National Natural Science Foundation [31200096]; National Postdoctoral Foundation [2012M521578]; Postdoctoral Foundation of Guangdong Academy of Sciences [20120001]; Natural Science Foundation of Guangdong Province [S2011010004267]; Guangdong-Hongkong Technology Cooperation Funding [2009A030902003]; Guangdong Province - Chinese Academy of Sciences strategic cooperative project [2009B091300023, 2010B090301048]; International Cooperation Projects of Guangdong Province [2011B050400005]; ENIGMA - Ecosystems and Networks Integrated with Genes and Molecular Assemblies through the Office of Science, Office of Biological and Environmental Research, the United States Department of Energy [DE-AC02-05CH11231] FX This research was supported by the National Basic Research Program of China (973 Program) (2012CB22307), the Team Project of the Natural Science Foundation of Guangdong, China (9351007002000001), the National Natural Science Foundation (31200096), the National Postdoctoral Foundation (2012M521578), the Postdoctoral Foundation of Guangdong Academy of Sciences (20120001), the Natural Science Foundation of Guangdong Province (S2011010004267), the Guangdong-Hongkong Technology Cooperation Funding (2009A030902003), the Guangdong Province - Chinese Academy of Sciences strategic cooperative project (2009B091300023, 2010B090301048), and the International Cooperation Projects of Guangdong Province (2011B050400005). The development of the GeoChip and associated computational pipelines used in this study was funded by ENIGMA - Ecosystems and Networks Integrated with Genes and Molecular Assemblies through the Office of Science, Office of Biological and Environmental Research, the United States Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 33 TC 4 Z9 5 U1 11 U2 116 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 5 PY 2013 VL 8 IS 8 AR e70686 DI 10.1371/journal.pone.0070686 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 218XC UT WOS:000324465000119 PM 23940625 ER PT J AU Yeon, J Smith, MD Sefat, AS Tran, TT Halasyamani, PS zur Loye, HC AF Yeon, Jeongho Smith, Mark D. Sefat, Athena S. Tran, T. Thao Halasyamani, P. Shiv zur Loye, Hans-Conrad TI U3F12(H2O), a Noncentrosymmetric Uranium(IV) Fluoride Prepared via a Convenient In Situ Route That Creates U4+ under Mild Hydrothermal Conditions SO INORGANIC CHEMISTRY LA English DT Article ID MAGNETIC-PROPERTIES; STRUCTURE-PROPERTY; CRYSTAL-GROWTH; GERMANATE; ZN2+; UF4 AB A new noncentrosymmetric U4+-containing fluoride, U3F12(H2O), has been synthesized via a mild hydrothermal route and its crystal structure determined by single-crystal X-ray diffraction. The material exhibits a complex three-dimensional structure that is based on [U8F33(H2O)(2))](9-) hexanuclear building units consisting of corner- and edge-shared UF8, UF9, and UOF7 polyhedra. Powder second-harmonic generation (SHG) measurements revealed that the SHG efficiency for U3F12(H2O) is comparable to that of alpha-SiO2. Magnetic susceptibility measurements indicated that the U4+(f(2))-containing material exhibits a singlet ground state at low temperature. IR and UV-vis reflectance spectra were obtained, and the thermal behavior was investigated by thermogravimetric analysis. C1 [Yeon, Jeongho; Smith, Mark D.; zur Loye, Hans-Conrad] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Sefat, Athena S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Tran, T. Thao; Halasyamani, P. Shiv] Univ Houston, Dept Chem, Houston, TX 77204 USA. RP zur Loye, HC (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. EM zurloye@mailbox.sc.edu RI Halasyamani, P. Shiv/A-8620-2009; Halasyamani, Shiv/J-3438-2014; Sefat, Athena/R-5457-2016; OI Halasyamani, Shiv/0000-0003-1787-1040; Sefat, Athena/0000-0002-5596-3504; zur Loye, Hans-Conrad/0000-0001-7351-9098 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; DOE [DE-SC0008664]; Welch Foundation [E-1457] FX Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. J.Y., M.D.S., and H.-C.z.L. acknowledge DOE Award DE-SC0008664 for support. P.S.H. and T.T.T., who performed the SHG measurements, thank the Welch Foundation for support (Grant E-1457). NR 30 TC 16 Z9 16 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD AUG 5 PY 2013 VL 52 IS 15 BP 8303 EP 8305 DI 10.1021/ic401412t PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 197PO UT WOS:000322863300007 PM 23834284 ER PT J AU Barry, BM Dickie, DA Murphy, LJ Clyburne, JAC Kemp, RA AF Barry, Brian M. Dickie, Diane A. Murphy, Luke J. Clyburne, Jason A. C. Kemp, Richard A. TI NH/PH Isomerization and a Lewis Pair for Carbon Dioxide Capture SO INORGANIC CHEMISTRY LA English DT Article ID STRUCTURAL-CHARACTERIZATION; N BONDS; CO2; COMPLEXES; CHEMISTRY; INSERTION; ACTIVATION; REACTIVITY; BORANES; MAGNESIUM AB Bis(di-i-propylphosphino)amine 1 reacts with B(C6F5)(3) to form an adduct with concomitant N/P H-isomerization. This species reacts smoothly with carbon dioxide. An attempt to prepare an anionic derivative resulted in the formation of a novel heterocycle derived from the PNP ligand and B(C6F5)(3). C1 [Barry, Brian M.; Dickie, Diane A.; Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Murphy, Luke J.; Clyburne, Jason A. C.] St Marys Univ, Dept Chem, Atlantic Ctr Green Chem, Halifax, NS B3H 3C3, Canada. [Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Clyburne, JAC (reprint author), St Marys Univ, Dept Chem, Atlantic Ctr Green Chem, Halifax, NS B3H 3C3, Canada. EM jason.clyburne@smu.ca; rakemp@unm.edu RI Dickie, Diane/B-1647-2010 OI Dickie, Diane/0000-0003-0939-3309 FU NSF [CHE09-11110, CHE12-13529, CHE08-40523, CHE09-46690]; Laboratory Directed Research and Development program at Sandia National Laboratories [LDRD 151300]; NSERC of Canada; Canada Research Chairs Program; CFI; NSRIT; SMU; NSF CRIF:MU award [CHE04-43580]; United States Department of Energy [DE-AC04-94AL85000] FX This work was financially supported by the NSF (Grants CHE09-11110 and CHE12-13529), the Laboratory Directed Research and Development program at Sandia National Laboratories (LDRD 151300), and NSERC of Canada. J.A.C.C. acknowledges support from the Canada Research Chairs Program, CFI, and NSRIT. L.J.M. thanks SMU for a graduate fellowship. The Bruker X-ray diffractometer was purchased via a NSF CRIF:MU award to UNM (CHE04-43580), and the NMR spectrometers were upgraded via grants from the NSF (CHE08-40523 and CHE09-46690). High resolution mass spectrometry data were obtained by UNM Mass Spectrometry Facility. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 35 TC 15 Z9 15 U1 1 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 5 PY 2013 VL 52 IS 15 BP 8312 EP 8314 DI 10.1021/ic401498r PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 197PO UT WOS:000322863300010 PM 23879626 ER PT J AU Reinert, AA Payne, C Wang, LM Ciston, J Zhu, YM Khalifah, PG AF Reinert, Alexandra A. Payne, Candace Wang, Limin Ciston, James Zhu, Yimei Khalifah, Peter G. TI Synthesis and Characterization of Visible Light Absorbing (GaN)(1-x)(ZnO)(x) Semiconductor Nanorods SO INORGANIC CHEMISTRY LA English DT Article ID (GA1-XZNX)(N1-XOX) SOLID-SOLUTION; HOMOLOGOUS COMPOUNDS; HYDROGEN-PRODUCTION; PHOTOCATALYTIC ACTIVITY; INFRARED ABSORPTION; WATER; ZNO; GA2O3(ZNO)(M); GAN; IRRADIATION AB Although the (GaN)(1-x)(ZnO)(x) solid solution is one of the most effective systems for driving overall solar water splitting with visible light, its quantum yield for overall water splitting using visible light photons has not yet reached ten percent. Understanding and controlling the nanoscale morphology of this system may allow its overall conversion efficiency to be raised to technologically relevant levels. We describe the use a Ga2O3(ZnO)(16) precursor phase in the synthesis of this phase which naturally results in the production of arrays of nanorods with favorable diameters (similar to 100 nm) and band gaps (similar to 2.5 eV). Substantial absorption within the band gap is observed, part of which is found to follow the E-3 scaling characteristic of free carriers scattered by ionized impurity sites. Compositional analysis suggests that a substantial quantity of cation vacancies (similar to 3%) may be present in some samples. The typical nanorod growth direction and dominant {10 (1) over bar1} facet for powders in this system have been identified through electron microscopy methods, leading to the conclusion that polarity may play an important role in the high photoactivity of this family of wurtzite semiconductors. C1 [Reinert, Alexandra A.; Payne, Candace; Khalifah, Peter G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Wang, Limin; Khalifah, Peter G.] Brookhaven Natl Labs, Dept Chem, Upton, NY 11973 USA. [Ciston, James] Brookhaven Natl Labs, Ctr Funct Nanomat, Upton, NY 11973 USA. [Zhu, Yimei] Brookhaven Natl Labs, CMPMSD, Upton, NY 11973 USA. RP Khalifah, PG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM Limin.Wang@ge.com; JCiston@lbl.gov; kpete@bnl.gov FU U.S. Department of Energy [DEAC02-98CH10886]; Department of Energy via a Hydrogen Fuel Initiative; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; DOE [DE-AC02-98CH10886] FX This work was in part carried out at BNL under Contract DEAC02-98CH10886 with the U.S. Department of Energy. Funding was provided by the Department of Energy via a Hydrogen Fuel Initiative grant through the Solar Photochemistry program (P.K.); interactions with HFI collaborators E. Fujita, J. Muckerman, and J. Rodriguez are gratefully acknowledged. We also acknowledge M. Dawber and P. Allen at Stony Brook University for many insightful discussions on the physics of polar materials. Portions of this research were carried out at the Oak Ridge National Laboratory's Spallation Neutron Source sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Optical data and electron microscopy data were collected at Brookhaven National Laboratory's Center for Functional Nanomaterials supported by the DOE under grant DE-AC02-98CH10886. NR 49 TC 12 Z9 12 U1 4 U2 101 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD AUG 5 PY 2013 VL 52 IS 15 BP 8389 EP 8398 DI 10.1021/ic400011n PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 197PO UT WOS:000322863300019 PM 23829594 ER PT J AU Cabana, J Chernova, NA Xiao, J Roppolo, M Aldi, KA Whittingham, MS Grey, CP AF Cabana, Jordi Chernova, Natasha A. Xiao, Jie Roppolo, Megan Aldi, Kellie A. Whittingham, M. Stanley Grey, Clare P. TI Study of the Transition Metal Ordering in Layered NaxNix/2Mn1-x/2O2 (2/3 <= x <= 1) and Consequences of Na/Li Exchange SO INORGANIC CHEMISTRY LA English DT Article ID RECHARGEABLE LITHIUM BATTERIES; POSITIVE ELECTRODE MATERIAL; PAIR DISTRIBUTION FUNCTION; CATHODE MATERIAL; O2 STRUCTURE; RAY-DIFFRACTION; ION-EXCHANGE; NMR-SPECTROSCOPY; MANGANESE OXIDES; LOCAL-STRUCTURE AB A series of layered oxides within the NaxNix/2Mn1-x/2O2 (2/3 <= x <= 1) system were synthesized by classical solid-state methodologies. A study of their long and short-range structure was undertaken by combining X-ray diffraction and NMR spectroscopy. A transition from P2 to O-3 stacking was observed at x > 0.8 when samples were made at 900 degrees C, which was accompanied by disordering of ions in the transition metal layer. The magnetic properties of the materials were consistent with this picture of ordering, with all samples showing antiferromagnetic character. At x = 2/3, competition between a P2 and a P3 structure, with different degrees of transition metal ordering, was found depending on the synthesis temperature. Na/Li exchange led to structures with octahedral or tetrahedral coordination of the alkali metal, and Li/Ni crystallographic exchange, in the resulting O-3 phases. The transition from alkali metal prismatic coordination to octahedral/tetrahedral coordination involves [TMO6](infinity) layer shearing that induces some structural disorder through the formation of stacking faults. C1 [Cabana, Jordi; Aldi, Kellie A.; Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Cabana, Jordi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Cabana, Jordi] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Chernova, Natasha A.; Xiao, Jie; Roppolo, Megan; Whittingham, M. Stanley] SUNY Binghamton, Inst Mat Res, Binghamton, NY 13902 USA. RP Cabana, J (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM jcabana@uic.edu; cpg27@cam.ac.uk RI Cabana, Jordi/G-6548-2012 OI Cabana, Jordi/0000-0002-2353-5986 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, Batteries for Advanced Transportation Technologies (BATT) Program [DE-AC02-05CH11231]; National Science Foundation [0549370]; [6807148]; [6517749] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under Contract DE-AC02-05CH11231, as part of the Batteries for Advanced Transportation Technologies (BATT) Program. The program is managed by LBNL for the Department of Energy. Binghamton and Stony Brook were supported under Subcontracts 6807148 and 6517749, respectively. J.C. is indebted to Generalitat de Catalunya (Spain) for a Beatriu de Pinos fellowship covering his work at Stony Brook. K.A.A. thanks the National Science Foundation for support via the Integrated Graduate Education and Research Training fellowship (Award No. 0549370). NR 48 TC 22 Z9 24 U1 5 U2 100 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 5 PY 2013 VL 52 IS 15 BP 8540 EP 8550 DI 10.1021/ic400579w PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 197PO UT WOS:000322863300035 PM 23909957 ER PT J AU Wang, SM Zhang, JZ Zhang, Y Alvarado, A Attapattu, J He, DW Wang, LP Chen, CF Zhao, YS AF Wang, Shanmin Zhang, Jianzhong Zhang, Yi Alvarado, Andrew Attapattu, Jeevake He, Duanwei Wang, Liping Chen, Changfeng Zhao, Yusheng TI Phase-Transition Induced Elastic Softening and Band Gap Transition in Semiconducting PbS at High Pressure SO INORGANIC CHEMISTRY LA English DT Article ID LEAD CHALCOGENIDES; THERMAL-EXPANSION; PBTE; DIFFRACTION; GPA; POLYMORPHISM; TEMPERATURE; NAH AB We have investigated the crystal structure and phase stability, elastic incompressibility, and electronic properties of PbS based on high-pressure neutron diffraction, in-situ electrical resistance measurements, and first-principles calculations. The refinements show that the orthorhombic phase is structurally isotypic with indium iodide (In adopting a Cmcm structure (B33). The cubic-to-orthorhombic transition occurs at,similar to 2.1(1) GPa with a 3.8% volume collapse and a positive Clausius-Clapeyron slope. Phase-transition induced elastic softening is also observed, which is presumably attributed to the enhanced metallic bonding in the B33 phase. On the basis of band structure simulations, the cubic and orthorhombic phases are typical of direct and indirect semiconductors with band gaps of 0.47(1) and 1.04(1) eV, respectively, which supports electrical resistivity measurements of an abrupt jump at the structural transition. On the basis of the resolved structure for B33, the phase transition paths for B1 -> B33 -> B2 involve translation of a trigonal prism in B1 and motion of the next-nearest neighbor Pb atom into (SPb7) coordination and subsequent lattice distortion in the B33 phase. C1 [Wang, Shanmin; Zhang, Jianzhong; Zhao, Yusheng] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. [Wang, Shanmin; He, Duanwei] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China. [Wang, Shanmin; Zhang, Yi; Alvarado, Andrew; Attapattu, Jeevake; Wang, Liping; Chen, Changfeng; Zhao, Yusheng] Univ Nevada, HiPSEC, Las Vegas, NV 89154 USA. [Wang, Shanmin; Zhang, Yi; Alvarado, Andrew; Attapattu, Jeevake; Wang, Liping; Chen, Changfeng; Zhao, Yusheng] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. RP He, DW (reprint author), Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China. EM DuanweiHe@scu.edu.cn; Yusheng.Zhao@unlv.edu RI Zhang, Yi/C-9291-2011; OI Zhang, Jianzhong/0000-0001-5508-1782 FU U.S. Department of Energy's Office of Basic Energy Sciences; UNLV High Pressure Science and Engineering Center (HiPSEC); DOE NNSA Center of Excellence [DE-FC52-06NA27684]; UNLV; China 973 Program [2011CB808205]; National Natural Science Foundation of China [11027405] FX This work has partly benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center, which is funded by the U.S. Department of Energy's Office of Basic Energy Sciences. This work is also supported by UNLV High Pressure Science and Engineering Center (HiPSEC), which is a DOE NNSA Center of Excellence operated under Cooperative Agreement DE-FC52-06NA27684, and UNLV start-up funding to Y.Z. We thank support from the China 973 Program (Grant 2011CB808205), and the National Natural Science Foundation of China (Grant 11027405). We thank X. Zhou for the electrical resistance measurements. NR 49 TC 11 Z9 11 U1 5 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 5 PY 2013 VL 52 IS 15 BP 8638 EP 8643 DI 10.1021/ic400801s PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 197PO UT WOS:000322863300045 PM 23909959 ER PT J AU Deblonde, GJP Sturzbecher-Hoehne, M Abergel, RJ AF Deblonde, Gauthier J-P. Sturzbecher-Hoehne, Manuel Abergel, Rebecca J. TI Solution Thermodynamic Stability of Complexes Formed with the Octadentate Hydroxypyridinonate Ligand 3,4,3-LI(1,2-HOPO): A Critical Feature for Efficient Chelation of Lanthanide(IV) and Actinide(IV) Ions SO INORGANIC CHEMISTRY LA English DT Article ID NITRILOTRIACETIC ACID; SEQUESTERING AGENTS; TECHNICAL REPORT; DECORPORATION; 5-LIO(ME-3,2-HOPO); EQUILIBRIA; PLUTONIUM; CONSTANTS; THORIUM; PROGRAM AB The solution thermodynamics of water-soluble complexes formed between Ce(III), Ce(IV), Th(IV) and the octadentate chelating agent 3,4,3-LI(1,2-HOPO) were investigated. Several techniques including spectrofluorirnetric and automated spectrophotometric titrations were used to overcome the slow spontaneous oxidation of Ce(III) complexes yielding to stability constants of log beta(110) = 17.4 +/- 0.5, log beta(11-1) = 8.3 +/- 0.4 and log beta(111)= 21.2 +/- 0.4 for [Ce(III)(3,4,3-LI(1,2-HOPO))](-), [Ce(III)(3,4,3-LI(1,2-HOPO)(OH)(2-), and [Ce-(III)(3,4,3-LI(1,2-HOPO)H), respectively. Using the spectral properties of the hydrowyridinonate chelator in ligand competition titrations against nitrilotriacetic acid, the stability constant log beta(110) = 41.5 0.5 was determined for [Ce(IV)(3,4,3-LI(1,2-HOPO)]. Finally, the extraordinarily stable complex [Ce(IV)(3,4,3-LI(1,2-HOPO))] was used in Th(IV) competition titrations, resulting in a stability constant of log Am = 40.1 0.5 for [Th(IV)3,4,3-LI(1,2-HOPO))). These experimental values are in excellent agreement with previous estimates, they are discussed with respect to the ionic radius and oxidation state of each cationic metal, and allow predictions on the stability of other actinide complexes including ([Ce(IV)(3,4,3-LI(1,2-HOPO], and [Pu(IV)(3,4,3-LI(1,2-HOPO))], [Np(IV)(3,4,3-LI(1,2-HOPO] and [Pu(IV)(3,4,3-LI(1,2-HOPO]. Comparisons with the standard ligand diethylenetriamine pentaacetic acid (DTPA) provide a thermodynamic basis for the observed significantly higher efficacy of 3,4,3-LI(1,2-HOPO) as an in vivo actinide ciecorporation agent C1 [Deblonde, Gauthier J-P.; Sturzbecher-Hoehne, Manuel; Abergel, Rebecca J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Glenn T Seaborg Ctr, Div Chem Sci, Berkeley, CA 94720 USA. RP Abergel, RJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Glenn T Seaborg Ctr, Div Chem Sci, Berkeley, CA 94720 USA. EM rjabergel@lbl.gov RI Deblonde, Gauthier/O-3881-2014 OI Deblonde, Gauthier/0000-0002-0825-8714 FU National Institutes of Health (National Institute of Allergy and Infectious Diseases) [RAI087604Z]; U.S. Department of Energy [DE-ACO205CH11231] FX We thank Prof. Kenneth N. Raymond for helpful discussions, and Tiffany Pham for assistance with the cyclic voltammetry experimental setup. This research was supported by the National Institutes of Health (National Institute of Allergy and Infectious Diseases, RAI087604Z) through the U.S. Department of Energy under Contract No. DE-ACO205CH11231. NR 24 TC 14 Z9 14 U1 2 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 5 PY 2013 VL 52 IS 15 BP 8805 EP 8811 DI 10.1021/ic4010246 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 197PO UT WOS:000322863300064 PM 23855806 ER PT J AU Badiei, YM Polyansky, DE Muckerman, JT Szalda, DJ Haberdar, R Zong, RF Thummel, RP Fujita, E AF Badiei, Yosra M. Polyansky, Dmitry E. Muckerman, James T. Szalda, David J. Haberdar, Rubabe Zong, Ruifa Thummel, Randolph P. Fujita, Etsuko TI Water Oxidation with Mononuclear Ruthenium(II) Polypyridine Complexes Involving a Direct Ru-IV=O Pathway in Neutral and Alkaline Media SO INORGANIC CHEMISTRY LA English DT Article ID COUPLED ELECTRON-TRANSFER; PHOTOSYSTEM-II; SINGLE-SITE; REDOX PROPERTIES; PROTON-TRANSFER; CATALYSTS; LIGANDS AB The catalytic water oxidation mechanism proposed for many single-site ruthenium complexes proceeds via the nucleophilic attack of a water molecule on the Ru-V=O species. In contrast, Ru(II) complexes containing 4-t-buty1-2,6-di- 1',8'-(naphthyrid-2'-y1)-pyridine (and its bisbenzo-derivafive), an equatorial water, and two axial 4-picolines follow the thermodynamically more favorable "direct pathway via [Ru-IV=O](2+), which avoids the higher oxidation state [Ru-V=O](3+) in neutral and basic media. Our experimental and theoretical results that focus on the pH dependent onset catalytic potentials indicative of a PCET driven low energy pathway for the formation of products with an O-O bond (such as [Ru-III-OOH](2+) and [Ru-IV-OO](2+) at an applied potential below the Ru-V=O/Ru-IV=O couple clearly support such a mechanism. However, in the cases of [Ru(tpy)(bpy)(OH2))(2+) and [Ru(tpy)(bpm)(OH2))(2+), the formation of the Ru-V=O species appears to be required before O-O bond formation. The complexes under discussion provide a unique functional model for water oxidation that proceeds by four consecutive PCET steps in neutral and alkaline media. C1 [Badiei, Yosra M.; Polyansky, Dmitry E.; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Szalda, David J.] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Haberdar, Rubabe; Zong, Ruifa; Thummel, Randolph P.] Univ Houston, Dept Chem, Houston, TX 77204 USA. RP Polyansky, DE (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM dmitriyp@bnl.gov; fujita@bnl.gov RI Polyansky, Dmitry/C-1993-2009 OI Polyansky, Dmitry/0000-0002-0824-2296 FU Brookhaven National Laboratory (BNL) [DE-AC02-98CH10886]; U.S. Department of Energy [DE-FG0207-ER15888]; Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences; U.S. Department of Energy for funding under the BES Hydrogen Fuel Initiative; Robert A. Welch Foundation [E-621] FX We thank Natawutt Kaveevivitchai for TON measurements by Method 1. The work at Brookhaven National Laboratory (BNL) is funded under contract DE-AC02-98CH10886 and the work at Houston is funded under contract DE-FG0207-ER15888 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences. The BNL authors also thank the U.S. Department of Energy for funding under the BES Hydrogen Fuel Initiative. R.H., R.Z., and R.P.T. also thank the Robert A. Welch Foundation (E-621). NR 45 TC 36 Z9 36 U1 5 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD AUG 5 PY 2013 VL 52 IS 15 BP 8845 EP 8850 DI 10.1021/ic401023w PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 197PO UT WOS:000322863300068 PM 23837911 ER PT J AU Jin, GB Hu, YJ Bellott, B Skanthakumar, S Haire, RG Soderholm, L Ibers, JA AF Jin, Geng Bang Hu, Yung-Jin Bellott, Brian Skanthakumar, S. Haire, Richard G. Soderholm, L. Ibers, James A. TI Reinvestigation of Np2Se5: A Clear Divergence from Th2S5 and Th2Se5 in Chalcogen-Chalcogen and Metal-Chalcogen Interactions SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY-ABSORPTION; CHARGE-DENSITY-WAVE; CRYSTAL-STRUCTURE; ELECTRONIC-STRUCTURE; OPTICAL-PROPERTIES; URANIUM CHALCOGENIDES; FINE-STRUCTURE; NEPTUNIUM; SE; ACTINIDE AB Single crystals of Np2Se5 have been prepared through the reactions of Np and Se at 1223 K in an Sb2Se3 flux. The structure of Np2Se5, which has been characterized by single-crystal X-ray diffraction methods, crystallizes in the tetragonal space group P4(2)/nmc. The crystallographic unit cell includes one unique Np and two Se positions. Se(1) atoms form one-dimensional infinite chains along the a and b axes with alternating intermediate Se-Se distances of 2.6489 (8) and 2.7999 (8) angstrom, whereas Se(2) is a discrete Se2- anion. Each Np is coordinated to 10 Se atoms and every NpSe10 polyhedron shares faces, edges, or vertices with 14 other identical metal polyhedra to form a complex three-dimensional structure. Np L-III-edge X-ray Absorption Near Edge Structure ()CANES) measurements show a clear shift in edge position to higher energies for Np2Se5 compared to Np3Se5 (Np23+Np4+Se52-). Magnetic susceptibility measurements indicate that Np2Se5 undergoes a ferromagnetic type ordering below 18(1) K. Above the transition temperature, Np2Se5 behaves as a paramagnet with an effective moment of 1.98(5) mu(B)/Np, given by a best fit of susceptibilities to a modified Curie-Weiss law over the temperature range 50-320 K. C1 [Jin, Geng Bang; Hu, Yung-Jin; Skanthakumar, S.; Soderholm, L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Jin, Geng Bang; Bellott, Brian; Ibers, James A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Haire, Richard G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jin, GB (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gjin@anl.gov FU U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences [DEAC02-06CH11357]; U.S. DOE, OBES, Materials Sciences [DEAC02-06CH11357]; U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering [ER-15522] FX The research at Argonne National Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, under contract DEAC02-06CH11357. X-ray absorption spectroscopy data were obtained at the Advanced Photon Source, which is supported by the U.S. DOE, OBES, Materials Sciences under the same contract number. The work at Northwestern University was supported by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering Grant ER-15522. NR 71 TC 0 Z9 0 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD AUG 5 PY 2013 VL 52 IS 15 BP 9111 EP 9118 DI 10.1021/ic401384t PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 197PO UT WOS:000322863300094 PM 23883193 ER PT J AU Guo, YR Wu, Q Odoh, SO Schreckenbach, G Pan, QJ AF Guo, Yuan-Ru Wu, Qian Odoh, Samuel O. Schreckenbach, Georg Pan, Qing-Jiang TI Theoretical Study of Structural, Spectroscopic and Reaction Properties of trans-bis(imido) Uranium(VI) Complexes SO INORGANIC CHEMISTRY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ORDER REGULAR APPROXIMATION; CATION-CATION INTERACTIONS; RAY CRYSTAL-STRUCTURE; URANYL-ION; CARBENE COMPLEXES; ORGANOMETALLIC COMPLEX; ELECTRONIC-STRUCTURE; MACROCYCLIC LIGANDS; IMIDO ANALOGS AB To advance the understanding of the chemical behavior of actinides, a series of trans-bis(imido) uranium(VI) complexes, U(NR)(2)(THF)(2)(cis-I-2) (2R; R = H, Me, Bu-t, Cy, and Ph), U(NR)(2)(THF)(3)(trans-I-2) (3R; R = H, Me, Bu-t Cy, and Ph) and U((NBu)-Bu-t)(2)(THF)(3)(cis-I-2) (3(t)Bu'), were investigated using relativistic density functional theory. The axial U=N bonds in these complexes have partial triple bonding character. The calculated bond lengths, bond orders, and stretching vibrational frequencies reveal that the U=N bonds of the bis-imido complexes can be tuned by the variation of their axial substituents. This has been evidenced by the analysis of electronic structures. 2H, for instance, was calculated to show iodine based high lying occupied orbitals and U(f)-type low-lying unoccupied orbitals. Its U=N bonding orbitals, formed by U(f) and N(p), occur in a region of the relatively low energy. Upon varying the axial substituent from H to Bu-t and Ph, the U=N bonding orbitals of 2(t)Bu and 2Ph are greatly destabilized. We further compared the U=E (E = N and 0) bonds of 2H with 3H and their uranyl analogues, to address effects of the equatorial tetrahydrofuran (THF) ligand and the E group. It is found that the U=N bonds are slightly weaker than the U=O bonds of their uranyl analogues. This is in line with the finding that cis-UNR2 isomers, although energetically unfavorable, are more accessible than cis-UO2 would be It is also evident that 2H and 3H display lower U=(NH) stretching vibrations at 740 cm(-1) than the U=O at 820 cm(-1) of uranyl complexes. With the inclusion of both solvation and spin-orbit coupling, the free energies of the formation reactions of the bis-imido uranium complexes were calculated. The formation of the experimentally synthesized 3Me, 3Ph, and 2tBu are found to be thermodynamically favorable. Finally, the absorption bands previously obtained from experimental studies were well reproduced by time dependent density functional theory calculations. C1 [Wu, Qian; Pan, Qing-Jiang] Heilongjiang Univ, Key Lab Funct Inorgan Mat Chem, Educ Minist, Sch Chem & Mat Sci, Harbin 150080, Peoples R China. [Guo, Yuan-Ru] Northeast Forestry Univ, Coll Mat Sci & Engn, Educ Minist, Key Lab Biobased Mat Sci & Technol, Harbin 150040, Peoples R China. [Odoh, Samuel O.; Schreckenbach, Georg] Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2, Canada. [Odoh, Samuel O.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Pan, QJ (reprint author), Heilongjiang Univ, Key Lab Funct Inorgan Mat Chem, Educ Minist, Sch Chem & Mat Sci, Harbin 150080, Peoples R China. EM panqjitc@163.com FU Fundamental Research Funds for the Central Universities [DL11CB07]; National Natural Science Foundation of China [21273063, 30901136]; Program for New Century Excellent Talents in University [NCET-11-0958]; Key Project of Chinese Ministry of Education [211048]; Natural Sciences and Engineering Research Council of Canada (NSERC) FX Q.-J.P. is grateful to Dr. Dimitri Laikov for providing the Priroda code. This work is supported by Fundamental Research Funds for the Central Universities (DL11CB07), National Natural Science Foundation of China (21273063, 30901136), Program for New Century Excellent Talents in University (NCET-11-0958), and Key Project of Chinese Ministry of Education (211048). Foundations for the Returned Overseas Chinese Scholars of Heilongjiang Province (LC2011C22) and State Education Ministry are greatly acknowledged. G.S. acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC). NR 99 TC 6 Z9 6 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 5 PY 2013 VL 52 IS 15 BP 9143 EP 9152 DI 10.1021/ic401440w PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 197PO UT WOS:000322863300097 PM 23834342 ER PT J AU Yuan, SW Shui, JL Grabstanowicz, L Chen, C Commet, S Reprogle, B Xu, T Yu, LP Liu, DJ AF Yuan, Shengwen Shui, Jiang-Lan Grabstanowicz, Lauren Chen, Chen Commet, Sean Reprogle, Briana Xu, Tao Yu, Luping Liu, Di-Jia TI A Highly Active and Support-Free Oxygen Reduction Catalyst Prepared from Ultrahigh-Surface-Area Porous Polyporphyrin SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE electrocatalysis; fuel cells; oxygen reduction catalysts; polyporphyrin; porous organic polymers ID PEM FUEL-CELLS; CATHODE CATALYST; METAL ELECTROCATALYSTS; HYDROGEN STORAGE; CARBON NANOTUBES; IRON; PRECURSOR; POLYANILINE; PYROLYSIS; DIOXYGEN C1 [Yuan, Shengwen; Shui, Jiang-Lan; Chen, Chen; Commet, Sean; Reprogle, Briana; Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Grabstanowicz, Lauren; Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Yu, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. RP Yu, LP (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM djliu@anl.gov FU U.S. Department of Energy's the Office of Science; Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies program FX This work was supported by the U.S. Department of Energy's the Office of Science and the Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies program. The authors are grateful to Dr. Jiangbin Xia, Dr. Jun Lu, Dr. Deborah J. Myers, and Alex Mason for their support with experiments. NR 46 TC 60 Z9 61 U1 14 U2 181 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD AUG 5 PY 2013 VL 52 IS 32 BP 8349 EP 8353 DI 10.1002/anie.201302924 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 194KK UT WOS:000322631600032 PM 23804418 ER PT J AU Fernandez-Martinez, A Kalkan, B Clark, SM Waychunas, GA AF Fernandez-Martinez, Alejandro Kalkan, Bora Clark, Simon M. Waychunas, Glenn A. TI Pressure-Induced Polyamorphism and Formation of 'Aragonitic' Amorphous Calcium Carbonate SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE amorphous materials; calcium carbonate; phase transitions; Raman spectroscopy; X-ray diffraction ID BIOMPHALARIA-GLABRATA; DOLOMITE FORMATION; MAGNESIAN CALCITE; PHASE-TRANSITIONS; BIOMINERALIZATION; CRYSTALLIZATION; TRANSFORMATION; REFINEMENTS; TEMPERATURE; GROWTH C1 [Fernandez-Martinez, Alejandro] CNRS, Inst Sci Terre, F-38041 Grenoble 9, France. [Fernandez-Martinez, Alejandro] Univ Grenoble 1, F-38041 Grenoble 9, France. [Kalkan, Bora; Clark, Simon M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Clark, Simon M.] Macquarie Univ, Dept Earth & Planetary Sci, N Ryde, NSW 2109, Australia. [Fernandez-Martinez, Alejandro; Waychunas, Glenn A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Fernandez-Martinez, A (reprint author), CNRS, Inst Sci Terre, BP 53X, F-38041 Grenoble 9, France. EM Alex.Fernandez-Martinez@ujf-grenoble.fr RI Fernandez-Martinez, Alejandro/B-4042-2010; Clark, Simon/B-2041-2013 OI Fernandez-Martinez, Alejandro/0000-0001-5073-9629; Clark, Simon/0000-0002-7488-3438 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231]; IAEA [TUR/10006] FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.F.-M. and G. A. W. were partially supported as part of the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-AC02-05CH11231. B. K. acknowledges support from IAEA, fellowship Code No.: TUR/10006. We thank Adam F. Wallace for fruitful discussions. NR 36 TC 21 Z9 21 U1 3 U2 81 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD AUG 5 PY 2013 VL 52 IS 32 BP 8354 EP 8357 DI 10.1002/anie.201302974 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 194KK UT WOS:000322631600033 PM 23818278 ER PT J AU Lohn, AJ Stevens, JE Mickel, PR Marinella, MJ AF Lohn, Andrew J. Stevens, James E. Mickel, Patrick R. Marinella, Matthew J. TI Optimizing TaOx memristor performance and consistency within the reactive sputtering "forbidden region" SO APPLIED PHYSICS LETTERS LA English DT Article ID RRAM AB Standard deposition processes for depositing ReRAM oxides utilize mass flow of reactive gas to control stoichiometry and have difficulty depositing a precisely defined sub-stoichiometry within a "forbidden region" where film properties are discontinuous with mass flow. We show that by maintaining partial pressure within this discontinuous "forbidden region," instead of by maintaining mass flow, we can optimize tantalum oxide device properties and reduce or eliminate the electroforming step. We also show that defining the partial pressure set point as a fraction of the "forbidden region" instead of as an absolute value can be used to improve wafer-to-wafer consistency with minimal recalibration efforts. (C) 2013 AIP Publishing LLC. C1 [Lohn, Andrew J.; Stevens, James E.; Mickel, Patrick R.; Marinella, Matthew J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lohn, AJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC0494AL85000. NR 15 TC 20 Z9 20 U1 1 U2 60 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 5 PY 2013 VL 103 IS 6 AR 063502 DI 10.1063/1.4817927 PG 4 WC Physics, Applied SC Physics GA 198FT UT WOS:000322908300077 ER PT J AU Mun, BS Yoon, J Mo, SK Chen, K Tamura, N Dejoie, C Kunz, M Liu, Z Park, C Moon, K Ju, H AF Mun, Bongjin Simon Yoon, Joonseok Mo, Sung-Kwan Chen, Kai Tamura, Nobumichi Dejoie, Catherine Kunz, Martin Liu, Zhi Park, Changwoo Moon, Kyungsun Ju, Honglyoul TI Role of joule heating effect and bulk-surface phases in voltage-driven metal-insulator transition in VO2 crystal SO APPLIED PHYSICS LETTERS LA English DT Article ID VANADIUM DIOXIDE; MOTT TRANSITION AB We report the characteristics of a voltage-induced metal-insulator transition (MIT) in macro-sized VO2 crystals. The square of MIT onset voltage (V-2(CMIT)) value shows a linear dependence with the ambient temperature, suggesting that the Joule heating effect is the likely cause to the voltage-induced MIT. The combination of optical microscope images and Laue microdiffraction patterns show the simultaneous presence of a metallic phase in the bulk of the crystal with partially insulating surface layers even after the MIT occurs. A large asymmetry in the heating power just before and after the MIT reflects the sudden exchange of Joule heat to its environment. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Mun, Bongjin Simon] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Sch Phys & Chem, Ertl Ctr Electrochem & Catalyst, Kwangju 500712, South Korea. [Yoon, Joonseok; Moon, Kyungsun; Ju, Honglyoul] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Mo, Sung-Kwan; Chen, Kai; Tamura, Nobumichi; Dejoie, Catherine; Kunz, Martin; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chen, Kai] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale CAMP Nano, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Park, Changwoo] Hanbat Natl Univ, Div Appl Chem & Biotechnol, Taejon 305719, South Korea. [Park, Changwoo] Adv Nano Prod, Chungwon 363942, Chungbuk, South Korea. RP Mun, BS (reprint author), Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Sch Phys & Chem, Ertl Ctr Electrochem & Catalyst, Kwangju 500712, South Korea. EM bsmun@gist.ac.kr; tesl@yonsei.ac.kr RI Chen, Kai/O-5662-2014; Liu, Zhi/B-3642-2009; Mo, Sung-Kwan/F-3489-2013; xjtu, campnano/Q-1904-2015; OI Chen, Kai/0000-0002-4917-4445; Liu, Zhi/0000-0002-8973-6561; Mo, Sung-Kwan/0000-0003-0711-8514; Yoon, Joonseok/0000-0001-5937-1787 FU Basic Science Research Program through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2012R1A1A2006948, 2012R1A1A2001745]; Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the US Department of Energy [DE-AC02-05CH11231]; NSF [0416243]; GIST College's GUP Research Fund FX H. L. Ju and B. S. Mun would like to thank the support by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2006948 and 2012R1A1A2001745). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 at LBNL. The microdiffraction program at the ALS on BL 12.3.2 was made possible by NSF Grant No. 0416243. This paper was supported by GIST College's 2013 GUP Research Fund. NR 17 TC 16 Z9 16 U1 1 U2 63 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 5 PY 2013 VL 103 IS 6 AR 061902 DI 10.1063/1.4817727 PG 5 WC Physics, Applied SC Physics GA 198FT UT WOS:000322908300026 ER PT J AU Singh, R Chowdhury, DR Xiong, J Yang, H Azad, AK Taylor, AJ Jia, QX Chen, HT AF Singh, Ranjan Chowdhury, Dibakar Roy Xiong, Jie Yang, Hao Azad, Abul K. Taylor, Antoinette J. Jia, Q. X. Chen, Hou-Tong TI Influence of film thickness in THz active metamaterial devices: A comparison between superconductor and metal split-ring resonators SO APPLIED PHYSICS LETTERS LA English DT Article ID NEGATIVE-INDEX METAMATERIALS; TERAHERTZ METAMATERIALS; REFRACTION; ELECTRODYNAMICS; PERMITTIVITY; TUNABILITY AB We experimentally demonstrate thickness-dependent resonance tuning in planar terahertz superconducting metamaterials. Inductive-capacitive resonance of arrays of split-ring resonators fabricated from 50, 100, and 200 nm thick YBa2Cu3O7-delta (YBCO) and gold films were characterized and compared as a function of temperature. In the YBCO metamaterials the resonance frequency strongly depends on the thickness, and they show high thermal tunability in both resonance strength and frequency below the superconducting transition temperature, where the imaginary conductivity varies by three orders of magnitude. In contrast, the resonance in the gold metamaterials exhibits little thickness-dependence and very small tunability. (C) 2013 AIP Publishing LLC. C1 [Singh, Ranjan; Chowdhury, Dibakar Roy; Xiong, Jie; Yang, Hao; Azad, Abul K.; Taylor, Antoinette J.; Jia, Q. X.; Chen, Hou-Tong] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Singh, Ranjan] Los Alamos Natl Lab, AOT HPE, Los Alamos, NM 87545 USA. RP Singh, R (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM ranjan@lanl.gov; chenht@lanl.gov RI Singh, Ranjan/B-4091-2010; Chen, Hou-Tong/C-6860-2009; Jia, Q. X./C-5194-2008; OI Singh, Ranjan/0000-0001-8068-7428; Chen, Hou-Tong/0000-0003-2014-7571; Azad, Abul/0000-0002-7784-7432 FU Los Alamos National Laboratory LDRD Program; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX We acknowledge partial support from the Los Alamos National Laboratory LDRD Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center operated jointly by Los Alamos and Sandia National Laboratories. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 41 TC 11 Z9 11 U1 3 U2 91 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 5 PY 2013 VL 103 IS 6 AR 061117 DI 10.1063/1.4817814 PG 5 WC Physics, Applied SC Physics GA 198FT UT WOS:000322908300017 ER PT J AU Lampimaki, M Zelenay, V Krepelova, A Liu, Z Chang, R Bluhm, H Ammann, M AF Lampimaeki, Markus Zelenay, Veronika Krepelova, Adela Liu, Zhi Chang, Rui Bluhm, Hendrik Ammann, Markus TI Ozone-Induced Band Bending on Metal-Oxide Surfaces Studied under Environmental Conditions SO CHEMPHYSCHEM LA English DT Article DE band bending; metal oxides; ozone; surface chemistry; x-ray photoelectron spectroscopy ID RAY PHOTOELECTRON-SPECTROSCOPY; TITANIUM-DIOXIDE; OXYGEN; TIO2(110); DECOMPOSITION; ADSORPTION; WATER; DUST; TEMPERATURE; ABSORPTION AB Ozone adsorption and decomposition on metal oxides is of wide interest in technology and in atmospheric chemistry. Here, ozone-adsorption-induced band bending is observed on Ti-and Fe-oxide model surfaces under dry and humid conditions. Photoelectron spectroscopic studies indicate the effect of charge transfer to O-3, which limits the surface coverage of the precursor to decomposition reactions. This is also consistent with the negative pressure dependence observed in previous studies. These results contribute to our fundamental understanding of ozone adsorption and decomposition mechanisms on metal oxides of environmental and technological relevance. C1 [Lampimaeki, Markus; Zelenay, Veronika; Krepelova, Adela; Ammann, Markus] Paul Scherrer Inst, Lab Radiochem & Environm Chem, CH-5232 Villigen, Switzerland. [Liu, Zhi; Chang, Rui] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Ammann, M (reprint author), Paul Scherrer Inst, Lab Radiochem & Environm Chem, CH-5232 Villigen, Switzerland. EM markus.ammann@psi.ch RI Liu, Zhi/B-3642-2009; Ammann, Markus/E-4576-2011; OI Liu, Zhi/0000-0002-8973-6561; Ammann, Markus/0000-0001-5922-9000; Lampimaki, Markus/0000-0003-1990-6155 FU Swiss National Science Foundation [130175]; Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was supported by the Swiss National Science Foundation (grant no. 130175) (M. L. and M. A.). The Advanced Light Source and beamline 9.3.2 are supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 35 TC 9 Z9 9 U1 3 U2 41 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1439-4235 EI 1439-7641 J9 CHEMPHYSCHEM JI ChemPhysChem PD AUG 5 PY 2013 VL 14 IS 11 BP 2419 EP 2425 DI 10.1002/cphc.201300418 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 190KP UT WOS:000322339100012 PM 23740601 ER PT J AU Doll, T Velasco-Velez, JJ Rosenthal, D Avila, J Fuenzalida, V AF Doll, Theodor Velasco-Velez, Juan J. Rosenthal, Dirk Avila, Jonathan Fuenzalida, Victor TI Direct Observation of the Electroadsorptive Effect on Ultrathin Films for Microsensor and Catalytic-Surface Control SO CHEMPHYSCHEM LA English DT Article DE adsorption; electroadsorptive effect; semiconductors; sensors; thin films ID SEMICONDUCTOR GAS SENSORS; THIN-FILMS; SNO2; NO2; OXIDE; TEMPERATURE; OXYGEN; FIELD; CHEMISORPTION AB Microchemical sensors and catalytic reactors make use of gases during adsorption in specific ways on selected materials. Fine-tuning is normally achieved by morphological control and material doping. The latter relates surface properties to the electronic structure of the bulk, and this suggests the possibility of electronic control. Although unusual for catalytic surfaces, such phenomena are sometimes reported for microsensors, but with little understanding of the underlying mechanisms. Herein, direct observation of the electroadsorptive effect by a combination of X-ray photoelectron spectroscopy and con-ductivity analysis on nanometre-thick semiconductor films on buried control electrodes is reported. For the SnO2/NO2 model system, NO3 surface species, which normally decay at the latest within minutes, can be kept stable for 1.5 h with a high coverage of 15% under appropriate electric fields. This includes uncharged states, too, and implies that nanoelectronic structures provide control over the predominant adsorbate conformation on exterior surfaces and thus opens the field for chemically reactive interfaces with in situ tunability. C1 [Doll, Theodor; Velasco-Velez, Juan J.] Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany. [Rosenthal, Dirk] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Velasco-Velez, Juan J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Avila, Jonathan] Univ Fed Santa Catarina, CFM, Lab Filmes Finos & Superficies LFFS, BR-88040900 Florianopolis, SC, Brazil. [Avila, Jonathan; Fuenzalida, Victor] Univ Chile, Dept Fis, Santiago, Chile. RP Doll, T (reprint author), Hannover Med Sch, VIANNA, Feodor Lynen Str 35, D-30625 Hannover, Germany. EM doll.theodor@mh-hannover.de; dirkrose@fhi-berlin.mpg.de RI Fuenzalida, Victor/A-5244-2013 OI Fuenzalida, Victor/0000-0002-5481-4646 FU DAAD/CONICYT [ALECHILE 2009-193]; Chilean government [FONDECYT 1110168] FX Partial funding of this work by DAAD/CONICYT ALECHILE 2009-193 and Grant FONDECYT 1110168 of the Chilean government is acknowledged. The authors gratefully acknowledge layer preparation (dev.1) by FhG IPM, Freiburg, Germany. NR 36 TC 0 Z9 0 U1 1 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD AUG 5 PY 2013 VL 14 IS 11 BP 2505 EP 2510 DI 10.1002/cphc.201201013 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 190KP UT WOS:000322339100022 PM 23687010 ER PT J AU Santarnecchi, E Polizzotto, NR Godone, M Giovannelli, F Feurra, M Matzen, L Rossi, A Rossi, S AF Santarnecchi, Emiliano Polizzotto, Nicola Riccardo Godone, Marco Giovannelli, Fabio Feurra, Matteo Matzen, Laura Rossi, Alessandro Rossi, Simone TI Frequency-Dependent Enhancement of Fluid Intelligence Induced by Transcranial Oscillatory Potentials SO CURRENT BIOLOGY LA English DT Article ID CURRENT STIMULATION TACS; WORKING-MEMORY; CORTICAL EXCITABILITY; BRAIN EXCITABILITY; PREFRONTAL CORTEX; SYNCHRONIZATION; PERFORMANCE; COGNITION; HUMANS; RATS AB Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band. Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven's matrices) [5]. Crucially, gamma-band stimulation (gamma-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The present finding supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition. C1 [Santarnecchi, Emiliano; Godone, Marco; Feurra, Matteo; Rossi, Alessandro; Rossi, Simone] Univ Siena, Dept Med Surg & Neurosci, I-53100 Siena, Italy. [Polizzotto, Nicola Riccardo] Univ Pittsburgh, Dept Psychiat, Pittsburgh, PA 15213 USA. [Giovannelli, Fabio] Florence Hosp, Complex Unit Neurol, I-50134 Florence, Italy. [Matzen, Laura] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Santarnecchi, E (reprint author), Univ Siena, Dept Med Surg & Neurosci, Via Laterina 8, I-53100 Siena, Italy. EM emilianosantarnecchi@gmail.com RI Feurra, Matteo/K-4448-2013; OI Feurra, Matteo/0000-0003-0934-6764; rossi, simone/0000-0001-6697-9459 NR 39 TC 56 Z9 56 U1 1 U2 21 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0960-9822 J9 CURR BIOL JI Curr. Biol. PD AUG 5 PY 2013 VL 23 IS 15 BP 1449 EP 1453 DI 10.1016/j.cub.2013.06.022 PG 5 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 198NS UT WOS:000322930200022 PM 23891115 ER PT J AU Brown, EW DuBois, JL Holzmann, M Ceperley, DM AF Brown, Ethan W. DuBois, Jonathan L. Holzmann, Markus Ceperley, David M. TI Exchange-correlation energy for the three-dimensional homogeneous electron gas at arbitrary temperature SO PHYSICAL REVIEW B LA English DT Article ID ONE-COMPONENT PLASMA; DENSE IONIZED MATTER; GROUND-STATE; EQUILIBRIUM PROPERTIES; STATISTICAL-MECHANICS; QUANTUM CORRECTIONS; FINITE-TEMPERATURE; LIQUID; FUNCTIONALS; ACCURATE AB We fit finite-temperature path integral Monte Carlo calculations of the exchange-correlation energy of the 3D finite-temperature homogeneous electron gas in the warm-dense regime [r(s) = (3/4 pi n)(1/3)a(B)(-1) < 40 and Theta = T/T-F > 0.0625]. In doing so, we construct a Pade approximant which collapses to Debye-Huckel theory in the high-temperature, low-density limit. Likewise, the zero-temperature limit matches the numerical results of ground-state quantum Monte Carlo, as well as analytical results in the high-density limit. C1 [Brown, Ethan W.; Ceperley, David M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brown, Ethan W.; DuBois, Jonathan L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Holzmann, Markus] Univ Paris 06, CNRS, LPTMC, UMR 7600, F-75005 Paris, France. [Holzmann, Markus] Univ Grenoble 1, CNRS, LPMMC, UMR 5493, F-38042 Grenoble, France. [Holzmann, Markus] European Theoret Spect Facil, Grenoble, France. RP Brown, EW (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM brown122@illinois.edu OI DuBois, Jonathan/0000-0003-3154-4273 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LDRD [10-ERD-058]; Lawrence Scholar program; [DE-FG52-09NA29456] FX The authors would like to thank Jeremy McMinis and Miguel Morales for useful discussions. This work was supported by Grant No. DE-FG52-09NA29456. In addition, the work of E.B. and J.D. was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with support from LDRD 10-ERD-058 and the Lawrence Scholar program. Computational resources included LC machines at Lawrence Livermore National Laboratory through the institutional computation Grand Challenge program. NR 43 TC 26 Z9 26 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 5 PY 2013 VL 88 IS 8 AR 081102 DI 10.1103/PhysRevB.88.081102 PG 5 WC Physics, Condensed Matter SC Physics GA 196SK UT WOS:000322796300002 ER PT J AU Jansen, GR AF Jansen, G. R. TI Spherical coupled-cluster theory for open-shell nuclei SO PHYSICAL REVIEW C LA English DT Article ID CONNECTED TRIPLE EXCITATIONS; EXCITED-STATES; ENERGY-LEVELS; FULL INCLUSION; EOM-CCSDT; SYSTEMS AB Background: A microscopic description of nuclei is important to understand the nuclear shell model from fundamental principles. This is difficult to achieve for more than the lightest nuclei without an effective approximation scheme. Purpose: Define and evaluate an approximation scheme that can be used to study nuclei that are described as two particles attached to a closed (sub-) shell nucleus. Methods: The equation-of-motion coupled-cluster formalism has been used to obtain ground- and excited-state energies. This method is based on the diagonalization of a non-Hermitian matrix obtained from a similarity transformation of the many-body nuclear Hamiltonian. A chiral interaction at the next-to-next-to-next-to leading order (N-3 LO) using a cutoff at 500 MeV was used. Results: The ground- state energies of Li-6 and He-6 were in good agreement with a no-core shell-model calculation using the same interaction. Several excited states were also produced with overall good agreement. Only the J(pi) = 3(+) excited state in Li-6 showed a sizable deviation. The ground- state energies of O-18, F-18, and Ne-18 were converged but underbound compared to experiment. Moreover, the calculated spectra were converged and comparable to both experiment and shell-model studies in this region. Some excited states in O-18 were high or missing in the spectrum. It was also shown that the wave function for both ground and excited states separates into an intrinsic part and a Gaussian for the center-of-mass coordinate. Spurious center-of-mass excitations are clearly identified. Conclusions: Results are converged with respect to the size of the model space and the method can be used to describe nuclear states with simple structure. Especially the ground-state energies were very close to what has been achieved by exact diagonalization. To obtain a closer match with experimental data, effects of three-nucleon forces, the scattering continuum, as well as additional configurations in the coupled-cluster approximations are necessary. C1 [Jansen, G. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Jansen, G. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Jansen, G. R.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Jansen, G. R.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. RP Jansen, GR (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM gustav.jansen@utk.edu OI Jansen, Gustav R./0000-0003-3558-0968 FU Office of Nuclear Physics, US Department of Energy (Oak Ridge National Laboratory) [DE-FG02-96ER40963, DE-SC0008499]; Office of Science of the Department of Energy [DE-AC05-00OR22725] FX I thank M. Hjorth-Jensen and T. Papenbrock for valuable comments on the manuscript. In addition I thank G. Hagen and A. Ekstrom for very useful discussions. This work was partly supported by the Office of Nuclear Physics, US Department of Energy (Oak Ridge National Laboratory), under Contracts No. DE-FG02-96ER40963 (University of Tennessee) and No. DE-SC0008499 (NUCLEI SciDAC-3 Collaboration). An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract No. DE-AC05-00OR22725 and used computational resources of the National Center for Computational Sciences, the National Institute for Computational Sciences, and the Notur project in Norway. NR 51 TC 14 Z9 14 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG 5 PY 2013 VL 88 IS 2 AR 024305 DI 10.1103/PhysRevC.88.024305 PG 20 WC Physics, Nuclear SC Physics GA 196SP UT WOS:000322796900005 ER PT J AU Alexandrou, C Negele, JW Petschlies, M Strelchenko, A Tsapalis, A AF Alexandrou, C. Negele, J. W. Petschlies, M. Strelchenko, A. Tsapalis, A. TI Determination of Delta-resonance parameters from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID QUANTUM-FIELD THEORIES; VOLUME DEPENDENCE; ENERGY-SPECTRUM; STATES AB A method suitable for extracting resonance parameters of unstable baryons in lattice QCD is examined. The method is applied to the strong decay of the Delta to a pion-nucleon state, extracting the pi N Delta coupling constant and Delta decay width. C1 [Alexandrou, C.] Univ Cyprus, Dept Phys, CY-1678 Nicosia, Cyprus. [Alexandrou, C.; Petschlies, M.] Cyprus Inst, Computat Based Sci & Technol Res Ctr, CY-2121 Nicosia, Cyprus. [Negele, J. W.] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA. [Negele, J. W.] MIT, Ctr Theoret Phys, Dept Phys, Cambridge, MA 02139 USA. [Strelchenko, A.] Fermilab Natl Accelerator Lab, Div Comp Sci, Batavia, IL 60510 USA. [Tsapalis, A.] Hellen Naval Acad, Piraeus 18539, Greece. [Tsapalis, A.] Natl Tech Univ Athens, Dept Phys, Athens 15780, Greece. RP Alexandrou, C (reprint author), Univ Cyprus, Dept Phys, POB 20537, CY-1678 Nicosia, Cyprus. FU Research Executive Agency of the European Union [PITN-GA-2009-238353]; DOE Office of Nuclear Physics [DE-FG02-94ER40818]; Cyprus Research Promotion Foundation [NEA YPiODeltaOMH/SigmaTPATH/0308/31]; National Energy Research Scientific Computing Center; Office of Science of the DOE [DE-AC02-05CH11231]; Julich Supercomputing Center under the PRACE EU FP7 Project [2011040546]; PRACE [RI-211528, FP7-261557] FX We would like to thank C. Michael for valuable discussions. This research was in part supported by the Research Executive Agency of the European Union under Grant Agreement No. PITN-GA-2009-238353 (ITN STRONGnet) and in part by the DOE Office of Nuclear Physics under Grant No. DE-FG02-94ER40818. The GPU computing resources were provided by the Cy-Tera machine at the Cyprus Institute, supported in part by the Cyprus Research Promotion Foundation under Contract No. NEA Y Pi O Delta OMH/Sigma TPATH/0308/31, the National Energy Research Scientific Computing Center supported by the Office of Science of the DOE under Grant No. DE-AC02-05CH11231, and by the Julich Supercomputing Center, awarded under the PRACE EU FP7 Project No. 2011040546. The multi-GPU domain wall inverter code [19] is based on the QUDA library [20,21], and its development has been supported by PRACE Grants No. RI-211528 and No. FP7-261557. NR 21 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG 5 PY 2013 VL 88 IS 3 AR 031501 DI 10.1103/PhysRevD.88.031501 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 196SU UT WOS:000322797500002 ER PT J AU Latimer, ML Berdiyorov, GR Xiao, ZL Peeters, FM Kwok, WK AF Latimer, M. L. Berdiyorov, G. R. Xiao, Z. L. Peeters, F. M. Kwok, W. K. TI Realization of Artificial Ice Systems for Magnetic Vortices in a Superconducting MoGe Thin Film with Patterned Nanostructures SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPIN-ICE; FRUSTRATION; FERROELECTRICITY; DEFECTS AB We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time. C1 [Latimer, M. L.; Xiao, Z. L.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Latimer, M. L.; Xiao, Z. L.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Berdiyorov, G. R.; Peeters, F. M.] Univ Antwerp, Dept Fys, B-2020 Antwerp, Belgium. RP Latimer, ML (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xiao@anl.gov; francois.peeters@ua.ac.be RI CMT, UAntwerpen Group/A-5523-2016 FU US Department of Energy DOE BES [DE-AC02-06CH11357]; Flemish Science Foundation (FWO-Vl); Methusalem Foundation of the Flemish Government; FWO-Vl; DOE BES [DE-AC02-06CH11357, DE-FG02-06ER46334]; NIU/ANL Distinguished Graduate Fellowship grant FX This work was supported by the US Department of Energy DOE BES under Contract No. DE-AC02-06CH11357 (transport measurements), the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government (numerical simulations). G. R. B. acknowledges an individual grant from FWO-Vl. The nanopatterning and morphological analysis were performed at Argonne's Center for Nanoscale Materials (CNM) which is funded by DOE BES under Contract No. DE-AC02-06CH11357. We are grateful to Dr. Charles Reichhardt in Los Alamos National Laboratory for stimulating discussions and critical comments. Z. L. X. acknowledges DOE BES Grant No. DE-FG02-06ER46334 (sample fabrication and imaging). M. L. L. was a recipient of the NIU/ANL Distinguished Graduate Fellowship grant. NR 36 TC 20 Z9 20 U1 5 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 5 PY 2013 VL 111 IS 6 AR 067001 DI 10.1103/PhysRevLett.111.067001 PG 5 WC Physics, Multidisciplinary SC Physics GA 196TJ UT WOS:000322799200013 PM 23971602 ER PT J AU Ping, Y Coppari, F Hicks, DG Yaakobi, B Fratanduono, DE Hamel, S Eggert, JH Rygg, JR Smith, RF Swift, DC Braun, DG Boehly, TR Collins, GW AF Ping, Y. Coppari, F. Hicks, D. G. Yaakobi, B. Fratanduono, D. E. Hamel, S. Eggert, J. H. Rygg, J. R. Smith, R. F. Swift, D. C. Braun, D. G. Boehly, T. R. Collins, G. W. TI Solid Iron Compressed Up to 560 GPa SO PHYSICAL REVIEW LETTERS LA English DT Article ID EARTHS INNER-CORE; ABSORPTION FINE-STRUCTURE; AB-INITIO CALCULATIONS; X-RAY-DIFFRACTION; SPECTROSCOPY; ELASTICITY; FE; TEMPERATURE; PRESSURE; FACILITY AB Dynamic compression by multiple shocks is used to compress iron up to 560 GPa (5.6 Mbar), the highest solid-state pressure yet attained for iron in the laboratory. Extended x-ray absorption fine structure (EXAFS) spectroscopy offers simultaneous density, temperature, and local-structure measurements for the compressed iron. The data show that the close-packed structure of iron is stable up to 560 GPa, the temperature at peak compression is significantly higher than expected from pure compressive work, and the dynamic strength of iron is many times greater than the static strength based on lower pressure data. The results provide the first constraint on the melting line of iron above 400 GPa. C1 [Ping, Y.; Coppari, F.; Hicks, D. G.; Fratanduono, D. E.; Hamel, S.; Eggert, J. H.; Rygg, J. R.; Smith, R. F.; Swift, D. C.; Braun, D. G.; Collins, G. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Yaakobi, B.; Boehly, T. R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Ping, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM ping2@LLNL.gov RI Hicks, Damien/B-5042-2015 OI Hicks, Damien/0000-0001-8322-9983 FU U.S. DOE HEDLP program; U.S. DOE by LLNL [DEAC52-07NA27344]; LDRD program at LLNL FX We wish to thank the OMEGA team at LLE for laser operation and technical support. We also would like to thank W. Unites, T. Uphaus, S. Uhlich, and R. Wallace for target fabrication. We appreciate helpful discussion with R. E. Rudd and R. Kraus. Y. P. acknowledges support from the U.S. DOE HEDLP program. This work was performed under the auspices of the U.S. DOE by LLNL under Contract No. DEAC52-07NA27344 and the LDRD program at LLNL. NR 49 TC 41 Z9 42 U1 4 U2 70 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 5 PY 2013 VL 111 IS 6 AR 065501 DI 10.1103/PhysRevLett.111.065501 PG 5 WC Physics, Multidisciplinary SC Physics GA 196TJ UT WOS:000322799200007 PM 23971582 ER PT J AU Van Schelt, J Lascar, D Savard, G Clark, JA Bertone, PF Caldwell, S Chaudhuri, A Levand, AF Li, G Morgan, GE Orford, R Segel, RE Sharma, KS Sternberg, MG AF Van Schelt, J. Lascar, D. Savard, G. Clark, J. A. Bertone, P. F. Caldwell, S. Chaudhuri, A. Levand, A. F. Li, G. Morgan, G. E. Orford, R. Segel, R. E. Sharma, K. S. Sternberg, M. G. TI First Results from the CARIBU Facility: Mass Measurements on the r-Process Path SO PHYSICAL REVIEW LETTERS LA English DT Article ID FRS-ESR FACILITY; PENNING TRAP; ADJUSTMENT PROCEDURES; GAS CATCHERS; INPUT DATA; NUCLEAR; SPECTROMETER; ISOTOPES; ION; RESOLUTION AB The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade facility at Argonne National Laboratory. The studied region includes the Sn-132 double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A = 135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations. C1 [Van Schelt, J.; Lascar, D.; Savard, G.; Clark, J. A.; Bertone, P. F.; Caldwell, S.; Chaudhuri, A.; Levand, A. F.; Li, G.; Segel, R. E.; Sternberg, M. G.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Van Schelt, J.; Savard, G.; Caldwell, S.; Sternberg, M. G.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Lascar, D.; Segel, R. E.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Chaudhuri, A.; Morgan, G. E.; Sharma, K. S.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Li, G.; Orford, R.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. RP Van Schelt, J (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Chaudhuri, Ankur/G-2940-2013 FU NSERC, Canada [216974]; U.S. DOE, Office of Nuclear Physics [DE-AC02-06CH11357] FX The authors acknowledge J. W. Truran and C. Ugalde for their helpful discussions regarding the simulations. This work was performed under the auspices of NSERC, Canada, Application No. 216974, and the U.S. DOE, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 44 TC 24 Z9 24 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 5 PY 2013 VL 111 IS 6 AR 061102 DI 10.1103/PhysRevLett.111.061102 PG 5 WC Physics, Multidisciplinary SC Physics GA 196TJ UT WOS:000322799200002 PM 23971550 ER PT J AU Wang, XN Zhu, Y AF Wang, Xin-Nian Zhu, Yan TI Medium Modification of gamma Jets in High-Energy Heavy-Ion Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEI; PHOTON; PP AB Two puzzling features in the experimental study of jet quenching in central Pb + Pb collisions at the LHC are explained within a linearized Boltzmann transport model for jet propagation. A gamma-tagged jet is found to lose about 15% of its initial energy while its azimuthal angle remains almost unchanged due to rapid cooling of the medium. The reconstructed jet fragmentation function is found to have some modest enhancement at both small and large fractional momenta as compared to that in the vacuum because of the increased contribution of leading particles to the reconstructed jet energy and induced gluon radiation and recoiled partons. A gamma-tagged jet fragmentation function is proposed that is more sensitive to jet-medium interaction and the jet transport parameter in the medium. The effects of recoiled medium partons on the reconstructed jets are also discussed. C1 [Wang, Xin-Nian] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Zhu, Yan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Zhu, Yan] Univ Bielefeld, Fac Phys, D-33501 Bielefeld, Germany. RP Wang, XN (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. OI Wang, Xin-Nian/0000-0002-9734-9967 FU NSFC [11221504]; U.S. DOE [DE-AC02-05CH11231]; German Research Foundation DFG (ITRG) [GRK 881]; Humboldt Foundation FX We thank M. Cacciari for providing a modified version of FASTJET for use in this study. This work is supported by the NSFC under Grant No. 11221504, the U.S. DOE under Contract No. DE-AC02-05CH11231, and within the framework of the JET Collaboration. Y. Z. is also supported by the German Research Foundation DFG (ITRG) GRK 881 and the Humboldt Foundation. NR 22 TC 31 Z9 31 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 5 PY 2013 VL 111 IS 6 AR 062301 DI 10.1103/PhysRevLett.111.062301 PG 5 WC Physics, Multidisciplinary SC Physics GA 196TJ UT WOS:000322799200003 PM 23971567 ER PT J AU Woo, SJ Lee, ES Yoon, M Kim, YH AF Woo, Sung-Jae Lee, Eui-Sup Yoon, Mina Kim, Yong-Hyun TI Finite-Temperature Hydrogen Adsorption and Desorption Thermodynamics Driven by Soft Vibration Modes SO PHYSICAL REVIEW LETTERS LA English DT Article ID ADSORBED MOLECULES; STORAGE; ENTROPIES; SITES; METAL AB It has been widely accepted that enhanced dihydrogen adsorption is required for room-temperature hydrogen storage on nanostructured porous materials. Here we report, based on results of first-principles total energy and vibrational spectrum calculations, finite-temperature adsorption and desorption thermodynamics of hydrogen molecules that are adsorbed on the metal center of metal-porphyrin-incorporated graphene. We have revealed that the room-temperature hydrogen storage is achievable not only with the enhanced adsorption enthalpy, but also with soft-mode driven vibrational entropy of the adsorbed dihydrogen molecule. The soft vibration modes mostly result from multiple orbital coupling between the hydrogen molecule and the buckled metal center, for example, in Ca-porphyrin-incorporated graphene. Our study suggests that the current design strategy for room-temperature hydrogen storage materials should be modified with explicitly taking the finite-temperature vibration thermodynamics into account. C1 [Woo, Sung-Jae; Lee, Eui-Sup; Kim, Yong-Hyun] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol WCU, Taejon 305701, South Korea. [Yoon, Mina] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Kim, YH (reprint author), Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol WCU, Taejon 305701, South Korea. EM yong.hyun.kim@kaist.ac.kr RI Kim, Yong-Hyun/C-2045-2011; Yoon, Mina/A-1965-2016 OI Kim, Yong-Hyun/0000-0003-4255-2068; Yoon, Mina/0000-0002-1317-3301 FU WCU [R31-2008-000-10071-0]; NRF [2012R1A2A2A01046191, 2010-0006922]; Global Frontier RD [2011-0031566]; Korea government (MEST); National Energy Research Scientific Computing Center [DE-AC02-05CH11231] FX We thank J. Kang and Y. Ihm for reading the manuscript. This work was supported by the WCU (R31-2008-000-10071-0), NRF (2012R1A2A2A01046191 and 2010-0006922), and Global Frontier R&D (2011-0031566: Center for Multiscale Energy Systems) programs funded by the Korea government (MEST). M. Y. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division for structural configurations of the metal-incorporated graphene; the Scientific User Facilities Division for explorations of the catalytic functionality in theme research at the Center for Nanophase Materials Sciences; and the National Energy Research Scientific Computing Center for computing resource under Contract No. DE-AC02-05CH11231. S-J. W. and E-S. L. contributed equally to this work. NR 32 TC 9 Z9 9 U1 7 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 5 PY 2013 VL 111 IS 6 AR 066102 DI 10.1103/PhysRevLett.111.066102 PG 5 WC Physics, Multidisciplinary SC Physics GA 196TJ UT WOS:000322799200009 PM 23971592 ER PT J AU Li, KY Eres, G Howe, J Chuang, YJ Li, XF Gu, ZJ Zhang, LT Xie, SS Pan, ZW AF Li, Kaiyuan Eres, Gyula Howe, Jane Chuang, Yen-Jun Li, Xufan Gu, Zhanjun Zhang, Litong Xie, Sishen Pan, Zhengwei TI Self-Assembly of Graphene on Carbon Nanotube Surfaces SO SCIENTIFIC REPORTS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; PYROLYTIC CARBON; LARGE-AREA; FILMS; NANORIBBONS; MECHANISMS; GRAPHITE; GROWTH AB The rolling up of a graphene sheet into a tube is a standard visualization tool for illustrating carbon nanotube (CNT) formation. However, the actual processes of rolling up graphene sheets into CNTs in laboratory syntheses have never been demonstrated. Here we report conformal growth of graphene by carbon self-assembly on single-wall and multi-wall CNTs using chemical vapor deposition (CVD) of methane without the presence of metal catalysts. The new graphene layers roll up into seamless coaxial cylinders encapsulating the existing CNTs, but their adhesion to the primary CNTs is weak due to the existence of lattice misorientation. Our study shows that graphene nucleation and growth by self-assembly of carbon on the inactive carbon basal plane of CNTs occurs by a new mechanism that is markedly different from epitaxial growth on metal surfaces, opening up the possibility of graphene growth on many other non-metal substrates by simple methane CVD. C1 [Li, Kaiyuan; Chuang, Yen-Jun; Li, Xufan; Gu, Zhanjun; Pan, Zhengwei] Univ Georgia, Coll Engn, Athens, GA 30602 USA. [Li, Kaiyuan; Chuang, Yen-Jun; Li, Xufan; Gu, Zhanjun; Pan, Zhengwei] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Li, Kaiyuan; Zhang, Litong] Northwestern Polytech Univ, Sci & Technol Thermostruct Composite Mat Lab, Xian 710072, Shaanxi, Peoples R China. [Eres, Gyula; Howe, Jane] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Gu, Zhanjun] Chinese Acad Sci, Inst High Energy Phys, Lab Bioenvironm Effects Nanomat & Nanosafety, Beijing 100049, Peoples R China. [Xie, Sishen] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. RP Eres, G (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM eresg@ornl.gov; panz@uga.edu RI Gu, Zhanjun/A-7592-2013; Li, Xufan/A-8292-2013; Eres, Gyula/C-4656-2017; OI Gu, Zhanjun/0000-0003-3717-2423; Li, Xufan/0000-0001-9814-0383; Eres, Gyula/0000-0003-2690-5214; Pan, Zhengwei/0000-0002-3854-958X FU U.S. NSF [CAREER DMR-0955908]; China Scholarship Council; Materials Sciences and Engineering Division, Office of Basic Energy Science, U.S. Department of Energy; National Basic Research Programs of China (973 program) [2012CB932504]; Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program; Scientific User Facilities Division of the Office of Basic Energy Science FX Z.W.P. acknowledges funding by U.S. NSF (CAREER DMR-0955908). K.Y.L. thanks the financial support from the China Scholarship Council. G.E. acknowledges funding by the Materials Sciences and Engineering Division, Office of Basic Energy Science, U.S. Department of Energy. Z.J.G. acknowledges support by the National Basic Research Programs of China (973 program, No. 2012CB932504). The microscopy work was sponsored by Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Scientific User Facilities Division of the Office of Basic Energy Science. NR 31 TC 6 Z9 6 U1 2 U2 145 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD AUG 5 PY 2013 VL 3 AR 2353 DI 10.1038/srep02353 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 195JR UT WOS:000322698700003 PM 23912638 ER PT J AU Shvedova, AA Yanamala, N Murray, AR Kisin, ER Khaliullin, T Hatfield, MK Tkach, AV Krantz, QT Nash, D King, C Gilmour, MI Gavett, SH AF Shvedova, Anna A. Yanamala, Naveena Murray, Ashley R. Kisin, Elena R. Khaliullin, Timur Hatfield, Meghan K. Tkach, Alexey V. Krantz, Q. T. Nash, David King, Charly Gilmour, M. Ian Gavett, Stephen H. TI OXIDATIVE STRESS, INFLAMMATORY BIOMARKERS, AND TOXICITY IN MOUSE LUNG AND LIVER AFTER INHALATION EXPOSURE TO 100% BIODIESEL OR PETROLEUM DIESEL EMISSIONS SO JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES LA English DT Article ID FAILURE-PRONE RATS; EXHAUST INHALATION; ENGINE EXHAUST; PARTICLES; PARTICULATE; OILS; ACROLEIN; IMPACT; CELLS; FUEL AB Over the past decade, soy biodiesel (BD) has become a first alternative energy source that is economically viable and meets requirements of the Clean Air Act. Due to lower mass emissions and reduced hazardous compounds compared to diesel combustion emissions (CE), BD exposure is proposed to produce fewer adverse health effects. However, considering the broad use of BD and its blends in different industries, this assertion needs to be supported and validated by mechanistic and toxicological data. Here, adverse effects were compared in lungs and liver of BALB/cJ mice after inhalation exposure (0, 50, 150, or 500 g/m(3); 4 h/d, 5 d/wk, for 4 wk) to CE from 100% biodiesel (B100) and diesel (D100). Compared to D100, B100 CE produced a significant accumulation of oxidatively modified proteins (carbonyls), an increase in 4-hydroxynonenal (4-HNE), a reduction of protein thiols, a depletion of antioxidant gluthatione (GSH), a dose-related rise in the levels of biomarkers of tissue damage (lactate dehydrogenase, LDH) in lungs, and inflammation (myeloperoxidase, MPO) in both lungs and liver. Significant differences in the levels of inflammatory cytokines interleukin (IL)-6, IL-10, IL-12p70, monocyte chemoattractant protein (MCP)-1, interferon (IFN) , and tumor necrosis factor (TNF)- were detected in lungs and liver upon B100 and D100 CE exposures. Overall, the tissue damage, oxidative stress, inflammation, and cytokine response were more pronounced in mice exposed to BD CE. Further studies are required to understand what combustion products in BD CE accelerate oxidative and inflammatory responses. C1 [Shvedova, Anna A.; Yanamala, Naveena; Murray, Ashley R.; Kisin, Elena R.; Khaliullin, Timur; Hatfield, Meghan K.; Tkach, Alexey V.] NIOSH, Hlth Effects Lab Div, Pathol & Physiol Res Branch, Morgantown, WV USA. [Shvedova, Anna A.; Murray, Ashley R.] W Virginia Univ, Sch Med, Dept Physiol & Pharmacol, Morgantown, WV 26506 USA. [Krantz, Q. T.; King, Charly; Gilmour, M. Ian; Gavett, Stephen H.] US EPA, Environm Publ Hlth Div, Natl Hlth & Environm Effects Res Lab, Durham, NC USA. [Nash, David] ORISE, Oak Ridge, TN USA. [Nash, David] US EPA, Natl Risk Management Res Lab, Res Triangle Pk, NC 27711 USA. RP Shvedova, AA (reprint author), Pathol & Physiol Res Branch MS 2015, 1095 Willowdale Rd, Morgantown, WV 26505 USA. EM ats1@cdc.gov FU NIOSH [2927ZKCY] FX The authors are grateful to Bill Linak (U.S. EPA) for assistance in inhalation engineering and to Mary Daniels and Liz Boykin (U.S. EPA) for laboratory work. They also thank Dr. Vince Castranova and Dr. Teh-hsun B. Chen (CDC/NIOSH/HELD) and Dr. Mark Higuchi (U.S. EPA) for their discussion, comments, and feedback. This work was supported by NIOSH, 2927ZKCY. NR 53 TC 17 Z9 17 U1 0 U2 11 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1528-7394 EI 1087-2620 J9 J TOXICOL ENV HEAL A JI J. Toxicol. Env. Health Part A PD AUG 3 PY 2013 VL 76 IS 15 BP 907 EP 921 DI 10.1080/15287394.2013.825217 PG 15 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 240BK UT WOS:000326069500002 PM 24156694 ER PT J AU Modreanu, M Durand, O Jellison, GE Salviati, G Fried, M AF Modreanu, Mircea Durand, Olivier Jellison, Gerald E. Salviati, Giancarlo Fried, Miklos TI Special issue on "Current Trends in Optical and X-Ray Metrology of Advanced Materials for Nanoscale Devices III", E-MRS Spring 2012-Symposium W, held in Strasbourg, France, May 14-18, 2012 SO THIN SOLID FILMS LA English DT Editorial Material C1 [Modreanu, Mircea] Natl Univ Ireland Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland. [Durand, Olivier] Univ Europeenne Bretagne, FOTON OHM, UMR CNRS 6082, INSA Rennes, Bretagne, France. [Jellison, Gerald E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. [Salviati, Giancarlo] Univ Parma, CNR, I-43100 Parma, Italy. RP Modreanu, M (reprint author), Natl Univ Ireland Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland. RI Modreanu, Mircea/A-7181-2008; Salviati, Giancarlo/F-4947-2016 OI Modreanu, Mircea/0000-0003-0334-2439; Salviati, Giancarlo/0000-0002-9828-6371 NR 0 TC 0 Z9 0 U1 0 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD AUG 3 PY 2013 VL 541 SI SI BP 1 EP 2 DI 10.1016/j.tsf.2013.07.027 PG 2 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 201KN UT WOS:000323140600001 ER PT J AU Bonanno, PL Gautier, S El Gmili, Y Moudakir, T Sirenko, AA Kazimirov, A Cai, ZH Martin, J Goh, WH Martinez, A Ramdane, A Le Gratiet, L Maloufi, N Assouar, MB Ougazzaden, A AF Bonanno, P. L. Gautier, S. El Gmili, Y. Moudakir, T. Sirenko, A. A. Kazimirov, A. Cai, Z-H. Martin, J. Goh, W. H. Martinez, A. Ramdane, A. Le Gratiet, L. Maloufi, N. Assouar, M. B. Ougazzaden, A. TI Nondestructive mapping of chemical composition and structural qualities of group III-nitride nanowires using submicron beam synchrotron-based X-ray diffraction SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT Symposium W on Current Trends in Optical and X-Ray Metrology of Advanced Materials for Nanoscale Devices III / Spring Meeting of the European-Materials-Research-Society (E-MRS) CY MAY 14-18, 2012 CL Strasbourg, FRANCE SP European Mat Res Soc (E MRS), Hinds Instruments Inc, Horiba DE Nondestructive; GaN; Synchrotron; X-ray diffraction; Nano; Nanowire; RSM; MQW ID QUANTUM DOTS; GROWTH AB Submicron beam synchrotron-based X-ray diffraction (XRD) techniques have been developed and used to accurately and nondestructively map chemical composition and material quality of selectively grown group nanowires. GaN, AlGaN, and InGaN multi-quantum-well nanowires have been selectively grown on lattice matched and mismatched substrates, and the challenges associated with obtaining and interpreting submicron beam XRD results are addressed and solved. Nanoscale cathodoluminescence is used to examine exciton behavior, and energy-dispersive X-ray spectroscopy is used to verify chemical composition. Scanning transmission electron microscopy is later used to paint a more complete picture. The advantages of submicron beam XRD over other techniques are discussed in the context of this challenging material system. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bonanno, P. L.; Goh, W. H.; Ougazzaden, A.] UMI 2958 Georgia Tech CNRS, Georgia Inst Technol GTL, F-57070 Metz, France. [Gautier, S.; Martin, J.] Univ Metz, UMR CNRS 7132, LMOPS UMI Lab Mat Opt Photon & Micronano Syst, F-57070 Metz, France. [Gautier, S.; Martin, J.] SUPELEC, F-57070 Metz, France. [Gautier, S.; El Gmili, Y.; Moudakir, T.; Martin, J.] UMI 2958 Georgia Tech CNRS, F-57070 Metz, France. [Sirenko, A. A.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Kazimirov, A.] Cornell Univ, CHESS, Ithaca, NY 14853 USA. [Cai, Z-H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Martinez, A.; Ramdane, A.; Le Gratiet, L.] UPR CNRS 20, Lab Photon & Nanostruct, F-91460 Marcoussis, France. [Maloufi, N.] Lab Etud Textures & Applicat Mat UMR CNRS 7078 Il, F-57045 Metz 1, France. [Assouar, M. B.] Nancy Univ, CNRS, Lab Phys Milieux Ionises & Applicat, F-54506 Vandoeuvre Les Nancy, France. RP Bonanno, PL (reprint author), UMI 2958 Georgia Tech CNRS, Georgia Inst Technol GTL, F-57070 Metz, France. EM plb2@njit.edu RI Assouar, Badreddine/A-7849-2011 OI Assouar, Badreddine/0000-0002-5823-3320 NR 14 TC 1 Z9 1 U1 0 U2 38 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD AUG 3 PY 2013 VL 541 SI SI BP 46 EP 50 DI 10.1016/j.tsf.2012.12.099 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 201KN UT WOS:000323140600011 ER PT J AU Aithal, SM AF Aithal, S. M. TI Prediction of Voltage Signature in a Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Propane and Acetylene SO COMBUSTION SCIENCE AND TECHNOLOGY LA English DT Article DE Alternative fuels; Charged species; Equilibrium; Equivalence ratio; HCCI engine; Ionization ID COMBUSTION; REDUCTION; NOX AB Ion sensors work on the principle that the ion current in a combusting mixture is proportional to the electrical conductivity of the mixture. Ion sensors can thus provide direct in-cylinder combustion information to the engine controller in order to optimize engine performance and reduce emissions. Electrical conductivity of the combusting mixture depends on the mixture composition (fuel and equivalence ratio) along with the temperature and pressure. A previously developed equilibrium chemistry model consisting of 20 neutral species and seven charged species was shown to correctly predict the temporal variation of current in a constant-volume, spark-ignited methane/air mixture in a constant volume chamber, for various air/fuel ratios. The current study explores the use of this equilibrium chemistry model for predicting the voltage signatures in a homogeneous charge compression ignition (HCCI) engine fueled with alternative fuels such as propane and acetylene operating at low temperatures and equivalence ratios. Temporal variation of the current signal is compared with experimental data for various equivalence ratios for propane and acetylene. The contribution of various charged species to the current signal is also analyzed. It was seen that the equilibrium chemistry model captures the experimentally observed voltage signal trends correctly for both propane and acetylene for a range of equivalence ratios. The ability of the model to correctly correlate the voltage signal with equivalence ratio for various fuels shows its potential for diagnostics and control of next-generation engines. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Aithal, SM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM aithal@mcs.anl.gov FU Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Government FX This work was supported by the Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.; The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 26 TC 4 Z9 4 U1 0 U2 10 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0010-2202 J9 COMBUST SCI TECHNOL JI Combust. Sci. Technol. PD AUG 3 PY 2013 VL 185 IS 8 BP 1184 EP 1201 DI 10.1080/00102202.2013.781593 PG 18 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical SC Thermodynamics; Energy & Fuels; Engineering GA 188SG UT WOS:000322213300003 ER PT J AU Breshears, DD Adams, HD Eamus, D McDowell, NG Law, DJ Will, RE Williams, AP Zou, CB AF Breshears, David D. Adams, Henry D. Eamus, Derek McDowell, Nate G. Law, Darin J. Will, Rodney E. Williams, A. Park Zou, Chris B. TI The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off SO FRONTIERS IN PLANT SCIENCE LA English DT Editorial Material ID CHANGE-TYPE DROUGHT; VEGETATION MORTALITY; CARBON METABOLISM; UNITED-STATES; CLIMATE; MECHANISMS; TEMPERATURE; CONDUCTANCE; RESPONSES; DYNAMICS C1 [Breshears, David D.; Law, Darin J.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA. [Adams, Henry D.; McDowell, Nate G.; Williams, A. Park] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Eamus, Derek] Univ Technol Sydney, Sch Environm, Sydney, NSW 2007, Australia. [Will, Rodney E.; Zou, Chris B.] Oklahoma State Univ, Dept Nat Resource Ecol & Management, Stillwater, OK 74078 USA. RP Law, DJ (reprint author), Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA. EM dlaw@email.arizona.edu RI Adams, Henry/A-8742-2010; Will, Rodney/G-8111-2011; Williams, Park/B-8214-2016; Zou, Chris/A-5039-2010; OI Adams, Henry/0000-0002-6403-5304; Williams, Park/0000-0001-8176-8166; Zou, Chris/0000-0003-0080-2866; Eamus, Derek/0000-0003-2765-8040 NR 38 TC 30 Z9 30 U1 5 U2 57 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD AUG 2 PY 2013 VL 4 AR 266 DI 10.3389/fpls.2013.00266 PG 4 WC Plant Sciences SC Plant Sciences GA AA0DJ UT WOS:000330765000001 PM 23935600 ER PT J AU Riley, LM Weadge, JT Baker, P Robinson, H Codee, JDC Tipton, PA Ohman, DE Howell, PL AF Riley, Laura M. Weadge, Joel T. Baker, Perrin Robinson, Howard Codee, Jeroen D. C. Tipton, Peter A. Ohman, Dennis E. Howell, P. Lynne TI Structural and Functional Characterization of Pseudomonas aeruginosa AlgX ROLE OF AlgX IN ALGINATE ACETYLATION SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID BIOSYNTHETIC GENE-CLUSTER; CARBOHYDRATE-BINDING MODULES; GRAM-NEGATIVE BACTERIA; BIOFILM FORMATION; ACETYLPEPTIDOGLYCAN ESTERASE; EVOLUTIONARY CONSERVATION; NEISSERIA-GONORRHOEAE; INDUCED DISPERSION; PROTEIN-STRUCTURE; CYSTIC-FIBROSIS AB The exopolysaccharide alginate, produced by mucoid Pseudomonas aeruginosa in the lungs of cystic fibrosis patients, undergoes two different chemical modifications as it is synthesized that alter the properties of the polymer and hence the biofilm. One modification, acetylation, causes the cells in the biofilm to adhere better to lung epithelium, form microcolonies, and resist the effects of the host immune system and/or antibiotics. Alginate biosynthesis requires 12 proteins encoded by the algD operon, including AlgX, and although this protein is essential for polymer production, its exact role is unknown. In this study, we present the X-ray crystal structure of AlgX at 2.15 angstrom resolution. The structure reveals that AlgX is a two-domain protein, with an N-terminal domain with structural homology to members of the SGNH hydrolase superfamily and a C-terminal carbohydrate-binding module. A number of residues in the carbohydrate-binding module form a substrate recognition "pinch point" that we propose aids in alginate binding and orientation. Although the topology of the N-terminal domain deviates from canonical SGNH hydrolases, the residues that constitute the Ser-His-Asp catalytic triad characteristic of this family are structurally conserved. In vivo studies reveal that site-specific mutation of these residues results in non-acetylated alginate. This catalytic triad is also required for acetylesterase activity in vitro. Our data suggest that not only does AlgX protect the polymer as it passages through the periplasm but that it also plays a role in alginate acetylation. Our results provide the first structural insight for a wide group of closely related bacterial polysaccharide acetyltransferases. C1 [Howell, P. Lynne] Hosp Sick Children, Program Mol Struct & Funct, Toronto, ON M5G 1X8, Canada. [Robinson, Howard] Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. [Codee, Jeroen D. C.] Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands. [Tipton, Peter A.] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. [Ohman, Dennis E.] Virginia Commonwealth Univ, Med Ctr, Dept Microbiol & Immunol, Richmond, VA 23298 USA. [Ohman, Dennis E.] Virginia Commonwealth Univ, Med Ctr, McGuire Vet Affairs Med Ctr, Richmond, VA 23298 USA. [Howell, P. Lynne] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada. RP Howell, PL (reprint author), Hosp Sick Children, Program Mol Struct & Funct, 555 Univ Ave, Toronto, ON M5G 1X8, Canada. EM howell@sickkids.ca FU United States Department of Energy Office of Biological and Environmental Research; National Institutes of Health National Center for Research Resources FX We thank Yura Lobsanov, Francis Wolfram, Dustin J. Little, Jason Koo, John C. C. Whitney, and G. David Smith for helpful discussions and Patrick Yip for technical assistance. National Synchrotron Light Source beamline X29 is supported by the United States Department of Energy Office of Biological and Environmental Research and the National Institutes of Health National Center for Research Resources. NR 94 TC 15 Z9 18 U1 3 U2 19 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD AUG 2 PY 2013 VL 288 IS 31 BP 22299 EP 22314 DI 10.1074/jbc.M113.484931 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 302HY UT WOS:000330596300012 PM 23779107 ER PT J AU Glockner, C Kern, J Broser, M Zouni, A Yachandra, V Yano, J AF Gloeckner, Carina Kern, Jan Broser, Matthias Zouni, Athina Yachandra, Vittal Yano, Junko TI Structural Changes of the Oxygen-evolving Complex in Photosystem II during the Catalytic Cycle SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID X-RAY-ABSORPTION; PHOTOSYNTHETIC WATER OXIDATION; MN4CA CLUSTER; CRYSTAL-STRUCTURE; MN CLUSTER; MANGANESE COMPLEX; ELECTRONIC-STRUCTURE; S-2 STATES; THERMOSYNECHOCOCCUS-ELONGATUS; ANGSTROM RESOLUTION AB The oxygen-evolving complex (OEC) in the membrane-bound protein complex photosystem II (PSII) catalyzes the water oxidation reaction that takes place in oxygenic photosynthetic organisms. We investigated the structural changes of the Mn4CaO5 cluster in the OEC during the S state transitions using x-ray absorption spectroscopy (XAS). Overall structural changes of the Mn4CaO5 cluster, based on the manganese ligand and Mn-Mn distances obtained from this study, were incorporated into the geometry of the Mn4CaO5 cluster in the OEC obtained from a polarized XAS model and the 1.9-angstrom high resolution crystal structure. Additionally, we compared the S-1 state XAS of the dimeric and monomeric form of PSII from Thermosynechococcus elongatus and spinach PSII. Although the basic structures of the OEC are the same for T. elongatus PSII and spinach PSII, minor electronic structural differences that affect the manganese K-edge XAS between T. elongatus PSII and spinach PSII are found and may originate from differences in the second sphere ligand atom geometry. C1 [Gloeckner, Carina; Broser, Matthias; Zouni, Athina] Tech Univ Berlin, Inst Chem, Max Volmer Lab Biophys Chem, D-10623 Berlin, Germany. [Kern, Jan; Yachandra, Vittal; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Zouni, A (reprint author), Tech Univ Berlin, Inst Chem, Max Volmer Lab Biophys Chem, Str 17 Juni 135, D-10623 Berlin, Germany. EM zouni@mailbox.tu-berlin.de; vkyachandra@lbl.gov; jyano@lbl.gov RI Kern, Jan/G-2586-2013 OI Kern, Jan/0000-0002-7272-1603 FU National Institutes of Health; NCCR; Department of Energy, Office of Biological and Environmental Research FX We thank Prof. Johannes Messinger for many useful discussions, D. DiFiore for technical assistance with sample preparation and the staff at Stanford Synchrotron Radiation Lightsource, Stanford, CA, for support of the EXAFS measurements. Synchrotron facilities were provided by the Stanford Synchrotron Radiation Lightsource operated by the Department of Energy, Office of Basic Energy Sciences. The Stanford Synchrotron Radiation Lightsource Biomedical Technology program is supported by the National Institutes of Health, the NCCR, and the Department of Energy, Office of Biological and Environmental Research. NR 74 TC 52 Z9 53 U1 6 U2 60 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD AUG 2 PY 2013 VL 288 IS 31 BP 22607 EP 22620 DI 10.1074/jbc.M113.476622 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 302HY UT WOS:000330596300041 PM 23766513 ER PT J AU Chavan, H Khan, MMT Tegos, G Krishnamurthy, P AF Chavan, Hemantkumar Khan, Mohiuddin Md Taimur Tegos, George Krishnamurthy, Partha TI Efficient Purification and Reconstitution of ATP Binding Cassette Transporter B6 (ABCB6) for Functional and Structural Studies SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID GLYCOPROTEIN MULTIDRUG TRANSPORTER; P-GLYCOPROTEIN; HEPATOCELLULAR-CARCINOMA; LIPID FLIPPASE; MECHANISM; EXPRESSION; PROTEOLIPOSOMES; RESISTANCE; LOCALIZES; MUTATIONS AB The mitochondrial ATP binding cassette transporter ABCB6 has been associated with a broad range of physiological functions, including growth and development, therapy-related drug resistance, and the new blood group system Langereis. ABCB6 has been proposed to regulate heme synthesis by shuttling coproporphyrinogen III from the cytoplasm into the mitochondria. However, direct functional information of the transport complex is not known. To understand the role of ABCB6 in mitochondrial transport, we developed an in vitro system with pure and active protein. ABCB6 overexpressed in HEK293 cells was solubilized from mitochondrial membranes and purified to homogeneity. Purified ABCB6 showed a high binding affinity for MgATP (K-d = 0.18 mu M) and an ATPase activity with a K-m of 0.99 mM. Reconstitution of ABCB6 into liposomes allowed biochemical characterization of the ATPase including (i) substrate-stimulated ATPase activity, (ii) transport kinetics of its proposed endogenous substrate coproporphyrinogen III, and (iii) transport kinetics of substrates identified using a high throughput screening assay. Mutagenesis of the conserved lysine to alanine (K629A) in the Walker A motif abolished ATP hydrolysis and substrate transport. These results suggest a direct interaction between mitochondrial ABCB6 and its transport substrates that is critical for the activity of the transporter. Furthermore, the simple immunoaffinity purification of ABCB6 to near homogeneity and efficient reconstitution of ABCB6 into liposomes might provide the basis for future studies on the structure/function of ABCB6. C1 [Chavan, Hemantkumar; Krishnamurthy, Partha] Univ Kansas, Med Ctr, Dept Pharmacol Toxicol & Therapeut, Kansas City, KS 66160 USA. [Khan, Mohiuddin Md Taimur] Washington State Univ, Dept Chem Engn & Bioengn, Pullman, WA 99146 USA. [Khan, Mohiuddin Md Taimur] Pacific NW Natl Lab, Div Bioenergy & Biotechnol, Richland, WA 99352 USA. [Tegos, George] Univ New Mexico, Ctr Mol Discovery, Albuquerque, NM 87131 USA. [Tegos, George] Univ New Mexico, Sch Med, Albuquerque, NM 87131 USA. [Chavan, Hemantkumar; Krishnamurthy, Partha] Massachusetts Gen Hosp, Wellman Ctr Photomed, Boston, MA 02114 USA. [Tegos, George] Harvard Univ, Sch Med, Dept Dermatol, Boston, MA 02114 USA. RP Krishnamurthy, P (reprint author), Univ Kansas, Med Ctr, Dept Pharmacol Toxicol & Therapeut, 3901 Rainbow Blvd, Kansas City, KS 66160 USA. EM pkasturi@kumc.edu OI Chavan, Hemantkumar/0000-0002-9963-6230 FU National Institutes of Health [P20RR021940, R03MH093193] FX This work was supported, in whole or in part, by National Institutes of Health Grants P20RR021940 and R03MH093193. NR 50 TC 9 Z9 10 U1 0 U2 10 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD AUG 2 PY 2013 VL 288 IS 31 BP 22658 EP 22669 DI 10.1074/jbc.M113.485284 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 302HY UT WOS:000330596300045 PM 23792964 ER PT J AU Grant, CD Kang, SO Hay, BP AF Grant, Christopher D. Kang, Sung Ok Hay, Benjamin P. TI Synthesis of a Hydrophilic Naphthalimidedioxime SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID TRANSFER HYDROGENATION; REDUCTIVE AMINATION; ACID-DERIVATIVES; CONVENIENT AB Imidedioximes are formed in hydroxylamine-treated polyacrylonitrile adsorbents used in the extraction of uranium from seawater. Although known to be a good uranophile, the glutarimidedioxime model compound 1 is rapidly hydrolyzed under acidic conditions used to elute metals from the adsorbent. This work reports the synthesis of a hydrophilic naphthalimidedioxime derivative 14, which is stable under acidic elution conditions. The synthesis starts from simple acenaphthenequinone 7 and converts it to a functional group dense imidedioxime 14 in 7 steps. C1 [Grant, Christopher D.; Kang, Sung Ok; Hay, Benjamin P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Hay, BP (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM haybp@ornl.gov FU Fuel Resources Campaign in the Fuel Cycle Research and Development Program, Office of Nuclear Energy, U.S. Department of Energy (DOE) FX This work was supported by the Fuel Resources Campaign in the Fuel Cycle Research and Development Program, Office of Nuclear Energy, U.S. Department of Energy (DOE). NR 20 TC 6 Z9 6 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 EI 1520-6904 J9 J ORG CHEM JI J. Org. Chem. PD AUG 2 PY 2013 VL 78 IS 15 BP 7735 EP 7740 DI 10.1021/jo4009386 PG 6 WC Chemistry, Organic SC Chemistry GA 197LQ UT WOS:000322853100037 PM 23786218 ER PT J AU Gudavalli, RKP Katsenovich, YP Wellman, DM Idarraga, M Lagos, LE Tansel, B AF Gudavalli, Ravi K. P. Katsenovich, Yelena P. Wellman, Dawn M. Idarraga, Melina Lagos, Leonel E. Tansel, Berrin TI Comparison of the kinetic rate law parameters for the dissolution of natural and synthetic autunite in the presence of aqueous bicarbonate ions SO CHEMICAL GEOLOGY LA English DT Article DE Autunite; Dissolution; Uranium; Activation energy; Enthalpy; Bicarbonate ID CRYSTAL-STRUCTURE; COMPLEX-FORMATION; META-AUTUNITE; CARBONATE; URANIUM; URANYL; MINERALS; PH; TEMPERATURE; CHEMISTRY AB This research evaluated the effect of aqueous hydrogen carbonate solutions on the uranium rate of release from natural Ca-autunite and quantified the process kinetic rate law for a better prediction of the stability of autunite-group minerals. Testing was accomplished via a single-pass flow-through (SPFT) apparatus using buffered aqueous bicarbonate solutions (0.0005 to 0.003 M) at temperatures of 23-90 degrees C and pH values of 7-11. The release rate of uranium from Ca-autunite was directly correlated to increasing concentrations of hydrogen carbonate solutions and showed strong pH dependency. Ca-autunite kinetic rate law parameters were compared to the values obtained for synthetic Na-autunite. The power law coefficient and intrinsic rate constant were higher at pH 9-11 for Ca-autunite than for Na-autunite. The lower stability of Ca-autunite was attributed to the high Ca-autunite surface cracking, fractures and basal plane cleavages as compared to Na-autunite and the combined effect of the formation of aqueous uranyl-carbonate and calcium uranyl carbonate species as a driving force for uranium(VI) detachment and the formation of secondary Ca-P hydroxyapatite and uranyl phosphate mineral phases as a driving force for phosphate and calcium detachment controlling the net release of elements. Published by Elsevier B.V. C1 [Gudavalli, Ravi K. P.; Katsenovich, Yelena P.; Idarraga, Melina; Lagos, Leonel E.] Florida Int Univ, Appl Res Ctr, Miami, FL 33174 USA. [Gudavalli, Ravi K. P.; Tansel, Berrin] Florida Int Univ, Dept Civil & Environm Engn, Miami, FL 33174 USA. [Wellman, Dawn M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Katsenovich, YP (reprint author), Florida Int Univ, Appl Res Ctr, 10555 W Flagler St,Suite 2100, Miami, FL 33174 USA. EM katsenov@fiu.edu FU U.S. Department of Energy Office of Environmental Management [DE-EM0000598]; Department of Energy (DOE) [DE-AC05-76RL01830] FX Funding for this work was provided by the U.S. Department of Energy Office of Environmental Management under grant DE-EM0000598. This manuscript was prepared in collaboration with the Deep Vadose Zone - Applied Field Research Initiative at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the Department of Energy (DOE) under Contract DE-AC05-76RL01830. We gratefully acknowledge the efforts of K. Parker from Pacific Northwest National Laboratory for his help with the surface area analysis of synthetic autunite; and A. Henao for his assistance in conducting KPA and ICP-OES analysis. The authors also acknowledge Dr. Y. Liu from the FIU Advanced Materials Engineering Research Institute (AMERI) and R. Lapierre and T. Beasley from FCAEM for their assistance with the SEM/EDS analysis. NR 45 TC 1 Z9 1 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 J9 CHEM GEOL JI Chem. Geol. PD AUG 2 PY 2013 VL 351 BP 299 EP 309 DI 10.1016/j.chemgeo.2013.05.038 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 197NI UT WOS:000322857500024 ER PT J AU Aguilar-Arevalo, AA Brown, BC Bugel, L Cheng, G Church, ED Conrad, JM Dharmapalan, R Djurcic, Z Finley, DA Ford, R Garcia, FG Garvey, GT Grange, J Huelsnitz, W Ignarra, C Imlay, R Johnson, RA Karagiorgi, G Katori, T Kobilarcik, T Louis, WC Mariani, C Marsh, W Mills, GB Mirabal, J Moore, CD Mousseau, J Nienaber, P Osmanov, B Pavlovic, Z Perevalov, D Polly, CC Ray, H Roe, BP Russell, AD Shaevitz, MH Spitz, J Stancu, I Tayloe, R Van de Water, RG Wascko, MO White, DH Wickremasinghe, DA Zeller, GP Zimmerman, ED AF Aguilar-Arevalo, A. A. Brown, B. C. Bugel, L. Cheng, G. Church, E. D. Conrad, J. M. Dharmapalan, R. Djurcic, Z. Finley, D. A. Ford, R. Garcia, F. G. Garvey, G. T. Grange, J. Huelsnitz, W. Ignarra, C. Imlay, R. Johnson, R. A. Karagiorgi, G. Katori, T. Kobilarcik, T. Louis, W. C. Mariani, C. Marsh, W. Mills, G. B. Mirabal, J. Moore, C. D. Mousseau, J. Nienaber, P. Osmanov, B. Pavlovic, Z. Perevalov, D. Polly, C. C. Ray, H. Roe, B. P. Russell, A. D. Shaevitz, M. H. Spitz, J. Stancu, I. Tayloe, R. Van de Water, R. G. Wascko, M. O. White, D. H. Wickremasinghe, D. A. Zeller, G. P. Zimmerman, E. D. CA MiniBooNE Collaboration TI First measurement of the muon antineutrino double-differential charged-current quasielastic cross section SO PHYSICAL REVIEW D LA English DT Article ID ELECTRON-SCATTERING; PION ABSORPTION; NEGATIVE MUONS; CAPTURE RATES; NEUTRINO; MINIBOONE; DETECTOR; STATES; SIMULATION; RESONANCE AB The largest sample ever recorded of (nu) over bar (mu) charged-current quasielastic (CCQE, (nu) over bar (mu) + p -> mu(+) + n) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section d(2)sigma/dT(mu) d cos theta(mu) for (nu) over bar (mu) CCQE for a mineral oil target. This measurement exploits the large statistics of the MiniBooNE antineutrino mode sample and provides the most complete information of this process to date. In order to facilitate historical comparisons, the flux-unfolded total cross section sigma(E-nu) and single-differential cross section d sigma/dQ(2) on both mineral oil and on carbon are also reported. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intranuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements. C1 [Dharmapalan, R.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Djurcic, Z.] Argonne Natl Lab, Argonne, IL 60439 USA. [Johnson, R. A.; Wickremasinghe, D. A.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Cheng, G.; Karagiorgi, G.; Shaevitz, M. H.] Columbia Univ, New York, NY 10027 USA. [Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Kobilarcik, T.; Marsh, W.; Moore, C. D.; Perevalov, D.; Polly, C. C.; Russell, A. D.; Zeller, G. P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Grange, J.; Mousseau, J.; Osmanov, B.; Ray, H.] Univ Florida, Gainesville, FL 32611 USA. [Tayloe, R.] Indiana Univ, Bloomington, IN 47405 USA. [Garvey, G. T.; Huelsnitz, W.; Louis, W. C.; Mills, G. B.; Mirabal, J.; Pavlovic, Z.; Van de Water, R. G.; White, D. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Imlay, R.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Bugel, L.; Conrad, J. M.; Ignarra, C.; Katori, T.; Spitz, J.] MIT, Cambridge, MA 02139 USA. [Aguilar-Arevalo, A. A.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Roe, B. P.] Univ Michigan, Ann Arbor, MI 48109 USA. [Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA. [Church, E. D.] Yale Univ, New Haven, CT 06520 USA. [Mariani, C.] Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA 24061 USA. [Wascko, M. O.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. RP Aguilar-Arevalo, AA (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. RI Mariani, Camillo/J-6070-2015; OI Mariani, Camillo/0000-0003-3284-4681; Louis, William/0000-0002-7579-3709; Aguilar-Arevalo, Alexis A./0000-0001-9279-3375; Spitz, Joshua/0000-0002-6288-7028; Wascko, Morgan/0000-0002-8348-4447; Van de Water, Richard/0000-0002-1573-327X; Katori, Teppei/0000-0002-9429-9482 NR 84 TC 71 Z9 71 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 2 PY 2013 VL 88 IS 3 AR 032001 DI 10.1103/PhysRevD.88.032001 PG 31 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 196LU UT WOS:000322777800001 ER PT J AU Gando, A Gando, Y Hanakago, H Ikeda, H Inoue, K Ishidoshiro, K Ishikawa, H Koga, M Matsuda, R Matsuda, S Mitsui, T Motoki, D Nakamura, K Obata, A Oki, A Oki, Y Otani, M Shimizu, I Shirai, J Suzuki, A Takemoto, Y Tamae, K Ueshima, K Watanabe, H Xu, BD Yamada, S Yamauchi, Y Yoshida, H Kozlov, A Yoshida, S Piepke, A Banks, TI Fujikawa, BK Han, K O'Donnell, T Berger, BE Learned, JG Matsuno, S Sakai, M Efremenko, Y Karwowski, HJ Markoff, DM Tornow, W Detwiler, JA Enomoto, S Decowski, MP AF Gando, A. Gando, Y. Hanakago, H. Ikeda, H. Inoue, K. Ishidoshiro, K. Ishikawa, H. Koga, M. Matsuda, R. Matsuda, S. Mitsui, T. Motoki, D. Nakamura, K. Obata, A. Oki, A. Oki, Y. Otani, M. Shimizu, I. Shirai, J. Suzuki, A. Takemoto, Y. Tamae, K. Ueshima, K. Watanabe, H. Xu, B. D. Yamada, S. Yamauchi, Y. Yoshida, H. Kozlov, A. Yoshida, S. Piepke, A. Banks, T. I. Fujikawa, B. K. Han, K. O'Donnell, T. Berger, B. E. Learned, J. G. Matsuno, S. Sakai, M. Efremenko, Y. Karwowski, H. J. Markoff, D. M. Tornow, W. Detwiler, J. A. Enomoto, S. Decowski, M. P. CA KamLAND Collaboration TI Reactor on-off antineutrino measurement with KamLAND SO PHYSICAL REVIEW D LA English DT Article ID NEUTRON FISSION-PRODUCTS; GEO-NEUTRINOS; EARTH; FLUX; SPECTRUM; MODELS AB The recent long-term shutdown of Japanese nuclear reactors has resulted in a significantly reduced reactor (nu) over bar (e) flux at KamLAND. This running condition provides a unique opportunity to confirm and constrain backgrounds for the reactor (nu) over bar (e) oscillation analysis. The data set also has improved sensitivity for other (nu) over bar (e) signals, in particular (nu) over bar (e)'s produced in beta-decays from U-238 and Th-232 within the Earth's interior, whose energy spectrum overlaps with that of reactor (nu) over bar (e)'s. Including constraints on theta(13) from accelerator and short-baseline reactor neutrino experiments, a combined three-flavor analysis of solar and KamLAND data gives fit values for the oscillation parameters of tan (2)theta(12) = 0.436(-0.025)(+0.029), Delta m(21)(2) = 7.53(-0.18)(+0.18) x 10(-5) eV(2), and sin (2)theta(13) = 0.023(-0.002)(+0.002). Assuming a chondritic Th/U mass ratio, we obtain 116(-27)(+28) (nu) over bar (e) events from U-238 and Th-232, corresponding to a geo (nu) over bar (e) flux of 3.4(-0.8)(+0.8) x 10(6) cm(-2) s(-1) at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo (nu) over bar (e) rate. C1 [Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.] Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. [Inoue, K.; Koga, M.; Nakamura, K.; Kozlov, A.; Piepke, A.; Fujikawa, B. K.; Berger, B. E.; Efremenko, Y.; Tornow, W.; Enomoto, S.; Decowski, M. P.] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Yoshida, S.] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan. [Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Banks, T. I.; Fujikawa, B. K.; Han, K.; O'Donnell, T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Banks, T. I.; Fujikawa, B. K.; Han, K.; O'Donnell, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berger, B. E.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Learned, J. G.; Matsuno, S.; Sakai, M.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Efremenko, Y.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27705 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] N Carolina Cent Univ, Durham, NC 27701 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Detwiler, J. A.; Enomoto, S.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Decowski, M. P.] Nikhef, NL-1019 XG Amsterdam, Netherlands. [Decowski, M. P.] Univ Amsterdam, NL-1019 XG Amsterdam, Netherlands. RP Gando, A (reprint author), Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. RI Han, Ke/D-3697-2017 OI Han, Ke/0000-0002-1609-7367 FU Japanese Ministry of Education, Culture, Sports, Science and Technology [21000001]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Stichting FOM in the Netherlands; US Department of Energy (DOE) [DE-AC02-05CH11231] FX The KamLAND experiment is supported by the Grant-in-Aid for Specially Promoted Research under Grant No. 21000001 of the Japanese Ministry of Education, Culture, Sports, Science and Technology; the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Stichting FOM in the Netherlands; and under the US Department of Energy (DOE) Grant No. DE-AC02-05CH11231, as well as other DOE grants to individual institutions. The Kamioka Mining and Smelting Company has provided service for activities in the mine. NR 38 TC 59 Z9 59 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 2 PY 2013 VL 88 IS 3 AR 033001 DI 10.1103/PhysRevD.88.033001 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 196LU UT WOS:000322777800002 ER PT J AU Li, JZ Ma, YQ Chao, KT AF Li, Jin-Zhao Ma, Yan-Qing Chao, Kuang-Ta TI QCD and relativistic O(alpha(s)v(2)) corrections to hadronic decays of spin-singlet heavy quarkonia h(c), h(b) and eta(b) SO PHYSICAL REVIEW D LA English DT Article ID P-1(1) STATE; PARTON DISTRIBUTIONS; CHARMONIUM; AMPLITUDES AB We calculate the annihilation decay widths of spin-singlet heavy quarkonia h(c), h(b) and eta(b) into light hadrons with both QCD and relativistic corrections at order O(alpha(s)v(2)) in nonrelativistic QCD. With appropriate estimates for the long-distance matrix elements by using the potential model and operator evolution method, we find that our predictions of these decay widths are consistent with recent experimental measurements. We also find that the O(alpha(s)v(2)) corrections are small for b (b) over bar states but substantial for c (c) over bar states. In particular, the negative contribution of O(alpha(s)v(2)) correction to the h(c) decay can lower the decay width, as compared with previous predictions without the O(alpha(s)v(2)) correction, and thus result in a good agreement with the recent BESIII measurement. C1 [Li, Jin-Zhao; Chao, Kuang-Ta] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Li, Jin-Zhao; Chao, Kuang-Ta] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Ma, Yan-Qing] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Chao, Kuang-Ta] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China. RP Li, JZ (reprint author), Peking Univ, Dept Phys, Beijing 100871, Peoples R China. EM lijinzhao86@gmail.com; yqma@bnl.gov; ktchao@pku.edu.cn FU National Natural Science Foundation of China [11021092, 11075002]; Ministry of Science and Technology of China [2009CB825200]; U.S. Department of Energy [DE-AC02-98CH10886] FX We are grateful to B. Q. Li, C. Meng, J. W. Qiu, and M. Stratmann for many helpful discussions. This work was supported in part by the National Natural Science Foundation of China (No. 11021092 and No. 11075002), and the Ministry of Science and Technology of China (No. 2009CB825200). Y. Q. M is supported by the U.S. Department of Energy, Contract No. DE-AC02-98CH10886. NR 46 TC 8 Z9 8 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 2 PY 2013 VL 88 IS 3 AR 034002 DI 10.1103/PhysRevD.88.034002 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 196LU UT WOS:000322777800005 ER PT J AU Adamczyk, L Adkins, JK Agakishiev, G Aggarwal, MM Ahammed, Z Alekseev, I Alford, J Anson, CD Aparin, A Arkhipkin, D Aschenauer, E Averichev, GS Balewski, J Banerjee, A Barnovska, Z Beavis, DR Bellwied, R Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bhattarai, P Bichsel, H Bielcik, J Bielcikova, J Bland, LC Bordyuzhin, IG Borowski, W Bouchet, J Brandin, AV Brovko, SG Bruna, E Bultmann, S Bunzarov, I Burton, TP Butterworth, J Cai, XZ Caines, H Sanchez, MCD Cebra, D Cendejas, R Cervantes, MC Chaloupka, P Chang, Z Chattopadhyay, S Chen, HF Chen, JH Chen, JY Chen, L Cheng, J Cherney, M Chikanian, A Christie, W Chung, P Chwastowski, J Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Cui, X Das, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG Deng, J de Souza, RD Dhamija, S Di Ruzza, B Didenko, L Ding, F Dion, A Djawotho, P Dong, X Drachenberg, JL Draper, JE Du, CM Dunkelberger, LE Dunlop, JC Efimov, LG Elnimr, M Engelage, J Eppley, G Eun, L Evdokimov, O Fatemi, R Fazio, S Fedorisin, J Fersch, RG Filip, P Finch, E Fisyak, Y Flores, E Gagliardi, CA Gangadharan, DR Garand, D Geurts, F Gibson, A Gliske, S Grebenyuk, OG Grosnick, D Gupta, A Gupta, S Guryn, W Haag, B Hajkova, O Hamed, A Han, LX Harris, JW Hays-Wehle, JP Heppelmann, S Hirsch, A Hoffmann, GW Hofman, DJ Horvat, S Huang, B Huang, HZ Huck, P Humanic, TJ Igo, G Jacobs, WW Jena, C Judd, EG Kabana, S Kang, K Kapitan, J Kauder, K Ke, HW Keane, D Kechechyan, A Kesich, A Kikola, DP Kiryluk, J Kisel, I Kisiel, A Klein, SR Koetke, DD Kollegger, T Konzer, J Koralt, I Korsch, W Kotchenda, L Kravtsov, P Krueger, K Kulakov, I Kumar, L Lamont, MAC Landgraf, JM Landry, KD LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, JH Leight, W LeVine, MJ Li, C Li, W Li, X Li, X Li, Y Li, ZM Lima, LM Lisa, MA Liu, F Ljubicic, T Llope, WJ Longacre, RS Lu, Y Luo, X Luszczak, A Ma, GL Ma, YG Don, DMMDM Mahapatra, DP Majka, R Margetis, S Markert, C Masui, H Matis, HS McDonald, D McShane, TS Mioduszewski, S Mitrovski, MK Mohammed, Y Mohanty, B Mondal, MM Munhoz, MG Mustafa, MK Naglis, M Nandi, BK Nasim, M Nayak, TK Nelson, JM Nogach, LV Novak, J Odyniec, G Ogawa, A Oh, K Ohlson, A Okorokov, V Oldag, EW Oliveira, RAN Olson, D Pachr, M Page, BS Pal, SK Pan, YX Pandit, Y Panebratsev, Y Pawlak, T Pawlik, B Pei, H Perkins, C Peryt, W Pile, P Planinic, M Pluta, J Poljak, N Porter, J Poskanzer, AM Powell, CB Pruneau, C Pruthi, NK Przybycien, M Pujahari, PR Putschke, J Qiu, H Ramachandran, S Raniwala, R Raniwala, S Ray, RL Riley, CK Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Ross, JF Ruan, L Rusnak, J Sahoo, NR Sahu, PK Sakrejda, I Salur, S Sandacz, A Sandweiss, J Sangaline, E Sarkar, A Schambach, J Scharenberg, RP Schmah, AM Schmidke, B Schmitz, N Schuster, TR Seger, J Seyboth, P Shah, N Shahaliev, E Shao, M Sharma, B Sharma, M Shi, SS Shou, QY Sichtermann, EP Singaraju, RN Skoby, MJ Smirnov, D Smirnov, N Solanki, D Sorensen, P Desouza, UG Spinka, HM Srivastava, B Stanislaus, TDS Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Svirida, DN Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thomas, JH Tian, J Timmins, AR Tlusty, D Tokarev, M Trentalange, S Tribble, RE Tribedy, P Trzeciak, BA Tsai, OD Turnau, J Ullrich, T Underwood, DG Van Buren, G Van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Vossen, A Wada, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, YF Xiao, Z Xie, W Xin, K Xu, H Xu, N Xu, QH Xu, W Xu, Y Xu, Z Xue, L Yang, Y Yang, Y Yepes, P Yi, L Yip, K Yoo, IK Zawisza, M Zbroszczyk, H Zhang, JB Zhang, S Zhang, XP Zhang, Y Zhang, ZP Zhao, F Zhao, J Zhong, C Zhu, X Zhu, YH Zoulkarneeva, Y Zyzak, M AF Adamczyk, L. Adkins, J. K. Agakishiev, G. Aggarwal, M. M. Ahammed, Z. Alekseev, I. Alford, J. Anson, C. D. Aparin, A. Arkhipkin, D. Aschenauer, E. Averichev, G. S. Balewski, J. Banerjee, A. Barnovska, Z. Beavis, D. R. Bellwied, R. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bhattarai, P. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Bordyuzhin, I. G. Borowski, W. Bouchet, J. Brandin, A. V. Brovko, S. G. Bruna, E. Bueltmann, S. Bunzarov, I. Burton, T. P. Butterworth, J. Cai, X. Z. Caines, H. De la Barca Sanchez, M. Calderon Cebra, D. Cendejas, R. Cervantes, M. C. Chaloupka, P. Chang, Z. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Chen, L. Cheng, J. Cherney, M. Chikanian, A. Christie, W. Chung, P. Chwastowski, J. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Cui, X. Das, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. Deng, J. Derradi de Souza, R. Dhamija, S. di Ruzza, B. Didenko, L. Ding, F. Dion, A. Djawotho, P. Dong, X. Drachenberg, J. L. Draper, J. E. Du, C. M. Dunkelberger, L. E. Dunlop, J. C. Efimov, L. G. Elnimr, M. Engelage, J. Eppley, G. Eun, L. Evdokimov, O. Fatemi, R. Fazio, S. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fisyak, Y. Flores, E. Gagliardi, C. A. Gangadharan, D. R. Garand, D. Geurts, F. Gibson, A. Gliske, S. Grebenyuk, O. G. Grosnick, D. Gupta, A. Gupta, S. Guryn, W. Haag, B. Hajkova, O. Hamed, A. Han, L-X. Harris, J. W. Hays-Wehle, J. P. Heppelmann, S. Hirsch, A. Hoffmann, G. W. Hofman, D. J. Horvat, S. Huang, B. Huang, H. Z. Huck, P. Humanic, T. J. Igo, G. Jacobs, W. W. Jena, C. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kauder, K. Ke, H. W. Keane, D. Kechechyan, A. Kesich, A. Kikola, D. P. Kiryluk, J. Kisel, I. Kisiel, A. Klein, S. R. Koetke, D. D. Kollegger, T. Konzer, J. Koralt, I. Korsch, W. Kotchenda, L. Kravtsov, P. Krueger, K. Kulakov, I. Kumar, L. Lamont, M. A. C. Landgraf, J. M. Landry, K. D. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, W. Li, X. Li, X. Li, Y. Li, Z. M. Lima, L. M. Lisa, M. A. Liu, F. Ljubicic, T. Llope, W. J. Longacre, R. S. Lu, Y. Luo, X. Luszczak, A. Ma, G. L. Ma, Y. G. Don, D. M. M. D. Madagodagettige Mahapatra, D. P. Majka, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. McDonald, D. McShane, T. S. Mioduszewski, S. Mitrovski, M. K. Mohammed, Y. Mohanty, B. Mondal, M. M. Munhoz, M. G. Mustafa, M. K. Naglis, M. Nandi, B. K. Nasim, Md. Nayak, T. K. Nelson, J. M. Nogach, L. V. Novak, J. Odyniec, G. Ogawa, A. Oh, K. Ohlson, A. Okorokov, V. Oldag, E. W. Oliveira, R. A. N. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pan, Y. X. Pandit, Y. Panebratsev, Y. Pawlak, T. Pawlik, B. Pei, H. Perkins, C. Peryt, W. Pile, P. Planinic, M. Pluta, J. Poljak, N. Porter, J. Poskanzer, A. M. Powell, C. B. Pruneau, C. Pruthi, N. K. Przybycien, M. Pujahari, P. R. Putschke, J. Qiu, H. Ramachandran, S. Raniwala, R. Raniwala, S. Ray, R. L. Riley, C. K. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Ross, J. F. Ruan, L. Rusnak, J. Sahoo, N. R. Sahu, P. K. Sakrejda, I. Salur, S. Sandacz, A. Sandweiss, J. Sangaline, E. Sarkar, A. Schambach, J. Scharenberg, R. P. Schmah, A. M. Schmidke, B. Schmitz, N. Schuster, T. R. Seger, J. Seyboth, P. Shah, N. Shahaliev, E. Shao, M. Sharma, B. Sharma, M. Shi, S. S. Shou, Q. Y. Sichtermann, E. P. Singaraju, R. N. Skoby, M. J. Smirnov, D. Smirnov, N. Solanki, D. Sorensen, P. DeSouza, U. G. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Svirida, D. N. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thomas, J. H. Tian, J. Timmins, A. R. Tlusty, D. Tokarev, M. Trentalange, S. Tribble, R. E. Tribedy, P. Trzeciak, B. A. Tsai, O. D. Turnau, J. Ullrich, T. Underwood, D. G. Van Buren, G. Van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Vossen, A. Wada, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. F. Xiao, Z. Xie, W. Xin, K. Xu, H. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xue, L. Yang, Y. Yang, Y. Yepes, P. Yi, L. Yip, K. Yoo, I-K. Zawisza, M. Zbroszczyk, H. Zhang, J. B. Zhang, S. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, F. Zhao, J. Zhong, C. Zhu, X. Zhu, Y. H. Zoulkarneeva, Y. Zyzak, M. CA STAR Collaboration TI Measurement of J/psi Azimuthal Anisotropy in Au plus Au Collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-ION COLLISIONS; QUARK COALESCENCE; STAR; MODELS; FLOW AB The measurement of J/psi azimuthal anisotropy is presented as a function of transverse momentum for different centralities in Au + Au collisions at root s(NN) = 200 GeV. The measured J/psi elliptic flow is consistent with zero within errors for transverse momentum between 2 and 10 GeV/c. Our measurement suggests that J/psi particles with relatively large transverse momenta are not dominantly produced by coalescence from thermalized charm quarks, when comparing to model calculations. C1 [Adamczyk, L.; Przybycien, M.] AGH Univ Sci & Technol, Krakow, Poland. [Gliske, S.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Aschenauer, E.; Beavis, D. R.; Bland, L. C.; Burton, T. P.; Christie, W.; Debbe, R. R.; di Ruzza, B.; Didenko, L.; Dion, A.; Dunlop, J. C.; Fazio, S.; Fisyak, Y.; Guryn, W.; Huang, B.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Mitrovski, M. K.; Ogawa, A.; Pile, P.; Ruan, L.; Schmidke, B.; Smirnov, D.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Wang, H.; Webb, J. C.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Brovko, S. G.; De la Barca Sanchez, M. Calderon; Cebra, D.; Ding, F.; Draper, J. E.; Flores, E.; Haag, B.; Kesich, A.; Romero, J. L.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Dunkelberger, L. E.; Huang, H. Z.; Igo, G.; Landry, K. D.; Pan, Y. X.; Shah, N.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.; Xu, W.; Zhao, F.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Derradi de Souza, R.; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Chen, J. Y.; Chen, L.; Huck, P.; Ke, H. W.; Li, Z. M.; Liu, F.; Luo, X.; Shi, S. S.; Wu, Y. F.; Yang, Y.; Zhang, J. B.] Cent China Normal Univ HZNU, Wuhan 430079, Peoples R China. [Betts, R. R.; Evdokimov, O.; Hofman, D. J.; Kauder, K.; Pandit, Y.; Pei, H.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Chwastowski, J.; Luszczak, A.] Cracow Univ Technol, Krakow, Poland. [Cherney, M.; Don, D. M. M. D. Madagodagettige; McShane, T. S.; Ross, J. F.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Chaloupka, P.; Hajkova, O.; Pachr, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Barnovska, Z.; Bielcikova, J.; Chung, P.; Kapitan, J.; Rusnak, J.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst CR, Rez 25068, Czech Republic. [Kollegger, T.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany. [Das, S.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Sarkar, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Dhamija, S.; Jacobs, W. W.; Page, B. S.; Skoby, M. J.; Vossen, A.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Bordyuzhin, I. G.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [Bhasin, A.; Gupta, A.; Gupta, S.] Univ Jammu, Jammu 180001, India. [Agakishiev, G.; Aparin, A.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Alford, J.; Bouchet, J.; Keane, D.; Kumar, L.; Margetis, S.; Vanfossen, J. A., Jr.] Kent State Univ, Kent, OH 44242 USA. [Adkins, J. K.; Fatemi, R.; Fersch, R. G.; Korsch, W.; Ramachandran, S.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Du, C. M.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Eun, L.; Grebenyuk, O. G.; Kiryluk, J.; Kisel, I.; Klein, S. R.; Kulakov, I.; Masui, H.; Matis, H. S.; Naglis, M.; Odyniec, G.; Olson, D.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Qiu, H.; Ritter, H. G.; Sakrejda, I.; Salur, S.; Schmah, A. M.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Wieman, H.; Xu, N.; Zyzak, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Leight, W.; Stevens, J. R.; Van Nieuwenhuizen, G.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.] Max Planck Inst Phys & Astrophys, Munich, Germany. [Novak, J.; Tarnowsky, T.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Strikhanov, M.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Jena, C.; Mohanty, B.] Natl Inst Sci & Educ & Res, Bhubaneswar 751005, Orissa, India. [Anson, C. D.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.] Old Dominion Univ, Norfolk, VA 23529 USA. [Pawlik, B.; Turnau, J.] Inst Nucl Phys PAN, Krakow, Poland. [Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.; Sharma, B.] Panjab Univ, Chandigarh 160014, India. [Cendejas, R.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Nogach, L. V.] Inst High Energy Phys, Protvino, Russia. [Garand, D.; Hirsch, A.; Kikola, D. P.; Konzer, J.; Li, X.; Mustafa, M. K.; Scharenberg, R. P.; Srivastava, B.; Stringfellow, B.; Wang, F.; Wang, Q.; Xie, W.; Yi, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Oh, K.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.; Solanki, D.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Butterworth, J.; Eppley, G.; Geurts, F.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Xin, K.; Yepes, P.] Rice Univ, Houston, TX 77251 USA. [Lima, L. M.; Munhoz, M. G.; Oliveira, R. A. N.; DeSouza, U. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Cui, X.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Deng, J.; Xu, Q. H.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Chen, J. H.; Han, L-X.; Li, W.; Ma, G. L.; Ma, Y. G.; Shou, Q. Y.; Tian, J.; Xue, L.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Borowski, W.; Kabana, S.] SUBATECH, Nantes, France. [Li, X.; Surrow, B.] Temple Univ, Philadelphia, PA 19122 USA. [Cervantes, M. C.; Chang, Z.; Djawotho, P.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Mohammed, Y.; Mondal, M. M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Bhattarai, P.; Codrington, M. J. M.; Leyva, A. Davila; Hoffmann, G. W.; Markert, C.; Oldag, E. W.; Ray, R. L.; Schambach, J.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Bellwied, R.; De Silva, L. C.; Timmins, A. R.] Univ Houston, Houston, TX 77204 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, Y.; Xiao, Z.; Zhang, X. P.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] US Naval Acad, Annapolis, MD 21402 USA. [Drachenberg, J. L.; Gibson, A.; Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Banerjee, A.; Chattopadhyay, S.; Nasim, Md.; Nayak, T. K.; Pal, S. K.; Sahoo, N. R.; Singaraju, R. N.; Tribedy, P.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Sandacz, A.; Trzeciak, B. A.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.] Univ Washington, Seattle, WA 98195 USA. [Elnimr, M.; LaPointe, S.; Pruneau, C.; Putschke, J.; Sharma, M.; Tarini, L. H.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Bruna, E.; Caines, H.; Chikanian, A.; Finch, E.; Harris, J. W.; Horvat, S.; Majka, R.; Ohlson, A.; Riley, C. K.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, Krakow, Poland. RI Lednicky, Richard/K-4164-2013; Takahashi, Jun/B-2946-2012; Alekseev, Igor/J-8070-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; XIAO, Zhigang/C-3788-2015; Aparecido Negrao de Oliveira, Renato/G-9133-2015; Tang, Zebo/A-9939-2014; Fazio, Salvatore /G-5156-2010; Yang, Yanyun/B-9485-2014; Rusnak, Jan/G-8462-2014; Bielcikova, Jana/G-9342-2014; Xu, Wenqin/H-7553-2014; Bruna, Elena/C-4939-2014; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Xin, Kefeng/O-9195-2016; Yi, Li/Q-1705-2016; Svirida, Dmitry/R-4909-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Takahashi, Jun/0000-0002-4091-1779; Alekseev, Igor/0000-0003-3358-9635; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Tang, Zebo/0000-0002-4247-0081; Yang, Yanyun/0000-0002-5982-1706; Xu, Wenqin/0000-0002-5976-4991; Bruna, Elena/0000-0001-5427-1461; Huang, Bingchu/0000-0002-3253-3210; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Xin, Kefeng/0000-0003-4853-9219; Yi, Li/0000-0002-7512-2657; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 FU Office of NP within the U.S. DOE Office of Science; Office of HEP within the U.S. DOE Office of Science; U.S. NSF; Sloan Foundation; CNRS/IN2P3; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC; CAS; MoST; MoE of China; GA of Czech Republic; FOM of Netherlands; NWO of the Netherlands; DAE; DST; CSIR of India; Polish Ministry of Science and Higher Education; National Research Foundation [NRF-2012004024]; Ministry of Science, Education, and Sports of the Republic of Croatia; RosAtom of Russia; RHIC Operations Group; RCF at BNL; NERSC Center at LBNL; Open Science Grid consortium; MSMT of Czech Republic FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation; CNRS/IN2P3, FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC, CAS, MoST, and MoE of China; GA and MSMT of the Czech Republic; FOM and NWO of the Netherlands; DAE, DST, and CSIR of India; Polish Ministry of Science and Higher Education; National Research Foundation (NRF-2012004024), Ministry of Science, Education, and Sports of the Republic of Croatia; and RosAtom of Russia. NR 34 TC 17 Z9 17 U1 0 U2 50 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 2 PY 2013 VL 111 IS 5 AR 052301 DI 10.1103/PhysRevLett.111.052301 PG 7 WC Physics, Multidisciplinary SC Physics GA 196MM UT WOS:000322779700006 PM 23952389 ER PT J AU Farhan, A Derlet, PM Kleibert, A Balan, A Chopdekar, RV Wyss, M Perron, J Scholl, A Nolting, F Heyderman, LJ AF Farhan, A. Derlet, P. M. Kleibert, A. Balan, A. Chopdekar, R. V. Wyss, M. Perron, J. Scholl, A. Nolting, F. Heyderman, L. J. TI Direct Observation of Thermal Relaxation in Artificial Spin Ice SO PHYSICAL REVIEW LETTERS LA English DT Article ID FRUSTRATION AB We study the thermal relaxation of artificial spin ice with photoemission electron microscopy, and are able to directly observe how such a system finds its way from an energetically excited state to the ground state. On plotting vertex-type populations as a function of time, we can characterize the relaxation, which occurs in two stages, namely a string and a domain regime. Kinetic Monte Carlo simulations agree well with the temporal evolution of the magnetic state when including disorder, and the experimental results can be explained by considering the effective interaction energy associated with the separation of pairs of vertex excitations. C1 [Farhan, A.; Chopdekar, R. V.; Wyss, M.; Perron, J.; Heyderman, L. J.] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland. [Farhan, A.; Perron, J.; Heyderman, L. J.] Swiss Fed Inst Technol, Dept Mat, Lab Mesoscop Syst, CH-8093 Zurich, Switzerland. [Derlet, P. M.] Paul Scherrer Inst, NUM, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland. [Kleibert, A.; Balan, A.; Chopdekar, R. V.; Nolting, F.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Wyss, M.] Univ Basel, Swiss Nanosci Inst, CH-4056 Basel, Switzerland. [Perron, J.] Univ Paris 06, Lab Chim Phys Matiere & Rayonnement UMR UPMC CNRS, F-75231 Paris 05, France. [Scholl, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Farhan, A (reprint author), Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland. EM laura.heyderman@psi.ch RI Chopdekar, Rajesh/D-2067-2009; Kleibert, Armin/P-6775-2014; Scholl, Andreas/K-4876-2012; Heyderman, Laura/E-7959-2015; Farhan, Alan/N-7288-2016 OI Chopdekar, Rajesh/0000-0001-6727-6501; Kleibert, Armin/0000-0003-3630-9360; Farhan, Alan/0000-0002-2384-2249 FU Swiss National Science Foundation; Swiss Nanoscience Institute, Basel, Switzerland FX The authors would like to thank Juri Honegger for technical support. This work was supported by the Swiss National Science Foundation and the Swiss Nanoscience Institute, Basel, Switzerland. Part of this work was performed at the Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland and the Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California. NR 30 TC 42 Z9 42 U1 1 U2 62 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 2 PY 2013 VL 111 IS 5 AR 057204 DI 10.1103/PhysRevLett.111.057204 PG 5 WC Physics, Multidisciplinary SC Physics GA 196MM UT WOS:000322779700024 PM 23952441 ER PT J AU Sayre, DB Brune, CR Caggiano, JA Glebov, VY Hatarik, R Bacher, AD Bleuel, DL Casey, DT Cerjan, CJ Eckart, MJ Fortner, RJ Frenje, JA Friedrich, S Gatu-Johnson, M Grim, GP Hagmann, C Knauer, JP Kline, JL McNabb, DP McNaney, JM Mintz, JM Moran, MJ Nikroo, A Phillips, T Pino, JE Remington, BA Rowley, DP Schneider, DH Smalyuk, VA Stoeffl, W Tipton, RE Weber, SV Yeamans, CB AF Sayre, D. B. Brune, C. R. Caggiano, J. A. Glebov, V. Y. Hatarik, R. Bacher, A. D. Bleuel, D. L. Casey, D. T. Cerjan, C. J. Eckart, M. J. Fortner, R. J. Frenje, J. A. Friedrich, S. Gatu-Johnson, M. Grim, G. P. Hagmann, C. Knauer, J. P. Kline, J. L. McNabb, D. P. McNaney, J. M. Mintz, J. M. Moran, M. J. Nikroo, A. Phillips, T. Pino, J. E. Remington, B. A. Rowley, D. P. Schneider, D. H. Smalyuk, V. A. Stoeffl, W. Tipton, R. E. Weber, S. V. Yeamans, C. B. TI Measurement of the T plus T Neutron Spectrum Using the National Ignition Facility SO PHYSICAL REVIEW LETTERS LA English DT Article ID DECAY; SCATTERING; FUSION; T&T AB Neutron time-of-flight spectra from inertial confinement fusion experiments with tritium-filled targets have been measured at the National Ignition Facility. These spectra represent a significant improvement in energy resolution and statistics over previous measurements, and afford the first definitive observation of a peak resulting from sequential decay through the ground state of He-5 at low reaction energies E-c.m. less than or similar to 100 keV. To describe the spectrum, we have developed an R-matrix model that accounts for interferences from fermion symmetry and intermediate states, and show these effects to be non-negligible. We also find the spectrum can be described by sequential decay through l = 1 states in He-5, which differs from previous interpretations. C1 [Sayre, D. B.; Caggiano, J. A.; Hatarik, R.; Bleuel, D. L.; Casey, D. T.; Cerjan, C. J.; Eckart, M. J.; Fortner, R. J.; Friedrich, S.; Hagmann, C.; McNabb, D. P.; McNaney, J. M.; Mintz, J. M.; Moran, M. J.; Phillips, T.; Pino, J. E.; Remington, B. A.; Rowley, D. P.; Schneider, D. H.; Smalyuk, V. A.; Stoeffl, W.; Tipton, R. E.; Weber, S. V.; Yeamans, C. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Brune, C. R.] Ohio Univ, Athens, OH 45701 USA. [Glebov, V. Y.; Knauer, J. P.] Univ Rochester, Rochester, NY 14623 USA. [Bacher, A. D.] Indiana Univ, Bloomington, IN 47405 USA. [Frenje, J. A.; Gatu-Johnson, M.] MIT, Cambridge, MA 02139 USA. [Grim, G. P.; Kline, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nikroo, A.] Gen Atom Co, San Diego, CA 92121 USA. RP Sayre, DB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM sayre4@llnl.gov RI Pino, Jesse/C-9183-2014; OI Kline, John/0000-0002-2271-9919 FU Lawrence Livermore National Security, LLC [DE-AC52-07NA27344] FX We thank the operation teams at the National Ignition Facility and Lawrence Livermore National Laboratory Tritium Facility for enabling the current investigation. This work was performed under the auspices of Lawrence Livermore National Security, LLC, under Contract No. DE-AC52-07NA27344. NR 26 TC 16 Z9 16 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 2 PY 2013 VL 111 IS 5 AR 052501 DI 10.1103/PhysRevLett.111.052501 PG 5 WC Physics, Multidisciplinary SC Physics GA 196MM UT WOS:000322779700007 PM 23952390 ER PT J AU Yin, WG Liu, X Tsvelik, AM Dean, MPM Upton, MH Kim, J Casa, D Said, A Gog, T Qi, TF Cao, G Hill, JP AF Yin, Wei-Guo Liu, X. Tsvelik, A. M. Dean, M. P. M. Upton, M. H. Kim, Jungho Casa, D. Said, A. Gog, T. Qi, T. F. Cao, G. Hill, J. P. TI Ferromagnetic Exchange Anisotropy from Antiferromagnetic Superexchange in the Mixed 3d-5d Transition-Metal Compound Sr3CuIrO6 SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; EXCITATIONS; ORBITALS; OXIDES; CHAIN AB We report a combined experimental and theoretical study of the unusual ferromagnetism in the one-dimensional copper-iridium oxide Sr3CuIrO6. Utilizing Ir L-3 edge resonant inelastic x-ray scattering, we reveal a large gap magnetic excitation spectrum. We find that it is caused by an unusual exchange anisotropy generating mechanism, namely, strong ferromagnetic anisotropy arising from antiferromagnetic superexchange, driven by the alternating strong and weak spin-orbit coupling on the 5d Ir and 3d Cu magnetic ions, respectively. From symmetry consideration, this novel mechanism is generally present in systems with edge-sharing Cu2+O4 plaquettes and Ir4+O6 octahedra. Our results point to unusual magnetic behavior to be expected in mixed 3d - 5d transition-metal compounds via exchange pathways that are absent in pure 3d or 5d compounds. C1 [Yin, Wei-Guo; Liu, X.; Tsvelik, A. M.; Dean, M. P. M.; Hill, J. P.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Liu, X.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Liu, X.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Upton, M. H.; Kim, Jungho; Casa, D.; Said, A.; Gog, T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Qi, T. F.; Cao, G.] Univ Kentucky, Ctr Adv Mat, Lexington, KY 40506 USA. [Qi, T. F.; Cao, G.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Yin, WG (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM wyin@bnl.gov RI Dean, Mark/B-4541-2011; Qi, Tongfei/A-7226-2013; Casa, Diego/F-9060-2016; Yin, Weiguo/A-9671-2014 OI Dean, Mark/0000-0001-5139-3543; Yin, Weiguo/0000-0002-4965-5329 FU U.S. Department of Energy (DOE), Division of Materials Science [DE-AC02-98CH10886]; DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-0856234] FX The work at Brookhaven National Laboratory was supported by the U.S. Department of Energy (DOE), Division of Materials Science, under Contract No. DE-AC02-98CH10886. Use of the Advanced Photon Source was supported by DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. T. F. Q. and G. C. were supported by the NSF through Grant No. DMR-0856234. NR 27 TC 16 Z9 16 U1 5 U2 70 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 2 PY 2013 VL 111 IS 5 AR 057202 DI 10.1103/PhysRevLett.111.057202 PG 5 WC Physics, Multidisciplinary SC Physics GA 196MM UT WOS:000322779700022 PM 23952439 ER PT J AU McGrath, WJ Graziano, V Zabrocka, K Mangel, WF AF McGrath, William J. Graziano, Vito Zabrocka, Katarzyna Mangel, Walter F. TI First generation inhibitors of the adenovirus proteinase SO FEBS LETTERS LA English DT Article DE Adenovirus proteinase; Inhibitors; Structure-based drug design ID 11-AMINO-ACID PEPTIDE COFACTOR; PROMISCUOUS INHIBITORS; SERINE PROTEINASES; VIRAL PROTEINASES; ACID COFACTOR; AMINO-ACID; RESOLUTION; RHODAMINE; MECHANISM; PROTEASE AB As there are more than 50 adenovirus serotypes, the likelihood of developing an effective vaccine is low. Here we describe inhibitors of the adenovirus proteinase (AVP) with the ultimate objective of developing anti-adenovirus agents. Inhibitors were identified via structure-based drug design using as druggable sites the active site and a conserved cofactor pocket in the crystal structures of AVP. A lead compound was identified that had an IC50 of 18 mu M. One of eight structural derivatives of the lead compound had an IC50 of 140 nM against AVP and an IC50 of 490 nM against the AVP with its cofactor bound. (C) 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. C1 [McGrath, William J.; Graziano, Vito; Zabrocka, Katarzyna; Mangel, Walter F.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. RP Mangel, WF (reprint author), Brookhaven Natl Lab, Dept Biosci, 50 Bell Ave, Upton, NY 11973 USA. EM mangel@bnl.gov FU office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC0298CH10886]; Brookhaven National Laboratory; National Institutes of Health [AI R0141599]; U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program FX We thank Dr. R. Rizzo at Stony Brook University for access to his NCI database formatted for use with DOCK and for helpful discussions. We thank Jeff Aube at the University of Kansas for useful suggestions and discussions. +Research supported by the office of Biological and Environmental Research of the U.S. Department of Energy under Prime Contract DE-AC0298CH10886 with Brookhaven National Laboratory and by National Institutes of Health Grant AI R0141599 to W.F.M. K.Z. was supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program. NR 25 TC 3 Z9 3 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD AUG 2 PY 2013 VL 587 IS 15 BP 2332 EP 2339 DI 10.1016/j.febslet.2013.05.033 PG 8 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 194BM UT WOS:000322606000007 PM 23711373 ER PT J AU Czaplewski, DA Holt, MV Ocola, LE AF Czaplewski, David A. Holt, Martin V. Ocola, Leonidas E. TI The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns SO NANOTECHNOLOGY LA English DT Article ID SPIN QUBIT; SCATTERING; CRYSTAL; FABRICATION; MATTER; LIGHT AB We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date. C1 [Czaplewski, David A.; Holt, Martin V.; Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Czaplewski, DA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave Bldg 440, Argonne, IL 60439 USA. OI Ocola, Leonidas/0000-0003-4990-1064 FU Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357] FX This work was performed at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. The authors would like to thank Tijana Rajh for discussions on the interaction of radiation with matter. The authors would like to thank Tijana Rajh, Alyssa Pasquale, and Daniel Lopez for help in constructing and editing the manuscript. NR 31 TC 5 Z9 5 U1 0 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD AUG 2 PY 2013 VL 24 IS 30 AR 305302 DI 10.1088/0957-4484/24/30/305302 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 181WG UT WOS:000321700100004 PM 23817998 ER PT J AU Stash, AI Chen, YS Kovalchukova, OV Tsirelson, VG AF Stash, A. I. Chen, Yu-Sheng Kovalchukova, O. V. Tsirelson, V. G. TI Electron density, electrostatic potential, and spatial organization of ammonium hydrooxalate oxalic acid dihydrate heteromolecular crystal from data of diffraction experiment at 15 K using synchrotron radiation and theoretical calculations SO RUSSIAN CHEMICAL BULLETIN LA English DT Article DE electron density; chemical bond; electrostatic interaction ID COVALENT BOND ORDERS; CHARGE-DENSITY; ENERGY; MOLECULES; COMPLEXES; INSIGHTS; SALTS; ANION; DFT AB A high-precision diffraction study at 15 K using synchrotron radiation and theoretical calculation of a heteromolecular crystal ammonium hydrooxalate oxalic acid dihydrate NH4 (+)center dot C2HO4 (-)center dot C2H2O4 center dot 2H(2)O (1) were carried out. The calculation was performed with the Kohn-Sham method taking into account periodic boundary conditions. The joint experimental and theoretical study allowed one to locate positions of hydrogen atoms and to reliably establish peculiar features of the electron density and electrostatic potential distributions in 1. Interatomic and molecular interactions were characterized based on the electron density properties within the framework of a quantum topological theory. The bond order indices were calculated from the experimental electron density without using the orbital notions. A new approach based on visualization of the ellipsoids whose semiaxes depend on the principal values of the electron density curvature at the bond critical points was used. It was found that charge transfer between ammonium cation and hydrooxalate anion in 1 dominates other electrostatic interactions in the crystal. Based on analysis of peculiar features of the electron density and electrostatic potential distributions in the crystal of 1, it was found that spatial organization of the crystal in hand is also governed by one more, weaker, electrostatic factor that originated from the presence of well-localized regions behind protons on the extensions of the lines of covalent bonds at the periphery of the molecules. In those regions, the electrostatic potential is higher than in other directions due to anisotropy of the electron density distribution. This feature mainly ensures directed complementary electrostatic interaction between corresponding fragments with negatively charged regions of neighboring molecules, such as the lone electron pairs and p-electrons. C1 [Stash, A. I.] L Ya Karpov Phys & Chem Res Inst, Moscow 105064, Russia. [Chen, Yu-Sheng] Univ Chicago, Adv Photon Source, ChemMatCARS Beamline, Argonne, IL 60439 USA. [Kovalchukova, O. V.] Peoples Friendship Univ Russia, Moscow 117198, Russia. [Tsirelson, V. G.] DI Mendeleev Univ Chem Technol Russia, Moscow 125047, Russia. RP Tsirelson, VG (reprint author), DI Mendeleev Univ Chem Technol Russia, 9 Miusskaya Pl, Moscow 125047, Russia. EM astas@yandex.ru; yschen@cars.uchicago.edu; okovalchukova@mail.ru; tsirel@muctr.ru FU Russian Foundation for Basic Research [13-03-00767-a]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation/US Department of Energy [NSF/CHE-0822838] FX This work was financially supported by the Russian Foundation for Basic Research (Project No. 13-03-00767-a). Use of the Advanced Photon Source was financially supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/US Department of Energy under Grant No. NSF/CHE-0822838. NR 55 TC 4 Z9 4 U1 3 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1066-5285 EI 1573-9171 J9 RUSS CHEM B+ JI Russ. Chem. Bull. PD AUG PY 2013 VL 62 IS 8 BP 1752 EP 1763 DI 10.1007/s11172-013-0252-5 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA AG3PI UT WOS:000335331400007 ER PT J AU Feng, Q Blythe, HJ Jiang, FX Xu, XH Heald, SM Fox, AM Gehring, GA AF Feng, Qi Blythe, Harry J. Jiang, Feng-Xian Xu, Xiao-Hong Heald, Steve M. Fox, A. Mark Gehring, Gillian A. TI Contrasting behavior of the structural and magnetic properties in Mn- and Fe-doped In2O3 films SO APL MATERIALS LA English DT Article ID SPINTRONICS; (IN1-XFEX)(2)O3-SIGMA; FERROMAGNETISM; SEMICONDUCTOR; OXIDE AB We have observed room temperature ferromagnetism in In2O3 thin films doped with either 5 at.% Mn or Fe, prepared by pulsed laser deposition at substrate temperatures ranging from 300 to 600 degrees C. The dependence of saturation magnetization on grain size was investigated for both types of In2O3 films. It is revealed that, for the Mn-doped films, the magnetization was largest with small grains, indicating the importance of grain boundaries. In contrast, for Fe-doped films, the largest magnetization was observed with large grains. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Feng, Qi; Blythe, Harry J.; Fox, A. Mark; Gehring, Gillian A.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Jiang, Feng-Xian; Xu, Xiao-Hong] Shanxi Normal Univ, Sch Chem & Mat Sci, Linfen 041004, Peoples R China. [Heald, Steve M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gehring, GA (reprint author), Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. EM g.gehring@sheffield.ac.uk RI Fox, Mark/F-1096-2010 OI Fox, Mark/0000-0002-9025-2441 FU U.S. DOE [DE-AC02-06CH11357] FX Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was also supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. We thank Dr. Xiufang Qin for help with the XRD measurements. NR 22 TC 5 Z9 5 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD AUG PY 2013 VL 1 IS 2 AR 022107 DI 10.1063/1.4818169 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AC1RD UT WOS:000332272800011 ER PT J AU Marezio, M Chmaissem, O Bougerol, C Karppinen, M Yamauchi, H Geballe, TH AF Marezio, M. Chmaissem, O. Bougerol, C. Karppinen, M. Yamauchi, H. Geballe, T. H. TI Overdoped cuprates with high-temperature superconducting transitions SO APL MATERIALS LA English DT Article ID T-C SUPERCONDUCTORS; COPPER OXIDES AB Evidence for high-T-c cuprate superconductivity is found in a region of the phase diagram where non-superconducting Fermi liquid metals are expected. Cu valences estimated independently from both x-ray absorption near-edge spectroscopy and bond valence sum measurements are >2.3, and are in close agreement with each other for structures in the homologous series (Cu0.75Mo0.25)Sr-2(Y,Ce)sCu2O(5+2s+delta) with s = 1, 2, 3, and 4. The record short apical oxygen distance, at odds with current theory, suggests the possibility of a new pairing mechanism. The possibility that the charge reservoir layers are able to screen long range coulomb interactions and thus enhance T-c is discussed. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Marezio, M.] CRETA CNRS, F-38042 Grenoble 9, France. [Chmaissem, O.] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA. [Chmaissem, O.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Bougerol, C.] CEA CNRS, Inst Neel, F-38042 Grenoble 9, France. [Karppinen, M.; Yamauchi, H.] Aalto Univ, Dept Chem, FI-00076 Aalto, Finland. [Geballe, T. H.] Stanford Univ, Dept Appl Phys & Mat Sci, Stanford, CA 94305 USA. RP Marezio, M (reprint author), CRETA CNRS, F-38042 Grenoble 9, France. EM marezio@grenoble.cnrs.fr RI Karppinen, Maarit/G-8035-2012; Bougerol, Catherine/M-6980-2015 OI Bougerol, Catherine/0000-0002-4823-0919 FU U.S. Department of Energy, Office of Science, Materials Science and Engineering Division [DE-AC02-06CH11357]; Academy of Finland [126528, 255562]; Tekes [1726/31/07]; Airforce Office of Scientific Research (AFOSR) [FA9550-09-1-0583] FX Work at Argonne was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division, under Contract No. DE-AC02-06CH11357. The work at Aalto University was supported by Academy of Finland (Nos. 126528 and 255562) and Tekes (No. 1726/31/07). The work at Stanford was supported in part by the Airforce Office of Scientific Research (AFOSR) under Grant No. FA9550-09-1-0583. T.H.G. would like to acknowledge helpful comments from Sri Raghu, Steve Kivelson, and Aharon Kapitulnik. NR 22 TC 4 Z9 4 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD AUG PY 2013 VL 1 IS 2 AR 021103 DI 10.1063/1.4817895 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AC1RD UT WOS:000332272800004 ER PT J AU Jacobus, JA Duda, CG Coleman, MC Martin, SM Mapuskar, K Mao, G Smith, BJ Aykin-Burns, N Guida, P Gius, D Domann, FE Knudson, CM Spitz, DR AF Jacobus, James A. Duda, Chester G. Coleman, Mitchell C. Martin, Sean M. Mapuskar, Kranti Mao, Gaowei Smith, Brian J. Aykin-Burns, Nukhet Guida, Peter Gius, David Domann, Frederick E. Knudson, C. Michael Spitz, Douglas R. TI Low-Dose Radiation-Induced Enhancement of Thymic Lymphomagenesis in Lck-Bax Mice is Dependent on LET and Gender SO RADIATION RESEARCH LA English DT Article ID MANGANESE SUPEROXIDE-DISMUTASE; DEHYDROGENASE SUBUNIT-C; IONIZING-RADIATION; GENOMIC INSTABILITY; HEPATOCELLULAR-CARCINOMA; MITOCHONDRIAL ROS; TUMOR-SUPPRESSOR; OXIDATIVE STRESS; MAMMALIAN-CELLS; CANCER-CELLS AB The hypothesis thatmitochondrial dysfunction and increased superoxide levels in thymocytes over expressing Bax (Lck-Bax1 and Lck-Bax38&1) contributes to lymphomagenesis after low-dose radiation was tested. Lck-Bax1 single-transgenic and Lck-Bax38&1 double-transgenic mice were exposed to single whole-body doses of 10 or 100 cGy of Cs-137 or iron ions (1,000 MeV/n, 150 keV/lm) or silicon ions (300 MeV/n, 67 keV/lm). A 10 cGy dose of Cs-137 significantly increased the incidence and onset of thymic lymphomas in female Lck-Bax1 mice. In Lck-Bax38&1 mice, a 100 cGy dose of high-LET iron ions caused a significant dose dependent acceleration of lymphomagenesis in both males and females that was not seen with silicon ions. To determine the contribution of mitochondrial oxidative metabolism, Lck-Bax38&1 over expressing mice were crossed with knockouts of the mitochondrial protein deacetylase, Sirtuin 3 (Sirt3), which regulates superoxide metabolism. Sirt3(-/-)/Lck-Bax38&1 mice demonstrated significant increases in thymocyte superoxide levels and acceleration of lymphomagenesis (P < 0.001). These results show that lymphomagenesis in Bax over expressing animals is enhanced by radiation exposure in both an LET and gender dependent fashion. These findings support the hypothesis that mitochondrial dysfunction leads to increased superoxide levels and accelerates lymphomagenesis in Lck-Bax transgenic mice. (C) 2013 by Radiation Research Society C1 [Jacobus, James A.; Coleman, Mitchell C.; Mapuskar, Kranti; Mao, Gaowei; Domann, Frederick E.; Spitz, Douglas R.] Univ Iowa, Dept Radiat Oncol, Free Radical & Radiat Biol Program, Holden Comprehens Canc Ctr, Iowa City, IA 52242 USA. [Duda, Chester G.; Mapuskar, Kranti] Univ Iowa, Interdisciplinary Grad Program Human Toxicol, Iowa City, IA 52242 USA. [Martin, Sean M.; Knudson, C. Michael] Univ Iowa, Dept Pathol, Iowa City, IA 52242 USA. [Smith, Brian J.] Univ Iowa, Coll Publ Hlth, Dept Biostat, Iowa City, IA 52242 USA. [Aykin-Burns, Nukhet] Univ Arkansas Med Sci, Dept Pharmaceut Sci, Div Radiat Hlth, Little Rock, AR 72205 USA. [Guida, Peter] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Gius, David] Northwestern Univ, Feinberg Sch Med, Dept Radiat Oncol, Chicago, IL 60611 USA. RP Spitz, DR (reprint author), Univ Iowa, Dept Radiat Oncol, Free Radical & Radiat Biol Program, B180 Med Labs, Iowa City, IA 52242 USA. EM douglas-spitz@uiowa.edu RI mao, gaowei/A-8142-2015; OI mao, gaowei/0000-0001-6090-8131; Domann, Frederick/0000-0002-0489-2179 FU Department of Energy/NASA [DE-SC0000830]; [NIH T32 CA078586]; [R01CA152601]; [R01CA152799]; [R01CA168292]; [3 P30 CA086862] FX The authors would like to thank Amanda Kalen from the Radiation and Free Radical Research Core in the Holden Comprehensive Cancer Center for assistance with low-LET irradiations, The University of Iowa Flow Cytometry Facility located in the Carver College of Medicine Core Research Facilities/Holden Comprehensive Cancer Center Core Laboratory, and Gareth Smith for his editorial assistance. We also thank the scientists and staff at Brookhaven National Laboratory Medical Department and NASA Space Radiation Laboratory for their assistance with our high-LET exposures. Finally, we wish to extend our gratitude to the Office of Animal Resources at the University of Iowa and especially our primary caretaker during these studies, Gary Duder. This work was supported by Department of Energy/NASA grant DE-SC0000830, as well as grants NIH T32 CA078586, R01CA152601, R01CA152799, R01CA168292 and 3 P30 CA086862. NR 50 TC 2 Z9 2 U1 0 U2 3 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD AUG PY 2013 VL 180 IS 2 BP 156 EP 165 DI 10.1667/RR3293.1 PG 10 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA AA3KG UT WOS:000330990700006 PM 23819597 ER PT J AU Pavlova, IV Lewis, KC AF Pavlova, Iglika V. Lewis, Kayla C. TI An Easy & Fun Way to Teach about How Science "Works": Popularizing Haack's Crossword-Puzzle Analogy SO AMERICAN BIOLOGY TEACHER LA English DT Article DE Active learning; scientific reasoning; ad hoc hypotheses; pseudoscience; evolution AB Science is a complex process, and we must not teach our students overly simplified versions of "the" scientific method. We propose that students can uncover the complex realities of scientific thinking by exploring the similarities and differences between solving the familiar crossword puzzles and scientific "puzzles." Similarly to solving a crossword puzzle, solving puzzles in science is a complex and creative process in which hypotheses and theories evolve through the accumulation of many pieces of independent, yet interlocking, lines of evidence. We discuss the important lessons from Haack's crossword-puzzle analogy and how it applies to teaching science. C1 [Pavlova, Iglika V.] Univ Chicago, Coll Biol Sci, Chicago, IL 60637 USA. [Lewis, Kayla C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pavlova, IV (reprint author), Univ Chicago, Coll Biol Sci, 924 E 57th St,BSLC,Rm 208, Chicago, IL 60637 USA. EM iglikap@uchicago.edu NR 14 TC 1 Z9 1 U1 0 U2 2 PU NATL ASSOC BIOLOGY TEACHERS INC PI RESTON PA 12030 SUNRISE VALLEY DR, #110, RESTON, VA 20191 USA SN 0002-7685 EI 1938-4211 J9 AM BIOL TEACH JI Am. Biol. Teach. PD AUG PY 2013 VL 75 IS 6 BP 397 EP 401 DI 10.1525/abt.2013.75.6.7 PG 5 WC Biology; Education, Scientific Disciplines SC Life Sciences & Biomedicine - Other Topics; Education & Educational Research GA 301YR UT WOS:000330568700007 ER PT J AU Kerr, GD Egbert, SD Al-Nabulsi, I Beck, HL Cullings, HM Endo, S Hoshi, M Imanaka, T Kaul, DC Maruyama, S Reeves, GI Ruehm, W Sakaguchi, A Simon, SL Spriggs, GD Stram, DO Tonda, T Weiss, JF Weitz, RL Young, RW AF Kerr, George D. Egbert, Stephen D. Al-Nabulsi, Isaf Beck, Harold L. Cullings, Harry M. Endo, Satoru Hoshi, Masaharu Imanaka, Tetsuji Kaul, Dean C. Maruyama, Satoshi Reeves, Glen I. Ruehm, Werner Sakaguchi, Aya Simon, Steven L. Spriggs, Gregory D. Stram, Daniel O. Tonda, Tetsuji Weiss, Joseph F. Weitz, Ronald L. Young, Robert W. TI WORKSHOP REPORT ON ATOMIC BOMB DOSIMETRY-RESIDUAL RADIATION EXPOSURE: RECENT RESEARCH AND SUGGESTIONS FOR FUTURE STUDIES SO HEALTH PHYSICS LA English DT Article DE atomic bomb; atomic bomb survivors; fallout; radiation effects ID FALLOUT DEPOSITION; BLACK RAIN; HIROSHIMA; U-235/U-238; SURVIVORS; NAGASAKI; RATIOS AB There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report. C1 [Kerr, George D.] Kerr Consulting, Knoxville, TN USA. [Kerr, George D.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Egbert, Stephen D.] Sci Applicat Int Corp, San Diego, CA 92121 USA. [Al-Nabulsi, Isaf; Weiss, Joseph F.] US DOE, Washington, DC 20585 USA. [Beck, Harold L.] US DOE, New York, NY USA. [Cullings, Harry M.] Radiat Effects Res Fdn, Hiroshima, Japan. [Endo, Satoru] Prefectural Univ Hiroshima, Hiroshima, Japan. [Hoshi, Masaharu; Sakaguchi, Aya; Tonda, Tetsuji] Hiroshima Univ, Hiroshima 730, Japan. [Imanaka, Tetsuji] Kyoto Univ, Kyoto 6068501, Japan. [Kaul, Dean C.] SAIC, Park City, UT USA. [Maruyama, Satoshi] Minist Hlth Labour & Welf, Tokyo, Japan. [Reeves, Glen I.] Appl Res Associates, Arlington, VA USA. [Ruehm, Werner] Helmholtz Zentrum Muenchen, German Res Ctr Environm Hlth, Neuherberg, Germany. [Simon, Steven L.] NCI, NIH, Bethesda, MD 20892 USA. [Spriggs, Gregory D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Stram, Daniel O.] Univ So Calif, Los Angeles, CA USA. [Weitz, Ronald L.] SAIC, Albuquerque, NM USA. [Young, Robert W.] Def Nucl Agcy, Winter Pk, FL USA. RP Kerr, GD (reprint author), Oak Ridge Associated Univ, POB 117, Oak Ridge, TN 37831 USA. EM George.Kerr@orau.org RI Sakaguchi, Aya/E-8134-2015; Endo, Satoru/D-9091-2012; OI Endo, Satoru/0000-0001-5961-681X; Hoshi, Masaharu/0000-0001-6978-0883 FU U.S. Department of Energy (DOE) FX We wish to thank David Landguth, Oak Ridge National Laboratory, for his organizational expertise that resulted in a highly successful workshop. The help and advice of the Health Physics Society meeting organizers and the staff of Burk and Associates are greatly appreciated. We would also like to thank John Boice for his excellent presentation at the start of the technical session, although he was not able to participate in the workshop. The participation of George D. Kerr, Steve D. Egbert, Harold L. Beck, Harry M. Cullings, Satoru Endo, Masaharu Hoshi, Tetsuji Imanaka, Dean C. Kaul, Aya Sakaguchi, Gregory D. Springs, Daniel O. Stram, and R. L. Weitz in the workshop was financially supported by the U.S. Department of Energy (DOE). The views of the authors do not necessarily reflect those of the DOE, the U.S. government, or the authors' institutions. NR 24 TC 8 Z9 8 U1 0 U2 8 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD AUG PY 2013 VL 105 IS 2 BP 140 EP 149 DI 10.1097/HP.0b013e31828ca73a PG 10 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 299AT UT WOS:000330367400004 PM 23799498 ER PT J AU Torii, T Sugita, T Okada, CE Reed, MS Blumenthal, DJ AF Torii, Tatsuo Sugita, Takeshi Okada, Colin E. Reed, Michael S. Blumenthal, Daniel J. TI ENHANCED ANALYSIS METHODS TO DERIVE THE SPATIAL DISTRIBUTION OF I-131 DEPOSITION ON THE GROUND BY AIRBORNE SURVEYS AT AN EARLY STAGE AFTER THE FUKUSHIMA DAIICHI NUCLEAR POWER PLANT ACCIDENT SO HEALTH PHYSICS LA English DT Article DE accident; reactor; environmental assessment; I-131; monitoring; environmental ID SYSTEM; JAPAN AB This paper applies both new and well tested analysis methods to aerial radiological surveys to extract the I-131 ground concentrations present after the March 2011 Fukushima Daiichi nuclear power plant (NPP) accident. The analysis provides a complete map of I-131 deposition, an important quantity incalculable at the time of the accident due to the short half-life of I-131 and the complexity of the analysis. A map of I-131 deposition is the first step in conducting internal exposure assessments, population dose reconstruction, and follow-up epidemiological studies. The short half-life of I-131 necessitates the use of aerial radiological surveys to cover the large area quickly, thoroughly, and safely. Teams from the U. S. Department of Energy National Nuclear Security Administration (DOE/NNSA) performed aerial radiological surveys to provide initial maps of the dispersal of radioactive material in Japan. This work reports on analyses performed on a subset of the initial survey data by a joint Japan-U.S. collaboration to determine I-131 ground concentrations. The analytical results show a high concentration of I-131 northwest of the NPP, consistent with the previously reported radioactive cesium deposition, but also shows a significant I-131 concentration south of the plant, which was not observed in the original cesium analysis. The difference in the radioactive iodine and cesium patterns is possibly the result of differences in the ways these materials settle out of the air. C1 [Torii, Tatsuo; Sugita, Takeshi] JAEA, Fukushima Environm Safety Ctr, Tokyo 1008577, Japan. [Okada, Colin E.; Reed, Michael S.] US DOE, Remote Sensing Lab, Las Vegas, NV USA. [Blumenthal, Daniel J.] US DOE, Natl Nucl Secur Adm, Washington, DC 20585 USA. RP Torii, T (reprint author), JAEA, Chiyoda Ku, 2-2-2 Uchisaiwai Cho, Tokyo 1008577, Japan. EM torii.tatsuo@jaea.go.jp FU U.S. Department of Energy [DE-AC52-06NA25946] FX The authors are grateful to collaborators from JAEA/Headquarters of Fukushima Partnership Operations, U.S. DOE/RSL, and NNSA for their cooperation and assistance. We also thank H. Hirayama (KEK, Japan) for his useful suggestion and discussion on the Monte Carlo simulation. Moreover, we would like to acknowledge that this work was performed in part under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. NR 17 TC 17 Z9 18 U1 2 U2 15 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD AUG PY 2013 VL 105 IS 2 BP 192 EP 200 DI 10.1097/HP.0b013e318294444e PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 299AT UT WOS:000330367400010 PM 23799504 ER PT J AU Farfan, E Jannik, GT Lee, P Powell, A AF Farfan, Eduardo Jannik, G. Timothy Lee, Patricia Powell, Aaron TI Comparison of CAP88 PC Ver. 3.0 and MAXDOSE Dose Assessment Models Involving Co-located Stack Releases at the Savannah River Site SO HEALTH PHYSICS LA English DT Article DE operational topics; computer calculations; dose assessment; dosimetry AB The Savannah River National Laboratory's Environmental Dosimetry Group performs dosimetry assessments for Savannah River Site (SRS) radionuclide air emissions utilizing the Clean Air Act Assessment Package-1988 (CAP88) code (CAP88 PC Ver. 3.0) and the MAXDOSE-SR Ver. 2011 code, which is an SRS-specific version of the Nuclear Regulatory Commission's MAXIGASP code. CAP88 PC and MAXDOSE-SR are used at SRS for demonstrating compliance with Environmental Protection Agency dose standards for radionuclide emissions to the atmosphere and Department of Energy Order 458.1 dose standards, respectively. During a routine comparison of these two assessment models, it was discovered that CAP88 PC Ver. 3.0 was not producing the expected results when using multiple co-located stacks in a single run. Specifically, if the stack heights are considered separately, the results for several radionuclides (but not all) differ from the combined run [i.e., 1 + 2 does not equal (1+2)]. Additionally, when two or more stack heights are considered in a run, the results depend on the order of the selected stack heights. For example, for a two stack-height run of 0 meter and 61 m input produces different results from a 61 m and 0 m input run. This study presents a comparison of CAP88 PC Ver. 3.0 and MAXDOSE-SR Ver. 2011 based on SRS input data and on two-stack release scenarios. The selected radionuclides for this study included gases/vapors (H-3, C-14, Kr-85, and I-131) and particulates (Sr-190, Cs-137, Pu-239, and Am-241) commonly encountered at SRS. C1 [Farfan, Eduardo; Jannik, G. Timothy; Lee, Patricia] Savannah River Natl Lab, Aiken, SC 29808 USA. [Powell, Aaron] Univ N Carolina, Charlotte, NC 28223 USA. RP Farfan, E (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM eduardo.farfan@srnl.doe.gov FU U.S. Department of Energy [DE-AC09-08SR22470] FX This manuscript has been co-authored by Savannah River Nuclear Solutions, LLC under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the authors or their corresponding organizations. NR 11 TC 0 Z9 0 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD AUG PY 2013 VL 105 IS 2 SU 2 BP S158 EP S163 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 299AJ UT WOS:000330366300008 PM 23803669 ER PT J AU Jelinski, J Wahl, L Donovan, T AF Jelinski, John Wahl, Linnea Donovan, Thomas TI Assessment of an Improved Stack Sample Collection System for H-3 and C-14 SO HEALTH PHYSICS LA English DT Article DE operational topics; C-14; air sampling; tritium AB Lawrence Berkeley National Laboratory developed a simple, efficient, and cost-effective replacement for the traditional glass column system used to monitor H-3 and C-14 emissions from rooftop stacks. The primary goals in developing a replacement (the modified jar system) were to 1) maintain or improve collection efficiency while keeping leakage to less than 5%, 2) simplify the set-up process, and 3) reduce costs. Both the traditional glass column assembly and the modified jar system were operated in tandem for a 13-mo period. Results showed that the modified sample jar system provided equivalent or improved collection efficiency for both H-3 and C-14. Additional advantages included reduced leak-test errors, quicker and simpler set-up, and material costs that were reduced by nearly an order of magnitude. C1 [Jelinski, John; Wahl, Linnea; Donovan, Thomas] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Jelinski, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jajelinski@lbl.gov NR 4 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD AUG PY 2013 VL 105 IS 2 SU 2 BP S119 EP S124 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 299AJ UT WOS:000330366300004 PM 23803665 ER PT J AU Leggett, R Scofield, P Eckerman, K AF Leggett, Richard Scofield, Patricia Eckerman, Keith TI Basis and Implications of the CAP88 Age-Specific Dose Coefficients SO HEALTH PHYSICS LA English DT Article DE operational topics; modeling, biological factors; modeling, dose assessment; modeling, environmental AB Recent versions of CAP88 incorporate age-specific dose coefficients based on biokinetic and dosimetric models applied in Federal Guidance Report 13, "Cancer Risk Coefficients for Environmental Exposure to Radionuclides." With a few exceptions the models are those recommended in a series of reports by the International Commission on Radiological Protection (ICRP) on estimation of doses to the public from environmental radionuclides. This paper describes the basis for the ICRP's age-specific biokinetic and dosimetric models and examines differences with age in dose coefficients derived from those models. C1 [Leggett, Richard; Scofield, Patricia; Eckerman, Keith] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Leggett, R (reprint author), Oak Ridge Natl Lab, MS 6113,POB 2008, Oak Ridge, TN 37831 USA. EM scofieldpa@ornl.gov FU Office of Radiation and Indoor Air, U. S. Environmental Protection Agency (EPA) [1824-S581-A1, DE-AC05-00OR22725]; UT-Battelle; U.S. Government [DE-AC05-00OR22725] FX The work described in this manuscript was sponsored by the Office of Radiation and Indoor Air, U. S. Environmental Protection Agency (EPA), under Interagency Agreement DOE No. 1824-S581-A1, under contract No. DE-AC05-00OR22725 with UT-Battelle. The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 19 TC 2 Z9 2 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD AUG PY 2013 VL 105 IS 2 SU 2 BP S149 EP S157 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 299AJ UT WOS:000330366300007 PM 23803668 ER PT J AU MacQueen, D Bertoldo, N Wegrecki, A AF MacQueen, Donald Bertoldo, Nicholas Wegrecki, Anthony TI A Best Fit Approach to Estimating Multiple Diffuse Source Terms Using Ambient Air Monitoring Data and an Air Dispersion Model SO HEALTH PHYSICS LA English DT Article DE operational topics; modeling, dose assessment; monitoring, air; regulations ID TRITIUM AB Lawrence Livermore National Laboratory uses CAP88-PC Version 1.0 modeling software to demonstrate compliance with the Code of Federal Regulations Title 40 Part 61 Subpart H (National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities). Annual air emissions from both well characterized stack sources and difficult to characterize diffuse sources must be assessed. This paper describes a process that uses a mathematical optimization routine to find a set of estimated diffuse source terms that together with the measured stack source terms provides a best fit of modeled air concentrations to measured air concentrations at available sampling locations. The estimated and measured source terms may then be used in subsequent CAP88-PC modeling to estimate dose at the off-site maximally exposed individual. LLNL has found this process to be an effective way to deal with the required assessment of diffuse sources that have otherwise been difficult to assess. C1 [MacQueen, Donald; Bertoldo, Nicholas; Wegrecki, Anthony] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP MacQueen, D (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave L-627, Livermore, CA 94550 USA. EM macqueen1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX The authors would like to thank LLNL staff members Gary Bear, Steve Hall, Terrance Poole, and Kent Wilson for their work designing, operating, and maintaining the environmental sampling and meteorological monitoring equipment that provide the information necessary for this work. The authors also thank the reviewers for their helpful and thought-provoking comments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 10 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD AUG PY 2013 VL 105 IS 2 SU 2 BP S140 EP S148 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 299AJ UT WOS:000330366300006 PM 23803667 ER PT J AU McNaughton, M Brock, B Eisele, W Fuehne, D Green, A Whicker, J AF McNaughton, Michael Brock, Burgandy Eisele, William, Jr. Fuehne, David Green, Andrew Whicker, Jeffrey TI Addressing Nuclides Not in the CAP88-PC Version-3 Library SO HEALTH PHYSICS LA English DT Article DE operational topics; dose assessment; emissions, atmospheric; monitoring, air AB Versions of the computer program, CAP88, are widely used to calculate the radiological doses from radionuclides emitted into the air. CAP88-PC Version-3 includes an extensive library of radionuclides, but there are many more that are not included. Surrogates are often used to substitute for nuclides not in the library, though the results are usually overestimates. This paper addresses nuclides that are not in the library and describes methods to obtain more accurate results. C1 [McNaughton, Michael; Brock, Burgandy; Eisele, William, Jr.; Fuehne, David; Green, Andrew; Whicker, Jeffrey] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP McNaughton, M (reprint author), Los Alamos Natl Lab, MS J978, Los Alamos, NM 87545 USA. EM mcnaught@lanl.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD AUG PY 2013 VL 105 IS 2 SU 2 BP S182 EP S188 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 299AJ UT WOS:000330366300012 PM 23803673 ER PT J AU Michelotti, E Green, A Whicker, J Eisele, W Fuehne, D McNaughton, M AF Michelotti, Erika Green, Andrew Whicker, Jeffrey Eisele, William Fuehne, David McNaughton, Michael TI Validation Test for CAP88 Predictions of Tritium Dispersion at Los Alamos National Laboratory SO HEALTH PHYSICS LA English DT Article DE operational topics; dose assessment; emissions; atmospheric; monitoring; air AB Gaussian plume models, such as CAP88, are used regularly for estimating downwind concentrations from stack emissions. At many facilities, the U. S. Environmental Protection Agency (U. S. EPA) requires that CAP88 be used to demonstrate compliance with air quality regulations for public protection from emissions of radionuclides. Gaussian plume models have the advantage of being relatively simple and their use pragmatic; however, these models are based on simplifying assumptions and generally they are not capable of incorporating dynamic meteorological conditions or complex topography. These limitations encourage validation tests to understand the capabilities and limitations of the model for the specific application. Los Alamos National Laboratory (LANL) has complex topography but is required to use CAP88 for compliance with the Clean Air Act Subpart H. The purpose of this study was to test the accuracy of the CAP88 predictions against ambient air measurements using released tritium as a tracer. Stack emissions of tritium from two LANL stacks were measured and the dispersion modeled with CAP88 using local meteorology. Ambient air measurements of tritium were made at various distances and directions from the stacks. Model predictions and ambient air measurements were compared over the course of a full year's data. Comparative results were consistent with other studies and showed the CAP88 predictions of downwind tritium concentrations were on average about three times higher than those measured, and the accuracy of the model predictions were generally more consistent for annual averages than for bi-weekly data. C1 [Michelotti, Erika; Green, Andrew; Whicker, Jeffrey; Eisele, William; Fuehne, David; McNaughton, Michael] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Whicker, J (reprint author), Los Alamos Natl Lab, Mail Stop J978, Los Alamos, NM 87545 USA. EM jjwhicker@lanl.gov NR 15 TC 1 Z9 1 U1 0 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD AUG PY 2013 VL 105 IS 2 SU 2 BP S176 EP S181 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 299AJ UT WOS:000330366300011 PM 23803672 ER PT J AU Rhoads, K Snyder, S Staven, L AF Rhoads, Kathleen Snyder, Sandra Staven, Lissa TI A Comparison of Dose Results from the Clean Air Act Assessment Package-1988, Personal Computer (CAP88-PC), Version 3 to Previous Versions SO HEALTH PHYSICS LA English DT Article DE operational topics; dose assessment; emissions, atmospheric; regulations AB Computer software packages approved by the U.S. Environmental Protection Agency (U.S. EPA), including CAP88-PC, are used by U.S. Department of Energy (U.S. DOE) sites to demonstrate compliance with the radionuclide air emission standard under the Clean Air Act. CAP88-PC version 3, was approved by the U.S. EPA in February 2006 for use by U.S. DOE facilities. Version 3 incorporates several major changes that have the potential to affect calculated doses relative to calculations using earlier versions. This analysis examined the types and magnitudes of changes to dose estimates for specific radionuclides calculated using the version 3 software compared with the previous versions. For parent radionuclides and for the total dose from radionuclide chains, total effective dose calculated with version 3 was compared to effective dose equivalent calculated with previous versions. Various comparisons were also performed to determine which of the updates in version 3 accounted for changes in overall dose estimates. CAP88-PC version 3 would produce substantially different results relative to previous versions of the code for a number of radionuclides, including some isotopes that may be present at U.S. DOE facilities, as well as those used for industrial and medical applications. In general, doses for many radionuclides were lower using version 3 but doses for a few key radionuclides increased relative to the previous versions. C1 [Rhoads, Kathleen; Snyder, Sandra; Staven, Lissa] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rhoads, K (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM sandra.snyder@pnnl.gov FU U.S. Department of Energy [DE-AC05-76RL01830] FX Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. This work was supported by the U.S. Department of Energy. NR 24 TC 0 Z9 0 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD AUG PY 2013 VL 105 IS 2 SU 2 BP S125 EP S139 PG 15 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 299AJ UT WOS:000330366300005 PM 23803666 ER PT J AU Snyder, S Vazquez, G Hay, T AF Snyder, Sandra Vazquez, Gustavo Hay, Tristan TI Use of CAP88 at Department of Energy Sites SO HEALTH PHYSICS LA English DT Article DE operational topics; dose assessment; emissions, atmospheric; regulations AB The U.S. Department of Energy is committed to protecting the public and environment against undue risk from radiation associated with radiological activities conducted under its control. Some U.S. Department of Energy Site activities result in emissions of radioactive materials to the air. CAP88 codes are used to model these emissions and the subsequent maximum estimated dose to a member of the public in the vicinity of the U.S. Department of Energy Site. This paper reviews the use of the CAP88 code at the variety of U.S. Department of Energy sites that use it for compliance reporting under Title 40 of the Code of Federal Regulations Part 61, Subpart H. C1 [Snyder, Sandra; Hay, Tristan] Pacific NW Natl Lab, Richland, WA 99352 USA. [Vazquez, Gustavo] US DOE, Off Hlth Safety & Secur, Washington, DC 20585 USA. RP Snyder, S (reprint author), Pacific NW Natl Lab, POB 999,K3-54, Richland, WA 99352 USA. EM sandra.snyder@pnnl.gov OI Snyder, Sandra/0000-0001-5826-1324 FU U.S. Department of Energy [DE-AC05-76RL01830] FX The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. This work was supported by the U.S. Department of Energy. NR 7 TC 0 Z9 0 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD AUG PY 2013 VL 105 IS 2 SU 2 BP S164 EP S168 PG 5 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 299AJ UT WOS:000330366300009 PM 23803670 ER PT J AU Bounoua, L Kahime, K Houti, L Blakey, T Ebi, KL Zhang, P Imhoff, ML Thome, KJ Dudek, C Sahabi, SA Messouli, M Makhlouf, B El Laamrani, A Boumezzough, A AF Bounoua, Lahouari Kahime, Kholoud Houti, Leila Blakey, Tara Ebi, Kristie L. Zhang, Ping Imhoff, Marc L. Thome, Kurtis J. Dudek, Claire Sahabi, Salah A. Messouli, Mohammed Makhlouf, Baghdad El Laamrani, Abderrahmane Boumezzough, Ali TI Linking Climate to Incidence of Zoonotic Cutaneous Leishmaniasis (L. major) in Pre-Saharan North Africa SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Article DE cutaneous leishmaniasis; surface climate indicators; incidence; climate; NDVI; North Africa ID PHLEBOTOMUS-PAPATASI DIPTERA; SEASONAL DISTRIBUTION; LUTZOMYIA-OVALLESI; TEMPORAL DYNAMICS; SOUTHWEST ASIA; SAND FLIES; PSYCHODIDAE; MOROCCO; TRANSMISSION; POPULATIONS AB Shifts in surface climate may have changed the dynamic of zoonotic cutaneous leishmaniasis (ZCL) in the pre-Saharan zones of North Africa. Caused by Leishmania major, this form multiplies in the body of rodents serving as reservoirs of the disease. The parasite is then transmitted to human hosts by the bite of a Phlebotomine sand fly (Diptera: Psychodidae) that was previously fed by biting an infected reservoir. We examine the seasonal and interannual dynamics of the incidence of this ZCL as a function of surface climate indicators in two regions covering a large area of the semi-arid Pre-Saharan North Africa. Results suggest that in this area, changes in climate may have initiated a trophic cascade that resulted in an increase in ZCL incidence. We find the correlation between the rainy season precipitation and the same year Normalized Difference Vegetation Index (NDVI) to be strong for both regions while the number of cases of ZCL incidence lags the precipitation and NDVI by 2 years. The zoonotic cutaneous leishmaniasis seasonal dynamic appears to be controlled by minimum temperatures and presents a 2-month lag between the reported infection date and the presumed date when the infection actually occurred. The decadal increase in the number of ZCL occurrence in the region suggests that changes in climate increased minimum temperatures sufficiently and created conditions suitable for endemicity that did not previously exist. We also find that temperatures above a critical range suppress ZCL incidence by limiting the vector's reproductive activity. C1 [Bounoua, Lahouari; Zhang, Ping; Thome, Kurtis J.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Kahime, Kholoud; Boumezzough, Ali] Cadi Ayyad Univ, Lab Ecol & Environm, Marrakech 40000, Morocco. [Houti, Leila] Fac Med, Sidi Bel Abbes 22000, Algeria. [Blakey, Tara] Florida Int Univ, Miami, FL 33199 USA. [Ebi, Kristie L.] ClimAdapt LLC, Los Altos, CA 94022 USA. [Zhang, Ping] Earth Resources Technol Inc, Laurel, MD 20707 USA. [Imhoff, Marc L.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Dudek, Claire] Bethesda Chevy Chase High Sch, Bethesda, MD 20814 USA. [Sahabi, Salah A.] Hydrometeorol Inst Training & Res, Oran 31025, Algeria. [Messouli, Mohammed] Cadi Ayyad Univ, Lab Hydrobiol Ecotoxicol & Sanitat, Marrakech 40000, Morocco. [Makhlouf, Baghdad] Estab Local Publ Hlth, Saida 20000, Algeria. [El Laamrani, Abderrahmane] Minist Hlth, Directorate Epidemiol & Dis Control, Rabat 10010, Morocco. RP Bounoua, L (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Code 618, Greenbelt, MD 20771 USA. EM Lahouari.Bounoua-1@nasa.gov; kahimkholoud@gmail.com; leilahouti@yahoo.fr; tblakey@fiu.edu; krisebi@essllc.org; ping.zhang@nasa.gov; marc.imhoff@pnnl.gov; kurtis.thome@nasa.gov; cdudek@smith.edu; salah_sahabi@yahoo.com; messouli@gmail.com; makhloufbaghdad@yahoo.fr; laamrani55@gmail.com; aboumezzough@gmail.com FU International START Secretariat; U.S. National Science Foundation [GEO-0627839]; IDRC-Canada (Leila Houti) [105738-001]; NASA summer fellowships FX This article is based on research partially supported by a sub-award 2013-01 (to Kholoud Kahime) from the International START Secretariat with funds supplied by the U. S. Global Change Research Program administered by the U.S. National Science Foundation under Grant Number GEO-0627839, and by the IDRC-Canada (Leila Houti) through project# 105738-001. Tara Blakey and Claire Dudek were supported by NASA summer fellowships. Warm thanks are due to Haj Haddou (DELM, Rabat) and Ismail Chichaoui (SIAAP, Errachidia) for help with the epidemiological data. NR 48 TC 11 Z9 12 U1 4 U2 13 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD AUG PY 2013 VL 10 IS 8 BP 3172 EP 3191 DI 10.3390/ijerph10083172 PG 20 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 301IT UT WOS:000330526700006 PM 23912199 ER PT J AU Williams, KP Kelly, DP AF Williams, Kelly P. Kelly, Donovan P. TI Proposal for a new class within the phylum Proteobacteria, Acidithiobacillia classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID PURPLE BACTERIA; PHYLOGENY; SUBDIVISION; THIOBACILLUS; ALIGNMENTS; SULFUR; TREE AB The order Acidithiobacillales was previously assigned to the class Gammaproteobacteria. Recent analyses have indicated that this order actually lies outside all the proteobacterial classes, as a sister group to the combined classes Betaproteobacteria and Gamma proteobacteria. We now confirm this result with multiprotein phylogenetic analysis of all the available genomes of members of the order Acidithiobacillales and representatives of all available bacterial orders, and propose the new proteobacterial class, Acidithiobacillia, with the type order Acidithiobacillales, comprising the families Acidithiobacillaceae and Thermithiobacillaceae with the type genus Acidithiobacillus. C1 [Williams, Kelly P.] Sandia Natl Labs, Dept Syst Biol, Livermore, CA 94551 USA. [Kelly, Donovan P.] Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England. RP Kelly, DP (reprint author), Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England. EM D.P.Kelly@warwick.ac.uk FU DOE Early Career Laboratory Directed Research and Development award; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX K. P. W. was supported by a DOE Early Career Laboratory Directed Research and Development award. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We are grateful to editors of the IJSEM for advice on the Bacteriological Code and the correct etymology to describe the new class. NR 28 TC 42 Z9 44 U1 1 U2 9 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 EI 1466-5034 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD AUG PY 2013 VL 63 BP 2901 EP 2906 DI 10.1099/ijs.0.049270-0 PN 8 PG 6 WC Microbiology SC Microbiology GA 297RA UT WOS:000330271400023 PM 23334881 ER PT J AU Li, G Li, XS Zhang, KN Li, B Zhang, Y AF Li, Gang Li, Xiao-Sen Zhang, Keni Li, Bo Zhang, Yu TI Effects of Impermeable Boundaries on Gas Production from Hydrate Accumulations in the Shenhu Area of the South China Sea SO ENERGIES LA English DT Article DE natural gas hydrate; gas production; simulation; horizontal well; Shenhu area ID METHANE HYDRATE; PRODUCTION BEHAVIOR; MARINE-SEDIMENTS; NATURAL-GAS; SIMULATION; DEPOSITS; ZONE; WELL AB Based on currently available data from site measurements and the preliminary estimates of the gas production potential from the hydrate accumulations at the SH7 site in the Shenhu Area using the depressurization method with a single horizontal well placed in the middle of the Hydrate-Bearing Layer (HBL), the dependence of production performance on the permeabilities of the overburden (OB) and underburden (UB) layers was investigated in this modeling study. The simulation results indicated that the temperature and the pressure of the HBL were affected by the permeabilities of OB and UB and the effect of depressurization with impermeable OB and UB was significantly stronger than that with permeable boundaries. Considering the percentage of hydrate dissociation, the gas production rate and the gas-to-water ratio, the hydrate deposit with impermeable OB and UB was expected to be the potential gas production target. C1 [Li, Gang; Li, Xiao-Sen; Li, Bo; Zhang, Yu] Chinese Acad Sci, Guangzhou Inst Energy Convers, Key Lab Renewable Energy & Gas Hydrate, Guangzhou 510640, Guangdong, Peoples R China. [Zhang, Keni] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Li, XS (reprint author), Chinese Acad Sci, Guangzhou Inst Energy Convers, Key Lab Renewable Energy & Gas Hydrate, Guangzhou 510640, Guangdong, Peoples R China. EM ligang@ms.giec.ac.cn; lixs@ms.giec.ac.cn; kzhang@lbl.gov; libo@ms.giec.ac.cn; zhangyu1@ms.giec.ac.cn FU National Science Fund for Distinguished Young Scholars of China [51225603]; National Natural Science Foundation of China [51076155, 51004089, 51106160]; Science & Technology Program of Guangzhou [2012J5100012] FX This work was supported by National Science Fund for Distinguished Young Scholars of China (Grant 51225603), National Natural Science Foundation of China (51076155, 51004089 and 51106160), and Science & Technology Program of Guangzhou (2012J5100012), which are gratefully acknowledged. NR 35 TC 2 Z9 2 U1 3 U2 14 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD AUG PY 2013 VL 6 IS 8 BP 4078 EP 4096 DI 10.3390/en6084078 PG 19 WC Energy & Fuels SC Energy & Fuels GA 297VC UT WOS:000330282200022 ER PT J AU Alam, TM AF Alam, Todd M. TI Ab Initio Calculations of Possible gamma-Gauche Effects in the C-13-NMR for Methine and Carbonyl Carbons in Precise Polyethylene Acrylic Acid Copolymers SO MOLECULES LA English DT Article DE ab initio; C-13-NMR; chemical shift; trans-gauche; gamma-gauche; methine; carbonyl ID CHEMICAL-SHIFTS; NMR-SPECTRA; IGLO; DEPENDENCIES; SUBSTITUENT; PROTEINS; POLYMERS AB The impacts of local polymer chain conformations on the methine and carbonyl C-13-NMR chemical shifts for polyethylene acrylic acid p(E-AA) copolymers were predicted using ab initio methods. Using small molecular cluster models, the magnitude and sign of the.-gauche torsional angle effect, along with the impact of local tetrahedral structure distortions near the carbonyl group, on the C-13-NMR chemical shifts were determined. These C-13-NMR chemical shift variations were compared to the experimental trends observed for precise p(E-AA) copolymers as a function acid group spacing and degree of zinc-neutralization in the corresponding p(E-AA) ionomers. These ab initio calculations address the future ability of C-13-NMR chemical shift variations to provide information about the local chain conformations in p(E-AA) copolymer materials. C1 Sandia Natl Labs, Dept Nanostruct & Elect Mat, Albuquerque, NM 87185 USA. RP Alam, TM (reprint author), Sandia Natl Labs, Dept Nanostruct & Elect Mat, POB 5800, Albuquerque, NM 87185 USA. EM tmalam@sandia.gov FU USA Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia Laboratory Directed Research Development (LDRD) program FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the USA Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research was supported by funding from the Sandia Laboratory Directed Research Development (LDRD) program. The authors would also like to thank Janelle Jenkins for initial calculations and stimulating discussions concerning these investigations. NR 15 TC 0 Z9 0 U1 1 U2 5 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD AUG PY 2013 VL 18 IS 8 BP 9010 EP 9020 DI 10.3390/molecules18089010 PG 11 WC Chemistry, Organic SC Chemistry GA 298DL UT WOS:000330304100022 PM 23899834 ER PT J AU Ramanathan, M Darling, SB AF Ramanathan, Muruganathan Darling, Seth B. TI Nanofabrication with metallopolymers - recent developments and future perspectives SO POLYMER INTERNATIONAL LA English DT Review DE metallopolymers; metal-containing polymer; nanofabrication; patterning; self-assembly; amphiphilic; pyrolysis; calcination ID BLOCK-COPOLYMER LITHOGRAPHY; ATOMIC LAYER DEPOSITION; RING-OPENING POLYMERIZATION; SEQUENTIAL INFILTRATION SYNTHESIS; METAL-CONTAINING POLYMERS; ABC TRIBLOCK TERPOLYMER; HIGH-MOLECULAR-WEIGHT; STAR-SHAPED POLYMERS; SALT-LOADED MICELLES; DIBLOCK COPOLYMER AB Synthetic polymers containing metals and metal centers have experienced rapid growth in the last two decades. Metal-containing polymers have an unprecedented role to play in modern high-tech applications including nanomanufacturing, sensing, separation and catalysis. Advancement in synthetic strategies for macromolecules has enabled the synthesis of novel, exotic and use-inspired metallopolymers. Using state-of-the-art design strategies, it is now possible to perform targeted synthesis of macromolecules with varied complexity that contain a range of metal centers either in the backbone or in the side chains of the organic moiety. The presence of an inorganic element (metals and metal centers) in organic moieties has led to a number of new physicochemical properties while implementing novel functionality to the polymer matrix. This review covers nanotechnology influenced by distinctive features of metal-containing macromolecular systems, particularly in developing flexible, functionalmaterials. (C) 2013 Society of Chemical industry C1 [Ramanathan, Muruganathan] Oak Ridge Natl Lab, CNMS, Oak Ridge, TN 37831 USA. [Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP Ramanathan, M (reprint author), Oak Ridge Natl Lab, CNMS, Oak Ridge, TN 37831 USA. EM nmr@ornl.gov FU Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. NR 189 TC 11 Z9 11 U1 3 U2 39 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0959-8103 EI 1097-0126 J9 POLYM INT JI Polym. Int. PD AUG PY 2013 VL 62 IS 8 BP 1123 EP 1134 DI 10.1002/pi.4541 PG 12 WC Polymer Science SC Polymer Science GA 296NE UT WOS:000330191000001 ER PT J AU Schneider, CM Fadley, CS AF Schneider, Claus M. Fadley, Charles S. TI Magnetic spectroscopies Introduction SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Editorial Material ID MAGNETORESISTANCE; FERROMAGNETISM C1 [Schneider, Claus M.] Peter Gruenberg Inst PGI 6, Res Ctr, D-52425 Julich, Germany. [Schneider, Claus M.] Univ Duisburg Essen, Fac Phys, D-47057 Duisburg, Germany. [Fadley, Charles S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fadley, Charles S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Schneider, CM (reprint author), Peter Gruenberg Inst PGI 6, Res Ctr, D-52425 Julich, Germany. EM c.m.schneider@fz-juelich.de; fadley@physics.ucdavis.edu RI Schneider, Claus/H-7453-2012 OI Schneider, Claus/0000-0002-3920-6255 NR 10 TC 0 Z9 0 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD AUG PY 2013 VL 189 BP 127 EP 128 DI 10.1016/j.elspec.2013.05.002 PG 2 WC Spectroscopy SC Spectroscopy GA 285VL UT WOS:000329423000022 ER PT J AU Tober, ED Palomares, FJ Ynzunza, RX Denecke, R Morais, J Liesegang, J Hussain, Z Shick, AB Pickett, WE Fadley, CS AF Tober, Eric D. Palomares, F. Javier Ynzunza, Ramon X. Denecke, Reinhard Morais, Jonder Liesegang, John Hussain, Zahid Shick, Alexander B. Pickett, Warren E. Fadley, Charles S. TI Observation of dynamical spin-dependent electron interactions and screening in magnetic transitions via core-level multiplet-energy separations SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Photoemission; Multiplet splittings; Magnetic transitions; Screening, Free-electron lasers ID POLARIZED PHOTOELECTRON DIFFRACTION; BINDING ENERGIES; GD(0001) SURFACE; PHOTOEMISSION; GD; METALS; ORDER; FILMS AB The magnetic phase transitions for Gd(0 0 0 1) grown on W(1 1 0) - a bulk transition at 293 K and a surface transition about 85 K above this - are found to influence the energy separation of the Gd 5s and 4s core-photoelectron doublets. The 5s doublet separation Delta E-5s changes over a range of temperatures spanning these transitions, and decreases by a maximum of 60 meV in this region, but then recovers its original value; the 4s doublet shows a smaller change in the reverse direction, which does not recover at high temperature. Some of these effects are semi-quantitatively understood from free-atom multiplet theory and from theoretical calculations based on all-electron LDA+U calculations including 4f electron correlation effects. However, the high-temperature behavior of the data also suggest a dynamical nature to these effects via spin-dependent electron screening that is influenced by magnetic fluctuations. Several avenues for studying such effects in a time-resolved manner in future experiments are discussed. (C) 2013 Elsevier B.V. All rights reserved. C1 [Tober, Eric D.; Palomares, F. Javier; Ynzunza, Ramon X.; Denecke, Reinhard; Shick, Alexander B.; Pickett, Warren E.; Fadley, Charles S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Tober, Eric D.; Palomares, F. Javier; Ynzunza, Ramon X.; Denecke, Reinhard; Morais, Jonder; Liesegang, John; Fadley, Charles S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Liesegang, John] La Trobe Univ, Dept Phys, Melbourne, Vic 3086, Australia. [Hussain, Zahid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Fadley, CS (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM fadley@lbl.gov RI Morais, Jonder/E-5022-2013; Shick, Alexander/C-1420-2013; Register, CMSS/G-7191-2015; Palomares, Francisco Javier/C-4605-2011 OI Morais, Jonder/0000-0002-4143-1208; Shick, Alexander/0000-0003-2700-5517; Palomares, Francisco Javier/0000-0002-4768-2219 FU Office of Energy Research, Mat. Sci. Div., of the U.S. Dept. of Energy [DE-AC03-76SF00098, DE-AC02-05CH11231]; DGICyT MEC, Spain [PB94-0022-C02-02]; DOE [DE-FG03-03NA00071] FX Support was provided by the Director, Office of Energy Research, Mat. Sci. Div., of the U.S. Dept. of Energy, under Contracts No. DE-AC03-76SF00098 and DE-AC02-05CH11231, and the DGICyT (Grant No. PB94-0022-C02-02) MEC, Spain. Work at UC Davis (W.E.P.) was supported in part by DOE grant No. DE-FG03-03NA00071. NR 42 TC 1 Z9 1 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD AUG PY 2013 VL 189 BP 152 EP 156 DI 10.1016/j.elspec.2012.12.009 PG 5 WC Spectroscopy SC Spectroscopy GA 285VL UT WOS:000329423000026 ER PT J AU Kortright, JB AF Kortright, Jeffrey B. TI Resonant soft X-ray and extreme ultraviolet magnetic scattering in nanostructured magnetic materials: Fundamentals and directions SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Resonant soft X-ray magnetic scattering; Nanostructured magnetic materials; Energy spectra; Polarization dependence; Kerr rotation ID DEPTH-SENSITIVE PROBE; CIRCULAR-DICHROISM; EXCHANGE SCATTERING; FARADAY-ROTATION; RECORDING MEDIA; THIN-FILMS; FE; MULTILAYER; POLARIZATION; EDGES AB Theoretical and practical aspects of resonant magnetic and charge scattering in the soft X-ray and extreme ultraviolet spectral ranges are reviewed. Intensity-only measurements are considered because they are more efficient than polarization-resolving measurements. Two very different approaches are discussed and compared; transmission small-angle scattering described by a simple kinematical scattering model and specular reflection described by more complex yet standard magneto-optical formalisms. In both cases the scattered intensity is seen to contain distinct terms resulting from pure-charge scattering, pure-magnetic scattering, and charge-magnetic cross-terms, and emphasis is placed on distinguishing these contributions via their energy spectra and its dependence on incident polarization. Combined with measurements vs. scattering vector q, both approaches provide significant capability to resolve magnetic and chemical structure down to nanometer length scales. The role of and need for modeling to obtain reliable information from data is discussed, as are current directions and opportunities. (C) 2013 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kortright, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM JBKortright@lbl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science [DE-AC02-05CH11231] FX This work, including measurements conducted at beamlines 8.0.1, 4.0.2, and 6.3.2 at the Advanced Light Source (LBNL), was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science under Contract no. DE-AC02-05CH11231. NR 76 TC 3 Z9 3 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD AUG PY 2013 VL 189 BP 178 EP 186 DI 10.1016/j.elspec.2013.01.019 PG 9 WC Spectroscopy SC Spectroscopy GA 285VL UT WOS:000329423000030 ER PT J AU Fischer, P Im, MY Baldasseroni, C Bordel, C Hellman, F Lee, JS Fadley, CS AF Fischer, Peter Im, Mi-Young Baldasseroni, Chloe Bordel, Catherine Hellman, Frances Lee, Jong-Soo Fadley, Charles S. TI Magnetic imaging with full-field soft X-ray microscopies SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE X-ray magnetic dichroism; Soft X-ray spectromicroscopy; Spin dynamics; Fresnel zone plates; Mesoscale magnetism; Photoelectron microscopy; X-PEEM ID CIRCULAR-DICHROISM; ELECTRON-MICROSCOPY; ANTIFERROMAGNETIC DOMAINS; MAGNETORESISTANCE; MEMORY; FILMS AB Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized. (C) 2013 Elsevier B.V. All rights reserved. C1 [Fischer, Peter; Im, Mi-Young] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Baldasseroni, Chloe] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Bordel, Catherine; Hellman, Frances] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bordel, Catherine; Hellman, Frances; Fadley, Charles S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94270 USA. [Lee, Jong-Soo] DGIST, Dept Energy Syst Engn, Taegu 711873, South Korea. [Fadley, Charles S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Fischer, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM PJFischer@lbl.gov RI Fischer, Peter/A-3020-2010; Lee, Jong-Soo /F-7461-2010 OI Fischer, Peter/0000-0002-9824-9343; Lee, Jong-Soo /0000-0002-3045-2206 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05-CH11231]; Leading Foreign Research Institute Recruitment Program through the National Research Foundation (NRF) of Korea; Ministry of Education, Science and Technology (MEST) [2012K1A4A3053565] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under contract no. DE-AC02-05-CH11231 and by Leading Foreign Research Institute Recruitment Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) (2012K1A4A3053565). NR 52 TC 4 Z9 4 U1 4 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD AUG PY 2013 VL 189 BP 196 EP 205 DI 10.1016/j.elspec.2013.03.012 PG 10 WC Spectroscopy SC Spectroscopy GA 285VL UT WOS:000329423000032 ER PT J AU Ruan, LL Robertson, GP AF Ruan, Leilei Robertson, G. Philip TI Initial nitrous oxide, carbon dioxide, and methane costs of converting conservation reserve program grassland to row crops under no-till vs. conventional tillage SO GLOBAL CHANGE BIOLOGY LA English DT Article DE carbon dioxide; conservation reserve program; global warming impact; greenhouse gas balance; methane; nitrous oxide; no-till; tillage ID GREENHOUSE-GAS FLUXES; SOIL ORGANIC-CARBON; LONG-TERM; N2O EMISSIONS; MANAGEMENT; SYSTEMS; CO2; SEQUESTRATION; ROTATION; MATTER AB Around 4.4 millionha of land in USDA Conservation Reserve Program (CRP) contracts will expire between 2013 and 2018 and some will likely return to crop production. No-till (NT) management offers the potential to reduce the global warming costs of CO2, CH4, and N2O emissions during CRP conversion, but to date there have been no CRP conversion tillage comparisons. In 2009, we converted portions of three 9-21ha CRP fields in Michigan to conventional tillage (CT) or NT soybean production and reserved a fourth field for reference. Both CO2 and N2O fluxes increased following herbicide application in all converted fields, but in the CT treatment substantial and immediate N2O and CO2 fluxes occurred after tillage. For the initial 201-day conversion period, average daily N2O fluxes (g N2O-Nha(-1)d(-1)) were significantly different in the order: CT (47.5 +/- 6.31, n=6)>> NT (16.7 +/- 2.45, n=6)>> reference (2.51 +/- 0.73, n=4). Similarly, soil CO2 fluxes in CT were 1.2 times those in NT and 3.1 times those in the unconverted CRP reference field. All treatments were minor sinks for CH4 (-0.69 +/- 0.42 to -1.86 +/- 0.37g CH4-Cha(-1)d(-1)) with no significant differences among treatments. The positive global warming impact (GWI) of converted soybean fields under both CT (11.5 Mg CO(2)eha(-1)) and NT (2.87 Mg CO(2)eha(-1)) was in contrast to the negative GWI of the unconverted reference field (-3.5 Mg CO(2)eha(-1)) with on-going greenhouse gas (GHG) mitigation. N2O contributed 39.3% and 55.0% of the GWI under CT and NT systems with the remainder contributed by CO2 (60.7% and 45.0%, respectively). Including foregone mitigation, we conclude that NT management can reduce GHG costs by 60% compared to CT during initial CRP conversion. C1 [Ruan, Leilei; Robertson, G. Philip] Michigan State Univ, WK Kellogg Biol Stn, Dept Plant Soil & Microbial Sci, Great Lakes Bioenergy Res Ctr, Hickory Corners, MI 49060 USA. RP Ruan, LL (reprint author), Michigan State Univ, WK Kellogg Biol Stn, Dept Plant Soil & Microbial Sci, Great Lakes Bioenergy Res Ctr, Hickory Corners, MI 49060 USA. EM ruanleil@msu.edu OI Robertson, G/0000-0001-9771-9895 FU US DOE Office of Science [DE-FCO2-07ER64494]; Office of Energy Efficiency and Renewable Energy [DE-ACO5-76RL01830]; US National Science Foundation LTER Program [DEB 1027253]; MSU AgBioResearch FX We thank P. Jasrotia, S. VanderWulp, E. Robertson, K. Kahmark, C. McMinn, S. Sippel, S. Bohm and many others for assistance in the field and laboratory. We thank T. Zenone for help with the Eddy Covariances data. We also thank A.N. Kravchenko and S.K Hamilton for many helpful suggestions and insightful comments. Financial support was provided by the US DOE Office of Science (DE-FCO2-07ER64494) and Office of Energy Efficiency and Renewable Energy (DE-ACO5-76RL01830), the US National Science Foundation LTER Program (DEB 1027253), and MSU AgBioResearch. NR 50 TC 25 Z9 27 U1 7 U2 69 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD AUG PY 2013 VL 19 IS 8 BP 2478 EP 2489 DI 10.1111/gcb.12216 PG 12 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 276IV UT WOS:000328744900015 PM 23553929 ER PT J AU Liu, HY Williams, AP Allen, CD Guo, DL Wu, XC Anenkhonov, OA Liang, EY Sandanov, DV Yin, Y Qi, ZH Badmaeva, NK AF Liu, Hongyan Williams, A. Park Allen, Craig D. Guo, Dali Wu, Xiuchen Anenkhonov, Oleg A. Liang, Eryuan Sandanov, Denis V. Yin, Yi Qi, Zhaohuan Badmaeva, Natalya K. TI Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia SO GLOBAL CHANGE BIOLOGY LA English DT Article DE drought; forest die-off; Inner Asia; semi-arid; semi-humid; tree growth decline; tree ring ID CHANGE-TYPE DROUGHT; CLIMATE SYSTEM; GLOBAL DATASET; CHINESE PINE; DIE-OFF; MORTALITY; VEGETATION; MONGOLIA; RECONSTRUCTION; VARIABILITY AB Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests. C1 [Liu, Hongyan; Wu, Xiuchen; Yin, Yi; Qi, Zhaohuan] Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. [Williams, A. Park] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Allen, Craig D.] US Geol Survey, Jemez Mt Field Stn, Ft Collins Sci Ctr, Los Alamos, NM 87544 USA. [Guo, Dali] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China. [Anenkhonov, Oleg A.; Sandanov, Denis V.; Badmaeva, Natalya K.] Russian Acad Sci, Siberian Branch, Inst Gen & Expt Biol, Ulan Ude 670047, Russia. [Liang, Eryuan] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China. RP Liu, HY (reprint author), Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. EM lhy@urban.pku.edu.cn; craig_allen@usgs.gov RI Guo, Dali/G-2158-2014; Liang, Eryuan/A-1435-2010; Guo, Dali/C-3498-2012; Williams, Park/B-8214-2016; Anenkhonov, Oleg/J-8690-2016 OI Liang, Eryuan/0000-0002-8003-4264; Williams, Park/0000-0001-8176-8166; Anenkhonov, Oleg/0000-0001-8633-7154 FU National Natural Science Foundation of China [NSFC 41071124, 40711120173, 41011120251]; Russian Foundation of Basic Research [RFBR 13-04-91180, 10-04-91159]; US Geological Survey Climate and Land Use Change Program; LANL-LDRD; DOE-BER FX This study was supported by grants from the National Natural Science Foundation of China (NSFC 41071124, 40711120173 and 41011120251) and the Russian Foundation of Basic Research (RFBR 13-04-91180 and 10-04-91159); CDA was supported by the US Geological Survey Climate and Land Use Change Program, and APW was supported by LANL-LDRD and DOE-BER. We thank Y. Guo, J. Ren, and S. He for their helps in tree-ring sampling, and J. Dai for providing the Liupan Mt. raw ring-width data. The authors stated no conflict of interest. NR 55 TC 62 Z9 65 U1 15 U2 107 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD AUG PY 2013 VL 19 IS 8 BP 2500 EP 2510 DI 10.1111/gcb.12217 PG 11 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 276IV UT WOS:000328744900017 PM 23564688 ER PT J AU Hanson, D Schmalzer, D AF Hanson, Donald Schmalzer, David TI An adoption scenario for carbon capture in pulverized coal power plants in the USA SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE carbon capture; CO2 reduction; electric generation; energy scenario; energy policy; ESIM; greenhouse gases AB In this paper we use the Electricity Supply and Investment Model (ESIM) power system model to examine the energy market effects of incentivized adoption of carbon capture and storage (CCS), with a primary focus on retrofitting existing pulverized coal plants. In the presence of a medium' carbon charge and least-cost dispatch, units with CCS are operated with higher utilization rates than fossil energy plants without carbon capture, hence lowering CO2 emissions. This path helps to lower the capital outlays that will be necessary to make a transition to a full portfolio of advanced low-carbon technologies. Required research, development and demonstration can be financed by a portion of the carbon charge revenue. (C) 2013 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Hanson, Donald; Schmalzer, David] Argonne Natl Lab, Lemont, IL 60439 USA. RP Hanson, D (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. EM dhanson@anl.gov FU US National Energy Technology Laboratory (NETL) FX The authors would like to thank the US National Energy Technology Laboratory (NETL) for support. NR 4 TC 1 Z9 1 U1 0 U2 3 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD AUG PY 2013 VL 3 IS 4 BP 303 EP 308 DI 10.1002/ghg.1359 PG 6 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 267ZV UT WOS:000328138100007 ER PT J AU Sepsova, V Karasova, JZ Korabecny, J Dolezal, R Zemek, F Bennion, BJ Kuca, K AF Sepsova, Vendula Karasova, Jana Zdarova Korabecny, Jan Dolezal, Rafael Zemek, Filip Bennion, Brian J. Kuca, Kamil TI Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE oximes; acetylcholinesterase; inhibitors; SAR study ID BISPYRIDINIUM COMPOUNDS BEARING; REACTIVATION ACTIVITY; THERAPEUTIC-EFFICACY; PYRIDINIUM OXIMES; DIAGNOSIS; AGENTS; BRAIN; TABUN; LINKER AB Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring. C1 [Sepsova, Vendula; Korabecny, Jan; Zemek, Filip] Univ Def, Fac Mil Hlth Sci, Dept Toxicol, Hradec Kralove 50001, Czech Republic. [Karasova, Jana Zdarova] Univ Def, Fac Mil Hlth Sci, Dept Publ Hlth, Hradec Kralove 50001, Czech Republic. [Karasova, Jana Zdarova; Korabecny, Jan; Dolezal, Rafael; Kuca, Kamil] Univ Hosp, Biomed Res Ctr, Hradec Kralove 50005, Czech Republic. [Bennion, Brian J.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. [Kuca, Kamil] Univ Def, Fac Mil Hlth Sci, Ctr Adv Studies, Hradec Kralove 50001, Czech Republic. RP Kuca, K (reprint author), Univ Hosp, Biomed Res Ctr, Sokolska 581, Hradec Kralove 50005, Czech Republic. EM sepsova@pmfhk.cz; karasova@pmfhk.cz; korabecny@pmfhk.cz; rafael.dolezal@fnhk.cz; zemek.filip@gmail.com; Bennion1@llnl.gov; kamil.kuca@fnhk.cz RI Dolezal, Rafael/B-3956-2017 FU Ministry of Defence; Ministry of Education, Youth and Sports [SV/FVZ201104]; MH CZ-DRO (University Hospital Hradec Kralove) [00179906]; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; [CZ.1.07/2.3.00/30.0044] FX This work was supported by the project of Ministry of Defence, A long-term organization development plan 1011, by project of Ministry of Education, Youth and Sports, SV/FVZ201104, by MH CZ-DRO (University Hospital Hradec Kralove, No. 00179906) and by Post-doctoral project (No. CZ.1.07/2.3.00/30.0044). Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. The access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum, provided under the program "Projects of Large Infrastructure for Research, Development, and Innovations" (LM2010005) is highly appreciated. NR 34 TC 12 Z9 12 U1 1 U2 25 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD AUG PY 2013 VL 14 IS 8 BP 16882 EP 16900 DI 10.3390/ijms140816882 PG 19 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry GA 272ZE UT WOS:000328501300086 PM 23959117 ER PT J AU Nakayasu, ES Brown, RN Ansong, C Sydor, MA Imtiaz, S Mihai, C Sontag, R Hixson, KK Monroe, ME Sobreira, TJP Orr, G Petyuk, VA Yang, F Smith, RD Adkins, JN AF Nakayasu, Ernesto S. Brown, Roslyn N. Ansong, Charles Sydor, Michael A. Imtiaz, Sayed Mihai, Cosmin Sontag, Ryan Hixson, Kim K. Monroe, Matthew E. Sobreira, Tiago J. P. Orr, Galya Petyuk, Vladislav A. Yang, Feng Smith, Richard D. Adkins, Joshua N. TI Multi-omic Data Integration Links Deleted in Breast Cancer 1 (DBC1) Degradation to Chromatin Remodeling in Inflammatory Response SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID NF-KAPPA-B; INNATE IMMUNE-RESPONSES; GENE-EXPRESSION; SIGNALING PATHWAY; BINDING PROTEIN; MACROPHAGES; ACTIVATION; PROTEASOME; ALPHA; PHOSPHORYLATION AB This study investigated the dynamics of ubiquitinated proteins after the inflammatory stimulation of RAW 264.7 macrophage-like cells with bacterial lipopolysaccharide. Ubiquitination is a common protein post-translational modification that regulates many key cellular functions. We demonstrated that levels of global ubiquitination and K48 and K63 polyubiquitin chains change after lipopolysaccharide stimulation. Quantitative proteomic analysis identified 1199 ubiquitinated proteins, 78 of which exhibited significant changes in ubiquitination levels following stimulation. Integrating the ubiquitinome data with global proteomic and transcriptomic results allowed us to identify a subset of 88 proteins that were targeted for degradation after lipopolysaccharide stimulation. Using cellular assays and Western blot analyses, we biochemically validated DBC1 (a histone deacetylase inhibitor) as a degradation substrate that is targeted via an orchestrated mechanism utilizing caspases and the proteasome. The degradation of DBC1 releases histone deacetylase activity, linking lipopolysaccharide activation to chromatin remodeling in caspase- and proteasome-mediated signaling. C1 [Nakayasu, Ernesto S.; Ansong, Charles; Sydor, Michael A.; Imtiaz, Sayed; Sontag, Ryan; Monroe, Matthew E.; Petyuk, Vladislav A.; Yang, Feng; Smith, Richard D.; Adkins, Joshua N.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Brown, Roslyn N.] Washington State Univ, Ctr Bioprod & Bioenergy, Richland, WA 99354 USA. [Mihai, Cosmin; Hixson, Kim K.; Orr, Galya] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Sobreira, Tiago J. P.] Natl Ctr Res Energy & Mat, Natl Lab Biosci LN Bio, BR-13083970 Campinas, SP, Brazil. RP Adkins, JN (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM Joshua.Adkins@pnnl.gov RI Smith, Richard/J-3664-2012; Sobreira, Tiago/C-1276-2008; OI Smith, Richard/0000-0002-2381-2349; Sobreira, Tiago/0000-0002-0217-0084; Petyuk, Vladislav/0000-0003-4076-151X FU NIAID (National Institutes of Health/DHHS) [Y1-AI-8494-01]; NIGMS, National Institutes of Health [GM094623]; NIH [5P41RR018522-10]; NIGMS [8 P41 GM103493-10]; U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER); DOE [DE-AC05-76RLO1830] FX This work was supported by NIAID (National Institutes of Health/DHHS) through interagency agreement The proper number is: Y1-AI-8494-01 and NIGMS, National Institutes of Health (GM094623). This work used instrumentation and capabilities developed with support from NIH Grant No. 5P41RR018522-10, NIGMS Grant No. 8 P41 GM103493-10, and the U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER). Significant portions of this work were performed in the EMSL, a DOE/BER national scientific user facility located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the DOE by Battelle under Contract DE-AC05-76RLO1830. NR 53 TC 2 Z9 2 U1 0 U2 7 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2013 VL 12 IS 8 BP 2136 EP 2147 DI 10.1074/mcp.M112.026138 PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 277SH UT WOS:000328839100009 PM 23639857 ER PT J AU Dunagan, SE Johnson, R Zavaleta, J Russell, PB Schmid, B Flynn, C Redemann, J Shinozuka, Y Livingston, J Segal-Rosenhaimer, M AF Dunagan, Stephen E. Johnson, Roy Zavaleta, Jhony Russell, Philip B. Schmid, Beat Flynn, Connor Redemann, Jens Shinozuka, Yohei Livingston, John Segal-Rosenhaimer, Michal TI Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology SO REMOTE SENSING LA English DT Article DE atmosphere; climate; pollution; radiometry; technology; hyperspectral; fiber optic ID AEROSOL OPTICAL DEPTH; VERTICAL PROFILES; AIRBORNE; RETRIEVAL AB The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results. C1 [Dunagan, Stephen E.; Johnson, Roy; Zavaleta, Jhony; Russell, Philip B.; Redemann, Jens; Segal-Rosenhaimer, Michal] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Schmid, Beat; Flynn, Connor] Pacific NW Natl Lab, Richland, WA 99325 USA. [Shinozuka, Yohei] NASA, Ames Cooperat Res Earth Sci & Technol ARC CREST, Moffett Field, CA 94035 USA. [Shinozuka, Yohei] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Livingston, John] SRI Int, Menlo Pk, CA 94025 USA. RP Dunagan, SE (reprint author), NASA, Ames Res Ctr, MS 245-4, Moffett Field, CA 94035 USA. EM Stephen.E.Dunagan@nasa.gov; Roy.R.Johnson@nasa.gov; Jhony.R.Zavaleta@nasa.gov; Philip.B.Russell@nasa.gov; beat.schmid@pnnl.gov; connor.flynn@pnnl.gov; Jens.Redemann-1@nasa.gov; Yohei.Shinozuka@nasa.gov; John.M.Livingston@nasa.gov; Michal.Segalrozenhaimer@nasa.gov FU NASA Radiation Science Program; Ames Instrument Working Group; DOE Atmospheric Radiation Measurement Program, Battelle's Pacific Northwest Division; NOAA Office of Global Programs FX 4STAR design, development, and testing were supported by the NASA Radiation Science Program, the Ames Instrument Working Group, the DOE Atmospheric Radiation Measurement Program, Battelle's Pacific Northwest Division, and the NOAA Office of Global Programs. Instrument conceptual advice and scientific data analysis software were provided by the NASA Goddard AERONET group under the leadership of Brent Holben. NR 18 TC 10 Z9 10 U1 0 U2 8 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD AUG PY 2013 VL 5 IS 8 BP 3872 EP 3895 DI 10.3390/rs5083872 PG 24 WC Remote Sensing SC Remote Sensing GA 274SI UT WOS:000328626100011 ER PT J AU Jiang, N Zhu, WQ Zheng, ZT Chen, GS Fan, DQ AF Jiang, Nan Zhu, Wenquan Zheng, Zhoutao Chen, Guangsheng Fan, Deqin TI A Comparative Analysis between GIMSS NDVIg and NDVI3g for Monitoring Vegetation Activity Change in the Northern Hemisphere during 1982-2008 SO REMOTE SENSING LA English DT Article DE GIMMS; NDVI; vegetation; climate change; Northern Hemisphere ID TERRESTRIAL CARBON SINK; SATELLITE DATA; TIME-SERIES; DATA SETS; GREEN-UP; LAND; TRENDS; GROWTH; INDEX; PRODUCTIVITY AB The long-term Normalized Difference Vegetation Index (NDVI) time-series data set generated from the Advanced Very High Resolution Radiometers (AVHRR) has been widely used to monitor vegetation activity change. The third version of NDVI (NDVI3g) produced by the Global Inventory Modeling and Mapping Studies (GIMMS) group was released recently. The comparisons between the new and old versions should be conducted for linking existing studies with future applications of NDVI3g in monitoring vegetation activity change. Based on simple and piecewise linear regression methods, this study made a comparative analysis between NDVIg and NDVI3g for monitoring vegetation activity change and its responses to climate change in the middle and high latitudes of the Northern Hemisphere during 1982-2008. Our results indicated that there were large differences between NDVIg and NDVI3g in the spatial patterns for both the overall changing trends and the timing of Turning Points (TP) in NDVI time series, which spread over almost the entire study region. The average NDVI trend from NDVI3g was almost twice as great as that from NDVIg and the detected average timing of TP from NDVI3g was about one year later. Although the general spatial patterns were consistent between two data sets for detecting the responses of growing-season NDVI to temperature and precipitation changes, there were large differences in the response magnitude, with a higher response magnitude to temperature in NDVI3g and an opposite response to precipitation change for the two data sets. These results demonstrated that the NDVIg data set may underestimate the vegetation activity change trend and its response to climate change in the middle and high latitudes of the Northern Hemisphere during the past three decades. C1 [Jiang, Nan; Zhu, Wenquan; Zheng, Zhoutao; Fan, Deqin] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. [Jiang, Nan; Zhu, Wenquan; Zheng, Zhoutao; Fan, Deqin] Beijing Normal Univ, Coll Resources Sci & Technol, Beijing 100875, Peoples R China. [Chen, Guangsheng] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Zhu, WQ (reprint author), Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. EM jiangnan@mail.bnu.edu.cn; zhuwq75@bnu.edu.cn; zhengzhoutao90@mail.bnu.edu.cn; kinly129@163.com; cheng@ornl.gov FU National Basic Research Program of China [2011CB952001]; State Key Laboratory of Earth Surface Processes and Resource Ecology [2013-ZY-14]; Fundamental Research Funds for the Central University FX This work was supported by the National Basic Research Program of China (Grant No. 2011CB952001), the State Key Laboratory of Earth Surface Processes and Resource Ecology (Grant No. 2013-ZY-14), and the Fundamental Research Funds for the Central University. We thank C. J. Tucker, J. Pinzon, and R. B. Myneni for providing GIMMS NDVI3g data set and valuable suggestions. NR 35 TC 21 Z9 26 U1 3 U2 28 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD AUG PY 2013 VL 5 IS 8 BP 4031 EP 4044 DI 10.3390/rs5084031 PG 14 WC Remote Sensing SC Remote Sensing GA 274SI UT WOS:000328626100017 ER PT J AU Nadziejka, DE AF Nadziejka, David E. TI What Editors Want: An Author's Guide to Scientific Journal Publishing SO TECHNICAL COMMUNICATION LA English DT Book Review C1 [Nadziejka, David E.] Van Andel Res Inst, Grand Rapids, MI USA. [Nadziejka, David E.] Argonne Natl Lab, Argonne, IL 60439 USA. [Nadziejka, David E.] IIT, Chicago, IL 60616 USA. RP Nadziejka, DE (reprint author), Van Andel Res Inst, Grand Rapids, MI USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU SOC TECHNICAL COMMUNICATION PI FAIRFAX PA 9401 LEE HIGHWAY, STE 300, FAIRFAX, VA 22031 USA SN 0049-3155 J9 TECH COMMUN-STC JI Tech. Commun. PD AUG PY 2013 VL 60 IS 3 BP 248 EP 248 PG 1 WC Communication SC Communication GA 270OS UT WOS:000328328700026 ER PT J AU Xie, JR Kelley, S Szymanski, BK AF Xie, Jierui Kelley, Stephen Szymanski, Boleslaw K. TI Overlapping Community Detection in Networks: The State-of-the-Art and Comparative Study SO ACM COMPUTING SURVEYS LA English DT Article DE Algorithms; Performance; Overlapping community detection; social networks ID FUZZY C-MEANS; COMPLEX NETWORKS; MIXTURE-MODELS; RAND INDEX; ALGORITHM; GRAPHS AB This article reviews the state-of-the-art in overlapping community detection algorithms, quality measures, and benchmarks. A thorough comparison of different algorithms (a total of fourteen) is provided. In addition to community-level evaluation, we propose a framework for evaluating algorithms' ability to detect overlapping nodes, which helps to assess overdetection and underdetection. After considering community-level detection performance measured by normalized mutual information, the Omega index, and node-level detection performance measured by F-score, we reached the following conclusions. For low overlapping density networks, SLPA, OSLOM, Game, and COPRA offer better performance than the other tested algorithms. For networks with high overlapping density and high overlapping diversity, both SLPA and Game provide relatively stable performance. However, test results also suggest that the detection in such networks is still not yet fully resolved. A common feature observed by various algorithms in real-world networks is the relatively small fraction of overlapping nodes (typically less than 30%), each of which belongs to only 2 or 3 communities. C1 [Xie, Jierui; Szymanski, Boleslaw K.] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA. [Kelley, Stephen] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Xie, JR (reprint author), Rensselaer Polytech Inst, Dept Comp Sci, 110 8th St, Troy, NY 12180 USA. EM jierui.xie@gmail.com RI Szymanski, Boleslaw/A-9121-2009 OI Szymanski, Boleslaw/0000-0002-0307-6743 FU Army Research Laboratory [W911NF-09-2-0053]; Office of Naval Research Grant [N00014-09-1-0607] FX The work of J. Xie and B. K. Szymanski was supported in part by the Army Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053 and by the Office of Naval Research Grant No. N00014-09-1-0607. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies either expressed of implied of the Army Research Laboratory, the Office of Naval Research, or the U.S. Government. NR 99 TC 131 Z9 136 U1 9 U2 48 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0360-0300 EI 1557-7341 J9 ACM COMPUT SURV JI ACM Comput. Surv. PD AUG PY 2013 VL 45 IS 4 AR 43 DI 10.1145/2501654.2501657 PG 35 WC Computer Science, Theory & Methods SC Computer Science GA 265FA UT WOS:000327934000003 ER PT J AU Miller, DJ Proff, C Wen, JG Abraham, DP Bareno, J AF Miller, Dean J. Proff, Christian Wen, J. G. Abraham, Daniel P. Bareno, Javier TI Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy SO ADVANCED ENERGY MATERIALS LA English DT Article ID LITHIUM-ION CELLS; STRUCTURAL-CHANGES; ELECTROCHEMICAL LITHIATION; LITHIUM/POLYMER CELLS; DENDRITIC GROWTH; SNO2 NANOWIRE; POWER; LINI0.8CO0.15AL0.05O2; SPECTROSCOPY; PERFORMANCE AB We developed a simple approach to carry out in situ electron microscopy of single Li-ion battery cathode particles during electrochemical cycling. We focused on Li(Ni0.8Co0.15Al0.05)O-2-based cathode materials because life-cycle tests suggest a strong contribution of the cathode material to changes in cell impedance. In situ scanning electron microscopy was carried out operando during cycling and at various stages by interrupted cycling. Our work revealed several important aspects of cathode oxide particle dynamics: significant separations develop between grains even during the very first charge (oxide delithiation) and electrolyte penetration through that crack network all the way into the particle interior. Comparing these results to post-test microstructural characterization of oxide particles subjected to extensive cycling confirms the occurrence of these processes in practical cells and suggests that the physical separation and isolation of grains may contribute to performance degradation of lithium-ion cells. C1 [Miller, Dean J.; Proff, Christian; Wen, J. G.] Argonne Natl Lab, Elect Microscopy Ctr, Argonne, IL 60439 USA. [Miller, Dean J.; Proff, Christian; Wen, J. G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Abraham, Daniel P.; Bareno, Javier] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Miller, DJ (reprint author), Argonne Natl Lab, Elect Microscopy Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. EM miller@anl.gov OI Bareno, Javier/0000-0003-1230-9278 FU U.S. DOE EERE-Vehicle Technologies Program; Argonne Laboratory Directed Research and Development [DE-AC02-06CH11357]; Office of Science - Basic Energy Sciences FX The valuable discussions and suggestions of Martin Bettge (ANL-CSE) are gratefully acknowledged. The assistance of Nancy Miller, Christine Miller, and Darren Miller in carrying out initial in situ measurements is also gratefully acknolwedged. This research was supported by the U.S. DOE EERE-Vehicle Technologies Program and by Argonne Laboratory Directed Research and Development funding under contract DE-AC02-06CH11357. The Electron Microscopy Center at Argonne is supported by the Office of Science - Basic Energy Sciences. NR 40 TC 47 Z9 47 U1 15 U2 132 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD AUG PY 2013 VL 3 IS 8 BP 1098 EP 1103 DI 10.1002/aenm.201300015 PG 6 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 263FY UT WOS:000327793600021 ER PT J AU Yakal-Kremski, K Cronin, JS Chen-Wiegart, YCK Wang, J Barnett, SA AF Yakal-Kremski, K. Cronin, J. S. Chen-Wiegart, Y. -C. K. Wang, J. Barnett, S. A. TI Studies of Solid Oxide Fuel Cell Electrode Evolution Using 3D Tomography SO FUEL CELLS LA English DT Article; Proceedings Paper CT 10th European SOFC Forum CY JUN 26-29, 2012 CL Lucerne, SWITZERLAND SP European Fuel Cell Forum DE Degradation; Electrode; SOFC; Solid Oxide Fuel Cell; Three Dimensional Tomography ID MICROSTRUCTURE DEGRADATION; SOFC CATHODES; 3-DIMENSIONAL RECONSTRUCTION; ELECTROCHEMICAL PROPERTIES; FIRING TEMPERATURE; ANODE DEGRADATION; YSZ; PERFORMANCE; POLARIZATION; IMPURITIES AB This paper describes 3D tomographic investigations of the structural evolution of Ni-yttria-stabilized zirconia (Ni-YSZ) and (La,Sr)MnO3-YSZ (LSM-YSZ) composite solid oxide fuel cell (SOFC) electrodes. Temperatures higher than normally used in SOFC operation are utilized to accelerate electrode evolution. Quantitative 3D FIB-SEM and X-ray tomographic imaging contributes to development of mechanistic evolution models needed to accurately predict long-term durability. Ni-YSZ anode functional layers annealed in humidified hydrogen at 900-1,100 degrees C exhibited microstructural coarsening leading to a decrease in three-phase boundary (TPB) density. There was also a change in the fraction of pores that were isolated, which impacted the density of electrochemically active TPBs. The polarization resistance of optimally fired LSM-YSZ electrodes increased upon thermal aging at 1,000 degrees C, whereas that of under-fired electrodes decreased upon aging. These results are explained in terms of observed 3D microstructural changes. C1 [Yakal-Kremski, K.; Cronin, J. S.; Barnett, S. A.] Northwestern Univ, Dept Mat Sci, Evanston, IL 60208 USA. [Chen-Wiegart, Y. -C. K.; Wang, J.] Brookhaven Natl Lab, Photon Source Directorate, Upton, NY 11973 USA. RP Yakal-Kremski, K (reprint author), Northwestern Univ, Dept Mat Sci, Evanston, IL 60208 USA. EM kkremski@u.northwestern.edu RI Barnett, Scott/B-7502-2009 NR 40 TC 7 Z9 7 U1 5 U2 61 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1615-6846 EI 1615-6854 J9 FUEL CELLS JI Fuel Cells PD AUG PY 2013 VL 13 IS 4 SI SI BP 449 EP 454 DI 10.1002/fuce.201200177 PG 6 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA 262AO UT WOS:000327706700001 ER PT J AU Zheng, BL Li, Y Xu, WZ Zhou, YZ Mathaudhu, SN Zhu, YT Lavernia, EJ AF Zheng, Baolong Li, Ying Xu, Weizong Zhou, Yizhang Mathaudhu, Suveen N. Zhu, Yuntian Lavernia, Enrique J. TI Twinning in cryomilled nanocrystalline Mg powder SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article DE twinning; magnesium; nanocrystalline; cryomilling ID HIGH-PRESSURE TORSION; DEFORMATION TWINS; SINGLE-CRYSTALS; ALLOY; AL; METALS; MAGNESIUM; MECHANISMS; STRENGTH; SLIP AB Nanocrystalline (nc) Mg powder was synthesized via cryomilling. Extension twins were identified with high-resolution transmission electron microscopy in the cryomilled powders and the study presents the first evidence of twinning in unalloyed nc Mg. The formation of twins in the nc Mg is attributed to a high strain rate, the low (cryogenic) temperature and high local shear stresses present around the grain boundaries during deformation by cryomilling. C1 [Zheng, Baolong; Zhou, Yizhang; Lavernia, Enrique J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Li, Ying] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Xu, Weizong; Zhu, Yuntian] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Mathaudhu, Suveen N.] US Army Res Lab, Aberdeen Proving Ground, MD 21005 USA. RP Lavernia, EJ (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM lavernia@ucdavis.edu RI Zhu, Yuntian/B-3021-2008; Xu, Weizong/G-3328-2014; Li, Ying/G-3908-2010; Mathaudhu, Suveen/B-4192-2009 OI Zhu, Yuntian/0000-0002-5961-7422; Xu, Weizong/0000-0003-0030-8606; Li, Ying/0000-0003-3738-9307; FU US Army Research Office [W911NF-10-1-0512] FX The authors acknowledge the financial support provided by the US Army Research Office (Grant No W911NF-10-1-0512). The authors would like to express their appreciation to Professor S. Mahajan for constructive discussion and suggestions. NR 35 TC 2 Z9 2 U1 5 U2 20 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 EI 1362-3036 J9 PHIL MAG LETT JI Philos. Mag. Lett. PD AUG 1 PY 2013 VL 93 IS 8 BP 457 EP 464 DI 10.1080/09500839.2013.801567 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 263XF UT WOS:000327840600003 ER PT J AU Wang, ZG Williams, RT Grim, JQ Gao, F Kerisit, S AF Wang, Zhiguo Williams, Richard T. Grim, Joel Q. Gao, Fei Kerisit, Sebastien TI Kinetic Monte Carlo simulations of excitation density dependent scintillation in CsI and CsI(TI) SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE inorganic scintillators; kinetic Monte Carlo; nonlinear quenching; non-proportionality; scintillation mechanisms ID FAST INTRINSIC LUMINESCENCE; GAMMA-RAY INTERACTION; ELECTRON-HOLE PAIRS; NON-PROPORTIONALITY; ALKALI HALIDES; TEMPERATURE-DEPENDENCE; ENERGY RESOLUTION; LIGHT YIELD; VK CENTERS; PURE CSI AB Nonlinear quenching of electron-hole pairs in the denser regions of ionization tracks created by -ray and high-energy electrons is a likely cause of the light yield non-proportionality of many inorganic scintillators. Therefore, kinetic Monte Carlo (KMC) simulations were carried out to investigate the scintillation properties of pure and thallium-doped CsI as a function of electron-hole pair density. The availability of recent experimental data on the excitation density dependence of the light yield of CsI following ultraviolet excitation allowed for an improved parameterization of the interactions between self-trapped excitons (STE) in the KMC model via dipole-dipole Forster transfer. The KMC simulations reveal that nonlinear quenching occurs very rapidly (within a few picoseconds) in the early stages of the scintillation process. In addition, the simulations predict that the concentration of thallium activators can affect the extent of nonlinear quenching as it has a direct influence on the STE density through STE dissociation and electron scavenging. This improved model will enable more realistic simulations of the non-proportional -ray and electron response of inorganic scintillators. C1 [Wang, Zhiguo; Gao, Fei; Kerisit, Sebastien] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Williams, Richard T.; Grim, Joel Q.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM sebastien.kerisit@pnnl.gov RI Wang, Zhiguo/B-7132-2009; Melcher, Charles/E-9818-2012 OI Melcher, Charles/0000-0002-4586-4764 FU National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Engineering [NA-22]; U.S. Department of Energy (DOE) FX The authors acknowledge Drs. Luke W. Campbell, Micah Prange, Renee M. Van Ginhoven, and YuLong Xie for insightful discussions. This research was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Engineering (NA-22), of the U.S. Department of Energy (DOE). NR 52 TC 12 Z9 12 U1 2 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD AUG PY 2013 VL 250 IS 8 BP 1532 EP 1540 DI 10.1002/pssb.201248587 PG 9 WC Physics, Condensed Matter SC Physics GA 262BG UT WOS:000327708500013 ER PT J AU Patel, AP Stanek, CR Grimes, RW AF Patel, Ankoor P. Stanek, Chris R. Grimes, Robin W. TI Comparison of defect processes in REAlO3 perovskites and RE3Al5O12 garnets SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE defect volumes; garnet; optical ceramics; pair potential; perovskite; point defects; scintillators ID BAND-GAP SCINTILLATORS; ENERGY-TRANSFER; INORGANIC SCINTILLATORS; SINGLE-CRYSTAL; LUMINESCENCE; ALUMINUM; YAG; LUALO3-CE; CREATION; OXIDES AB Defects can decrease the efficiency of scintillators by trapping electrons. Here, point defects in REAlO3 and RE3Al5O12 are predicted with pair potential simulations, where RE is yttrium or a trivalent rare earth cation. It was found that REAlO3 shows a preference for Al2O3-excess whereas RE3Al5O12 most readily exhibits RE2O3-excess. Also, lattice volume changes for the energetically favorable intrinsic mechanisms are relatively invariant as a function of RE cation size in RE3Al5O12, but not in REAlO3. However, in non-stoichiometric RE3Al5O12, the energetically preferred disorder mechanism results in an increasing lattice expansion with increasing RE radius whereas, in non-stoichiometric perovskites, a relatively small, radius independent, lattice contraction is predicted. These results illustrate that defect behavior in REAlO3 perovskites and RE3Al5O12 garnets is quite disimilar. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Patel, Ankoor P.; Grimes, Robin W.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Stanek, Chris R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Patel, AP (reprint author), Univ London Imperial Coll Sci Technol & Med, Prince Consort Rd, London SW7 2AZ, England. EM ankoor.patel@imperial.ac.uk NR 53 TC 9 Z9 9 U1 4 U2 36 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD AUG PY 2013 VL 250 IS 8 BP 1624 EP 1631 DI 10.1002/pssb.201248583 PG 8 WC Physics, Condensed Matter SC Physics GA 262BG UT WOS:000327708500027 ER PT J AU Crease, RP AF Crease, Robert P. TI Just-in-time physics SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. EM robert.crease@stonybrook.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD AUG PY 2013 VL 26 IS 8 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 266ZL UT WOS:000328063200013 ER PT J AU Peuker, JM Lynch, P Krier, H Glumac, N AF Peuker, Jennifer Mott Lynch, Patrick Krier, Herman Glumac, Nick TI On AlO Emission Spectroscopy as a Diagnostic in Energetic Materials Testing SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE AlO Emission; Aluminum combustion; Energetics; Explosives ID ALUMINUM PARTICLE COMBUSTION; SOLID-ROCKET MOTOR; TEMPERATURE-MEASUREMENTS; ELEVATED PRESSURE; CARBON-DIOXIDE; LASER-ABLATION; SHOCK-TUBE; IGNITION; TIME; NANOALUMINUM AB The emission of AlO is commonly observed in tests involving aluminum combustion in propellants and explosives. Such emission has been used as a signature of combustion, as a tool for measuring ignition and reaction times, and as a thermometer. This paper provides a critical review of methodologies exploiting AlO emission spectroscopy as a quantitative tool in energetics testing. Controlled tests involving aluminized explosives, as well as those using added alumina, are conducted, in which AlO emission is quantified and compared to total oxidation in the final residue. Experimental parameters such as optical depth and fireball confinement are systematically varied to examine the effect on AlO emission. We find that thermometry using AlO remains valid, and a new approach to using low resolution spectra is proposed. However, AlO emission spectroscopy or photometry can be quantitatively correlated to ignition and burning time, or used to infer the presence or absence of aluminum combustion, only under a limited set of circumstances. Factors that limit the ability to use AlO emission quantitatively are discussed in depth. C1 [Peuker, Jennifer Mott; Krier, Herman; Glumac, Nick] Univ Illinois, Urbana, IL 61801 USA. [Lynch, Patrick] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Peuker, JM (reprint author), Univ Illinois, 1206 W Green St, Urbana, IL 61801 USA. EM glumac@illinois.edu RI Glumac, Nick/C-1730-2015 OI Glumac, Nick/0000-0001-6673-0573 FU ONR [N00014-01-1-0899, N00014-08-1-0772]; DTRA [HDTRA1-07-1-0011, HDTRA-1-10-1-0003] FX This work, which was performed over a period of several years, received funding from several sources including ONR contracts N00014-01-1-0899 and N00014-08-1-0772 under Dr. Judah Gold-wasser and Mr. Dan Tam. In addition, DTRA funding from Dr. William Wilson and Dr. Suhithi Peiris (Contracts HDTRA1-07-1-0011 and HDTRA-1-10-1-0003) supported work in explosive systems. Finally, we wish to thank Dr. Kibong Kim for advice and support during the conduct of this project. His suggestions led directly to our investigation of barrier layer effects on AlO emission. NR 67 TC 8 Z9 8 U1 0 U2 23 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD AUG PY 2013 VL 38 IS 4 BP 577 EP 585 DI 10.1002/prep.201200144 PG 9 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 261KS UT WOS:000327664500017 ER PT J AU Zhou, JY Krovvidi, RK Gao, YQ Gao, H Petritis, BO De, AK Miller-Graziano, CL Bankey, PE Petyuk, VA Nicora, CD Clauss, TR Moore, RJ Shi, TJ Brown, JN Kaushal, A Xiao, WZ Davis, RW Maier, RV Tompkins, RG Qian, WJ Camp, DG Smith, RD AF Zhou, Jian-Ying Krovvidi, Ravi K. Gao, Yuqian Gao, Hong Petritis, Brianne O. De, Asit K. Miller-Graziano, Carol L. Bankey, Paul E. Petyuk, Vladislav A. Nicora, Carrie D. Clauss, Therese R. Moore, Ronald J. Shi, Tujin Brown, Joseph N. Kaushal, Amit Xiao, Wenzhong Davis, Ronald W. Maier, Ronald V. Tompkins, Ronald G. Qian, Wei-Jun Camp, David G., II Smith, Richard D. CA Inflammation Host Response Injury TI Trauma-associated human neutrophil alterations revealed by comparative proteomics profiling SO PROTEOMICS CLINICAL APPLICATIONS LA English DT Article DE Genomics; Human neutrophil; LC-MS; MS; Trauma ID NF-KAPPA-B; TANDEM MASS-SPECTROMETRY; INFLAMMATORY RESPONSE; SHOTGUN PROTEOMICS; CELL-PROLIFERATION; PROTEIN-SYNTHESIS; GENE-EXPRESSION; CANCER-CELLS; APOPTOSIS; ACTIVATION AB PurposePolymorphonuclear neutrophils (PMNs) play an important role in mediating the innate immune response after severe traumatic injury; however, the cellular proteome response to traumatic condition is still largely unknown. Experimental designWe applied 2D-LC-MS/MS-based shotgun proteomics to perform comparative proteome profiling of human PMNs from severe trauma patients and healthy controls. ResultsA total of 197 out of approximate to 2500 proteins (being identified with at least two peptides) were observed with significant abundance changes following the injury. The proteomics data were further compared with transcriptomics data for the same genes obtained from an independent patient cohort. The comparison showed that the protein abundance changes for the majority of proteins were consistent with the mRNA abundance changes in terms of directions of changes. Moreover, increased protein secretion was suggested as one of the mechanisms contributing to the observed discrepancy between protein and mRNA abundance changes. Functional analyses of the altered proteins showed that many of these proteins were involved in immune response, protein biosynthesis, protein transport, NRF2-mediated oxidative stress response, the ubiquitin-proteasome system, and apoptosis pathways. Conclusions and clinical relevanceOur data suggest increased neutrophil activation and inhibited neutrophil apoptosis in response to trauma. The study not only reveals an overall picture of functional neutrophil response to trauma at the proteome level, but also provides a rich proteomics data resource of trauma-associated changes in the neutrophil that will be valuable for further studies of the functions of individual proteins in PMNs. C1 [Zhou, Jian-Ying; Krovvidi, Ravi K.; Gao, Yuqian; Petritis, Brianne O.; Petyuk, Vladislav A.; Nicora, Carrie D.; Clauss, Therese R.; Moore, Ronald J.; Shi, Tujin; Brown, Joseph N.; Qian, Wei-Jun; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Zhou, Jian-Ying; Krovvidi, Ravi K.; Gao, Yuqian; Petritis, Brianne O.; Petyuk, Vladislav A.; Nicora, Carrie D.; Clauss, Therese R.; Moore, Ronald J.; Shi, Tujin; Brown, Joseph N.; Qian, Wei-Jun; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [De, Asit K.; Miller-Graziano, Carol L.; Bankey, Paul E.] Univ Rochester, Sch Med, Dept Surg, Rochester, NY USA. [Gao, Hong; Kaushal, Amit; Xiao, Wenzhong; Davis, Ronald W.] Stanford Univ, Sch Med, Stanford Genome Technol Ctr, Palo Alto, CA 94304 USA. [Xiao, Wenzhong; Maier, Ronald V.] Univ Washington, Harborview Med Ctr, Dept Surg, Seattle, WA 98104 USA. [Tompkins, Ronald G.] Harvard Univ, Sch Med, Dept Surg, Shriners Burn Ctr, Boston, MA 02115 USA. [Tompkins, Ronald G.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Boston, MA USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM rds@pnnl.gov RI Smith, Richard/J-3664-2012; Shi, Tujin/O-1789-2014; OI Smith, Richard/0000-0002-2381-2349; Baker, Henry/0000-0002-8273-5320; Petyuk, Vladislav/0000-0003-4076-151X FU NIH [U54 GM-62119-02, T32 GM-008256, P41 GM103493, DP2OD006668]; EMSL (Environmental Molecular Science Laboratory); US Department of Energy (DOE) Office of Biological and Environmental Research on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington; DOE [DE-AC05-76RLO-1830] FX Portions of this research were supported by NIH grants U54 GM-62119-02 (to R.G.T.) and T32 GM-008256 (to R.G.T.), P41 GM103493 (to R.D.S.), DP2OD006668 (to W.J.Q.), and EMSL (Environmental Molecular Science Laboratory). EMSL is a national scientific user facility sponsored by the US Department of Energy (DOE) Office of Biological and Environmental Research on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. PNNL is operated by Battelle for the DOE under contract DE-AC05-76RLO-1830. NR 81 TC 4 Z9 4 U1 0 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1862-8346 EI 1862-8354 J9 PROTEOM CLIN APPL JI Proteom. Clin. Appl. PD AUG PY 2013 VL 7 IS 7-8 SI SI BP 571 EP 583 DI 10.1002/prca.201200109 PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 263FQ UT WOS:000327792800011 PM 23589343 ER PT J AU Ruszkowski, M Brzezinski, K Jedrzejczak, R Dauter, M Dauter, Z Sikorski, M Jaskolski, M AF Ruszkowski, Milosz Brzezinski, Krzysztof Jedrzejczak, Robert Dauter, Miroslawa Dauter, Zbigniew Sikorski, Michal Jaskolski, Mariusz TI Medicago truncatula histidine-containing phosphotransfer protein Structural and biochemical insights into the cytokinin transduction pathway in plants SO FEBS JOURNAL LA English DT Article DE cytokinin hormone receptor; histidine-aspartate two-component phosphorelay; HPt; phytohormone signal transduction; MtCRE1 ID SECONDARY-STRUCTURE; CRYSTAL-STRUCTURES; PHOSPHORYLATION; COMPLEX; DICTYOSTELIUM; ARABIDOPSIS; REFINEMENT; FEATURES; BINDING; SYSTEMS AB Histidine-containing phosphotransfer proteins (HPts) take part in hormone signal transduction in higher plants. The overall pathway of this process is reminiscent of the two-component system initially identified in prokaryotes. HPts function in histidine-aspartate phosphorelays in which they mediate the signal from sensory kinases (usually membrane proteins) to RRs in the nucleus. Here, we report the crystal structure of an HPt protein from Medicagotruncatula (MtHPt1) determined at 1.45 angstrom resolution and refined to an R-factor of 16.7% using low-temperature synchrotron-radiation X-ray diffraction data. There is one MtHPt1 molecule in the asymmetric unit of the crystal lattice with P2(1)2(1)2(1) symmetry. The protein fold consists of six helices, four of which form a C-terminal helix bundle. The coiled-coil structure of the bundle is stabilized by a network of S-aromatic interactions involving highly conserved sulfur-containing residues. The structure reveals a solvent-exposed side chain of His79, which is the phosphorylation site, as demonstrated by autoradiography combined with site-directed mutation. It is surrounded by highly conserved residues present in all plant HPts. These residues form a putative docking interface for either the receiver domain of the sensory kinase, or for the RR. The biological activity of MtHPt1 was tested by autoradiography. It demonstrated phosphorylation by the intracellular kinase domain of the cytokinin receptor MtCRE1. Complex formation between MtHPt1 and the intracellular fragment of MtCRE1 was confirmed by thermophoresis, with a dissociation constant K-d of 14m. DatabaseThe atomic coordinates and structure factors for the crystal structure of histidine-containing phosphotransfer protein MtHPt1 from Medicagotruncatula have been deposited with the RCSB Protein Data Bank under the accession code 3us6. C1 [Ruszkowski, Milosz; Brzezinski, Krzysztof; Sikorski, Michal; Jaskolski, Mariusz] Polish Acad Sci, Inst Bioorgan Chem, Ctr Biocrystallog Res, Poznan, Poland. [Jedrzejczak, Robert] Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Dauter, Miroslawa] Argonne Natl Lab, SAIC Frederick Inc, Basic Res Program, Argonne, IL 60439 USA. [Jaskolski, Mariusz] Adam Mickiewicz Univ, Fac Chem, Dept Crystallog, PL-60780 Poznan, Poland. RP Jaskolski, M (reprint author), Adam Mickiewicz Univ, Fac Chem, Dept Crystallog, Grunwaldzka 6, PL-60780 Poznan, Poland. EM mariuszj@amu.edu.pl FU European Union within the European Regional Developmental Fund; Polish Ministry of Science and Higher Education [NN 301 003739]; NIH [P41 RR001081]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX We are grateful to Dr Stephen Blanke and Dr Stefan Duhr (NanoTemper Technologies) for making the thermophoresis equipment available to us and to Prof. Jan Wrzesinski (IBCh, PAS, Poznan, Poland) for help with the autoradiography experiment. Financial support of the project was provided by the European Union within the European Regional Developmental Fund and by the Polish Ministry of Science and Higher Education (grant No. NN 301 003739). The pMCSG9 vector was acquired from the Midwest Center for Structural Genomics. X-Ray diffraction data were collected at the Southeast Regional Collaborative Access Team (SER-CAT) beamline of the APS/ANL. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. The CHIMERA package from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, is supported by an NIH grant P41 RR001081. NR 42 TC 3 Z9 3 U1 1 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X EI 1742-4658 J9 FEBS J JI FEBS J. PD AUG PY 2013 VL 280 IS 15 BP 3709 EP 3720 DI 10.1111/febs.12363 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 253ZK UT WOS:000327129100021 PM 23721763 ER PT J AU Johnston-Peck, AC Cullen, DA Tracy, JB AF Johnston-Peck, Aaron C. Cullen, David A. Tracy, Joseph B. TI Composition-Mediated Order-Disorder Transformation in FePt Nanoparticles SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION LA English DT Article DE electron microscopy; intermetallic phases; iron; magnetic materials; platinum ID BIT-PATTERNED MEDIA; OXYGEN REDUCTION; CDSE NANOCRYSTALS; IRON-PLATINUM; PHASE; SUPERLATTICES; MECHANISM; COBALT; ALLOYS C1 [Johnston-Peck, Aaron C.; Tracy, Joseph B.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Cullen, David A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Johnston-Peck, AC (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM jbtracy@ncsu.edu RI Cullen, David/A-2918-2015 OI Cullen, David/0000-0002-2593-7866 FU GAANN fellowship; National Science Foundation [CHE-0943975]; Oak Ridge National Laboratory's SHaRE User Facility; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors thank Giovanna Scarel and Gregory N. Parsons (NCSU) for providing assistance with atomic layer deposition. A.C.J.-P. acknowledges support from a GAANN fellowship. This research was supported by the National Science Foundation (CHE-0943975) and Oak Ridge National Laboratory's SHaRE User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 51 TC 2 Z9 2 U1 2 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0934-0866 EI 1521-4117 J9 PART PART SYST CHAR JI Part. Part. Syst. Charact. PD AUG PY 2013 VL 30 IS 8 BP 678 EP 682 DI 10.1002/ppsc.201300028 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 255OT UT WOS:000327250400008 ER PT J AU Masciola, M Nahon, M Driscoll, F AF Masciola, Marco Nahon, Meyer Driscoll, Frederick TI Preliminary Assessment of the Importance of Platform-Tendon Coupling in a Tension Leg Platform SO JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID DYNAMICS; TLP AB This paper presents performance metrics that can be used to evaluate the response sensitivity of a tension leg platform (TLP) to its tendons. An uncoupled TLP model ignores the intrinsic dynamics and environmental loads on the cables by treating each tendon as an ideal massless spring. A coupled TLP system, in contrast, considers the effects of distributed mass and drag along the tendon. Under certain operating conditions, an uncoupled dynamics model can produce results comparable to its coupled counterpart. This paper defines the conditions under which it is acceptable to model a TLP tendon as a linear spring, as opposed to one that considers the cable dynamics. The analysis is performed in the frequency domain and, for generality, the results are nondimensionalized. The findings indicate that a more elaborate set of conditions than the platform-to-cable mass ratio must be satisfied for the two models to provide similar results. To conclude this study, two simulations are performed and compared against the performance metrics derived in this paper. C1 [Masciola, Marco; Nahon, Meyer] McGill Univ, Dept Mech Engn, Montreal, PQ H3A 2K6, Canada. [Driscoll, Frederick] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Masciola, M (reprint author), McGill Univ, Dept Mech Engn, Montreal, PQ H3A 2K6, Canada. NR 27 TC 1 Z9 1 U1 1 U2 5 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0892-7219 EI 1528-896X J9 J OFFSHORE MECH ARCT JI J. Offshore Mech. Arct. Eng. Trans. ASME PD AUG PY 2013 VL 135 IS 3 AR 031901 DI 10.1115/1.4023795 PG 11 WC Engineering, Ocean; Engineering, Mechanical SC Engineering GA 240QV UT WOS:000326113000022 ER PT J AU Kajimoto, M Priddy, CMO Ledee, DR Xu, C Isern, N Olson, AK Des Rosiers, C Portman, MA AF Kajimoto, Masaki Priddy, Colleen M. O'Kelly Ledee, Dolena R. Xu, Chun Isern, Nancy Olson, Aaron K. Des Rosiers, Christine Portman, Michael A. TI Myocardial Reloading After Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis SO JOURNAL OF THE AMERICAN HEART ASSOCIATION LA English DT Article DE amino acids; congenital heart disease; extracorporeal circulation; metabolism; pediatrics ID CITRIC-ACID CYCLE; CARDIOPULMONARY BYPASS; RAT-HEART; OXIDATIVE-METABOLISM; PYRUVATE; ANAPLEROSIS; CHILDREN; SUPPORT; REPERFUSION AB Background-Extracorporeal membrane oxygenation (ECMO) unloads the heart, providing a bridge to recovery in children after myocardial stunning. ECMO also induces stress which can adversely affect the ability to reload or wean the heart from the circuit. Metabolic impairments induced by altered loading and/or stress conditions may impact weaning. However, cardiac substrate and amino acid requirements upon weaning are unknown. We assessed the hypothesis that ventricular reloading with ECMO modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Methods and Results-Sixteen immature piglets (7.8 to 15.6 kg) were separated into 2 groups based on ventricular loading status: 8-hour ECMO (UNLOAD) and postwean from ECMO (RELOAD). We infused into the coronary artery [2-C-13]-pyruvate as an oxidative substrate and [C-13(6)]-L-leucine as an indicator for amino acid oxidation and protein synthesis. Upon RELOAD, each functional parameter, which were decreased substantially by ECMO, recovered to near-baseline level with the exclusion of minimum dP/dt. Accordingly, myocardial oxygen consumption was also increased, indicating that overall mitochondrial metabolism was reestablished. At the metabolic level, when compared to UNLOAD, RELOAD altered the contribution of various substrates/pathways to tissue pyruvate formation, favoring exogenous pyruvate versus glycolysis, and acetyl-CoA formation, shifting away from pyruvate decarboxylation to endogenous substrate, presumably fatty acids. Furthermore, there was also a significant increase of tissue concentrations for all CAC intermediates (approximate to 80%), suggesting enhanced anaplerosis, and of fractional protein synthesis rates (>70%). Conclusions-RELOAD alters both cytosolic and mitochondrial energy substrate metabolism, while favoring leucine incorporation into protein synthesis rather than oxidation in the CAC. Improved understanding of factors governing these metabolic perturbations may serve as a basis for interventions and thereby improve success rate from weaning from ECMO. C1 [Kajimoto, Masaki; Priddy, Colleen M. O'Kelly; Ledee, Dolena R.; Xu, Chun; Olson, Aaron K.; Portman, Michael A.] Seattle Childrens Res Inst, Ctr Dev Therapeut, Seattle, WA 98101 USA. [Priddy, Colleen M. O'Kelly] Univ Washington, Dept Surg, Seattle, WA 98195 USA. [Isern, Nancy] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Des Rosiers, Christine] Univ Montreal, Dept Nutr, Montreal, PQ H3C 3J7, Canada. [Des Rosiers, Christine] Montreal Heart Inst, Montreal, PQ H1T 1C8, Canada. [Olson, Aaron K.; Portman, Michael A.] Univ Washington, Dept Pediat, Div Cardiol, Seattle, WA 98195 USA. RP Portman, MA (reprint author), Seattle Childrens Res Inst, 1900 9th Ave, Seattle, WA 98101 USA. EM michael.portman@seattlechildrens.org RI Des Rosiers, Christine/O-6285-2014 FU National Heart Lung and Blood Institute of the National Institutes of Health [R01HL60666]; Department of Energy's Office of Biological and Environmental Research FX Research reported in this publication was supported the National Heart Lung and Blood Institute of the National Institutes of Health under award number R01HL60666. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. A portion of the research was performed using Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 23 TC 10 Z9 10 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2047-9980 J9 J AM HEART ASSOC JI J. Am. Heart Assoc. PD AUG PY 2013 VL 2 IS 4 AR e000106 DI 10.1161/JAHA.113.000106 PG 10 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA 243TP UT WOS:000326340900016 PM 23959443 ER PT J AU Morgan, B D'Mello, S Abbott, R Radvansky, G Haass, M Tamplin, A AF Morgan, Brent D'Mello, Sidney Abbott, Robert Radvansky, Gabriel Haass, Michael Tamplin, Andrea TI Individual Differences in Multitasking Ability and Adaptability SO HUMAN FACTORS LA English DT Article DE cognitive abilities; spatial manipulation; working memory; MATB; task switching ID GENERAL FLUID INTELLIGENCE; WORKING-MEMORY; MENTAL ROTATION; TASK; PERFORMANCE; ENVIRONMENT AB Objective: The aim of this study was to identify the cognitive factors that predictability and adaptability during multitasking with a flight simulator. Background: Multitasking has become increasingly prevalent as most professions require individuals to perform multiple tasks simultaneously. Considerable research has been undertaken to identify the characteristics of people (i.e., individual differences) that predict multitasking ability. Although working memory is a reliable predictor of general multitasking ability (i.e., performance in normal conditions), there is the question of whether different cognitive faculties are needed to rapidly respond to changing task demands (adaptability). Method: Participants first completed a battery of cognitive individual differences tests followed by multitasking sessions with a flight simulator. After a baseline condition, difficulty of the flight simulator was incrementally increased via four experimental manipulations, and performance metrics were collected to assess multitasking ability and adaptability. Results: Scholastic aptitude and working memory predicted general multitasking ability (i.e., performance at baseline difficulty), but spatial manipulation (in conjunction with working memory) was a major predictor of adaptability (performance in difficult conditions after accounting for baseline performance). Conclusion: Multitasking ability and adaptability may be overlapping but separate constructs that draw on overlapping (but not identical) sets of cognitive abilities. Application: The results of this study are applicable to practitioners and researchers in human factors to assess multitasking performance in real-world contexts and with realistic task constraints. We also present a framework for conceptualizing multitasking adaptability on the basis of five adaptability profiles derived from performance on tasks with consistent versus increased difficulty. C1 [Morgan, Brent] Univ Memphis, Memphis, TN 38152 USA. [D'Mello, Sidney; Radvansky, Gabriel] Univ Notre Dame, Dept Psychol, Notre Dame, IN 46556 USA. [D'Mello, Sidney] Univ Notre Dame, Dept Comp Sci, Notre Dame, IN 46556 USA. [Abbott, Robert; Haass, Michael] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Tamplin, Andrea] Univ Notre Dame, Cognit Brain & Behav Program, Notre Dame, IN 46556 USA. RP Morgan, B (reprint author), Univ Memphis, 202 Psychol Bldg,400 Innovat Dr, Memphis, TN 38152 USA. EM brent.morgan@memphis.edu FU Sandia National Laboratories' Laboratory-Directed Research and Development (LDRD) [130787]; U.S. Department of Energy [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories' Laboratory-Directed Research and Development (LDRD) Project 130787. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract DE-AC04-94AL85000. NR 41 TC 8 Z9 9 U1 1 U2 23 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0018-7208 EI 1547-8181 J9 HUM FACTORS JI Hum. Factors PD AUG PY 2013 VL 55 IS 4 BP 776 EP 788 DI 10.1177/0018720812470842 PG 13 WC Behavioral Sciences; Engineering, Industrial; Ergonomics; Psychology, Applied; Psychology SC Behavioral Sciences; Engineering; Psychology GA 245ER UT WOS:000326444200006 PM 23964417 ER PT J AU Kim, I Kihm, K AF Kim, Iltai Kihm, Kenneth TI Progressive Dryout of Nanofluids on the Hydrophilic and Hydrophobic Surfaces SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Editorial Material C1 [Kim, Iltai] Sandia Natl Labs, Nanophoton Grp, Ctr Integrated Nanotechnol, Livermore, CA 94550 USA. [Kihm, Kenneth] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. RP Kim, I (reprint author), Sandia Natl Labs, Nanophoton Grp, Ctr Integrated Nanotechnol, Livermore, CA 94550 USA. NR 0 TC 1 Z9 1 U1 1 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD AUG PY 2013 VL 135 IS 8 AR 080911 PG 1 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 241LH UT WOS:000326167900011 ER PT J AU Kirchoff, E Kihm, KD Rosenfeld, J Rawal, S Bilheux, H Walker, L Voisin, S Pratt, D Swanson, A AF Kirchoff, E. Kihm, K. D. Rosenfeld, J. Rawal, S. Bilheux, H. Walker, L. Voisin, S. Pratt, D. Swanson, A. TI Neutron Tomography of Lithium (Li) Menisci inside a Molybdenum (Mo) Heat Pipe SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Editorial Material C1 [Kirchoff, E.; Kihm, K. D.] Univ Tennessee, Knoxville, TN 37996 USA. [Rosenfeld, J.] Thermacore Inc, Lancaster, PA USA. [Rawal, S.] Lockheed Martin Space Syst Co, Denver, CO USA. [Bilheux, H.; Walker, L.; Voisin, S.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Pratt, D.; Swanson, A.] Air Force Res Lab, Wright Patterson AFB, OH USA. RP Kirchoff, E (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. RI Bilheux, Hassina/H-4289-2012 OI Bilheux, Hassina/0000-0001-8574-2449 NR 0 TC 0 Z9 0 U1 0 U2 8 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD AUG PY 2013 VL 135 IS 8 AR 080902 PG 1 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 241LH UT WOS:000326167900002 ER PT J AU Dongarra, J Tourancheau, B AF Dongarra, Jack Tourancheau, Bernard TI Introduction for August Special Issue CCDSC SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Editorial Material C1 [Dongarra, Jack] Univ Tennessee, Knoxville, TN 37996 USA. [Dongarra, Jack] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Tourancheau, Bernard] Univ Grenoble, UMR LIG, Grenoble, France. RP Dongarra, J (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. RI Dongarra, Jack/E-3987-2014 NR 0 TC 0 Z9 0 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD AUG PY 2013 VL 27 IS 3 SI SI BP 231 EP 231 DI 10.1177/1094342013497990 PG 1 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 239AI UT WOS:000325993400001 ER PT J AU Spafford, K Vetter, JS Benson, T Parker, M AF Spafford, Kyle Vetter, Jeffrey S. Benson, Thomas Parker, Mike TI Modeling synthetic aperture radar computation with Aspen SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE performance modeling; Aspen; workload characterization; Echelon; synthetic aperture radar; FFT ID PARALLEL COMPUTATION AB This case study presents an analytical performance model for the DARPA UHPC streaming sensor challenge problem developed using Aspen, a domain-specific language for performance modeling. The model focuses on the exploration of algorithmic tradeoffs, data structures and storage, and the impact of an important tiling factor in the image formation kernel of a synthetic aperture radar image-processing computation. C1 [Spafford, Kyle; Vetter, Jeffrey S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Benson, Thomas] Georgia Tech Res Inst, Atlanta, GA 30332 USA. [Parker, Mike] NVIDIA, Santa Clara, CA USA. RP Vetter, JS (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM vetter@ornl.gov FU Office of Advanced Scientific Computing Research in the U.S. Department of Energy; DARPA [HR0011-10-90008]; Oak Ridge National Laboratory [AC05-00OR22725] FX This research is sponsored by the Office of Advanced Scientific Computing Research in the U.S. Department of Energy and DARPA (contract number HR0011-10-90008). The paper has been authored by Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract DE-AC05-00OR22725 to the U.S. Government. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 14 TC 1 Z9 1 U1 0 U2 6 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD AUG PY 2013 VL 27 IS 3 SI SI BP 255 EP 262 DI 10.1177/1094342013488262 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 239AI UT WOS:000325993400004 ER PT J AU Saltz, JH Teodoro, G Pan, T Cooper, LAD Kong, J Klasky, S Kurc, TM AF Saltz, Joel H. Teodoro, George Pan, Tony Cooper, Lee A. D. Kong, Jun Klasky, Scott Kurc, Tahsin M. TI Feature-based analysis of large-scale spatio-temporal sensor data on hybrid architectures SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE Sensor data; imaging data; data analysis and management; cluster computing; GPGPU ID HIGH-PERFORMANCE AB The analysis of large sensor datasets for structural and functional features has applications in many domains, including weather and climate modeling, characterization of subsurface reservoirs, and biomedicine. The vast amount of data obtained from state-of-the-art sensors and the computational cost of analysis operations create a barrier to such analyses. In this paper, we describe middleware system support to take advantage of large clusters of hybrid CPU-GPU nodes to address the data and compute-intensive requirements of feature-based analyses of large spatio-temporal datasets. C1 [Saltz, Joel H.; Teodoro, George; Pan, Tony; Cooper, Lee A. D.; Kong, Jun; Kurc, Tahsin M.] Emory Univ, Ctr Comprehens Informat, Atlanta, GA 30322 USA. [Saltz, Joel H.; Teodoro, George; Pan, Tony; Cooper, Lee A. D.; Kong, Jun; Kurc, Tahsin M.] Emory Univ, Biomed Informat Dept, Atlanta, GA 30322 USA. [Klasky, Scott; Kurc, Tahsin M.] Oak Ridge Natl Lab, Sci Data Grp, Oak Ridge, TN 37831 USA. RP Saltz, JH (reprint author), Biomed Informat Dept, 36 Eagle Row,Suite 566, Atlanta, GA 30322 USA. EM jhsaltz@emory.edu FU NCI [HHSN261200 800001E]; NLM [5R01LM009239-04, 1R01LM011119-01]; NHLBI [R24HL085343]; NIH [NIH P20EB000591, RC4MD005964]; CTSA Program, NIH, NCATS [UL1TR000454]; NSF [OCI-0910735] FX This work was funded, in part, by contract HHSN261200 800001E by the NCI; and grants 5R01LM009239-04 and 1R01LM011119-01 from the NLM, R24HL085343 from the NHLBI, NIH P20EB000591, RC4MD005964 from NIH, and PHS grant UL1TR000454 from the CTSA Program, NIH, NCATS. This research used resources of the Keeneland Computing Facility at the Georgia Institute of Technology, which is supported by the NSF under contract OCI-0910735. NR 27 TC 1 Z9 1 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD AUG PY 2013 VL 27 IS 3 SI SI BP 263 EP 272 DI 10.1177/1094342013488260 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 239AI UT WOS:000325993400005 ER PT J AU Gainaru, A Cappello, F Snir, M Kramer, W AF Gainaru, Ana Cappello, Franck Snir, Marc Kramer, William TI Failure prediction for HPC systems and applications: Current situation and open issues SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE failure prediction; fault tolerance; signal analysis AB As large-scale systems evolve towards post-petascale computing, it is crucial to focus on providing fault-tolerance strategies that aim to minimize fault's effects on applications. By far the most popular technique is the checkpoint-restart strategy. A complement to this classical approach is failure avoidance, by which the occurrence of a fault is predicted and proactive measures are taken. This requires a reliable prediction system to anticipate failures and their locations. One way of offering prediction is by the analysis of system logs generated during production by large-scale systems. Current research in this field presents a number of limitations that make them unusable for running on real production high-performance computing (HPC) systems. Based on our observations that different failures have different distributions and behaviours, we propose a novel hybrid approach that combines signal analysis with data mining in order to overcome current limitations. We show that by analysing each event according to its specific behaviour, our prediction provides a precision of over 90% and its able to discover about 50% of all failures in a system, result which allows its integration in proactive fault tolerance protocols. C1 [Gainaru, Ana; Kramer, William] Natl Ctr Supercomp Applicat, Urbana, IL USA. [Gainaru, Ana; Snir, Marc] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. [Cappello, Franck] Univ Illinois, Urbana, IL 61801 USA. [Cappello, Franck] INRIA, Le Chesnay, France. [Snir, Marc] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Gainaru, A (reprint author), Univ Illinois, Off NCSA 4017, Natl Ctr Supercomp Aplicat, 1205 W Clark St, Urbana, IL 61801 USA. EM againaru@illinois.edu FU National Science Foundation [OCI 07-25070]; state of Illinois; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (award number OCI 07-25070) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This research was done in the context of the INRIA-Illinois Joint Laboratory for Petascale Computing. This work was also supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 35 TC 5 Z9 5 U1 0 U2 5 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD AUG PY 2013 VL 27 IS 3 SI SI BP 273 EP 282 DI 10.1177/1094342013488258 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 239AI UT WOS:000325993400006 ER PT J AU Carpenter, I Archibald, RK Evans, KJ Larkin, J Micikevicius, P Norman, M Rosinski, J Schwarzmeier, J Taylor, MA AF Carpenter, I. Archibald, R. K. Evans, K. J. Larkin, J. Micikevicius, P. Norman, M. Rosinski, J. Schwarzmeier, J. Taylor, M. A. TI Progress towards accelerating HOMME on hybrid multi-core systems SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE CAM; HOMME; GPU; scalability; tracer ID DYNAMICAL CORE; MODELS; SCHEME AB The suitability of a spectral element based dynamical core (HOMME) within the Community Atmospheric Model (CAM) for GPU-based architectures is examined and initial performance results are reported. This work was done within a project to enable CAM to run at high resolution on next-generation, multi-petaflop systems. The dynamical core is the present focus because it dominates the performance profile of our target problem. HOMME enjoys good scalability due to its underlying cubed-sphere mesh with full two-dimensional decomposition and the localization of all computational work within each element. The thread blocking and code changes that allow HOMME to effectively use GPUs are described along with a rewritten vertical remapping scheme, which improves performance on both CPUs and GPUs. Validation of results in the full HOMME model is also described. We demonstrate that the most expensive kernel in the model executes more than three times faster on the GPU than the CPU. These improvements are expected to provide improved efficiency when incorporated into the full model that has been configured for the target problem. Remaining issues affecting performance include optimizing the boundary exchanges for the case of multiple spectral elements being computed on the GPU. C1 [Carpenter, I.] Natl Renewable Energy Lab, Computat Sci Grp, Golden, CO 80401 USA. [Archibald, R. K.; Norman, M.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Evans, K. J.] Oak Ridge Natl Lab, Computat Earth Sci Grp, Oak Ridge, TN USA. [Larkin, J.] Cray Inc, Oak Ridge, TN USA. [Micikevicius, P.] NVIDIA, Santa Clara, CA USA. [Rosinski, J.] NOAA, ESRL, Boulder, CO USA. [Schwarzmeier, J.] Cray Inc, Chippewa Falls, WI USA. [Taylor, M. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Carpenter, I (reprint author), Natl Renewable Energy Lab, Computat Sci Ctr, 1617 Cole Blvd,MS 1622, Golden, CO 80401 USA. EM Ilene.Carpenter@nrel.gov RI Archibald, Rick/I-6238-2016; OI Archibald, Rick/0000-0002-4538-9780; Evans, Katherine/0000-0001-8174-6450 FU Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX MAT and KJE have been supported by the DOE BER SciDAC project, 'A Scalable and Extensible Earth System'. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract Number DE-AC05-00OR22725. NR 19 TC 5 Z9 5 U1 0 U2 17 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD AUG PY 2013 VL 27 IS 3 SI SI BP 335 EP 347 DI 10.1177/1094342012462751 PG 13 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 239AI UT WOS:000325993400011 ER PT J AU Dubey, A Calder, AC Daley, C Fisher, RT Graziani, C Jordan, GC Lamb, DQ Reid, LB Townsley, DM Weide, K AF Dubey, Anshu Calder, Alan C. Daley, Christopher Fisher, Robert T. Graziani, C. Jordan, George C. Lamb, Donald Q. Reid, Lynn B. Townsley, Dean M. Weide, Klaus TI Pragmatic optimizations for better scientific utilization of large supercomputers SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE FLASH; supercomputer; optimizations; SN Ia; GCD model ID GRAVITATIONALLY CONFINED DETONATION; ASTROPHYSICAL THERMONUCLEAR FLASHES; ADAPTIVE MESH REFINEMENT; IA-SUPERNOVAE; DEFLAGRATION PHASE; CARBON IGNITION; WHITE-DWARF; MODEL; HYDRODYNAMICS; SIMULATIONS AB Advances in modeling and algorithms, combined with growth in computing resources, have enabled simulations of multiphysics-multiscale phenomena that can greatly enhance our scientific understanding. However, on currently available high-performance computing (HPC) resources, maximizing the scientific outcome of simulations requires many trade-offs. In this paper we describe our experiences in running simulations of the explosion phase of Type Ia supernovae on the largest available platforms. The simulations use FLASH, a modular, adaptive mesh, parallel simulation code with a wide user base. The simulations use multiple physics components: hydrodynamics, gravity, a sub-grid flame model, a three-stage burning model, and a degenerate equation of state. They also use Lagrangian tracer particles, which are then post-processed to determine the nucleosynthetic yields. We describe the simulation planning process, and the algorithmic optimizations and trade-offs that were found to be necessary. Several of the optimizations and trade-offs were made during the course of the simulations as our understanding of the challenges evolved, or when simulations went into previously unexplored physical regimes. We also briefly outline the anticipated challenges of, and our preparations for, the next-generation computing platforms. C1 [Dubey, Anshu; Daley, Christopher; Graziani, C.; Jordan, George C.; Lamb, Donald Q.; Weide, Klaus] Univ Chicago, Computat Inst, Flash Ctr Computat Sci Astron & Astrophys, Chicago, IL 60637 USA. [Dubey, Anshu; Daley, Christopher; Graziani, C.; Lamb, Donald Q.] Argonne Natl Lab, Argonne, IL 60439 USA. [Calder, Alan C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY USA. [Reid, Lynn B.] NTEC Environm Technol, Subiaco, WA, Australia. [Reid, Lynn B.] Univ Western Australia, Crawley, WA, Australia. [Townsley, Dean M.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. RP Dubey, A (reprint author), Univ Chicago, Computat Inst, Flash Ctr Computat Sci Astron & Astrophys, 5747 South Ellis Ave, Chicago, IL 60637 USA. EM dubey@flash.uchicago.edu RI Fisher, Robert/J-8667-2014; OI Fisher, Robert/0000-0001-8077-7255; Weide, Klaus/0000-0001-9869-9750 FU ASC/Alliance Program NNSA, US Department of Energy [B523820] FX This work was supported by the ASC/Alliance Program NNSA, US Department of Energy (grant number B523820) to the Flash Center at the University of Chicago. NR 38 TC 5 Z9 5 U1 0 U2 5 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD AUG PY 2013 VL 27 IS 3 SI SI BP 360 EP 373 DI 10.1177/1094342012464404 PG 14 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 239AI UT WOS:000325993400013 ER PT J AU Kerr, M Prime, MB Swenson, H Buechler, MA Steinzig, M Clausen, B Sisneros, T AF Kerr, Matthew Prime, Michael B. Swenson, Hunter Buechler, Miles A. Steinzig, Michael Clausen, Bjorn Sisneros, Thomas TI Residual Stress Characterization in a Dissimilar Metal Weld Nuclear Reactor Piping System Mock Up SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article ID CONTOUR METHOD; DIFFRACTION AB Time-of-flight neutron diffraction, contour method, and surface hole drilling residual stress measurements were conducted at Los Alamos National Lab (LANL) on a lab sized plate specimen (P4) from phase 1 of the joint U. S. Nuclear Regulatory Commission and Electric Power Research Institute Weld Residual Stress (NRC/EPRI WRS) program. The specimen was fabricated from a 304L stainless steel plate containing a seven pass alloy 82 groove weld, restrained during welding and removed from the restraint for residual stress characterization. This paper presents neutron diffraction and contour method results, and compares these experimental stress measurements to a WRS finite element (FE) model. Finally, details are provided on the procedure used to calculate the residual stress distribution in the restrained or as welded condition in order to allow comparison to other residual stress data collected as part of phase 1 of the WRS program. C1 [Kerr, Matthew] US Nucl Regulatory Commiss, Off Nucl Regulatory Res, Washington, DC 20555 USA. [Prime, Michael B.; Swenson, Hunter; Buechler, Miles A.; Steinzig, Michael] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Clausen, Bjorn; Sisneros, Thomas] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Kerr, M (reprint author), Knolls Atom Power Lab, Schenectady, NY 12301 USA. EM matthew.kerr.contractor@unnpp.gov RI Clausen, Bjorn/B-3618-2015; OI Clausen, Bjorn/0000-0003-3906-846X; Prime, Michael/0000-0002-4098-5620 NR 32 TC 0 Z9 0 U1 0 U2 8 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 EI 1528-8978 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD AUG PY 2013 VL 135 IS 4 AR 041205 DI 10.1115/1.4024446 PG 8 WC Engineering, Mechanical SC Engineering GA 239JS UT WOS:000326019500006 ER PT J AU Clifton, A Schreck, S Scott, G Kelley, N Lundquist, JK AF Clifton, Andrew Schreck, Scott Scott, George Kelley, Neil Lundquist, Julie K. TI Turbine Inflow Characterization at the National Wind Technology Center SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID LOW-LEVEL JET; SOUTHERN GREAT-PLAINS; STABLE BOUNDARY-LAYER; SURFACE-LAYER; TURBULENCE MEASUREMENTS; CLIMATOLOGY; TERRAIN; SITE AB Utility-scale wind turbines operate in dynamic flows that can vary significantly over time scales from less than a second to several years. To better understand the inflow to utility-scale turbines on time scales from seconds to minutes, the National Renewable Energy Laboratory installed and commissioned two inflow measurement towers at the National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification for two utility-scale turbines. In this paper, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation, and for the persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from conditions measured at lower levels. C1 [Clifton, Andrew; Schreck, Scott; Scott, George; Lundquist, Julie K.] Natl Wind Technol Ctr, Natl Renewable Energy Lab NREL, Golden, CO 80401 USA. [Lundquist, Julie K.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. RP Clifton, A (reprint author), Natl Wind Technol Ctr, Natl Renewable Energy Lab NREL, Golden, CO 80401 USA. OI Clifton, Andrew/0000-0001-9698-5083; LUNDQUIST, JULIE/0000-0001-5490-2702 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 37 TC 8 Z9 8 U1 0 U2 13 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD AUG PY 2013 VL 135 IS 3 AR 031017 DI 10.1115/1.4024068 PG 11 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 239IV UT WOS:000326017000017 ER PT J AU Ermanoski, I Siegel, NP Stechel, EB AF Ermanoski, Ivan Siegel, Nathan P. Stechel, Ellen B. TI A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE solar fuels; thermochemical; hydrogen; carbon dioxide; synthesis gas; concentrating solar power ID WATER-SPLITTING CYCLE; HYDROGEN-PRODUCTION; NONSTOICHIOMETRIC CERIA; REDOX REACTIONS; CO2; HEAT; COMPOSITES; REDUCTION; SYSTEMS; ZN/ZNO AB We describe and analyze the efficiency of a new solar-thermochemical reactor concept, which employs a moving packed bed of reactive particles produce of H-2 or CO from solar energy and H2O or CO2. The packed bed reactor incorporates several features essential to achieving high efficiency: spatial separation of pressures, temperature, and reaction products in the reactor; solid-solid sensible heat recovery between reaction steps; continuous on-sun operation; and direct solar illumination of the working material. Our efficiency analysis includes material thermodynamics and a detailed accounting of energy losses, and demonstrates that vacuum pumping, made possible by the innovative pressure separation approach in our reactor, has a decisive efficiency advantage over inert gas sweeping. We show that in a fully developed system, using CeO2 as a reactive material, the conversion efficiency of solar energy into H-2 and CO at the design point can exceed 30%. The reactor operational flexibility makes it suitable for a wide range of operating conditions, allowing for high efficiency on an annual average basis. The mixture of H-2 and CO, known as synthesis gas, is not only usable as a fuel but is also a universal starting point for the production of synthetic fuels compatible with the existing energy infrastructure. This would make it possible to replace petroleum derivatives used in transportation in the U. S., by using less than 0.7% of the U. S. land area, a roughly two orders of magnitude improvement over mature biofuel approaches. In addition, the packed bed reactor design is flexible and can be adapted to new, better performing reactive materials. C1 [Ermanoski, Ivan] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Siegel, Nathan P.] Bucknell Univ, Dept Mech Engn, Lewisburg, PA 17837 USA. [Stechel, Ellen B.] Arizona State Univ, LightWorks, Tempe, AZ 85287 USA. RP Ermanoski, I (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM iermano@sandia.gov; nate.siegel@bucknell.edu; Ellen.Stechel@asu.edu FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy Fuel Cell Technologies Program via the Solar Thermochemical Hydrogen (STCH) directive; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to gratefully acknowledge the contributions of James E. Miller, Brian D. Ehrhart, Richard B. Diver, Anthony McDaniel, and Andrea Ambrosini. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, in the form of a Grand Challenge project entitled "Reimagining Liquid Transportation Fuels: Sunshine to Petrol.," and the U.S. Department of Energy Fuel Cell Technologies Program via the Solar Thermochemical Hydrogen (STCH) directive. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 43 TC 60 Z9 60 U1 7 U2 56 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD AUG PY 2013 VL 135 IS 3 AR 031002 DI 10.1115/1.4023356 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 239IV UT WOS:000326017000002 ER PT J AU Florita, AR Brackney, LJ Otanicar, TP Robertson, J AF Florita, Anthony R. Brackney, Larry J. Otanicar, Todd P. Robertson, Jeffrey TI Classification of Commercial Building Electrical Demand Profiles for Energy Storage Applications SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID RENEWABLE ENERGY; THERMAL MASS; SYSTEMS AB Commercial buildings have a significant impact on energy and the environment, being responsible for more than 18% of the annual primary energy consumption in the United States. Analyzing their electrical demand profiles is necessary for the assessment of supply-demand interactions and potential; of particular importance are supply- or demand-side energy storage assets and the value they bring to various stakeholders in the smart grid context. This research developed and applied unsupervised classification of commercial buildings according to their electrical demand profile. A Department of Energy (DOE) database was employed, containing electrical demand profiles representing the United States commercial building stock as detailed in the 2003 Commercial Buildings Consumption Survey (CBECS) and as modeled in the EnergyPlus building energy simulation tool. The essence of the approach was: (1) discrete wavelet transformation of the electrical demand profiles, (2) energy and entropy feature extraction (absolute and relative) from the wavelet levels at definitive time frames, and (3) Bayesian probabilistic hierarchical clustering of the features to classify the buildings in terms of similar patterns of electrical demand. The process yielded a categorized and more manageable set of representative electrical demand profiles, inference of the characteristics influencing supply-demand interactions, and a test bed for quantifying the impact of applying energy storage technologies. C1 [Florita, Anthony R.; Brackney, Larry J.] Natl Renewable Energy Lab, Elect Resources & Bldg Syst Integrat Ctr, Golden, CO 80401 USA. [Otanicar, Todd P.] Univ Tulsa, Dept Mech Engn, Tulsa, OK 74104 USA. [Robertson, Jeffrey] Loyola Marymount Univ, Dept Mech Engn, Los Angeles, CA 90045 USA. RP Florita, AR (reprint author), Natl Renewable Energy Lab, Elect Resources & Bldg Syst Integrat Ctr, Golden, CO 80401 USA. EM anthony.florita@nrel.gov NR 16 TC 3 Z9 3 U1 0 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD AUG PY 2013 VL 135 IS 3 AR 031020 DI 10.1115/1.4024029 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 239IV UT WOS:000326017000020 ER PT J AU Kragh, KA Fleming, PA Scholbrock, AK AF Kragh, Knud A. Fleming, Paul A. Scholbrock, Andrew K. TI Increased Power Capture by Rotor Speed-Dependent Yaw Control of Wind Turbines SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article AB When extracting energy from the wind using upwind, horizontal-axis wind turbines, a primary condition for ensuring maximum power yield is the ability to align the rotor axis with the dominating wind direction. Attempts have been made to improve the yaw alignment of wind turbines by applying advanced measurement technologies, such as light detection and ranging systems. However, application of advanced measurement equipment is associated with additional costs and increased system complexity. This study is focused on assessing the current performance of an operating turbine and exploring how the yaw alignment can be improved using measurements from the existing standard measurements system. By analyzing data from a case turbine and a corresponding meteorological mast, a correction scheme for the original yaw control system is suggested. The correction scheme is applied to the case turbine and tested. Results show that, with the correction scheme in place, the yaw alignment of the case turbine is improved and the yaw error is reduced to the vicinity of zero degrees. As a result of the improved yaw alignment, an increased power capture is observed for below-rated wind speeds. C1 [Kragh, Knud A.] Tech Univ Denmark, Dept Wind Energy, DK-4000 Roskilde, Denmark. [Fleming, Paul A.; Scholbrock, Andrew K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kragh, KA (reprint author), Tech Univ Denmark, Dept Wind Energy, DK-4000 Roskilde, Denmark. EM knkr@dtu.dk; Paul.fleming@nrel.gov FU Wind and Water Power Program, Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy [DE-AC02-05CH11231] FX Invaluable support for this work was provided by Lee Jay Fingersh, Garth Johnson, Scott Wilde, Mark Murphy, Jerry Hur, Syhoune Thao, and Don Baker of NREL. NREL's contributions to this study were funded by the Wind and Water Power Program, Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. The authors are solely responsible for any omission or errors contained herein. NR 13 TC 4 Z9 4 U1 1 U2 8 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD AUG PY 2013 VL 135 IS 3 AR 031018 DI 10.1115/1.4023971 PG 7 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 239IV UT WOS:000326017000018 ER PT J AU Lee, S Churchfield, MJ Moriarty, PJ Jonkman, J Michalakes, J AF Lee, S. Churchfield, M. J. Moriarty, P. J. Jonkman, J. Michalakes, J. TI A Numerical Study of Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID BOUNDARY-LAYER; SIMULATIONS AB Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5 MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data are collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact. C1 [Lee, S.; Churchfield, M. J.; Moriarty, P. J.; Jonkman, J.; Michalakes, J.] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA. RP Lee, S (reprint author), Natl Renewable Energy Lab, Natl Wind Technol Ctr, 15013 Denver West Pkwy,MS 3811, Golden, CO 80401 USA. EM Sang.Lee@nrel.gov FU National Renewable Energy Laboratory's LDRD program FX The authors gratefully acknowledge the financial support provided by the National Renewable Energy Laboratory's LDRD program. All of the computations were performed on the Red Mesa high-performance computing system of the National Renewable Energy Laboratory. Discussions and guidance by Marshall Buhl has been greatly appreciated. NR 31 TC 7 Z9 7 U1 0 U2 17 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD AUG PY 2013 VL 135 IS 3 AR 031001 DI 10.1115/1.4023319 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 239IV UT WOS:000326017000001 ER PT J AU Zhu, GD AF Zhu, Guangdong TI Study of the Optical Impact of Receiver Position Error on Parabolic Trough Collectors SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article AB A newly developed analytical optical approach-first-principle OPTical intercept calculation (FirstOPTIC)-is employed to study the optical impact of receiver position error on parabolic trough collectors. The FirstOPTIC method treats optical error sources the way they are typically characterized in laboratory measurements using a geometrical or optical interpretation. By analyzing a large number of cases with varying system parameters, such as overall system optical error and the collector's geometrical parameters, a practical correlation between actual measurement data and its corresponding error-convolution approximation for receiver position error is established from parametric study; the correlation enables a direct comparison of receiver position error to the sun shape and other optical error sources (such as mirror specularity and slope error) with respect to the collector optical performance. The effective coefficients that define the correlation of actual measurement data and its error-convolution approximation for receiver position error are also summarized for several existing trough collectors; these make it convenient to characterize the relative impact of receiver position error compared with other optical error sources, which was not straightforward in the past. It is shown that FirstOPTIC is a suitable tool for in-depth optical analysis and fast collector design optimization, which otherwise require computationally intensive ray-tracing simulations. C1 Natl Renewable Energy Lab, Concentrating Solar Power Program, Golden, CO 80401 USA. RP Zhu, GD (reprint author), Natl Renewable Energy Lab, Concentrating Solar Power Program, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Guangdong.Zhu@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory (NREL) FX This work was supported by the U.S. Department of Energy under the Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory (NREL). Thanks to Allan Lewandowski, Mike Wagner, Ty Neises, and Chuck Kutscher in the NREL's Thermal Systems Group for their valuable comments on this work. NR 13 TC 2 Z9 3 U1 1 U2 7 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD AUG PY 2013 VL 135 IS 3 AR 031021 DI 10.1115/1.4024247 PG 5 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 239IV UT WOS:000326017000021 ER PT J AU Kita, NT Yin, QZ MacPherson, GJ Ushikubo, T Jacobsen, B Nagashima, K Kurahashi, E Krot, AN Jacobsen, SB AF Kita, Noriko T. Yin, Qing-Zhu MacPherson, Glenn J. Ushikubo, Takayuki Jacobsen, Benjamin Nagashima, Kazuhide Kurahashi, Erika Krot, Alexander N. Jacobsen, Stein B. TI 26Al-26Mg isotope systematics of the first solids in the early solar system SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID ALUMINUM-RICH INCLUSIONS; REFRACTORY INCLUSIONS; CARBONACEOUS-CHONDRITE; AL-26-MG-26 SYSTEMATICS; INITIAL AL-26/AL-27; HETEROGENEOUS DISTRIBUTION; CONTEMPORANEOUS FORMATION; CA,AL-RICH INCLUSIONS; PROTOPLANETARY DISKS; ALLENDE METEORITE AB High-precision bulk aluminum-magnesium isotope measurements of calcium-aluminum-rich inclusions (CAIs) from CV carbonaceous chondrites in several laboratories define a bulk 26Al-26Mg isochron with an inferred initial 26Al/27Al ratio of approximately 5.25x10-5, named the canonical ratio. Nonigneous CV CAIs yield well-defined internal 26Al-26Mg isochrons consistent with the canonical value. These observations indicate that the canonical 26Al/27Al ratio records initial Al/Mg fractionation by evaporation and condensation in the CV CAI-forming region. The internal isochrons of igneous CV CAIs show a range of inferred initial 26Al/27Al ratios, (4.2-5.2)x10-5, indicating that CAI melting continued for at least 0.2Ma after formation of their precursors. A similar range of initial 26Al/27Al ratios is also obtained from the internal isochrons of many CAIs (igneous and nonigneous) in other groups of carbonaceous chondrites. Some CAIs and refractory grains (corundum and hibonite) from unmetamorphosed or weakly metamorphosed chondrites, including CVs, are significantly depleted in 26Al. At least some of these refractory objects may have formed prior to injection of 26Al into the protosolar molecular cloud and its subsequent homogenization in the protoplanetary disk. Bulk aluminum and magnesium-isotope measurements of various types of chondrites plot along the bulk CV CAI isochron, suggesting homogeneous distribution of 26Al and magnesium isotopes in the protoplanetary disk after an epoch of CAI formation. The inferred initial 26Al/27Al ratios of chondrules indicate that most chondrules formed 1-3Ma after CAIs with the canonical 26Al/27Al ratio. C1 [Kita, Noriko T.; Ushikubo, Takayuki] Univ Wisconsin, Dept Geosci, WiscSIMS, Madison, WI 53706 USA. [MacPherson, Glenn J.] Smithsonian Inst, US Natl Museum Nat Hist, Dept Mineral Sci, Washington, DC 20560 USA. [Jacobsen, Benjamin] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Nagashima, Kazuhide; Krot, Alexander N.] Univ Hawaii Manoa, Sch Ocean Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Kurahashi, Erika] Univ Munster, Inst Mineral, D-48149 Munster, Germany. [Jacobsen, Stein B.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Kita, NT (reprint author), Univ Wisconsin, Dept Geosci, WiscSIMS, Madison, WI 53706 USA. EM noriko@geology.wisc.edu RI Yin, Qing-Zhu/B-8198-2009; Kita, Noriko/H-8035-2016 OI Yin, Qing-Zhu/0000-0002-4445-5096; Kita, Noriko/0000-0002-0204-0765 FU NASA [NNX09AB88G, NNX11AJ51G, NNX11AD43G, NNX11 AK82G, NNX10AH76G]; UC Laboratory Fees Research Program [12_LR-237921] FX The authors acknowledge the organizing committee of the Workshop on "Formation of the First Solid in the Solar System" for the opportunity of this article. The constructive comments by Joel Baker and James Connelly and the careful handling by associate editor Edward Scott improved clarity of the manuscript significantly. This work is supported by NASA programs (NNX09AB88G, NK; NNX11AJ51G, QZY; NNX11AD43G, GJM; NNX11 AK82G, SBJ; NNX10AH76G, ANK) and UC Laboratory Fees Research Program 12_LR-237921 to QZY. NR 99 TC 40 Z9 40 U1 1 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2013 VL 48 IS 8 BP 1383 EP 1400 DI 10.1111/maps.12141 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 237KC UT WOS:000325867500002 ER PT J AU Bullock, ES Knight, KB Richter, FM Kita, NT Ushikubo, T MacPherson, GJ Davis, AM Mendybaev, RA AF Bullock, Emma S. Knight, Kim B. Richter, Frank M. Kita, Noriko T. Ushikubo, Takayuki MacPherson, Glenn J. Davis, Andrew M. Mendybaev, Ruslan A. TI Mg and Si isotopic fractionation patterns in types B1 and B2 CAIs: Implications for formation under different nebular conditions SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID AL-RICH INCLUSIONS; REFRACTORY INCLUSIONS; CRYSTALLIZATION SEQUENCES; ALLENDE METEORITE; MELILITE; CONDENSATION; EVAPORATION; LIQUIDS; CHONDRITES; EVOLUTION AB Magnesium and silicon isotopic profiles across melilite grains in two type B1 and two type B2 calcium-aluminum-rich inclusions (CAIs) reveal differing but constant enrichments in heavy isotopes everywhere except 1000m from the CAI margins. There is no close correlation in the B1s or the B2s between isotopic composition and akermanite content of the melilite, a measure of progressive igneous crystallization, yet such a correlation might be expected in a type B2: without a melilite mantle (as in B1s) to seal the interior off and prevent further evaporation, the melt would have maintained communication with the external gas. These observations indicate a model in which B1s and B2s solidified under differing conditions. The B2s solidified under lower hydrogen pressures (PH210-4-10-5 bars) than did B1s (PH2>10-4 bars), so surface volatilization was slower in the B2s and internal chemical and isotopic equilibrium was maintained over the interval of melilite crystallization. The outermost zones of the CAIs (1000m from the edge) are not consistently enriched in heavy isotopes relative to the interiors, as might be expected from diffusion-limited surface evaporation of the melt. In all cases, the magnesium in the CAI margins is lighter than in the interiors. In one case, silicon in the margin also is lighter, but locally in some CAIs, it is isotopically heavier near the surface. If melt evaporation played a role in the formation of these outer zones, a later event in many cases caused isotopic re-equilibration with an external and isotopically near-normal reservoir. C1 [Bullock, Emma S.; MacPherson, Glenn J.] Smithsonian Inst, US Natl Museum Nat Hist, Washington, DC 20560 USA. [Knight, Kim B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Richter, Frank M.; Davis, Andrew M.; Mendybaev, Ruslan A.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Kita, Noriko T.; Ushikubo, Takayuki] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Davis, Andrew M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Bullock, ES (reprint author), Smithsonian Inst, US Natl Museum Nat Hist, Washington, DC 20560 USA. EM bullockE@si.edu RI Kita, Noriko/H-8035-2016; OI Kita, Noriko/0000-0002-0204-0765; Davis, Andrew/0000-0001-7955-6236 FU NASA [NNX09AG39G, NNX09AB88G, NNX11AD43G, NNX09AG38G]; NSF [EAR03-19230, EAR07-44079] FX The manuscript was greatly improved by careful and thoughtful reviews by Drs. Christine Floss (Assoc. Ed.), Yunbin Guan, Julie Paque, and Steve Simon. This work was supported by NASA grants NNX09AG39G (A. M. D., PI), NNX09AB88G (N. K., PI), NNX11AD43G (G. J. M., PI), and NNX09AG38G (F. R., PI). WiscSIMS is partly supported by NSF (EAR03-19230, EAR07-44079). NR 34 TC 7 Z9 7 U1 2 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2013 VL 48 IS 8 BP 1440 EP 1458 DI 10.1111/maps.12158 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 237KC UT WOS:000325867500006 ER PT J AU Rebel, B Mufson, S AF Rebel, B. Mufson, S. TI The search for neutrino-antineutrino mixing resulting from Lorentz invariance violation using neutrino interactions in MINOS SO ASTROPARTICLE PHYSICS LA English DT Article DE Neutrino; Lorentz invariance; CPT AB We searched for a sidereal modulation in the rate of neutrinos produced by the NuMI beam and observed by the MINOS far detector. The detection of such harmonic signals could be a signature of neutrino-anti-neutrino mixing due to Lorentz and CPT violation as described by the Standard-Model Extension framework. We found no evidence for these sidereal signals and we placed limits on the coefficients in this theory describing the effect. This is the first report of limits on these neutrino-anti-neutrino mixing coefficients. (c) 2013 Elsevier B.V. All rights reserved. C1 [Rebel, B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Mufson, S.] Indiana Univ, Bloomington, IN 47405 USA. RP Rebel, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM brebel@fnal.gov; mufson@astro.indiana.edu FU Indiana University Center for Spacetime Symmetries (IUCSS); U.S. Department of Energy Office of Science [DE-FG02-91ER40661] FX We gratefully acknowledge our many valuable conversations with Alan Kostelecky and Jorge Diaz during the course of this work. This work was supported in part by the Indiana University Center for Spacetime Symmetries (IUCSS) and by the U.S. Department of Energy Office of Science through grant DE-FG02-91ER40661 to Indiana University. We thank the MINOS collaboration for releasing the timestamp information for the neutrino interactions used in this analysis. We are grateful to the Minnesota Department of Natural Resources, the crew of the Soudan Underground Laboratory, and the staff of Fermilab for their contributions to this effort. NR 21 TC 15 Z9 15 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD AUG PY 2013 VL 48 BP 78 EP 81 DI 10.1016/j.astropartphys.2013.07.006 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 234VK UT WOS:000325672200010 ER PT J AU Wang, XM Whitehead, JP AF Wang, Xiaoming Whitehead, Jared P. TI A bound on the vertical transport of heat in the 'ultimate' state of slippery convection at large Prandtl numbers SO JOURNAL OF FLUID MECHANICS LA English DT Article DE Benard convection; mantle convection; turbulent convection ID RAYLEIGH-BENARD CONVECTION; THERMAL-CONVECTION; TURBULENT CONVECTION; ENERGY-DISSIPATION; BOUSSINESQ SYSTEM; UNIFYING THEORY; BEHAVIOR; FLUID; LAYER AB An upper bound on the rate of vertical heat transport is established in three dimensions for stress-free velocity boundary conditions on horizontally periodic plates. A variation of the background method is implemented that allows negative values of the quadratic form to yield 'small' (O (1/Pr)) corrections to the subsequent bound. For large (but finite) Prandtl numbers this bound is an improvement over the 'ultimate' Ra-1/2 scaling and, in the limit of infinite Pr, agrees with the bound of Ra-5/12 recently derived in that limit for stress-free boundaries. C1 [Wang, Xiaoming] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA. [Whitehead, Jared P.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Whitehead, JP (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM whitehead@lanl.gov FU National Science Foundation [DMS1008852]; US Department of Energy through the LANL/LDRD Program FX We thank R. Wittenberg for careful comments and criticism of this manuscript as well as the thoughtful insights of three anonymous reviewers. This work is supported in part by the National Science Foundation through DMS1008852, and the US Department of Energy through the LANL/LDRD Program. NR 49 TC 3 Z9 3 U1 1 U2 2 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD AUG PY 2013 VL 729 BP 103 EP 122 DI 10.1017/jfm.2013.289 PG 20 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 190YK UT WOS:000322379400006 ER PT J AU Morgan, B Duraisamy, K Nguyen, N Kawai, S Lele, SK AF Morgan, Brandon Duraisamy, K. Nguyen, N. Kawai, S. Lele, S. K. TI Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction SO JOURNAL OF FLUID MECHANICS LA English DT Article DE turbulence modelling; turbulence simulation; wave-turbulence interactions ID DIRECT NUMERICAL-SIMULATION; SHOCK-INDUCED SEPARATION; LARGE-EDDY SIMULATION; TURBULENCE; UNSTEADINESS; MOTIONS; REGION AB Large-eddy simulation (LES) is utilized to investigate flow physics and lower-fidelity modelling assumptions in the simulation of an oblique shock impinging on a supersonic turbulent boundary layer (OSTBLI). A database of LES solutions is presented, covering a range of shock strengths and Reynolds numbers, that is utilized as a surrogate-truth model to explore three topics. First, detailed conservation budgets are extracted within the framework of parametric investigation to identify trends that might be used to mitigate statistical (aleatory) uncertainties in inflow conditions. It is found, for instance, that an increase in Reynolds number does not significantly affect length of separation. Additionally, it is found that variation in the shock-generating wedge angle has the effect of increasing the intensity of low-frequency oscillations and moving these motions towards longer time scales, even when scaled by interaction length. Next, utilizing the LES database, a detailed analysis is performed of several existing models describing the low-frequency unsteady motion of the OSTBLI system. Most significantly, it is observed that the length scale of streamwise coherent structures appears to be dependent on Reynolds number, and at the Reynolds number of the present simulations, these structures do not exist on time scales long enough to be the primary cause of low-frequency unsteadiness. Finally, modelling errors associated with turbulence closures using eddy-viscosity and stress-transport-based Reynolds-averaged Navier-Stokes (RANS) simulations are investigated. It is found that while the stress-transport models offer improved predictions, inadequacies in modelling the turbulence transport terms and the isotropic treatment of the dissipation is seen to limit their accuracy. C1 [Morgan, Brandon; Duraisamy, K.; Nguyen, N.; Kawai, S.; Lele, S. K.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. RP Morgan, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM bmorgan1@stanford.edu FU DoD; AFOSR; NDSEG; DoE PSAAP Program; 32 CFR 168a FX This research was conducted with government support under and awarded by DoD, AFOSR, NDSEG Fellowship, 32 CFR 168a and by the DoE PSAAP Program. Computer time has been provided by NASA NAS, HPCC at LLNL, and HPC at LANL. We would also like to recognize Dr M. R. Visbal at AFRL for providing the FDL3DI code that has been extended and used in the present study. NR 68 TC 11 Z9 12 U1 1 U2 31 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD AUG PY 2013 VL 729 BP 231 EP 284 DI 10.1017/jfm.2013.301 PG 54 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 190YK UT WOS:000322379400011 ER PT J AU Sundriyal, V Sosonkina, M Gaenko, A Zhang, Z AF Sundriyal, Vaibhav Sosonkina, Masha Gaenko, Alexander Zhang, Zhao TI Energy saving strategies for parallel applications with point-to-point communication phases SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Dynamic voltage and frequency scaling; Point-to-point communications; Multicore platforms; GAMESS ID DISTRIBUTED DATA INTERFACE AB Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This paper advocates for a runtime assessment of such overheads by means of characterizing point-to-point communications into phases followed by analyzing the time gaps between the communication calls. Certain communication and architectural parameters are taken into consideration in the three proposed frequency scaling strategies, which differ with respect to their treatment of the time gaps. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. For the latter, three different process-to-core mappings were studied as to their energy savings under the proposed frequency scaling strategies and under the existing state-of-the-art techniques. Close to the maximum energy savings were obtained with a low performance loss of 2% on the given platform. (C) 2013 Elsevier Inc. All rights reserved. C1 [Sundriyal, Vaibhav; Sosonkina, Masha; Gaenko, Alexander] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Sundriyal, Vaibhav; Zhang, Zhao] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Sosonkina, Masha] Old Dominion Univ, Dept Modeling Simulat & Visualizat Engn, Norfolk, VA 23529 USA. RP Sundriyal, V (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vaibhavs@iastate.edu; masha@scl.ameslab.gov; alex@si.msg.chem.iastate.edu; zzhang@iastate.edu FU Ames Laboratory; Iowa State University [DE-AC02-07CH11358]; U.S. Department of Energy; Air Force Office of Scientific Research [FA9550-12-1-0476]; National Science Foundation [NSF/OCI-0941434, 0904782, 1047772] FX This work was supported in part by Ames Laboratory and Iowa State University under the contract DE-AC02-07CH11358 with the U.S. Department of Energy, by the Air Force Office of Scientific Research under the AFOSR award FA9550-12-1-0476, and by the National Science Foundation grants NSF/OCI-0941434, 0904782, 1047772. NR 37 TC 3 Z9 3 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 EI 1096-0848 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD AUG PY 2013 VL 73 IS 8 BP 1157 EP 1169 DI 10.1016/j.jpdc.2013.03.006 PG 13 WC Computer Science, Theory & Methods SC Computer Science GA 230AI UT WOS:000325308600013 ER PT J AU Dimitrov, IK Si, WD Ku, W Han, SJ Jaroszynski, J AF Dimitrov, I. K. Si, W. D. Ku, W. Han, S. J. Jaroszynski, J. TI Unusual persistence of superconductivity against high magnetic fields in the strongly-correlated iron-chalcogenide film FeTe:O-x SO LOW TEMPERATURE PHYSICS LA English DT Article ID HEAVY-FERMION; STATE; TEMPERATURE; PNICTIDES; SPIN AB We report an unusual persistence of superconductivity against high magnetic fields in the iron-chalcogenide film FeTe:O-x below approximate to 2.5 K. Instead of saturating, like mean-field behavior with a single order parameter, the measured low-temperature upper critical field increases progressively, suggesting a large supply of superconducting states accessible via magnetic field or low-energy thermal fluctuations. We demonstrate that superconducting states of finite momenta can be realized within the conventional theory, despite its questionable applicability. Our findings reveal a fundamental characteristic of superconductivity and electronic structure in the strongly correlated iron-based superconductors. (C) 2013 AIP Publishing LLC. C1 [Dimitrov, I. K.; Si, W. D.; Ku, W.; Han, S. J.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Jaroszynski, J.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Dimitrov, IK (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM idimitrov@bnl.gov; wds@bnl.gov FU Office of Science, U.S. Department of Energy, Materials Sciences and Engineering Division [DE-AC02-98CH10886]; NSF by the State of Florida [DMR-1157490]; DOE FX The work at Brookhaven National Laboratory was supported by the Office of Science, U.S. Department of Energy, Materials Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-1157490 by the State of Florida, and by the DOE. I. K. D. wishes to thank Vyacheslav Solovyov and Silvia Haindl for critical reading of the manuscript and helpful suggestions. NR 39 TC 3 Z9 3 U1 4 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1063-777X EI 1090-6517 J9 LOW TEMP PHYS+ JI Low Temp. Phys. PD AUG PY 2013 VL 39 IS 8 BP 680 EP 684 DI 10.1063/1.4818790 PG 5 WC Physics, Applied SC Physics GA 223OO UT WOS:000324815900003 ER PT J AU McNulty, NP Wu, M Erickson, AR Pan, CL Erickson, BK Martens, EC Pudlo, NA Muegge, BD Henrissat, B Hettich, RL Gordon, JI AF McNulty, Nathan P. Wu, Meng Erickson, Alison R. Pan, Chongle Erickson, Brian K. Martens, Eric C. Pudlo, Nicholas A. Muegge, Brian D. Henrissat, Bernard Hettich, Robert L. Gordon, Jeffrey I. TI Effects of Diet on Resource Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a Symbiont with an Extensive Glycobiome SO PLOS BIOLOGY LA English DT Article ID PROTEIN IDENTIFICATIONS; MASS-SPECTROMETRY; ESCHERICHIA-COLI; GNOTOBIOTIC MICE; HUMAN INTESTINE; METABOLISM; GENE; THETAIOTAOMICRON; POLYSACCHARIDE; EXPRESSION AB The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs) in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising >90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism's 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These results offer insight into how gut microbes adapt to dietary perturbations at both a community level and from the perspective of a well-adapted symbiont with exceptional saccharolytic capabilities, and illustrate the value of artificial communities. C1 [McNulty, Nathan P.; Wu, Meng; Muegge, Brian D.; Gordon, Jeffrey I.] Washington Univ, Sch Med, Ctr Genome Sci & Syst Biol, St Louis, MO 63130 USA. [Erickson, Alison R.; Hettich, Robert L.] Univ Tennessee, Grad Sch Genome Sci & Technol, Oak Ridge Natl Lab, Knoxville, TN USA. [Erickson, Alison R.; Pan, Chongle; Erickson, Brian K.; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Martens, Eric C.; Pudlo, Nicholas A.] Univ Michigan, Sch Med, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA. [Henrissat, Bernard] CNRS, Marseille, France. [Henrissat, Bernard] Aix Marseille Univ, Marseille, France. RP McNulty, NP (reprint author), Washington Univ, Sch Med, Ctr Genome Sci & Syst Biol, St Louis, MO 63130 USA. EM jgordon@wustl.edu RI Henrissat, Bernard/J-2475-2012; Hettich, Robert/N-1458-2016 OI Hettich, Robert/0000-0001-7708-786X FU NIH [DK30292, DK70977]; Crohn's and Colitis Foundation of America; European Research Council under European Union [322820]; ORNL Laboratory FX The majority of this work was supported by grants from the NIH (DK30292, DK70977). Other sources of support included the Crohn's and Colitis Foundation of America, the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 322820, and an ORNL Laboratory Director's Exploratory Seed Money grant (for metaproteomics). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 67 TC 63 Z9 64 U1 8 U2 55 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1545-7885 J9 PLOS BIOL JI PLoS. Biol. PD AUG PY 2013 VL 11 IS 8 AR e1001637 DI 10.1371/journal.pbio.1001637 PG 20 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 209PR UT WOS:000323771900015 PM 23976882 ER PT J AU Zhang, DZ Jackson, JM Chen, B Sturhahn, W Zhao, JY Yan, JY Caracas, R AF Zhang, Dongzhou Jackson, Jennifer M. Chen, Bin Sturhahn, Wolfgang Zhao, Jiyong Yan, Jinyuan Caracas, Razvan TI Elasticity and lattice dynamics of enstatite at high pressure SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE enstatite; elasticity; lattice dynamics; upper mantle; sound velocities; equation of state ID NUCLEAR RESONANT SCATTERING; FUNCTIONAL PERTURBATION-THEORY; MANTLE SHEAR STRUCTURE; EQUATION-OF-STATE; ORTHO-PYROXENE; MGSIO3 ORTHOENSTATITE; SOUND VELOCITIES; PHASE-TRANSITION; SEISMIC VELOCITIES; 1073 K AB The behavior of synthetic-powdered Fe-57-enriched enstatite (Mg0.980Fe0.020(5))(Mg0.760Fe0.240)Si2O6 has been explored by X-ray diffraction (XRD) and nuclear resonant inelastic X-ray scattering (NRIXS). The Pbca-structured enstatite sample was compressed in fine pressure increments for our independent XRD measurements. One structural transition between 10.1 and 12.2GPa has been identified from the XRD data. The XRD reflections observed for the high-pressure phase are best matched with space group P2(1)/c. We combine density functional theory with Mossbauer spectroscopy and NRIXS to understand the local site symmetry of the Fe atoms in our sample. A third-order Birch-Murnaghan (BM3) equation of state fitting gives K-T0=1035GPa and KT0=132 for the Pbca phase. At 12GPa, a BM3 fitting gives K-T12=22010GPa with KT12=84 for the P2(1)/c phase. NRIXS measurements were performed with in situ XRD up to 17GPa. The partial phonon density of states (DOS) was derived from the raw NRIXS data, and from the low-energy region of the DOS, the Debye sound velocity was determined. We use the equation of state determined from XRD and Debye sound velocity to compute the isotropic compressional (V-P) and shear (V-S) wave velocities of enstatite at different pressures. Our results help constrain the high-pressure properties of Pbca-structured enstatite in the Earth's upper mantle. We find that candidate upper mantle phase assemblages containing Pbca-structured enstatite are associated with shear velocity gradients that are higher than the average Earth model PREM but lower than regional studies down to about 250km depth. C1 [Zhang, Dongzhou; Jackson, Jennifer M.; Chen, Bin; Sturhahn, Wolfgang] CALTECH, Div Geol & Planetary Sci, Seismol Lab, Pasadena, CA 91125 USA. [Zhao, Jiyong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Yan, Jinyuan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Caracas, Razvan] Univ Lyon 1, Ecole Normale Super Lyon, CNRS, F-69365 Lyon, France. RP Zhang, DZ (reprint author), CALTECH, Div Geol & Planetary Sci, Seismol Lab, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM dzzhang@caltech.edu RI Chen, Bin/A-5980-2008; Caracas, Razvan/C-8115-2012; Zhang, Dongzhou/D-9604-2017 OI Zhang, Dongzhou/0000-0002-6679-892X FU NSF [CAREER EAR-0956166]; Tectonics Observatory at Caltech through the Gordon and Betty Moore Foundation; COMPRES under NSF Cooperative Agreement [EAR 06-49658] FX We thank C. A. Murphy, J. K. Wicks, and A. S. Wolf for help in conducting experiments and Y. Fei for synthesizing the sample. We thank the NSF (CAREER EAR-0956166) and the Tectonics Observatory at Caltech (funded through the Gordon and Betty Moore Foundation) for support of this research. Use of the Advanced Photon Source was supported by the U.S. D.O.E., O.S., and O.B.E.S. (DE-AC02-06CH11357). Use of the Advanced Light Source was supported by the U.S. D.O.E., O.S., and O.B.E.S. (DE-AC02-05CH11231). Sector 3 operations, the gas-loading system at GSECARS, and beamline 12.2.2 are supported in part by COMPRES under NSF Cooperative Agreement EAR 06-49658. NR 73 TC 8 Z9 8 U1 2 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD AUG PY 2013 VL 118 IS 8 BP 4071 EP 4082 DI 10.1002/jgrb.50303 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 225VH UT WOS:000324991900013 ER PT J AU Coates, AJ Wellbrock, A Jones, GH Waite, JH Schippers, P Thomsen, MF Arridge, CS Tokar, RL AF Coates, A. J. Wellbrock, A. Jones, G. H. Waite, J. H. Schippers, P. Thomsen, M. F. Arridge, C. S. Tokar, R. L. TI Photoelectrons in the Enceladus plume SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE Enceladus; photoelectrons; plume; ionosphere; Saturn; magnetosphere ID IONOSPHERIC PHOTOELECTRONS; ELECTRON SPECTROMETER; MAGNETOSPHERE; PLASMA; SATURN; ATMOSPHERE; VENUS AB The plume of Enceladus is a remarkable plasma environment containing several charged particle species. These include cold magnetospheric electrons, negative and positive water clusters, charged nanograins, and magnetospheric photoelectrons produced from ionization of neutrals throughout the magnetosphere near Enceladus. Here we discuss observations of a population newly identified by the Cassini Plasma Spectrometer (CAPS) electron spectrometer instrumentphotoelectrons produced in the plume ionosphere itself. These were found during the E19 encounter, in the energetic particle shadow where penetrating particles are absent. Throughout E19, CAPS was oriented away from the ram direction where the clusters and nanograins are observed during other encounters. Plume photoelectrons are also clearly observed during the E9 encounter and are also seen at all other Enceladus encounters where electron spectra are available. This new population, warmer than the ambient plasma population, is distinct from, but adds to, the magnetospheric photoelectrons. Here we discuss the observations and examine the implications, including the ionization source these electrons provide. C1 [Coates, A. J.; Wellbrock, A.; Jones, G. H.; Arridge, C. S.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Coates, A. J.; Wellbrock, A.; Jones, G. H.; Arridge, C. S.] UCL Birkbeck, Ctr Planetary Sci, London, England. [Waite, J. H.] SW Res Inst, San Antonio, TX USA. [Schippers, P.] Observ Paris, LESIA, Meudon, France. [Thomsen, M. F.; Tokar, R. L.] Planetary Sci Inst, Tucson, AZ USA. [Thomsen, M. F.; Tokar, R. L.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Coates, AJ (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM a.coates@ucl.ac.uk RI Jones, Geraint/C-1682-2008; Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; OI Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Jones, Geraint/0000-0002-5859-1136 FU CAPS ELS science by STFC; CAPS ELS operations and software team by ESA via the UK Space Agency; Royal Society; NASA JPL [1243218, 1405851]; U.S. Department of Energy; NASA's Cassini project FX We thank L. K. Gilbert and G. R. Lewis for software support. We acknowledge support of CAPS ELS science by STFC and of the CAPS ELS operations and software team by ESA via the UK Space Agency (from 2011). C. S. A. was supported by a Royal Society research fellowship. Work in the U. S. was supported by NASA JPL contracts 1243218 and 1405851 to the Southwest Research Institute. Work at Los Alamos was conducted under the auspices of the U.S. Department of Energy, with support from NASA's Cassini project. NR 39 TC 5 Z9 5 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG PY 2013 VL 118 IS 8 BP 5099 EP 5108 DI 10.1002/jgra.50495 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 225VK UT WOS:000324992300033 ER PT J AU Farina, M Pappadopulo, D Strumia, A AF Farina, Marco Pappadopulo, Duccio Strumia, Alessandro TI A modified naturalness principle and its experimental tests SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Standard Model ID RENORMALIZATION-GROUP EQUATIONS; DOUBLY-CHARGED HIGGS; QUANTUM-FIELD THEORY; MINIMAL DARK-MATTER; HIERARCHY PROBLEM; INVISIBLE AXION; NEUTRINO MASSES; STANDARD MODEL; HARMLESS AXION; CP INVARIANCE AB Motivated by LHC results, we modify the usual criterion for naturalness by ignoring the uncomputable power divergences. The Standard Model satisfies the modified criterion ('finite naturalness') for the measured values of its parameters. Extensions of the SM motivated by observations (Dark Matter, neutrino masses, the strong CP problem, vacuum instability, inflation) satisfy finite naturalness in special ranges of their parameter spaces which often imply new particles below a few TeV. Finite naturalness bounds are weaker than usual naturalness bounds because any new particle with SM gauge interactions gives a finite contribution to the Higgs mass at two loop order. C1 [Farina, Marco] Cornell Univ, Dept Phys, LEPP, Ithaca, NY 14853 USA. [Pappadopulo, Duccio] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Pappadopulo, Duccio] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Strumia, Alessandro] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Strumia, Alessandro] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Strumia, Alessandro] NICPB, EE-10143 Tallinn, Estonia. RP Farina, M (reprint author), Cornell Univ, Dept Phys, LEPP, Ithaca, NY 14853 USA. EM mf627@cornell.edu; pappadopulo@berkeley.edu; astrumia@mail.df.unipi.it FU ESF [8090, 8499, MTT8]; SF0690030s09 project; NSF [PHY-0757868] FX We thank Savas Dimopoulos, Gian Giudice and Mikhail Shaposhnikov for discussions. This work was supported by the ESF grants 8090, 8499, MTT8 and by SF0690030s09 project. The work of MF was supported in part by the NSF grant PHY-0757868. NR 86 TC 48 Z9 48 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD AUG PY 2013 IS 8 AR 022 DI 10.1007/JHEP08(2013)022 PG 21 WC Physics, Particles & Fields SC Physics GA 214EL UT WOS:000324113700022 ER PT J AU Kim, B Olsson, RH Wojciechowski, KE AF Kim, Bongsang Olsson, Roy H., III Wojciechowski, Ken E. TI AlN Microresonator-Based Filters With Multiple Bandwidths at Low Intermediate Frequencies SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Aluminum nitride (AlN) resonators; filters; microresonators; RF microelectromechanical systems (MEMS) ID CONTOUR-MODE RESONATORS; ACOUSTIC RESONATORS AB Filters with various bandwidths at low intermediate frequency (IF) have been demonstrated using aluminum nitride (AlN) microresonator technology. Specifically, at 13 MHz, 6 kHz, and 25 kHz bandwidth filters were implemented using a single resonator topology, and 250 kHz and 500 kHz bandwidth filters were constructed via the parallel lattice topology using four sub-resonators and L-matching networks. The bandwidths of these filters are from 0.046% to 3.8%, and particularly the 500 kHz bandwidth filter at 13 MHz is >12x wider than that of the resonator k(t)(2) limit (40 kHz). The 100x variations in filter percent bandwidth were realized in a 1700 nm-thick aluminum nitride film on the same wafer through CMOS-compatible fabrication processes. Changes in the filter termination for proper filter matching were implemented in the Agilent Genesys RF and microwave design simulation software using actual measured filter responses with 50 Omega termination. The great flexibility in filter bandwidths and resonant frequencies, as well as other benefits such as size, manufacturing cost, isolation, and insertion loss provided by AlN microresonators will enable next generation multi-band, multi-waveform, and cognitive radios for defense and consumer wireless applications. [2012-0217] C1 [Kim, Bongsang] Bosch Res & Technol Ctr, Palo Alto, CA 94304 USA. [Olsson, Roy H., III; Wojciechowski, Ken E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kim, B (reprint author), Bosch Res & Technol Ctr, Palo Alto, CA 94304 USA. EM bongsang.kim@us.bosch.com; rholsso@sandia.gov; kwojcie@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-4AL85000] FX The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. The authors would like to thank Dr. S. Raman from DARPA, and R. Newgard, Dr. R. Potter, and C. Conway from Rockwell Collins for their support and guidance. They would like to acknowledge the staff of the Microelectronics Develop Laboratory, Sandia National Laboratories, for fabrication of the devices and C. Nordquist and M. Balance for the use of RF characterization resources. Also, a special thanks is given to J. Nguyen for the help and support in measurement. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration, under Contract DE-AC04-4AL85000. NR 31 TC 7 Z9 7 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD AUG PY 2013 VL 22 IS 4 BP 949 EP 961 DI 10.1109/JMEMS.2013.2251414 PG 13 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 231HW UT WOS:000325408100015 ER PT J AU Freeman, CM Moridis, G Ilk, D Blasingame, TA AF Freeman, C. M. Moridis, G. Ilk, D. Blasingame, T. A. TI A numerical study of performance for tight gas and shale gas reservoir systems SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE shale; tight gas; shale gas; well performance; linear flow; fracture interference; stimulated reservoir volume ID FLOW AB Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight gas and shale gas systems featuring horizontal wells with multiple hydraulic fractures. Despite a few analytical models, as well as a small number of published numerical studies, there is currently little consensus regarding the large-scale flow behavior over time in such systems, particularly regarding the dominant flow regimes and whether or not reservoir properties or volumes can be estimated from well performance data. We constructed a fit-for-purpose numerical simulator which accounts for a variety of production features pertinent to these systems-specifically ultra-tight matrix permeability, hydraulically fractured horizontal wells with induced fractures of various configurations, multiple porosity and permeability fields, and desorption. These features cover the production mechanisms which are currently believed to be most relevant in tight gas and shale gas systems. We employ the numerical simulator to examine various tight gas and shale gas systems and to identify and illustrate the various flow regimes which progressively occur over time. We perform this study at fine grid discretization on the order of 1 mm near fractures to accurately capture flow effects at all time periods. We visualize the flow regimes using specialized plots of rate and pressure functions, as well as maps of pressure and sorption distributions. We use pressure maps to visualize the various flow regimes and their transitions in tight gas systems. In a typical tight gas system, we illustrate the initial linear flow into the hydraulic fractures (i.e., formation linear flow), transitioning to compound formation linear flow, and eventually transforming into elliptical flow. We explore variations of possible shale gas system models. Based on diffusive flow (with and without desorption), we show that due to the extremely low permeability of shale matrix (a few nanodarcies), the flow behavior is dominated by the extent of and configuration of the fractures. This work expands our understanding of flow behavior in tight gas and shale gas systems, where such an understanding may ultimately be used to estimate reservoir properties and reserves in these types of reservoirs. Published by Elsevier B.V. C1 [Freeman, C. M.; Moridis, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ilk, D.] DeGolyer & McNaughton, Houston, TX 77056 USA. [Blasingame, T. A.] Texas A&M Univ, College Stn, TX 77843 USA. RP Freeman, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM cmfreeman@lbl.gov; gjmoridis@lbl.gov; dilk@demac.com; t-blasingame@tamu.edu FU RPSEA through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program [07122-23] FX This work was supported by RPSEA (Contract no. 07122-23) through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program as authorized by the US Energy Policy Act (EPAct) of 2005. NR 19 TC 22 Z9 28 U1 4 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD AUG PY 2013 VL 108 BP 22 EP 39 DI 10.1016/j.petrol.2013.05.007 PG 18 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA 228ZS UT WOS:000325232200004 ER PT J AU Moridis, GJ Kim, J Reagan, MT Kim, SJ AF Moridis, George J. Kim, Jihoon Reagan, Matthew T. Kim, Se-Joon TI Feasibility of gas production from a gas hydrate accumulation at the UBGH2-6 site of the Ulleung basin in the Korean East Sea SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE gas production; hydrates; Ulleung basin; simulation; flow; geomechanics ID COUPLED FLOW; SEQUENTIAL-METHODS; BEARING SEDIMENTS; FLUID-FLOW; STABILITY; DEPOSITS; GEOMECHANICS; DEPRESSURIZATION; DECOMPOSITION; ALASKA AB We investigate the feasibility of production from a marine hydrate accumulation that has the properties and conditions of the UBGH2-6 site at the Ulleung basin in the Korean East Sea. The 20 m-thick system is in deep water (2160 m) but close to the ocean floor (with its top at 140 mbsf), and is characterized by alternating mud (near hydrate-free) and sand (hydrate-rich) layers. The layered stratigraphy and the presence of mud layers preclude the use of horizontal wells and necessitate vertical wells. The analysis indicates that production from such a hydrate accumulation is feasible, but the production rates are generally modest. The production rate Q(p) peaks at about 1.45 ST m(3)/s = 4.4 MMSCFD at about t = 1 year, and continuously declines afterward. Sensitivity analysis indicates that cumulative production increases with a declining initial hydrate saturation, an increasing intrinsic permeability of the sand layers and an increasing thermal conductivity of the porous media, while the effect of porosity is non-monotonic: production initially increases with a decreasing porosity, but the trend is later reversed. However, the sensitivity to these parameters is limited, and does not alter the overall predictions of modest production potential. The geomechanical situation appears challenging, as significant subsidence (exceeding 3.5 m at a depth of 20 m below the sea floor, and 1.5 m at the top of the hydrate deposit) is estimated to occur along a large part of the wellbore, and yielding and failure within the 20 m-thick system are possible early in the production process. However, there is significant uncertainty in the predictions of the geomechanical system behavior because they are not based on measured system properties but only on estimates/assumptions from analogs. (C) 2013 Elsevier B.V. All rights reserved. C1 [Moridis, George J.; Kim, Jihoon; Reagan, Matthew T.] Div Earth Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kim, Se-Joon] Korea Inst Geosci & Mineral Resources, Petr & Marine Res Div, Taejon, South Korea. RP Moridis, GJ (reprint author), Div Earth Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM gjmoridis@lbl.gov RI Reagan, Matthew/D-1129-2015 OI Reagan, Matthew/0000-0001-6225-4928 FU Korea Institute of Geoscience and Mineral Resources; Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Korea Institute of Geoscience and Mineral Resources, and by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy, Contract no. DE-AC02-05CH11231. NR 48 TC 7 Z9 7 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD AUG PY 2013 VL 108 BP 180 EP 210 DI 10.1016/j.petrol.2013.03.002 PG 31 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA 228ZS UT WOS:000325232200018 ER PT J AU Tokunaga, TK Wan, JM Jung, JW Kim, TW Kim, Y Dong, WM AF Tokunaga, Tetsu K. Wan, Jiamin Jung, Jong-Won Kim, Tae Wook Kim, Yongman Dong, Wenming TI Capillary pressure and saturation relations for supercritical CO2 and brine in sand: High-pressure P-c(S-w) controller/meter measurements and capillary scaling predictions SO WATER RESOURCES RESEARCH LA English DT Article DE capillary pressure; geologic carbon sequestration; capillary scaling; wettability ID CONTACT-ANGLE MEASUREMENTS; POROUS-MEDIA; CARBON-DIOXIDE; FRACTIONAL WETTABILITY; HYDRAULIC CONDUCTIVITY; INTERFACIAL-TENSIONS; SURFACE-ROUGHNESS; SILICA SURFACES; SALINE AQUIFERS; HYDROXYL-GROUPS AB In geologic carbon sequestration, reliable predictions of CO2 storage require understanding the capillary behavior of supercritical (sc) CO2. Given the limited availability of measurements of the capillary pressure (P-c) dependence on water saturation (S-w) with scCO(2) as the displacing fluid, simulations of CO2 sequestration commonly rely on modifying more familiar air/H2O and oil/H2O P-c(S-w) relations, adjusted to account for differences in interfacial tensions. In order to test such capillary scaling-based predictions, we developed a high-pressure P-c(S-w) controller/meter, allowing accurate P-c and S-w measurements. Drainage and imbibition processes were measured on quartz sand with scCO(2)-brine at pressures of 8.5 and 12.0MPa (45 degrees C), and air-brine at 21 degrees C and 0.1MPa. Drainage and rewetting at intermediate S-w levels shifted to P-c values that were from 30% to 90% lower than predicted based on interfacial tension changes. Augmenting interfacial tension-based predictions with differences in independently measured contact angles from different sources led to more similar scaled P-c(S-w) relations but still did not converge onto universal drainage and imbibition curves. Equilibrium capillary trapping of the nonwetting phases was determined for P-c=0 during rewetting. The capillary-trapped volumes for scCO(2) were significantly greater than for air. Given that the experiments were all conducted on a system with well-defined pore geometry (homogeneous sand), and that scCO(2)-brine interfacial tensions are fairly well constrained, we conclude that the observed deviations from scaling predictions resulted from scCO(2)-induced decreased wettability. Wettability alteration by scCO(2) makes predicting hydraulic behavior more challenging than for less reactive fluids. Key Points equilibrium between CO2 and brine in reservoirs differs from nonreactive fluids wettability alteration from CO2 exposure is important residual trapping of CO2 can be higher than expected C1 [Tokunaga, Tetsu K.; Wan, Jiamin; Jung, Jong-Won; Kim, Tae Wook; Kim, Yongman; Dong, Wenming] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Tokunaga, TK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tktokunaga@lbl.gov RI Kim, Tae Wook/E-5954-2011; Tokunaga, Tetsu/H-2790-2014; Wan, Jiamin/H-6656-2014; Kim, Yongman/D-1130-2015; Dong, Wenming/G-3221-2015 OI Tokunaga, Tetsu/0000-0003-0861-6128; Kim, Yongman/0000-0002-8857-1291; Dong, Wenming/0000-0003-2074-8887 FU ZERT; NCGC; NRAP; Office of Sequestration, Hydrogen, and Clean Coal Fuels, through the National Energy Technology Laboratory (NETL), U.S. Department of Energy [DE-AC02-05CH11231]; Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231]; DOE Office of Fossil Energy's Cross Cutting Research program; NRAP under U.S. Department of Energy [DE-AC02-05CH11231] FX This work was carried out under funding support from the ZERT, NCGC, and NRAP. The ZERT project was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, through the National Energy Technology Laboratory (NETL), U.S. Department of Energy under contract DE-AC02-05CH11231. This material is also based on work supported as part of the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-AC02-05CH11231. Portions of this work were completed as part of National Risk Assessment Partnership (NRAP) project. Support for this project came from the DOE Office of Fossil Energy's Cross Cutting Research program. The authors wish to acknowledge Robert Romanosky (NETL Strategic Center for Coal) and Regis Conrad (DOE Office of Fossil Energy) for programmatic guidance, direction, and support. NRAP is a multilab effort that leverages broad technical capabilities across the DOE complex. NRAP involves five DOE national laboratories: NETL, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Pacific Northwest National Laboratory. This team is working together to develop a science-based method for quantifying the likelihood of risks (and associated potential liabilities) for CO2 storage sites. The work in this paper was reviewed by members of the NRAP Technical Leadership Team, including Jens Birkholzer. NRAP funding was provided to Lawrence Berkeley National Laboratory under U.S. Department of Energy contract DE-AC02-05CH11231. The authors thank Christopher Pentland and the anonymous reviewers for their helpful suggestions that lead to improved presentation. NR 81 TC 19 Z9 19 U1 0 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD AUG PY 2013 VL 49 IS 8 BP 4566 EP 4579 DI 10.1002/wrcr.20316 PG 14 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 223VA UT WOS:000324838300003 ER PT J AU Grate, JW Warner, MG Pittman, JW Dehoff, KJ Wietsma, TW Zhang, CY Oostrom, M AF Grate, Jay W. Warner, Marvin G. Pittman, Jonathan W. Dehoff, Karl J. Wietsma, Thomas W. Zhang, Changyong Oostrom, Mart TI Silane modification of glass and silica surfaces to obtain equally oil-wet surfaces in glass-covered silicon micromodel applications SO WATER RESOURCES RESEARCH LA English DT Article DE wettability; contact angle; silanization; glass; silica; surface modification; micromodel; porous media; pore network; immiscible displacement ID POROUS-MEDIA; INTERFACIAL PROPERTIES; CONTACT-ANGLE; WETTABILITY; WATER; VISUALIZATION; INFILTRATION; DISPLACEMENT; DISSOLUTION; SATURATION AB Wettability is a key parameter influencing capillary pressures, permeabilities, fingering mechanisms, and saturations in multiphase flow processes within porous media. Glass-covered silicon micromodels provide precise structures in which pore-scale displacement processes can be visualized. The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this study, surface cleaning pretreatments were investigated to determine conditions that yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane (HMDS), while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HMDS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400 degrees C. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscible fluid displacements in the pore network. C1 [Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.; Dehoff, Karl J.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Mart] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Grate, JW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM jwgrate@pnnl.gov RI Zhang, Changyong/A-8012-2013 FU The Carbon Sequestration Initiative of the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL); Department of Energy's Office of Biological and Environmental Research FX The Carbon Sequestration Initiative of the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL) supported this research. A portion of this research was carried out in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogram national laboratory operated for the DOE by Battelle Memorial Institute. NR 45 TC 9 Z9 9 U1 5 U2 59 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD AUG PY 2013 VL 49 IS 8 BP 4724 EP 4729 DI 10.1002/wrcr.20367 PG 6 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 223VA UT WOS:000324838300015 ER PT J AU Revil, A Wu, Y Karaoulis, M Hubbard, SS Watson, DB Eppehimer, JD AF Revil, A. Wu, Y. Karaoulis, M. Hubbard, S. S. Watson, D. B. Eppehimer, J. D. TI Geochemical and geophysical responses during the infiltration of fresh water into the contaminated saprolite of the Oak Ridge Integrated Field Research Challenge site, Tennessee SO WATER RESOURCES RESEARCH LA English DT Article DE induced polarization; resistivity; ERT; complex conductivity; flow through experiment; saprolite ID SPECTRAL INDUCED POLARIZATION; COMPLEX CONDUCTIVITY; SHALY SANDS; POROUS-MEDIA; PERMEABILITY; TRANSPORT; SOIL AB At the Oak Ridge Integrated Field Research Challenge (IFRC) site, Tennessee, the saprolitic aquifer was contaminated by leaks from the former S-3 disposal ponds between 1951 and 1983. The chemistry of the contaminant plume is also episodically impacted by fresh meteoritic water infiltrating vertically from a shallow variably saturated perched zone and the ditch surrounding the former S-3 ponds. We performed a column experiment using saprolite from the contaminated aquifer to understand the geochemical and complex electrical conductivity signatures associated with such events. The changes in the pH and pore water ionic strength are responsible for measurable changes in both the in-phase and quadrature conductivities. The pore water conductivity can be related to the nitrate concentration (the main ionic species in the plume) while the release of uranium is controlled by the pH. We developed a simple model to determine the pore water conductivity and pH from the recorded complex conductivity. This model is applied to time-lapse resistivity data at the IFRC site. Time-lapse inversion of resistivity data, performed with an active time constrain approach, shows the occurrence of an infiltration event during the winter of 2008-2009 with a dilution of the pore water chemistry and an increase of the pH. A simple numerical simulation of the infiltration of fresh water into the unconfined contaminated aquifer is consistent with this scenario. Key Points Complex conductivity is related to pore water and interfacial chemistry Surface conductivity cannot be neglected in ERT Time-lapse ERT is used to monitor an infiltration event. C1 [Revil, A.; Eppehimer, J. D.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Revil, A.; Karaoulis, M.] Univ Savoie, ISTerre, CNRS, UMR 5275, Le Bourget Du Lac, France. [Wu, Y.; Hubbard, S. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Watson, D. B.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Revil, A (reprint author), Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. EM arevil@mines.edu RI Hubbard, Susan/E-9508-2010; Watson, David/C-3256-2016; Wu, Yuxin/G-1630-2012 OI Watson, David/0000-0002-4972-4136; Wu, Yuxin/0000-0002-6953-0179 FU Environment Remediation Science Program (ERSP), U.S. Department of Energy (DOE) [DE-FG02-08ER646559] FX We thank the Environment Remediation Science Program (ERSP), U.S. Department of Energy (DOE, award DE-FG02-08ER646559) for funding. The authors appreciate the efforts of Davis Lesmes, the ERSP program manager. We thank Marcella Mueller for her help in getting the Oak Ridge data and samples, Jennifer Earles for the Water levels, Kevin Birdwell for the precipitation data from the ORNL Meteorological Program, and Magnus Skold for his help with the experimental data. We thank the three referees and the Associate Editor for their constructive reviews. NR 30 TC 4 Z9 4 U1 1 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD AUG PY 2013 VL 49 IS 8 BP 4952 EP 4970 DI 10.1002/wrcr.20380 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 223VA UT WOS:000324838300032 ER PT J AU Kim, TW Tokunaga, TK Bargar, JR Latimer, MJ Webb, SM AF Kim, Tae Wook Tokunaga, Tetsu K. Bargar, John R. Latimer, Matthew J. Webb, Samuel M. TI Brine film thicknesses on mica surfaces under geologic CO2 sequestration conditions and controlled capillary pressures SO WATER RESOURCES RESEARCH LA English DT Article DE brine film; CO2 sequestration; capillary pressure; mica; roughness; synchrotron X-ray fluorescence (XRF) ID DISJOINING PRESSURE; SUPERCRITICAL CO2; WETTING PHENOMENA; REFRACTIVE-INDEX; MUSCOVITE MICA; CARBON-DIOXIDE; SOLID-SURFACES; PORE-SCALE; WATER; CONDENSATION AB Brine films remaining on mineral surfaces in deep reservoirs during CO2 sequestration are expected to influence multiphase flow, diffusion, and reactions, but little is known about their behavior. Using synchrotron X-ray fluorescence (XRF), we measured thicknesses of KCsI2 brine films on two difference roughness mica surfaces under conditions representative of geological CO2 sequestration (7.8 MPa and 40 degrees C) to understand the influences of mineral surface roughness and capillary potential. Brine thicknesses measured on the Mica 1 (smooth) and Mica 2 (rough) mica surfaces ranged from 23 to 8 nm and 491 to 412 nm, respectively, over the small range of tested capillary potentials (0.18-3.7 kPa). Within these potentials, brine film thicknesses on mica were governed by surface roughness and only weakly influenced by capillary potentials. In comparing drainage and rewetting isotherms, some film thickness hysteresis was observed, possibly indicative of changes in mica wettability. Key Points Influences of surface roughness and capillary pressure on brine films on mica The hysteresis on both mica surfaces may be related to contact angle hysteresis The comparisons between experimental data and DLVO theory C1 [Kim, Tae Wook; Tokunaga, Tetsu K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Kim, Tae Wook] Stanford Univ, Dept Energy Resources Engn, Sch Earth Sci, Stanford, CA 94583 USA. [Bargar, John R.; Latimer, Matthew J.; Webb, Samuel M.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Stanford, CA USA. RP Kim, TW (reprint author), Stanford Univ, Dept Energy Resources Engn, Sch Earth Sci, 367 Panama St, Stanford, CA 94583 USA. EM taewkim@stanford.edu RI Kim, Tae Wook/E-5954-2011; Tokunaga, Tetsu/H-2790-2014; Webb, Samuel/D-4778-2009 OI Tokunaga, Tetsu/0000-0003-0861-6128; Webb, Samuel/0000-0003-1188-0464 FU Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center; U.S. Department of Energy (DOE), Office of Science; U.S. DOE [DE-AC02-05CH11231]; DOE Office of Biological and Environmental Research; National Institutes of Health, National Institute of General Medical Sciences [P41GM103393]; National Center for Research Resources [P41RR001209] FX This research is supported as part of the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science. This research was carried out under U.S. DOE contract DE-AC02-05CH11231. Portions of this study were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. DOE, Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393) and the National Center for Research Resources (P41RR001209). In addition, we thank Kevin Knauss for use of the AFM, and the anonymous reviewers for their valuable comments. NR 35 TC 5 Z9 5 U1 1 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD AUG PY 2013 VL 49 IS 8 BP 5071 EP 5076 DI 10.1002/wrcr.20404 PG 6 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 223VA UT WOS:000324838300041 ER PT J AU Sawada, D Nishiyama, Y Petridis, L Parthasarathi, R Gnanakaran, S Forsyth, VT Wada, M Langan, P AF Sawada, Daisuke Nishiyama, Yoshiharu Petridis, Loukas Parthasarathi, R. Gnanakaran, S. Forsyth, V. Trevor Wada, Masahisa Langan, Paul TI Structure and dynamics of a complex of cellulose with EDA: insights into the action of amines on cellulose SO CELLULOSE LA English DT Article DE Neutron diffraction; Computational simulation; Cellulose amino complex; Ethylene diamine; Crystal transition; Hydrogen-bond ID NEUTRON FIBER DIFFRACTION; SYNCHROTRON X-RAY; AMMONIA-SOLVENT COMBINATIONS; HYDROGEN-BONDING SYSTEM; PARTICLE MESH EWALD; MOLECULAR-DYNAMICS; LIQUID-AMMONIA; CRYSTALLINE CELLULOSE; ENZYMATIC-HYDROLYSIS; ELECTRON-DIFFRACTION AB The neutron structure of a complex of EDA with cellulose has been determined to reveal the location of hydrogen atoms involved in hydrogen-bonding. EDA disrupts the hydrogen-bonding pattern of naturally occurring cellulose by accepting a strong hydrogen-bond from the O6 hydroxymethyl group as the conformation of this group is rotated from tg to gt. The O3-H center dot O5 intrachain hydrogen-bond commonly found in cellulose allomorphs is observed to be disordered in the neutron structure, and quantum chemistry and molecular dynamics calculations show that O3 prefers to donate to EDA. The hydrogen-bonding arrangement is highly dynamic with bonds continually being formed and broken thus explaining the difficulty in locating all of the hydrogen atoms in the neutron scattering density maps. Comparison with other polysaccharide-amino complexes supports a common underlying mechanism for amine disruption of cellulose. C1 [Sawada, Daisuke; Langan, Paul] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Nishiyama, Yoshiharu] Univ Grenoble 1, Ctr Rech Macromol Vegetales, CNRS, F-38041 Grenoble 9, France. [Petridis, Loukas] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Parthasarathi, R.; Gnanakaran, S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Forsyth, V. Trevor] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 5, France. [Forsyth, V. Trevor] Keele Univ, EPSAM, Keele ST5 5BG, Staffs, England. [Forsyth, V. Trevor] Keele Univ, ISTM, Keele ST5 5BG, Staffs, England. [Wada, Masahisa] Univ Tokyo, Dept Biomat Sci, Grad Sch Agr & Life Sci, Tokyo 1138657, Japan. [Wada, Masahisa] Kyung Hee Univ, Dept Plant & Environm New Resources, Coll Life Sci, Yongin 446701, Gyeonggi Do, South Korea. RP Sawada, D (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM sawadad@ornl.gov RI Parthasarathi, Ramakrishnan/C-2093-2008; Forsyth, V. Trevor/A-9129-2010; Nishiyama, Yoshiharu/A-3492-2012; Langan, Paul/N-5237-2015; Petridis, Loukas/B-3457-2009; OI Parthasarathi, Ramakrishnan/0000-0001-5417-5867; Forsyth, V. Trevor/0000-0003-0380-3477; Nishiyama, Yoshiharu/0000-0003-4069-2307; Langan, Paul/0000-0002-0247-3122; Petridis, Loukas/0000-0001-8569-060X; Gnanakaran, S/0000-0002-9368-3044 FU French Agence Nationale de la Reserche; Genomic Science Program, Office of Biological and Environmental Research, US Department of Energy [FWP ERKP752]; Center for Structural Molecular Biology (CSMB); Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725]; Office of Science of DOE [DE-AC02-05CH11231]; UK Engineering and Physical Sciences Research Council (EPSRC) [GR/R47950/01]; [18780131] FX We thank beam line D19 at the Institute Laue Langevin for use of facilities, John Allibon, John Archer and Sax Mason for support with data collection, and Thomas Rosenau for helpful discussions and advice. MW was supported by a Grant-in-Aid for Scientific Research (18780131). This study was partly funded by the French Agence Nationale de la Reserche. PL and LP were partly funded by the Genomic Science Program, Office of Biological and Environmental Research, US Department of Energy, under FWP ERKP752. PL was partly support by the Center for Structural Molecular Biology (CSMB) which is supported by the Office of Biological and Environmental Research, using facilities supported by the U.S. Department of Energy, managed by UT-Battelle, LLC under contract No. DE-AC05-00OR22725. This research used resources of the Hopeper supercomputer at NERSC, supported by the Office of Science of DOE under Contract No. DE-AC02-05CH11231. VTF acknowledges support from the UK Engineering and Physical Sciences Research Council (EPSRC) for the construction of the D19 diffractometer at the ILL under grant GR/R47950/01 NR 56 TC 2 Z9 2 U1 6 U2 33 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0969-0239 EI 1572-882X J9 CELLULOSE JI Cellulose PD AUG PY 2013 VL 20 IS 4 BP 1563 EP 1571 DI 10.1007/s10570-013-9974-7 PG 9 WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA 195AE UT WOS:000322673000003 ER PT J AU Watkins, JM Nielsen, LC Ryerson, FJ DePaolo, DJ AF Watkins, James M. Nielsen, Laura C. Ryerson, Frederick J. DePaolo, Donald J. TI The influence of kinetics on the oxygen isotope composition of calcium carbonate SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE calcite; oxygen isotopes; equilibrium; kinetic; carbonic anhydrase; paleothermometry ID CA-44/CA-40 FRACTIONATION; EQUILIBRIUM FRACTIONATION; ZEEBE,R.E. 1999; TRACE-ELEMENT; CA ISOTOPES; IN-SITU; EXPLANATION; BICARBONATE; ANHYDRASE; SYSTEM AB Paleotemperature reconstructions rely on knowledge of the equilibrium separation of oxygen isotopes between aqueous solution and calcium carbonate. Although oxygen isotope separation is expected on theoretical grounds, the temperature-dependence remains uncertain because other factors, such as slow exchange of isotopes between dissolved CO2-species and water, can obscure the temperature signal. This is problematic for crystal growth experiments on laboratory timescales and for interpreting the oxygen isotope composition of crystals formed in natural settings. We present results from experiments in which inorganic calcite is precipitated in the presence of 0.25 mu M dissolved bovine carbonic anhydrase (CA). The presence of dissolved CA accelerates oxygen isotope equilibration between the dissolved carbon species CO2, H2CO3, HCO3-, CO32- and water, thereby eliminating this source of isotopic disequilibrium during calcite growth. The experimental results allow us to isolate, for the first time, kinetic oxygen isotope effects occurring at the calcite water interface. We present a framework of ion-by-ion growth of calcite that reconciles our new measurements with measurements of natural cave calcites that are the best candidate for having precipitated under near-equilibrium conditions. Our findings suggest that isotopic equilibrium between calcite and water is unlikely to have been established in laboratory experiments or in many natural settings. The use of CA in carbonate precipitation experiments offers new opportunities to refine oxygen isotope-based geothermometers and to interrogate environmental variables other than temperature that influence calcite growth rates. Published by Elsevier B.V. C1 [Watkins, James M.] Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA. [Nielsen, Laura C.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Ryerson, Frederick J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [DePaolo, Donald J.] Lawrence Livermore Natl Lab, Div Earth Sci, Livermore, CA USA. [DePaolo, Donald J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Watkins, JM (reprint author), Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA. EM watkins4@uoregon.edu FU U.S. Depailinent of Energy, Office of Basic Energy Sciences, Division of Chemical, Biological and Geological Sciences through Lawrence Berkeley National Laboratory; Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center [DE-AC02-05CH11231, DE-AC52-07NA27344] FX Alexander Gagnon is credited for suggesting we use carbonic anhydrase in our experiments. Wenbo Yang made the oxygen isotope measurements. Dave Ruddle and Matthew Gonzales helped build the experimental apparatus. We are grateful for discussions with Mariette Wolthers, Aradhna Tripati, Shaun Brown, and Amanda Thomas, as well as comments from two anonymous reviewers. This research was supported by the U.S. Depailinent of Energy, Office of Basic Energy Sciences, Division of Chemical, Biological and Geological Sciences through Lawrence Berkeley National Laboratory and as part of the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center under contract No. DE-AC02-05CH11231 (LBNL) and Contract No. DE-AC52-07NA27344 (LLNL). NR 37 TC 35 Z9 35 U1 3 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD AUG 1 PY 2013 VL 375 BP 349 EP 360 DI 10.1016/j.epsl.2013.05.054 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 223YB UT WOS:000324847300032 ER PT J AU Best, MG Christiansen, EH Deino, AL Gromme, S Hart, GL Tingey, DG AF Best, Myron G. Christiansen, Eric H. Deino, Alan L. Gromme, Sherman Hart, Garret L. Tingey, David G. TI The 36-18 Ma Indian Peak-Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions SO GEOSPHERE LA English DT Article ID SNAKE RANGE DECOLLEMENT; DUCTILE-BRITTLE TRANSITION; SILICIC MAGMA CHAMBERS; ASH-FLOW CALDERAS; NORTH-AMERICA; SOUTHWESTERN UTAH; EASTERN NEVADA; VOLCANIC FIELD; LINCOLN COUNTY; GRANITIC-ROCKS AB The Indian Peak-Caliente caldera complex and its surrounding ignimbrite field were a major focus of explosive silicic activity in the eastern sector of the subduction-related southern Great Basin ignimbrite province during the middle Cenozoic (36-18 Ma) ignimbrite flareup. Caldera-forming activity migrated southward through time in response to rollback of the subducting lithosphere. Nine partly exposed, separate to partly overlapping source calderas and an equal number of concealed sources compose the Indian Peak-Caliente caldera complex. Calderas have diameters to as much as 60 km and are filled with as much as 5000 m of intracaldera tuff and wall-collapse breccias. More than 50 ignimbrite cooling units, including 22 of regional (> 100 km(3)) extent, are distinguished on the basis of stratigraphic position, chemical and modal composition, Ar-40/Ar-39 age, and paleomagnetic direction. The most voluminous ash flows spread as far as 150 km from the caldera complex across a high plateau of limited relief-the Great Basin altiplano, which was created by late Paleozoic through Mesozoic orogenic deformation and crustal thickening. The resulting ignimbrite field covers a present area of similar to 60,000 km(2) in east-central Nevada and southwestern Utah. Before post-volcanic extension, ignimbrites had an estimated aggregate volume of similar to 33,000 km(3). At least seven of the largest cooling units were produced by super-eruptions of more than 1000 km(3). The largest, at 5900 km(3), originally covered an area of 32,000 km(2) to outflow depths of hundreds of meters. Outflow ignimbrite sequences comprise as many as several cooling units from different sources with an aggregate thickness locally reaching a kilometer; sequences are almost everywhere conformable and lack substantial intervening erosional debris and angular discordances, thus manifesting a lack of synvolcanic crustal extension. Fallout ash in the mid-continent is associated with two of the super-eruptions. Ignimbrites are mostly calc-alkalic and high-K, a reflection of the unusually thick crust in which the magmas were created. They have a typical arc chemical signature and define a spectrum of compositions that ranges from high-silica (78 wt%) rhyolite to andesite (61 wt% silica). Rhyolite magmas were erupted in relatively small volumes more or less throughout the history of activity, but in a much larger volume after 24 Ma in the southern part of the caldera complex, creating 10,000 km3 of ignimbrite. The field has some rhyolite ignimbrites, the largest of which are in the south and were emplaced after 24 Ma. But the most distinctive attributes of the Indian Peak-Caliente field are two distinct classes of ignimbrite: 1. Super-eruptive monotonous intermediates. More or less uniform and unzoned deposits of dacitic ignimbrite that are phenocryst rich (to as much as similar to 50%) with plagioclase > biotite approximate to quartz approximate to hornblende > Fe-Ti oxides +/- sanidine, pyroxene, and titanite; apatite and zircon are ubiquitous accessory phases. These tuffs were deposited at 31.13, 30.06, and 29.20 Ma in volumes of 2000, 5900, and 4400 km(3), respectively, from overlapping, multicyclic calderas. A unique, and pos-sibly kindred, phenocryst-rich latiteandesite ignimbrite with an outflow volume of 1100 km(3) was erupted at 22.56 Ma from a concealed source caldera to the south. 2. Trachydacitic Isom-type tuffs. Also relatively uniform but phenocryst poor (< 20%) with plagioclase >> clinopyroxene approximate to orthopyroxene approximate to Fe-Ti oxides >> apatite. These alkali-calcic tuffs are enriched in TiO2, K2O, P2O5, Ba, Nb, and Zr and depleted in CaO, MgO, Ni, and Cr, and have an arc chemical signature. Magmas were erupted from a concealed source immediately after and just to the southeast of the multicyclic monotonous intermediates. Most of their aggregate outflow volume of 1800 km3 was erupted from 27.90 to 27.25 Ma. Nothing like this couplet of distinct ignimbrites, in such volumes, have been documented in other middle Cenozoic volcanic fields in the southwestern U. S. where the ignimbrite flareup is manifest. Magmas were created in unusually thick crust (as thick as 70 km) where large-scale inputs of mantle-derived basaltic magma powered partial melting, assimilation, mixing, and differentiation processes. Dacite and some rhyolite ignimbrites were derived from relatively low-temperature (700-800 C), water-rich magmas that were a couple of log units more oxidized than the quartz-fayalite-magnetite (QFM) oxygen buffer at depths of similar to 8-12 km. In contrast to these "main-trend" magmas, trachydacitic Isom-type magmas were derived from drier and hotter (similar to 950 degrees C) magmas originating deeper in the crust (to as deep as 30 km) by fractionation processes in andesitic differentiates of the mantle magma. "Off-trend" rhyolitic magmas that are both younger and older than the Isom type but possessed some of their same chemical characteristics possibly reflect an ancestry involving Isom-type magmas as well as main-trend rhyolitic magmas. Andesitic lavas extruded during the flareup but mostly after 25 Ma constitute a roughly estimated 12% of the volume of silicic ignimbrite, in contrast to major volcanic fields to the east, e. g., the Southern Rocky Mountain field, where the volume of intermediate-composition lavas exceeds that of silicic ignimbrites. C1 [Best, Myron G.; Christiansen, Eric H.; Tingey, David G.] Brigham Young Univ, Dept Geol Sci, Provo, UT 84602 USA. [Deino, Alan L.] Berkeley Geochronol Ctr, Berkeley, CA 94709 USA. [Hart, Garret L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Best, MG (reprint author), Brigham Young Univ, Dept Geol Sci, Provo, UT 84602 USA. OI Christiansen, Eric/0000-0002-1108-5260 FU National Science Foundation [EAR-8604195, 8618323, 8904245, 9104612, 9706906, 0923495]; Brigham Young University FX Financial support for the Great Basin project was provided by the National Science Foundation through grants EAR-8604195, 8618323, 8904245, 9104612, 9706906, and 0923495 to M. G. Best and E. H. Christiansen. The U.S. Geological Survey and Nevada Bureau of Mines and Geology supported quadrangle mapping. The continuing financial and material assistance of Brigham Young University is gratefully acknowledged. NR 143 TC 13 Z9 13 U1 1 U2 17 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 1553-040X J9 GEOSPHERE JI Geosphere PD AUG PY 2013 VL 9 IS 4 BP 864 EP 950 DI 10.1130/GES00902.1 PG 87 WC Geosciences, Multidisciplinary SC Geology GA 221SM UT WOS:000324679200009 ER PT J AU Maloney, JM Noble, PJ Driscoll, NW Kent, GM Smith, SB Schmauder, GC Babcock, JM Baskin, RL Karlin, R Kell, AM Seitz, GG Zimmerman, S Kleppe, JA AF Maloney, Jillian M. Noble, Paula J. Driscoll, Neal W. Kent, Graham M. Smith, Shane B. Schmauder, Gretchen C. Babcock, Jeffrey M. Baskin, Robert L. Karlin, Robert Kell, Annie M. Seitz, Gordon G. Zimmerman, Susan Kleppe, John A. TI Paleoseismic history of the Fallen Leaf segment of the West Tahoe-Dollar Point fault reconstructed from slide deposits in the Lake Tahoe Basin, California-Nevada SO GEOSPHERE LA English DT Article ID SIERRA-NEVADA; RANGE PROVINCE; EASTERN CALIFORNIA; YR BP; DEFORMATION; EARTHQUAKES; GLACIATION; BOUNDARY; SYSTEM; COAST AB The West Tahoe-Dollar Point fault (WTDPF) extends along the western margin of the Lake Tahoe Basin (northern Sierra Nevada, western United States) and is characterized as its most hazardous fault. Fallen Leaf Lake, Cascade Lake, and Emerald Bay are three subbasins of the Lake Tahoe Basin, located south of Lake Tahoe, and provide an opportunity to image primary earthquake deformation along the WTDPF and associated landslide deposits. Here we present results from high-resolution seismic Chirp (compressed high intensity radar pulse) surveys in Fallen Leaf Lake and Cascade Lake, multibeam bathymetry coverage of Fallen Leaf Lake, onshore Lidar (light detection and ranging) data for the southern Lake Tahoe Basin, and radiocarbon dates from piston cores in Fallen Leaf Lake and Emerald Bay. Slide deposits imaged beneath Fallen Leaf Lake appear to be synchronous with slides in Lake Tahoe, Emerald Bay, and Cascade Lake. The temporal correlation of slides between multiple basins suggests triggering by earthquakes on the WTDPF system. If this correlation is correct, we postulate a recurrence interval of similar to 3-4 k.y. for large earthquakes on the Fallen Leaf Lake segment of the WTDPF, and the time since the most recent event (similar to 4.5 k.y. ago) exceeds this recurrence time. In addition, Chirp data beneath Cascade Lake image strands of the WTDPF offsetting the lake floor as much as similar to 7.5 m. The Cascade Lake data combined with onshore Lidar allow us to map the WTDPF continuously between Fallen Leaf Lake and Cascade Lake. This improved mapping of the WTDPF reveals the fault geometry and architecture south of Lake Tahoe and improves the geohazard assessment of the region. C1 [Maloney, Jillian M.; Driscoll, Neal W.; Babcock, Jeffrey M.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Noble, Paula J.; Smith, Shane B.; Karlin, Robert] Univ Nevada, Dept Geol Sci & Engn, Reno, NV 89557 USA. [Kent, Graham M.; Schmauder, Gretchen C.; Kell, Annie M.] Univ Nevada, Nevada Seismol Lab, Reno, NV 89557 USA. [Baskin, Robert L.] US Geol Survey, West Valley City, UT 84119 USA. [Seitz, Gordon G.] Calif Geol Survey, Menlo Pk, CA 94025 USA. [Zimmerman, Susan] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Kleppe, John A.] Univ Nevada, Coll Engn, Reno, NV 89557 USA. RP Maloney, JM (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr, La Jolla, CA 92093 USA. RI Zimmerman, Susan/A-3351-2013 FU National Science Foundation [OCE-0649410, EAR-127499]; U.S. Geological Survey National Earthquake Hazards Reduction Program [10HQPA1000, 06HQGR0064, 02HQGR0072]; Exxon-Mobil student grant; Lawrence Livermore National Laboratory Laboratory Directed Research and Development grant [09-ERI-003] FX This research was supported by National Science Foundation grants OCE-0649410 and EAR-127499, U.S. Geological Survey National Earthquake Hazards Reduction Program grants 10HQPA1000, 06HQGR0064, and 02HQGR0072, and an Exxon-Mobil student grant. This manuscript was greatly enhanced through thoughtful reviews from Cathy Busby, Paul Umhoefer, Mike Oskin, and Rich Briggs. Radiocarbon ages for the 2010 Fallen Leaf Lake cores were funded by Lawrence Livermore National Laboratory Laboratory Directed Research and Development grant 09-ERI-003. We thank Brig Ebright for his permission to allow us to conduct research on Cascade Lake and Paul Baker for access to a boat ramp on his property. We are indebted to Fire Chief Gary Gerren for access to the Fallen Leaf Lake boat ramp and invasive species boat wash. Generous support from Bill Craven and access to his boat allowed collection of the 2010 multibeam survey. We also thank Shane Romsos and the Tahoe Regional Planning Agency for access to the critical airborne Lidar (light detection and ranging) data collected in 2010. We thank Anders Noren and Kristina Brady from LacCore for adding Fallen Leaf Lake to their busy 2010 coring schedule and for helping us get a high-quality suite of piston cores. Initial core processing, logging, and sampling of the 2010 Fallen Leaf Lake cores were conducted at LacCore. We thank Laurel Stratton for her logistical role in initiating the 2010 coring program and for helping with initial core processing, and Danny Brothers for conversations regarding previously collected Chirp (compressed high intensity radar pulse) profiles and sediment cores. NR 45 TC 6 Z9 6 U1 0 U2 13 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 1553-040X J9 GEOSPHERE JI Geosphere PD AUG PY 2013 VL 9 IS 4 BP 1065 EP 1090 DI 10.1130/GES00877.1 PG 26 WC Geosciences, Multidisciplinary SC Geology GA 221SM UT WOS:000324679200014 ER PT J AU Kamireddy, SR Li, JB Abbina, S Berti, M Tucker, M Ji, Y AF Kamireddy, Srinivas Reddy Li, Jinbao Abbina, Srinivas Berti, Marisol Tucker, Melvin Ji, Yun TI Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment SO INDUSTRIAL CROPS AND PRODUCTS LA English DT Article DE Acid pretreatment; Sunn hemp; Sorghum Brown-mid rib (BMR); Sorghum Non Brown-mid rib; Enzymatic hydrolysis; NMR; FTIR ID ENZYMATIC-HYDROLYSIS; CORN STOVER; LIGNOCELLULOSIC BIOMASS; HERBACEOUS CROPS; SUGAR PRODUCTION; WHEAT-STRAW; RICE STRAW; ETHANOL; FERMENTATION; FEEDSTOCK AB Forage sorghum [Sorghum bicolor (L.) Moench], Brown Mid-Rib (SBMR) and non-BMR (SNBMR) types, and sunn hemp (Crotalaria juncea L) are primarily used as forage and fiber crops, respectively. In this study, these crops were evaluated as feedstocks for biofuels and value added chemicals. This was achieved using dilute acid pretreatment and enzymatic hydrolysis using commercial cellulase enzymes. The highest xylose yield was observed was for SNBMR 95 wt%, followed by SBMR with 91 wt% at combined severity factor (CSF) 1.56 and 1.44. However, for sunn hemp the maximum xylose yield was observed at 72 wt% at CSF 1.48. At harsher pretreatment conditions the xylose yield decreased in all the biomasses due to degradation. In similar fashion, the overall glucan saccharification yield after enzymatic hydrolysis for SNBMR was found to be 90 wt% followed by SBMR 84 wt% at CSF 1.47, and 1.24. For sunn hemp it was observed to be 68 wt% at CSF 2.06. This was mainly due to the high crystallinity index of sunn hemp as compared with that of sorghum. In addition the FTIR and H-1 NMR, C-13 NMR analysis did not prove any major variation in the individual functional groups or chemical structures in these raw and pretreated biomasses. Overall, from the results it can be concluded that SBMR and SNBMR have better potential for biofuel production as compared with sunn hemp biomass. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kamireddy, Srinivas Reddy; Ji, Yun] Univ N Dakota, Dept Chem Engn, Grand Fork, ND 58202 USA. [Li, Jinbao] Shaanxi Univ Sci & Technol, Coll Light Ind & Energy Sources, Xian, Shaanxi, Peoples R China. [Abbina, Srinivas] Univ N Dakota, Dept Chem, Grand Fork, ND 58202 USA. [Berti, Marisol] N Dakota State Univ, Dept Plant Sci, Fargo, ND 58108 USA. [Tucker, Melvin] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Ji, Y (reprint author), Univ N Dakota, Dept Chem Engn, 241 Centennial Dr, Grand Fork, ND 58202 USA. EM yun.ji@engr.und.edu NR 45 TC 10 Z9 10 U1 4 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-6690 EI 1872-633X J9 IND CROP PROD JI Ind. Crop. Prod. PD AUG PY 2013 VL 49 BP 598 EP 609 DI 10.1016/j.indcrop.2013.06.018 PG 12 WC Agricultural Engineering; Agronomy SC Agriculture GA 220EZ UT WOS:000324566600082 ER PT J AU Buckley, MR Plehn, T Takeuchi, M AF Buckley, Matthew R. Plehn, Tilman Takeuchi, Michihisa TI Buckets of tops SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE QCD Phenomenology; Jets ID HADRON COLLIDERS; MEASURING MASSES; PARTICLE; BOSON; LHC AB Reconstructing hadronically decaying top quarks is a key challenge at the LHC, affecting a long list of Higgs analyses and new physics searches. We propose a new method of collecting jets in buckets, corresponding to top quarks and initial state radiation. This method is particularly well suited for moderate transverse momenta of the top quark, closing the gap between top taggers and traditional top reconstruction. Applying it to searches for supersymmetric top squarks we illustrate the power of buckets. C1 [Buckley, Matthew R.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Plehn, Tilman] Heidelberg Univ, Inst Theoret Phys, Heidelberg, Germany. [Takeuchi, Michihisa] Kings Coll London, Dept Phys, Theoret Phys & Cosmol Grp, London WC2R 2LS, England. RP Buckley, MR (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM mbuckley@fnal.gov; Plehn@uni-heidelberg.de; michihisa.takeuchi@kclac.uk OI Buckley, Matthew/0000-0003-1109-3460 FU United States Department of Energy [DE-AC02-07CH11359] FX We would like to thank the Aspen Center of Physics because the idea for this paper was born on a Snowmass ski lift. Fermilab is operated by Fermi Research Alliance, LLC, under contract DE-AC02-07CH11359 with the United States Department of Energy. MRB would like to thank Joseph Lykken and Maria Spiropulu for useful advice. MT would like to thank Bobby Acharya for helpful discussions. NR 61 TC 14 Z9 14 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD AUG PY 2013 IS 8 AR 086 DI 10.1007/JHEP08(2013)086 PG 22 WC Physics, Particles & Fields SC Physics GA 214EL UT WOS:000324113700086 ER PT J AU Campbell, JM Ellis, RK Nason, P Zanderighi, G AF Campbell, John M. Ellis, R. Keith Nason, Paolo Zanderighi, Giulia TI W and Z bosons in association with two jets using the POWHEG method SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Monte Carlo Simulations; NLO Computations AB In this work we present the implementation of generators for W and Z bosons in association with two jets interfaced to parton showers using the POWHEG BOX method. We incorporate matrix elements from the parton-level Monte Carlo program MCFM in the POWHEG-BOX, allowing for a considerable improvement in speed compared to previous implementations. We address certain problems that arise when processes that are singular at the Born level are implemented in a shower framework using either a generation cut or a Born suppression factor to yield weighted events. In such a case, events with very large weights can be generated after the shower through a number of mechanisms. Events with very small transverse momentum at the Born level can develop large transverse momentum either after the hardest emission, after the shower, or after the inclusion of multi-parton interactions. We present a solution to this problem that can be easily implemented in the POWHEG BOX. We also show that a full solution to this problem can only be achieved if the generator maintains physical validity also when the transverse momentum of the emitted partons becomes unresolved. One such scheme is the recently-proposed MiNLO method for the choice of scale and the exponentiation of Sudakov form factors in NLO computations. We present a validation study of our generators, by comparing their output to available LHC data. Furthermore, we suggest an observable that is very sensitive to the modeling of multi-parton interactions, that may be studied in both W and Z production in association with two jets. C1 [Campbell, John M.; Ellis, R. Keith] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Nason, Paolo] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Zanderighi, Giulia] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 2JD, England. RP Campbell, JM (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM johnmc@fnal.gov; ellis@fnal.gov; paolo.nason@mib.infn.it; g.zanderighi1@physics.ox.ac.uk OI Nason, Paolo/0000-0001-9250-246X NR 54 TC 11 Z9 11 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD AUG PY 2013 IS 8 AR 005 DI 10.1007/JHEP08(2013)005 PG 33 WC Physics, Particles & Fields SC Physics GA 214EL UT WOS:000324113700005 ER PT J AU Carena, M Gori, S Shah, NR Wagner, CEM Wang, LT AF Carena, Marcela Gori, Stefania Shah, Nausheen R. Wagner, Carlos E. M. Wang, Lian-Tao TI Light stops, light staus and the 125 GeV Higgs SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID SUPERSYMMETRIC STANDARD MODEL; EXPLICIT CP VIOLATION; ROOT-S=7 TEV; E(+)E(-) COLLISIONS; PP COLLISIONS; TOP-QUARK; COMPUTATIONAL TOOL; SCALAR LEPTONS; ATLAS DETECTOR; CROSS-SECTION AB The ATLAS and CMS experiments have recently announced the discovery of a Higgs-like resonance with mass close to 125 GeV. Overall, the data is consistent with a Standard Model (SM)-like Higgs boson. Such a particle may arise in the minimal supersymmetric extension of the SM with average stop masses of the order of the TeV scale and a sizable stop mixing parameter. In this article we discuss properties of the SM-like Higgs production and decay rates induced by the possible presence of light staus and light stops. Light staus can affect the decay rate of the Higgs into di-photons and, in the case of sizable left-right mixing, induce an enhancement in this production channel up to similar to 50% of the Standard Model rate. Light stops may induce sizable modifications of the Higgs gluon fusion production rate and correlated modifications to the Higgs diphoton decay. Departures from SM values of the bottom-quark and tau-lepton couplings to the Higgs can be obtained due to Higgs mixing effects triggered by light third generation scalar superpartners. We describe the phenomenological implications of light staus on searches for light stops and non-standard Higgs bosons. Finally, we discuss the current status of the search for light staus produced in association with sneutrinos, in final states containing a W gauge boson and a pair of tau s. C1 [Carena, Marcela] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carena, Marcela; Gori, Stefania; Wagner, Carlos E. M.; Wang, Lian-Tao] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carena, Marcela; Wagner, Carlos E. M.; Wang, Lian-Tao] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gori, Stefania; Wagner, Carlos E. M.] Argonne Natl Lab, Div High Energy Phys, Lemont, IL 60439 USA. [Shah, Nausheen R.] Univ Michigan, Dept Phys, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, POB 500,Kirk Rd, Batavia, IL 60510 USA. EM carena@fnal.gov; goris@uchicago.edu; naushah@umich.edu; cwagner@hep.anl.gov; liantaow@uchicago.edu FU NSF [PHY-0756966]; DOE Early Career Award [de-sc0003930]; U.S. Department of Energy [DE-AC02-07CH11359, DE-AC02-06CH11357]; DoE [DE-SC0007859] FX We would like to thank Felix Yu for useful discussions. SG thanks the Galileo Galilei Institute for Theoretical Physics for its hospitality during some part of this work. L.T.W. is supported by the NSF under grant PHY-0756966 and the DOE Early Career Award under grant de-sc0003930. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Work at ANL is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. N.R.S is supported by the DoE grant No. DE-SC0007859. We would also like to thank the Aspen Center for Physics and the KITP, Santa Barbara, where part of the work has been done. NR 141 TC 21 Z9 21 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD AUG PY 2013 IS 8 AR 087 DI 10.1007/JHEP08(2013)087 PG 32 WC Physics, Particles & Fields SC Physics GA 214EL UT WOS:000324113700087 ER PT J AU Zhou, R Behunin, RO Lin, SY Hu, BL AF Zhou, Rong Behunin, Ryan O. Lin, Shih-Yuin Hu, B. L. TI Boundary effects on quantum entanglement and its dynamics in a detector-field system SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Boundary Quantum Field Theory; Quantum Dissipative Systems ID BROWNIAN-MOTION; BLACK-HOLES; DISSIPATION; TOPOLOGY AB In this paper we analyze an exactly solvable model consisting of an inertial Unruh-DeWitt detector which interacts linearly with a massless quantum field in Minkowski spacetime with a perfectly reflecting flat plane boundary. Firstly a set of coupled equations for the detector's and the field's Heisenberg operators are derived. Then we introduce the linear entropy as a measure of entanglement between the detector and the quantum field under mirror reflection, and solve the early-time detector-field entanglement dynamics. After coarse-graining the field, the dynamics of the detector's internal degree of freedom is described by a quantum Langevin equation, where the dissipation and noise kernels respectively correspond to the retarded Green's functions and Hadamard elementary functions of the free quantum field in a half space. At late times when the combined system is in a stationary state, we obtain exact expressions for the detector's covariance matrix and show that the detector-field entanglement decreases for smaller separation between the detector and the mirror. We explain the behavior of detector-field entanglement qualitatively with the help of a detector's mirror image, compare them with the case of two real detectors and explain the differences. C1 [Zhou, Rong; Hu, B. L.] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA. [Zhou, Rong; Hu, B. L.] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Behunin, Ryan O.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Behunin, Ryan O.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lin, Shih-Yuin] Natl Changhua Univ Educ, Dept Phys, Changhua 50007, Taiwan. RP Zhou, R (reprint author), Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA. EM zhour@umd.edu; rbehunin@lanl.gov; sylin@cc.ncue.edu.tw; blhu@umd.edu FU NSF [PHY-0801368]; Nation Science Council of Taiwan [NSC 99-2112-M-018-001-MY3]; National Center for Theoretical Sciences, Taiwan; NSF-NSC U.S.-East Asia Ph.D student grant FX This work is supported in part by the NSF Grant No. PHY-0801368 and the Nation Science Council of Taiwan under the Grant No. NSC 99-2112-M-018-001-MY3 and in part by the National Center for Theoretical Sciences, Taiwan. ROB is aided by an NSF-NSC U.S.-East Asia Ph.D student grant award to spend a summer in Taiwan in 2010. NR 52 TC 4 Z9 4 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD AUG PY 2013 IS 8 AR 040 DI 10.1007/JHEP08(2013)040 PG 23 WC Physics, Particles & Fields SC Physics GA 214EL UT WOS:000324113700040 ER PT J AU Guyader, A Hengartner, N AF Guyader, Arnaud Hengartner, Nick TI On the Mutual Nearest Neighbors Estimate in Regression SO JOURNAL OF MACHINE LEARNING RESEARCH LA English DT Article DE nonparametric estimation; nearest neighbor methods; mathematical statistics ID NONPARAMETRIC REGRESSION; CONVERGENCE; RATES AB Motivated by promising experimental results, this paper investigates the theoretical properties of a recently proposed nonparametric estimator, called the Mutual Nearest Neighbors rule, which estimates the regression function m(x) = E[Y vertical bar X = x] as follows: first identify the k nearest neighbors of x in the sample D-n, then keep only those for which x is itself one of the k nearest neighbors, and finally take the average over the corresponding response variables. We prove that this estimator is consistent and that its rate of convergence is optimal. Since the estimate with the optimal rate of convergence depends on the unknown distribution of the observations, we also present adaptation results by data-splitting. C1 [Guyader, Arnaud] Univ Rennes 2, IRMAR, F-35043 Rennes, France. [Guyader, Arnaud] Univ Rennes 2, INRIA Rennes, F-35043 Rennes, France. [Hengartner, Nick] Los Alamos Natl Lab, Informat Sci Grp, Los Alamos, NM 87545 USA. RP Guyader, A (reprint author), Univ Rennes 2, IRMAR, Campus Villejean,Pl Recteur Henri Le Moal,CS 2430, F-35043 Rennes, France. EM ARNAUD.GUYADER@UHB.FR; NICKH@LANL.GOV NR 26 TC 2 Z9 2 U1 3 U2 3 PU MICROTOME PUBL PI BROOKLINE PA 31 GIBBS ST, BROOKLINE, MA 02446 USA SN 1532-4435 J9 J MACH LEARN RES JI J. Mach. Learn. Res. PD AUG PY 2013 VL 14 BP 2361 EP 2376 PG 16 WC Automation & Control Systems; Computer Science, Artificial Intelligence SC Automation & Control Systems; Computer Science GA 223JD UT WOS:000324799600007 ER PT J AU Huggel, C Stone, D Auffhammer, M Hansen, G AF Huggel, Christian Stone, Daithi Auffhammer, Maximilian Hansen, Gerrit TI Loss and damage attribution SO NATURE CLIMATE CHANGE LA English DT Editorial Material ID CLIMATE-CHANGE; DISASTER LOSSES C1 [Huggel, Christian] Univ Zurich, Dept Geog, CH-8057 Zurich, Switzerland. [Stone, Daithi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Auffhammer, Maximilian] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Auffhammer, Maximilian] Natl Bur Econ Res, Cambridge, MA 02138 USA. [Hansen, Gerrit] Potsdam Inst Climate Impact Res PIK, D-14412 Potsdam, Germany. RP Huggel, C (reprint author), Univ Zurich, Dept Geog, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM christian.huggel@geo.uzh.ch NR 17 TC 26 Z9 28 U1 2 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD AUG PY 2013 VL 3 IS 8 BP 694 EP 696 PG 4 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 219EB UT WOS:000324487400006 ER PT J AU Morozov, D Weber, GH AF Morozov, Dmitriy Weber, Gunther H. TI Distributed Merge Trees SO ACM SIGPLAN NOTICES LA English DT Article DE topological data analysis; feature extraction; merge tree computation; parallelization; hybrid parallelization approaches ID COMPUTATION AB Improved simulations and sensors are producing datasets whose increasing complexity exhausts our ability to visualize and comprehend them directly. To cope with this problem, we can detect and extract significant features in the data and use them as the basis for subsequent analysis. Topological methods are valuable in this context because they provide robust and general feature definitions. As the growth of serial computational power has stalled, data analysis is becoming increasingly dependent on massively parallel machines. To satisfy the computational demand created by complex datasets, algorithms need to effectively utilize these computer architectures. The main strength of topological methods, their emphasis on global information, turns into an obstacle during parallelization. We present two approaches to alleviate this problem. We develop a distributed representation of the merge tree that avoids computing the global tree on a single processor and lets us parallelize subsequent queries. To account for the increasing number of cores per processor, we develop a new data structure that lets us take advantage of multiple shared-memory cores to parallelize the work on a single node. Finally, we present experiments that illustrate the strengths of our approach as well as help identify future challenges. C1 [Morozov, Dmitriy; Weber, Gunther H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Weber, Gunther H.] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. RP Morozov, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, 1 Cyclotron Rd,MS 50F-1650, Berkeley, CA 94720 USA. EM dmitriy@mrzv.org; GHWeber@lbl.gov OI Weber, Gunther/0000-0002-1794-1398 FU Office of Science, Advanced Scientific Computing Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the grant "Topology-based Visualization and Analysis of High-dimensional Data and Time-varying Data at the Extreme Scale," program manager Lucy Nowell, and by the use resources of the National Energy Research Scientific Computing Center (NERSC). The authors wish to thank Hank Childs, Terry Ligocki, Zarija Lukic, Peter Nugent, Casey Stark, and Matthew Turk for their encouragement and help. NR 23 TC 4 Z9 4 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 EI 1558-1160 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD AUG PY 2013 VL 48 IS 8 BP 93 EP 102 DI 10.1145/2517327.2442526 PG 10 WC Computer Science, Software Engineering SC Computer Science GA 214TO UT WOS:000324158900009 ER PT J AU Friedley, A Hoefler, T Bronevetsky, G Lumsdaine, A Ma, CC AF Friedley, Andrew Hoefler, Torsten Bronevetsky, Greg Lumsdaine, Andrew Ma, Ching-Chen TI Ownership Passing: Efficient Distributed Memory Programming on Multi-core Systems SO ACM SIGPLAN NOTICES LA English DT Article DE Ownership Passing; Distributed Memory; Shared Memory; Message Passing; Multi-core AB The number of cores in multi- and many-core high-performance processors is steadily increasing. MPI, the de-facto standard for programming high-performance computing systems offers a distributed memory programming model. MPI's semantics force a copy from one process' send buffer to another process' receive buffer. This makes it difficult to achieve the same performance on modern hardware than shared memory programs which are arguably harder to maintain and debug. We propose generalizing MPI's communication model to include ownership passing, which make it possible to fully leverage the shared memory hardware of multi-and many-core CPUs to stream communicated data concurrently with the receiver's computations on it. The benefits and simplicity of message passing are retained by extending MPI with calls to send (pass) ownership of memory regions, instead of their contents, between processes. Ownership passing is achieved with a hybrid MPI implementation that runs MPI processes as threads and is mostly transparent to the user. We propose an API and a static analysis technique to transform legacy MPI codes automatically and transparently to the programmer, demonstrating that this scheme is easy to use in practice. Using the ownership passing technique, we see up to 51% communication speedups over a standard message passing implementation on state-of-the art multicore systems. Our analysis and interface will lay the groundwork for future development of MPI-aware optimizing compilers and multi-core specific optimizations, which will be key for success in current and next-generation computing platforms. C1 [Friedley, Andrew; Lumsdaine, Andrew] Indiana Univ, Bloomington, IN 47405 USA. [Hoefler, Torsten] ETH, Zurich, Switzerland. [Bronevetsky, Greg] Lawrence Livermore Natl Lab, Livermore, CA USA. [Ma, Ching-Chen] Rose Hulman Inst Technol, Terre Haute, IN 47803 USA. RP Friedley, A (reprint author), Indiana Univ, Bloomington, IN 47405 USA. EM afriedle@indiana.edu; htor@inf.ethz.ch; bronevetsky@llnl.gov; lums@indiana.edu; mac@rose-hulman.edu FU Department of Energy X-Stack program; Early Career award program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported in part by the Department of Energy X-Stack program and the Early Career award program. It was partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. (LLNL-CONF-609538) NR 25 TC 2 Z9 2 U1 0 U2 4 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 EI 1558-1160 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD AUG PY 2013 VL 48 IS 8 BP 177 EP 186 DI 10.1145/2517327.2442534 PG 10 WC Computer Science, Software Engineering SC Computer Science GA 214TO UT WOS:000324158900017 ER PT J AU Park, CS Sen, K Iancu, C AF Park, Chang-Seo Sen, Koushik Iancu, Costin TI Scaling Data Race Detection for Partitioned Global Address Space Programs SO ACM SIGPLAN NOTICES LA English DT Article DE scalable data race detection; hierarchical sampling C1 [Park, Chang-Seo; Sen, Koushik] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Iancu, Costin] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Park, CS (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM parkcs@eecs.berkeley.edu; ksen@eecs.berkeley.edu; cciancu@lbl.gov NR 5 TC 0 Z9 0 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD AUG PY 2013 VL 48 IS 8 BP 305 EP 306 DI 10.1145/2517327.2442557 PG 2 WC Computer Science, Software Engineering SC Computer Science GA 214TO UT WOS:000324158900039 ER PT J AU Wozniak, JM Armstrong, TG Wilde, M Katz, DS Lusk, E Foster, IT AF Wozniak, Justin M. Armstrong, Timothy G. Wilde, Michael Katz, Daniel S. Lusk, Ewing Foster, Ian T. TI Swift/T: Scalable Data Flow Programming for Many-Task Applications SO ACM SIGPLAN NOTICES LA English DT Article DE Languages; MPI; ADLB; Swift; Turbine; exascale; concurrency; dataflow; futures AB Swift/T, a novel programming language implementation for highly scalable data flow programs, is presented. C1 [Wozniak, Justin M.; Wilde, Michael; Katz, Daniel S.; Lusk, Ewing; Foster, Ian T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Wozniak, Justin M.; Armstrong, Timothy G.; Wilde, Michael; Katz, Daniel S.; Foster, Ian T.] Univ Chicago, Chicago, IL 60637 USA. RP Wozniak, JM (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM wozniak@mcs.anl.gov; tga@uchicago.edu; wilde@mcs.anl.gov; d.katz@ieee.org; lusk@mcs.anl.gov; foster@mcs.anl.gov FU U.S. DOE Office of Science [DE-AC02-06CH11357, FWP-57810]; National Science Foundation FX This research is supported by the U.S. DOE Office of Science under contract DE-AC02-06CH11357, FWP-57810. Computing resources were provided by the Argonne Leadership Computing Facility. This material was based on work (by DSK) supported by the National Science Foundation, while working at the Foundation. Any opinion, finding, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 7 TC 2 Z9 2 U1 0 U2 3 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD AUG PY 2013 VL 48 IS 8 BP 309 EP 310 DI 10.1145/2517327.2442559 PG 2 WC Computer Science, Software Engineering SC Computer Science GA 214TO UT WOS:000324158900041 ER PT J AU Jiang, S Ding, XN Xu, YH Davis, K AF Jiang, Song Ding, Xiaoning Xu, Yuehai Davis, Kei TI A Prefetching Scheme Exploiting both Data Layout and Access History on Disk SO ACM TRANSACTIONS ON STORAGE LA English DT Article DE Algorithms; Performance; Design; Experimentation; Prefetching; spatial locality; hard disk; buffer cache AB Prefetching is an important technique for improving effective hard disk performance. A prefetcher seeks to accurately predict which data will be requested and load it ahead of the arrival of the corresponding requests. Current disk prefetch policies in major operating systems track access patterns at the level of file abstraction. While this is useful for exploiting application-level access patterns, for two reasons file-level prefetching cannot realize the full performance improvements achievable by prefetching. First, certain prefetch opportunities can only be detected by knowing the data layout on disk, such as the contiguous layout of file metadata or data from multiple files. Second, nonsequential access of disk data (requiring disk head movement) is much slower than sequential access, and the performance penalty for mis-prefetching a randomly located block, relative to that of a sequential block, is correspondingly greater. To overcome the inherent limitations of prefetching at logical file level, we propose to perform prefetching directly at the level of disk layout, and in a portable way. Our technique, called DiskSeen, is intended to be supplementary to, and to work synergistically with, any present file-level prefetch policies. DiskSeen tracks the locations and access times of disk blocks and, based on analysis of their temporal and spatial relationships, seeks to improve the sequentiality of disk accesses and overall prefetching performance. It also implements a mechanism to minimize mis-prefetching, on a per-application basis, to mitigate the corresponding performance penalty. Our implementation of the DiskSeen scheme in the Linux 2.6 kernel shows that it can significantly improve the effectiveness of prefetching, reducing execution times by 20%-60% for microbenchmarks and real applications such as grep, CVS, and TPC-H. Even for workloads specifically designed to expose its weaknesses, DiskSeen incurs only minor performance loss. C1 [Jiang, Song; Xu, Yuehai] Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48202 USA. [Ding, Xiaoning] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA. [Davis, Kei] Los Alamos Natl Lab, CCS Div, Los Alamos, NM 87545 USA. RP Jiang, S (reprint author), Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48202 USA. EM sjiang@wayne.edu RI Ding, Xiaoning/C-9933-2014 OI Ding, Xiaoning/0000-0002-9947-0437 FU National Science Foundation [CCF-0702500, CCF-0845711, CNS-1117772, CNS-1217948] FX This research was supported in part by National Science Foundation grants CCF-0702500, CCF-0845711, CAREER CCF-0845711, CNS-1117772, and CNS-1217948. NR 34 TC 4 Z9 4 U1 0 U2 7 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1553-3077 J9 ACM T STORAGE JI ACM Trans. Storage PD AUG PY 2013 VL 9 IS 3 AR 10 DI 10.1145/2508010 PG 23 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 216XX UT WOS:000324321200004 ER PT J AU Tello, C Villela, T Torres, S Bersanelli, M Smoot, GF Ferreira, IS Cingoz, A Lamb, J Barbosa, D Perez-Becker, D Ricciardi, S Currivan, JA Platania, P Maino, D AF Tello, C. Villela, T. Torres, S. Bersanelli, M. Smoot, G. F. Ferreira, I. S. Cingoz, A. Lamb, J. Barbosa, D. Perez-Becker, D. Ricciardi, S. Currivan, J. A. Platania, P. Maino, D. TI The 2.3 GHz continuum survey of the GEM project SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE surveys; Galaxy: structure; radio continuum: general; radio continuum: ISM ID MICROWAVE-ANISOTROPY-PROBE; GALACTIC SYNCHROTRON EMISSION; ATACAMA COSMOLOGY TELESCOPE; BACKGROUND POWER SPECTRUM; SOUTH-POLE TELESCOPE; 11 CM WAVELENGTH; COMPONENT SEPARATION; FOREGROUND EMISSION; WMAP OBSERVATIONS; RADIO-EMISSION AB Context. Determining the spectral and spatial characteristics of the radio continuum of our Galaxy is an experimentally challenging endeavour for improving our understanding of the astrophysics of the interstellar medium. This knowledge has also become of paramount significance for cosmology, since Galactic emission is the main source of astrophysical contamination in measurements of the cosmic microwave background (CMB) radiation on large angular scales. Aims. We present a partial-sky survey of the radio continuum at 2.3 GHz within the scope of the Galactic Emission Mapping (GEM) project, an observational program conceived and developed to reveal the large-scale properties of Galactic synchrotron radiation through a set of self-consistent surveys of the radio continuum between 408 MHz and 10 GHz. Methods. The GEM experiment uses a portable and double-shielded 5.5-m radiotelescope in altazimuthal configuration to map 60-degree-wide declination bands from different observational sites by circularly scanning the sky at zenithal angles of 30 degrees from a constantly rotating platform. The observations were accomplished with a total power receiver, whose front-end high electron mobility transistor (HEMT) amplifier was matched directly to a cylindrical horn at the prime focus of the parabolic reflector. The Moon was used to calibrate the antenna temperature scale and the preparation of the map required direct subtraction and destriping algorithms to remove ground contamination as the most significant source of systematic error. Results. We used 484 h of total intensity observations from two locations in Colombia and Brazil to yield 66% sky coverage from delta = -51 degrees.73 to delta = +34 degrees.78. The observations in Colombia were obtained with a horizontal HPBW of 2 degrees.30 +/- 0 degrees.13 and a vertical HPBW of 1 degrees.92 +/- 0 degrees.18. The pointing accuracy was 6 '.84 and the RMS sensitivity was 11.42 mK. The observations in Brazil were obtained with a horizontal HPBW of 2 degrees.31 +/- 0 degrees.03 and a vertical HPBW of 1 degrees.82 +/- 0 degrees.12. The pointing accuracy was 5 '.26 and the RMS sensitivity was 8.24 mK. The zero-level uncertainty of the combined survey is 103 mK with a temperature scale error of 5% after direct correlation with the Rhodes/HartRAO survey at 2326 MHz on a T-T plot. Conclusions. The sky brightness distribution into regions of low and high emission in the GEM survey is consistent with the appearance of a transition region as seen in the Haslam 408 MHz and WMAP K-band surveys. Preliminary results also show that the temperature spectral index between 408 MHz and the 2.3 GHz band of the GEM survey has a weak spatial correlation with these regions; but it steepens significantly from high to low emission regions with respect to the WMAP K-band survey. C1 [Tello, C.; Villela, T.] Inst Nacl Pesquisas Espaciais, Div Astrofis, BR-12201970 Sao Jose Dos Campos, SP, Brazil. [Torres, S.] Ctr Int Fis, Bogota, Colombia. [Bersanelli, M.; Maino, D.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Smoot, G. F.; Ricciardi, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Smoot, G. F.; Cingoz, A.; Perez-Becker, D.; Currivan, J. A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ferreira, I. S.] Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil. [Lamb, J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Barbosa, D.] Inst Telecomunicacoes, Grp RadioAstron, Aveiro, Portugal. [Perez-Becker, D.] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Fis, Mexico City 04510, DF, Mexico. [Ricciardi, S.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, I-20125 Milan, Italy. RP Tello, C (reprint author), Inst Nacl Pesquisas Espaciais, Div Astrofis, CP 515, BR-12201970 Sao Jose Dos Campos, SP, Brazil. OI Ricciardi, Sara/0000-0002-3807-4043 FU FAPESP in Brazil [97/03861-2, 97/06794-4, 00/06770-2]; CNPq [305219/2004-9, 303637/2007-2, 484378/2007-4, 308113/2010-1, 506269/2010-8]; NATO [CRG960175]; Colciencias funding of the GEM project in Colombia [2228-05-103-96, 221-96]; FCT - Portugal; POCI through an SFRH/BPD; POCI [POCTI/FNU/42263/2001, POCI/CTE-AST/57209/2004] FX We are enormously grateful to several generations of students and technicians at LBNL and INPE, for whom GEM was a rich learning experience. We are particularly indebted to John Gibson, Alexandre M. R. Alves, Luiz Arantes, and Luiz Antonio Reitano for their dedicated commitment; to Jon Aymon, Tony Banday, Justin Jonas, and Andrew Jaffe for helpful advice and to SLB/INPE for logistics support in Cachoeira Paulista. The destriped version of the Rhodes/HartRAO map was reproduced courtesy of Tony Banday. The GEM project in Brazil was supported by FAPESP through grants 97/03861-2, 97/06794-4 and 00/06770-2. T. V. acknowledges support from CNPq through grants 305219/2004-9, 303637/2007-2, 484378/2007-4, 308113/2010-1, 506269/2010-8. M. B. acknowledges the support of the NATO Collaborative Grant CRG960175. S. T. acknowledges the support provided by Colciencias funding of the GEM project in Colombia through project 2228-05-103-96, contract No. 221-96. D. B. acknowledges support from FCT - Portugal and POCI through an SFRH/BPD grant and project grants POCTI/FNU/42263/2001 and POCI/CTE-AST/57209/2004. Last, but not least, we would like to acknowledge the referee's comments, without which the significance of this article would not have been fully appreciated. NR 129 TC 4 Z9 4 U1 1 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2013 VL 556 AR A1 DI 10.1051/0004-6361/20079306 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 211GH UT WOS:000323893500001 ER PT J AU West, TO Brown, ME Duren, RM Ogle, SM Moss, RH AF West, Tristram O. Brown, Molly E. Duren, Riley M. Ogle, Stephen M. Moss, Richard H. TI Definition, capabilities and components of a terrestrial carbon monitoring system SO CARBON MANAGEMENT LA English DT Article ID UNITED-STATES; WOOD HARVEST; LAND-USE; INVENTORY; CLIMATE; UNCERTAINTY; RESOLUTION; FLUXES; MODEL; CYCLE AB Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify capabilities of a carbon monitoring system and the system components needed to develop the capabilities. Capabilities that enable the effective application of a carbon monitoring system for monitoring and management purposes may include: reconciling carbon stocks and fluxes, developing consistency across spatial and temporal scales, tracking horizontal movement of carbon, attribution of emissions to originating sources, cross-sectoral accounting, uncertainty quantification, redundancy and policy relevance. Focused research is needed to integrate these capabilities for sustained estimates of carbon stocks and fluxes. Additionally, if monitoring is intended to inform management decisions, management priorities should be considered prior to development of a monitoring system. C1 [West, Tristram O.; Moss, Richard H.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Brown, Molly E.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Duren, Riley M.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Duren, Riley M.] CALTECH, Pasadena, CA 91109 USA. [Ogle, Stephen M.] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. RP West, TO (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court, College Pk, MD 20740 USA. EM tristram.west@pnnl.gov RI West, Tristram/C-5699-2013; Brown, Molly/M-5146-2013; Brown, Molly/E-2724-2010; OI West, Tristram/0000-0001-7859-0125; Brown, Molly/0000-0001-7384-3314; Brown, Molly/0000-0001-7384-3314; Ogle, Stephen/0000-0003-1899-7446; Moss, Richard/0000-0001-5005-0063 FU National Aeronautics and Space Administration under Carbon Monitoring System Phase 2 Project [NNH12AU35I]; Jet Propulsion Laboratory, a division of the California Institute of Technology FX Support for TO West is from the National Aeronautics and Space Administration under Carbon Monitoring System Phase 2 Project #NNH12AU35I. Support for Rill Duren is from the Jet Propulsion Laboratory, a division of the California Institute of Technology under contract to the National Aeronautics and Space Administration. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. NR 59 TC 3 Z9 3 U1 1 U2 17 PU FUTURE SCI LTD PI LONDON PA UNITED HOUSE, 2 ALBERT PL, LONDON, N3 1QB, ENGLAND SN 1758-3004 J9 CARBON MANAG JI Carbon Manag. PD AUG PY 2013 VL 4 IS 4 BP 413 EP 422 DI 10.4155/CMT.13.36 PG 10 WC Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA 198RR UT WOS:000322940500015 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acerbia, E Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TP Akimoto, G Akimov, AV Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Dos Santosa, SPA Amorim, A Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Atkinson, M Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, P Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battagli, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Bloch, I Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohma, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Booth, N Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheplakov, A El Mourslie, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocca, C Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Cogan, JG Coggeshall, J Cogneras, E Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crepe-Renaudin, S Crescioli, F Cristinziani, M Crosetti, G Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundisa, R De Castro, S De Cecco, S De Graat, J De Groot, N De Jong, P De la Taille, C De la Torre, H De Lorenzi, F De Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Papa, C Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinuta, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB We-Mansa, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Dohmae, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dressnandt, N Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duerdoth, IP Duflot, L Dufour, MA Duguid, L Duehrssen, M Dunford, M Yildiz, HD Duren, M Duxfield, R Dwuznik, M Dydak, F Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortina, D Fournier, D Fowler, AJ Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia, C Navarro, EG Garcia-Sciveres, M Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Goeringer, C Goldfarb, S Golling, T Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonzalez, S De la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Goepfert, T Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Goshaw, AT Gosselink, M Goessling, C Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guicheney, C Guindon, S Gul, U Guler, H Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Hall, D Haller, J Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM Van Huysduynen, LH Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jana, DK Jansen, E Jansen, H Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Plante, IJL Jennens, D Jenni, P Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koenig, S Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollefrath, M Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Kono, T Kononov, AI Konoplich, R Konstantinidis, N Koperny, S Kopke, L Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kreiss, S Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Lobinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Lumb, D Luminari, L Lund, E Lundberg, B Lundberg, J Lundberg, O Lund-Jensen, B Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Maddocks, HJ Mader, WF Maenner, R Maeno, M Maeno, T Magnoni, L Magradze, E Mahboubi, K Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A Mangeard, PS de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Martens, FK Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VM Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattravers, C Maurer, J Maxfield, SJ Mayne, A Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mc-fayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarellia, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monig, K Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, N Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Mueller, T Muenstermann, D Muller, TA Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagai, R Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pecsy, M Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pinto, B Pizio, C Plamondon, M Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radloff, P Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruehr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schneider, B Schnoor, U Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Su, D Subramania, H Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoyd, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakire, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valentinetti, S Valero, A Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC Van der Geer, R van der Graaf, H Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K Wheeler-Ellis, SJ White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Young, CJ Youssef, S Yu, D Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acerbia, E. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amor Dos Santosa, S. P. Amorim, A. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Atkinson, M. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, P. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battagli, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, K. M. Blair, R. E. Blanchard, J-B. Blanchot, G. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohma, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Booth, N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheplakov, A. Cherkaoui El Mourslie, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocca, C. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crepe-Renaudin, S. Crescioli, F. Cristinziani, M. Crosetti, G. Cuciuc, C-M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundisa, R. De Castro, S. De Cecco, S. De Graat, J. De Groot, N. De Jong, P. De la Taille, C. De la Torre, H. De Lorenzi, F. De Mora, L. De Nooij, L. Pedis, D. De De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Papa, C. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinuta, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle We-Mansa, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Dohmae, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dressnandt, N. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duerdoth, I. P. Duflot, L. Dufour, M-A. Duguid, L. Duehrssen, M. Dunford, M. Duran Yildiz, H. Duren, M. Duxfield, R. Dwuznik, M. Dydak, F. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortina, D. Fournier, D. Fowler, A. J. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia, C. Navarro, E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goeringer, C. Goldfarb, S. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Goncalves Pinto Firmino Da Costa, J. Gonella, L. Gonzalez, S. De la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Goepfert, T. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Goshaw, A. T. Gosselink, M. Goessling, C. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J-F. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guicheney, C. Guindon, S. Gul, U. Guler, H. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hall, D. Haller, J. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. Van Huysduynen, L. Hooft Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S-C. Hu, D. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jana, D. K. Jansen, E. Jansen, H. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Plante, I. Jen-La Jennens, D. Jenni, P. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E-E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koenig, S. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollefrath, M. Komar, A. A. Komori, Y. Kondo, T. Koeneke, K. Koenig, A. C. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Koperny, S. Koepke, L. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kreiss, S. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Lumb, D. Luminari, L. Lund, E. Lundberg, B. Lundberg, J. Lundberg, O. Lund-Jensen, B. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Maenner, R. Maeno, M. Maeno, T. Magnoni, L. Magradze, E. Mahboubi, K. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Mangeard, P. S. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Martens, F. K. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Maettig, P. Maettig, S. Mattravers, C. Maurer, J. Maxfield, S. J. Mayne, A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mc-fayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Meng, Z. Mengarellia, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Moya, M. Minano Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Moeller, V. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Moenig, K. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moeser, N. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Muenstermann, D. Mueller, T. A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagai, R. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A-E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Pagan Griso, S. Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Lopez, S. Pedraza Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pinto, B. Pizio, C. Plamondon, M. Pleier, M-A. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radloff, P. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schneider, B. Schnoor, U. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H-C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoyd, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J-W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakire, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valentinetti, S. Valero, A. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Berg, R. Van der Deijl, P. C. Van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Improved luminosity determination in pp collisions at root s=7 TeV using the ATLAS detector at the LHC SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID INTERACTION-POINT; SENSORS; BEAM AB The luminosity calibration for the ATLAS detector at the LHC during pp collisions at root s = 7 TeV in 2010 and 2011 is presented. Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors, and comparisons are made of the long-term stability and accuracy of this calibration applied to the pp collisions at root s = 7 TeV. A luminosity uncertainty of delta L/L = +/- 3.5 % is obtained for the 47 pb(-1) of data delivered to ATLAS in 2010, and an uncertainty of delta L/L = +/- 1.8 % is obtained for the 5.5 fb(-1) delivered in 2011. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Alam, M. S.; Edson, W.; Ernst, J.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Bahinipati, S.; Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Duran Yildiz, H.; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoyd, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakire, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Fellmann, D.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Griffiths, J.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S-C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Pagan Griso, S.; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Yu, D. R.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S-C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Pagan Griso, S.; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Yu, D. R.; Zenz, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battagli, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Battagli, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Giusti, P.; Grafstrom, P.; Jha, M. K.; Massa, I.; Mengarellia, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstrom, P.; Massa, I.; Mengarellia, A.; Monzani, S.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A-E.; Pohl, D.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J-W.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wang, T.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M-A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C-M.; Dinuta, F.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lamanna, M.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Meyer, T. C.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Sfyrla, A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Pino, S. A. Olivares; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Li, H.; Meng, Z.; Miao, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Chen, Y.; Dodd, J.; Grau, N.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Spousta, M.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Loevschall-Jensen, A. E.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Hamburg, Germany. [Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuchs, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Hamer, M.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Catastini, P.; Conti, G.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E-E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H-C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; De Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fys Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Merino, J. Llorente; March, L.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Maettig, S.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klemetti, M.; Klinger, J. A.; Lane, J. L.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Schwanenberger, C.; Snow, S. W.; Tomlinson, L.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Mc Donald, J.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbia, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Acerbia, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Giunta, M.; Guler, H.; Leroy, C.; Martin, J. P.; Mehdiyev, R.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Calfayan, P.; De Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Seuster, R.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundisa, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koetsveld, F.; Koenig, A. C.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Deijl, P. C.; Van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Deijl, P. C.; Van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. S.; Bogdanchikov, A.; Kazanin, V. F.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J-F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J-F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Dressnandt, N.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santosa, S. P.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle We-Mansa, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Pedis, D. De; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Messina, A.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Albert, J.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Albert, J.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA Marrakech, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Mourslie, R.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J-B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Meyer, J-P.; Mijovic, L.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondament Univers, Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Formica, A.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mc-fayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Assamagan, K.; Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohma, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Cuthbert, C.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Harpaz, S. Behar; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortina, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Deng, J.; Farrell, S.; Eschrich, I. Gough; Hawkins, D.; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, E. Garcia; De la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw; Carrillo-Montoya, G. D.; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Di Mattia, A.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Lagouri, T.; Lee, L.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Hernandez, A. M. Castaneda] UASLP, Dept Phys, San Luis Potosi, Mexico. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Do Valle We-Mansa, A.] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Do Valle We-Mansa, A.] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Fortina, D (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. EM atlas.publications@cern.ch RI Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Tikhomirov, Vladimir/M-6194-2015; Wolters, Helmut/M-4154-2013; Dawson, Ian/K-6090-2013; Moraes, Arthur/F-6478-2010; Solfaroli Camillocci, Elena/J-1596-2012; Ferrando, James/A-9192-2012; Boyko, Igor/J-3659-2013; Brooks, William/C-8636-2013; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Doyle, Anthony/C-5889-2009; Marti-Garcia, Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Castro, Nuno/D-5260-2011; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Kuday, Sinan/C-8528-2014; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Moorhead, Gareth/B-6634-2009; Peleganchuk, Sergey/J-6722-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Booth, Christopher/B-5263-2016; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; De, Kaushik/N-1953-2013; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; Sukharev, Andrey/A-6470-2014; Fazio, Salvatore /G-5156-2010; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Carvalho, Joao/M-4060-2013; Nozka, Libor/G-5550-2014; Kepka, Oldrich/G-6375-2014 OI Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Wolters, Helmut/0000-0002-9588-1773; Moraes, Arthur/0000-0002-5157-5686; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Ferrando, James/0000-0002-1007-7816; Boyko, Igor/0000-0002-3355-4662; Brooks, William/0000-0001-6161-3570; Doyle, Anthony/0000-0001-6322-6195; Castro, Nuno/0000-0001-8491-4376; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Moorhead, Gareth/0000-0002-9299-9549; Peleganchuk, Sergey/0000-0003-0907-7592; Anjos, Nuno/0000-0002-0018-0633; Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Booth, Christopher/0000-0002-6051-2847; Gomes, Agostinho/0000-0002-5940-9893; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; De, Kaushik/0000-0002-5647-4489; Warburton, Andreas/0000-0002-2298-7315; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Carvalho, Joao/0000-0002-3015-7821; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 24 TC 167 Z9 165 U1 16 U2 181 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD AUG PY 2013 VL 73 IS 8 AR 2518 DI 10.1140/epjc/s10052-013-2518-3 PG 39 WC Physics, Particles & Fields SC Physics GA 211IY UT WOS:000323901300010 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Abdel Khalek, S Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Atkinson, M Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Balek, P Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellomo, M Belloni, A Beloborodova, OL Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Bittner, B Black, CW Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Bloch, I Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Bondioli, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coelli, S Coffey, L Cogan, JG Coggeshall, J Cogneras, E Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crepe-Renaudin, S Crescioli, F Cristinziani, M Crosetti, G Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N De Jong, P De La Taille, C De la Torre, H De Lorenzi, F de Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A DeRegie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Dohmae, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dressnandt, N Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duerdoth, IP Duflot, L Dufour, MA Duguid, L Duehrssen, M Dunford, M Yildiz, HD Dueren, M Dwuznik, M Ebke, J Eckweiler, S Edmonds, K Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillberg, D Gillman, AR Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Goeringer, C Goldfarb, S Golling, T Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gopfert, T Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gosselink, M Goessling, C Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guicheney, C Guido, E Guindon, S Gul, U Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Hajduk, Z Hakobyan, H Hall, D Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jen-La Plante, I Jennens, D Jenni, P Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jorgea, PM Joshi, KD Jovicevic, J Jovinb, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczkab, G Kass, RD Kastanas, A Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomicha, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubuab, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koenig, S Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kreiss, S Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Krueger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, MK Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Luminaria, L Lund, E Lundberg, B Lundberg, J Lundberg, O Lund-Jensen, B Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Maddocks, HJ Mader, WF Maenner, R Maeno, M Maeno, T Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mameghani, R Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, L Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marques, CN Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VM Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Maettig, P Maettig, S Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mayne, A Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjrnmark, JU Moa, T Moeller, V Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Moenig, K Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moeser, N Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Mueller, T Muenstermann, D Muller, TA Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Orlov, IO Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pecsy, M Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perepelitsa, DV Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pinto, B Pizio, C Plamondon, M Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A De Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruehr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarrazin, B Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaelicke, A Schaepe, S Schaetzel, S Schaefer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shamov, AG Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, AM Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Stroehmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Su, D Subramania, H Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urquijo, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valentinetti, S Valero, A Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, D Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zibell, A Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Abdel Khalek, S. Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Alvarez Gonzalez, B. Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorim, A. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Atkinson, M. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Balek, P. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellomo, M. Belloni, A. Beloborodova, O. L. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez Garcia, J. A. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Bittner, B. Black, C. W. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Bondioli, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Capasso, L. Capeans Garrido, M. D. M. Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda Hernandez, A. M. Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coelli, S. Coffey, L. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crepe-Renaudin, S. Crescioli, F. Cristinziani, M. Crosetti, G. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. De Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. de Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. DeRegie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Dohmae, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dressnandt, N. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duerdoth, I. P. Duflot, L. Dufour, M-A. Duguid, L. Duehrssen, M. Dunford, M. Duran Yildiz, H. Dueren, M. Dwuznik, M. Ebke, J. Eckweiler, S. Edmonds, K. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferreira de Lima, D. E. Ferrer, A. Ferrere, D. Ferretti, C. Ferretto Parodi, A. Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goeringer, C. Goldfarb, S. Golling, T. Gomes, A. Gomez Fajardo, L. S. Goncalo, R. Firmino Da Costa, J. Goncalves Pinto Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Goepfert, T. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gosselink, M. Goessling, C. Gostkin, M. I. Gough Eschrich, I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guicheney, C. Guido, E. Guindon, S. Gul, U. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Hajduk, Z. Hakobyan, H. Hall, D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Henriques Correia, A. M. Henrot-Versille, S. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jen-La Plante, I. Jennens, D. Jenni, P. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Jimenez Belenguer, M. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jorgea, P. M. Joshi, K. D. Jovicevic, J. Jovinb, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Rozas, A. Juste Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczkab, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomicha, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubuab, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koenig, S. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Koeneke, K. Koenig, A. C. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kreiss, S. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, M. K. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Lopez Mateos, D. Lorenz, J. Lorenzo Martinez, N. Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Luminaria, L. Lund, E. Lundberg, B. Lundberg, J. Lundberg, O. Lund-Jensen, B. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Maenner, R. Maeno, M. Maeno, T. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mameghani, R. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Manjarres Ramos, J. A. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marques, C. N. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Maettig, P. Maettig, S. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mayne, A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Mellado Garcia, B. R. Meloni, F. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Michal, S. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjrnmark, J. U. Moa, T. Moeller, V. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Moenig, K. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Mora Herrera, C. Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moeser, N. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Muenstermann, D. Mueller, T. A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Nunes Hanninger, G. Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Olivares Pino, S. A. Oliveira, M. Oliveira Damazio, D. Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orlov, I. O. Oropeza Barrera, C. Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Pagan Griso, S. Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panduro Vazquez, J. G. Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Paredes Hernandez, D. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Pedraza Lopez, S. Pedraza Morales, M. I. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perepelitsa, D. V. Perez, K. Perez Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pinto, B. Pizio, C. Plamondon, M. Pleier, M. -A. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Rocha De Lima, J. G. Roda, C. Roda Dos Santos, D. Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Salvachua Ferrando, B. M. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Santoyo Castillo, I. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarrazin, B. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shamov, A. G. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. M. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Su, D. Subramania, Hs. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valentinetti, S. Valero, A. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Berg, R. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the inclusive jet cross-section in pp collisions at root s=2.76 TeV and comparison to the inclusive jet cross-section at root s=7 TeV using the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DEEP-INELASTIC SCATTERING; CERN PBARP COLLIDER; (P)OVER-BAR-P COLLISIONS; PERTURBATION-THEORY; PARTON DISTRIBUTIONS; EP SCATTERING; FRAGMENTATION; SHOWERS; MODEL AB The inclusive jet cross-section has been measured in proton-proton collisions at root s = 2.76 TeV in a dataset corresponding to an integrated luminosity of 0.20 pb(-1) collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-k(t) algorithm with two radius parameters of 0.4 and 0.6. The inclusive jet double-differential cross-section is presented as a function of the jet transverse momentum p(T) and jet rapidity y, covering a range of 20 <= p(T) < 430 GeV and vertical bar y vertical bar < 4.4. The ratio of the cross-section to the inclusive jet cross-section measurement at root s = 7 TeV, published by the ATLAS Collaboration, is calculated as a function of both transverse momentum and the dimensionless quantity x(T) = 2p(T)/root s, in bins of jet rapidity. The systematic uncertainties on the ratios are significantly reduced due to the cancellation of correlated uncertainties in the two measurements. Results are compared to the prediction from next-to-leading order perturbative QCD calculations corrected for non-perturbative effects, and next-to-leading order Monte Carlo simulation. Furthermore, the ATLAS jet cross-section measurements at root s = 2.76 TeV and root s = 7 TeV are analysed within a framework of next-to-leading order perturbative QCD calculations to determine parton distribution functions of the proton, taking into account the correlations between the measurements. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Alam, M. S.; Edson, W.; Elsing, M.; Ernst, J.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Bahinipati, S.; Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Duran Yildiz, H.; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Salvachua Ferrando, B. M.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovinb, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Pagan Griso, S.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Grafstrom, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Abajyan, T.; Ahmad, A.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Juiz de Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Emeliyanov, D.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Oliveira Damazio, D.; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Lacey, J.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Capeans Garrido, M. D. M.; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Henriques Correia, A. M.; Hervas, L.; Hoecker, A.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Portell Bueso, X.; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Roda Dos Santos, D.; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Sfyrla, A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Olivares Pino, S. A.; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Wang, J.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, B.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wu, Y.; Xu, C.; Xu, L.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Paredes Hernandez, D.; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand 2, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Dodd, J.; Grau, N.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perepelitsa, D. V.; Perez, K.; Perez Reale, V.; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Loevschall-Jensen, A. E.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Firmino Da Costa, J. Goncalves Pinto; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Jimenez Belenguer, M.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Firmino Da Costa, J. Goncalves Pinto; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Jimenez Belenguer, M.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Ciftci, R.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Mora Herrera, C.; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Ferretto Parodi, A.; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Ferretto Parodi, A.; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubuab, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Ferreira de Lima, D. E.; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Oropeza Barrera, C.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Lopez Mateos, D.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Henke, M.; Hofmann, J. I.; Khomicha, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczkab, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Panduro Vazquez, J. G.; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.; Sircar, A.; Subramaniam, R.; Tamsett, M. C.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Chareyre, E.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Chareyre, E.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Chareyre, E.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjrnmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Mc Donald, J.; Robertson, S. H.; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Nunes Hanninger, G.; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Alvarez Gonzalez, B.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Coelli, S.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Giunta, M.; Leroy, C.; Martin, J. P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koetsveld, F.; Koenig, A. C.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Doxiadis, A. D.; Ferrari, P.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Doxiadis, A. D.; Ferrari, P.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; Rocha De Lima, J. G.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Beloborodova, O. L.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I. O.; Peleganchuk, S. V.; Shamov, A. G.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abdel Khalek, S.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; DeRegie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lorenzo Martinez, N.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abdel Khalek, S.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; DeRegie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lorenzo Martinez, N.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J. S.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Dressnandt, N.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorgea, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Marques, C. N.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Conventi, F.; Dewhurst, A.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminaria, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Res Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier & LPTPM, Fac Sci, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Engelmann, R.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Manjarres Ramos, J. A.; Mansoulie, B.; Meyer, J-P.; Mijovic, L.; Morange, N.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Carrillo-Montoya, G. D.; Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Elmsheuser, J.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Santoyo Castillo, I.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Cheung, S. L.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Perez Codina, E.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Benitez Garcia, J. A.; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Bondioli, M.; Corso-Radu, A.; Farrell, S.; Gough Eschrich, I.; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] INFN, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Gecse, Z.; Kind, O.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Chen, X.; Di Mattia, A.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Mellado Garcia, B. R.; Ming, Y.; Pan, Y. B.; Pedraza Morales, M. I.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Sturm, P.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Cogneras, E.; Kohlmann, S.; Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.; Ruan, X.] Kings Coll London, Dept Phys, London, England. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.; Savard, P.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.; Savard, P.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O. L.; Maximov, D. A.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Castaneda Hernandez, A. M.] UASLP, Dept Phys, San Luis Potosi, Mexico. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dep Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Dobson, E.] UCL, Dept Phys & Astron, London, England. [Ge, P.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Grinstein, S.; Martinez, M.] ICREA, Barcelona, Spain. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. Manhattan Coll, New York, NY USA. [Li, B.; Zhang, D.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Li, S.] Aix Marseille Univ, CPPM, Marseille, France. [Li, S.] CNRS, IN2P3, Marseille, France. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Meng, Z.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Ruan, X.] Univ Paris 11, LAL, Orsay, France. [Ruan, X.] CNRS, IN2P3, F-91405 Orsay, France. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Spousta, M.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Tamsett, M. C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Tsionou, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wu, Y.; Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. RI Kepka, Oldrich/G-6375-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Kuday, Sinan/C-8528-2014; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Moorhead, Gareth/B-6634-2009; Peleganchuk, Sergey/J-6722-2014; De, Kaushik/N-1953-2013; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; Sukharev, Andrey/A-6470-2014; Fazio, Salvatore /G-5156-2010; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Carvalho, Joao/M-4060-2013; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; Dawson, Ian/K-6090-2013; Moraes, Arthur/F-6478-2010; Solfaroli Camillocci, Elena/J-1596-2012; Ferrando, James/A-9192-2012; Boyko, Igor/J-3659-2013; Brooks, William/C-8636-2013; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Doyle, Anthony/C-5889-2009; Marti-Garcia, Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Mashinistov, Ruslan/M-8356-2015; Fullana Torregrosa, Esteban/A-7305-2016; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Bosman, Martine/J-9917-2014; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012 OI Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Moorhead, Gareth/0000-0002-9299-9549; Peleganchuk, Sergey/0000-0003-0907-7592; De, Kaushik/0000-0002-5647-4489; Warburton, Andreas/0000-0002-2298-7315; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Carvalho, Joao/0000-0002-3015-7821; Coccaro, Andrea/0000-0003-2368-4559; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Moraes, Arthur/0000-0002-5157-5686; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Ferrando, James/0000-0002-1007-7816; Boyko, Igor/0000-0002-3355-4662; Brooks, William/0000-0001-6161-3570; Doyle, Anthony/0000-0001-6322-6195; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Mashinistov, Ruslan/0000-0001-7925-4676; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Bosman, Martine/0000-0002-7290-643X; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 92 TC 24 Z9 24 U1 9 U2 158 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD AUG PY 2013 VL 73 IS 8 AR 2509 DI 10.1140/epjc/s10052-013-2509-4 PG 56 WC Physics, Particles & Fields SC Physics GA 211IY UT WOS:000323901300004 ER PT J AU Xing, YL Chou, CS Shu, CW AF Xing, Yulong Chou, Ching-Shan Shu, Chi-Wang TI ENERGY CONSERVING LOCAL DISCONTINUOUS GALERKIN METHODS FOR WAVE PROPAGATION PROBLEMS SO INVERSE PROBLEMS AND IMAGING LA English DT Article DE Wave propagation; local discontinuous Calerkin method; energy conservation; error estimate; superconvergence ID FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; HYPERBOLIC SYSTEMS; EQUATION AB Wave propagation problems arise in a wide range of applications. The energy conserving property is one of the guiding principles for numerical algorithms, in order to minimize the phase or shape errors after long time integration. In this paper, we develop and analyze a local discontinuous Calerkin (LDC) method for solving the wave equation. We prove optimal error estimates, superconvergence toward a particular projection of the exact solution, and the energy conserving property for the semi-discrete formulation. The analysis is extended to the fully discrete LDC scheme, with the centered second-order time discretization (the leap-frog scheme). Our numerical experiments demonstrate optimal rates of convergence and superconvergence. We also show that the shape of the solution, after long time integration, is well preserved due to the energy conserving property. C1 [Xing, Yulong] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Xing, Yulong] Univ Tennessee, Dept Math, Oak Ridge, TN 37831 USA. [Chou, Ching-Shan] Ohio State Univ, Dept Math, Columbus, OH 43221 USA. [Shu, Chi-Wang] Brown Univ, Div Appl Math, Providence, RI 02912 USA. RP Xing, YL (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM xingy@math.utk.edu; chou@math.ohio-state.edu; shu@dam.brown.edu FU NSF [DMS-1216454, DMS-1020625, DMS-1112700]; ORNL's Laboratory Directed Research and Development funds; DOE Office of Advanced Scientific Computing Research; DOE [DE-FG02-08ER25863]; UT-Battelle, LLC [DE-AC05-00OR22725] FX The work of the first author was partially performed at ORNL, which is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725. NR 23 TC 12 Z9 12 U1 1 U2 5 PU AMER INST MATHEMATICAL SCIENCES-AIMS PI SPRINGFIELD PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA SN 1930-8337 EI 1930-8345 J9 INVERSE PROBL IMAG JI Inverse Probl. Imaging PD AUG PY 2013 VL 7 IS 3 SI SI BP 967 EP 986 DI 10.3934/ipi.2013.7.967 PG 20 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 218AO UT WOS:000324405200018 ER PT J AU Akl, TJ Wilson, MA Ericson, MN Cote, GL AF Akl, Tony J. Wilson, Mark A. Ericson, M. Nance Cote, Gerard L. TI Intestinal perfusion monitoring using photoplethysmography SO JOURNAL OF BIOMEDICAL OPTICS LA English DT Article DE photoplethysmography; spectroscopy; oximetry; perfusion monitoring; trauma ID NEAR-INFRARED SPECTROSCOPY; BLOOD-FLOW; IMPLANTABLE SENSOR; OXYGEN-SATURATION; TISSUE; SHOCK; RESUSCITATION; PENETRATION; HEMOGLOBIN; PRESSURE AB In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Akl, Tony J.; Cote, Gerard L.] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA. [Wilson, Mark A.] Univ Pittsburgh, Dept Surg, Pittsburgh, PA 15213 USA. [Wilson, Mark A.] Vet Affairs Healthcare Syst, Pittsburgh, PA 15240 USA. [Ericson, M. Nance] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Akl, TJ (reprint author), Texas A&M Univ, Dept Biomed Engn, 5045 Emerging Technol Bldg, College Stn, TX 77843 USA. EM takl@tamu.edu RI Ericson, Milton/H-9880-2016 OI Ericson, Milton/0000-0002-6628-4865 FU NIH [5R01-GM077150] FX This research was funded by a bioengineering research partnership (BRP) grant from NIH (#5R01-GM077150). NR 53 TC 0 Z9 0 U1 0 U2 5 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1083-3668 EI 1560-2281 J9 J BIOMED OPT JI J. Biomed. Opt. PD AUG PY 2013 VL 18 IS 8 AR 087005 DI 10.1117/1.JBO.18.8.087005 PG 12 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA 216MN UT WOS:000324287700022 PM 23942635 ER PT J AU El Hedri, S Hook, A Jankowiak, M Wacker, JG AF El Hedri, Sonia Hook, Anson Jankowiak, Martin Wacker, Jay G. TI Learning how to count: a high multiplicity search for the LHC SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE QCD Phenomenology; Jets ID ALGORITHMS AB We introduce a search technique that is sensitive to a broad class of signals with large final state multiplicities. Events are clustered into large radius jets and jet substructure techniques are used to count the number of subjets within each jet. The search consists of a cut on the total number of subjets in the event as well as the summed jet mass and missing energy. Two different techniques for counting subjets are described and expected sensitivities are presented for eight benchmark signals. These signals exhibit diverse phenomenology, including 2-step cascade decays, direct three body decays, and multi-top final states. We find improved sensitivity to these signals as compared to previous high multiplicity searches as well as a reduced reliance on missing energy requirements. One benefit of this approach is that it allows for natural data driven estimates of the QCD background. C1 [El Hedri, Sonia; Wacker, Jay G.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Hook, Anson] Princeton Univ, Inst Adv Studies, Princeton, NJ 08544 USA. [Jankowiak, Martin] Heidelberg Univ, Inst Theoret Phys, Heidelberg, Germany. RP El Hedri, S (reprint author), Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. EM soniaeh@slac.stanford.edu; hook@ias.edu; jankowiak@thphys.uni-heidelberg.de; jgwacker@slac.stanford.edu FU US DOE [DE-AC02-76-SF00515, DE-FG02-90ER40542]; Stanford Graduate Fellowship FX We thank Timothy Cohen, Eder Izaguirre, Mariangela Lisanti, Jesse Thaler, Gavin Salam, Stefan Hoche, Steffen Schumann, Ariel Schwartzman, Ken Van Tilburg, and Xinlu Huang for helpful discussions. MJ would like to thank Michael Spannowsky for interesting conversations. Special thanks to Timothy Cohen for having provided Monte Carlo data for the QCD background. SE and JW are supported by the US DOE under contract number DE-AC02-76-SF00515. SE is supported by a Stanford Graduate Fellowship. All is supported by the US DOE under contract number DE-FG02-90ER40542. NR 59 TC 14 Z9 14 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD AUG PY 2013 IS 8 AR 136 DI 10.1007/JHEP08(2013)136 PG 38 WC Physics, Particles & Fields SC Physics GA 214EN UT WOS:000324114000037 ER PT J AU Acciarri, R Adams, C Asaadi, J Baller, B Bolton, T Bromberg, C Cavanna, F Church, E Edmunds, D Ereditato, A Farooq, S Fleming, B Greenlee, H Horton-Smith, G James, C Klein, E Lang, K Laurens, P McKee, D Mehdiyev, R Page, B Palamara, O Partyka, K Rameika, G Rebel, B Soderberg, M Spitz, J Szelc, AM Weber, M Wojcik, M Yang, T Zeller, GP AF Acciarri, R. Adams, C. Asaadi, J. Baller, B. Bolton, T. Bromberg, C. Cavanna, F. Church, E. Edmunds, D. Ereditato, A. Farooq, S. Fleming, B. Greenlee, H. Horton-Smith, G. James, C. Klein, E. Lang, K. Laurens, P. McKee, D. Mehdiyev, R. Page, B. Palamara, O. Partyka, K. Rameika, G. Rebel, B. Soderberg, M. Spitz, J. Szelc, A. M. Weber, M. Wojcik, M. Yang, T. Zeller, G. P. TI A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Cryogenic detectors; Analysis and statistical methods; Time projection chambers ID THERMALIZATION; MATTER; XENON AB Electron recombination in highly ionizing stopping protons and deuterons is studied in the ArgoNeuT detector. The data are well modeled by either a Birks model or a modified form of the Box model. The dependence of recombination on the track angle with respect to the electric field direction is much weaker than the predictions of the Jaffe columnar theory and by theoretical-computational simulations. C1 [Acciarri, R.; Baller, B.; Greenlee, H.; James, C.; Rameika, G.; Rebel, B.; Soderberg, M.; Yang, T.; Zeller, G. P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, C.; Cavanna, F.; Church, E.; Fleming, B.; Klein, E.; Palamara, O.; Partyka, K.; Spitz, J.; Szelc, A. M.] Yale Univ, New Haven, CT 06520 USA. [Asaadi, J.; Soderberg, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Bolton, T.; Farooq, S.; Horton-Smith, G.; McKee, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Bromberg, C.; Edmunds, D.; Laurens, P.; Page, B.] Michigan State Univ, E Lansing, MI 48824 USA. [Cavanna, F.] Univ Aquila, I-67100 Laquila, Italy. [Cavanna, F.] Ist Nazl Fis Nucl, Laquila, Italy. [Ereditato, A.; Weber, M.] Univ Bern, Bern, Switzerland. [Lang, K.; Mehdiyev, R.] Univ Texas Austin, Austin, TX 78712 USA. [Palamara, O.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, Italy. [Wojcik, M.] Lodz Univ Technol, Lodz, Poland. RP Baller, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM baller@fnal.gov RI Horton-Smith, Glenn/A-4409-2011; OI Horton-Smith, Glenn/0000-0001-9677-9167; Spitz, Joshua/0000-0002-6288-7028; Weber, Michele/0000-0002-2770-9031; Cavanna, Flavio/0000-0002-5586-9964 FU Fermilab; U.S. Department of Energy; National Science foundation; United States Department of Energy [DE-AC02-07CH11359] FX We gratefully acknowledge the support of Fermilab, the U.S. Department of Energy and the National Science foundation. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 18 TC 11 Z9 11 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD AUG PY 2013 VL 8 AR P08005 DI 10.1088/1748-0221/8/08/P08005 PG 18 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 212XZ UT WOS:000324017400010 ER PT J AU Bassignana, D Li, Z Lozano, M Pellegrini, G Quirion, D Tuuva, T AF Bassignana, D. Li, Z. Lozano, M. Pellegrini, G. Quirion, D. Tuuva, T. TI Design, fabrication and characterization of the first dual-column 3D stripixel detectors SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Solid state detectors; Radiation-hard detectors; Particle tracking detectors (Solid-state detectors) ID RESISTIVITY SILICON DETECTORS; N-EFF; SIMULATION AB This paper presents design, fabrication and the first characterization of the new 3D stripixel detector. The device has dual-column electrodes (both n(+)- and p(+)-type) arranged in a quincunx configuration and processed in a single-sided process on n-type silicon bulk. Double-metal technology allows to connect the electrodes by two sets of perpendicular strips providing a X-Y projective read-out. The design of the sensor has been optimized with the use of TCAD Sentaurus simulations. TCT measurements were performed to study the active area of the detector. Finally, 2D position sensitivity was investigated reconstructing the position of a laser beam within a 80x80 mu m(2) pixel, defined by two neighbouring p(+)-type strips crossing two neighbouring n(+)-type strips. C1 [Bassignana, D.; Lozano, M.; Pellegrini, G.; Quirion, D.] CSIC, CNM, IMB, Barcelona 08193, Spain. [Li, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Tuuva, T.] Lappeenranta Univ, Lappeenranta 53850, Finland. RP Pellegrini, G (reprint author), CSIC, CNM, IMB, Campus Univ Autonoma Barcelona, Barcelona 08193, Spain. EM giulio.pellegrini@csic.es RI Bassignana, Daniela/J-7266-2012; Quirion, David/K-7597-2014; Lozano, Manuel/C-3445-2011; Pellegrini, Giulio/F-4921-2011 OI Bassignana, Daniela/0000-0001-7582-9161; Quirion, David/0000-0002-5309-0535; Lozano, Manuel/0000-0001-5826-5544; Pellegrini, Giulio/0000-0002-1606-3546 FU Spanish Ministry of Education and Science through Particle Physics National Program [FPA2010-22060-C02-02, FPA2010-22163-C02-02]; GICSERV program "Access to ICTS integrated nano-and micro electronics clean room" of Spanish Ministry of Education and Science FX This work has been financed by the Spanish Ministry of Education and Science through the Particle Physics National Program (FPA2010-22060-C02-02 and FPA2010-22163-C02-02) and through the GICSERV program "Access to ICTS integrated nano-and micro electronics clean room" of the same Ministry. This work was done in the framework of CERN RD50 Radiation hard semiconductor devices for very high luminosity colliders. NR 13 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD AUG PY 2013 VL 8 AR P08014 DI 10.1088/1748-0221/8/08/P08014 PG 18 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 212XZ UT WOS:000324017400019 ER PT J AU Shin, S Kim, D Hwang, I Kim, M Choi, J Liu, G Hou, J Chunjarean, S Kim, KR Huang, J Nam, S AF Shin, S. Kim, D. Hwang, I. Kim, M. Choi, J. Liu, G. Hou, J. Chunjarean, S. Kim, K-R Huang, J. Nam, S. TI Lattice design and beam dynamics studies for the PLS-II SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics); Beam dynamics; Accelerator Subsystems and Technologies AB Pohang Light Source (PLS) [1] had operated for 14 year successfully. To meet the request of the increasing user community, the PLS-II that is the upgrade project of PLS have been carried out. Main design goals of the PLS-II lattice are to increase beam energy to 3 GeV, to increase number of insertion devices by factor of two (20 IDs), to increase beam current to 400 mA and to reduce beam emittance below 10 nm with existing PLS tunnel and injection system. Following the desired design criteria, DBA lattice had been chosen such that the full storage ring includes 12 long straight sections and 12 short straight sections for installation of insertion devices with keeping beam emittance as small as possible. Through the six months of commissioning in the later half of 2011 and user operation in full period of 2012, we have successfully operated 14 insertion devices operation and top-up operation with 200 mA beam current and 5.8 nm beam emittance. It is especially important that good understanding of the machine operation and limitations can be achieved by comparison of experimental and simulation data during realizing final PLS-II goal and stable operation. Therefore, this paper describes the results of lattice design and beam dynamics studies for the PLS-II [2, 3]. C1 [Shin, S.; Kim, D.; Hwang, I.; Kim, M.; Kim, K-R; Huang, J.; Nam, S.] POSTECH, Pohang Accelerator Lab, Pohang 790784, Kyungbuk, South Korea. [Choi, J.] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. [Liu, G.; Hou, J.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Chunjarean, S.] Chiang Mai Univ, Chiang Mai 50200, Thailand. RP Shin, S (reprint author), POSTECH, Pohang Accelerator Lab, Pohang 790784, Kyungbuk, South Korea. EM tlssh@postech.ac.kr FU Converging Research Center Program through Ministry of Science, ICT and Future Planning [2013K000306] FX We thank Prof. Helmut Wiedemann (SLAC), W. Wan (ALS), M. Boege (SLS), L. Nadolski (SOLEIL) and T. Shaftan (NSLS-II) for their graceful comments. This research was supported by the Converging Research Center Program through the Ministry of Science, ICT and Future Planning (2013K000306). NR 11 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD AUG PY 2013 VL 8 AR P08008 DI 10.1088/1748-0221/8/08/P08008 PG 23 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 212XZ UT WOS:000324017400013 ER PT J AU Tao, GH Miller, WH AF Tao, Guohua Miller, William H. TI Time-dependent importance sampling in semi-classical initial value representation calculations for time correlation functions. III. A state-resolved implementation to electronically non-adiabatic dynamics SO MOLECULAR PHYSICS LA English DT Article DE non-adiabatic; semi-classical (SC); time-dependent (TD); correlation function ID MOLECULAR-DYNAMICS; QUANTUM DYNAMICS AB The recently developed time-dependent (TD) Monte Carlo (MC) importance sampling method [Tao and Miller; JCP 135, 024104 (2011)] provides an efficient implementation of the semi-classical (SC) initial value representation (IVR) methodology for the evaluation of time correlation functions. The key idea in this TD-SC-IVR method is to perform importance sampling of trajectories for the MC averages in the SC calculations with a sampling function that includes information about the final (time-evolved) values of the coordinates and momenta of trajectories in addition to (the usual) information of their initial values. This paper shows how this approach deals with electronically non-adiabatic dynamics, i.e. dynamics that involves coupled multiple electronic states. We suggest that a state-resolved sampling function may facilitate the efficient implementation of TD-SC-IVR for such processes. This is illustrated by application to the calculation of the nuclear momentum distribution function (i.e. the nuclear energy-loss spectrum) for a benchmark non-adiabatic scattering problem. C1 [Tao, Guohua; Miller, William H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Tao, Guohua; Miller, William H.] Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Tao, Guohua; Miller, William H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Miller, WH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM millerwh@berkeley.edu FU National Science Foundation [CHE-1148645]; Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation Grant No. CHE-1148645 and by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also acknowledge a generous allocation of supercomputing time from the National Energy Research Scientific Computing Center (NERSC) and the use of the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory. NR 20 TC 5 Z9 5 U1 0 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0026-8976 J9 MOL PHYS JI Mol. Phys. PD AUG 1 PY 2013 VL 111 IS 14-15 SI SI BP 1987 EP 1993 DI 10.1080/00268976.2013.776712 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211BR UT WOS:000323879600006 ER PT J AU von Lilienfeld, OA AF von Lilienfeld, O. Anatole TI Force correcting atom centred potentials for generalised gradient approximated density functional theory: Approaching hybrid functional accuracy for geometries and harmonic frequencies in small chlorofluorocarbons SO MOLECULAR PHYSICS LA English DT Article DE vibrational spectroscopy; atom centered potentials; plane-wave and pseudopotentials; high-performance computing ID SPACE GAUSSIAN PSEUDOPOTENTIALS; DER-WAALS INTERACTIONS; CAPPING POTENTIALS; 1ST PRINCIPLES; NONCOVALENT INTERACTIONS; ELECTRONIC-STRUCTURE; MOLECULAR-PROPERTIES; LIQUID WATER; SOFT ACIDS; AB-INITIO AB Generalised gradient approximated (GGA) density functional theory (DFT) typically overestimates polarisability and bond-lengths, and underestimates force constants of covalent bonds. To overcome this problem we show that one can use empirical force correcting atom centred potentials (FCACPs), parametrised for every nuclear species. Parameters are obtained through minimisation of a penalty functional that explicitly encodes hybrid DFT forces and static polarisabilities of reference molecules. For hydrogen, fluorine, chlorine and carbon the respective reference molecules consist of H-2, F-2, Cl-2 and CH4. The transferability of this approach is assessed for harmonic frequencies in a small set of chlorofluorocarbon molecules. Numerical evidence, gathered for CF4, CCl4, CCl3F, CCl2F2, CClF3, ClF, HF, HCl, CFH3, CF2H2, CF3H, CHCl3, CH2Cl2 and CH3Cl indicates that the GGA+FCACP level of theory yields harmonic frequencies that are significantly more consistent with hybrid DFT values, as well as slightly reduced molecular polarisability. C1 [von Lilienfeld, O. Anatole] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [von Lilienfeld, O. Anatole] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland. RP von Lilienfeld, OA (reprint author), Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. EM anatole@alcf.anl.gov RI von Lilienfeld, O. Anatole/D-8529-2011 FU Office of Science of the U.S. DOE [DE-AC02-06CH11357] FX This article is dedicated to Prof. M. Quack, the author's Diplomvater at ETH Zurich in 2001, and co-author of the resulting paper [14]. The author is thankful for many technical discussions with P.J. Feibelman, A. E. Mattsson and A. G. Taube at Sandia National Laboratories. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. DOE under contract DE-AC02-06CH11357. NR 77 TC 4 Z9 4 U1 0 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0026-8976 J9 MOL PHYS JI Mol. Phys. PD AUG 1 PY 2013 VL 111 IS 14-15 SI SI BP 2147 EP 2153 DI 10.1080/00268976.2013.793834 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211BR UT WOS:000323879600024 ER PT J AU Pfeiffer, AN Sayres, SG Leone, SR AF Pfeiffer, Adrian N. Sayres, Scott G. Leone, Stephen R. TI Calculation of valence electron motion induced by sequential strong-field ionisation SO MOLECULAR PHYSICS LA English DT Article DE sequential double ionisation; valence electron motion; circular polarisation ID ATOMS AB Strong-field ionisation leads to the formation of electron wave packets in the valence shell of the resulting ion under appropriate experimental conditions. Ab-initio calculations of the population and coherence dynamics are challenging and are usually limited to single ionisation of simple systems by linearly polarised fields. Here, a calculation based on static-field rate equations is presented to obtain the density matrix for sequential double ionisation. The results for single ionisation of neon and xenon by linearly polarised pulses are in satisfactory agreement with ab-initio calculations. For double ionisation of neon and xenon by elliptically polarised fields, five coherence channels with recurrence times between 1.1 fs and 51.9 fs are predicted to exhibit a significant degree of coherence. The degree of coherence is affected by the polarisation of the laser pulse and decreases in general for elliptical polarisation, but for the investigated cases a significant degree of coherence is predicted to occur up to the regime of close-to-circular polarisation. C1 [Pfeiffer, Adrian N.; Sayres, Scott G.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Pfeiffer, Adrian N.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. RP Pfeiffer, AN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM apfeiffer@lbl.gov RI Pfeiffer, Adrian/J-7671-2016 FU Laboratory Directed Research and Development Program at Lawrence Berkeley National Laboratory; National Science Foundation Chemistry Division [CHE-1049946]; office of Science, office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation Engineering Research Center for Extreme Ultraviolet Science and Technology; W.M. Keck Foundation; Department of Defense National Security Science and Engineering Faculty Fellowship FX A.N.P. is supported by the Laboratory Directed Research and Development Program at Lawrence Berkeley National Laboratory. S. G. S. is supported by the National Science Foundation Chemistry Division CHE-1049946. S. R. L. acknowledges additional support that contributed to the intellectual content of this project: The Director, office of Science, office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231; National Science Foundation Engineering Research Center for Extreme Ultraviolet Science and Technology; W.M. Keck Foundation; Department of Defense National Security Science and Engineering Faculty Fellowship. NR 28 TC 3 Z9 3 U1 3 U2 27 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0026-8976 J9 MOL PHYS JI Mol. Phys. PD AUG 1 PY 2013 VL 111 IS 14-15 SI SI BP 2283 EP 2291 DI 10.1080/00268976.2013.801527 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211BR UT WOS:000323879600037 ER PT J AU Pyka, K Keller, J Partner, HL Nigmatullin, R Burgermeister, T Meier, DM Kuhlmann, K Retzker, A Plenio, MB Zurek, WH del Campo, A Mehlstaubler, TE AF Pyka, K. Keller, J. Partner, H. L. Nigmatullin, R. Burgermeister, T. Meier, D. M. Kuhlmann, K. Retzker, A. Plenio, M. B. Zurek, W. H. del Campo, A. Mehlstaeubler, T. E. TI Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals SO NATURE COMMUNICATIONS LA English DT Article ID TRAPPED IONS; LIQUID-CRYSTALS; TRANSITION; DYNAMICS AB Symmetry breaking phase transitions play an important role in nature. When a system traverses such a transition at a finite rate, its causally disconnected regions choose the new broken symmetry state independently. Where such local choices are incompatible, topological defects can form. The Kibble-Zurek mechanism predicts the defect densities to follow a power law that scales with the rate of the transition. Owing to its ubiquitous nature, this theory finds application in a wide field of systems ranging from cosmology to condensed matter. Here we present the successful creation of defects in ion Coulomb crystals by a controlled quench of the confining potential, and observe an enhanced power law scaling in accordance with numerical simulations and recent predictions. This simple system with well-defined critical exponents opens up ways to investigate the physics of non-equilibrium dynamics from the classical to the quantum regime. C1 [Pyka, K.; Keller, J.; Partner, H. L.; Burgermeister, T.; Meier, D. M.; Kuhlmann, K.; Mehlstaeubler, T. E.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Nigmatullin, R.; Plenio, M. B.] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany. [Nigmatullin, R.; Plenio, M. B.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Retzker, A.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Givat Ram, Israel. [Plenio, M. B.] Univ Ulm, Ctr Integrated Quantum Sci & Technol, D-89069 Ulm, Germany. [Zurek, W. H.; del Campo, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [del Campo, A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Mehlstaubler, TE (reprint author), Phys Tech Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany. EM tanja.mehlstaeubler@ptb.de RI del Campo, Adolfo/B-8439-2009; Plenio, Martin/I-7895-2013; OI del Campo, Adolfo/0000-0003-2219-2851; Nigmatullin, Ramil/0000-0003-2577-6561; Keller, Jonas/0000-0002-3596-995X FU NSF [PHY11-25915]; United States Department of Energy through the LANL/LDRD Program; LANL J. Robert Oppenheimer fellowship; EU STREP PICC; Alexander von Humboldt Foundation; Career Integration Grant (CIG) [321798]; EPSRC; DFG through QUEST FX We thank B. Damski and R. Rivers for suggestions and comments on the manuscript, L. Yi for his contributions to the detection software, E. Passemar for providing statistics codes and K. Thirumalai for assistance in the lab. This work was supported by NSF PHY11-25915, the United States Department of Energy through the LANL/LDRD Program and a LANL J. Robert Oppenheimer fellowship (A.d.C.), the EU STREP PICC, the Alexander von Humboldt Foundation (M.B.P.), Career Integration Grant (CIG) no. 321798 (A.R.), by EPSRC (R.N.) and by DFG through QUEST. A.d.C. and W.H.Z. are grateful to KITP for hospitality. NR 42 TC 78 Z9 78 U1 5 U2 29 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2013 VL 4 AR 2291 DI 10.1038/ncomms3291 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 209JN UT WOS:000323752000007 PM 23921564 ER PT J AU Xu, WZ Zhang, YF Cheng, GM Jian, WW Millett, PC Koch, CC Mathaudhu, SN Zhu, YT AF Xu, Weizong Zhang, Yongfeng Cheng, Guangming Jian, Weiwei Millett, Paul C. Koch, Carl C. Mathaudhu, Suveen N. Zhu, Yuntian TI In-situ atomic-scale observation of irradiation-induced void formation SO NATURE COMMUNICATIONS LA English DT Article ID VOLTAGE ELECTRON-MICROSCOPE; NEUTRON-IRRADIATION; RADIATION-DAMAGE; DISLOCATION LOOPS; GAS-BUBBLES; HCP METALS; NUCLEATION; EVOLUTION; ZIRCONIUM; ALLOYS AB The formation of voids in an irradiated material significantly degrades its physical and mechanical properties. Void nucleation and growth involve discrete atomic-scale processes that, unfortunately, are not yet well understood due to the lack of direct experimental examination. Here we report an in-situ atomic-scale observation of the nucleation and growth of voids in hexagonal close-packed magnesium under electron irradiation. The voids are found to first grow into a plate-like shape, followed by a gradual transition to a nearly equiaxial geometry. Using atomistic simulations, we show that the initial growth in length is controlled by slow nucleation kinetics of vacancy layers on basal facets and anisotropic vacancy diffusivity. The subsequent thickness growth is driven by thermodynamics to reduce surface energy. These experiments represent unprecedented resolution and characterization of void nucleation and growth under irradiation, and might help with understanding the irradiation damage of other hexagonal close-packed materials. C1 [Xu, Weizong; Cheng, Guangming; Jian, Weiwei; Koch, Carl C.; Zhu, Yuntian] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Zhang, Yongfeng] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Millett, Paul C.] Univ Arkansas, Dept Mech Engn, Fayetteville, AR 72701 USA. [Mathaudhu, Suveen N.] US Army, Res Off, Div Mat Sci, Res Triangle Pk, NC 27709 USA. RP Zhu, YT (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM ytzhu@ncsu.edu RI Zhu, Yuntian/B-3021-2008; Cheng, Guangming/F-8999-2010; Mathaudhu, Suveen/B-4192-2009; Xu, Weizong/G-3328-2014 OI Zhu, Yuntian/0000-0002-5961-7422; Cheng, Guangming/0000-0001-5852-1341; Xu, Weizong/0000-0003-0030-8606 FU Laboratory Directed Research and Development Program Office of the Idaho National Laboratory [00042959-00032]; US Army Research Office [W911NF-12-1-0009] FX We thank Dr M.-H. Tsai for constructive discussions. We acknowledge financial support from the Laboratory Directed Research and Development Program Office of the Idaho National Laboratory (00042959-00032), and US Army Research Office (W911NF-12-1-0009). NR 53 TC 17 Z9 17 U1 9 U2 89 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2013 VL 4 AR 2288 DI 10.1038/ncomms3288 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 209JN UT WOS:000323752000004 PM 23912894 ER PT J AU Zhu, JH Zhang, SY Zhang, K Wang, XJ Mays, JW Wooley, KL Pochan, DJ AF Zhu, Jiahua Zhang, Shiyi Zhang, Ke Wang, Xiaojun Mays, Jimmy W. Wooley, Karen L. Pochan, Darrin J. TI Disk-cylinder and disk-sphere nanoparticles via a block copolymer blend solution construction SO NATURE COMMUNICATIONS LA English DT Article ID MULTICOMPARTMENT MICELLES; DIBLOCK COPOLYMERS; INTRACELLULAR DELIVERY; SOLUTION-STATE; ASSEMBLIES; POLYMERIZATION; MORPHOLOGY; CELLS; SHAPE AB Researchers strive to produce nanoparticles with complexity in composition and structure. Although traditional spherical, cylindrical and membranous, or planar, nanostructures are ubiquitous, scientists seek more complicated geometries for potential functionality. Here we report the simple solution construction of multigeometry nanoparticles, disk-sphere and disk-cylinder, through a straightforward, molecular-level, blending strategy with binary mixtures of block copolymers. The multigeometry nanoparticles contain disk geometry in the core with either spherical patches along the disk periphery in the case of disk-sphere particles or cylindrical edges and handles in the case of the disk-cylinder particles. The portions of different geometry in the same nanoparticles contain different core block chemistry, thus also defining multicompartments in the nanoparticles. Although the block copolymers chosen for the blends are important for the definition of the final hybrid particles, the control of the kinetic pathway of assembly is critical for successful multigeometry particle construction. C1 [Zhu, Jiahua] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, Shiyi; Wooley, Karen L.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Zhang, Shiyi; Wooley, Karen L.] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. [Zhang, Shiyi] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Zhang, Ke] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA. [Wang, Xiaojun; Mays, Jimmy W.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Pochan, Darrin J.] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. RP Wooley, KL (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. EM wooley@chem.tamu.edu; pochan@udel.edu RI Wooley, Karen/D-4399-2015; Zhu, Jiahua/F-3204-2012 OI Wooley, Karen/0000-0003-4086-384X; Zhu, Jiahua/0000-0003-2889-3421 FU National Science Foundation [DMR-0906815, DMR-1105304]; W.T. Doherty-Welch Chair in Chemistry [A-0001]; Materials Science and Engineering Division, US Department of Energy (DoE), Office of Basic Energy Sciences (BES) [DEAC05-00OR22725] FX This material is based upon work supported by the National Science Foundation under Grants DMR-0906815 (D.J.P. and K.L.W.) and DMR-1105304 (K.L.W.) and the W.T. Doherty-Welch Chair in Chemistry, Grant No. A-0001 (K.L.W.). A portion of work was supported by the Materials Science and Engineering Division, US Department of Energy (DoE), Office of Basic Energy Sciences (BES) under Contract No. DEAC05-00OR22725. We thank the Keck Electron Microscopy lab at University of Delaware, Professor Chaoying Ni and Mr Frank Kriss for electron microscopy assistance. We thank Mr Sameer Sathaye, Ms Yingchao Chen and Mr Ngoc Nguyen for the atomic force microscopy assistance. NR 38 TC 54 Z9 54 U1 11 U2 159 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2013 VL 4 AR 2297 DI 10.1038/ncomms3297 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 209JN UT WOS:000323752000013 PM 23921650 ER PT J AU Sorenson, KB Hanson, B AF Sorenson, Ken B. Hanson, Brady TI MAKING THE CASE FOR SAFE STORAGE OF USED NUCLEAR FUEL FOR EXTENDED PERIODS OF TIME: COMBINING NEAR-TERM EXPERIMENTS AND ANALYSES WITH LONGER-TERM CONFIRMATORY DEMONSTRATIONS SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Used Nuclear Fuel; Extended Storage; High Burnup; Confirmatory Demonstration AB The need for extended storage of used nuclear fuel is increasing globally as disposition schedules for used fuel are pushed further into the future. This is creating a situation where dry storage of used fuel may need to be extended beyond normal regulatory licensing periods. While it is generally accepted that used fuel in dry storage will remain in a safe condition, there is little data that demonstrate used fuel performance in dry storage environments for long periods of time. This is especially true for high burnup used fuel. This paper discusses a technical approach that defines a process that develops the technical basis for demonstrating the safety of used fuel over extended periods of time. C1 [Sorenson, Ken B.] Sandia Natl Labs, Adv Nucl Fuel Cycle Technol, Albuquerque, NM 87185 USA. [Hanson, Brady] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sorenson, KB (reprint author), Sandia Natl Labs, Adv Nucl Fuel Cycle Technol, Box 5800, Albuquerque, NM 87185 USA. EM kbsoren@sandia.gov NR 7 TC 3 Z9 3 U1 0 U2 8 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD AUG PY 2013 VL 45 IS 4 BP 421 EP 426 DI 10.5516/NET.06.2013.707 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 215RC UT WOS:000324227000001 ER PT J AU Chen, S Baker, I Frost, HJ AF Chen, Si Baker, Ian Frost, Harold J. TI Surface instability and mass transfer during the bonding of ice spheres SO PHILOSOPHICAL MAGAZINE LA English DT Article DE ice; X-ray topography; microstructural characterization ID SCANNING-ELECTRON-MICROSCOPY; TEMPERATURE-GRADIENT METAMORPHISM; SNOW CRYSTALS; DRY SNOW; MICROSTRUCTURAL EVOLUTION; ISOTHERMAL CONDITIONS; AREA; GRAINS; COVER; MORPHOLOGY AB The morphological changes occurring in a vertically aligned, one-dimensional ice sphere array under quasi-isothermal conditions were investigated as a geometrically simplified model of snow aggregates, in order to understand the mechanisms operating during the bonding of ice crystals. Time-lapse three-dimensional images of the specimen were obtained using computed X-ray micro-tomography, in order to characterize the time-dependent structural evolution of the specimen. Fine-scale structural features were examined immediately after the time-lapse observations using a scanning electron microscope equipped with a cryo-system. Porous necks between adjacent ice spheres were observed to develop via the growth of small protrusions on the surface of the ice spheres. The instability of the specimen surface, i.e. the initially smooth surface breaking down into small protrusions, was analysed using the model proposed by Mullins and Sekerka. The analysis indicates the strong influence of the wavelength of the protrusions on surface stability and the important role of vapour transfer during the bonding process of the ice spheres. The grain boundaries that formed between the protrusions and the small mass build-ups on the surfaces of the ice spheres provide evidence for grain boundary migration. C1 [Chen, Si; Baker, Ian; Frost, Harold J.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Chen, Si] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chen, S (reprint author), Dartmouth Coll, Thayer Sch Engn, 8000 Cummings Hall, Hanover, NH 03755 USA. EM sichen@aps.anl.gov FU US Army Research Office [51065-EV] FX This work was supported by the US Army Research Office Contact 51065-EV. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing official policies, either expressed or implied of the ARO or the US Government. NR 47 TC 2 Z9 2 U1 1 U2 16 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD AUG 1 PY 2013 VL 93 IS 23 BP 3177 EP 3193 DI 10.1080/14786435.2013.805274 PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 202XX UT WOS:000323255300008 ER PT J AU Arrington, CL McKay, KS Baca, ED Coleman, JJ Colombe, Y Finnegan, P Hite, DA Hollowell, AE Jordens, R Jost, JD Leibfried, D Rowen, AM Warring, U Weides, M Wilson, AC Wineland, DJ Pappas, DP AF Arrington, Christian L. McKay, Kyle S. Baca, Ehren D. Coleman, Jonathan J. Colombe, Yves Finnegan, Patrick Hite, Dustin A. Hollowell, Andrew E. Joerdens, Robert Jost, John D. Leibfried, Dietrich Rowen, Adam M. Warring, Ulrich Weides, Martin Wilson, Andrew C. Wineland, David J. Pappas, David P. TI Micro-fabricated stylus ion trap SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID LITHOGRAPHY AB An electroformed, three-dimensional stylus Paul trap was designed to confine a single atomic ion for use as a sensor to probe the electric-field noise of proximate surfaces. The trap was microfabricated with the UV-LIGA technique to reduce the distance of the ion from the surface of interest. We detail the fabrication process used to produce a 150 mu m tall stylus trap with feature sizes of 40 mu m. We confined single, laser-cooled, Mg-25(+) ions with lifetimes greater than 2 h above the stylus trap in an ultra-high-vacuum environment. After cooling a motional mode of the ion at 4 MHz close to its ground state (< n > = 0.34 +/- 0.07), the heating rate of the trap was measured with Raman side-band spectroscopy to be 387 +/- 15 quanta/s at an ion height of 62 mu m above the stylus electrodes. (C) 2013 AIP Publishing LLC. C1 [Arrington, Christian L.; Baca, Ehren D.; Coleman, Jonathan J.; Finnegan, Patrick; Hollowell, Andrew E.; Rowen, Adam M.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [McKay, Kyle S.; Colombe, Yves; Hite, Dustin A.; Joerdens, Robert; Jost, John D.; Leibfried, Dietrich; Warring, Ulrich; Weides, Martin; Wilson, Andrew C.; Wineland, David J.; Pappas, David P.] NIST, Boulder, CO 80305 USA. RP Arrington, CL (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM clarrin@sandia.gov; kyle.mckay@nist.gov RI Weides, Martin/C-1470-2009; OI Weides, Martin/0000-0002-2718-6795; Jordens, Robert/0000-0001-5333-0562 FU IARPA under ARO [DNI-017389]; ONR; NIST Quantum Information program FX This work was supported by IARPA under ARO Contract No. DNI-017389, ONR, and the NIST Quantum Information program. NR 19 TC 7 Z9 7 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2013 VL 84 IS 8 AR 085001 DI 10.1063/1.4817304 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 211YC UT WOS:000323947400052 PM 24007096 ER PT J AU Beer, SK Lawson, SA AF Beer, S. K. Lawson, S. A. TI Note: Thermal imaging enhancement algorithm for gas turbine aerothermal characterization SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB An algorithm was developed to convert radiation intensity images acquired using a black and white CCD camera to thermal images without requiring knowledge of incident background radiation. This unique infrared (IR) thermography method was developed to determine aerothermal characteristics of advanced cooling concepts for gas turbine cooling application. Compared to IR imaging systems traditionally used for gas turbine temperature monitoring, the system developed for the current study is relatively inexpensive and does not require calibration with surface mounted thermocouples. C1 [Beer, S. K.; Lawson, S. A.] US DOE, Off Sci & Technol, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Beer, SK (reprint author), US DOE, Off Sci & Technol, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. FU U.S. Department of Energy (DOE) Postgraduate Research Program at the National Energy Technology Laboratory FX This research was supported in part by an appointment to the U.S. Department of Energy (DOE) Postgraduate Research Program at the National Energy Technology Laboratory administered by the Oak Ridge Institute for Science and Education (ORISE). NR 4 TC 0 Z9 0 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2013 VL 84 IS 8 AR 086108 DI 10.1063/1.4819318 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 211YC UT WOS:000323947400084 PM 24007128 ER PT J AU Bolme, CA Ramos, KJ AF Bolme, C. A. Ramos, K. J. TI Line-imaging velocimetry for observing spatially heterogeneous mechanical and chemical responses in plastic bonded explosives during impact SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID INTERFEROMETER AB A line-imaging velocity interferometer was implemented on a single-stage light gas gun to probe the spatial heterogeneity of mechanical response, chemical reaction, and initiation of detonation in explosives. The instrument is described in detail, and then data are presented on several shock-compressed materials to demonstrate the instrument performance on both homogeneous and heterogeneous samples. The noise floor of this diagnostic was determined to be 0.24 rad with a shot on elastically compressed sapphire. The diagnostic was then applied to two heterogeneous plastic bonded explosives: 3,3'-diaminoazoxyfurazan (DAAF) and PBX 9501, where significant spatial velocity heterogeneity was observed during the build up to detonation. In PBX 9501, the velocity heterogeneity was consistent with the explosive grain size, however in DAAF, we observed heterogeneity on a much larger length scale than the grain size that was similar to the imaging resolution of the instrument. (C) 2013 AIP Publishing LLC. C1 [Bolme, C. A.; Ramos, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bolme, CA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM cbolme@lanl.gov OI Bolme, Cynthia/0000-0002-1880-271X FU National Nuclear Security Administration Science Campaign 2 (High Explosives Science); National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX The authors would like to thank Dr. Peter Celliers, Dr. David Erskine, and Dr. Rick Gustavsen for participating in helpful discussion, Tim Pierce, Adam Pacheco, and Ben Hollowell for their assistance in fielding the experiments, and Elizabeth Francois for providing the DAAF PBX. This work was performed at Los Alamos National Laboratory and was funded by the National Nuclear Security Administration Science Campaign 2 (High Explosives Science). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 20 TC 4 Z9 4 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2013 VL 84 IS 8 AR 083903 DI 10.1063/1.4817307 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 211YC UT WOS:000323947400031 PM 24007075 ER PT J AU Feng, J Nasiatka, J Wong, J Chen, XM Hidalgo, S Vecchione, T Zhu, H Palomares, FJ Padmore, HA AF Feng, Jun Nasiatka, J. Wong, Jared Chen, Xumin Hidalgo, Sergio Vecchione, T. Zhu, H. Javier Palomares, F. Padmore, H. A. TI A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID CZERNY-TURNER SPECTROMETER; ASTIGMATISM; SPECTROGRAPH AB Laser driven plasma light sources offer highly intense output in the UV-visible region combined with a source size as small as 100 mu m. In order to effectively use the small source size in high brightness applications, a stigmatic monochromator and focusing system must be used. Here we describe a simple brightness preserving optical system that should be useful across a broad range of applications. The output flux of this system is between 6 x 10(11) ph/s and 4 x 10(12) ph/s with a spectra resolution of 1.7 nm and field spot size of 0.1 mm from the UV to the VIS spectra range. (C) 2013 AIP Publishing LLC. C1 [Feng, Jun; Nasiatka, J.; Wong, Jared; Chen, Xumin; Hidalgo, Sergio; Padmore, H. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Vecchione, T.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Zhu, H.] Energetiq Technol Inc, Woburn, MA 01801 USA. [Javier Palomares, F.] Inst Ciencia Mat Madrid CSIC, Madrid 28049, Spain. RP Feng, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Palomares, Francisco Javier/C-4605-2011 OI Palomares, Francisco Javier/0000-0002-4768-2219 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Spanish MINECO [MAT2010-18432, Consolider FUNCOAT CSD-2008-0023] FX This work was performed at Lawrence Berkeley National Laboratory under the auspices of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. F.J.P. thanks the financial support from the Spanish MINECO (grants MAT2010-18432 and Consolider FUNCOAT CSD-2008-0023). NR 16 TC 5 Z9 5 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2013 VL 84 IS 8 AR 085114 DI 10.1063/1.4817587 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 211YC UT WOS:000323947400070 PM 24007114 ER PT J AU Jones, AM Kelly, JF Severtsen, RH McCloy, JS AF Jones, A. Mark Kelly, James F. Severtsen, Ronald H. McCloy, John S. TI Regenerative feedback resonant circuit to detect transient changes in electromagnetic properties of semi-insulating materials SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DEEP-LEVEL SPECTROSCOPY; REFRACTIVE-INDEX CHANGE; PHASE-NOISE; SILICON-WAFERS; PHOTOCONDUCTIVITY MEASUREMENTS; MICROWAVE-OSCILLATORS; LIFETIME MEASUREMENT; LOSS TANGENT; SEMICONDUCTORS; RESISTIVITY AB A prototype regenerative feedback resonant circuit has been developed for measuring the transient spectral response due to perturbations in properties of various electromagnetic materials. The circuit can accommodate a variety of cavity resonators, shown here in the 8 GHz range, with passive quality factors (Q(stat)) as high as 7000 depending upon material loading. The positive feedback enhanced dynamic quality factors (Q(dyn)) of resonator/material combinations in the regenerative circuit are on the order of 107-108. The theory, design, and implementation of the circuit is discussed along with real-time monitored example measurements of effects due to photon-induced charge carriers in high-resistivity silicon wafers and magnetic-field induced perturbations of yttrium-iron garnet. (C) 2013 AIP Publishing LLC. C1 [Jones, A. Mark; Kelly, James F.; Severtsen, Ronald H.; McCloy, John S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP McCloy, JS (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. EM john.mccloy@wsu.edu RI McCloy, John/D-3630-2013 OI McCloy, John/0000-0001-7476-7771 FU Defense Threat Reduction Agency IACRO [11-4485I]; Laboratory Directed Research and Development; U.S. Department of Energy (DOE) [DE-AC05-76RL01830] FX This work was supported in part by the Defense Threat Reduction Agency IACRO 11-4485I and in part by Laboratory Directed Research and Development. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy (DOE) by Battelle under Contract NO. DE-AC05-76RL01830. The authors thank Justin Fernandes and Jonathan Tedeschi for their assistance with some of the measurements. NR 59 TC 4 Z9 4 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2013 VL 84 IS 8 AR 084703 DI 10.1063/1.4817537 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 211YC UT WOS:000323947400040 PM 24007084 ER PT J AU Mortensen, DR Seidler, GT Bradley, JA Lipp, MJ Evans, WJ Chow, P Xiao, YM Boman, G Bowden, ME AF Mortensen, D. R. Seidler, G. T. Bradley, J. A. Lipp, M. J. Evans, W. J. Chow, P. Xiao, Y. -M. Boman, G. Bowden, M. E. TI A versatile medium-resolution x-ray emission spectrometer for diamond anvil cell applications SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ELECTRONIC EXCITATIONS; HIGH-PRESSURE; SCATTERING; SPECTROSCOPY AB We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to backscattering geometry so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically bent crystal analyzer. (C) 2013 AIP Publishing LLC. C1 [Mortensen, D. R.; Seidler, G. T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Bradley, J. A.; Lipp, M. J.; Evans, W. J.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Chow, P.; Xiao, Y. -M.; Boman, G.] Carnegie Inst Sci, HPCAT, Argonne, IL 60439 USA. [Bowden, M. E.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Seidler, GT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM seidler@uw.edu FU US Department of Energy, Basic Energy Sciences [DE-FG02-09ER16106]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775, DE-AC02-06CH11357]; National Science Foundation (NSF); LDRD at LLNL under US Department of Energy by Lawrence Livermore National Laboratory [12-LW-014, DE-AC52-07NA27344]; Chemical Imaging Initiative at PNNL FX G.T.S. acknowledges support of this research program by the US Department of Energy, Basic Energy Sciences, under Award No. DE-FG02-09ER16106. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by National Science Foundation (NSF). APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. Part of this work was supported by the LDRD 12-LW-014 at LLNL and performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Additional support was provided by the Chemical Imaging Initiative at PNNL, operated by Battelle for the US Department of Energy. NR 25 TC 4 Z9 4 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2013 VL 84 IS 8 AR 083908 DI 10.1063/1.4819257 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 211YC UT WOS:000323947400036 PM 24007080 ER PT J AU Siddiqui, SF Knipe, K Manero, A Meid, C Wischek, J Okasinski, J Almer, J Karlsson, AM Bartsch, M Raghavan, S AF Siddiqui, Sanna F. Knipe, Kevin Manero, Albert Meid, Carla Wischek, Janine Okasinski, John Almer, Jonathan Karlsson, Anette M. Bartsch, Marion Raghavan, Seetha TI Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FATIGUE CRACKS; COATINGS; STRAIN; CREEP AB Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings. (C) 2013 AIP Publishing LLC. C1 [Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Raghavan, Seetha] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. [Meid, Carla; Wischek, Janine; Bartsch, Marion] German Aerosp Ctr DLR, Inst Mat Res, D-51147 Cologne, Germany. [Okasinski, John; Almer, Jonathan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Karlsson, Anette M.] Cleveland State Univ, Cleveland, OH 44115 USA. RP Siddiqui, SF (reprint author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. EM seetha.raghavan@ucf.edu RI Bartsch, Marion/B-9501-2012 OI Bartsch, Marion/0000-0002-3952-2928 FU National Science Foundation [OISE 1157619, CMMI 1125696, 1144246]; German Science Foundation (DFG) [SFB-TRR103]; U.S. DOE [DE-AC02-06CH11357] FX This material is based upon work supported by the National Science Foundation grants (Grant Nos. OISE 1157619 and CMMI 1125696) and by the German Science Foundation (DFG) grant (Grant No. SFB-TRR103), Project A3. This material is additionally based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1144246 awarded to Sanna F. Siddiqui. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 15 TC 5 Z9 5 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2013 VL 84 IS 8 AR 083904 DI 10.1063/1.4817543 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 211YC UT WOS:000323947400032 PM 24007076 ER PT J AU Stoschus, H Thomas, DM Hudson, B Watkins, M Finkenthal, DF Moyer, RA Osborne, TH AF Stoschus, H. Thomas, D. M. Hudson, B. Watkins, M. Finkenthal, D. F. Moyer, R. A. Osborne, T. H. TI Status and characterization of the lithium beam diagnostic on DIII-D SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ARBITRARY COLLISIONALITY; BOOTSTRAP CURRENT; TOKAMAKS; PLASMAS; LI AB The 30 keV lithium beam diagnostic on DIII-D is suitable to measure both the radial electron density and poloidal magnetic field profiles in the pedestal. The refurbished system features a new setup to measure the Doppler shift allowing accurate alignment of the spectral filters. The injector has been optimized to generate a stable lithium neutral beam with a current of I = 15-20mA and a diameter of 1.9 +/- 0.1 cm measured by beam imaging. The typical temporal resolution is Delta t = 1-10 ms and the radial resolution of Delta R = 5mm is given by the optical setup. A new analysis technique based on fast Fourier transform avoids systematic error contributions from the digital lock-in analysis and accounts intrinsically for background light correction. Latest upgrades and a detailed characterization of the system are presented. Proof-of-principle measurements of the poloidal magnetic field with a statistical error of typically 2% show a fair agreement with the predictions modeled with the Grad-Shafranov equilibrium solver EFIT within 4%. (C) 2013 AIP Publishing LLC. C1 [Stoschus, H.; Hudson, B.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Thomas, D. M.; Watkins, M.; Osborne, T. H.] Gen Atom Co, San Diego, CA 92186 USA. [Finkenthal, D. F.] Palomar Coll, San Marcos, CA 92069 USA. [Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Stoschus, H (reprint author), Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. EM stoschus@fusion.gat.com FU U.S. Department of Energy [DE-AC05-06OR23100, DE-FC02-04ER54698, DE-FG02-07ER54917] FX This work was supported in part by the U.S. Department of Energy under DE-AC05-06OR23100, DE-FC02-04ER54698, and DE-FG02-07ER54917. The authors acknowledge greatly N. H. Brooks, A. G. McLean, A. W. Leonard, R. L. Boivin, and the DIII-D team. NR 24 TC 2 Z9 2 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2013 VL 84 IS 8 AR 083503 DI 10.1063/1.4816824 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 211YC UT WOS:000323947400016 PM 24007061 ER PT J AU Xu, GY Xu, ZJ Tranquada, JM AF Xu, Guangyong Xu, Zhijun Tranquada, J. M. TI Absolute cross-section normalization of magnetic neutron scattering data SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB We discuss various methods to obtain the resolution volume for neutron scattering experiments, in order to perform absolute normalization on inelastic magnetic neutron scattering data. Examples from previous experiments are given. We also try to provide clear definitions of a number of physical quantities which are commonly used to describe neutron magnetic scattering results, including the dynamic spin correlation function and the imaginary part of the dynamic susceptibility. Formulas that can be used for general purposes are provided and the advantages of the different normalization processes are discussed. (C) 2013 AIP Publishing LLC. C1 [Xu, Guangyong; Xu, Zhijun; Tranquada, J. M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Xu, GY (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI xu, zhijun/A-3264-2013; Tranquada, John/A-9832-2009; Xu, Guangyong/A-8707-2010; BL18, ARCS/A-3000-2012 OI xu, zhijun/0000-0001-7486-2015; Tranquada, John/0000-0003-4984-8857; Xu, Guangyong/0000-0003-1441-8275; FU Office of Basic Energy Sciences, U.S. Department of Energy (DOE) [DE-AC02-98CH10886] FX We would like to thank S. M. Shapiro and I. Zaliznyak for useful discussions. Technical support from instrument scientists M. Stone, D. Singh, and Y. Zhao is also gratefully acknowledged. Financial support by Office of Basic Energy Sciences, U.S. Department of Energy (DOE) under Contract No. DE-AC02-98CH10886 is acknowledged. NR 9 TC 17 Z9 17 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2013 VL 84 IS 8 AR 083906 DI 10.1063/1.4818323 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 211YC UT WOS:000323947400034 PM 24007078 ER PT J AU Lumsdaine, A AF Lumsdaine, Arnold TI PREFACE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Lumsdaine, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP V EP V PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200001 ER PT J AU Fischer, CR Bowen, BP Pan, CL Northen, TR Banfield, JF AF Fischer, Curt R. Bowen, Benjamin P. Pan, Chongle Northen, Trent R. Banfield, Jillian F. TI Stable-Isotope Probing Reveals That Hydrogen Isotope Fractionation in Proteins and Lipids in a Microbial Community Are Different and Species-Specific SO ACS CHEMICAL BIOLOGY LA English DT Article ID ACID-MINE DRAINAGE; FATTY-ACIDS; PROTEOMICS; BACTERIA; GROWTH; DISTRIBUTIONS; REQUIREMENT; VARIABILITY; GENOMES AB The fractionation of hydrogen stable isotopes during lipid biosynthesis is larger in autotrophic than in heterotrophic microorganisms, possibly due to selective incorporation of hydrogen from water into NAD(P)H, resulting in D-depleted lipids. An analogous fractionation should occur during amino acid biosynthesis. Whereas these effects are traditionally measured using gas-phase isotope ratio on 1H-1H and 1H-2H, using an electrospray mass spectrometry-based technique on the original biomolecular structure and fitting of isotopic patterns we measured the hydrogen isotope compositions of proteins from an acidophilic microbial community with organism specificity and compared values with those for lipids. We showed that lipids were isotopically light by -260 parts per thousand relative to water in the growth solution; alternatively protein isotopic composition averaged -370 parts per thousand. This difference suggests that steps in addition to NAD(P)H formation contribute to D/H fractionation. Further, autotrophic bacteria sharing 94% 16S rRNA gene sequence identity displayed statistically significant differences in protein hydrogen isotope fractionation, suggesting different metabolic traits consistent with distinct ecological niches or incorrectly annotated gene function. In addition, it was found that heterotrophic, archaeal members of the community had isotopically light protein (-323 parts per thousand) relative to growth water and were significantly different from coexisting bacteria. This could be attributed to metabolite transfer from autotrophs and unknown aspects of fractionation associated with iron reduction. Differential fractionation of hydrogen stable isotopes into metabolites and proteins may reveal trophic levels of members of microbial communities. The approach developed here provided insights into the metabolic characteristics of organisms in natural communities and may be applied to analyze other systems. C1 [Fischer, Curt R.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Banfield, Jillian F.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Bowen, Benjamin P.; Northen, Trent R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Pan, Chongle] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. [Pan, Chongle] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu OI Northen, Trent/0000-0001-8404-3259 FU U.S. Department of Energy, Office of Biological and Environmental Research Carbon-Cycling Program [DE-SC0004665]; DOE Genomics:GTL Program [DE-FG02-05ER64134]; ENIGMA Scientific Focus Area [DE-AC02-05CH11231] FX This research was funded by the U.S. Department of Energy, Office of Biological and Environmental Research Carbon-Cycling Program (DE-SC0004665), the DOE Genomics:GTL Program grant number DE-FG02-05ER64134 and ENIGMA Scientific Focus Area No. DE-AC02-05CH11231. The authors thank Banfield lab members for assistance with biofilm sampling in the field, and JM Hayes for valuable technical discussions. NR 31 TC 6 Z9 6 U1 1 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD AUG PY 2013 VL 8 IS 8 BP 1755 EP 1763 DI 10.1021/cb400210q PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 204KA UT WOS:000323363000015 PM 23713674 ER PT J AU Bagriantsev, SN Ang, KH Gallardo-Godoy, A Clark, KA Arkin, MR Renslo, AR Minor, DL AF Bagriantsev, Sviatoslav N. Ang, Kean-Hooi Gallardo-Godoy, Alejandra Clark, Kimberly A. Arkin, Michelle R. Renslo, Adam R. Minor, Daniel L., Jr. TI A High-Throughput Functional Screen Identifies Small Molecule Regulators of Temperature- and Mechano-Sensitive K-2P Channels SO ACS CHEMICAL BIOLOGY LA English DT Article ID DOMAIN K+ CHANNELS; POTASSIUM CHANNELS; SACCHAROMYCES-CEREVISIAE; TREK-1; PORE; INHIBITION; TRAAK; YEAST; BLOCK; SELECTIVITY AB K-2P (KCNK) potassium channels generate "leak" potassium currents that strongly influence cellular excitability and contribute to pain, somatosensation, anesthesia, and mood. Despite their physiological importance, K(2P)s lack specific pharmacology. Addressing this issue has been complicated by the challenges that the leak nature of K-2P currents poses for electrophysiology-based high-throughput screening strategies. Here, we present a yeast-based high-throughput screening assay that avoids this problem. Using a simple growth-based functional readout, we screened a library of 106,281 small molecules and identified two new inhibitors and three new activators of the mammalian K-2P channel K(2P)2.1 (KCNK2, TREK-1). By combining biophysical, structure-activity, and mechanistic analysis, we developed a dihydroacridine analogue, ML67-33, that acts as a low micromolar, selective activator of temperature- and mechano-sensitive K-2P channels. Biophysical studies show that ML67-33 reversibly increases channel currents by activating the extracellular selectivity filter-based C-type gate that forms the core gating apparatus on which a variety of diverse modulatory inputs converge. The new K-2P modulators presented here, together with the yeast-based assay, should enable both mechanistic and physiological studies of K-2P activity and facilitate the discovery and development of other K-2P small molecule modulators. C1 [Bagriantsev, Sviatoslav N.; Clark, Kimberly A.; Minor, Daniel L., Jr.] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA. [Ang, Kean-Hooi; Gallardo-Godoy, Alejandra; Arkin, Michelle R.; Renslo, Adam R.] Univ Calif San Francisco, Small Mol Discovery Ctr, San Francisco, CA 94158 USA. [Ang, Kean-Hooi; Gallardo-Godoy, Alejandra; Arkin, Michelle R.; Renslo, Adam R.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Minor, DL (reprint author), Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA. EM daniel.minor@ucsf.edu RI Gallardo-Godoy, Alejandra/E-7870-2013; OI Bagriantsev, Sviatoslav/0000-0002-6661-3403; Renslo, Adam/0000-0002-1240-2846 FU NIH [R01-MH093603]; American Heart Association [0740019N]; Life Sciences Research Foundation FX This work was supported by grants to D.L.M. from NIH R01-MH093603 and American Heart Association 0740019N and to S.N.B. from the Life Sciences Research Foundation. D.L.M. is an AHA Established Investigator. We thank E. Gracheva and Minor lab members for comments on the manuscript. S.N.B. is a Genentech Fellow of the Life Sciences Research Foundation. NR 50 TC 23 Z9 23 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD AUG PY 2013 VL 8 IS 8 BP 1841 EP 1851 DI 10.1021/cb400289x PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 204KA UT WOS:000323363000024 PM 23738709 ER PT J AU Scheele, M Engel, JH Ferry, VE Hanifi, D Liu, Y Alivisatos, AP AF Scheele, Marcus Engel, Jesse H. Ferry, Vivian E. Hanifi, David Liu, Yi Alivisatos, A. Paul TI Nonmonotonic Size Dependence in the Hole Mobility of Methoxide-Stabilized PbSe Quantum Dot Solids SO ACS NANO LA English DT Article DE quantum dot solids; electrical transport; optical properties; coupling ID ELECTRICAL-PROPERTIES; NANOCRYSTAL ARRAYS; CHARGE-TRANSPORT; FILMS; LIGANDS; ENERGY AB We present a facile procedure to fabricate p-type PbSe-based quantum dot solids with mobilities as large as 0.3 cm(2) V-1 s(-1). Upon partial ligand exchange of oleate-capped PbSe quantum dots with the methoxide ion, we observe a pronounced red shift in the excitonic transition in conjunction with a large increase in conductivity. We show that there is little correlation between these two phenomena and that the electronic coupling energy in PbSe quantum dot solids is much smaller than often assumed. However, we observe for the Hist time a nonmonotonic size dependence of the hole mobility, illustrating that coupling can nonetheless be dominant in determining the transport characteristics. We attribute these effects to a decrease in charging energy and interparticle spacing leading to enhanced electronic coupling on one hand and enhanced dipole interactions on the other hand, which is held responsible for the majority of the red shift. C1 [Scheele, Marcus; Engel, Jesse H.; Ferry, Vivian E.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Scheele, Marcus; Engel, Jesse H.; Ferry, Vivian E.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Hanifi, David; Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Foundry, Molecular/G-9968-2014; Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Self-Assembly of Organic/Inorganic Nanocomposite Materials program [DE-AC02-05CH11231]; Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX Nanoparticle synthesis and characterization, ligand exchange, sample preparation, and transport measurements were funded by the Self-Assembly of Organic/Inorganic Nanocomposite Materials program (Grant DE-AC02-05CH11231 to A.P.A), photoelectron spectroscopy experiments were carried out within the Helios Solar Energy Research Center, and FT-IR spectroscopy was performed as a User Project at the Molecular Foundry, Lawrence Berkeley National Laboratory, all of which are supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. MS. would like to thank the Alexander von Humboldt Foundation for a Feodor Lynen Fellowship. David K. Britt is acknowledged for providing the 5.3 nm nanoparticle sample and Waqas Khalid for fabricating the FET substrates used in this work. NR 36 TC 15 Z9 15 U1 3 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD AUG PY 2013 VL 7 IS 8 BP 6774 EP 6781 DI 10.1021/nn401657n PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 210DX UT WOS:000323810600036 PM 23859499 ER PT J AU Strelcov, E Jesse, S Huang, YL Teng, YC Kravchenko, II Chu, YH Kalinin, SV AF Strelcov, Evgheni Jesse, Stephen Huang, Yen-Lin Teng, Yung-Chun Kravchenko, Ivan I. Chu, Ying-Hao Kalinin, Sergei V. TI Space- and Time-Resolved Mapping of Ionic Dynamic and Electroresistive Phenomena in Lateral Devices SO ACS NANO LA English DT Article DE KPFM; ionic dynamics; Ca-BFO; surface potential distribution; oxygen vacancy ID ATOMIC-FORCE MICROSCOPY; KELVIN PROBE MICROSCOPY; SCANNING IMPEDANCE MICROSCOPY; ELECTRIC-FIELD; OXIDE; SURFACE; SEMICONDUCTOR; RESOLUTION; CHALLENGES; BATTERIES AB A scanning probe microscopy-based technique for probing local ionic and electronic transport and their dynamic behavior on the 10 ms to 10 s scale is presented. The time-resolved Kelvin probe force microscopy (tr-KPFM) allows mapping of surface potential in both space and time domains, visualizing electronic and ionic charge dynamics and separating underlying processes based on their time responses. Here, tr-KPFM is employed to explore the interplay of the adsorbed surface ions and bulk oxygen vacancies and their role in the resistive switching in a Ca-substituted bismuth ferrite thin film. C1 [Strelcov, Evgheni; Jesse, Stephen; Kravchenko, Ivan I.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Huang, Yen-Lin; Teng, Yung-Chun; Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. RP Strelcov, E (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM strelcove@ornl.gov; sergei2@ornl.gov RI Ying-Hao, Chu/A-4204-2008; Strelcov, Evgheni/H-1654-2013; Kravchenko, Ivan/K-3022-2015; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016 OI Ying-Hao, Chu/0000-0002-3435-9084; Kravchenko, Ivan/0000-0003-4999-5822; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory; National Science Council of Republic of China [NSC-101-2119-M-009-003-MY2]; Ministry of Education [MOE-ATU 101W961]; Center for Interdisciplinary Science at National Chiao Tung University FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The work in National Chiao Tung University was supported by the National Science Council of Republic of China (under Contract No. NSC-101-2119-M-009-003-MY2), Ministry of Education (Grant No. MOE-ATU 101W961), and Center for Interdisciplinary Science at National Chiao Tung University. NR 75 TC 11 Z9 11 U1 3 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD AUG PY 2013 VL 7 IS 8 BP 6806 EP 6815 DI 10.1021/nn4017873 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 210DX UT WOS:000323810600039 PM 23837694 ER PT J AU Kodali, V Littke, MH Tilton, SC Teeguarden, JG Shi, L Frevert, CW Wang, W Pounds, JG Thrall, BD AF Kodali, Vamsi Littke, Matthew H. Tilton, Susan C. Teeguarden, Justin G. Shi, Liang Frevert, Charles W. Wang, Wei Pounds, Joel G. Thrall, Brian D. TI Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles SO ACS NANO LA English DT Article DE nanotoxicology; macrophage; iron oxide; amorphous silica; Streptococcus pneumoniae; lipopolysaccharide; scavenger receptor ID SCAVENGER RECEPTOR CD204; AIR-POLLUTION; INFLAMMATORY RESPONSE; CLASS-A; STREPTOCOCCUS-PNEUMONIAE; ALVEOLAR MACROPHAGES; SILICA NANOPARTICLES; HOSPITAL ADMISSIONS; AMORPHOUS SILICA; GENE-EXPRESSION AB Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages However pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to,LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways Silica pretreatment altered regulation of only 67 genes but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNF alpha production, and diminished phagocytic activity toward S. pneumonia. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Nanotoxicology screening strategies should therefore consider how exposure to these materials alters susceptibility to other environmental exposures. C1 [Kodali, Vamsi; Littke, Matthew H.; Teeguarden, Justin G.; Shi, Liang; Pounds, Joel G.; Thrall, Brian D.] Pacific NW Natl Lab, Ctr Nanotoxicol, Richland, WA 99352 USA. [Kodali, Vamsi; Littke, Matthew H.; Teeguarden, Justin G.; Shi, Liang; Pounds, Joel G.; Thrall, Brian D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Tilton, Susan C.] Pacific NW Natl Lab, Computat Sci Div, Richland, WA 99352 USA. [Frevert, Charles W.] Univ Washington, Dept Comparat Med, Seattle, WA 98195 USA. [Wang, Wei] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Thrall, BD (reprint author), Pacific NW Natl Lab, Ctr Nanotoxicol, Richland, WA 99352 USA. EM brian.thrall@pnnl.gov RI Wang, Wei/B-5924-2012; Kodali, Vamsi/D-2497-2009; Geracitano, Laura/E-6926-2013; OI Pounds, Joel/0000-0002-6616-1566; Teeguarden, Justin/0000-0003-3817-4391; Kodali, Vamsi/0000-0001-6177-0568 FU National Institute of Environmental Health Sciences [U19 ES019544, RO1 ES016212] FX The authors thank Drs. Norman Karin and Cosmin Mihai for technical assistance. Support for this research was provided by the National Institute of Environmental Health Sciences through grants U19 ES019544 and RO1 ES016212. NR 55 TC 29 Z9 29 U1 5 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD AUG PY 2013 VL 7 IS 8 BP 6997 EP 7010 DI 10.1021/nn402145t PG 14 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 210DX UT WOS:000323810600061 PM 23808590 ER PT J AU Bult, JB Crisp, R Perkins, CL Blackburn, JL AF Bult, Justin B. Crisp, Ryan Perkins, Craig L. Blackburn, Jeffrey L. TI Role of Dopants in Long-Range Charge Carrier Transport for p-Type and n-Type Graphene Transparent Conducting Thin Films SO ACS NANO LA English DT Article DE graphene; transparent conductor; charged impurity; scattering; photovoltalcs; conductivity; mobility; transport; temperature-dependent ID CHEMICAL-VAPOR-DEPOSITION; CARBON NANOTUBE NETWORKS; RAMAN-SPECTROSCOPY; LARGE-AREA; ELECTRODES; SCATTERING; OXIDES; PHOTOVOLTAICS; PERFORMANCE; DEFECTS AB Monolayer to few-layer graphene thin films have several attractive properties such as high transparency, exceptional electronic transport, mechanical durability, and environmental stability, which are required in transparent conducting electrodes (TCs). The successful incorporation of graphene TCs into demanding applications such as thin film photovoltaics requires a detailed understanding of the factors controlling long-range charge transport. In this study, we use spectroscopic and electrical transport measurements to provide a self-consistent understanding of the macroscopic (centimeter, many-grain scale) transport properties of chemically doped p-type and n-type graphene TCs. We demonstrate the first large-area n-type graphene TCs through the use of hydrazine or polyethyleneimine as dopants. The n-type graphene TCs utilizing PEI, either as the sole dopant or as an overcoat, have good stability in air compared to TCs only doped with hydrazine. We demonstrate a shift in Fermi energy of well over 1 V between the n- and p-type graphene TCs and a sheet resistance of similar to 50 Omega/sq at 89% visible transmittance. The carrier density is increased by 2 orders of magnitude in heavily doped graphene TCs, while the mobility is reduced by a factor of similar to 7 due to charged impurity scattering. Temperature-dependent measurements demonstrate that the molecular dopants also help to suppress processes associated with carrier localization that may limit the potential of intrinsic graphene TCs. These results suggest that properly doped graphene TCs may be well-suited as anodes or cathodes for a variety of opto-electronic applications. C1 [Bult, Justin B.; Crisp, Ryan; Perkins, Craig L.; Blackburn, Jeffrey L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Blackburn, JL (reprint author), Natl Renewable Energy Lab, 16253 Denver West Pkwy, Golden, CO 80401 USA. EM jeffrey.blackburn@nrel.gov RI Crisp, Ryan/C-9944-2014 OI Crisp, Ryan/0000-0002-3703-9617 FU NREL's Laboratory Directed Research and Development (LORD) program FX We gratefully acknowledge NREL's Laboratory Directed Research and Development (LORD) program for funding. We thank Kevin Mistry for helpful discussions regarding n-type doping. NR 46 TC 30 Z9 31 U1 4 U2 134 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD AUG PY 2013 VL 7 IS 8 BP 7251 EP 7261 DI 10.1021/nn402673z PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 210DX UT WOS:000323810600090 PM 23859709 ER PT J AU He, XW Wang, X Nanot, S Cong, K Jiang, QJ Kane, AA Goldsmith, JEM Hauge, RH Leonard, F Kono, J AF He, Xiaowei Wang, Xuan Nanot, Sebastien Cong, Kankan Jiang, Qijia Kane, Alexander A. Goldsmith, John E. M. Hauge, Robert H. Leonard, Francois Kono, Junichiro TI Photothermoelectric p-n Junction Photodetector with Intrinsic Broadband Polarimetry Based on Macroscopic Carbon Nanotube Films SO ACS NANO LA English DT Article DE SWCNTs; photothermoelectric effect; intrinsic polarimetry; photodetector ID SOLAR-CELLS AB Light polarization is used in the animal kingdom for communication, navigation, and enhanced scene interpretation and also plays an important role in astronomy, remote sensing, and military applications. To date, there have been few photodetector materials demonstrated to have direct polarization sensitivity, as is usually the case in nature. Here, we report the realization of a carbon-based broadband photodetector, where the polarimetry is intrinsic to the active photodetector material. The detector is based on pn junctions formed between two macroscopic films of single-wall carbon nanotubes. A responsivity up to similar to 1 V/W was observed in these devices, with a broadband spectral response spanning the visible to the mid-infrared. This responsivity is about 35 times larger than previous devices without pn junctions. A combination of experiment and theory is used to demonstrate the photothermoelectric origin of the responsivity and to discuss the performance attributes of such devices. C1 [He, Xiaowei; Wang, Xuan; Nanot, Sebastien; Cong, Kankan; Jiang, Qijia; Kono, Junichiro] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Cong, Kankan; Kono, Junichiro] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Kane, Alexander A.; Goldsmith, John E. M.; Leonard, Francois] Sandia Natl Labs, Livermore, CA 94551 USA. [Hauge, Robert H.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Hauge, Robert H.] King Abdulaziz Univ, Jeddah 21589, Saudi Arabia. RP Leonard, F (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM fleonar@sandia.gov; kono@rice.edu RI Hauge, Robert/A-7008-2011; OI Hauge, Robert/0000-0002-3656-0152; Nanot, Sebastien/0000-0002-3185-1583 FU Lockheed-Martin Rice University LANCER Program; National Science Foundation [OISE-0968405, EEC-0540832]; Department of Energy BES Program [DE-FG02-06ER46308]; Robert A. Welch Foundation [C-1509]; U.S. Department of Energy, Office of Science, through the National Institute for Nano-Engineering (NINE) at Sandia National Laboratories; Laboratory Directed Research and Development Program at Sandia National Laboratories; United States Department of Energy [DEAC01-94-AL85000]; Intelligence Community Postdoctoral Fellowship Program FX This work was supported by the Lockheed-Martin Rice University LANCER Program, the National Science Foundation (through Grant Nos. OISE-0968405 and EEC-0540832), the Department of Energy BES Program (through Grant No. DE-FG02-06ER46308), the Robert A. Welch Foundation (through Grant No. C-1509), the U.S. Department of Energy, Office of Science, through the National Institute for Nano-Engineering (NINE) at Sandia National Laboratories, and the Laboratory Directed Research and Development Program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co, for the United States Department of Energy under Contract No. DEAC01-94-AL85000. AAK acknowledges support from the Intelligence Community Postdoctoral Fellowship Program. We thank Nick Thompson for his help with editing and proofreading the manuscript NR 23 TC 25 Z9 25 U1 7 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD AUG PY 2013 VL 7 IS 8 BP 7271 EP 7277 DI 10.1021/nn402679u PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 210DX UT WOS:000323810600092 PM 23808567 ER PT J AU Morris, CL Bacon, J Borozdin, K Miyadera, H Perry, J Rose, E Watson, S White, T Aberle, D Green, JA McDuff, GG Lukic, Z Milner, EC AF Morris, C. L. Bacon, Jeffrey Borozdin, Konstantin Miyadera, Haruo Perry, John Rose, Evan Watson, Scott White, Tim Aberle, Derek Green, J. Andrew McDuff, George G. Lukic, Zarija Milner, Edward C. TI A new method for imaging nuclear threats using cosmic ray muons SO AIP ADVANCES LA English DT Article AB Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry. C (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Aberle, Derek; Green, J. Andrew; McDuff, George G.] Natl Secur Technol, Los Alamos, NM 87544 USA. [Lukic, Zarija] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Milner, Edward C.] So Methodist Univ, Dallas, TX 75205 USA. RP Morris, CL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Watson, Scott/0000-0003-1318-5924; Morris, Christopher/0000-0003-2141-0255; Perry, John/0000-0003-3639-5617 FU United States Department of Energy; United States Department of State; Defense Threat Reduction Agency of the United States Department of Defense FX We would like to acknowledge help from Dave Schwellenbach and Wendi Dreesen setting up the hardware and software that has enabled these measurements. This work was supported in part by the United States Department of Energy, the United States Department of State, and the Defense Threat Reduction Agency of the United States Department of Defense. NR 8 TC 2 Z9 3 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD AUG PY 2013 VL 3 IS 8 AR 082128 DI 10.1063/1.4820349 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 210PA UT WOS:000323845000028 ER PT J AU Zhang, SF Li, YK Fathololoumi, S Nguyen, HPT Wang, Q Mi, ZT Li, QM Wang, GT AF Zhang, Shaofei Li, Yukun Fathololoumi, Saeed Hieu Pham Trung Nguyen Wang, Qi Mi, Zetian Li, Qiming Wang, George T. TI On the efficiency droop of top-down etched InGaN/GaN nanorod light emitting diodes under optical pumping SO AIP ADVANCES LA English DT Article ID QUANTUM-WELLS; SEMICONDUCTORS; PERFORMANCE; EMISSION; ORIGIN; FIELDS; ARRAYS; GAN AB The optical performance of top-down etched InGaN/GaN nanorod light emitting diodes (LEDs) was studied using temperature variable photoluminescence spectroscopy with a 405 nm pump laser. Efficiency droop is measured from such nanorod structures, which is further enhanced with decreasing temperature. Through detailed rate equation analysis of the temperature-dependent carrier distribution and modeling of the quantum efficiency, this unique phenomenon can be largely explained by the interplay and dynamics between carrier radiative recombination in localized states and nonradiative recombination via surface states/defects. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Zhang, Shaofei; Li, Yukun; Fathololoumi, Saeed; Hieu Pham Trung Nguyen; Wang, Qi; Mi, Zetian] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0E9, Canada. [Li, Qiming; Wang, George T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zhang, SF (reprint author), McGill Univ, Dept Elect & Comp Engn, 3480 Univ St, Montreal, PQ H3A 0E9, Canada. FU Natural Sciences and Engineering Research Council of Canada; Fonds de recherchsur la nature et les technologies; Solid-State-Lighting Science Energy Frontier Research Center; U.S. DOE Office of Basic Energy Sciences; U.S. Department of Energy National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Fonds de recherchsur la nature et les technologies. The nanorod fabrication was performed at Sandia and funded by the Solid-State-Lighting Science Energy Frontier Research Center, funded by the U.S. DOE Office of Basic Energy Sciences. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 39 TC 6 Z9 6 U1 1 U2 41 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD AUG PY 2013 VL 3 IS 8 AR 082103 DI 10.1063/1.4817834 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 210PA UT WOS:000323845000003 ER PT J AU Zhang, JB Tang, LY Zhang, J Qin, ZX Zeng, XJ Liu, J Wen, JS Xu, ZJ Gu, GD Chen, XJ AF Zhang Jian-Bo Tang Ling-Yun Zhang Jiang Qin Zhen-Xing Zeng Xiao-Jing Liu Jing Wen Jin-Sheng Xu Zhi-Jun Gu Genda Chen Xiao-Jia TI Pressure-induced isostructural phase transition in Bi2Sr2CaCu2O8+delta SO CHINESE PHYSICS C LA English DT Article DE cuprate superconductors; structural properties; high pressure; synchrotron X-ray diffraction ID SINGLE-CRYSTAL; SUPERCONDUCTIVITY; TEMPERATURE; DEPENDENCE AB The high-pressure structures of an underdoped cuprate superconductor Bi2Sr2CaCu2O8+delta have been studied by synchrotron X-ray diffraction at pressures up to 36.5 GPa. We find that this superconductor retains its orthogonal structure with the space group Amaa in the pressure range studied. Upon compression, both the a and b axes first shrink monotonically up to 17.4 GPa from their ambient pressure values and keep these behaviors with positive compressibilities up to 36.5 GPa after experiencing expansion with negative compressibilities in the pressure regime between 17.4 and 23.7 GPa. However, the c axis decreases continuously with increasing pressure with a slow change at about 23.7 GPa. The results indicate an isostructural phase transition starting at 17.4 GPa and a structural collapse at around 23.7 GPa. C1 [Zhang Jian-Bo; Tang Ling-Yun; Zhang Jiang; Qin Zhen-Xing; Zeng Xiao-Jing; Chen Xiao-Jia] S China Univ Technol, Dept Phys, Guangzhou 510640, Guangdong, Peoples R China. [Liu Jing] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Wen Jin-Sheng; Xu Zhi-Jun; Gu Genda] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zhang, JB (reprint author), S China Univ Technol, Dept Phys, Guangzhou 510640, Guangdong, Peoples R China. RI Wen, Jinsheng/F-4209-2010; Zhang, Jiang/B-6158-2008; xu, zhijun/A-3264-2013 OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015 FU Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China [708070]; U.S. DOE BES [DE-AC02-98CH10886] FX Supported by Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (708070), and U.S. DOE BES (DE-AC02-98CH10886) NR 29 TC 0 Z9 0 U1 1 U2 21 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD AUG PY 2013 VL 37 IS 8 AR UNSP 088003 DI 10.1088/1674-1137/37/8/088003 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 198QQ UT WOS:000322937800018 ER PT J AU Li, H Zhang, HS Zhang, Y AF Li Hui Zhang Hong-Sheng Zhang Yi TI A Generalized Semi-Holographic Universe SO CHINESE PHYSICS LETTERS LA English DT Article ID UNIFIED 1ST LAW; DARK ENERGY; PHANTOM THERMODYNAMICS; BLACK-HOLES; MODEL; CONSTRAINTS; PRINCIPLE; DYNAMICS; VACUUM AB We study the semi-holographic idea in the context of decaying dark components. The energy flow between dark energy and the compensating dark matter is thermodynamically generalized to involve a particle number variable dark component with non-zero chemical potential. It is found that, unlike the original semi-holographic model, no cosmological constant is needed for a dynamical evolution of the universe. A transient phantom phase appears while a non-trivial dark energy-dark matter scaling solution stays at a later time, which evades the big-rip and helps to resolve the coincidence problem. For reasonable parameters, the deceleration parameter is well consistent with current observations. The original semi-holographic model is extended and it also suggests that the concordance model may be reconstructed from the semi-holographic idea. C1 [Li Hui] Yantai Univ, Dept Phys, Yantai 264005, Peoples R China. [Zhang Hong-Sheng] Shanghai Normal Univ, SUCA, Shanghai 200234, Peoples R China. [Zhang Yi] Chongqing Univ Posts & Telecommun, Coll Math & Phys, Chongqing 400065, Peoples R China. [Zhang Hong-Sheng; Zhang Yi] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China. [Zhang Yi] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Li, H (reprint author), Yantai Univ, Dept Phys, 30 Qingquan Rd, Yantai 264005, Peoples R China. EM lihui@ytu.edu.cn FU National Natural Science Foundation of China [10747155, 11205131, 11075106, 11005164, 11175270, 10935013]; Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Shanghai Municipal Pujiang [10PJ1408100]; CQ CSTC [2010BB0408]; Argonne National Laboratory FX Supported by the National Natural Science Foundation of China under Grant Nos 10747155, 11205131, 11075106, 11005164, 11175270 and 10935013, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Shanghai Municipal Pujiang under Grant No 10PJ1408100, CQ CSTC under Grant No 2010BB0408, and the Argonne National Laboratory. NR 53 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0256-307X J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD AUG PY 2013 VL 30 IS 8 AR 089801 DI 10.1088/0256-307X/30/8/089801 PG 5 WC Physics, Multidisciplinary SC Physics GA 209DH UT WOS:000323733900056 ER PT J AU Gallagher, KG Croy, JR Balasubramanian, M Bettge, M Abraham, DP Burrell, AK Thackeray, MM AF Gallagher, Kevin G. Croy, Jason R. Balasubramanian, Mahalingam Bettge, Martin Abraham, Daniel P. Burrell, Anthony K. Thackeray, Michael M. TI Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Lithium-ion; Cathode; Decay mechanism; Destabilization; Tetrahedral site; Intercalation ID X-RAY-DIFFRACTION; ION BATTERIES; STRUCTURAL-CHARACTERIZATION; NEUTRON-DIFFRACTION; DELITHIATED LIVO2; CATHODE MATERIAL; CAPACITY; LIMNO2; ELECTROCHEMISTRY; TRANSFORMATION AB Electrochemical studies demonstrate a strong correlation between the phenomena of hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. A mechanism is proposed that entails both the reversible and irreversible migration of transition metal ions. Their reversible migration to a metastable configuration, suggested to involve the occupation of tetrahedral sites in the lithium layer, is manifested as a 1 V hysteresis in site energy for 10-15% of the lithium content. The irreversible migration of the transition metal ions through the metastable 'hysteresis' sites to localized and lower energy cubic environments results in the observed voltage fade phenomenon. (c) 2013 Elsevier B.V. All rights reserved. C1 [Gallagher, Kevin G.; Croy, Jason R.; Bettge, Martin; Abraham, Daniel P.; Burrell, Anthony K.; Thackeray, Michael M.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Balasubramanian, Mahalingam] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Lemont, IL 60439 USA. RP Gallagher, KG (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. EM kevin.gallagher@anl.gov FU Vehicle Technologies Program, Hybrid and Electric Systems; Argonne, a U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX Support from the Vehicle Technologies Program, Hybrid and Electric Systems, in particular David Howell, Peter Faguy, and Tien Duong at the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, is gratefully acknowledged. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 27 TC 76 Z9 77 U1 8 U2 174 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD AUG PY 2013 VL 33 BP 96 EP 98 DI 10.1016/j.elecom.2013.04.022 PG 3 WC Electrochemistry SC Electrochemistry GA 199VW UT WOS:000323024600024 ER PT J AU Krasko, VA Doris, E AF Krasko, Vitaliy A. Doris, Elizabeth TI State distributed PV policies: Can low cost (to government) policies have a market impact? SO ENERGY POLICY LA English DT Article DE State policy; Distributed generation; Photovoltaics ID DEPLOYMENT; ENERGY AB This analysis examines the use of state policy as a tool to support the development of distributed generation photovoltaic (PV) markets. The focus is on low-cost market opening policies instead of various forms of government subsidies aimed at reducing installation costs. The ideas tested in this work are: (1) low-cost market opening policies can be effective in facilitating PV market growth without subsidizing projects, and (2) policies can be made more effective if states and localities stage their enactment in a particular order. The policies selected for evaluation emerge from a policy stacking theory outlined in Doris (2012), NREL/CP-7A30-54801, Golden, CO: National Renewable Energy Laboratory. A cross-section econometric analysis that takes into account the quality of interconnection standards, net metering standards, Renewable Portfolio Standards (RPS), RPS set-asides, and a non-policy determinant (population) explains about 70% of the variation in newly installed PV capacity across states and indicates that all of the selected policies are significant. Nonparametric statistical tests confirm the regression results. Qualitative evidence is also presented indicating that effective policy ordering starts with improving interconnection standards, closely followed by improvements in net metering standards, and eventually strengthened by the enactment of an RPS and set-asides. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Krasko, Vitaliy A.; Doris, Elizabeth] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Krasko, Vitaliy A.] Colorado Sch Mines, Div Econ & Business, Golden, CO 80401 USA. RP Krasko, VA (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM vitaliy.krasko@nrel.gov; Elizabeth.Doris@nrel.gov NR 27 TC 7 Z9 7 U1 1 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD AUG PY 2013 VL 59 BP 172 EP 181 DI 10.1016/j.enpol.2013.03.015 PG 10 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 202QW UT WOS:000323235700016 ER PT J AU Park, WY Phadke, A Shah, N Letschert, V AF Park, Won Young Phadke, Amol Shah, Nihar Letschert, Virginie TI Efficiency improvement opportunities in TVs: Implications for market transformation programs SO ENERGY POLICY LA English DT Article DE TV energy efficiency; Cost effectiveness; Market transformation AB Televisions (TVs) account for a significant portion of residential electricity consumption and global TV shipments are expected to continue to increase. We assess the market trends in the energy efficiency of TVs that are likely to occur without any additional policy intervention and estimate that TV efficiency will likely improve by over 60% by 2015 with savings potential of 45 terawatt-hours [TW h] per year in 2015, compared to today's technology. We discuss various energy-efficiency improvement options and evaluate the cost effectiveness of three of them. At least one of these options improves efficiency by at least 20% cost effectively beyond ongoing market trends. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to further capture global energy savings potential from TVs which we estimate to be up to 23 TW h per year in 2015. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Park, WY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM wypark@lbl.gov FU Bureau of Oceans and International Environmental and Scientific Affairs, U.S. Department of State; U.S. Department of Energy [DE-AC02-05CH11231] FX We wish to thank the reviewers of this article as well as the report, TV Energy Consumption Trends and Energy-Efficiency Improvement Options (LBNL5024-E), on which this paper is based. This work was funded by the Bureau of Oceans and International Environmental and Scientific Affairs, U.S. Department of State, and administered by the U.S. Department of Energy in support of the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Any errors or omissions are the authors' own. NR 39 TC 6 Z9 6 U1 1 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD AUG PY 2013 VL 59 BP 361 EP 372 DI 10.1016/j.enpol.2013.03.048 PG 12 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 202QW UT WOS:000323235700033 ER PT J AU Vine, E AF Vine, Edward TI Transforming the energy efficiency market in California: Key findings, lessons learned and future directions from California's market effects studies SO ENERGY POLICY LA English DT Article DE Evaluation; Market effects; Market transformation AB In the last three years, the California Institute for Energy and Environment (CIEE), along with the California Public Utilities Commission (CPUC), managed three market effects studies that were funded by the CPUC. This paper summarizes the key findings from these studies that focused on compact fluorescent lamps (CFLs), residential new construction (RNC), and high bay lighting (HBL),(1) with a particular focus on changes to California's market effects evaluation protocol and lessons learned during the evaluation of market effects. This paper also summarizes the key results from a survey that was conducted by CIEE in February 2011 to determine what additional studies should be conducted in the evaluation of market effects. Published by Elsevier Ltd. C1 [Vine, Edward] Calif Inst Energy & Environm, Berkeley, CA 94720 USA. [Vine, Edward] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Vine, E (reprint author), Calif Inst Energy & Environm, Bldg 90-4000, Berkeley, CA 94720 USA. EM elvine@lbl.gov NR 7 TC 1 Z9 1 U1 4 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD AUG PY 2013 VL 59 BP 702 EP 709 DI 10.1016/j.enpol.2013.04.030 PG 8 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 202QW UT WOS:000323235700062 ER PT J AU Coniglio, N Cross, CE AF Coniglio, N. Cross, C. E. TI Initiation and growth mechanisms for weld solidification cracking SO INTERNATIONAL MATERIALS REVIEWS LA English DT Review DE Weld solidification cracking; Crack initiation; Crack growth; Liquid fracture; Strain partitioning; Stress and strain around moving weld pool ID HOT-TEARING CRITERION; ALUMINUM-ALLOYS; POROSITY FORMATION; GRAIN-REFINEMENT; HIGH-STRENGTH; MUSHY ZONES; MODEL; SUSCEPTIBILITY; PARAMETERS; MICROPOROSITY AB Solidification cracking is a weld defect common to certain susceptible alloys rendering many of them unweldable. It forms and grows continuously behind a moving weld pool within the two phase mushy zone and involves a complex interaction between thermal, metallurgical and mechanical factors. Despite decades long efforts to investigate weld solidification cracking, there remains a significant lack of understanding regarding its underlying mechanisms. Criteria developed to evaluate alloy weldability will be examined in terms of proposed solidification cracking models. Crack initiation is discussed in terms of different criteria: critical stress to fracture the interdendritic liquid, critical strain to exceed the mushy zone ductility and critical hydrogen content to nucleate and grow a pore. Crack growth has been characterised in terms of a critical stress to fracture the liquid film surrounding a grain and critical strain rate interdependent with liquid feeding of the mushy zone opening. Experimental data to form a weld solidification crack are compiled, revealing the considerable amount of information available in the literature on this topic. C1 [Coniglio, N.] IUT Le Creusot, Le Creusot, France. [Cross, C. E.] LANL, Los Alamos, NM USA. RP Coniglio, N (reprint author), IUT Le Creusot, Le Creusot, France. EM nicolas.coniglio@u-bourgogne.fr FU Federal Institute for Materials and Research Testing (BAM), Berlin FX The authors are grateful to the Federal Institute for Materials and Research Testing (BAM), Berlin, for supporting research on this topic leading to the earned doctorate of one of the authors (Coniglio) from which this work was compiled. The reviewers are gratefully acknowledged for their useful comments. NR 146 TC 9 Z9 9 U1 2 U2 38 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0950-6608 J9 INT MATER REV JI Int. Mater. Rev. PD AUG PY 2013 VL 58 IS 7 BP 375 EP 397 DI 10.1179/1743280413Y.0000000020 PG 23 WC Materials Science, Multidisciplinary SC Materials Science GA 211VO UT WOS:000323939700001 ER PT J AU Kerisit, S Liu, CX AF Kerisit, Sebastien Liu, Chongxuan TI Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; WATER-EXCHANGE MECHANISM; SOLVATION FREE-ENERGIES; ELECTRON CORRELATION; PROPER TREATMENT; HANFORD-SITE; FORCE-FIELD; COORDINATION ENVIRONMENT; ADSORPTION EQUILIBRIA; SURFACE COMPLEXATION AB In this work, molecular simulation techniques were employed to gain insight into the structural, kinetic, and thermodynamic properties of the uranyl(VI) cation (UO22+) in aqueous solution. The simulations made use of an atomistic potential model (force field) derived in this work and based on the model of Guilbaud and Wipff [J. Mol. Struct. (THEOCHEM) 1996, 366, 55-63]. Reactive flux and thermodynamic integration calculations show that the derived potential model yields predictions for the water exchange rate and free energy of hydration, respectively, that are in agreement with experimental data. The water binding energies, hydration shell structure, and self diffusion coefficient were also calculated and analyzed. Finally, a combination of metadynamics and transition path sampling simulations was employed to probe the mechanisms of water exchange reactions in the first hydration shell of the uranyl ion. These atomistic simulations indicate, based on two-dimensional free energy surfaces, that water exchanges follow an associative interchange mechanism. The nature and structure of the water exchange transition states were also determined. The improved potential model is expected to lead to more accurate predictions of uranyl adsorption energies at mineral surfaces using potential-based molecular dynamics simulations. C1 [Kerisit, Sebastien; Liu, Chongxuan] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM sebastien.kerisit@pnnl.gov RI Liu, Chongxuan/C-5580-2009 FU U.S. Department of Energy (DOE) Biological and Environmental Research (BER) Division through the Subsurface Biogeochemistry Research (SBR) Program of the Science Focus Area (SFA) at Pacific Northwest National Laboratory (PNNL); DOE's Office of Biological and Environmental Research (OBER); Battelle Memorial Institute [DE-ACO5-76RL01830] FX The authors acknowledge Dr. Patrick Nichols for providing the radial distribution functions from his ab initio molecular dynamics simulation of the uranyl(VI) cation in water. This research was supported by the U.S. Department of Energy (DOE) Biological and Environmental Research (BER) Division through the Subsurface Biogeochemistry Research (SBR) Program of the Science Focus Area (SFA) at Pacific Northwest National Laboratory (PNNL). The computer simulations were performed in part using the Molecular Science Computing (MSC) facilities in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research (OBER) and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle Memorial Institute under Contract DE-ACO5-76RL01830. NR 97 TC 23 Z9 23 U1 7 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 1 PY 2013 VL 117 IS 30 BP 6421 EP 6432 DI 10.1021/jp404594p PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 196WE UT WOS:000322807300004 PM 23815284 ER PT J AU Poutsma, ML AF Poutsma, Marvin L. TI Evolution of Structure-Reactivity Correlations for the Hydrogen Abstraction Reaction by Hydroxyl Radical and Comparison with That by Chlorine Atom SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GAS-PHASE REACTIONS; BOND-DISSOCIATION ENTHALPIES; TRANSITION-STATE THEORY; MOLECULAR-ORBITAL CALCULATIONS; PREDICTING RATE CONSTANTS; FREE-ENERGY CORRELATIONS; OH RADICALS; ATMOSPHERIC CHEMISTRY; ORGANIC-COMPOUNDS; RATE COEFFICIENTS AB A structure-reactivity correlation for the reaction (HO. + HCR3 -> HOH + CR3.) has been formulated: log k(298)(per H, cm(3)/molecule.s) = -0.000630 Delta H-r(2) -0.151 Delta H-r-1.056 Sigma F-1.053 Sigma R-21.26 (r(2) = 0.885; n = 70; mean unsigned deviation = 0.29 log units), where Delta H-r is the reaction enthalpy (kJ/mol) and F and R represent the dissection of Hammetts sigma(para) constant into its field/inductive and resonance effects, and compared for the analogous case for Cl. (ref 1). Although more exothermic, the dependence of HO. on Delta H-r is somewhat greater than Cl.. However the dependence on F and R is much less, suggestive of less charge separation in the transition state for the less electronegative HO. The range of k(OH) is significantly less than that of Cl., i.e., it is less dependent on substrate structure. Yet a crossover exists such that k(Cl) > k(HO) predominates for more reactive cases whereas k(Cl) < k(OH) characterizes the less reactive. The Arrhenius parameters reveal that this crossover results from a change in {E(Cl) - E(OH)} from negative to positive. In contrast, whereas the A factors for both increase significantly as reactivity increases, {A(Cl)/A(OH)} always exceeds unity. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Poutsma, ML (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM poutsmaml@ornl.gov FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; UT-Battelle, LLC [DE-AC05-000R22725]; U.S. Department of Energy FX This research was sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-000R22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 115 TC 5 Z9 6 U1 5 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 1 PY 2013 VL 117 IS 30 BP 6433 EP 6449 DI 10.1021/jp404749z PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 196WE UT WOS:000322807300005 PM 23844551 ER PT J AU Trevitt, AJ Prendergast, MB Goulay, F Savee, JD Osborn, DL Taatjes, CA Leone, SR AF Trevitt, Adam J. Prendergast, Matthew B. Goulay, Fabien Savee, John D. Osborn, David L. Taatjes, Craig A. Leone, Stephen R. TI Product Branching Fractions of the CH plus Propene Reaction from Synchrotron Photoionization Mass Spectrometry SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SET MODEL CHEMISTRY; COUPLING PHOTOCHEMISTRY; CHEMICAL-DYNAMICS; TITANS ATMOSPHERE; CROSS-SECTIONS; HAZE FORMATION; COMBUSTION; DISSOCIATION; HYDROCARBONS; MECHANISM AB The CH(X-2 pi) + propene reaction is studied in the gas phase at 298 K and 4 Torr (533.3 Pa) using VUV synchrotron photoionization mass spectrometry. The dominant product channel is the formation of C4H6 (m/z 54) + H. By fitting experimental photoionization spectra to measured spectra of known C4H6 isomers, the following relative branching fractions are obtained: 1,3-butadiene (0.63 +/- 0.13), 1,2-butadiene (0.25 +/- 0.05), and 1-butyne (0.12 0.03) with no detectable contribution from 2-butyne. The CD + propene reaction is also studied and two product channels are observed that correspond to C4H6 (m/z 54) + D and C4H5D (m/z 55) + H, formed at a ratio of 0.4 (m/z 54) to 1.0 (m/z 55). The D elimination channel forms almost exclusively 1,2-butadiene (0.97 +/- 0.20) whereas the H elimination channel leads to the formation of deuterated 1,3-butadiene (0.89 +/- 0.18) and 1-butyne (0.11 +/- 0.02); photoionization spectra of undeuterated species are used in the fitting of the measured m/z 55 (C4H5D) spectrum. The results are generally consistent with a CH cycloaddition mechanism to the C=C bond of propene, forming 1-methylallyl followed by elimination of a H atom via several competing processes. The direct detection of 1,3-butadiene as a reaction product is an important validation of molecular weight growth schemes implicating the CH + propene reaction, for example, those reported recently for the formation of benzene in the interstellar medium. C1 [Trevitt, Adam J.; Prendergast, Matthew B.] Univ Wollongong, Sch Chem, Wollongong, NSW 2522, Australia. [Goulay, Fabien] W Virginia Univ, Dept Chem, Morgantown, WV 26506 USA. [Savee, John D.; Osborn, David L.; Taatjes, Craig A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Trevitt, AJ (reprint author), Univ Wollongong, Sch Chem, Wollongong, NSW 2522, Australia. EM adamt@uow.edu.au RI Prendergast, Matthew/D-3955-2013; Trevitt, Adam/A-2915-2009 OI Trevitt, Adam/0000-0003-2525-3162 FU Australian Research Council [DP1094135]; International Synchrotron Access Program (ISAP); National Collaborative Research Infrastructure Strategy; Federal Government of Australia; Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) [DE-ACO2-05CH11231]; National Aeronautics and Space Administration [NAGS-13339]; Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000] FX We thank Dr. Oliver Welz for insightful discussions and Mr. Howard Johnsen for technical support. A.J.T. acknowledges funding support from the Australian Research Council (DP1094135) and travel funding provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron. The ISAP is funded by a National Collaborative Research Infrastructure Strategy grant provided by the Federal Government of Australia. The Chemical Dynamics Beamline at the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-ACO2-05CH11231 at Lawrence Berkeley National Laboratory. S.RL is also supported by the Gas Phase Physical Chemistry program of DOE under Contract No. DEACO2-05CH11231. F.G. was supported by the National Aeronautics and Space Administration (Grant NAGS-13339) while at UCB and from West Virginia University (start up package). Sandia authors (J.D.S., D.L.O., CAT.) and the instrumentation for this work are supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. NR 38 TC 8 Z9 8 U1 9 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 1 PY 2013 VL 117 IS 30 BP 6450 EP 6457 DI 10.1021/jp404965k PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 196WE UT WOS:000322807300006 PM 23829558 ER PT J AU Iwata, S Bandyopadhyay, P Xantheas, SS AF Iwata, Suehiro Bandyopadhyay, Pradipta Xantheas, Sotiris S. TI Cooperative Roles of Charge Transfer and Dispersion Terms in Hydrogen-Bonded Networks of (H2O)(n), n=6, 11, and 16 SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SET SUPERPOSITION ERROR; PROJECTED MOLECULAR-ORBITALS; PLESSET PERTURBATION-THEORY; AB-INITIO CALCULATIONS; LOW-ENERGY STRUCTURES; WATER CLUSTERS; BINDING-ENERGIES; THERMOCHEMICAL KINETICS; ELECTRONIC-STRUCTURE; EXCITED ORBITALS AB The perturbation expansion based on the locally-projected molecular orbital (LPMO PT) was applied to the study of the hydrogen-bonded networks of water clusters with up to 16 molecules. Utilizing the local nature of the occupied and excited MOs on each monomer, the charge-transfer and dispersion terms are evaluated for every pair of molecules. The two terms are strongly correlated with each other for the hydrogen-bonded pairs. The strength of the hydrogen bonds in the clusters is further classified by the types of the hydrogen donor and acceptor water molecules. The relative energies evaluated with the LPMO PT among the isomers of (H2O)(6), (H2O)(11), and (H2O)(16) agree very well with those obtained from CCSD(T) calculations with large basis sets. The binding energy of the LPMO PT is approximately free of the basis set superposition errors caused both by the orbital basis inconsistency and by the configuration basis inconsistency. C1 [Iwata, Suehiro] Keio Univ, Fac Sci & Technol, Dept Chem, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan. [Iwata, Suehiro] Toyota Phys & Chem Res Inst, Nagakute, Aichi 4801192, Japan. [Bandyopadhyay, Pradipta] Jawaharlal Nehru Univ, Sch Computat & Integrat Sci, New Delhi 110067, India. [Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Iwata, S (reprint author), Keio Univ, Fac Sci & Technol, Dept Chem, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan. EM iwatasuehiro@gmail.com RI Xantheas, Sotiris/L-1239-2015 FU JSPS [23550031]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; DST [SR/S1/PC-45/2009] FX One of the authors (S.I.) acknowledges the late Dr. Takeshi Nagata for his essential contribution in the development of LPMO perturbation theories. The work is partially supported by the Grant-in-Aid for Science Research (No. 23550031) of JSPS (S.I.). Part of this work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle (S.S.X.). This work is partly supported by a grant awarded to P.B. by DST (No. SR/S1/PC-45/2009). NR 56 TC 13 Z9 13 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 1 PY 2013 VL 117 IS 30 BP 6641 EP 6651 DI 10.1021/jp403837z PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 196WE UT WOS:000322807300023 PM 23805893 ER PT J AU Foley, JJ Mazziotti, DA AF Foley, Jonathan J. Mazziotti, David A. TI Cage versus Prism: Electronic Energies of the Water Hexamer SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID OH-STRETCH SPECTROSCOPY; DENSITY-MATRIX METHOD; RELATIVE ENERGIES; ISOMERS; HYDROGEN; CONVERGENCE; GEOMETRIES; SYSTEMS; LIQUID; ICE AB Recent experiments show that the cage isomer of the water hexamer is lower in energy than the prism isomer near 0 K, and yet state-of-the-art electronic structure calculations predict the prism to be lower in energy than the cage at 0 K. Here, we study the relative energies of the water hexamers from the parametric two-electron reduced density matrix (2-RDM) method in which the 2-RDM rather than the wave function is the basic variable of the calculations. In agreement with experiment and in contrast with traditional wave function methods, the 2-RDM calculations predict the cage to be more stable than the prism after vibrational zero-point correction. Multiple configurations from the hydrogen bonding are captured by the method. More generally, the results are consistent with our previous 2-RDM applications in that they reveal how multireference correlation in molecular systems is important for resolving small energy differences from hydrogen bonding as well as other types of intermolecular forces, even in systems that are not conventionally considered strongly correlated. C1 [Foley, Jonathan J.; Mazziotti, David A.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Foley, Jonathan J.; Mazziotti, David A.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Foley, Jonathan J.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Mazziotti, DA (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM damazz@uchicago.edu FU NSF [CHE-1152425]; ARO [W91 INF-1 1-504 1-0085]; Keck Foundation; Microsoft Corporation FX DAM. gratefully acknowledges the NSF under Grant No. CHE-1152425, the ARO under Grant No. W91 INF-1 1-504 1-0085, the Keck Foundation, and Microsoft Corporation for their support. NR 36 TC 9 Z9 10 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 1 PY 2013 VL 117 IS 30 BP 6712 EP 6716 DI 10.1021/jp405739d PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 196WE UT WOS:000322807300032 PM 23841757 ER PT J AU Yu, J Phelan, D Rodriguez-Rivera, JA Podlesnyak, A Louca, D AF Yu, J. Phelan, D. Rodriguez-Rivera, J. A. Podlesnyak, A. Louca, Despina TI Magneto-Polaron Formation and Field-Induced Effects with Dilute Doping in LaCo1-yNiyO3 SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article DE Magnetic excitations; Local distortions; Polaron melting ID MAGNETIC SEMICONDUCTORS; SPIN; TRANSITION; CLUSTERS; LACOO3 AB Dilute magnetic ion doping in LaCo1-yNiyO3 with y <= 1 % leads to the formation of isotropic magnetic clusters that exhibit intracluster interactions which are ferromagnetic in nature. The clusters are comprised of Ni ions surrounded by six magnetically polarized Co ions. The Ni spin is delocalized from the Ni3+ ion but is confined in the vicinity of the six Co coordinated environment forming small magneto-polarons. The cluster ground state is estimated from bulk magnetization to be about g S similar to 10, in contrast to LaCoO3, which is not magnetic. Using neutron spectroscopy, transitions are observed between the lowest energy levels indicating that the cluster ground state is split. Under a magnetic field of 1 Tesla, the transitions are suppressed while with increasing temperature, the intracluster transitions are overshadowed by the activation of the Co3+ ions to the intermediate spin state. C1 [Yu, J.; Phelan, D.; Louca, Despina] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Phelan, D.; Rodriguez-Rivera, J. A.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Rodriguez-Rivera, J. A.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Podlesnyak, A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Louca, D (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. EM Louca@virginia.edu RI Instrument, CNCS/B-4599-2012; Rodriguez-Rivera, Jose/A-4872-2013; Podlesnyak, Andrey/A-5593-2013 OI Rodriguez-Rivera, Jose/0000-0002-8633-8314; Podlesnyak, Andrey/0000-0001-9366-6319 FU US Department of Energy at the University of Virginia [DE-FG02-01ER45927]; National Science Foundation [DMR-0944772] FX The authors would like to acknowledge valuable discussions with C. Leighton and D. Khomskii. They also express their gratitude to K. Yamada for providing them with the opportunity to grow some of the single crystals at the Institute of Materials Research of Tohoku University. This work is supported by the US Department of Energy under contracts DE-FG02-01ER45927 at the University of Virginia. This work additionally utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772. NR 25 TC 0 Z9 0 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD AUG PY 2013 VL 26 IS 8 BP 2627 EP 2632 DI 10.1007/s10948-013-2148-x PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 211QU UT WOS:000323925500012 ER PT J AU Castelle, CJ Hug, LA Wrighton, KC Thomas, BC Williams, KH Wu, DY Tringe, SG Singer, SW Eisen, JA Banfield, JF AF Castelle, Cindy J. Hug, Laura A. Wrighton, Kelly C. Thomas, Brian C. Williams, Kenneth H. Wu, Dongying Tringe, Susannah G. Singer, Steven W. Eisen, Jonathan A. Banfield, Jillian F. TI Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment SO NATURE COMMUNICATIONS LA English DT Article ID MULTIPLE SEQUENCE ALIGNMENT; ALTERNATIVE COMPLEX-III; PYROBACULUM-AEROPHILUM; RHODOTHERMUS-MARINUS; MAXIMUM-LIKELIHOOD; REDUCING BACTERIA; NITROGEN-FIXATION; HYDROTHERMAL VENT; ELECTRON-TRANSFER; ESCHERICHIA-COLI AB Microorganisms in the subsurface represent a substantial but poorly understood component of the Earth's biosphere. Subsurface environments are complex and difficult to characterize; thus, their microbiota have remained as a 'dark matter' of the carbon and other biogeochemical cycles. Here we deeply sequence two sediment-hosted microbial communities from an aquifer adjacent to the Colorado River, CO, USA. No single organism represents more than similar to 1% of either community. Remarkably, many bacteria and archaea in these communities are novel at the phylum level or belong to phyla lacking a sequenced representative. The dominant organism in deeper sediment, RBG-1, is a member of a new phylum. On the basis of its reconstructed complete genome, RBG-1 is metabolically versatile. Its wide respiration-based repertoire may enable it to respond to the fluctuating redox environment close to the water table. We document extraordinary microbial novelty and the importance of previously unknown lineages in sediment biogeochemical transformations. C1 [Castelle, Cindy J.; Hug, Laura A.; Wrighton, Kelly C.; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Williams, Kenneth H.; Singer, Steven W.; Banfield, Jillian F.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wu, Dongying; Eisen, Jonathan A.] Univ Calif Davis, UC Davis Genome Ctr, Davis, CA 95616 USA. [Tringe, Susannah G.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Tringe, Susannah G.] Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Eisen, Jonathan A.] Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA. [Eisen, Jonathan A.] Univ Calif Davis, Dept Med Microbiol & Immunol, Davis, CA 95616 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Williams, Kenneth/O-5181-2014; OI Williams, Kenneth/0000-0002-3568-1155; Tringe, Susannah/0000-0001-6479-8427; Eisen, Jonathan A./0000-0002-0159-2197 FU Integrated Field Research Challenge, Subsurface Biogeochemical Research Program, Office of Science, Biological and Environmental Research, the US Department of Energy (DOE) [DE-AC02-05CH11231, DE-SC0004733] FX Funding was provided through the Integrated Field Research Challenge, Subsurface Biogeochemical Research Program, Office of Science, Biological and Environmental Research, the US Department of Energy (DOE) grants DE-AC02-05CH11231 to the Lawrence Berkeley National Laboratory (operated by the University of California) and DE-SC0004733. Sequencing was performed at the DOE Joint Genome Institute under the CSP Program. NR 60 TC 62 Z9 62 U1 3 U2 69 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2013 VL 4 AR 2120 DI 10.1038/ncomms3120 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 209IL UT WOS:000323749100001 PM 23979677 ER PT J AU Chien, TY Kourkoutis, LF Chakhalian, J Gray, B Kareev, M Guisinger, NP Muller, DA Freeland, JW AF Chien, Te Yu Kourkoutis, Lena F. Chakhalian, Jak Gray, Benjamin Kareev, Michael Guisinger, Nathan P. Muller, David A. Freeland, John W. TI Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides SO NATURE COMMUNICATIONS LA English DT Article ID ANDREEV REFLECTION; HETEROSTRUCTURES; SUPERLATTICES; JUNCTIONS AB The interplay between antagonistic superconductivity and ferromagnetism has been a interesting playground to explore the interaction between competing ground states. Although this effect in systems of conventional superconductors is better understood, the framework of the proximity effect at complex-oxide-based superconductor/ferromagnet interfaces is not so clear. The main difficulty originates from the lack of experimental tools capable of probing the interfaces directly with high spatial resolution. Here we harness cross-sectional scanning tunnelling microscopy and spectroscopy together with atomic-resolution electron microscopy to understand the buried interfaces between cuprate and manganite layers. The results show that the fundamental length scale of the electronic evolution between YBa2Cu3O7-delta (YBCO) and La2/3Ca1/3MnO3 (LCMO) is confined to the subnanometre range. Our findings provide a complete and direct microscopic picture of the electronic transition across the YBCO/LCMO interfaces, which is an important step towards understanding the competition between ferromagnetism and superconductivity in complex-oxide heterostructures. C1 [Chien, Te Yu; Freeland, John W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Kourkoutis, Lena F.; Muller, David A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Kourkoutis, Lena F.; Muller, David A.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. [Chakhalian, Jak; Gray, Benjamin; Kareev, Michael] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Chien, TY (reprint author), Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. EM tchien@uwyo.edu; freeland@anl.gov RI Chakhalian, Jak/F-2274-2015; OI Muller, David/0000-0003-4129-0473; Kourkoutis, Lena/0000-0002-1303-1362 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-0747808]; DOD-ARO [W911NF-11-1-0200]; Army Research Office [W911NF0910415]; National Science Foundation Materials Research Science and Engineering Centers (MRSEC) program [DMR 1120296] FX Work at Argonne, including the Center for Nanoscale Materials, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The majority of the research at the University of Arkansas was supported by the grant from the NSF (DMR-0747808) and partially by DOD-ARO (W911NF-11-1-0200). Work at Cornell is supported by the Army Research Office under award W911NF0910415, and made use of the Cornell Center for Materials Research (CCMR) electron microscopy facility supported by the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) program (DMR 1120296). NR 41 TC 27 Z9 27 U1 4 U2 108 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2013 VL 4 AR 2336 DI 10.1038/ncomms3336 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 209JV UT WOS:000323752900003 PM 23939385 ER PT J AU Browne, E Tuli, JK AF Browne, E. Tuli, J. K. TI Nuclear Data Sheets for A=251-259(odd) SO NUCLEAR DATA SHEETS LA English DT Article ID NEUTRON-DEFICIENT ISOTOPES; ALPHA-GAMMA-DECAY; PRODUCTION CROSS-SECTIONS; COLD-FUSION REACTIONS; FISSION HALF-LIVES; SUPER-HEAVY-NUCLEI; ATOMIC MASS EVALUATION; UNIFIED THEORETICAL FRAMEWORK; PARTICLE-EMITTING ISOTOPES; DINUCLEAR SYSTEM CONCEPT AB The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reaction studies for all known nuclei with mass numbers A=251, 253, 255, 257, and 259. C1 [Browne, E.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Lawrence Berkeley Natl Lab, Upton, NY 11973 USA. [Tuli, J. K.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Browne, E (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Lawrence Berkeley Natl Lab, Upton, NY 11973 USA. NR 357 TC 6 Z9 6 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD AUG-SEP PY 2013 VL 114 IS 8-9 BP 1041 EP 1185 DI 10.1016/j.nds.2013.08.002 PG 145 WC Physics, Nuclear SC Physics GA 210WH UT WOS:000323865000002 ER PT J AU Menendez, D Nguyen, TA Freudenberg, JM Mathew, VJ Anderson, CW Jothi, R Resnick, MA AF Menendez, Daniel Thuy-Ai Nguyen Freudenberg, Johannes M. Mathew, Viju J. Anderson, Carl W. Jothi, Raja Resnick, Michael A. TI Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells SO NUCLEIC ACIDS RESEARCH LA English DT Article ID EMBRYONIC STEM-CELLS; TUMOR-SUPPRESSOR; DNA RECOGNITION; TRANSCRIPTIONAL NETWORK; P53-BINDING SITES; RESPONSE ELEMENT; GENE; MUTATIONS; PROMOTER; PROTEIN AB The effects of diverse stresses on promoter selectivity and transcription regulation by the tumor suppressor p53 are poorly understood. We have taken a comprehensive approach to characterizing the human p53 network that includes p53 levels, binding, expression and chromatin changes under diverse stresses. Human osteosarcoma U2OS cells treated with anti-cancer drugs Doxorubicin (DXR) or Nutlin-3 (Nutlin) led to strikingly different p53 gene binding patterns based on chromatin immunoprecipitation with high-throughput sequencing experiments. Although two contiguous RRRCWWGYYY decamers is the consensus binding motif, p53 can bind a single decamer and function in vivo. Although the number of sites bound by p53 was six times greater for Nutlin than DXR, expression changes induced by Nutlin were much less dramatic compared with DXR. Unexpectedly, the solvent dimethylsulphoxide (DMSO) alone induced p53 binding to many sites common to DXR; however, this binding had no effect on target gene expression. Together, these data imply a two-stage mechanism for p53 transactivation where p53 binding only constitutes the first stage. Furthermore, both p53 binding and transactivation were associated with increased active histone modification histone H3 lysine 4 trimethylation. We discovered 149 putative new p53 target genes including several that are relevant to tumor suppression, revealing potential new targets for cancer therapy and expanding our understanding of the p53 regulatory network. C1 [Menendez, Daniel; Thuy-Ai Nguyen; Anderson, Carl W.; Resnick, Michael A.] NIEHS, Chromosome Stabil Grp, Mol Genet Lab, NIH, Res Triangle Pk, NC 27709 USA. [Freudenberg, Johannes M.; Mathew, Viju J.; Jothi, Raja] NIEHS, Syst Biol Grp, Mol Carcinogenesis Lab, NIH, Res Triangle Pk, NC 27709 USA. [Mathew, Viju J.] William G Enloe High Sch, Raleigh, NC 27610 USA. [Anderson, Carl W.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Jothi, R (reprint author), NIEHS, Syst Biol Grp, Mol Carcinogenesis Lab, NIH, POB 12233, Res Triangle Pk, NC 27709 USA. EM jothi@mail.nih.gov; resnick@niehs.nih.gov RI Jothi, Raja/G-3780-2015 FU NIH, National Institute of Environmental Health Sciences [Z01-ES065079, 1ZIAES102625-04] FX Funding for open access charge: Supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences [Z01-ES065079 to M. A. R., 1ZIAES102625-04 to R.J.]. NR 68 TC 52 Z9 52 U1 1 U2 12 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD AUG PY 2013 VL 41 IS 15 BP 7286 EP 7301 DI 10.1093/nar/gkt504 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 212GL UT WOS:000323970700017 PM 23775793 ER PT J AU Sun, CM Querol-Audi, J Mortimer, SA Arias-Palomo, E Doudna, JA Nogales, E Cate, JHD AF Sun, Chaomin Querol-Audi, Jordi Mortimer, Stefanie A. Arias-Palomo, Ernesto Doudna, Jennifer A. Nogales, Eva Cate, Jamie H. D. TI Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation SO NUCLEIC ACIDS RESEARCH LA English DT Article ID HEPATITIS-C VIRUS; INITIATION-FACTOR 3; 40S RIBOSOMAL-SUBUNIT; ELECTRON-MICROSCOPY; NEW-GENERATION; SHAPE CHEMISTRY; CODON SELECTION; ENTRY SITE; MECHANISM; PARTICLE AB The initiation of protein synthesis plays an essential regulatory role in human biology. At the center of the initiation pathway, the 13-subunit eukaryotic translation initiation factor 3 (eIF3) controls access of other initiation factors and mRNA to the ribosome by unknown mechanisms. Using electron microscopy (EM), bioinformatics and biochemical experiments, we identify two highly conserved RNA-binding motifs in eIF3 that direct translation initiation from the hepatitis C virus internal ribosome entry site (HCV IRES) RNA. Mutations in the RNA-binding motif of subunit eIF3a weaken eIF3 binding to the HCV IRES and the 40S ribosomal subunit, thereby suppressing eIF2-dependent recognition of the start codon. Mutations in the eIF3c RNA-binding motif also reduce 40S ribosomal subunit binding to eIF3, and inhibit eIF5B-dependent steps downstream of start codon recognition. These results provide the first connection between the structure of the central translation initiation factor eIF3 and recognition of the HCV genomic RNA start codon, molecular interactions that likely extend to the human transcriptome. C1 [Sun, Chaomin; Querol-Audi, Jordi; Mortimer, Stefanie A.; Arias-Palomo, Ernesto; Doudna, Jennifer A.; Nogales, Eva; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.; Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Doudna, Jennifer A.; Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jcate@lbl.gov FU National Institutes of Health (NIH) [R56-AI095687, P50-GM102706]; Spanish Ministry of Education through the Programa Nacional de Movilidad de Recursos Humanos del Plan Nacional de I-D+i FX National Institutes of Health (NIH) [R56-AI095687 to J.H.D.C.; P50-GM102706 to J.A.D. and J.H.D.C.]; Spanish Ministry of Education through the Programa Nacional de Movilidad de Recursos Humanos del Plan Nacional de I-D+i 2008-2011 (to E. A.-P.). J.A.D. and E.N. are Howard Hughes Medical Institute Investigators. Funding for open access charge: NIH [P50-GM102706]. NR 52 TC 25 Z9 25 U1 0 U2 17 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD AUG PY 2013 VL 41 IS 15 BP 7512 EP 7521 DI 10.1093/nar/gkt510 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 212GL UT WOS:000323970700035 PM 23766293 ER PT J AU Baylor, LR Commaux, N Jernigan, TC Meitner, SJ Combs, SK Isler, RC Unterberg, EA Brooks, NH Evans, TE Leonard, AW Osborne, TH Parks, PB Snyder, PB Strait, EJ Fenstermacher, ME Lasnier, CJ Moyer, RA Loarte, A Huijsmans, GTA Futatani, S AF Baylor, L. R. Commaux, N. Jernigan, T. C. Meitner, S. J. Combs, S. K. Isler, R. C. Unterberg, E. A. Brooks, N. H. Evans, T. E. Leonard, A. W. Osborne, T. H. Parks, P. B. Snyder, P. B. Strait, E. J. Fenstermacher, M. E. Lasnier, C. J. Moyer, R. A. Loarte, A. Huijsmans, G. T. A. Futatani, S. TI Reduction of edge localized mode intensity on DIII-D by on-demand triggering with high frequency pellet injection and implications for ITER SO PHYSICS OF PLASMAS LA English DT Article ID D TOKAMAK; PLASMA; TRANSPORT; STABILITY; DYNAMICS; PEDESTAL AB The injection of small deuterium pellets at high repetition rates up to 12x the natural edge localized mode (ELM) frequency has been used to trigger high-frequency ELMs in otherwise low natural ELM frequency H-mode deuterium discharges in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. The resulting pellet-triggered ELMs result in up to 12x lower energy and particle fluxes to the divertor than the natural ELMs. The plasma global energy confinement and density are not strongly affected by the pellet perturbations. The plasma core impurity density is strongly reduced with the application of the pellets. These experiments were performed with pellets injected from the low field side pellet in plasmas designed to match the ITER baseline configuration in shape and normalized beta operation with input heating power just above the H-mode power threshold. Nonlinear MHD simulations of the injected pellets show that destabilization of ballooning modes by a local pressure perturbation is responsible for the pellet ELM triggering. This strongly reduced ELM intensity shows promise for exploitation in ITER to control ELM size while maintaining high plasma purity and performance. (C) 2013 AIP Publishing LLC. C1 [Baylor, L. R.; Commaux, N.; Jernigan, T. C.; Meitner, S. J.; Combs, S. K.; Isler, R. C.; Unterberg, E. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Brooks, N. H.; Evans, T. E.; Leonard, A. W.; Osborne, T. H.; Parks, P. B.; Snyder, P. B.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.; Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Loarte, A.; Huijsmans, G. T. A.; Futatani, S.] ITER Org, F-13115 St Paul Les Durance, France. RP Baylor, LR (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37830 USA. FU Oak Ridge National Laboratory; US Department of Energy [DE-AC05-00OR22725, DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-07ER54917] FX This work was supported by the Oak Ridge National Laboratory managed by UT-Battelle, LLC for the US Department of Energy under DE-AC05-00OR22725, and the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, and DE-FG02-07ER54917. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. The authors also thank S. L. Milora, J. H. Harris, P. T. Lang, and T. S. Taylor for enlightening discussions and support and the DIII-D Team for operating the experiment. NR 26 TC 13 Z9 13 U1 3 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 082513 DI 10.1063/1.4818772 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800064 ER PT J AU Chung, M Qin, H Gilson, EP Davidson, RC AF Chung, Moses Qin, Hong Gilson, Erik P. Davidson, Ronald C. TI Analysis of continuously rotating quadrupole focusing channels using generalized Courant-Snyder theory SO PHYSICS OF PLASMAS LA English DT Article ID FIELDS AB By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus, provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complex linear focusing channels. (C) 2013 AIP Publishing LLC. C1 [Chung, Moses] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. [Qin, Hong; Gilson, Erik P.; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RP Chung, M (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. FU U.S. Department of Energy [DE-AC02-09CH11466]; United States Department of Energy [DE-AC02-07CH11359] FX This research was supported by the U.S. Department of Energy (Contract Number DE-AC02-09CH11466). Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 25 TC 6 Z9 6 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 083121 DI 10.1063/1.4819830 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800097 ER PT J AU Clark, SE Winske, D Schaeffer, DB Everson, ET Bondarenko, AS Constantin, CG Niemann, C AF Clark, S. E. Winske, D. Schaeffer, D. B. Everson, E. T. Bondarenko, A. S. Constantin, C. G. Niemann, C. TI Hybrid simulation of shock formation for super-Alfvenic expansion of laser ablated debris through an ambient, magnetized plasma SO PHYSICS OF PLASMAS LA English DT Article ID COLLISIONLESS-SHOCK; FIELD; WAVELENGTHS; DYNAMICS; DESIGN; MODEL AB Two-dimensional hybrid simulations of perpendicular collisionless shocks are modeled after potential laboratory conditions that are attainable in the LArge Plasma Device (LAPD) at the University of California, Los Angeles Basic Plasma Science Facility. The kJ class 1053nm Nd:Glass Raptor laser will be used to ablate carbon targets in the LAPD with on-target energies of 100-500 J. The ablated debris ions will expand into ambient, partially ionized hydrogen or helium. A parameter study is performed via hybrid simulation to determine possible conditions that could lead to shock formation in future LAPD experiments. Simulation results are presented along with a comparison to an analytical coupling parameter. (C) 2013 AIP Publishing LLC. C1 [Clark, S. E.; Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Constantin, C. G.; Niemann, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Winske, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Clark, SE (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM clarkse@physics.ucla.edu FU Defense Threat Reduction Agency (DTRA) [HDTRA1-12-1-0024]; DOE Office of Science Early Career Research Program [DE-FOA-0000395] FX This work was supported by the Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-12-1-0024 and by the DOE Office of Science Early Career Research Program (DE-FOA-0000395). NR 31 TC 11 Z9 11 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 082129 DI 10.1063/1.4819251 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800032 ER PT J AU Dewar, RL Bhattacharjee, A Kulsrud, RM Wright, AM AF Dewar, R. L. Bhattacharjee, A. Kulsrud, R. M. Wright, A. M. TI Plasmoid solutions of the Hahm-Kulsrud-Taylor equilibrium model SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC RECONNECTION; TEARING INSTABILITY; CURRENT SHEETS; FIELD; LAYER AB The Hahm-Kulsrud (HK) [T.S. Hahm and R. M. Kulsrud, Phys. Fluids 28, 2412 (1985)] solutions for a magnetically sheared plasma slab driven by a resonant periodic boundary perturbation illustrate fully shielded (current sheet) and fully reconnected (magnetic island) responses. On the global scale, reconnection involves solving a magnetohydrodynamic (MHD) equilibrium problem. In systems with a continuous symmetry, such MHD equilibria are typically found by solving the Grad-Shafranov equation, and in slab geometry the elliptic operator in this equation is the 2-D Laplacian. Thus, assuming appropriate pressure and poloidal current profiles, a conformal mapping method can be used to transform one solution into another with different boundary conditions, giving a continuous sequence of solutions in the form of partially reconnected magnetic islands (plasmoids) separated by Syrovatsky current sheets. The two HK solutions appear as special cases. (C) 2013 AIP Publishing LLC. C1 [Dewar, R. L.] Australian Natl Univ, Plasma Res Lab, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Dewar, R. L.] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Chiba 2778561, Japan. [Bhattacharjee, A.; Kulsrud, R. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Wright, A. M.] Australian Natl Univ, Canberra, ACT 0200, Australia. RP Dewar, RL (reprint author), Australian Natl Univ, Plasma Res Lab, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia. EM robert.dewar@anu.edu.au; abhattac@pppl.gov; rkulsrud@pppl.gov RI Dewar, Robert/B-1300-2008 OI Dewar, Robert/0000-0002-9518-7087 FU Australian Research Council; U.S. National Science Foundation; Department of Energy FX One of the authors (RLD) would like to thank the hospitality of and stimulating conversations with Roger Hosking, as the idea behind this paper was conceived during work on our book, still in preparation, "Fundamentals of Fluid Mechanics and MHD." He would also like to thank the hospitality of Princeton Plasma Physics Laboratory where the first draft was written and of Zensho Yoshida at the University of Tokyo where the work was completed. This research has been supported by the Australian Research Council and the U.S. National Science Foundation and Department of Energy. The plots were made using Mathematica 9.31 NR 31 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 082103 DI 10.1063/1.4817276 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800006 ER PT J AU Dorf, MA Cohen, RH Simakov, AN Joseph, I AF Dorf, M. A. Cohen, R. H. Simakov, A. N. Joseph, I. TI On the applicability of the standard approaches for evaluating a neoclassical radial electric field in a tokamak edge region SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA EDGE; TRANSPORT AB The use of the standard approaches for evaluating a neoclassical radial electric field Er, i.e., the Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing limitations on the applicability of the standard approaches. However, in the edge of a tokamak, charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically ambipolar particle fluxes for which a nontrivial (Er-dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by the long wavelength GKE. The parameter regimes, where the radial electric field dynamics in the tokamak edge region is dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard approaches, are discussed. (C) 2013 AIP Publishing LLC. C1 [Dorf, M. A.; Cohen, R. H.; Joseph, I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Simakov, A. N.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Dorf, MA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Simakov, Andrei/0000-0001-7064-9153 FU U.S. Department of Energy [DE-AC52-07NA27344, DE-AC52-06NA-25396] FX The authors are grateful to A. Dimits, M. Umansky, T. Rognlien, B. Cohen, and D. Ryutov for fruitful discussions. This research was supported by the U.S. Department of Energy under contracts DE-AC52-07NA27344 and DE-AC52-06NA-25396. NR 23 TC 3 Z9 3 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 082515 DI 10.1063/1.4818777 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800066 ER PT J AU Farmer, WA Morales, GJ AF Farmer, W. A. Morales, G. J. TI Propagation of shear Alven waves in two-ion species plasmas confined by a nonuniform magnetic field SO PHYSICS OF PLASMAS LA English DT Article ID ION-CYCLOTRON; CONVERSION; TOKAMAK; ALFVEN AB Ray tracing calculations are performed for shear Alfven waves in two-ion species plasmas in which the magnetic field varies with position. Three different magnetic topologies of contemporary interest are explored: a linear magnetic mirror, a pure toroidal field, and a tokamak field. The wave frequency is chosen to lie in the upper propagation band, so that reflection at the ion-ion hybrid frequency can occur for waves originally propagating along the magnetic field direction. Calculations are performed for a magnetic well configuration used in recent experiments [S. T. Vincena et al., Geophys. Res. Lett. 38, L11101 (2011) and S. T. Vincena et al., Phys. Plasmas 20, 012111 (2013)] in the Large Plasma Device (LAPD) related to the ion-ion hybrid resonator. It is found that radial spreading cannot explain the relatively low values of the resonator quality factor (Q) measured in those experiments, even when finite ion temperature is considered. This identifies that a damping mechanism is present that is at least an order of magnitude larger than dissipation due to radial energy loss. Calculations are also performed for a magnetic field with pure toroidal geometry, without a poloidal field, as in experiments being planned for the Enormous Toroidal Plasma Device. In this case, the effects of field-line curvature cause radial reflections. A poloidal field is included to explore a tokamak geometry with plasma parameters expected in ITER. When ion temperature is ignored, it is found that the ion-ion hybrid resonator can exist and trap waves for multiples bounces. The effects of finite ion temperature combine with field line curvature to cause the reflection point to move towards the tritium cyclotron frequency when electron temperature is negligible. However, for ITER parameters, it is shown that the electrons must be treated in the adiabatic limit to properly describe resonator phenomena. (C) 2013 AIP Publishing LLC. C1 [Farmer, W. A.; Morales, G. J.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Farmer, W. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Farmer, WA (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. FU DOE [DE-SC0007791]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The work at UCLA was sponsored by DOE Grant DE-SC0007791. W. A. F. is a Lawrence scholar and his work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 24 TC 2 Z9 2 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 082132 DI 10.1063/1.4819776 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800035 ER PT J AU French, DM Shiffler, D Cartwright, K AF French, David M. Shiffler, Don Cartwright, Keith TI Electron beam coupling to a metamaterial structure SO PHYSICS OF PLASMAS LA English DT Article ID CERENKOV; PERMITTIVITY; PERMEABILITY; RADIATION; MASER AB Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the "mu-negative," "epsilon-negative," and "double negative" regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device. (C) 2013 AIP Publishing LLC. C1 [French, David M.; Shiffler, Don] Air Force Res Lab, Directed Energy Directorate, Albuquerque, NM 87117 USA. [Cartwright, Keith] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP French, DM (reprint author), Air Force Res Lab, Directed Energy Directorate, Albuquerque, NM 87117 USA. FU Air Force Office of Scientific Research FX The authors wish to thank the Air Force Office of Scientific Research for supporting this project and would also like to thank Dr. Wilkin Tang, Professor Y. Y. Lau, and Dr. John Luginsland for useful discussions as well as Dr. Andrew Greenwood for his computational support. NR 31 TC 11 Z9 11 U1 2 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 083116 DI 10.1063/1.4817021 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800092 ER PT J AU Gee, A Shin, YM AF Gee, Anthony Shin, Young-Min TI Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure (vol 20, 073106, 2013) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Gee, Anthony; Shin, Young-Min] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Shin, Young-Min] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. RP Gee, A (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. NR 1 TC 0 Z9 0 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 089901 DI 10.1063/1.4818504 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800129 ER PT J AU Heidbrink, WW Austin, ME Spong, DA Tobias, BJ Van Zeeland, MA AF Heidbrink, W. W. Austin, M. E. Spong, D. A. Tobias, B. J. Van Zeeland, M. A. TI Measurements of the eigenfunction of reversed shear Alfven eigenmodes that sweep downward in frequency SO PHYSICS OF PLASMAS LA English DT Article ID DIII-D; WAVE CASCADES; JET TOKAMAK; SPECTROSCOPY; DISCHARGES; JT-60U; PLASMAS; DRIVEN AB Reversed shear Alfven eigenmodes (RSAEs) usually sweep upward in frequency when the minimum value of the safety factor q(min) decreases in time. On rare occasions, RSAEs sweep downward prior to the upward sweep. Electron cyclotron emission measurements show that the radial eigenfunction during the downsweeping phase is similar to the eigenfunction of normal, upsweeping RSAEs. (C) 2013 AIP Publishing LLC. C1 [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA. [Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Tobias, B. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. RP Heidbrink, WW (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM heidbrink@fusion.gat.com FU U.S. Department of Energy [SC-G903402, DE-FG03-97ER54415, DE-AC05-0000R22725, DE-AC02-09CH11466, DE-FC02-04ER54698] FX This work was supported by the U.S. Department of Energy under SC-G903402, DE-FG03-97ER54415, DE-AC05-0000R22725, DE-AC02-09CH11466, and DE-FC02-04ER54698. We thank the DIII-D Team for their support and E. M. Bass, B. Breizman, W. Deng, and E. J. Strait for helpful discussions. NR 54 TC 5 Z9 5 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 082504 DI 10.1063/1.4817950 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800055 ER PT J AU Huang, YM Bhattacharjee, A Forbes, TG AF Huang, Yi-Min Bhattacharjee, A. Forbes, Terry G. TI Magnetic reconnection mediated by hyper-resistive plasmoid instability SO PHYSICS OF PLASMAS LA English DT Article ID EJECTION CURRENT SHEETS; NUMERICAL EXPERIMENTS; KINETIC SIMULATIONS; SOLAR CORONA; TEARING MODE; MECHANISM; TEMPERATURE; ISLANDS; THICKNESS AB Magnetic reconnection mediated by the hyper-resistive plasmoid instability is studied with both linear analysis and nonlinear simulations. The linear growth rate is found to scale as S-H(1/6) with respect to the hyper-resistive Lundquist number S-H equivalent to (LVA)-V-3/eta(H), where L is the system size, V-A is the Alfven velocity, and eta(H) is the hyper-resistivity. In the nonlinear regime, reconnection rate becomes nearly independent of S-H, the number of plasmoids scales as S-H(1/2), and the secondary current sheet length and width both scale as S-H(-1/2). These scalings are consistent with a heuristic argument assuming secondary current sheets are close to marginal stability. The distribution of plasmoids as a function of the enclosed flux psi is found to obey a psi (1) power law over an extended range, followed by a rapid fall off for large plasmoids. These results are compared with those from resistive magnetohydrodynamic studies. (C) 2013 AIP Publishing LLC. C1 [Huang, Yi-Min; Bhattacharjee, A.] Ctr Integrated Computat & Anal Reconnect & Turbul, Princeton, NJ 08543 USA. [Huang, Yi-Min; Bhattacharjee, A.] Ctr Magnet Self Org Lab & Astrophys Plasmas, Princeton, NJ 08543 USA. [Huang, Yi-Min; Bhattacharjee, A.] Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08543 USA. [Huang, Yi-Min; Bhattacharjee, A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Forbes, Terry G.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP Huang, YM (reprint author), Ctr Integrated Computat & Anal Reconnect & Turbul, Princeton, NJ 08543 USA. EM yiminh@princeton.edu RI Huang, Yi-Min/G-6926-2011 OI Huang, Yi-Min/0000-0002-4237-2211 FU Department of Energy under the Center for Integrated Computation and Analysis of Reconnection and Turbulence (CICART) [DE-FG02-07ER46372]; National Science Foundation [PHY-0215581]; NASA [NNX09AJ86G, NNX10AC04G, NNM07AA02C]; NSF [ATM-0802727, ATM-090315, AGS-0962698] FX This work was supported by the Department of Energy, Grant No. DE-FG02-07ER46372, under the auspice of the Center for Integrated Computation and Analysis of Reconnection and Turbulence (CICART), the National Science Foundation, Grant No. PHY-0215581 (PFC: Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas), NASA Grant Nos. NNX09AJ86G and NNX10AC04G, and NSF Grant Nos. ATM-0802727, ATM-090315 and AGS-0962698. Y.M.H. is partially supported by a NASA subcontract to the Smithsonian Astrophysical Observatory's Center of Astrophysics, Grant No. NNM07AA02C. Computations were performed on facilities at National Energy Research Scientific Computing Center. NR 60 TC 7 Z9 7 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 082131 DI 10.1063/1.4819715 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800034 ER PT J AU Jung, D Yin, L Gautier, DC Wu, HC Letzring, S Dromey, B Shah, R Palaniyappan, S Shimada, T Johnson, RP Schreiber, J Habs, D Fernandez, JC Hegelich, BM Albright, BJ AF Jung, D. Yin, L. Gautier, D. C. Wu, H. -C. Letzring, S. Dromey, B. Shah, R. Palaniyappan, S. Shimada, T. Johnson, R. P. Schreiber, J. Habs, D. Fernandez, J. C. Hegelich, B. M. Albright, B. J. TI Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime SO PHYSICS OF PLASMAS LA English DT Article ID ACCELERATION; BEAMS AB Experimental data are presented for laser-driven carbon C6+ ion-acceleration, verifying 2D-PIC studies for multi-species targets in the Break-Out Afterburner regime. With Trident's ultra-high contrast at relativistic intensities of 5 x 10(20) W/cm(2) and nm-scale diamond targets, acceleration of carbon ions has been optimized by using target laser-preheating for removal of surface proton contaminants. Using a high-resolution wide angle spectrometer, carbon C6+ ion energies exceeding 1 GeV or 83 MeV/amu have been measured, which is a 40% increase in maximum ion energy over uncleaned targets. These results are consistent with kinetic plasma modeling and analytic theory. (C) 2013 AIP Publishing LLC. C1 [Jung, D.; Yin, L.; Gautier, D. C.; Wu, H. -C.; Letzring, S.; Shah, R.; Palaniyappan, S.; Shimada, T.; Johnson, R. P.; Fernandez, J. C.; Hegelich, B. M.; Albright, B. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jung, D.; Schreiber, J.; Habs, D.] Univ Munich, Dept Phys, D-85748 Garching, Germany. [Jung, D.; Schreiber, J.; Habs, D.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Dromey, B.] Queens Univ Belfast, Belfast BT7 1NN, Antrim, North Ireland. RP Jung, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM daniel.jung@outlook.com RI Hegelich, Bjorn/J-2689-2013; Fernandez, Juan/H-3268-2011; palaniyappan, sasikumar/A-7791-2015; OI Fernandez, Juan/0000-0002-1438-1815; Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Palaniyappan, sasi/0000-0001-6377-1206 FU DOE OFES; Deutsche Forschungsgemeinschaft (DFG) [Transregio SFB TR18]; DFG Cluster of Excellence Munich-Center for Advanced Photonics (MAP); DFG LMU-Excellence; U.S. Department of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory FX We are grateful for the support of the Trident laser team in conducting the experiments. The simulations were run on the LANL ASC Roadrunner and Cielo supercomputers. Work was supported by DOE OFES, Deutsche Forschungsgemeinschaft (DFG) through Transregio SFB TR18, DFG Cluster of Excellence Munich-Center for Advanced Photonics (MAP), and DFG LMU-Excellence. Work performed under the auspices of the U.S. Department of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory. NR 41 TC 29 Z9 29 U1 2 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 083103 DI 10.1063/1.4817287 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800079 ER PT J AU Ni, PA Lund, SM McGuffey, C Alexander, N Aurand, B Barnard, JJ Beg, FN Bellei, C Bieniosek, FM Brabetz, C Cohen, RH Kim, J Neumayer, P Roth, M Logan, BG AF Ni, P. A. Lund, S. M. McGuffey, C. Alexander, N. Aurand, B. Barnard, J. J. Beg, F. N. Bellei, C. Bieniosek, F. M. Brabetz, C. Cohen, R. H. Kim, J. Neumayer, P. Roth, M. Logan, B. G. TI Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA; LENS AB Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure ("lens") consisting of a stack of 300 thin aluminum foils separated by 50 mu m vacuum gaps. The experiments were carried out in a "passive environment," i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt "PHELIX" laser user facility (E = 100 J, Delta t = 400 fs, lambda = 1062 nm) at the "Helmholtzzentrum fur Schwerionenforschung-GSI" in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc. (C) 2013 AIP Publishing LLC. C1 [Ni, P. A.; Bieniosek, F. M.; Logan, B. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lund, S. M.; Barnard, J. J.; Bellei, C.; Cohen, R. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [McGuffey, C.; Beg, F. N.; Kim, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Alexander, N.] Gen Atom Co, San Diego, CA 92121 USA. [Aurand, B.; Brabetz, C.; Neumayer, P.] GSI Darmstadt, D-64291 Darmstadt, Germany. [Roth, M.] Tech Univ Darmstadt, D-64289 Darmstadt, Germany. RP Ni, PA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. OI Brabetz, Christian/0000-0003-2009-0982 FU U.S. Department of Energy at the Lawrence Berkeley and Lawrence Livermore and National Laboratories [DE-AC02-05CH11231, DE-AC52-07NA27344]; US DOE, OFES, under HEDLP [DE-FOA-0000583] FX The authors would like to thank Joe Kwan (LBNL), Alex Friedman (LLNL), Harry McLean (LLNL), Prav Patel (LLNL), and Gabriel Schaumann (TU-Darmstadt) for fruitful technical discussions. We also want to thank the technical team of PHELIX for support of the experiments and General Atomics for providing the targets for the experiments. The authors sadly note the untimely passing of our friend, colleague, and co-author Frank Bieniosek. His clarity of scientific vision, his energy and enthusiasm, guidance, and companionship are missed. This research was performed under the auspices of the U.S. Department of Energy at the Lawrence Berkeley and Lawrence Livermore and National Laboratories under contract numbers DE-AC02-05CH11231 and DE-AC52-07NA27344 and was partially supported by the US DOE, OFES, under HEDLP proposal #DE-FOA-0000583. NR 31 TC 3 Z9 4 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 083111 DI 10.1063/1.4818147 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800087 ER PT J AU Podesta, M Gorelenkov, NN White, RB Fredrickson, ED Gerhardt, SP Kramer, GJ AF Podesta, M. Gorelenkov, N. N. White, R. B. Fredrickson, E. D. Gerhardt, S. P. Kramer, G. J. TI Properties of Alfven eigenmodes in the Toroidal Alfven Eigenmode range on the National Spherical Torus Experiment-Upgrade SO PHYSICS OF PLASMAS LA English DT Article ID PLASMAS; EXCITATION; STABILITY; PHYSICS AB A second Neutral Beam (NB) injection line is being installed on the NSTX Upgrade device, resulting in six NB sources with different tangency radii that will be available for heating and current drive. This work explores the properties of instabilities in the frequency range of the Toroidal Alfven Eigenmode (TAE) for NSTX-U scenarios with various NB injection geometries, from more perpendicular to more tangential, and with increased toroidal magnetic field with respect to previous NSTX scenarios. Predictions are based on analysis through the ideal MHD code NOVA-K. For the scenarios considered in this work, modifications of the Alfven continuum result in a frequency up-shift and a broadening of the radial mode structure. The latter effect may have consequences for fast ion transport and loss. Preliminary stability considerations indicate that TAEs are potentially unstable with ion Landau damping representing the dominant damping mechanism. (C) 2013 AIP Publishing LLC. C1 [Podesta, M.; Gorelenkov, N. N.; White, R. B.; Fredrickson, E. D.; Gerhardt, S. P.; Kramer, G. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Podesta, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI White, Roscoe/D-1773-2013 OI White, Roscoe/0000-0002-4239-2685 FU US-DoE [DE-AC02-09CH11466] FX Work supported by US-DoE Contract DE-AC02-09CH11466. NR 28 TC 3 Z9 3 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 082502 DI 10.1063/1.4817277 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800053 ER PT J AU Qin, H Zhang, SX Xiao, JY Liu, J Sun, YJ Tang, WM AF Qin, Hong Zhang, Shuangxi Xiao, Jianyuan Liu, Jian Sun, Yajuan Tang, William M. TI Why is Boris algorithm so good? SO PHYSICS OF PLASMAS LA English DT Article AB Due to its excellent long term accuracy, the Boris algorithm is the de facto standard for advancing a charged particle. Despite its popularity, up to now there has been no convincing explanation why the Boris algorithm has this advantageous feature. In this paper, we provide an answer to this question. We show that the Boris algorithm conserves phase space volume, even though it is not symplectic. The global bound on energy error typically associated with symplectic algorithms still holds for the Boris algorithm, making it an effective algorithm for the multi-scale dynamics of plasmas. (C) 2013 AIP Publishing LLC. C1 [Qin, Hong; Zhang, Shuangxi; Xiao, Jianyuan; Liu, Jian] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Qin, Hong; Zhang, Shuangxi; Xiao, Jianyuan; Liu, Jian] Univ Sci & Technol China, Collaborat Innovat Ctr Adv Fus Energy & Plasma Sc, Hefei 230026, Anhui, Peoples R China. [Qin, Hong; Tang, William M.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Sun, Yajuan] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China. RP Qin, H (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RI Liu, Jian/E-5857-2010 FU ITER-China Program [2010GB107001, 2011GB106000, 2011GB105003]; National Natural Science Foundation of China [NSFC-11075162]; U.S. Department of Energy [DE-AC02-09CH111466] FX This research was supported by the ITER-China Program (2010GB107001, 2011GB106000, and 2011GB105003), National Natural Science Foundation of China (NSFC-11075162), and U.S. Department of Energy (DE-AC02-09CH111466). We thank Professor Yifa Tang and Professor Zaijiu Shang for fruitful discussion on symplectic and volume-preserving algorithms. NR 12 TC 30 Z9 31 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 084503 DI 10.1063/1.4818428 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800128 ER PT J AU Restante, AL Markidis, S Lapenta, G Intrator, T AF Restante, A. L. Markidis, S. Lapenta, G. Intrator, T. TI Geometrical investigation of the kinetic evolution of the magnetic field in a periodic flux rope SO PHYSICS OF PLASMAS LA English DT Article ID QUASI-SEPARATRIX LAYERS; CORONAL MASS EJECTIONS; SOLAR CORONA; NONLINEAR EVOLUTION; KINK INSTABILITY; POINCARE MAPS; RECONNECTION; PLASMA; MODEL; TUBES AB Flux ropes are bundles of magnetic field wrapped around an axis. Many laboratory, space, and astrophysics processes can be represented using this idealized concept. Here, a massively parallel 3D kinetic simulation of a periodic flux rope undergoing the kink instability is studied. The focus is on the topology of the magnetic field and its geometric structures. The analysis considers various techniques such as Poincare maps and the quasi-separatrix layer (QSL). These are used to highlight regions with expansion or compression and changes in the connectivity of magnetic field lines and consequently to outline regions where heating and current may be generated due to magnetic reconnection. The present study is, to our knowledge, the first QSL analysis of a fully kinetic 3D particle in cell simulation and focuses the existing QSL method of analysis to periodic systems. (C) 2013 AIP Publishing LLC. C1 [Restante, A. L.; Lapenta, G.] Univ Louvain, KULeuven, Dept Wiskunde, Afdeling Plasma Astrofys, Louvain, Belgium. [Markidis, S.] KTH Royal Inst Technol, High Performance Comp & Visualizat HPCViz Dept, Stockholm, Sweden. [Intrator, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Restante, AL (reprint author), Univ Louvain, KULeuven, Dept Wiskunde, Afdeling Plasma Astrofys, Louvain, Belgium. FU European Commission [2633430] FX The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) inside the Grant agreement SWIFF (Project No. 2633430, www.swiff.eu). NR 64 TC 5 Z9 5 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 082501 DI 10.1063/1.4817167 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800052 ER PT J AU Schroeder, CB Esarey, E Benedetti, C Leemans, WP AF Schroeder, C. B. Esarey, E. Benedetti, C. Leemans, W. P. TI Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels SO PHYSICS OF PLASMAS LA English DT Article ID WAKEFIELD ACCELERATOR; BEAM; ELECTRONS AB A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high-energy physics applications. (C) 2013 AIP Publishing LLC. C1 [Schroeder, C. B.; Esarey, E.; Benedetti, C.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Schroeder, CB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 25 TC 17 Z9 17 U1 2 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 080701 DI 10.1063/1.4817799 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800001 ER PT J AU Stoltzfus-Dueck, T Scott, BD Krommes, JA AF Stoltzfus-Dueck, T. Scott, B. D. Krommes, J. A. TI Nonadiabatic electron response in the Hasegawa-Wakatani equations SO PHYSICS OF PLASMAS LA English DT Article ID DRIFT-WAVE TURBULENCE; TOKAMAK EDGE TURBULENCE; PLASMA TURBULENCE; SELF-ORGANIZATION; MODE TURBULENCE; ASDEX UPGRADE; ZONAL FLOWS; TRANSPORT; INSTABILITY; CONFINEMENT AB Tokamak edge turbulence is strongly influenced by parallel electron physics, which relaxes density and potential fluctuations towards electron adiabatic response. Beginning with the paradigmatic Hasegawa-Wakatani equations (HWEs) for resistive tokamak edge turbulence, a unique decomposition of the electric potential (phi) into adiabatic (a) and nonadiabatic (b) portions is derived, based on the requirement that a neither drive nor respond to the parallel current j(parallel to). The form of the decomposition clarifies that, at perpendicular scales large relative to the sound radius, the electron adiabatic response controls the nonzonal phi, not the fluctuating density n. Simple energy balance arguments allow one to rigorously bound the ratio of rms nonzonal nonadiabatic fluctuations ((b) over tilde) relative to adiabatic ones ((a) over tilde). The role of the vorticity nonlinearity in transferring energy between adiabatic and nonadiabatic fluctuations aids intuitive understanding of selfs-ustained turbulence in the HWEs. When the normalized parallel resistivity is weak, (b) over tilde becomes effectively slaved, allowing the reduction to an approximate one-field model that remains valid for strong turbulence. In addition to guiding physical intuition, the one-field reduction should greatly ease further analytical manipulations. Direct numerical simulation of the 2D HWEs confirms the convergence of the asymptotic formula for (b) over tilde. C1 [Stoltzfus-Dueck, T.] Teilinst Greifswald, EURATOM Assoc, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany. [Scott, B. D.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Krommes, J. A.] Princeton Univ, PPPL, Princeton, NJ 08543 USA. RP Stoltzfus-Dueck, T (reprint author), Teilinst Greifswald, EURATOM Assoc, Max Planck Inst Plasmaphys, Wendelsteinstr 1, D-17491 Greifswald, Germany. EM tstoltzf@ipp.mpg.de FU Department of Energy Fusion Energy Sciences Fellowship; National Science Foundation Graduate Research Fellowship; U.S. Department of Energy [DE-AC02-76-CHO-3073]; Humboldt Research Fellowship for Postdoctoral Researchers; European Atomic Energy Community; European Fusion Development Agreement FX Helpful discussions with Greg Hammett, Jim Myra, and Stewart Zweben are gratefully acknowledged. This work was performed in part at PPPL (supported by a Department of Energy Fusion Energy Sciences Fellowship, a National Science Foundation Graduate Research Fellowship, and the U.S. Department of Energy Contract No. DE-AC02-76-CHO-3073) and in part at the Max-Planck-Institut fur Plasmaphysik, both in Garching (supported by a Humboldt Research Fellowship for Postdoctoral Researchers) and in Greifswald (funded by the European Atomic Energy Community, with the work therefore subject to the provisions of the European Fusion Development Agreement). NR 56 TC 5 Z9 5 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 082314 DI 10.1063/1.4816807 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800050 ER PT J AU Thoma, C Welch, DR Hsu, SC AF Thoma, C. Welch, D. R. Hsu, S. C. TI Particle-in-cell simulations of collisionless shock formation via head-on merging of two laboratory supersonic plasma jets SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC FIELD; WAVES; BEAM AB We describe numerical simulations, using the particle-in-cell (PIC) and hybrid-PIC code LSP [T. P. Hughes et al., Phys. Rev. ST Accel. Beams 2, 110401 (1999)], of the head-on merging of two laboratory supersonic plasma jets. The goals of these experiments are to form and study astrophysically relevant collisionless shocks in the laboratory. Using the plasma jet initial conditions (density similar to 10(14)-10(16) cm(-3), temperature similar to few eV, and propagation speed similar to 20-150 km/s), large-scale simulations of jet propagation demonstrate that interactions between the two jets are essentially collisionless at the merge region. In highly resolved one-and two-dimensional simulations, we show that collisionless shocks are generated by the merging jets when immersed in applied magnetic fields (B similar to 0.1-1 T). At expected plasma jet speeds of up to 150 km/s, our simulations do not give rise to unmagnetized collisionless shocks, which require much higher velocities. The orientation of the magnetic field and the axial and transverse density gradients of the jets have a strong effect on the nature of the interaction. We compare some of our simulation results with those of previously published PIC simulation studies of collisionless shock formation. (C) 2013 AIP Publishing LLC. C1 [Thoma, C.; Welch, D. R.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Hsu, S. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Thoma, C (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. OI Hsu, Scott/0000-0002-6737-4934 FU Laboratory Directed Research and Development (LDRD) Program at LANL through U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Laboratory Directed Research and Development (LDRD) Program at LANL through U.S. Department of Energy Contract No. DE-AC52-06NA25396. The authors also acknowledge useful discussions with Dr. D. V. Rose and Dr. N. L. Bennett of Voss Scientific and Dr. A. L. Moser of LANL. NR 42 TC 6 Z9 6 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 082128 DI 10.1063/1.4819063 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800031 ER PT J AU Welch, DR Rose, DV Thoma, C Clark, RE Miller, C Madrid, EA Zimmerman, WR Rambo, PK Schwarz, J Savage, M Atherton, BW AF Welch, D. R. Rose, D. V. Thoma, C. Clark, R. E. Miller, C. Madrid, E. A. Zimmerman, W. R. Rambo, P. K. Schwarz, J. Savage, M. Atherton, B. W. TI Kinetic simulation studies of laser-triggering in the Z gas switch SO PHYSICS OF PLASMAS LA English DT Article ID MONTE-CARLO; PIC-MCC AB Advanced z-pinch accelerators require precise timing of multiple mega-ampere drivers to deliver terawatt power. The triggering of these drivers is now largely initiated by laser ionization of gas switches. In this paper, we discuss detailed fully kinetic simulation of the Z laser-triggered gas switch involving detailed finite-difference time-domain particle-in-cell Monte Carlo modeling of the trigger section of the switch. Other components of the accelerator from the Marx bank through the pulse-forming line are described as circuit elements. The simulations presented here build on a recently developed model of electro-negative gas breakdown and streamer propagation that included photons produced from de-excited neutrals. New effects include multi-photon ionization of the gas in a prescribed laser field. The simulations show the sensitivity of triggering to laser parameters including focal plane within the anode-cathode gap of the trigger section of the switch, intensity at focus, and laser pulse length. Detailed electromagnetic simulations of the trigger section with circuit modeling of the upstream and downstream components are largely in agreement with Z data and demonstrate a new capability. (C) 2013 AIP Publishing LLC. C1 [Welch, D. R.; Rose, D. V.; Thoma, C.; Clark, R. E.; Miller, C.; Madrid, E. A.; Zimmerman, W. R.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Rambo, P. K.; Schwarz, J.; Savage, M.; Atherton, B. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Welch, DR (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 19 TC 2 Z9 3 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2013 VL 20 IS 8 AR 083108 DI 10.1063/1.4818146 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 211XY UT WOS:000323946800084 ER PT J AU Shankaran, H Zhang, Y Tan, YB Resat, H AF Shankaran, Harish Zhang, Yi Tan, Yunbing Resat, Haluk TI Model-Based Analysis of HER Activation in Cells Co-Expressing EGFR, HER2 and HER3 SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID GROWTH-FACTOR RECEPTOR; HUMAN-BREAST-CANCER; MAMMARY EPITHELIAL-CELLS; ERBB SIGNALING NETWORK; EXTRACELLULAR REGION; QUANTITATIVE-ANALYSIS; TYROSINE KINASES; SYSTEMS BIOLOGY; LUNG-CANCER; LIGAND AB The HER/ErbB family of receptor tyrosine kinases drives critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation, and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR/HER1, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of human mammary epithelial cells lines with known HER expression levels in response to stimulations with ligands EGF and HRG. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1-HER1 and HER1-HER2 dimers, and not HER1-HER3 dimers, ii) HER1-HER2 and HER2-HER3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2-HER3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches. C1 [Shankaran, Harish; Zhang, Yi; Resat, Haluk] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. [Tan, Yunbing] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA. RP Shankaran, H (reprint author), Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. EM haluk.resat@wsu.edu FU National Institutes of Health [5R01GM072821-07]; U.S. Department of Energy [DE-AC06-76RL01830] FX The research described in this paper was funded by the National Institutes of Health Grant 5R01GM072821-07 to H. R. Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RL01830. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 73 TC 6 Z9 6 U1 1 U2 12 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD AUG PY 2013 VL 9 IS 8 AR e1003201 DI 10.1371/journal.pcbi.1003201 PG 15 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 211DQ UT WOS:000323885400034 PM 23990774 ER PT J AU Cheng, Q Kazemian, M Pham, H Blatti, C Celniker, SE Wolfe, SA Brodsky, MH Sinha, S AF Cheng, Qiong Kazemian, Majid Hannah Pham Blatti, Charles Celniker, Susan E. Wolfe, Scot A. Brodsky, Michael H. Sinha, Saurabh TI Computational Identification of Diverse Mechanisms Underlying Transcription Factor-DNA Occupancy SO PLOS GENETICS LA English DT Article ID GENOME-WIDE BINDING; GAGA FACTOR; IN-VITRO; DROSOPHILA-MELANOGASTER; CHROMATIN-STRUCTURE; BIOPHYSICAL MODEL; RINGER GENE; PROTEIN; NUCLEOSOME; COMPLEX AB ChIP-based genome-wide assays of transcription factor (TF) occupancy have emerged as a powerful, high-throughput method to understand transcriptional regulation, especially on a global scale. This has led to great interest in the underlying biochemical mechanisms that direct TF-DNA binding, with the ultimate goal of computationally predicting a TF's occupancy profile in any cellular condition. In this study, we examined the influence of various potential determinants of TF-DNA binding on a much larger scale than previously undertaken. We used a thermodynamics-based model of TF-DNA binding, called "STAP," to analyze 45 TF-ChIP data sets from Drosophila embryonic development. We built a cross-validation framework that compares a baseline model, based on the ChIP'ed ("primary") TF's motif, to more complex models where binding by secondary TFs is hypothesized to influence the primary TF's occupancy. Candidates interacting TFs were chosen based on RNA-SEQ expression data from the time point of the ChIP experiment. We found widespread evidence of both cooperative and antagonistic effects by secondary TFs, and explicitly quantified these effects. We were able to identify multiple classes of interactions, including (1) long-range interactions between primary and secondary motifs (separated by <= 150 bp), suggestive of indirect effects such as chromatin remodeling, (2) short-range interactions with specific inter-site spacing biases, suggestive of direct physical interactions, and (3) overlapping binding sites suggesting competitive binding. Furthermore, by factoring out the previously reported strong correlation between TF occupancy and DNA accessibility, we were able to categorize the effects into those that are likely to be mediated by the secondary TF's effect on local accessibility and those that utilize accessibility-independent mechanisms. Finally, we conducted in vitro pull-down assays to test model-based predictions of short-range cooperative interactions, and found that seven of the eight TF pairs tested physically interact and that some of these interactions mediate cooperative binding to DNA. C1 [Cheng, Qiong; Kazemian, Majid; Blatti, Charles; Sinha, Saurabh] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. [Hannah Pham; Wolfe, Scot A.; Brodsky, Michael H.] Univ Massachusetts, Sch Med, Program Gene Funct & Express, Worcester, MA USA. [Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Drosophila Genome Project, Dept Genome Dynam, Berkeley, CA 94720 USA. [Wolfe, Scot A.] Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA USA. [Brodsky, Michael H.] Univ Massachusetts, Sch Med, Dept Mol Med, Worcester, MA USA. [Sinha, Saurabh] Univ Illinois, Inst Genom Biol, Urbana, IL USA. RP Cheng, Q (reprint author), Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. EM Michael.brodsky@umassmed.edu; sinhas@illinois.edu OI Kazemian, Majid/0000-0001-7080-8820 FU NIH [GM085233]; NSF [DBI-0746303, EFRI-1136913]; National Human Genome Research Institute of the National Institutes of Health [R01 HG004744-01]; NHGRI [P41HG3487]; Department of Energy [DE-AC02-05CH11231] FX This work was performed with support from the NIH (GM085233) and the NSF (DBI-0746303, EFRI-1136913) to SS, from the National Human Genome Research Institute of the National Institutes of Health (R01 HG004744-01 to MHB and SAW), and by NHGRI grant P41HG3487 (SEC) through the Department of Energy under contract no DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 68 TC 21 Z9 21 U1 0 U2 13 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD AUG PY 2013 VL 9 IS 8 AR e1003571 DI 10.1371/journal.pgen.1003571 PG 23 WC Genetics & Heredity SC Genetics & Heredity GA 210KB UT WOS:000323830300002 PM 23935523 ER PT J AU Rosu, S Zawadzki, KA Stamper, EL Libuda, DE Reese, AL Dernburg, AF Villeneuve, AM AF Rosu, Simona Zawadzki, Karl A. Stamper, Ericca L. Libuda, Diana E. Reese, Angela L. Dernburg, Abby F. Villeneuve, Anne M. TI The C-elegans DSB-2 Protein Reveals a Regulatory Network that Controls Competence for Meiotic DSB Formation and Promotes Crossover Assurance SO PLOS GENETICS LA English DT Article ID DOUBLE-STRAND BREAKS; CAENORHABDITIS-ELEGANS; CROSSING-OVER; DNA-DAMAGE; CHROMOSOME SEGREGATION; CHIASMA FORMATION; MEIOSIS; RECOMBINATION; SYNAPSIS; HOMOLOG AB For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious effects. C1 [Rosu, Simona; Zawadzki, Karl A.; Libuda, Diana E.; Reese, Angela L.; Villeneuve, Anne M.] Stanford Univ, Dept Dev Biol, Sch Med, Stanford, CA 94305 USA. [Rosu, Simona; Zawadzki, Karl A.; Libuda, Diana E.; Reese, Angela L.; Villeneuve, Anne M.] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA. [Stamper, Ericca L.; Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Stamper, Ericca L.; Dernburg, Abby F.] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA. [Dernburg, Abby F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Dernburg, Abby F.] Howard Hughes Med Inst, Chevy Chase, MD USA. RP Rosu, S (reprint author), Stanford Univ, Dept Dev Biol, Sch Med, Stanford, CA 94305 USA. EM annev@stanford.edu OI Dernburg, Abby/0000-0001-8037-1079 FU NIH [T32 GM07790, R01 GM067268, P40 OD010440]; Leukemia and Lymphoma Society Fellowship; Helen Hay Whitney Foundation Postdoctoral Fellowship; HHMI FX This work was supported by NIH Training Grant T32 GM07790 to SR and ALR, by a Leukemia and Lymphoma Society Fellowship to KAZ, by a Helen Hay Whitney Foundation Postdoctoral Fellowship to DEL, by the HHMI to AFD and by NIH R01 GM067268 to AMV. Some strains were provided by the Caenorhabditis Genetics Center (funded by NIH P40 OD010440). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 58 TC 28 Z9 33 U1 0 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD AUG PY 2013 VL 9 IS 8 AR e1003674 DI 10.1371/journal.pgen.1003674 PG 23 WC Genetics & Heredity SC Genetics & Heredity GA 210KB UT WOS:000323830300025 PM 23950729 ER PT J AU Stamper, EL Rodenbusch, SE Rosu, S Ahringer, J Villeneuve, AM Dernburg, AF AF Stamper, Ericca L. Rodenbusch, Stacia E. Rosu, Simona Ahringer, Julie Villeneuve, Anne M. Dernburg, Abby F. TI Identification of DSB-1, a Protein Required for Initiation of Meiotic Recombination in Caenorhabditis elegans, Illuminates a Crossover Assurance Checkpoint SO PLOS GENETICS LA English DT Article ID DOUBLE-STRAND BREAKS; C-ELEGANS; SACCHAROMYCES-CEREVISIAE; CHROMOSOME SYNAPSIS; HOMOLOG ALIGNMENT; DNA-REPLICATION; CROSSING-OVER; NONDISJUNCTION MUTANTS; NUCLEAR REORGANIZATION; CHIASMA FORMATION AB Meiotic recombination, an essential aspect of sexual reproduction, is initiated by programmed DNA double-strand breaks (DSBs). DSBs are catalyzed by the widely-conserved Spo11 enzyme; however, the activity of Spo11 is regulated by additional factors that are poorly conserved through evolution. To expand our understanding of meiotic regulation, we have characterized a novel gene, dsb-1, that is specifically required for meiotic DSB formation in the nematode Caenorhabditis elegans. DSB-1 localizes to chromosomes during early meiotic prophase, coincident with the timing of DSB formation. DSB-1 also promotes normal protein levels and chromosome localization of DSB-2, a paralogous protein that plays a related role in initiating recombination. Mutations that disrupt crossover formation result in prolonged DSB-1 association with chromosomes, suggesting that nuclei may remain in a DSB-permissive state. Extended DSB-1 localization is seen even in mutants with defects in early recombination steps, including spo-11, suggesting that the absence of crossover precursors triggers the extension. Strikingly, failure to form a crossover precursor on a single chromosome pair is sufficient to extend the localization of DSB-1 on all chromosomes in the same nucleus. Based on these observations we propose a model for crossover assurance that acts through DSB-1 to maintain a DSB-permissive state until all chromosome pairs acquire crossover precursors. This work identifies a novel component of the DSB machinery in C. elegans, and sheds light on an important pathway that regulates DSB formation for crossover assurance. C1 [Stamper, Ericca L.; Rodenbusch, Stacia E.; Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Stamper, Ericca L.; Rodenbusch, Stacia E.; Dernburg, Abby F.] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA. [Rosu, Simona; Villeneuve, Anne M.] Stanford Univ, Dept Dev Biol & Genet, Sch Med, Stanford, CA 94305 USA. [Ahringer, Julie] Univ Cambridge, Gurdon Inst, Cambridge, England. [Ahringer, Julie] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. [Dernburg, Abby F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Genome Dynam, Div Life Sci, Berkeley, CA 94720 USA. [Dernburg, Abby F.] Howard Hughes Med Inst, Chevy Chase, MD USA. RP Stamper, EL (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM AFDernburg@lbl.gov OI Dernburg, Abby/0000-0001-8037-1079 FU Department of Energy Office of Science Graduate Fellowship (DOE SCGF); National Science Foundation Graduate Research Fellowship (GRFP); NIH [R01 GM067268, R01 GM065591]; Howard Hughes Medical Institute; NIH Office of Research Infrastructure Programs [P40 OD010440] FX This study was supported by a Department of Energy Office of Science Graduate Fellowship (DOE SCGF, http://scgf.orau.gov/) to ELS, a National Science Foundation Graduate Research Fellowship (GRFP, http://www.nsfgrfp.org/) to SER, and by research funds from the NIH (http://grants.nih.gov/grants/oer.htm) (R01 GM067268 to AMV and R01 GM065591 to AFD) and the Howard Hughes Medical Institute (http://www.hhmi.org/). Some strains were provided by the CGC (http://www.cbs.umn.edu/cgc), which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 94 TC 22 Z9 25 U1 0 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD AUG PY 2013 VL 9 IS 8 AR e1003679 DI 10.1371/journal.pgen.1003679 PG 18 WC Genetics & Heredity SC Genetics & Heredity GA 210KB UT WOS:000323830300030 PM 23990794 ER PT J AU Xu, PG Tomota, Y Vogel, SC Suzuki, T Yonemura, M Kamiyama, T AF Xu, P. G. Tomota, Y. Vogel, S. C. Suzuki, T. Yonemura, M. Kamiyama, T. TI TRANSFORMATION STRAIN AND TEXTURE EVOLUTION DURING DIFFUSIONAL PHASE TRANSFORMATION OF LOW ALLOY STEELS STUDIED BY NEUTRON DIFFRACTION SO REVIEWS ON ADVANCED MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 6th International Conference on Physical and Numerical Simulation of Materials Processing (ICPNS) CY NOV 16-19, 2010 CL Guilin Univ Elect Technol, Guilin, PEOPLES R CHINA SP Wollongong Univ, Chinese Mech Engn Soc, Minerals, Met & Mat Soc, Dynam Syst Inc, Harbin Inst Technol, Huaqiao Univ, Henan Polytechn Univ, Graz Univ Technol, Univ Sao Paulo, McGill Univ, Beijing Aviat Mfg Engn Inst, Univ Rijeka, Univ W Bohemia, Univ Oulu, GKSS Res Ctr, Hong Kong Polytechn Univ, Univ Delhi, Univ Osaka, JWRI, Univ Electro Commun, Chungnam Natl Univ, Korea Inst Machinery & Mat, Pusan Natl Univ, Riga Tech Univ, Delft Univ Technol, Moscow State Univ, RAS, Inst Phys & Mat Sci, Moscow State Inst Elect & Math, Moscow State Inst Steel & Alloys, Nanyang Technol Univ, Natl Taiwan Univ, Ege Univ, Univ Cambridge, Dept Mat & Matallurgy, EO Paton Elect Weld Inst, BATTELLE HO Guilin Univ Elect Technol ID LATTICE-PARAMETERS; RIETVELD-ANALYSIS; AUSTENITE; SELECTION; FERRITE; DIFFRACTOMETER; TEMPERATURE; PREDICTION AB The ferrite-to-austenite transformation during heating and the austenite-to-ferrite transformation during cooling were in situ investigated by KEK/SIRIUS and LANSCE/HIPPO neutron diffractometers under the stress-free condition. The deviation of ferrite lattice parameter from the linear thermal expansion and contraction during heating and cooling suggested the compressive strain occurred in ferrite phase. The texture memory effect between the cold compression texture of initial martensite and the final texture of ferrite after alpha -> gamma -> alpha phase transformation was interrupted by the static recrystallization of martensite during step-by-step heating, revealing that the occurrence of texture memory effect was not directly related to the deformation stored energy but related to the transformation strain and the strong variant selection for nucleation. C1 [Xu, P. G.] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Ibaraki 3191195, Japan. [Xu, P. G.; Tomota, Y.; Suzuki, T.; Yonemura, M.] Ibaraki Univ, Grad Sch Sci & Engn, Ibaraki 3168511, Japan. [Vogel, S. C.] Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Xu, PG (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Ibaraki 3191195, Japan. EM xu.pingguang@jaea.go.jp RI Xu, Pingguang/F-6347-2011; OI Xu, Pingguang/0000-0001-6547-0167; Vogel, Sven C./0000-0003-2049-0361 FU Japan Society for the Promotion of Science (JSPS: KAKENHI) [21860090] FX The bulk texture evaluation research was financially supported by the Grant-in-Aid for Young Scientists (No.21860090) of Japan Society for the Promotion of Science (JSPS: KAKENHI). The authors thank to Dr. Y. Adachi at National Institute for Materials Science, Japan for providing the investigated steel. NR 18 TC 2 Z9 2 U1 0 U2 12 PU INST PROBLEMS MECHANICAL ENGINEERING-RUSSIAN ACAD SCIENCES PI ST PTERSBURG PA BOLSHOJ 61, VAS OSTROV, ST PTERSBURG, 199178, RUSSIA SN 1606-5131 J9 REV ADV MATER SCI JI Rev. Adv. Mater. Sci. PD AUG PY 2013 VL 33 IS 5 BP 389 EP 395 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 210WL UT WOS:000323865400003 ER PT J AU Bernert, T Winkler, B Haussuhl, E Trouw, F Vogel, SC Hurd, AJ Smilowitz, L Henson, BF Merrill, FE Morris, CL Mariam, FG Saunders, A Juarez-Arellano, EA AF Bernert, T. Winkler, B. Haussuehl, E. Trouw, F. Vogel, S. C. Hurd, A. J. Smilowitz, L. Henson, B. F. Merrill, F. E. Morris, C. L. Mariam, F. G. Saunders, A. Juarez-Arellano, E. A. TI In situ observation of self-propagating high temperature syntheses of Ta5Si3, Ti5Si3 and TiB2 by proton and X-ray radiography SO SOLID STATE SCIENCES LA English DT Article DE Proton radiography; X-ray radiography; Self-propagating high-temperature synthesis; Solid state kinetics ID ANGLE NEUTRON-SCATTERING; COMBUSTION SYNTHESIS; TEXTURE ANALYSIS; DIFFRACTION DATA; SHS; TRANSITION; ALLOYS; GROWTH; ENERGY; ROCKS AB Self-propagating high temperature reactions of tantalum and titanium with silicon and titanium with boron were studied using proton and X-ray radiography, small-angle neutron scattering, neutron time-of-flight, X-ray and neutron diffraction, dilatometry and video recording. We show that radiography allows the observation of the propagation of the flame front in all investigated systems and the determination of the widths of the burning zones. X-ray and neutron diffraction showed that the reaction products consisted of approximate to 90 wt% of the main phase and one or two secondary phases. For the reaction 5Ti + 3Si -> Ti5Si3 flame front velocities of 7.1(3)-34.2(4) mm/s were determined depending on the concentration of a retardant added to the starting material, the geometry and the green density of the samples. The flame front width was determined to be 117(4)-1.82(8) mm and depends exponentially on the flame front velocity. Similarly, for the reaction Ti + 2B -> TiB2 flame front velocities of 15(2)-26.6(4) mm/s were determined, while for a 5Ta + 3Si -> Ta5Si3 reaction the flame front velocity was 7.05(4) mm/s. The micro structure of the product phase Ta5Si3 shows no texture. From SANS measurements the dependence of the specific surface of the product phase on the particle sizes of the starting materials was studied. (C) 2013 Elsevier Masson SAS. All rights reserved. C1 [Bernert, T.; Winkler, B.; Haussuehl, E.] Goethe Univ Frankfurt, Inst Geowissensch, Abt Kristallog, D-60438 Frankfurt, Germany. [Trouw, F.; Vogel, S. C.; Hurd, A. J.; Smilowitz, L.; Henson, B. F.; Merrill, F. E.; Morris, C. L.; Mariam, F. G.; Saunders, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Juarez-Arellano, E. A.] Univ Papaloapan, Mexico City 68301, DF, Mexico. RP Bernert, T (reprint author), Goethe Univ Frankfurt, Inst Geowissensch, Abt Kristallog, Altenhoferallee 1, D-60438 Frankfurt, Germany. EM b.winkler@kristall.uni-frankfurt.de OI Juarez-Arellano, Erick/0000-0003-4844-8317 FU German Science Foundation [Wi 1232-35] FX We are grateful to the German Science Foundation for support within project Wi 1232-35. NR 38 TC 2 Z9 2 U1 0 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 EI 1873-3085 J9 SOLID STATE SCI JI Solid State Sci. PD AUG PY 2013 VL 22 BP 33 EP 42 DI 10.1016/j.solidstatesciences.2013.05.007 PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 204HP UT WOS:000323356500006 ER PT J AU Gilbert, B Erbs, JJ Penn, RL Petkov, V Spagnoli, D Waychunas, GA AF Gilbert, Benjamin Erbs, Jasmine J. Penn, R. Lee Petkov, Valeri Spagnoli, Dino Waychunas, Glenn A. TI A disordered nanoparticle model for 6-line ferrihydrite SO AMERICAN MINERALOGIST LA English DT Article DE Nanoparticle structure; reverse Monte Carlo; total X-ray scattering; pair distribution function ID PAIR DISTRIBUTION FUNCTION; X-RAY-DIFFRACTION; BOND-VALENCE PARAMETERS; 2-LINE FERRIHYDRITE; STRUCTURAL MODEL; ELECTRON NANODIFFRACTION; NANOCRYSTALLINE MATERIAL; ORIENTED AGGREGATION; IRON OXYHYDROXIDES; LOCAL-STRUCTURE AB Much of the bioavailable and geochemically reactive iron in aerobic, circumneutral settings is frequently found in the form of nanoscale particles of a hydrated iron(III) oxyhydroxide phase known as ferrihydrite. Developing useful structural descriptions of defective nanophases such as ferrihydrite has long posed significant challenges. Recently, Michel et al. (2007, 2010) proposed a structural model for ferrihydrite in place of the long-accepted model of Drits et al. (1993). Both models reproduce to high accuracy certain forms of X-ray scattering data from powdered ferrihydrite. However, discrepancies remain that we hypothesized are due to forms of structural disorder not easily represented by existing models. To test this hypothesis, we performed a novel structural analysis of total X-ray scattering data acquired from 6-line ferrihydrite. We generated three candidate whole-nanoparticle models of ferrihydrite composed of a two-phase Drits model, the Michel model, and a hybrid phase based on a single-phase Drits model that incorporated tetrahedral Fe sites, creating a lattice in which the Michel model was one of many possible topologies. We implemented a reverse Monte Carlo (RMC) approach to explore alternative configurations of iron occupancies plus structural disorder, and to refine the nanoparticle structure using both the reciprocal and real-space forms of the X-ray scattering data. We additionally used oxygen K-edge X-ray absorption spectroscopy to semi-quantitatively assess the ratio of protonated:non-protonated oxygen sites in an iron(III) oxides. This analysis provides independent evidence for a significantly lower OH:O stoichiometric ratio for ferrihydrite than for goethite, further constraining the RMC models. The hybrid structure model gave better agreement to the experimental total scattering data than nanoparticles based upon either the Michel or Drits models. Models that incorporated tetrahedrally coordinated iron sites consistently achieved better matches to the data than models containing face-sharing octahedra. Long-range vacancy disorder was essential for optimum fits to the scattering data, highlighting the utility of whole-nanoparticle models in place of unit-cell models with random distributions of iron vacancies. The RMC-derived structures do not satisfy all experimental constraints on composition and structure. Nevertheless this work illustrates that a suitably constrained RMC method applied to whole-nanoparticle models can be an effective approach for exploring disorder in nanocrystalline materials. C1 [Gilbert, Benjamin; Waychunas, Glenn A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Erbs, Jasmine J.; Penn, R. Lee] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Petkov, Valeri] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48848 USA. [Spagnoli, Dino] Univ Western Australia, Sch Chem & Biochem, Crawley, WA 6009, Australia. RP Gilbert, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, MS 74R316C,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM bgilbert@lbl.gov RI Spagnoli, Dino/F-8641-2011; Gilbert, Benjamin/E-3182-2010 OI Spagnoli, Dino/0000-0001-6367-4748; FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; IGERT Program of the National Science Foundation [DGE-0114372]; National Science Foundation [0346385]; NSF through the National Nanotechnology Infrastructure Network; DOE-BES [DE-AC02-05CH11231, W-31-109-ENG-38] FX Thanks to Pupa Gilbert for numerous valuable discussions, Sirine Fakra for acquiring preliminary X-ray absorption spectroscopy data, and four anonymous referees for their constructive comments. High-energy X-ray-scattering data were acquired at beamline 11-ID-C at the Advanced Photon Source (APS). Oxygen K-edge soft-X-ray absorption spectroscopy was performed at ALS beamline 7.0.1 and we thank Per-Anders Glans and Jinghua Guo. High-resolution synchrotron powder diffraction data were acquired at ALS beamline 11.3.1 and we thank Simon Teat. B.G. and G.A.W. were supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, hereby abbreviated to DOE-BES, under Contract No. DE-AC02-05CH11231. J.J.E. and R.L.P. were supported by the IGERT Program of the National Science Foundation under award no. DGE-0114372 (fellowship to J.J.E.) and the National Science Foundation Career Grant 0346385. TEM characterization was carried out at the Characterization Facility, University of Minnesota, which receives support from NSF through the National Nanotechnology Infrastructure Network. Use of the ALS and the APS is supported by DOE-BES under Contract Numbers DE-AC02-05CH11231 and W-31-109-ENG-38, respectively. NR 84 TC 11 Z9 11 U1 6 U2 65 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD AUG-SEP PY 2013 VL 98 IS 8-9 BP 1465 EP 1476 DI 10.2138/am.2013.4421 PG 12 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 207FJ UT WOS:000323584000011 ER PT J AU Volkow, ND Wang, GJ Tomasi, D Baler, RD AF Volkow, Nora D. Wang, Gen-Jack Tomasi, Dardo Baler, Ruben D. TI Unbalanced neuronal circuits in addiction SO CURRENT OPINION IN NEUROBIOLOGY LA English DT Article ID NORMALIZES CINGULATE ACTIVITY; DEEP BRAIN-STIMULATION; SALIENT COGNITIVE TASK; VENTRAL TEGMENTAL AREA; MEDIUM SPINY NEURONS; DRUG-ADDICTION; SUBTHALAMIC NUCLEUS; COCAINE ADDICTION; LATERAL HABENULA; DOPAMINE NEURONS AB Through sequential waves of drug-induced neurochemical stimulation, addiction co-opts the brain's neuronal circuits that mediate reward, motivation to behavioral inflexibility and a severe disruption of self-control and compulsive drug intake. Brain imaging technologies have allowed neuroscientists to map out the neural landscape of addiction in the human brain and to understand how drugs modify it. C1 [Volkow, Nora D.; Baler, Ruben D.] NIDA, NIH, Bethesda, MD 20892 USA. [Wang, Gen-Jack; Tomasi, Dardo] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. RP Volkow, ND (reprint author), NIDA, NIH, Bethesda, MD 20892 USA. EM nvokowl@nida.nih.gov RI Tomasi, Dardo/J-2127-2015 FU Intramural NIH HHS [Z99 DA999999] NR 100 TC 34 Z9 36 U1 4 U2 34 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-4388 J9 CURR OPIN NEUROBIOL JI Curr. Opin. Neurobiol. PD AUG PY 2013 VL 23 IS 4 BP 639 EP 648 DI 10.1016/j.conb.2013.01.002 PG 10 WC Neurosciences SC Neurosciences & Neurology GA 204XJ UT WOS:000323404300026 PM 23434063 ER PT J AU Zhang, P Qiu, JX Zheng, ZF Liu, G Ling, M Martens, W Wang, HH Zhao, HJ Zhang, SQ AF Zhang, Peng Qiu, Jingxia Zheng, Zhanfeng Liu, Gao Ling, Min Martens, Wayde Wang, Haihui Zhao, Huijun Zhang, Shanqing TI Free-standing and bendable carbon nanotubes/TiO2 nanofibres composite electrodes for flexible lithium ion batteries SO ELECTROCHIMICA ACTA LA English DT Article DE Flexible electrode; Carbon nanotubes; TiO2; Lithium ion batteries ID ELECTROCHEMICAL ENERGY-STORAGE; PAPER; PERFORMANCE; ANODES AB Carbon nanotube (CNT) and TiO2 nanofibre composite films are prepared and used as anode materials for lithium ion batteries (LIBs) without the use of binders and conventional copper current collector. The preliminary experimental results from X-ray diffraction, scanning electron microscopy and transmission electron microscopy suggest that the TiO2 nanofibres were well-dispersed and interwoven by the CNTs, forming freestanding, bendable and light weighted composite. In comparison with TiO2 nanofibre based LIBs, the CNTs could significantly improve the battery performance due to their high conductivity property and 3D network morphology. In both 1-3 V and 0.01-3 V testing voltage ranges, the as-prepared composites show excellent reversible capacity and capacity retention. The superior lithium storage capacity of the CNT/TiO2 composite was mainly attributed to dual functions of the CNTs the CNTs not only provide conductive networks to assist the electron transfer but also facilitate lithium ion diffusion between the electrolyte and the TiO2 active materials by preventing agglomeration of TiO2 nanofibres. This work demonstrates that the CNT TiO2 composite film could be one type of potential electrode material for large-scale LIB applications. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved. C1 [Zhang, Peng; Qiu, Jingxia; Ling, Min; Zhao, Huijun; Zhang, Shanqing] Griffith Univ, Griffith Sch Environm, Ctr Clean Environm & Energy, Environm Futures Ctr, Gold Coast, Qld 4222, Australia. [Zheng, Zhanfeng; Martens, Wayde] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia. [Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wang, Haihui] S China Univ Technol, Sch Chem & Chem Engn, Guangzhou, Guangdong, Peoples R China. RP Zhang, SQ (reprint author), Griffith Univ, Griffith Sch Environm, Ctr Clean Environm & Energy, Environm Futures Ctr, Gold Coast Campus, Gold Coast, Qld 4222, Australia. EM s.zhang@griffith.edu.au RI Martens, Wayde/I-9848-2012; Zheng, Zhanfeng/A-6247-2010; Zhao, Huijun/H-5882-2015; Zhang, Shanqing/C-2590-2008 OI Martens, Wayde/0000-0002-0959-6838; Zheng, Zhanfeng/0000-0001-9167-936X; Zhao, Huijun/0000-0002-3028-0459; FU Australia Research Council; Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the U.S. DOE under the Batteries for Advanced Transportation Technologies (BATT) Program [DE-AC02-05CH11231]; University of California, Office of the President through the University of California FX S. Zhang thanks to financial support from Australia Research Council Future Fellowship Grant. G. Liu was funded by the Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the U.S. DOE under contract number DE-AC02-05CH11231 under the Batteries for Advanced Transportation Technologies (BATT) Program, and by the University of California, Office of the President through the University of California Discovery Grant. The authors also acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis at the University of Queensland. NR 30 TC 34 Z9 34 U1 14 U2 164 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD AUG 1 PY 2013 VL 104 BP 41 EP 47 PG 7 WC Electrochemistry SC Electrochemistry GA 180NF UT WOS:000321601200006 ER PT J AU Li, M Zhou, WP Marinkovic, NS Sasaki, K Adzic, RR AF Li, M. Zhou, W. -P. Marinkovic, N. S. Sasaki, K. Adzic, R. R. TI The role of rhodium and tin oxide in the platinum-based electrocatalysts for ethanol oxidation to CO2 SO ELECTROCHIMICA ACTA LA English DT Article; Proceedings Paper CT 3rd International Symposium on Surface Imaging/Spectroscopy at the Solid/Liquid Interface (ISSIS) CY MAY 27-JUN 01, 2012 CL Polish Acad Sci, J Haber Inst Catalysis & Surface Chem, Krakow, POLAND SP Univ Warsaw, Fac Chem, Electrochem Soc, Shim Pol, KGHM, ECOREN, Azoty Tarnow, nLab HO Polish Acad Sci, J Haber Inst Catalysis & Surface Chem DE Rh(111); Pt-Rh-SnO2; Ethanol electrooxidation; EOR; In situ IRRAS ID IN-SITU FTIR; PT-RH; ELECTROOXIDATION; ELECTRODES; CATALYSTS; DEMS; SPECTROSCOPY; ADSORPTION AB Our recent efforts in developing electrocatalysts for ethanol oxidation reaction are focused on the ternary Pt-Rh-SnO2 catalysts due to their superior performance in splitting C-C bond and the ability to fully oxidize ethanol to CO2. This work reports on the role of Rh from studies of the well-defined Rh(1 1 1) single-crystal and a series of carbon-supported nanoparticle catalysts for the electrooxidation of ethanol. A comparative study of supported nanocatalysts was carried out and their activity for ethanol oxidation decreased in the order of PtRhSnO2 >PtSnO2 > Pt> PtRh > Rh > RhSnO2. In situ infrared reflection-absorption spectroscopy studies showed that the catalysts' selectivity toward ethanol total oxidation to CO2 decreased in the order of: PtRhSnO2 RhSnO2 > PtRh > Pt> PtSnO2 Rh, verifying the role of Rh in breaking the C-C bond, and the roles of the two other constituents, SnO2 and Pt, that facilitate the oxidation of the reaction intermediates and lessen their bonding to Rh. These results help understanding the role of Rh and SnO2 in the catalytic oxidation of ethanol and provide insights for designing catalysts with improved propeties. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Li, M.; Zhou, W. -P.; Sasaki, K.; Adzic, R. R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Marinkovic, N. S.] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. RP Marinkovic, NS (reprint author), Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. EM marinkov@bnl.gov RI Li, Meng/L-8507-2013; Marinkovic, Nebojsa/A-1137-2016 OI Marinkovic, Nebojsa/0000-0003-3579-3453 NR 28 TC 35 Z9 35 U1 7 U2 83 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD AUG 1 PY 2013 VL 104 BP 454 EP 461 DI 10.1016/j.electacta.2012.10.046 PG 8 WC Electrochemistry SC Electrochemistry GA 180NF UT WOS:000321601200055 ER PT J AU Miller, CL Watson, DB Lester, BP Lowe, KA Pierce, EM Liang, LY AF Miller, Carrie L. Watson, David B. Lester, Brian P. Lowe, Kenneth A. Pierce, Eric M. Liang, Liyuan TI Characterization of soils from an industrial complex contaminated with elemental mercury SO ENVIRONMENTAL RESEARCH LA English DT Article; Proceedings Paper CT 10th International Conference on Mercury as a Global Pollutant CY JUL 24-28, 2011 CL Halifax, CANADA DE Analytical methods; Elemental mercury; Industrial contamination; Soil ID RAY-FLUORESCENCE SPECTROMETRY; FORK POPLAR CREEK; OAK-RIDGE; REDUCED SULFUR; ORGANIC-MATTER; CHEMICAL EXTRACTIONS; ATMOSPHERIC MERCURY; SPATIAL-PATTERNS; SPECIATION; SEDIMENTS AB Historical use of liquid elemental mercury (Hg(0)(I)) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0)(I) in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0)(g) headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0)(I) in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. In the first core, Hg(0)(I) was distributed throughout the 3.2 m depth, whereas the second core, from a location 12 m away, contained Hg(0)(I) in a 0.3 m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0)(I) is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical and continued reworking of the subsurface has remobilized the Hg. (C) 2013 Elsevier Inc. All rights reserved. C1 [Miller, Carrie L.; Watson, David B.; Lester, Brian P.; Lowe, Kenneth A.; Pierce, Eric M.; Liang, Liyuan] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Miller, CL (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,MS 6038, Oak Ridge, TN 37831 USA. EM millercl@ornl.gov RI Miller, Carrie/B-8943-2012; Liang, Liyuan/O-7213-2014; Watson, David/C-3256-2016; Pierce, Eric/G-1615-2011 OI Liang, Liyuan/0000-0003-1338-0324; Watson, David/0000-0002-4972-4136; Pierce, Eric/0000-0002-4951-1931 NR 62 TC 16 Z9 16 U1 10 U2 75 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0013-9351 J9 ENVIRON RES JI Environ. Res. PD AUG PY 2013 VL 125 SI SI BP 20 EP 29 DI 10.1016/j.envres.2013.03.013 PG 10 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 204XQ UT WOS:000323405000004 PM 23809204 ER PT J AU DeWoskin, RS Sweeney, LM Teeguarden, JG Sams, R Vandenberg, J AF DeWoskin, R. S. Sweeney, L. M. Teeguarden, J. G. Sams, R., II Vandenberg, J. TI Comparison of PBTK model and biomarker based estimates of the internal dosimetry of acrylamide SO FOOD AND CHEMICAL TOXICOLOGY LA English DT Article DE PBTK model; Biomarkers of exposure; Hemoglobin adducts; Acrylamide; Glycidamide; Dosimetry ID HEMOGLOBIN ADDUCTS; FISCHER-344 RATS; MAILLARD REACTION; RISK-ESTIMATION; ETHYLENE-OXIDE; B6C3F(1) MICE; GLYCIDAMIDE; EXPOSURE; FOOD; HUMANS AB Estimates of internal dosimetry for acrylamide (AA, 2-propenamide; CASRN: 79-06-1) and its active metabolite glycidamide (GA) were compared using either biomarkers of internal exposure (hemoglobin adduct levels in rats and humans) or a PBTK model (Sweeney et al., 2010). The resulting impact on the human equivalent dose (HED, oral exposures), the human equivalent concentration (HEC, inhalation), and final reference values was also evaluated. Both approaches yielded similar AA HEDs and HECs for the most sensitive noncancer effect of neurotoxicity, identical oral reference doses (RID) of 2 x 10(-3) mg AA/kg bw/d, and nearly identical inhalation reference concentrations (RfC = 0.006 mg/m(3) and 0.007 mg/m(3), biomarker and PBTK results, respectively). HED and HEC values for carcinogenic potential were very similar, resulting in identical inhalation unit risks of 0.1/(mg AA/m(3)), and nearly identical oral cancer slope factors (0.4 and 0.5/mg AA/kg bw/d), biomarker and PBTK results, respectively. The concordance in estimated HEDs, HECs, and reference values from these two diverse methods increases confidence in those values. Advantages and specific application of each approach are discussed. (Note: Reference values derived with the PBPK model were part of this research, and do not replace values currently posted on IRIS: http://www.epa.gov/iris/toxreviews/0286tr.pdf.) Published by Elsevier Ltd. C1 [DeWoskin, R. S.; Sams, R., II; Vandenberg, J.] US EPA, Natl Ctr Environm Assessment, Off Res & Dev, Res Triangle Pk, NC 27711 USA. [Sweeney, L. M.] SAIC, Naval Med Res Unit Dayton, Kettering, OH 45440 USA. [Teeguarden, J. G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP DeWoskin, RS (reprint author), US EPA, Natl Ctr Environm Assessment, Off Res & Dev, MD-B243-01, Res Triangle Pk, NC 27711 USA. EM dewoskin.rob@epa.gov; lmsweeney@aol.com; jt@pnl.gov RI Sweeney, Lisa/K-5114-2012; OI Sweeney, Lisa/0000-0002-4672-7358; Teeguarden, Justin/0000-0003-3817-4391; Vandenberg, John/0000-0003-2619-9460 FU U.S. EPA; Grocery Manufacturers Association (GMA), Washington, DC FX The Toxicological review for Acrylamide was funded by the U.S. EPA. The development of the Sweeney et al. PBTK model (published in 2010) was funded by the Grocery Manufacturers Association (GMA), Washington, DC. The author's use of this model to generate the results presented here was independent of the GMA. NR 51 TC 1 Z9 2 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0278-6915 J9 FOOD CHEM TOXICOL JI Food Chem. Toxicol. PD AUG PY 2013 VL 58 BP 506 EP 521 DI 10.1016/j.fct.2013.05.008 PG 16 WC Food Science & Technology; Toxicology SC Food Science & Technology; Toxicology GA 187EG UT WOS:000322099100066 PM 23707562 ER PT J AU Woods, J Kozubal, E AF Woods, Jason Kozubal, Eric TI Combining liquid desiccant dehumidification with a dew-point evaporative cooler: A design analysis SO HVAC&R RESEARCH LA English DT Article ID AIR-CONDITIONER; HEAT; PERFORMANCE; SYSTEM AB This article uses a numerical model to analyze a concept combining a liquid desiccant dehumidifier with a dew-point indirect evaporative cooler. Each of these components, or stages, consists of an array of channel pairs, where a channel pair is two air channels separated by a thin plastic plate. In the first stage, a liquid desiccant film lining one side of the plates removes moisture from the process (supply-side) air through a membrane. An evaporatively cooled exhaust airstream on the other side of the plastic plate cools the desiccant. The second stage sensibly cools the dried process air with a dew-point evaporative cooler. This article uses a parametric analysis to illustrate the key design tradeoff for this concept: device size (a surrogate for cost) versus energy efficiency. The analysis finds the design parameters with the largest effect on this tradeoff and finds the combinations of design parameters giving near-optimal designs, which are designs with the highest efficiency for a given device size. The results indicate that there are two key parameters contributing to this tradeoff: the supply-side air channel thickness and the exhaust-air flow rate in the evaporative cooler. C1 [Woods, Jason; Kozubal, Eric] Natl Renewable Energy Lab, Golden, CO USA. RP Woods, J (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO USA. EM jason.woods@nrel.gov OI Woods, Jason/0000-0002-7661-2658 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 17 TC 6 Z9 6 U1 3 U2 18 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1078-9669 J9 HVAC&R RES JI HVAC&R Res. PD AUG 1 PY 2013 VL 19 IS 6 BP 663 EP 675 DI 10.1080/10789669.2013.797861 PG 13 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 205VZ UT WOS:000323474200003 ER PT J AU Derr, K Manic, M AF Derr, Kurt Manic, Milos TI Wireless Sensor Network Configuration-Part I: Mesh Simplification for Centralized Algorithms SO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS LA English DT Article DE Delaunay triangulation; mesh generation; mesh simplification; sensor node; wireless sensor network (WSN) ID COMPUTING DIRICHLET TESSELLATIONS; DEPLOYMENT AB This is the first of a two-part investigation of centralized and decentralized approaches for determining the optimal configuration of a sensor network. In this first part, we present a centralized approach for the generation of mesh (wireless sensor) network configurations that provide complete sensing coverage and communication connectivity of a domain. A challenging problem in deploying wireless sensor networks is maximizing coverage in irregular shaped polygonal areas while maintaining a high degree of node connectivity. The novelties presented in this paper are: 1) a centralized mesh simplification technique, the Iterative Node Removal with Constrained Delaunay Triangulation and Smoothing (INRCDTS) algorithm, and 2) a centralized mesh generation approach with INRCDTS that may be used for any nonintersecting closed polygonal area. Additionally, we provide a comparison of two centralized mesh generation techniques. The INRCDTS was built and tested as an enhancement of two traditional mesh generation techniques: advancing front technique and MATLAB partial differential equation toolbox. The INCRCDTS introduces the ability to tune the generated mesh configuration to the number of nodes and nodal spacing. The INRCDTS enhancement has proven to increase the uniformity of the mesh in an irregular shaped polygonal area relative to advancing front and MATLAB partial differential equation algorithms by 23% and 41%, respectively. C1 [Derr, Kurt] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Manic, Milos] Univ Idaho, Idaho Falls, ID 83402 USA. RP Derr, K (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM kurt.derr@inl.gov; misko@ieee.org NR 33 TC 7 Z9 7 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1551-3203 J9 IEEE T IND INFORM JI IEEE Trans. Ind. Inform. PD AUG PY 2013 VL 9 IS 3 BP 1717 EP 1727 DI 10.1109/TII.2013.2245906 PG 11 WC Automation & Control Systems; Computer Science, Interdisciplinary Applications; Engineering, Industrial SC Automation & Control Systems; Computer Science; Engineering GA 207AX UT WOS:000323569900053 ER PT J AU Derr, K Manic, M AF Derr, Kurt Manic, Milos TI Wireless Sensor Network Configuration-Part II: Adaptive Coverage for Decentralized Algorithms SO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS LA English DT Article DE Adaptive algorithm; distributed algorithm; Extended Virtual Spring Mesh (EVSM); self-organizing network; un-manned vehicle; wireless sensor network (WSN) ID DEPLOYMENT AB This is the second of a two-part investigation of the generation of wireless sensor network (WSN) configurations that: 1) maximize coverage of irregular shaped polygonal areas and 2) maintain a high degree of node connectivity. The first-part of the investigation presented centralized algorithms for the generation of mesh (wireless sensor) network configurations that maximize coverage and connectivity. In this second part, we present a decentralized and distributed approach using an Extended Virtual Spring Mesh (EVSM)-Adaptive Coverage Algorithm and Protocol (ACAP) algorithm. The EVSM-ACAP algorithm represents an extension of EVSM algorithm with the newly developed ACAP. ACAP provides adaptive coverage and configuration of the mesh network by dynamically adjusting the sensing range of sensor nodes. EVSM-ACAP is compared to centralized mesh generation algorithms (described in the part one of the investigation), as well as other decentralized algorithms from artificial physics, for the control of large numbers of physical agents in sensor networks. EVSM-ACAP is shown to produce a sensor network deployment with an average sensor spacing within 1.6% of the desired spacing, versus 5.75% for the best centralized algorithmic approach. To the best of our knowledge, this is the first time that these centralized mesh network configuration algorithms have been contrasted with the scalable, robust, decentralized algorithms of artificial physics and EVSM. C1 [Derr, Kurt] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Manic, Milos] Univ Idaho, Idaho Falls, ID 83402 USA. RP Derr, K (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM kurt.derr@inl.gov; misko@ieee.org NR 31 TC 12 Z9 12 U1 1 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1551-3203 EI 1941-0050 J9 IEEE T IND INFORM JI IEEE Trans. Ind. Inform. PD AUG PY 2013 VL 9 IS 3 BP 1728 EP 1738 DI 10.1109/TII.2013.2245907 PG 11 WC Automation & Control Systems; Computer Science, Interdisciplinary Applications; Engineering, Industrial SC Automation & Control Systems; Computer Science; Engineering GA 207AX UT WOS:000323569900054 ER PT J AU Gomez, ME Campillo, GE Diez, S Hoffmann, A Lopera, W AF Gomez, Maria E. Campillo, Gloria E. Diez, Sandra Hoffmann, Axel Lopera, Wilson TI Influence of the Thickness of the Ferro- and Antiferromagnetic Phases on Magnetic Properties in Epitaxial Heterostructures Based on Exchange Biased La-Ca-Mn-O System SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT 10th Latin American Workshop on Magnetism, Magnetic Materials and their Applications (LAW3M) CY APR 08-12, 2013 CL Univ Buenos Aires, Facultad Derecho, Buenos Aires, ARGENTINA SP IEEE Magnet Soc HO Univ Buenos Aires, Facultad Derecho DE Ca-doped lanthanum manganite system; exchange biased oxide materials; ferromagnetic/antiferromagnetic superlattices ID LA2/3CA1/3MNO3/LA1/3CA2/3MNO3 SUPERLATTICES; MAGNETOTRANSPORT PROPERTIES; MULTILAYERS; FILMS AB Metal oxides show fascinating physical properties such as ferromagnetism, antiferromagnetism, high temperature superconductivity, ferroelectricity, or even multiferroicity. For many possible electronic applications as well as fundamental studies, it is essential to fabricate epitaxial layered films and multilayers of these materials having complex lattice structures with sharp interfaces, preserving epitaxiallity through the whole structure. We have grown these kind of oxide heterostructures on single crystal (001) oriented SrTiO3 substrates by using an in-situ DC sputtering technique at high oxygen pressures. Specifically, we report the study of magnetic and transport properties in ferromagnetic/antiferromagnetic, F/AF, heterostructures based on the Ca-doped lanthanum manganite system. We artificially grew La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 heterostructures, maintaining constant the total thickness of the sample and systematically varying the thicknesses of the antiferromagnetic layer (t(AF)) and ferromagnetic layer (t(F)). Magnetization measurements indicate a dependence of Curie temperature, exchange bias field, and magnetoresistance behavior with the t(AF)/t(F) ratio. C1 [Gomez, Maria E.; Diez, Sandra; Lopera, Wilson] Univ Valle, Dept Phys, Thin Film Grp, Cali 25360, Colombia. [Campillo, Gloria E.] Univ Medellin, Dept Ciencias Basicas, Medellin, Colombia. [Hoffmann, Axel] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Gomez, ME (reprint author), Univ Valle, Dept Phys, Thin Film Grp, Cali 25360, Colombia. EM maria.gomez@correounivalle.edu.co RI Hoffmann, Axel/A-8152-2009 OI Hoffmann, Axel/0000-0002-1808-2767 NR 17 TC 0 Z9 0 U1 2 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD AUG PY 2013 VL 49 IS 8 BP 4576 EP 4581 DI 10.1109/TMAG.2013.2257711 PN 1 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 207ZE UT WOS:000323642800024 ER PT J AU Mardegan, JRL Aliouane, N Coelho, LN Aguero, O Bittar, EM Lang, JC Pagliuso, PG Torriani, IL Giles, C AF Mardegan, Jose R. L. Aliouane, Nadir Coelho, Leticia N. Agueero, Oscar Bittar, Eduardo M. Lang, Jonathan C. Pagliuso, Pascoal G. Torriani, Iris L. Giles, Carlos TI Structural Distortion and Magnetic Order in the Intermetallic Eu3Ir4Sn13 Compound SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT 10th Latin American Workshop on Magnetism, Magnetic Materials and their Applications (LAW3M) CY APR 08-12, 2013 CL Univ Buenos Aires, Facultad Derecho, Buenos Aires, ARGENTINA SP IEEE Magnet Soc HO Univ Buenos Aires, Facultad Derecho DE Antiferromagnetic materials; crystallography; intermetallic; magnetic properties ID CRYSTAL-STRUCTURE; TRANSPORT-PROPERTIES; SNYB3RH4SN12; STANNIDES; EU AB In this work, we have investigated the low temperature structural distortion and magnetic properties of the Eu3Ir4Sn13 Remeika cubic phase compound using X-ray powder diffraction (XRD), X-ray resonant magnetic scattering (XRMS) and neutron diffraction. X-ray scattering revealed that the peak observed in electrical resistivity and heat capacity measurements is related to a structural distortion at T* = 57.1 K. This crystallographic distortion characterized by the arising of a propagation vector (q) over right arrow = (0, (1/2), (1/2)) is due to a displacement of the Sn ions at the Sn1Sn2(12) polyhedron. In addition, the neutron diffraction experiments performed on a single crystal of Eu3Ir4Sn13 exhibit an antiferromagnetic coupling below T-N = 10.1 K where we observe a commensurate magnetic propagation vector (tau) over right arrow = (0, (1/2), (1/2)) identical to the one observed for the structural distortion. C1 [Mardegan, Jose R. L.; Agueero, Oscar; Pagliuso, Pascoal G.; Torriani, Iris L.; Giles, Carlos] Univ Estadual Campinas, Inst Fis Gleb Wataghin, UNICAMP, BR-13083859 Campinas, SP, Brazil. [Aliouane, Nadir] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Coelho, Leticia N.] Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil. [Bittar, Eduardo M.] Lab Nacl Luz Sincrotron, BR-13083970 Sao Paulo, Brazil. [Lang, Jonathan C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Mardegan, JRL (reprint author), Univ Estadual Campinas, Inst Fis Gleb Wataghin, UNICAMP, BR-13083859 Campinas, SP, Brazil. EM jrlmardegan@gmail.com RI Bittar, Eduardo/B-6266-2008; Inst. of Physics, Gleb Wataghin/A-9780-2017; Torriani, Iris/E-5686-2010 OI Bittar, Eduardo/0000-0002-2762-1312; NR 19 TC 5 Z9 5 U1 1 U2 27 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD AUG PY 2013 VL 49 IS 8 BP 4652 EP 4655 DI 10.1109/TMAG.2013.2255589 PN 1 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 207ZE UT WOS:000323642800042 ER PT J AU Schwank, J Brown, D Girard, S Gouker, P Gerardin, S Quinn, H Barnaby, H AF Schwank, Jim Brown, Dennis Girard, Sylvain Gouker, Pascale Gerardin, Simone Quinn, Heather Barnaby, Hugh TI SELECTED PAPERS FROM THE 2012 RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS (RADECS) CONFERENCE, Biarritz, France, September 24-28, 2012 SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Editorial Material C1 [Schwank, Jim] Sandia Natl Labs, Livermore, CA 94550 USA. [Girard, Sylvain] Univ St Etienne, St Etienne, France. [Gouker, Pascale] MIT Lincoln Lab, Cambridge, MA USA. [Gerardin, Simone] Univ Padua, I-35100 Padua, Italy. [Quinn, Heather] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Barnaby, Hugh] Arizona State Univ, Tempe, AZ 85287 USA. RP Schwank, J (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 2383 EP 2383 DI 10.1109/TNS.2013.2274257 PN 1 PG 1 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NJ UT WOS:000323450700002 ER PT J AU Dodds, NA Hooten, NC Reed, RA Schrimpf, RD Warner, JH Roche, NJH McMorrow, D Buchner, S Jordan, S Pellish, JA Bennett, WG Gaspard, NJ King, MP AF Dodds, N. A. Hooten, N. C. Reed, R. A. Schrimpf, R. D. Warner, J. H. Roche, N. J. -H. McMorrow, D. Buchner, S. Jordan, S. Pellish, J. A. Bennett, W. G. Gaspard, N. J. King, M. P. TI SEL-Sensitive Area Mapping and the Effects of Reflection and Diffraction From Metal Lines on Laser SEE Testing SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT European Conference on Radiation and its Effects on Components and Systems (RADECS) CY SEP 24-28, 2012 CL Biarritz, FRANCE SP Univ Bordeaux, IMS Labs, RADECS Org, IEEE, Nucl & Plasma Sci Soc (NPSS), French Minist Higher Educ & Res, Conseil Reg Aquitaine, French Natl Ctr Sci Res (CNRS), Univ Bordeaux DE Laser testing; sensitive volume; single-event latchup; single-photon absorption (SPA); two-photon absorption (TPA) ID PARTICLE-INDUCED LATCHUP; CMOS TEST STRUCTURES; CHARGE COLLECTION; 2-PHOTON ABSORPTION; CARRIER GENERATION; PULSED-LASER; SINGLE; DEVICES; TECHNOLOGY AB Laser and heavy-ion data reveal the areas and shapes of single-event latchup (SEL)-sensitive regions in CMOS test structures and their positions relative to the affected p-n-p-n paths. Contrary to previous two-dimensional studies, this three-dimensional study shows that the position of maximum SEL sensitivity in these structures is not centered on a p-n-p-n region, but between two neighboring p-n-p-n regions, suggesting that synergistic triggering increases SEL sensitivity. The SEL-sensitivity maps suggest that laser light scattered from metal lines toward the silicon can contribute to the SEE response, for both back-side-incident two-photon absorption and front-side-incident single-photon absorption laser tests. We describe the metallization configurations and laser pulse energies for which reflected and/or diffracted laser light may contribute to the single-event effect (SEE) response. C1 [Dodds, N. A.; Hooten, N. C.; Reed, R. A.; Schrimpf, R. D.; Bennett, W. G.; Gaspard, N. J.; King, M. P.] Vanderbilt Univ, Nashville, TN 37203 USA. [Warner, J. H.; Roche, N. J. -H.; McMorrow, D.; Buchner, S.] Naval Res Lab, Washington, DC 20375 USA. [Jordan, S.] Jazz Semicond, Newport Beach, CA 92660 USA. [Pellish, J. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Dodds, NA (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM nadodds@sandia.gov RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 NR 30 TC 7 Z9 8 U1 2 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 2550 EP 2558 DI 10.1109/TNS.2013.2246189 PN 1 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NJ UT WOS:000323450700026 ER PT J AU Javanainen, A Ferlet-Cavrois, V Jaatinen, J Kettunen, H Muschitiello, M Pintacuda, F Rossi, M Schwank, JR Shaneyfelt, MR Virtanen, A AF Javanainen, Arto Ferlet-Cavrois, Veronique Jaatinen, Jukka Kettunen, Heikki Muschitiello, Michele Pintacuda, Francesco Rossi, Mikko Schwank, James R. Shaneyfelt, Marty R. Virtanen, Ari TI Semi-Empirical Model for SEGR Prediction SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT European Conference on Radiation and its Effects on Components and Systems (RADECS) CY SEP 24-28, 2012 CL Biarritz, FRANCE SP Univ Bordeaux, IMS Labs, RADECS Org, IEEE, Nucl & Plasma Sci Soc (NPSS), French Minist Higher Educ & Res, Conseil Reg Aquitaine, French Natl Ctr Sci Res (CNRS), Univ Bordeaux DE Modeling; MOS; SEGR; semi-empirical ID EVENT GATE RUPTURE; VERTICAL POWER MOSFETS; DIELECTRIC-BREAKDOWN; HEAVY-IONS; CONDUCTION; EXPRESSION AB The underlying physical mechanisms in single event gate rupture (SEGR) are not known precisely. SEGR is expected to occur when the energy deposition due to a heavy ion strike exceeds a certain threshold simultaneously with sufficient electric field across the gate dielectric. Typically the energy deposition is described by using the linear energy transfer (LET) of the given ion. Previously the LET has been demonstrated not to describe the SEGR sufficiently. The work presented here introduces a semi-empirical model for the SEGR prediction based on statistical variations in the energy deposition which are described theoretically. C1 [Javanainen, Arto; Jaatinen, Jukka; Kettunen, Heikki; Rossi, Mikko; Virtanen, Ari] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Ferlet-Cavrois, Veronique; Muschitiello, Michele] European Space Agcy, Estec, NL-2200 AG Noordwijk, Netherlands. [Pintacuda, Francesco] STMicroelectronics Srl, Catania, Italy. [Schwank, James R.; Shaneyfelt, Marty R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Javanainen, A (reprint author), Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. EM arto.javanainen@jyu.fi RI Javanainen, Arto/P-6355-2016; OI Javanainen, Arto/0000-0001-7906-3669; Virtanen, Ari/0000-0002-6591-6787 NR 14 TC 2 Z9 2 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 2660 EP 2665 DI 10.1109/TNS.2012.2236105 PN 1 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NJ UT WOS:000323450700042 ER PT J AU Quinn, H Graham, P Morgan, K Baker, Z Caffrey, M Smith, D Wirthlin, M Bell, R AF Quinn, Heather Graham, Paul Morgan, Keith Baker, Zachary Caffrey, Michael Smith, Dave Wirthlin, Mike Bell, Randy TI Flight Experience of the Xilinx Virtex-4 SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT European Conference on Radiation and its Effects on Components and Systems (RADECS) CY SEP 24-28, 2012 CL Biarritz, FRANCE SP Univ Bordeaux, IMS Labs, RADECS Org, IEEE, Nucl & Plasma Sci Soc (NPSS), French Minist Higher Educ & Res, Conseil Reg Aquitaine, French Natl Ctr Sci Res (CNRS), Univ Bordeaux DE Emulation; fault tolerance; field programmable gate arrays ID FPGAS AB This paper provides information regarding the use of the Xilinx Virtex-4 field-programmable gate array (FPGA) in a spacecraft deployed to low-earth orbit. The results are compared to pre-deployment accelerated single-event effects (SEEs) and fault-injection testing. C1 [Quinn, Heather; Graham, Paul; Morgan, Keith; Baker, Zachary; Caffrey, Michael; Smith, Dave] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wirthlin, Mike] Brigham Young Univ, Provo, UT 84602 USA. [Bell, Randy] US DOE, Washington, DC 20585 USA. RP Quinn, H (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM hquinn@lanl.gov NR 11 TC 8 Z9 9 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 2682 EP 2690 DI 10.1109/TNS.2013.2246581 PN 1 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NJ UT WOS:000323450700045 ER PT J AU Willis, JD Collins, AG Jurat-Fuentes, JL Stewart, CN AF Willis, Jonathan D. Collins, A. Grace Jurat-Fuentes, Juan-Luis Stewart, C. Neal TI Overexpression of TcEG1, an Insect Endoglucanase, in Switchgrass for Improved Sugar Release SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT LA English DT Meeting Abstract CT In Vitro Biology Meeting CY JUN 15-19, 2013 CL Providence, RI SP Soc In Vitro Biol C1 [Willis, Jonathan D.; Collins, A. Grace; Stewart, C. Neal] Univ Tennessee, Dept Plant Sci, Knoxville, TN USA. [Jurat-Fuentes, Juan-Luis] Univ Tennessee, Dept Entomol & Plant Pathol, Knoxville, TN 37901 USA. [Willis, Jonathan D.; Stewart, C. Neal] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. EM jdwillis@utk.edu NR 0 TC 0 Z9 0 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1054-5476 J9 IN VITRO CELL DEV-PL JI In Vitro Cell. Dev. Biol.-Plant PD AUG PY 2013 VL 49 IS 4 BP 472 EP 473 PG 2 WC Plant Sciences; Cell Biology; Developmental Biology SC Plant Sciences; Cell Biology; Developmental Biology GA 206JG UT WOS:000323515500018 ER PT J AU Fu, CX Hernandez, T Tudor, S Wang, ZY AF Fu, Chunxiang Hernandez, Tim Tudor, Steven Wang, Zeng-Yu TI Development of High Throughput Genetic Transformation Systems for Forage and Biofuel Crops SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT LA English DT Meeting Abstract CT In Vitro Biology Meeting CY JUN 15-19, 2013 CL Providence, RI SP Soc In Vitro Biol C1 [Fu, Chunxiang; Hernandez, Tim; Tudor, Steven; Wang, Zeng-Yu] Samuel Roberts Noble Fdn Inc, Forage Improvement Div, Ardmore, OK 73401 USA. [Wang, Zeng-Yu] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. EM cfu@noble.org NR 0 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1054-5476 J9 IN VITRO CELL DEV-PL JI In Vitro Cell. Dev. Biol.-Plant PD AUG PY 2013 VL 49 IS 4 BP 475 EP 475 PG 1 WC Plant Sciences; Cell Biology; Developmental Biology SC Plant Sciences; Cell Biology; Developmental Biology GA 206JG UT WOS:000323515500024 ER PT J AU Grant, JN Willis, JD Stewart, CN AF Grant, Joshua N. Willis, Jonathan D. Stewart, C. Neal TI Comparisons of Switchgrass Cell Wall Components Containing an Overexpression of a Putative Switchgrass Endoglucanase SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT LA English DT Meeting Abstract CT In Vitro Biology Meeting CY JUN 15-19, 2013 CL Providence, RI SP Soc In Vitro Biol C1 [Grant, Joshua N.; Willis, Jonathan D.; Stewart, C. Neal] Univ Tennessee, Dept Plant Sci, Knoxville, TN USA. [Willis, Jonathan D.; Stewart, C. Neal] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. EM jgrant2@utk.edu NR 0 TC 0 Z9 0 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1054-5476 J9 IN VITRO CELL DEV-PL JI In Vitro Cell. Dev. Biol.-Plant PD AUG PY 2013 VL 49 IS 4 BP 475 EP 475 PG 1 WC Plant Sciences; Cell Biology; Developmental Biology SC Plant Sciences; Cell Biology; Developmental Biology GA 206JG UT WOS:000323515500025 ER PT J AU Austin, KG Carvey, CE Farina, EK Lieberman, HR AF Austin, Krista G. Carvey, Christina E. Farina, Emily K. Lieberman, Harris R. TI Predictors of the Relationships Between Nutritional Supplement Use and Weight-Modification Goals of U.S. Army Soldiers SO INTERNATIONAL JOURNAL OF SPORT NUTRITION AND EXERCISE METABOLISM LA English DT Article DE dietary supplement; health behavior; weight management ID EATING DISORDER BEHAVIORS; DIETARY-SUPPLEMENTS; BODY-IMAGE; CONTRIBUTING FACTORS; MEAL-REPLACEMENT; UNITED-STATES; WOMEN; PREVALENCE; MEN; PERFORMANCE AB Background: U.S. Army Soldiers must meet body weight and composition standards and consequently may use nutritional supplements (NS) purported to assist in weight modification (WM). Nutritional supplements are dietary supplements (DS) and foods intended to supplement the diet. Purpose: This study assessed relationships between NS use, demographic characteristics, health-related behaviors, and WM goals among U.S. Army personnel. Methods: Participants (N = 990) self-reported NS use, categorized as energy drinks, sport nutrition products, or DS, and WM goal (lose, gain, or maintain) was ascertained by survey. DS were sub-categorized as health, weight-loss, weight-gain, or other DS. Chi-square and logistic regression were used to assess relationships between predictors, NS use, and WM goal. Most respondents (70.3% +/- 1.7%) consumed some NS; however, overall NS use was not related to WM goal. Significant relationships were observed between predictors (tobacco use, age, body-mass index, fitness score, general health, and eating habits) and both WM goal and NS use. Respondents attempting to lose or maintain weight were less likely to consume energy drinks and weight-gain DS. Conclusion: WM goal is related to multiple health behaviors including tobacco use, physical fitness score, and self-perception of health and eating behavior. NS are consumed in this population regardless of WM goal. C1 [Austin, Krista G.; Farina, Emily K.] Oak Ridge Inst Sci & Educ, Belcamp, MD USA. [Carvey, Christina E.; Lieberman, Harris R.] US Army Res Inst Environm Med, Natick, MA USA. RP Austin, KG (reprint author), Oak Ridge Inst Sci & Educ, Belcamp, MD USA. FU U.S. Army Medical Research and Materiel Command (USAMRMC); Department of Defense Center Alliance for Dietary Supplement Research FX This work was supported by the U.S. Army Medical Research and Materiel Command (USAMRMC) and the Department of Defense Center Alliance for Dietary Supplement Research. The opinions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Army or the Department of Defense. Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations. Approved for public release; distribution is unlimited. NR 37 TC 3 Z9 3 U1 2 U2 26 PU HUMAN KINETICS PUBL INC PI CHAMPAIGN PA 1607 N MARKET ST, PO BOX 5076, CHAMPAIGN, IL 61820-2200 USA SN 1526-484X J9 INT J SPORT NUTR EXE JI Int. J. Sport Nutr. Exerc. Metab. PD AUG PY 2013 VL 23 IS 4 BP 322 EP 335 PG 14 WC Nutrition & Dietetics; Sport Sciences SC Nutrition & Dietetics; Sport Sciences GA 208BE UT WOS:000323649500003 PM 23239674 ER PT J AU Haight, TJ Landau, SM Carmichael, O Schwarz, C DeCarli, C Jagust, WJ AF Haight, Thaddeus J. Landau, Susan M. Carmichael, Owen Schwarz, Christopher DeCarli, Charles Jagust, William J. CA Alzheimer's Dis Neuroimaging TI Dissociable Effects of Alzheimer Disease and White Matter Hyperintensities on Brain Metabolism SO JAMA NEUROLOGY LA English DT Article ID MILD COGNITIVE IMPAIRMENT; EXECUTIVE DYSFUNCTION; GLUCOSE-METABOLISM; DEMENTIA; BIOMARKERS; DECLINE; ASSOCIATION; PATHOLOGY; SYMPTOMS; INFARCTS AB IMPORTANCE Cerebrovascular disease and Alzheimer disease (AD) frequently co-occur and seem to act through different pathways in producing dementia. OBJECTIVE To examine cerebrovascular disease and AD markers in relation to brain glucose metabolism in patients with mild cognitive impairment. DESIGN AND SETTING Cohort study among the Alzheimer Disease Neuroimaging Initiative clinical sites in the United States and Canada. PARTICIPANTS Two hundred three patients having amnestic mild cognitive impairment (74 of whom converted to AD) with serial imaging during a 3-year follow-up period. MAIN OUTCOMES AND MEASURES Quantified white matter hyperintensities (WMHs) represented cerebrovascular disease, and cerebrospinal fluid beta-amyloid represented AD pathology. Brain glucose metabolism in temporoparietal and frontal brain regions was measured using positron emission tomography with fluorodeoxyglucose F18. RESULTS In converters, greater WMHs were associated with decreased frontal metabolism (-0.048; 95% CI, -0.067 to -0.029) but not temporoparietal metabolism (0.010; 95% CI, -0.010 to 0.030). Greater cerebrospinal fluid beta-amyloid (per 10-pg/mL increase) was associated with increased temporoparietal metabolism (0.005; 95% CI, 0.000-0.010) but not frontal metabolism (0.002; 95% CI, -0.004 to 0.007) in the same patients. In nonconverters, similar relationships were observed except for a positive association of greater WMHs with increased temporoparietal metabolism (0.051; 95% CI, 0.027-0.076). CONCLUSIONS AND RELEVANCE The dissociation of WMHs and cerebrospinal fluid beta-amyloid in relation to regional glucose metabolism suggests that these pathologic conditions operate through different and independent pathways in AD that reflect dysfunction in different brain systems. The positive association of greater WMHs with temporoparietal metabolism suggests that these pathologic processes do not co-occur in nonconverters. C1 [Haight, Thaddeus J.; Landau, Susan M.; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Landau, Susan M.; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Jagust, William J.] Univ Calif Berkeley, Sch Publ Hlth, Div Epidemiol, Berkeley, CA 94720 USA. [Carmichael, Owen; Schwarz, Christopher; DeCarli, Charles] Univ Calif Davis, Dept Neurol, Davis, CA 95616 USA. RP Haight, TJ (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 118 Barker Hall,Mail Code 3190 Jagust Lab, Berkeley, CA 94720 USA. EM tad@berkeley.edu OI Schwarz, Christopher/0000-0002-1466-8357 FU ADNI from the National Institutes of Health [U01 AG024904]; National Institute on Aging; National Institute of Biomedical Imaging and Bioengineering; Canadian Institutes of Health Research; National Institutes of Health [P30 AG010129, K01 AG030514]; Dana Foundation FX Data collection and sharing for this project were funded by the ADNI (grant U01 AG024904 from the National Institutes of Health). ADNI is funded by the National Institute on Aging and the National Institute of Biomedical Imaging and Bioengineering, as well as through generous contributions from the following: Abbott, Alzheimer's Association, Alzheimer's Drug Discovery Foundation, Amorfix Life Sciences Ltd, AstraZeneca, Bayer HealthCare, BioClinica Inc, Biogen Idec Inc, Bristol-Myers Squibb Company, Eisai Inc, Elan Pharmaceuticals Inc, Eli Lilly and Company, F. Hoffmann-La Roche Ltd and its affiliated company Genentech Inc, GE Healthcare, Innogenetics NV, Janssen Alzheimer Immunotherapy, Johnson & Johnson Pharmaceutical Research & Development LLC, Medpace Inc, Merck & Co, Meso Scale Diagnostics LLC, Novartis Pharmaceuticals Corporation, Pfizer Inc, Servier, Synarc, and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory of Neuro Imaging at the University of California, Los Angeles. This research was also supported by grants P30 AG010129 and K01 AG030514 from the National Institutes of Health and by the Dana Foundation. NR 38 TC 26 Z9 26 U1 1 U2 2 PU AMER MEDICAL ASSOC PI CHICAGO PA 330 N WABASH AVE, STE 39300, CHICAGO, IL 60611-5885 USA SN 2168-6149 EI 2168-6157 J9 JAMA NEUROL JI JAMA Neurol. PD AUG PY 2013 VL 70 IS 8 BP 1039 EP 1045 DI 10.1001/jamaneurol.2013.1878 PG 7 WC Clinical Neurology SC Neurosciences & Neurology GA 206ZO UT WOS:000323565900013 PM 23779022 ER PT J AU Colotelo, AH Cooke, SJ Blouin-Demers, G Murchie, KJ Haxton, T Smokorowski, KE AF Colotelo, Alison H. Cooke, Steven J. Blouin-Demers, Gabriel Murchie, Karen J. Haxton, Tim Smokorowski, Karen E. TI Influence of water temperature and net tending frequency on the condition of fish bycatch in a small-scale inland commercial fyke net fishery SO JOURNAL FOR NATURE CONSERVATION LA English DT Article DE Bycatch; Inland commercial fisheries; Physiology; Injury ID RELEASE ANGLING TOURNAMENTS; BONEFISH ALBULA-VULPES; LARGEMOUTH BASS; MORTALITY; STRESS; SURVIVAL; BEHAVIOR; PHYSIOLOGY; EXERCISE; GEARS AB To date, most studies of commercial fisheries bycatch have focused on mortality at time of capture as an endpoint. However, sub-lethal indicators of organismal condition have the potential to reveal mechanisms associated with mortality (both at time of capture and post-release) and opportunities for improving fish welfare. In this study, we simulated commercial fishing efforts in inland lakes with fyke nets during a typical fishing season (early April to late June) in southeastern Ontario, Canada, where bycatch of non-target fish species had previously been documented. Using non-target gamefish (i.e., largemouth bass [Micropterus salmoides, Lacepede], northern pike [Esox Lucius, L.]), as well as a target species (i.e., bluegill [Lepomis macrochirus, Rafinesque]), we examined the sub-lethal consequences of capture (e.g., blood physiology, reflex impairment, and injury) and compared the effects of being retained in the net for two different durations (i.e., two or six days) over a range of water temperatures (i.e., 3-28 degrees C). Sublethal physiological disturbances (i.e., blood glucose and lactate) in largemouth bass and bluegill tended to be greater at higher water temperatures. However, fish retained for six days generally did not exhibit greater stress than those retained for two days, with the exception of plasma glucose in largemouth bass. Reflex impairment was similar among temperature and retention periods. Fish retained in nets experienced a range of injuries (including fin frays, scale loss, and mouth damage) that had the potential to facilitate the development of opportunistic pathogenic infections. Greater incidences of injury on fish bycatch tended to be associated with higher temperatures and longer retention. To reduce physiological disturbances and injury that could lead to delayed mortality, we suggest that regulations for inland commercial fishers require them to check their nets more frequently as water temperatures increase. We suggest that future studies of bycatch incorporate sub-lethal endpoints given that they serve as an objective measure of fish welfare and can provide quantitative mechanistic information to support management actions. (C) 2013 Elsevier GmbH. All rights reserved. C1 [Colotelo, Alison H.; Cooke, Steven J.; Murchie, Karen J.] Carleton Univ, Fish Ecol & Conservat Physiol Lab, Dept Biol, Ottawa, ON K1S 5B6, Canada. [Cooke, Steven J.] Carleton Univ, Inst Environm Sci, Ottawa, ON K1S 5B6, Canada. [Blouin-Demers, Gabriel] Univ Ottawa, Dept Biol, Ottawa, ON K1N 6N5, Canada. [Haxton, Tim] Ontario Minist Nat Resources, Southern Sci & Informat Sect, Peterborough, ON K9L 8M5, Canada. [Smokorowski, Karen E.] Fisheries & Oceans Canada, Great Lakes Lab Fisheries & Aquat Sci, Sault Ste Marie, ON P6A 2E5, Canada. RP Colotelo, AH (reprint author), Pacific NW Natl Lab, POB 999,MSIN K6-85, Richland, WA 99352 USA. EM Alison.Colotelo@pnnl.gov RI Cooke, Steven/F-4193-2010; OI Cooke, Steven/0000-0002-5407-0659; Haxton, Tim/0000-0002-9767-3986 FU Ontario Ministry of Natural Resources, Fisheries and Oceans Canada; Canadian Wildlife Federation; World Wildlife Fund; Bob Jaquith of the Ontario Commercial Fisheries Association; Canada Research Chair Program; NSERC FX All procedures used in this study were developed with approvals and guidance from the Canadian Council on Animal Care administered by Carleton University and Queen's University. Funding was provided by the Ontario Ministry of Natural Resources, Fisheries and Oceans Canada, the Canadian Wildlife Federation, and the World Wildlife Fund. We thank Bob Jaquith of the Ontario Commercial Fisheries Association for providing support for the project. Michael Davis kindly provided input on design of the RAMP component. We also thank Cooke lab members for the assistance with field work and data collection. Thank you to Keith Stamplecoskie for formatting the manuscript. Cooke was supported by the Canada Research Chair Program. Cooke and Blouin-Demers were also supported by the NSERC Discovery Grant Program. NR 47 TC 1 Z9 1 U1 2 U2 24 PU ELSEVIER GMBH, URBAN & FISCHER VERLAG PI JENA PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY SN 1617-1381 J9 J NAT CONSERV JI J. Nat. Conserv. PD AUG PY 2013 VL 21 IS 4 BP 217 EP 224 DI 10.1016/j.jnc.2013.01.001 PG 8 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 207IQ UT WOS:000323592500005 ER PT J AU Newsom, RK Turner, DD Goldsmith, JEM AF Newsom, Rob K. Turner, David D. Goldsmith, John E. M. TI Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article DE Instrumentation; sensors; Lidars; Lidar observations; Profilers; atmospheric; Remote sensing ID ATMOSPHERIC-TEMPERATURE; WATER-VAPOR; EXTINCTION; RADIOSONDE; AEROSOLS; CLOUDS AB This study investigates the accuracy and calibration stability of temperature profiles derived from an operational Raman lidar over a 2-yr period from 1 January 2009 to 31 December 2010. The lidar, which uses the rotational Raman technique for temperature measurement, is located at the U.S. Department of Energy's Atmospheric Radiation Measurement site near Billings, Oklahoma. The lidar performance specifications, data processing algorithms, and the results of several test runs are described. Calibration and overlap correction of the lidar is achieved using simultaneous and collocated radiosonde measurements. Results show that the calibration coefficients exhibit no significant long-term or seasonal variation but do show a distinct diurnal variation. When the diurnal variation in the calibration is not resolved the lidar temperature bias exhibits a significant diurnal variation. Test runs in which only nighttime radiosonde measurements are used for calibration show that the lidar exhibits a daytime warm bias that is correlated with the strength of the solar background signal. This bias, which reaches a maximum of similar to 2.4 K near solar noon, is reduced through the application of a correction scheme in which the calibration coefficients are parameterized in terms of the solar background signal. Comparison between the corrected lidar temperatures and the noncalibration radiosonde temperatures show a negligibly small median bias of -0.013 K for altitudes below 10 km AGL. The corresponding root-mean-square difference profile is roughly constant at similar to 2 K below 6 km AGL and increases to about 4.5 K at 10 km AGL. C1 [Newsom, Rob K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Turner, David D.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Goldsmith, John E. M.] Sandia Natl Labs, Livermore, CA USA. RP Newsom, RK (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K9-30, Richland, WA 99352 USA. EM rob.newsom@pnnl.gov FU Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Climate Research Facility FX We wish to thank the staff at the ARM SGP site and Chris Martin in particular for maintaining the operation of the Raman lidar. This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Climate Research Facility. NR 26 TC 19 Z9 19 U1 5 U2 18 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD AUG PY 2013 VL 30 IS 8 BP 1616 EP 1634 DI 10.1175/JTECH-D-12-00138.1 PG 19 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 207XM UT WOS:000323638000003 ER PT J AU Luke, EP Kollias, P AF Luke, Edward P. Kollias, Pavlos TI Separating Cloud and Drizzle Radar Moments during Precipitation Onset Using Doppler Spectra SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article DE Dynamics; Drizzle; Marine boundary layer; Stratiform clouds; Cloud retrieval; Radars; Radar observations ID VERTICAL AIR VELOCITIES; DROP-SIZE DISTRIBUTION; PARAMETERS; PROFILER; DISTRIBUTIONS; SCATTERING; TURBULENCE; MOTION; GHZ; MIE AB The retrieval of cloud, drizzle, and turbulence parameters using radar Doppler spectra is challenged by the convolution of microphysical and dynamical influences and the overall uncertainty introduced by turbulence. A new technique that utilizes recorded radar Doppler spectra from profiling cloud radars is presented here. The technique applies to areas in clouds where drizzle is initially produced by the autoconversion process and is detected by a positive skewness in the radar Doppler spectrum. Using the Gaussian-shape property of cloud Doppler spectra, the cloud-only radar Doppler spectrum is estimated and used to separate the cloud and drizzle contributions. Once separated, the cloud spectral peak can be used to retrieve vertical air motion and eddy dissipation rates, while the drizzle peak can be used to estimate the three radar moments of the drizzle particle size distribution. The technique works for nearly 50% of spectra found near cloud top, with efficacy diminishing to roughly 15% of spectra near cloud base. The approach has been tested on a large dataset collected in the Azores during the Atmospheric Radiation Measurement Program (ARM) Mobile Facility deployment on Graciosa Island from May 2009 through December 2010. Validation of the proposed technique is achieved using the cloud base as a natural boundary between radar Doppler spectra with and without cloud droplets. The retrieval algorithm has the potential to characterize the dynamical and microphysical conditions at cloud scale during the transition from cloud to precipitation. This has significant implications for improving the understanding of drizzle onset in liquid clouds and for improving model parameterization schemes of autoconversion of cloud water into drizzle. C1 [Luke, Edward P.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Kollias, Pavlos] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. RP Luke, EP (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Bldg 490D,Bell Ave, Upton, NY 11973 USA. EM eluke@bnl.gov FU Atmospheric System Research program of the Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-98CH10886] FX This research was supported under Contract DE-AC02-98CH10886 by the Atmospheric System Research program of the Office of Biological and Environmental Research of the U.S. Department of Energy. Data were obtained from the ARM Climate Research Facility of the U.S. Department of Energy. NR 29 TC 16 Z9 17 U1 2 U2 27 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD AUG PY 2013 VL 30 IS 8 BP 1656 EP 1671 DI 10.1175/JTECH-D-11-00195.1 PG 16 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 207XM UT WOS:000323638000005 ER PT J AU Giangrande, SE McGraw, R Lei, L AF Giangrande, Scott E. McGraw, Robert Lei, Lei TI An Application of Linear Programming to Polarimetric Radar Differential Phase Processing SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article DE Hydrometeorology; Algorithms; Radars; Radar observations; Remote sensing ID DUAL-POLARIZATION RADAR; ENSEMBLE KALMAN FILTER; X-BAND; PART II; REFLECTIVITY; CALIBRATION; RAINFALL; ATTENUATION; ASSIMILATION; SIMULATION AB Differential phase and its range derivative K-DP are of interest to several hydrological applications from weather radar systems. Despite the attractive qualities of polarimetric differential phase measurements, the usefulness of these radar measurements is potentially undermined as a consequence of measurement fluctuations and physical or beam geometry artifacts. This paper presents an application of linear programming for physical retrievals, here designed to improve estimates of differential propagation phase by allowing realistic physical constraints of monotonicity and polarimetric radar self-consistency. Results of the linear programming methods to the phase-processing problem are demonstrated at several common weather radar wavelengths (10, 5, and 3 cm). C1 [Giangrande, Scott E.; McGraw, Robert] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Lei, Lei] Univ Oklahoma, Norman, OK 73019 USA. RP Giangrande, SE (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Bldg 490D,POB 5000, Upton, NY 11973 USA. EM scott.giangrande@bnl.gov RI Giangrande, Scott/I-4089-2016 OI Giangrande, Scott/0000-0002-8119-8199 FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; Climate Science for a Sustainable Energy Future project of the Earth System Modeling (ESM) program in the DOE Office of Science; FASTER project; DOE ESM program; U.S. Department of Energy FX This paper has been authored by employees of Brookhaven Science Associates, LLC, under Contract DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. government purposes. Doctor Giangrande's work is supported by the Climate Science for a Sustainable Energy Future project of the Earth System Modeling (ESM) program in the DOE Office of Science. Doctor McGraw's support is from the FASTER project (http://www.bnl.gov/faster/) supported by the DOE ESM program. The authors thank Drs. Alexander Ryzhkov (OU-NSSL), Michele Galletti (BNL), and Guifu Zhang (OU) for critical discussions throughout the writing process as well as the comments of several anonymous reviewers. Additional ARM radar dataset support and operational implementation were assisted by Dr. Scott Collis (ANL). A version of the LP-based method described by this manuscript and all associated datasets are freely available online (http://www.arm.gov) and as part of the open-source Python ARM Radar Toolkit. NR 42 TC 11 Z9 11 U1 0 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD AUG PY 2013 VL 30 IS 8 BP 1716 EP 1729 DI 10.1175/JTECH-D-12-00147.1 PG 14 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 207XM UT WOS:000323638000009 ER PT J AU Dimitrijevic, NM Tepavcevic, S Liu, YZ Rajh, T Silver, SC Tiede, DM AF Dimitrijevic, Nada M. Tepavcevic, Sanja Liu, Yuzi Rajh, Tijana Silver, Sunshine C. Tiede, David M. TI Nanostructured TiO2/Polypyrrole for Visible Light Photocatalysis SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TIO2 NANOPARTICLES; DEGRADATION; OLIGOMERS; NANOCOMPOSITES; POLYPYRROLE; COMPOSITES; POLYMERS; DYNAMICS; CHARGES; PHENOL AB Stable TiO2/polypyrrole nanocomposites have been synthesized by a simple one-step hydrothermal method. The nanocomposites are capable of efficient visible-light photocatalysis driven by their morphology that utilizes a high concentration of 4.5 nm TiO2 nanoparticles electronically coupled to 200-300 nm polypyrrole granules. The polypyrrole acts as visible-light photosensitizer, and the photoactivity of nanocomposite arises from the electron transfer from excited polypyrrole to TiO2 nanopartides and further across nanocomposite interface. The visible-light photocatalysis is demonstrated by methylene blue degradation and by the production of H-2 from water with efficiency of 1 mmol H-2 g(catalyst)(-1) h(-1)wt %(Pt)(-1). C1 [Dimitrijevic, Nada M.; Silver, Sunshine C.; Tiede, David M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.; Tepavcevic, Sanja; Liu, Yuzi; Rajh, Tijana] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA. RP Dimitrijevic, NM (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Dimitrijevic@anl.gov RI Liu, Yuzi/C-6849-2011 FU Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357. NR 27 TC 34 Z9 34 U1 10 U2 86 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 1 PY 2013 VL 117 IS 30 BP 15540 EP 15544 DI 10.1021/jp405562b PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 196WG UT WOS:000322807500010 ER PT J AU Savara, A AF Savara, Aditya TI Standard States for Adsorption on Solid Surfaces: 2D Gases, Surface Liquids, and Langmuir Adsorbates SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID THIN-FILMS; N-ALKANES; THERMODYNAMICS; SPECTROSCOPY; ENTROPIES; MGO(100); KINETICS; OXIDE; IR AB Standard states are utilized to compare thermodynamic data obtained from different experiments and calculations, and this ability to compare thermodynamic data plays an important role in science and society. For molecules adsorbed on surfaces, there are currently no universally accepted standard states. Here, standard states are proposed for the different types of molecular adsorbate phases, with the intent to enable physical insight to be gained by tabulating experimental/calculated values, such that comparison between different systems and existing societal tabulations of chemical standard state tabulated values can be done directly. A "density based" standard state is proposed for 2D gases, and a "relative coverage based" standard state is proposed for immobile adsorbates and nonislanding 2D liquids. These units are chosen based upon the units which the activity depends on. The standard states recommended here are chosen due to the entropies associated with them, such that physical insight can be gained by direct comparison to existing tabulated data. For 2D gases adsorbed on solid surfaces, the recommended standard state is sigma(o) = 1.39 X 10(-7) mol m(-2). For immobile adsorbates and nonislanding liquid states on solid surfaces, the recommended standard state is theta(o)(A) = 0.5 (which implies a standard state for the surface sites of of theta(o)(s) = 1 - theta(o)(A) = 0.5). With the standard states recommended here, tabulated values at a common temperature are expected to display the following approximate hierarchy for decreasing entropy: 3D gas > 2D gas > liquid > surface liquid > solid > lattice confined. Recommended standard states are also provided in the Supporting Information for cases with dissociative adsorption. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. RP Savara, A (reprint author), Oak Ridge Natl Lab, Div Chem Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. EM savaraa@ornl.gov RI Savara, Aditya (Ashi)/A-8831-2010 OI Savara, Aditya (Ashi)/0000-0002-1937-2571 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory FX Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. A.S. thanks James Kindt for useful discussions regarding the configurational entropy of immobile adsorbates. NR 28 TC 10 Z9 10 U1 3 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 1 PY 2013 VL 117 IS 30 BP 15710 EP 15715 DI 10.1021/jp404398z PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 196WG UT WOS:000322807500029 ER PT J AU Sheridan, LB Kim, YG Perdue, BR Jagannathan, K Stickney, JL Robinson, DB AF Sheridan, Leah B. Kim, Youn-Geun Perdue, Brian R. Jagannathan, Kaushik Stickney, John L. Robinson, David B. TI Hydrogen Adsorption, Absorption, and Desorption at Palladium Nanofilms formed on Au(111) by Electrochemical Atomic Layer Deposition (E-ALD): Studies using Voltammetry and In Situ Scanning Tunneling Microscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SULFURIC-ACID-SOLUTION; LIMITED REDOX REPLACEMENT; ENERGY-ELECTRON-DIFFRACTION; SINGLE-CRYSTAL ELECTRODES; ONE-CELL CONFIGURATION; WELL-DEFINED SURFACES; PD DEPOSITION; UNDERPOTENTIAL DEPOSITION; EPITAXIAL-GROWTH; COMPOUND SEMICONDUCTORS AB Pd nanofilms were grown on Au(111) using the electrochemical form of atomic layer deposition (E-ALD). Deposits were formed by repeated cycles of surface-limited redox replacement (SLRR). Each cycle produced an atomic layer of Pd, allowing the reproducible formation of Pd nanofilms, with thicknesses proportional to the number of cycles performed. Pd deposits were formed with up to 30 cycles, in the present study, and used as a platform for studies of hydrogen sorption/desorption as a function of thickness. The SLRR cycle involved the initial formation of an atomic layer of Cu by underpotential deposition, followed by its galvanic exchange with PdCl42- ions at open circuit. The first three cycles were studied using in situ electrochemical scanning tunneling microscopy (EC-STM), which showed a consistent morphology from cycle to cycle and the monatomic steps indicative of layer-by-layer growth. Cyclic voltammetry was used to study the hydrogen sorption/desorption properties as a function of thickness in 0.1 M H2SO4. The results indicated that the underlying Au structure greatly influenced hydrogen adsorption, as did film thickness for deposits formed with fewer than five cycles. No hydrogen absorption occurred for the thinnest films, although it increased linearly for thicker films, producing an average H/Pd molar ratio of 0.6. Electrochemical annealing was shown to improve surface order, producing CVs that strongly resembled those characteristic of bulk Pd(111). C1 [Sheridan, Leah B.; Kim, Youn-Geun; Perdue, Brian R.; Jagannathan, Kaushik; Stickney, John L.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. [Robinson, David B.] Sandia Natl Labs, Energy Nanomat Dept, Livermore, CA 94550 USA. RP Stickney, JL (reprint author), Univ Georgia, Dept Chem, Athens, GA 30602 USA. EM Stickney@uga.edu RI Kim, Youn-Geun/C-3461-2008 OI Kim, Youn-Geun/0000-0002-5936-6520 FU National Science Foundation, Division of Materials Research [1006747]; Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge the support of the National Science Foundation, Division of Materials Research #1006747 as well as the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 91 TC 5 Z9 5 U1 2 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 1 PY 2013 VL 117 IS 30 BP 15728 EP 15740 DI 10.1021/jp404723a PG 13 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 196WG UT WOS:000322807500031 ER PT J AU Han, KS Wang, XQ Dai, S Hagaman, EW AF Han, Kee Sung Wang, Xiqing Dai, Sheng Hagaman, Edward W. TI Distribution of 1-Butyl-3-methylimidazolium Bistrifluoromethylsulfonimide in Mesoporous Silica As a Function of Pore Filling SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TEMPERATURE IONIC LIQUIDS; MAGNETIC-FIELD GRADIENTS; POROUS SILICA; DIFFUSION MEASUREMENTS; NMR DIFFUSION; TRANSLATIONAL DYNAMICS; IMIDAZOLIUM; SPECTROSCOPY; CONFINEMENT; SUPPRESSION AB Rotational dynamics of the ionic liquid (IL) 1-butyl-3-methylimidazolium bistrifluoromethylsulfonimide, [C(4)mim][Tf2N], 1, as a neat liquid, and confined in mesoporous silica were investigated by spin-spin (T-2) and spin-lattice (TO relaxation measurements and C-13 NMR spectroscopy. Translational dynamics (self-diffusion) were monitored via the diffusion coefficient, D, obtained with pulsed field gradient NMR measurements. These data were used to determine the distribution of 1 in the pores of KIT-6, a mesoporous silica with a bicontinuous gyroid pore structure, as a function of filling fraction. Relaxation studies performed as a function of filling factor and temperature reveal a dynamic heterogeneity in both translational and rotational motions for 1 at filling factors, f = 0.2-1.0 (f = 1 corresponds to fully filled pores). Spin-lattice and spin-spin relaxation times reveal that the motion of 1 in silica mesopores conforms to that expected for a two-dimensional relaxation model. The relaxation dynamics are interpreted using a two-state, fast exchange model for all motions; a slow rotation (and translation) of molecules in contact with the surface and a faster motion approximated by the values for bulk relaxation and diffusion. Compound 1 retains liquid-like behavior at all filling factors and temperatures that extend to ca. 50 degrees below the bulk melting point. Translational motion in these systems, interpreted with MD-simulated diffusivity limits, confirms the high propensity of 1 to form a monolayer film on the silica surface at low filling factors. The attractive interaction of 1 with the surface is greater than that for self-association of 1. The trends in diffusion data at short and long diffusion time suggest that the population of surface-bound 1 is in intimate contact with 1 in the pores. This condition is most easily met at higher filling fractions with successive additions of 1 increasing the layer thickness built up on the surface layer. C1 [Han, Kee Sung; Wang, Xiqing; Dai, Sheng; Hagaman, Edward W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Hagaman, EW (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM hagamanew@ornl.gov RI Wang, Xiqing/E-3062-2010; Dai, Sheng/K-8411-2015; OI Wang, Xiqing/0000-0002-1843-008X; Dai, Sheng/0000-0002-8046-3931; Han, Kee Sung/0000-0002-3535-1818 FU Fluid Interface Reactions, Structures, and Transport (FIRST) Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Energy Frontier Research Center FX This work was supported by the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 45 TC 10 Z9 10 U1 2 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 1 PY 2013 VL 117 IS 30 BP 15754 EP 15762 DI 10.1021/jp404990q PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 196WG UT WOS:000322807500034 ER PT J AU Nakayasu, ES Ansong, C Brown, JN Yang, F Lopez-Ferrer, D Qian, WJ Smith, RD Adkins, JN AF Nakayasu, Ernesto S. Ansong, Charles Brown, Joseph N. Yang, Feng Lopez-Ferrer, Daniel Qian, Wei-Jun Smith, Richard D. Adkins, Joshua N. TI Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Ubiquitination; Post-translation modification; Affinity purification; Proteomics; Mass spectrometry ID PROTEASOMAL DEGRADATION; PROTEIN UBIQUITINATION; MASS-SPECTROMETRY; UBA DOMAIN; POLYUBIQUITIN; IDENTIFICATION; PATHWAY; CHAINS; CELLS; QUANTIFICATION AB Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono- and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified similar to 200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle. C1 [Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Lopez-Ferrer, Daniel] Capr Prote US LLC, Menlo Pk, CA 94025 USA. RP Adkins, JN (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Joshua.Adkins@pnnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 FU National Institute of Allergy and Infectious Diseases (NIH/DHHS) [Y1-AI-4894-01]; National Institute for General Medical Sciences [GM094623]; U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER); NIH [5P41RR018522-10]; National Institute of General Medical Sciences [8 P41 GM103493-10]; DOE by Battelle [DE-AC05-76RLO1830] FX The authors thank Drs. Matthew Monroe, Brooke Deatherage-Kaiser, and Alexandra Rutledge for comments, input, and suggestions. This work was supported by the National Institute of Allergy and Infectious Diseases (NIH/DHHS through interagency agreement Y1-AI-4894-01; project website www.SysBEP.org) and the National Institute for General Medical Sciences (GM094623). Proteomics capabilities were developed under support from the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER), NIH grant 5P41RR018522-10 and National Institute of General Medical Sciences grant 8 P41 GM103493-10. Significant portions of this work were performed using EMSL, a DOE/BER national scientific user facility located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the DOE by Battelle under Contract DE-AC05-76RLO1830. NR 59 TC 5 Z9 5 U1 0 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD AUG PY 2013 VL 24 IS 8 BP 1214 EP 1223 DI 10.1007/s13361-013-0619-8 PG 10 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 184VZ UT WOS:000321923100008 PM 23649778 ER PT J AU Kobayashi, R Kaneko, K Wakimoto, S Chi, SX Sanada, N Watanuki, R Suzuki, K AF Kobayashi, Riki Kaneko, Koji Wakimoto, Shuichi Chi, Songxue Sanada, Naoyuki Watanuki, Ryuta Suzuki, Kazuya TI Powder neutron diffraction study of HoCoGa5 SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 19th International Conference on Magnetism (ICM) CY JUL 08-12, 2012 CL Busan, SOUTH KOREA DE HoCoGa5; TbCoGa5; Powder neutron diffraction; First-order transition; Successive transitions; WAND ID TRIANGULAR LATTICE; PHASE-TRANSITIONS; SUPERCONDUCTIVITY; ANTIFERROMAGNETS; SCATTERING; CERHIN5; CSNICL3; CECOIN5 AB We have studied successive magnetic transitions of HoCoGa5 at T (N1) = 9.6 K and T (N2) = 7.5 K by using powder neutron diffraction. Apparent superlattice peaks were observed at temperatures below T (N1). With further decreases temperature, the patterns exhibit a substantial change at temperatures below T (N2). The observed magnetic peaks at 8 K (AntiFerromagnetic InCommensurate (AFIC) phase: T (N2) aOE (c) T < T (N1)) can be represented by the propagation vector q (L) = (1/2 0 tau) with tau = 0.35(2). In contrast, the magnetic structure becomes commensurate with q (C) = (1/2 0 1/2) at 4 K (AntiFerromagnetic Commensurate (AFC) phase: T < T (N2)). The temperature dependence of magnetic intensity shows an apparent temperature hysteresis at T (N2), indicates a first-order transition at T (N2). Analysis of the integrated intensity at 4 K reveals that the Ho moment with a size of 8.6(2) A mu(B), oriented parallel to the c-axis in the AFC phase. While the successive transitions of HoCoGa5 are different from those of TbCoGa5, the magnetic structure in the AFC phase of HoCoGa5 is the same as the AF (I) (Tb) of TbCoGa5, and may indicate an additional transition at a lower temperature in HoCoGa5. C1 [Kobayashi, Riki; Kaneko, Koji; Wakimoto, Shuichi] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Ibaraki 3191195, Japan. [Chi, Songxue] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Sanada, Naoyuki; Watanuki, Ryuta; Suzuki, Kazuya] Yokohama Natl Univ, Dept Adv Mat Chem, Hodogaya ku, Yokohama, Kanagawa 240, Japan. RP Kobayashi, R (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Ibaraki 3191195, Japan. EM kobayashi.riki@jaea.go.jp RI Chi, Songxue/A-6713-2013; OI Chi, Songxue/0000-0002-3851-9153; Suzuki, Kazuya/0000-0002-2231-4225; Watanuki, Ryuta/0000-0002-5331-923X FU Ministry of Education, Culture, Sports, Science, and Technology, Japan [23740247, 2454036]; Division of Scientific User Facilities, Department of Energy (DOE) Basic Energy Sciences (BES); Japan Society for the Promotion of Science (JSPS) for Young Scientists FX This work was supported by a Grant-in-Aid for Young Scientists (B) (No. 23740247) and for Scientific Research (C) (No. 2454036) of The Ministry of Education, Culture, Sports, Science, and Technology, Japan. The work at Oak Ridge National Laboratory (ORNL) was supported by the Division of Scientific User Facilities, Department of Energy (DOE) Basic Energy Sciences (BES). Wide-Angle Neutron Diffractometer (WAND) is operated jointly by ORNL and Japan Atomic Energy Agency (JAEA) under the U.S.-Japan Cooperative Program in Neutron Scattering. One of the authors (N.S.) acknowledges the support from the Research Fellowship of the Japan Society for the Promotion of Science (JSPS) for Young Scientists. NR 26 TC 2 Z9 2 U1 0 U2 13 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 EI 1976-8524 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD AUG PY 2013 VL 63 IS 3 SI SI BP 337 EP 340 DI 10.3938/jkps.63.337 PG 4 WC Physics, Multidisciplinary SC Physics GA 206FE UT WOS:000323502800015 ER PT J AU Haga, Y Bauer, ED Tobash, PH Mitchell, JN Ayala-Valenzuela, O McDonald, RD Mielke, CH Fisk, Z AF Haga, Yoshinori Bauer, Eric D. Tobash, Paul H. Mitchell, Jeremy N. Ayala-Valenzuela, Oscar McDonald, Ross D. Mielke, Charles H. Fisk, Zachary TI Shubnikov-de Haas oscillation in PuIn3 SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 19th International Conference on Magnetism (ICM) CY JUL 08-12, 2012 CL Busan, SOUTH KOREA AB The Fermi surface of PuIn3 is investigated using flux-grown single crystals. Shubnikov-de Haas (SdH) oscillations were detected by means of the skin-depth measurement using a proximity-detector-oscillator circuit. Angular dependence of the SdH frequency which corresponds to the extremal cross-sectional area of Fermi surface agrees well with the previous magnetic susceptibility measurement using conventional field-modulation method. The SdH oscillation suddenly vanishes when the magnetic field is tilted from the cubic [111] direction. C1 [Haga, Yoshinori; Fisk, Zachary] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Bauer, Eric D.; Tobash, Paul H.; Mitchell, Jeremy N.; Ayala-Valenzuela, Oscar; McDonald, Ross D.; Mielke, Charles H.; Fisk, Zachary] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fisk, Zachary] Univ Calif Irvine, Irvine, CA 92697 USA. RP Haga, Y (reprint author), Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. EM haga.yoshinori@jaea.go.jp RI Mitchell, Jeremy/E-2875-2010; Mielke, Charles/S-6827-2016; OI Mitchell, Jeremy/0000-0001-7109-3505; Mielke, Charles/0000-0002-2096-5411; Bauer, Eric/0000-0003-0017-1937; Mcdonald, Ross/0000-0002-5819-4739 FU Ministry of Education, Culture, Sports, Science and Technology (MEXT) [20102002, 20224015]; Japan Society of the Promotion of Science (JSPS) FX This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas: Heavy Electrons (No. 20102002), Scientific Research S (No. 20224015) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society of the Promotion of Science (JSPS). NR 5 TC 2 Z9 2 U1 2 U2 17 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 EI 1976-8524 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD AUG PY 2013 VL 63 IS 3 SI SI BP 380 EP 382 DI 10.3938/jkps.63.380 PG 3 WC Physics, Multidisciplinary SC Physics GA 206FE UT WOS:000323502800026 ER PT J AU Bisig, A Stark, M Mawass, MA Moutafis, C Rhensius, J Heidler, J Buttner, F Noske, M Weigand, M Eisebitt, S Tyliszczak, T Van Waeyenberge, B Stoll, H Schutz, G Klaul, M AF Bisig, Andre Staerk, Martin Mawass, Mohamad-Assaad Moutafis, Christoforos Rhensius, Jan Heidler, Jakoba Buettner, Felix Noske, Matthias Weigand, Markus Eisebitt, Stefan Tyliszczak, Tolek Van Waeyenberge, Bartel Stoll, Hermann Schuetz, Gisela Klaeul, Mathias TI Correlation between spin structure oscillations and domain wall velocities SO NATURE COMMUNICATIONS LA English DT Article ID MAGNETIC-FIELDS; MOTION; NANOWIRES; DYNAMICS; STATE AB Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the extrinsic pinning from imperfections in the nanowire only affects slow domain walls and we identify the magneto-static energy, which scales with the domain wall velocity, as the energy reservoir for the domain wall to overcome the local pinning potential landscape. C1 [Bisig, Andre; Staerk, Martin; Moutafis, Christoforos; Rhensius, Jan; Heidler, Jakoba; Klaeul, Mathias] Univ Konstanz, Dept Phys, D-78457 Constance, Germany. [Bisig, Andre; Mawass, Mohamad-Assaad; Noske, Matthias; Weigand, Markus; Stoll, Hermann; Schuetz, Gisela] Max Planck Inst Intelligent Syst, D-70569 Stuttgart, Germany. [Bisig, Andre; Staerk, Martin; Moutafis, Christoforos; Heidler, Jakoba; Buettner, Felix; Klaeul, Mathias] Paul Scherrer Inst, SwissFEL, CH-5232 Villigen, Switzerland. [Bisig, Andre; Staerk, Martin; Moutafis, Christoforos; Heidler, Jakoba; Buettner, Felix; Klaeul, Mathias] Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland. [Bisig, Andre; Mawass, Mohamad-Assaad; Heidler, Jakoba; Buettner, Felix; Klaeul, Mathias] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany. [Moutafis, Christoforos] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Rhensius, Jan; Heidler, Jakoba] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland. [Buettner, Felix; Eisebitt, Stefan] Tech Univ Berlin, Inst Opt & Atom Phys, D-10623 Berlin, Germany. [Eisebitt, Stefan] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany. [Tyliszczak, Tolek] LBNL, Adv Light Source, Berkeley, CA 94720 USA. [Van Waeyenberge, Bartel] Univ Ghent, Dept Solid State Sci, B-9000 Ghent, Belgium. RP Klaul, M (reprint author), Univ Konstanz, Dept Phys, Univ Str 10, D-78457 Constance, Germany. EM Klaeui@Uni-Mainz.de RI Buttner, Felix/J-9286-2012; Klaui, Mathias/B-6972-2009; OI Buttner, Felix/0000-0002-6204-9948; Klaui, Mathias/0000-0002-4848-2569; Moutafis, Christoforos/0000-0002-2006-9203 FU German Science Foundation [DFG SFB 767, KL1811, MAINZ GSC 266]; ERC [2007-Stg 208162]; EU [RTN Spinswitch, MRTN CT-2006-035327, MAGWIRE FP7-ICT-2009-5 257707]; COMATT; Swiss National Science Foundation; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge support by the German Science Foundation (DFG SFB 767, KL1811, MAINZ GSC 266), the ERC (2007-Stg 208162), the EU (RTN Spinswitch, MRTN CT-2006-035327, MAGWIRE FP7-ICT-2009-5 257707), COMATT and the Swiss National Science Foundation. Part of this work was carried out at the MAXYMUS scanning X-ray microscope at HZB, BESSY II in Berlin. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 20 Z9 20 U1 3 U2 48 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2013 VL 4 AR 2328 DI 10.1038/ncomms3328 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 209JR UT WOS:000323752400001 PM 23978905 ER PT J AU Lu, J Lei, Y Lau, KC Luo, XY Du, P Wen, JG Assary, RS Das, U Miller, DJ Elam, JW Albishri, HM Abd El-Hady, D Sun, YK Curtiss, LA Amine, K AF Lu, Jun Lei, Yu Lau, Kah Chun Luo, Xiangyi Du, Peng Wen, Jianguo Assary, Rajeev S. Das, Ujjal Miller, Dean J. Elam, Jeffrey W. Albishri, Hassan M. Abd El-Hady, D. Sun, Yang-Kook Curtiss, Larry A. Amine, Khalil TI A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries SO NATURE COMMUNICATIONS LA English DT Article ID ATOMIC LAYER DEPOSITION; RECHARGEABLE LI-O-2 BATTERIES; AIR BATTERIES; ELECTROLYTES; NANOPARTICLES; CHALLENGES; NANOPORES; CATALYST AB The lithium-oxygen battery, of much interest because of its very high-energy density, presents many challenges, one of which is a high-charge overpotential that results in large inefficiencies. Here we report a cathode architecture based on nanoscale components that results in a dramatic reduction in charge overpotential to similar to 0.2 V. The cathode utilizes atomic layer deposition of palladium nanoparticles on a carbon surface with an alumina coating for passivation of carbon defect sites. The low charge potential is enabled by the combination of palladium nanoparticles attached to the carbon cathode surface, a nanocrystalline form of lithium peroxide with grain boundaries, and the alumina coating preventing electrolyte decomposition on carbon. High-resolution transmission electron microscopy provides evidence for the nanocrystalline form of lithium peroxide. The new cathode material architecture provides the basis for future development of lithium-oxygen cathode materials that can be used to improve the efficiency and to extend cycle life. C1 [Lu, Jun; Luo, Xiangyi; Du, Peng; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lei, Yu; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Lau, Kah Chun; Assary, Rajeev S.; Das, Ujjal; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Electron Microscopy Ctr, Argonne, IL 60439 USA. [Albishri, Hassan M.; Abd El-Hady, D.; Amine, Khalil] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 80203, Saudi Arabia. [Sun, Yang-Kook] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. RP Sun, YK (reprint author), Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. EM yksun@hanyang.ac.kr; curtiss@anl.gov; amine@anl.gov RI Amine, Khalil/K-9344-2013; Du, Peng/F-8336-2013; Lau, Kah Chun/A-9348-2013; BM, MRCAT/G-7576-2011; Luo, Xiangyi/N-4709-2014; Luo, Xiangyi/K-6058-2015; Surendran Assary, Rajeev/E-6833-2012; Faculty of, Sciences, KAU/E-7305-2017; OI Lau, Kah Chun/0000-0002-4925-3397; Luo, Xiangyi/0000-0002-4817-1461; Luo, Xiangyi/0000-0002-4817-1461; Surendran Assary, Rajeev/0000-0002-9571-3307; Lei, Yu/0000-0002-4161-5568 FU U.S. Department of Energy [DE-AC02-06CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE); Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Vehicles Technology Program; Tailored Interfaces for Energy Storage, an Energy Frontier Research Center, Office of Basic Energy Sciences Research; Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant; Korean government, Ministry of Knowledge and Economy [20114010203150]; National Research Foundation of Korea (NRF) grant; Korea government (MEST) [2009-0092780]; INCITE award; ALCC award; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). J.Lu was supported by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Vehicles Technology Program administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. This work was also partially supported from the Tailored Interfaces for Energy Storage, an Energy Frontier Research Center, Office of Basic Energy Sciences Research. This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government, Ministry of Knowledge and Economy (No. 20114010203150) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST; No. 2009-0092780). We acknowledge grants of computer time through INCITE and ALCC awards for BlueGene/P computer at Argonne National Laboratory and allocations on the CNM Carbon Cluster at Argonne National Laboratory, the ALCF Fusion Cluster at Argonne National Laboratory, and the EMSL Chinook Cluster at Pacific Northwest National Laboratory. Use of the Advanced Photon Source and the Electron Microscopy Center at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 41 TC 183 Z9 184 U1 27 U2 303 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2013 VL 4 AR 2383 DI 10.1038/ncomms3383 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 209KG UT WOS:000323754400001 PM 23986151 ER PT J AU Shui, JL Okasinski, JS Kenesei, P Dobbs, HA Zhao, D Almer, JD Liu, DJ AF Shui, Jiang-Lan Okasinski, John S. Kenesei, Peter Dobbs, Howard A. Zhao, Dan Almer, Jonathan D. Liu, Di-Jia TI Reversibility of anodic lithium in rechargeable lithium-oxygen batteries SO NATURE COMMUNICATIONS LA English DT Article ID LI-AIR BATTERIES; NONAQUEOUS LI-O-2 BATTERIES; ETHER-BASED ELECTROLYTES; X-RAY; CARBONATE ELECTROLYTES; REDUCTION; CATHODE; PERFORMANCE; ELECTRODES; CATALYST AB Non-aqueous lithium-air batteries represent the next-generation energy storage devices with very high theoretical capacity. The benefit of lithium-air batteries is based on the assumption that the anodic lithium is completely reversible during the discharge-charge process. Here we report our investigation on the reversibility of the anodic lithium inside of an operating lithium-air battery using spatially and temporally resolved synchrotron X-ray diffraction and three-dimensional micro-tomography technique. A combined electrochemical process is found, consisting of a partial recovery of lithium metal during the charging cycle and a constant accumulation of lithium hydroxide under both charging and discharging conditions. A lithium hydroxide layer forms on the anode separating the lithium metal from the separator. However, numerous microscopic 'tunnels' are also found within the hydroxide layer that provide a pathway to connect the metallic lithium with the electrolyte, enabling sustained ion-transport and battery operation until the total consumption of lithium. C1 [Shui, Jiang-Lan; Dobbs, Howard A.; Zhao, Dan; Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Okasinski, John S.; Kenesei, Peter; Almer, Jonathan D.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Liu, DJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM djliu@anl.gov RI Zhao, Dan/D-5975-2011 OI Zhao, Dan/0000-0002-4427-2150 FU Office of Science, U. S. Department of Energy [DE-AC02-06CH11357]; Grand Challenge program of Argonne National Laboratory FX This work and the use of Advanced Photon Source are supported by Office of Science, U. S. Department of Energy under Contract DE-AC02-06CH11357. The financial support from the Grand Challenge program of Argonne National Laboratory is gratefully acknowledged. NR 55 TC 74 Z9 76 U1 23 U2 281 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2013 VL 4 AR 2255 DI 10.1038/ncomms3255 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 209JF UT WOS:000323751100006 PM 23929396 ER PT J AU Sokolov, AN Yap, FL Liu, N Kim, K Ci, LJ Johnson, OB Wang, HL Vosgueritchian, M Koh, AL Chen, JH Park, J Bao, ZN AF Sokolov, Anatoliy N. Yap, Fung Ling Liu, Nan Kim, Kwanpyo Ci, Lijie Johnson, Olasupo B. Wang, Huiliang Vosgueritchian, Michael Koh, Ai Leen Chen, Jihua Park, Jinseong Bao, Zhenan TI Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition SO NATURE COMMUNICATIONS LA English DT Article ID GRAPHENE NANORIBBONS; AMORPHOUS-CARBON; RAMAN-SPECTROSCOPY; FILMS; FABRICATION; MOLECULES; ARRAYS; NANOLITHOGRAPHY; CONDUCTIVITY; ADSORPTION AB Graphene, laterally confined within narrow ribbons, exhibits a bandgap and is envisioned as a next-generation material for high-performance electronics. To take advantage of this phenomenon, there is a critical need to develop methodologies that result in graphene ribbons <10 nm in width. Here we report the use of metal salts infused within stretched DNA as catalysts to grow nanoscopic graphitic nanoribbons. The nanoribbons are termed graphitic as they have been determined to consist of regions of sp(2) and sp(3) character. The nanoscopic graphitic nanoribbons are micrometres in length, <10 nm in width, and take on the shape of the DNA template. The DNA strand is converted to a graphitic nanoribbon by utilizing chemical vapour deposition conditions. Depending on the growth conditions, metallic or semiconducting graphitic nanoribbons are formed. Improvements in the growth method have potential to lead to bottom-up synthesis of pristine single-layer graphene nanoribbons. C1 [Sokolov, Anatoliy N.; Yap, Fung Ling; Liu, Nan; Kim, Kwanpyo; Johnson, Olasupo B.; Vosgueritchian, Michael; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Sokolov, Anatoliy N.] Dow Chem Co USA, Midland, MI 48640 USA. [Yap, Fung Ling] ASTAR, IMRE, Singapore 17602, Singapore. [Ci, Lijie; Park, Jinseong] Samsung Cheil Ind Inc, Corp Res Inst, San Jose Lab, San Jose, CA 95131 USA. [Wang, Huiliang] Stanford Univ, Stanford, CA 94305 USA. [Koh, Ai Leen] Stanford Univ, Stanford Nano Shared Facil, Stanford, CA 94305 USA. [Chen, Jihua] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Bao, ZN (reprint author), Stanford Univ, Dept Chem Engn, Stauffer 3,381 North South Mall, Stanford, CA 94305 USA. EM zbao@stanford.edu RI Kim, Kwanpyo/D-9121-2011; Wang, Huiliang/C-6949-2014; Chen, Jihua/F-1417-2011; 慈, 立杰/E-3485-2014 OI Kim, Kwanpyo/0000-0001-8497-2330; Chen, Jihua/0000-0001-6879-5936; FU Agency for Science, Technology and Research (A*STAR); National Science Foundation [DMR-EPS 1006989]; Stanford Global Climate and Energy Program; David Filo and Jerry Yang Faculty; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX F.L.Y. thanks the Agency for Science, Technology and Research (A*STAR) for her postdoctoral fellowship. Z.B. acknowledge partial support from the National Science Foundation (DMR-EPS 1006989), the Stanford Global Climate and Energy Program and the David Filo and Jerry Yang Faculty Fellow. We thank M.R. Dokmeci at Northeastern University for providing the parylene-C masks. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We acknowledge Professor Hari Manoharan, Alex Contryman, Luckshihta Suriyasena Liyanage, Peng Wei, Steve Park, Alex Azyner, Ying Diao and Sangwon Lee for experimental support and discussions. NR 47 TC 29 Z9 29 U1 7 U2 131 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2013 VL 4 AR 2402 DI 10.1038/ncomms3402 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 209KM UT WOS:000323755000001 PM 23989553 ER PT J AU Wadley, P Novak, V Campion, RP Rinaldi, C Marti, X Reichlova, H Zelezny, J Gazquez, J Roldan, MA Varela, M Khalyavin, D Langridge, S Kriegner, D Maca, F Masek, J Bertacco, R Holy, V Rushforth, AW Edmonds, KW Gallagher, BL Foxon, CT Wunderlich, J Jungwirth, T AF Wadley, P. Novak, V. Campion, R. P. Rinaldi, C. Marti, X. Reichlova, H. Zelezny, J. Gazquez, J. Roldan, M. A. Varela, M. Khalyavin, D. Langridge, S. Kriegner, D. Maca, F. Masek, J. Bertacco, R. Holy, V. Rushforth, A. W. Edmonds, K. W. Gallagher, B. L. Foxon, C. T. Wunderlich, J. Jungwirth, T. TI Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs SO NATURE COMMUNICATIONS LA English DT Article ID TRIPLE-CRYSTAL DIFFRACTOMETRY; MAGNETIC-PROPERTIES; NEUTRON-DIFFRACTION; SEMICONDUCTORS; SYSTEM; LAYERS; SB AB Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Neel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics. C1 [Wadley, P.; Novak, V.; Rinaldi, C.; Marti, X.; Reichlova, H.; Zelezny, J.; Wunderlich, J.; Jungwirth, T.] Inst Phys ASCR, VVI, Prague 16253 6, Czech Republic. [Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Foxon, C. T.; Jungwirth, T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Rinaldi, C.; Bertacco, R.] Politecn Milan, LNESS Dipartimento Fis, I-22100 Como, Italy. [Marti, X.; Reichlova, H.; Holy, V.] Charles Univ Prague, Fac Math & Phys, Prague 12116 2, Czech Republic. [Marti, X.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Gazquez, J.] ICMAB CSIC, Inst Cincia Mat Barcelona, E-08193 Bellaterra, Spain. [Roldan, M. A.; Varela, M.] Univ Compluense Madrid, Dept Fis Aplicada 3, Madrid 28040, Spain. [Roldan, M. A.; Varela, M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Khalyavin, D.; Langridge, S.] Rutherford Appleton Lab, ISIS, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Kriegner, D.] Univ Linz, Inst Semicond & Solid State Phys, A-4040 Linz, Austria. [Maca, F.; Masek, J.] Inst Phys ASCR, VVI, Prague 18221 8, Czech Republic. [Wunderlich, J.] Hitachi Cambridge Lab, Cambridge CB3 0HE, England. RP Wadley, P (reprint author), Inst Phys ASCR, VVI, Cukrovarnicka 10, Prague 16253 6, Czech Republic. EM peter.wadley@nottingham.ac.uk RI Gallagher, Bryan/B-8116-2013; Khalyavin, Dmitry/E-4335-2017; Kriegner, Dominik/C-6225-2013; Gazquez, Jaume/C-5334-2012; Marti, Xavier/E-1103-2014; Varela, Maria/E-2472-2014; Maca, Frantisek/G-4467-2014; Zelezny, Jakub/G-5276-2014; Masek, Jan/G-5813-2014; Novak, Vit/G-6844-2014; Wunderlich, Joerg/G-6918-2014; Jungwirth, Tomas/G-8952-2014; Varela, Maria/H-2648-2012; Reichlova, Helena/H-4629-2014; Holy, Vaclav/E-1508-2017 OI Edmonds, Kevin/0000-0002-9793-4170; Gallagher, Bryan/0000-0001-8310-0899; Campion, Richard/0000-0001-8990-8987; Bertacco, Riccardo/0000-0002-8109-9166; Rinaldi, Christian/0000-0001-6930-211X; Rushforth, Andrew/0000-0001-8774-6662; Langridge, Sean/0000-0003-1104-0772; Khalyavin, Dmitry/0000-0002-6724-7695; Kriegner, Dominik/0000-0001-6961-6581; Gazquez, Jaume/0000-0002-2561-328X; Marti, Xavier/0000-0003-1653-5619; Varela, Maria/0000-0002-6582-7004; Zelezny, Jakub/0000-0001-9471-0078; Jungwirth, Tomas/0000-0002-9910-1674; Holy, Vaclav/0000-0002-0370-6928 FU ERC [23973]; Materials Sciences and Engineering Division of the U.S. DOE; ORNLs Shared Research Equipment (ShaRE) User Facility; Office of BES, U.S. DOE; Spanish Ministerio de Ciencia e Innovacin Tecnolgica [MAT2009-07967, CSD2007-00041]; Generalitat de Catalunya; Czech Science Foundation [P204/11/P339]; Austrian Academy of Sciences (DOC-Program); EU ERC Advanced Grant [268066]; Ministry of Education of the Czech Republic [LM2011026]; Academy of Sciences of the Czech Republic Preamium Academiae; Fondazione Cariplo via the project EcoMag [2010-0584]; Science and Technology Facilities Council; EPSRC [EP/K027808/1] FX Research at UCM (M.A.R.) was supported by the ERC Starting Grant No. 23973. Research at ORNL was supported by the Materials Sciences and Engineering Division of the U.S. DOE (M.V.) and by ORNLs Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of BES, U.S. DOE. J.R. C.F. acknowledges financial support from Spanish Ministerio de Ciencia e Innovacin Tecnolgica (Projects MAT2009-07967, Consolider NANOSELECT CSD2007-00041) and the Generalitat de Catalunya. X.M. acknowledges the Czech Science Foundation (Project P204/11/P339). D.Kriegner acknowledges the support by the Austrian Academy of Sciences (DOC-Program). T.J. and V.N acknowledge the support from EU ERC Advanced Grant No. 268066 and from the Ministry of Education of the Czech Republic Grants No. LM2011026, and from the Academy of Sciences of the Czech Republic Preamium Academiae. R.B. and C.R. acknowledge financial support from Fondazione Cariplo via the project EcoMag (Project No. 2010-0584). Experiments at the ISIS Pulsed Neutron and Muon Source were supported by a beamtime allocation from the Science and Technology Facilities Council. Research at the University of Nottingham was funded by EPSRC grant EP/K027808/1. NR 35 TC 29 Z9 29 U1 9 U2 101 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2013 VL 4 AR 2322 DI 10.1038/ncomms3322 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 209JQ UT WOS:000323752300007 PM 23959149 ER PT J AU Wang, YS Yu, XQ Xu, SY Bai, JM Xiao, RJ Hu, YS Li, H Yang, XQ Chen, LQ Huang, XJ AF Wang, Yuesheng Yu, Xiqian Xu, Shuyin Bai, Jianming Xiao, Ruijuan Hu, Yong-Sheng Li, Hong Yang, Xiao-Qing Chen, Liquan Huang, Xuejie TI A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries SO NATURE COMMUNICATIONS LA English DT Article ID RECHARGEABLE NA BATTERIES; ENERGY-STORAGE; HIGH-CAPACITY; CYCLE LIFE; LOW-COST; ELECTROCHEMICAL INTERCALATION; CATHODE MATERIAL; ANODE MATERIALS; INSERTION; PERFORMANCE AB Room-temperature sodium-ion batteries have shown great promise in large-scale energy storage applications for renewable energy and smart grid because of the abundant sodium resources and low cost. Although many interesting positive electrode materials with acceptable performance have been proposed, suitable negative electrode materials have not been identified and their development is quite challenging. Here we introduce a layered material, P2-Na-0.66[Li0.22Ti0.78]O-2, as the negative electrode, which exhibits only similar to 0.77% volume change during sodium insertion/extraction. The zero-strain characteristics ensure a potentially long cycle life. The electrode material also exhibits an average storage voltage of 0.75V, a practical usable capacity of ca. 100 mAh g(-1), and an apparent Na+ diffusion coefficient of 1 x 10(-10) cm(-2) s(-1) as well as the best cyclability for a negative electrode material in a half-cell reported to date. This contribution demonstrates that P2-Na-0.66 [Li0.22Ti0.78]O-2 is a promising negative electrode material for the development of rechargeable long-life sodium-ion batteries. C1 [Wang, Yuesheng; Xu, Shuyin; Xiao, Ruijuan; Hu, Yong-Sheng; Li, Hong; Chen, Liquan; Huang, Xuejie] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing Key Lab New Energy Mat & Devices, Key Lab Renewable Energy,Inst Phys, Beijing 100190, Peoples R China. [Yu, Xiqian; Bai, Jianming; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Hu, YS (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing Key Lab New Energy Mat & Devices, Key Lab Renewable Energy,Inst Phys, Beijing 100190, Peoples R China. EM rjxiao@aphy.iphy.ac.cn; yshu@aphy.iphy.ac.cn RI Li, Hong/C-4643-2008; Xiao, Ruijuan/B-4739-2010; Hu, Yong-Sheng/H-1177-2011; Bai, Jianming/O-5005-2015; Yu, Xiqian/B-5574-2014; wang, yuesheng/D-2631-2015 OI Li, Hong/0000-0002-8659-086X; Hu, Yong-Sheng/0000-0002-8430-6474; Yu, Xiqian/0000-0001-8513-518X; wang, yuesheng/0000-0001-7269-9015 FU '863' Project [2011AA11A235, 2009AA03310]; '973' Projects [2009CB220104, 2010CB833102, 2012CB932900]; NSFC [51222210, 11234013]; CAS project [KJCX2-YW-W26]; One Hundred Talent Project of the Chinese Academy of Sciences; Office of Vehicle Technologies [DEAC02-98CH10886]; US Department of Energy FX We thank Professor C. Delmas for the helpful and valuable discussions on the structure evolution during sodium insertion. This work was supported by funding from the '863' Project (2011AA11A235, 2009AA03310), '973' Projects (2009CB220104, 2010CB833102, 2012CB932900), NSFC (51222210, 11234013), CAS project (KJCX2-YW-W26) and One Hundred Talent Project of the Chinese Academy of Sciences. The work at Brookhaven National Laboratory is supported by the US Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract Number DEAC02-98CH10886. We also acknowledge beamline X14A and X18A at NSLS (BNL) and Shanghai Synchrotron Radiation Facility (SSRF) BL14B1. NR 59 TC 184 Z9 187 U1 49 U2 510 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD AUG PY 2013 VL 4 AR 2365 DI 10.1038/ncomms3365 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 209KB UT WOS:000323753600001 PM 23978932 ER PT J AU Hanson, JD Anderson, DT Cianciosa, M Franz, P Harris, JH Hartwell, GH Hirshman, SP Knowlton, SF Lao, LL Lazarus, EA Marrelli, L Maurer, DA Schmitt, JC Sontag, AC Stevenson, BA Terranova, D AF Hanson, J. D. Anderson, D. T. Cianciosa, M. Franz, P. Harris, J. H. Hartwell, G. H. Hirshman, S. P. Knowlton, S. F. Lao, L. L. Lazarus, E. A. Marrelli, L. Maurer, D. A. Schmitt, J. C. Sontag, A. C. Stevenson, B. A. Terranova, D. TI Non-axisymmetric equilibrium reconstruction for stellarators, reversed field pinches and tokamaks SO NUCLEAR FUSION LA English DT Article AB Axisymmetric equilibrium reconstruction using magnetohydrodynamic equilibrium solutions to the Grad-Shafranov equation has long been an important tool for interpreting tokamak experiments. This paper describes recent results in non-axisymmetric (three-dimensional) equilibrium reconstruction of nominally axisymmetric plasmas (tokamaks and reversed field pinches (RFPs)), and fully non-axisymmetric plasmas (stellarators). Results from applying the V3FIT code to CTH and HSX stellarator plasmas, RFX-mod RFP plasmas and the DIII-D tokamak are presented. C1 [Hanson, J. D.; Cianciosa, M.; Hartwell, G. H.; Knowlton, S. F.; Maurer, D. A.; Stevenson, B. A.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Anderson, D. T.] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. [Franz, P.; Marrelli, L.; Terranova, D.] EURATOM ENEA Assoc, Consorzio RFX, Padua, Italy. [Harris, J. H.; Hirshman, S. P.; Lazarus, E. A.; Sontag, A. C.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Lao, L. L.] Gen Atom, San Diego, CA USA. [Schmitt, J. C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hanson, JD (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. EM jdhanson@auburn.edu RI Marrelli, Lionello/G-4451-2013 OI Marrelli, Lionello/0000-0001-5370-080X FU U.S. DOE [DE-AC05-00OR22725, DE-FC02-04ER54698, DE-FG02-95ER54309]; UT Battelle, LLC; European Communities FX This work was supported by: the U.S. DOE under Contract DE-AC05-00OR22725 with UT Battelle, LLC; U.S. DOE under Grant DE-FC02-04ER54698 and Contract DE-FG02-95ER54309; U.S. DOE under other contracts and grants; and the European Communities under contract of Association between Euratom/ENEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission or the U.S. DOE. NR 11 TC 10 Z9 10 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083016 DI 10.1088/0029-5515/53/8/083016 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000018 ER PT J AU Holland, C Kinsey, JE DeBoo, JC Burrell, KH Luce, TC Smith, SP Petty, CC White, AE Rhodes, TL Schmitz, L Doyle, EJ Hillesheim, JC McKee, GR Yan, Z Wang, G Zeng, L Grierson, BA Marinoni, A Mantica, P Snyder, PB Waltz, RE Staebler, GM Candy, J AF Holland, C. Kinsey, J. E. DeBoo, J. C. Burrell, K. H. Luce, T. C. Smith, S. P. Petty, C. C. White, A. E. Rhodes, T. L. Schmitz, L. Doyle, E. J. Hillesheim, J. C. McKee, G. R. Yan, Z. Wang, G. Zeng, L. Grierson, B. A. Marinoni, A. Mantica, P. Snyder, P. B. Waltz, R. E. Staebler, G. M. Candy, J. TI Validation studies of gyrofluid and gyrokinetic predictions of transport and turbulence stiffness using the DIII-D tokamak SO NUCLEAR FUSION LA English DT Article AB A series of carefully designed validation experiments conducted on DIII-D to rigorously test gyrofluid and gyrokinetic predictions of transport and turbulence stiffness in both the ion and electron channels have provided an improved assessment of the experimental fidelity of those models over a range of plasma parameters. The first set of experiments conducted was designed to test predictions of H-mode core transport stiffness at fixed pedestal density and temperature. In low triangularity lower single null plasmas, a factor of 3 variation in neutral beam injection (NBI) heating was obtained, with modest changes to pedestal conditions that slowly increased with applied heating. The measurements and trends with increased NBI heating at both low and high injected torque are generally well-reproduced by the quasilinear trapped gyro-Landau fluid (TGLF) transport model at the lowest heating levels, but with decreasing fidelity (particularly in the electron profiles) as the heating power is increased. Complementing these global stiffness studies, a second set of experiments was performed to quantify the relationship between the local electron energy flux Q(e) and electron temperature gradient by varying the deposition profile of electron cyclotron heating about a specified reference radius in low density, low current L-mode plasmas. Modelling of these experiments using both the TGLF model and the nonlinear gyrokinetic GYRO code yields systematic underpredictions of the measured fluxes and fluctuation levels. C1 [Holland, C.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Kinsey, J. E.; DeBoo, J. C.; Burrell, K. H.; Luce, T. C.; Smith, S. P.; Petty, C. C.; Snyder, P. B.; Waltz, R. E.; Staebler, G. M.; Candy, J.] Gen Atom Co, San Diego, CA 92186 USA. [White, A. E.; Marinoni, A.] MIT, Cambridge, MA 02139 USA. [Rhodes, T. L.; Schmitz, L.; Doyle, E. J.; Wang, G.; Zeng, L.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Rhodes, T. L.; Schmitz, L.; Doyle, E. J.; Wang, G.; Zeng, L.] Univ Calif Los Angeles, PSTI, Los Angeles, CA 90095 USA. [Hillesheim, J. C.] Culham Sci Ctr, EURATOM CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England. [McKee, G. R.; Yan, Z.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Grierson, B. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Mantica, P.] Assoc Euratom ENEA CNR, Ist Fis Plasma P Caldirola, Milan, Italy. RP Holland, C (reprint author), Univ Calif San Diego, Energy Res Ctr, 9500 Gilman Dr, La Jolla, CA 92093 USA. RI Mantica, Paola/K-3033-2012 FU US Department of Energy [DE-FG02-07ER54917, DE-FG02-06ER54871, DE-FC02-04ER54698, DE-FC02-99ER54512, DE-FG02-08ER54984, DE-FG02-89ER53296, DE-FG020-8ER54999]; Office of Science of the Department of Energy [DE-AC05-00OR22725]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the US Department of Energy under DE-FG02-07ER54917, DE-FG02-06ER54871, DE-FC02-04ER54698, DE-FC02-99ER54512, DE-FG02-08ER54984, DE-FG02-89ER53296 and DE-FG020-8ER54999. The authors wish to thank E. Bass, D. Pace, M. Van Zeeland and W.W. Heidbrink for useful discussions of energetic particle physics. The numerical simulations were performed as part of the research program of the Center for the Simulation of Plasma Microturbulence. This research used resources at the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. Additional simulations were performed which used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No DE-AC02-05CH11231. NR 27 TC 13 Z9 14 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083027 DI 10.1088/0029-5515/53/8/083027 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000029 ER PT J AU Hollmann, EM Austin, ME Boedo, JA Brooks, NH Commaux, N Eidietis, NW Humphreys, DA Izzo, VA James, AN Jernigan, TC Loarte, A Martin-Solis, J Moyer, RA Munoz-Burgos, JM Parks, PB Rudakov, DL Strait, EJ Tsui, C Van Zeeland, MA Wesley, JC Yu, JH AF Hollmann, E. M. Austin, M. E. Boedo, J. A. Brooks, N. H. Commaux, N. Eidietis, N. W. Humphreys, D. A. Izzo, V. A. James, A. N. Jernigan, T. C. Loarte, A. Martin-Solis, J. Moyer, R. A. Munoz-Burgos, J. M. Parks, P. B. Rudakov, D. L. Strait, E. J. Tsui, C. Van Zeeland, M. A. Wesley, J. C. Yu, J. H. TI Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D SO NUCLEAR FUSION LA English DT Article ID TOKAMAK; AVALANCHE; SPECTRA AB DIII-D experiments on rapid shutdown runaway electron (RE) beams have improved the understanding of the processes involved in RE beam control and dissipation. Improvements in RE beam feedback control have enabled stable confinement of RE beams out to the volt-second limit of the ohmic coil, as well as enabling a ramp down to zero current. Spectroscopic studies of the RE beam have shown that neutrals tend to be excluded from the RE beam centre. Measurements of the RE energy distribution function indicate a broad distribution with mean energy of order several MeV and peak energies of order 30-40 MeV. The distribution function appears more skewed towards low energies than expected from avalanche theory. The RE pitch angle appears fairly directed (theta similar to 0.2) at high energies and more isotropic at lower energies (epsilon < 100 keV). Collisional dissipation of RE beam current has been studied by massive gas injection of different impurities into RE beams; the equilibrium assimilation of these injected impurities appears to be reasonably well described by radial pressure balance between neutrals and ions. RE current dissipation following massive impurity injection is shown to be more rapid than expected from avalanche theory-this anomalous dissipation may be linked to enhanced radial diffusion caused by the significant quantity of high-Z impurities (typically argon) in the plasma. The final loss of RE beams to the wall has been studied: it was found that conversion of magnetic to kinetic energy is small for RE loss times smaller than the background plasma ohmic decay time of order 1-2 ms. C1 [Hollmann, E. M.; Boedo, J. A.; Izzo, V. A.; Rudakov, D. L.; Yu, J. H.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Austin, M. E.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Brooks, N. H.; Eidietis, N. W.; Humphreys, D. A.; Parks, P. B.; Strait, E. J.; Van Zeeland, M. A.; Wesley, J. C.] Gen Atom, San Diego, CA 92186 USA. [Commaux, N.; Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TX 37831 USA. [James, A. N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Loarte, A.] ITER Org, F-13115 St Paul Les Durance, France. [Martin-Solis, J.] Univ Carlos III Madrid, Madrid, Spain. [Munoz-Burgos, J. M.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. [Tsui, C.] Univ Toronto, Inst Aerosp Studies, Toronto M3H 5T6, ON, Canada. RP Hollmann, EM (reprint author), Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. FU US Department of Energy [DE-FG02-07ER54917, DE-FG03-97ER54415, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC52-07NS27344, DE-AC05-06OR23100] FX This work was supported in part by the US Department of Energy under DE-FG02-07ER54917, DE-FG03-97ER54415, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC52-07NS27344 and DE-AC05-06OR23100. Suggestions from R. Goldston are acknowledged. NR 25 TC 36 Z9 38 U1 3 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083004 DI 10.1088/0029-5515/53/8/083004 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000006 ER PT J AU Jaworski, MA Abrams, T Allain, JP Bell, MG Bell, RE Diallo, A Gray, TK Gerhardt, SP Kaita, R Kugel, HW LeBlanc, BP Maingi, R McLean, AG Menard, J Nygren, R Ono, M Podesta, M Roquemore, AL Sabbagh, SA Scotti, F Skinner, CH Soukhanovskii, VA Stotler, DP AF Jaworski, M. A. Abrams, T. Allain, J. P. Bell, M. G. Bell, R. E. Diallo, A. Gray, T. K. Gerhardt, S. P. Kaita, R. Kugel, H. W. LeBlanc, B. P. Maingi, R. McLean, A. G. Menard, J. Nygren, R. Ono, M. Podesta, M. Roquemore, A. L. Sabbagh, S. A. Scotti, F. Skinner, C. H. Soukhanovskii, V. A. Stotler, D. P. CA NSTX Team TI Liquid lithium divertor characteristics and plasma-material interactions in NSTX high-performance plasmas SO NUCLEAR FUSION LA English DT Article ID OPERATION; LIMITER; SURFACE AB Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The Liquid Lithium Divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. The LLD consisted of a copper-backed structure with a porous molybdenum front face. Nominal Li filling levels by the end of the run campaign exceeded the porosity void fraction by 150%. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m(-2), no macroscopic ejection events were observed. In addition, no substrate line emission was observed after achieving lithium-melt temperatures indicating the lithium wicks and provides a protective coating on the molybdenum porous layer. Impurity emission from the divertor suggests that the plasma is interacting with oxygen-contaminated lithium whether diverted on the LLD or not. A database of LLD discharges is analysed to consider whether there is a net effect on the discharges over the range of total deposited lithium in the machine. Examination of H-97L indicates that performance was constant throughout the run, consistent with the hypothesis that it is the quality of the surface layers of the lithium that impact performance. The accumulation of impurities suggests a fully flowing liquid lithium system to obtain a steady-state PFC on timescales relevant to NSTX. C1 [Jaworski, M. A.; Abrams, T.; Bell, M. G.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; Kaita, R.; Kugel, H. W.; LeBlanc, B. P.; Menard, J.; Ono, M.; Podesta, M.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Stotler, D. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Allain, J. P.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Gray, T. K.; Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [McLean, A. G.; Soukhanovskii, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Nygren, R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Sabbagh, S. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Jaworski, MA (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM mjaworsk@pppl.gov RI Stotler, Daren/J-9494-2015; OI Stotler, Daren/0000-0001-5521-8718; Menard, Jonathan/0000-0003-1292-3286; Allain, Jean Paul/0000-0003-1348-262X FU USDOE [DE-AC02-09CH11466, DE-AC05-00OR22725, DE-AC52-07NA27344, DE-FG02-99ER54524, DE-FG02-08ER54990, DE-AC04-94AL85000] FX M.A.J. would like to thank R. Axford (U-Illinois) for useful discussions on the Raleigh-Taylor analysis presented in this work. This work supported by USDOE contracts DE-AC02-09CH11466, DE-AC05-00OR22725, DE-AC52-07NA27344, DE-FG02-99ER54524, DE-FG02-08ER54990 and DE-AC04-94AL85000. NR 42 TC 16 Z9 16 U1 9 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083032 DI 10.1088/0029-5515/53/8/083032 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000034 ER PT J AU Kolesnikov, RA Bulmer, RH LoDestro, L Casper, TA Pitts, RA AF Kolesnikov, R. A. Bulmer, R. H. LoDestro, L. Casper, T. A. Pitts, R. A. TI Equilibrium and vertical-instability considerations for vertical strike-point shifts on the ITER divertor targets SO NUCLEAR FUSION LA English DT Article AB The study of operation with raised strike points on the first ITER divertor target plates is motivated by the need to gain experience with operation with strike points on tungsten (W) surfaces during the non-active phases (in the case of an initial carbon fibre composite (CFC)/W divertor); or (if ITER begins with a full-W divertor), to gain experience with plasma control and transients while operating with raised strike points to avoid damaging the baseline strike regions in preparation for the nuclear phase, and to provide a means for operation should damage occur in the baseline strike zone. For operation with raised strike points, we use the Corsica code to investigate the range of possible H- and L-mode equilibria, with emphasis on the maximum plasma current, achievable shapes, etc. With raised strike points the maximum achievable plasma current is close to 14 MA. The operating space (beta(p) - l(i)) for raised strike points has been studied. The size of the beta(p) - l(i) operating space shrinks (compared to using standard strike-point positions) at 14 MA. For 12 MA, however, the operating space is not affected when using raised strike points. For equilibria with elevated strike points (at roughly the CFC/W transitions, following the 2007 ITER Design Review) the vertical-instability growth-rates at high plasma current (14 MA) are somewhat high but are within the 20s(-1) which studies indicate are controllable in ITER. At lower currents (12 MA) in H-mode, the vertical-instability growth rates stay below 10.0s(-1) for most of beta(p) - l(i) space. At 12 MA in H-mode, multiple equilibria which meet our constraints have been found in overlapping regions of the beta(p) - l(i) operating space. C1 [Kolesnikov, R. A.; Bulmer, R. H.; LoDestro, L.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Casper, T. A.; Pitts, R. A.] ITER Org, Cadarache, France. RP Kolesnikov, RA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 11 TC 0 Z9 0 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083021 DI 10.1088/0029-5515/53/8/083021 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000023 ER PT J AU Lanctot, MJ Buttery, RJ de Grassie, JS Evans, TE Ferraro, NM Hanson, JM Haskey, SR Moyer, RA Nazikian, R Osborne, TH Orlov, DM Snyder, PB Wade, MR AF Lanctot, M. J. Buttery, R. J. de Grassie, J. S. Evans, T. E. Ferraro, N. M. Hanson, J. M. Haskey, S. R. Moyer, R. A. Nazikian, R. Osborne, T. H. Orlov, D. M. Snyder, P. B. Wade, M. R. CA DIII-D Team TI Sustained suppression of type-I edge-localized modes with dominantly n=2 magnetic fields in DIII-D SO NUCLEAR FUSION LA English DT Article ID FEEDBACK STABILIZATION; COLLISIONALITY REGIME; D TOKAMAK; TRANSPORT; STABILITY; ITER AB Type-I edge-localized modes (ELMs) have been suppressed in DIII-D (Luxon et al 2003 Nucl. Fusion 43 1813) H-mode discharges with a H-98Y2 confinement factor near 1.0 using magnetic perturbations (MPs) with dominant toroidal mode number n = 2. This expands access to the ELM-suppressed regime, which was previously attainable in DIII-D only with n = 3 fields. ELM suppression is obtained with two rows of internal coils for 1.8 s with normalized beta of 1.9 and average triangularity of 0.53, corresponding to a scaled version of ITER scenario 2 at an ITER relevant electron collisionality of 0.2. The applied field reduces the pedestal pressure and edge current via the density without degrading the edge thermal transport barrier. ELITE calculations find that the resulting profiles are stable to intermediate-n peeling-ballooning modes. ELM suppression is found within different ranges of q(95) depending on the coil configuration used to generate the MP. The edge safety factors associated with suppression do not correspond to those that maximize the pitch-resonant components of the applied vacuum field. Instead, ELM suppression is correlated with an increase in the amplification of kink-resonant components of the calculated ideal MHD plasma response field. C1 [Lanctot, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lanctot, M. J.; Buttery, R. J.; de Grassie, J. S.; Evans, T. E.; Ferraro, N. M.; Osborne, T. H.; Snyder, P. B.; Wade, M. R.] Gen Atom Co, San Diego, CA 92186 USA. [Hanson, J. M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Haskey, S. R.] Australian Natl Univ, Res Sch Phys Sci & Engn, Plasma Res Lab, Canberra, ACT 0200, Australia. [Moyer, R. A.; Orlov, D. M.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Nazikian, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lanctot, MJ (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI Haskey, Shaun/M-1469-2015; Orlov, Dmitriy/D-2406-2016; Lanctot, Matthew J/O-4979-2016; OI Haskey, Shaun/0000-0002-9978-6597; Orlov, Dmitriy/0000-0002-2230-457X; Lanctot, Matthew J/0000-0002-7396-3372; Ferraro, Nathaniel/0000-0002-6348-7827 FU US Department of Energy [DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-04ER54761, DE-FG02-07ER54917]; AINSE; ANSTO FX This work was supported by the US Department of Energy under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-04ER54761, and DE-FG02-07ER54917. S.H. was supported by AINSE and ANSTO. The authors acknowledge valuable comments and suggestions from E.J. Strait, I. Joseph, F.L. Waelbroeck and J.D. Callen. NR 38 TC 23 Z9 23 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083019 DI 10.1088/0029-5515/53/8/083019 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000021 ER PT J AU Litaudon, X Bernard, JM Colas, L Dumont, R Argouarch, A Bottollier-Curtet, H Bremond, S Champeaux, S Corre, Y Dumortier, P Firdaouss, M Guilhem, D Gunn, JP Gouard, P Hoang, GT Jacquot, J Klepper, CC Kubic, M Kyrytsya, V Lombard, G Milanesio, D Messiaen, A Mollard, P Meyer, O Zarzoso, D AF Litaudon, X. Bernard, J. M. Colas, L. Dumont, R. Argouarch, A. Bottollier-Curtet, H. Bremond, S. Champeaux, S. Corre, Y. Dumortier, P. Firdaouss, M. Guilhem, D. Gunn, J. P. Gouard, Ph. Hoang, G. T. Jacquot, J. Klepper, C. C. Kubic, M. Kyrytsya, V. Lombard, G. Milanesio, D. Messiaen, A. Mollard, P. Meyer, O. Zarzoso, D. TI Physics and technology in the ion-cyclotron range of frequency on Tore Supra and TITAN test facility: implication for ITER SO NUCLEAR FUSION LA English DT Article ID WAVE CURRENT DRIVE; FARADAY SHIELD; ICRF ANTENNAS; DIII-D; JET; PERFORMANCE; SHEATHS; TOKAMAK; SIMULATION; PLASMAS AB To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Tore Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of +/- 400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(He-3) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions. C1 [Litaudon, X.; Bernard, J. M.; Colas, L.; Dumont, R.; Argouarch, A.; Bottollier-Curtet, H.; Bremond, S.; Corre, Y.; Firdaouss, M.; Guilhem, D.; Gunn, J. P.; Hoang, G. T.; Jacquot, J.; Kubic, M.; Lombard, G.; Mollard, P.; Meyer, O.; Zarzoso, D.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Champeaux, S.] CEA, DAM, DIF, F-91297 Arpajon, France. [Dumortier, P.; Kyrytsya, V.; Messiaen, A.] Royal Mil Acad, TEC, Assoc EURATOM Belgian State, Brussels, Belgium. [Klepper, C. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Milanesio, D.] Politecn Torino, Dept Elect, Turin, Italy. RP Litaudon, X (reprint author), CEA, IRFM, F-13108 St Paul Les Durance, France. EM xavier.litaudon@cea.fr FU European Communities; French government FX Part of this work, supported by the European Communities under the contract of Association between EURATOM and CEA, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The new test stand facility, TITAN, was supported within the framework of the French government stimulus plan 2010. NR 51 TC 4 Z9 4 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083012 DI 10.1088/0029-5515/53/8/083012 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000014 ER PT J AU Park, YS Sabbagh, SA Bialek, JM Berkery, JW Lee, SG Ko, WH Bak, JG Jeon, YM Park, JK Kim, J Hahn, SH Ahn, JW Yoon, SW Lee, KD Choi, MJ Yun, GS Park, HK You, KI Bae, YS Oh, YK Kim, WC Kwak, JG AF Park, Y. S. Sabbagh, S. A. Bialek, J. M. Berkery, J. W. Lee, S. G. Ko, W. H. Bak, J. G. Jeon, Y. M. Park, J. K. Kim, J. Hahn, S. H. Ahn, J. -W. Yoon, S. W. Lee, K. D. Choi, M. J. Yun, G. S. Park, H. K. You, K. -I. Bae, Y. S. Oh, Y. K. Kim, W. -C. Kwak, J. G. TI Investigation of MHD instabilities and control in KSTAR preparing for high beta operation SO NUCLEAR FUSION LA English DT Article ID TOROIDAL-MOMENTUM DISSIPATION; DIII-D; TOKAMAK; PLASMAS; NSTX AB Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with W-tot = 340 kJ, beta(N) = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce W-tot. In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H-L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of beta(N) by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2 applied field configurations. The result addresses perspective on access to low rotation regimes for MHD instability studies applicable to ITER. Computation of active RWM control using the VALEN-3D code examines control performance using midplane locked mode detection sensors. The LM sensors are found to be strongly affected by mode and control coil-induced vessel current, and consequently lead to limited control performance theoretically. C1 [Park, Y. S.; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Lee, S. G.; Ko, W. H.; Bak, J. G.; Jeon, Y. M.; Kim, J.; Hahn, S. H.; Yoon, S. W.; Lee, K. D.; You, K. -I.; Bae, Y. S.; Oh, Y. K.; Kim, W. -C.; Kwak, J. G.] Natl Fus Res Inst, Taejon, South Korea. [Park, J. K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ahn, J. -W.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Choi, M. J.; Yun, G. S.; Park, H. K.] Pohang Univ Sci & Technol, Pohang, South Korea. RP Park, YS (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM ypark@pppl.gov FU US Department of Energy [DE-FG02-99ER54524] FX This research was supported by the US Department of Energy under contract DE-FG02-99ER54524. NR 29 TC 7 Z9 7 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083029 DI 10.1088/0029-5515/53/8/083029 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000031 ER PT J AU Perkins, RJ Ahn, JW Bell, RE Diallo, A Gerhardt, S Gray, TK Green, DL Jaeger, EF Hosea, JC Jaworski, MA LeBlanc, BP Kramer, GJ McLean, A Maingi, R Phillips, CK Podesta, M Roquemore, L Ryan, PM Sabbagh, S Scotti, F Taylor, G Wilson, JR AF Perkins, R. J. Ahn, J. -W. Bell, R. E. Diallo, A. Gerhardt, S. Gray, T. K. Green, D. L. Jaeger, E. F. Hosea, J. C. Jaworski, M. A. LeBlanc, B. P. Kramer, G. J. McLean, A. Maingi, R. Phillips, C. K. Podesta, M. Roquemore, L. Ryan, P. M. Sabbagh, S. Scotti, F. Taylor, G. Wilson, J. R. TI Fast-wave power flow along SOL field lines in NSTX and the associated power deposition profile across the SOL in front of the antenna SO NUCLEAR FUSION LA English DT Article ID HARMONIC FAST WAVES; SPHERICAL-TORUS-EXPERIMENT; ALCATOR C-MOD; PLASMAS; PERFORMANCE; DIVERTOR; TOKAMAK; ARRAY; HHFW; FLUX AB Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape-off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER. C1 [Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; LeBlanc, B. P.; Kramer, G. J.; Maingi, R.; Phillips, C. K.; Podesta, M.; Roquemore, L.; Scotti, F.; Taylor, G.; Wilson, J. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ahn, J. -W.; Gray, T. K.; Green, D. L.; McLean, A.; Ryan, P. M.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Jaeger, E. F.] XCEL Engn Inc, Oak Ridge, TN USA. [Sabbagh, S.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. RP Perkins, RJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rperkins@pppl.gov OI Perkins, Rory/0000-0002-7216-0201 FU USDOE [DE-AC02-09CH11466] FX This work is supported by USDOE Contract No DE-AC02-09CH11466. NR 28 TC 12 Z9 12 U1 3 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083025 DI 10.1088/0029-5515/53/8/083025 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000027 ER PT J AU Ren, Y Guttenfelder, W Kaye, SM Mazzucato, E Bell, RE Diallo, A Domier, CW LeBlanc, BP Lee, KC Podesta, M Smith, DR Yuh, H AF Ren, Y. Guttenfelder, W. Kaye, S. M. Mazzucato, E. Bell, R. E. Diallo, A. Domier, C. W. LeBlanc, B. P. Lee, K. C. Podesta, M. Smith, D. R. Yuh, H. TI Electron-scale turbulence spectra and plasma thermal transport responding to continuous E x B shear ramp-up in a spherical tokamak SO NUCLEAR FUSION LA English DT Article ID MAGNETIC SHEAR; CONFINEMENT; NSTX AB Microturbulence is considered to be a major candidate in driving anomalous transport in fusion plasmas, and the equilibrium E x B shear generated by externally driven flow can be a powerful tool to control microturbulence in future fusion devices such as FNSF and ITER. Here we present the first observation of the change in electron-scale turbulence wavenumber spectrum (measured by a high-k scattering system) and thermal transport responding to continuous E x B shear ramp-up in an NSTX centre-stack limited and neutral beam injection-heated L-mode plasma. It is found that while linear stability analysis shows that the maximum electron temperature gradient mode linear growth rate far exceeds the observed E x B shearing rate in the measurement region of the high-k scattering system, the unstable ion temperature gradient (ITG) modes are susceptible to E x B shear stabilization. We observed that as the E x B shearing rate is continuously ramped up in the high-k measurement region, the ratio between the E x B shearing rate and maximum ITG mode growth rate continuously increases (from about 0.2 to 0.7) and the maximum power of the measured electron-scale turbulence wavenumber spectra decreases. Meanwhile, electron and ion thermal transport is also reduced in the outer half of the plasmas as long as magnetohydrodynamic activities are not important and the L-mode plasmas eventually reach H-mode-like confinement. Linear and nonlinear gyrokinetic simulations are presented to address the experimental observations. C1 [Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Mazzucato, E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Domier, C. W.; Lee, K. C.] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA. [Smith, D. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Yuh, H.] Nova Photon Inc, Princeton, NJ 08540 USA. RP Ren, Y (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU US Department of Energy [DE-AC02-09CH11466, DE-FG03-95ER54295, DE-FG03-99ER54518] FX The author would like to thank the NSTX Team for the excellent technical support for this work. This work was supported by the US Department of Energy contracts No DE-AC02-09CH11466, No DE-FG03-95ER54295 and No DE-FG03-99ER54518. NR 21 TC 13 Z9 13 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083007 DI 10.1088/0029-5515/53/8/083007 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000009 ER PT J AU Schmitt, JC Talmadge, JN Anderson, DT AF Schmitt, J. C. Talmadge, J. N. Anderson, D. T. TI Measurement of a helical Pfirsch-Schluter current with reduced magnitude in HSX SO NUCLEAR FUSION LA English DT Article ID MAGNETIC-FIELD; STELLARATORS; PLASMAS; MOMENT AB Measurements of the helical rotation and the reduction of the magnitude of the Pfirsch-Schluter current compared to an equivalent tokamak are reported in a device that has quasihelical symmetry. The Pfirsch-Schluter current is helical due to the lack of toroidal curvature, and is reduced in magnitude by the high effective transform. A 3D equilibrium reconstruction based on magnetic diagnostics agrees well with the profiles measured with Thomson scattering and diamagnetic flux loop measurements. C1 [Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T.] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. RP Schmitt, JC (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM jschmitt@pppl.gov FU DOE [DE-FG02-93ER54222] FX The authors would like to thank J.D. Hanson and S.P. Knowlton of Auburn University for their assistance in using V3FIT. This work was supported by DOE grant DE-FG02-93ER54222. NR 17 TC 6 Z9 6 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 082001 DI 10.1088/0029-5515/53/8/082001 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000001 ER PT J AU Scotti, F Soukhanovskii, VA Bell, RE Gerhardt, S Guttenfelder, W Kaye, S Andre, R Diallo, A Kaita, R LeBlanc, BP Podesta, M AF Scotti, F. Soukhanovskii, V. A. Bell, R. E. Gerhardt, S. Guttenfelder, W. Kaye, S. Andre, R. Diallo, A. Kaita, R. LeBlanc, B. P. Podesta, M. CA NSTX Team TI Core transport of lithium and carbon in ELM-free discharges with lithium wall conditioning in NSTX SO NUCLEAR FUSION LA English DT Article ID ROTATING TOKAMAK PLASMA; IMPURITY TRANSPORT; NEOCLASSICAL TRANSPORT; ASDEX UPGRADE; Z DEPENDENCE; JET AB Core transport of intrinsic carbon and lithium impurities is analysed in H-mode discharges in NSTX. The application of lithium coatings on graphite plasma-facing components led to high-performance H-mode discharges with edge localized mode (ELM) suppression and resulted in core carbon accumulation. Lithium ions did not accumulate and had densities less than 1% of carbon densities. Core transport codes NCLASS, NEO and MIST are used to assess the impact of lithium evaporative coatings on impurity transport. The disappearance of ELMs, due to changes in the electron pressure profiles, together with modifications in neoclassical transport, due to changes in main ion temperature and density profiles, explains the core carbon accumulation in discharges with lithium coatings. Residual anomalous transport in the pedestal region is needed to explain the experimental carbon density profile shape and evolution. The enhancement in neoclassical lithium particle diffusivities due to the high carbon concentration is partially responsible for the low lithium core concentration. C1 [Scotti, F.; Bell, R. E.; Gerhardt, S.; Guttenfelder, W.; Kaye, S.; Andre, R.; Diallo, A.; Kaita, R.; LeBlanc, B. P.; Podesta, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Soukhanovskii, V. A.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Scotti, F (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM fscotti@pppl.gov FU US DOE [DE-AC02-09CH11466, DE-AC52-07NA27344] FX Work supported by the US DOE Contract DE-AC02-09CH11466 and DE-AC52-07NA27344. The authors would like to thank Dr Steve Sabbagh for EFIT calculations, Dr Rajesh Maingi, Dr Eric Meier and Dr Alessandro Bortolon for useful discussions, Dr Emily Belli and Dr Jeff Candy for the availability of the NEO code and useful discussions. NR 30 TC 17 Z9 17 U1 7 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083001 DI 10.1088/0029-5515/53/8/083001 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000003 ER PT J AU Sung, C White, AE Howard, NT Oi, CY Rice, JE Gao, C Ennever, P Porkolab, M Parra, F Mikkelsen, D Ernst, D Walk, J Hughes, JW Irby, J Kasten, C Hubbard, AE Greenwald, MJ AF Sung, C. White, A. E. Howard, N. T. Oi, C. Y. Rice, J. E. Gao, C. Ennever, P. Porkolab, M. Parra, F. Mikkelsen, D. Ernst, D. Walk, J. Hughes, J. W. Irby, J. Kasten, C. Hubbard, A. E. Greenwald, M. J. CA Alcator C-Mod Team TI Changes in core electron temperature fluctuations across the ohmic energy confinement transition in Alcator C-Mod plasmas SO NUCLEAR FUSION LA English DT Article ID TOKAMAK PLASMA; TRANSPORT; TURBULENCE; DISCHARGES AB The first measurements of long wavelength (k(y)rho(s) < 0.3) electron temperature fluctuations in Alcator C-Mod made with a new correlation electron cyclotron emission diagnostic support a long-standing hypothesis regarding the confinement transition from linear ohmic confinement (LOC) to saturated ohmic confinement (SOC). Electron temperature fluctuations decrease significantly (similar to 40%) crossing from LOC to SOC, consistent with a change from trapped electron mode (TEM) turbulence domination to ion temperature gradient (ITG) turbulence as the density is increased. Linear stability analysis performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) shows that TEMs are dominant for long wavelength turbulence in the LOC regime and ITG modes are dominant in the SOC regime at the radial location (rho similar to 0.8) where the changes in electron temperature fluctuations are measured. In contrast, deeper in the core (rho < 0.8), linear stability analysis indicates that ITG modes remain dominant across the LOC/SOC transition. This radial variation suggests that the robust global changes in confinement of energy and momentum occurring across the LOC/SOC transition are correlated to local changes in the dominant turbulent mode near the edge. C1 [Sung, C.; White, A. E.; Howard, N. T.; Oi, C. Y.; Rice, J. E.; Gao, C.; Ennever, P.; Porkolab, M.; Parra, F.; Ernst, D.; Walk, J.; Hughes, J. W.; Irby, J.; Kasten, C.; Hubbard, A. E.; Greenwald, M. J.; Alcator C-Mod Team] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Mikkelsen, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Sung, C (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Parra, Felix I./C-1442-2012; Ernst, Darin/A-1487-2010; OI Parra, Felix I./0000-0001-9621-7404; Ernst, Darin/0000-0002-9577-2809; Greenwald, Martin/0000-0002-4438-729X FU US Department of Energy [DE-SC0006419, DE-FC02-99ER54512] FX The authors thank S. Wolfe for EFIT analysis in C-Mod, and thank J. Wright and T. Baker for maintaining the LOKI computer cluster, used to perform the GYRO simulations. The authors are also very grateful to M. L. Reinke for rotation profile and ion temperature profile analysis and for extensive discussions of error analysis. This work is supported by the US Department of Energy under Grant Nos DE-SC0006419 and DE-FC02-99ER54512. NR 36 TC 14 Z9 14 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2013 VL 53 IS 8 AR 083010 DI 10.1088/0029-5515/53/8/083010 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 196RS UT WOS:000322794000012 ER PT J AU Cho, S Cha, W Park, HJ Lee, JM Kim, EB Rhee, HW Jiang, Z Strzalka, J Kim, H AF Cho, Sanghyeok Cha, Wonsuk Park, Hyun-jun Lee, Jung-Min Kim, Eun-Bee Rhee, Hee-Woo Jiang, Zhang Strzalka, Joseph Kim, Hyunjung TI Effects of siloxane nanoparticles on glass transition temperature and crystallization in PEO-LiPF6 polymer electrolytes SO SYNTHETIC METALS LA English DT Article DE Polymer electrolyte; Polyethylene oxide; LiPF6; Siloxane nanoparticle; X-ray diffraction ID LITHIUM BATTERIES; ION-TRANSPORT; CONDUCTIVITY AB We study the glass transition temperature and the crystallization in PEO-based polymer electrolytes with addition of siloxane nanoparticles of <3 nm. The PEO nanocomposite electrolytes with 39 wt% of siloxane nanoparticles show maximum conductivity enhanced by 400 times to that of pure PEO when siloxane nanoparticles were added to pure PEO with 22 wt% of LiPF6, the molar ratio for maximum conductivity. Differential scanning calorimetry and wide angle X-ray scattering results show that siloxane nanoparticles reduce the crystallization of PEO by increasing the amount of complexes of ethylene oxide (EO) and Li ions in PEO-LiPF6. In contrast to other additives, the glass transition temperature of the electrolyte is lowered with increasing concentration of siloxane nanoparticles. Enhancement of the conductivity with siloxane nanoparticles is due to the increased ion mobility and amorphous area in electrolytes. (C) 2013 Elsevier B.V. All rights reserved. C1 [Cho, Sanghyeok; Cha, Wonsuk; Park, Hyun-jun; Kim, Hyunjung] Sogang Univ, Dept Phys, Seoul 121742, South Korea. [Lee, Jung-Min; Kim, Eun-Bee; Rhee, Hee-Woo] Sogang Univ, Dept Chem & Biomol Engn, Seoul 121742, South Korea. [Jiang, Zhang; Strzalka, Joseph] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Kim, H (reprint author), Sogang Univ, Dept Phys, Seoul 121742, South Korea. EM hkim@sogang.ac.kr RI Jiang, Zhang/A-3297-2012 OI Jiang, Zhang/0000-0003-3503-8909 FU National Research Foundation of Korea (NRF); Korea government (MOE) [2011-0012251]; Korea government (MSIP) [R15-2008-006-01001-0]; Sogang University; Fundamental R&D program for Core Technology of Materials; MKE; US Department of Energy, Office of Basic Energy Science [DE-AC02-06CH11357]; Pohang Accelerator Laboratory through the abroad beamtime program of Synchrotron Radiation Facility Project under MEST FX This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE, 2011-0012251 and MSIP, R15-2008-006-01001-0), Sogang University Research Grant (2012), and Fundamental R&D program for Core Technology of Materials funded by MKE. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. We also thank the support by Pohang Accelerator Laboratory through the abroad beamtime program of Synchrotron Radiation Facility Project under MEST. NR 17 TC 3 Z9 3 U1 2 U2 26 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD AUG 1 PY 2013 VL 177 BP 110 EP 113 DI 10.1016/j.synthmet.2013.06.020 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 207IR UT WOS:000323592600013 ER PT J AU Piepel, GF AF Piepel, Greg F. TI Comment: Spurious Correlation and Other Observations on Experimental Design for Engineering Dimensional Analysis SO TECHNOMETRICS LA English DT Editorial Material C1 Pacific NW Natl Lab, Richland, WA 99354 USA. RP Piepel, GF (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM greg.piepel@pnnl.gov NR 9 TC 1 Z9 1 U1 1 U2 6 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 J9 TECHNOMETRICS JI Technometrics PD AUG PY 2013 VL 55 IS 3 BP 286 EP 289 DI 10.1080/00401706.2013.778792 PG 4 WC Statistics & Probability SC Mathematics GA 206TZ UT WOS:000323547200006 ER PT J AU Burr, T Hamada, MS AF Burr, Tom Hamada, Michael S. TI Moving Neutron Source Detection in Radiation Portal Monitoring SO TECHNOMETRICS LA English DT Article DE Cumulative count; CUSUM; EWMA; Matched filter; Maximum count; Poisson; Power; Profile monitoring ID OCCURRING RADIOACTIVE MATERIALS; QUALITY PROFILES; CONTROL CHARTS; PRODUCT; BORDERS AB Radiation detection systems are deployed at U.S. borders to guard against entry of illicit radioactive material. This article uses realistic simulated data under different vehicle and illicit material scenarios to compare the performance of six detection methods for analyzing neutron count data collected as a vehicle passes through a radiation portal monitor, that is, a neutron count vehicle profile. The six methods are based on the cumulative count, the maximum count, sequential cumulative sum, sequential exponentially weighted moving average, comparison against a matched filter (MF) library, and a new estimated MF that estimates the shape of a neutron count vehicle profile. C1 [Burr, Tom; Hamada, Michael S.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Burr, T (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663,MS F600, Los Alamos, NM 87545 USA. EM tburr@lanl.gov; hamada@lanl.gov FU U.S. Department of Homeland Security under DOE [DE-AC52-06NA25396] FX We acknowledge the U.S. Department of Homeland Security for funding this work under DOE Contract Number DE-AC52-06NA25396 for the management and operation of Los Alamos National Laboratory. We thank Bill Woodall and Megahed Fadel for insightful comments on an earlier version. We also thank the editor, associate editor, and three referees for their extensive comments that improved our article. NR 21 TC 0 Z9 0 U1 1 U2 3 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 J9 TECHNOMETRICS JI Technometrics PD AUG PY 2013 VL 55 IS 3 BP 296 EP 308 DI 10.1080/00401706.2013.775909 PG 13 WC Statistics & Probability SC Mathematics GA 206TZ UT WOS:000323547200009 ER PT J AU Zhu, X Do-Thanh, CL Murdock, CR Nelson, KM Tian, CC Brown, S Mahurin, SM Jenkins, DM Hu, J Zhao, B Liu, HL Dai, S AF Zhu, Xiang Chi-Linh Do-Thanh Murdock, Christopher R. Nelson, Kimberly M. Tian, Chengcheng Brown, Suree Mahurin, Shannon M. Jenkins, David M. Hu, Jun Zhao, Bin Liu, Honglai Dai, Sheng TI Efficient CO2 Capture by a 3D Porous Polymer Derived from Troger's Base SO ACS MACRO LETTERS LA English DT Article ID CARBON-DIOXIDE CAPTURE; BENZIMIDAZOLE-LINKED POLYMERS; COVALENT ORGANIC POLYMERS; TRIAZINE FRAMEWORKS; ENERGY APPLICATIONS; IONIC LIQUIDS; SURFACE-AREA; GAS-STORAGE; SELECTIVITY; SEPARATION AB A 3D Troger's-base-derived microporous organic polymer with a high surface area and good thermal stability was facilely synthesized from a one-pot metal-free polymerization reaction between dimethoxymethane and triaminotriptycene. The obtained material displays excellent CO2 uptake abilities as well as good adsorption selectivity for CO2 over N-2. The CO2 storage can reach up to 4.05 mmol g(-1) (17.8 wt %) and 2.57 mmol g(-1) (11.3 wt %) at 273 K and 298 K, respectively. Moreover, the high selectivity of the polymer toward CO2 over N-2 (50.6, 298 K) makes it a promising material for potential application in CO2 separation from flue gas. C1 [Zhu, Xiang; Tian, Chengcheng; Hu, Jun; Liu, Honglai] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China. [Zhu, Xiang; Tian, Chengcheng; Hu, Jun; Liu, Honglai] E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China. [Zhu, Xiang; Tian, Chengcheng; Mahurin, Shannon M.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Chi-Linh Do-Thanh; Murdock, Christopher R.; Nelson, Kimberly M.; Brown, Suree; Jenkins, David M.; Zhao, Bin; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Liu, HL (reprint author), E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China. EM hlliu@ecust.edu.cn; dais@ornl.gov RI Zhu, Xiang/P-6867-2014; Dai, Sheng/K-8411-2015; OI Zhu, Xiang/0000-0002-3973-4998; Dai, Sheng/0000-0002-8046-3931; Do-Thanh, Chi-Linh/0000-0003-2263-8331 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; National Basic Research Program of China [2013CB733501]; National Natural Science Foundation of China [20990224, 21176066]; 111 Project of China [B08021]; Fundamental Research Funds for the Central Universities of China FX We are grateful to the financial support from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. X.Z., C.C.T., J.H., and H.L.L. thank the National Basic Research Program of China (2013CB733501), the National Natural Science Foundation of China (No. 20990224, 21176066), the 111 Project of China (No. B08021), and the Fundamental Research Funds for the Central Universities of China. NR 39 TC 57 Z9 60 U1 9 U2 199 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD AUG PY 2013 VL 2 IS 8 BP 660 EP 663 DI 10.1021/mz4003485 PG 4 WC Polymer Science SC Polymer Science GA 205VE UT WOS:000323472100006 ER PT J AU Maskey, S Osti, NC Perahia, D Grest, GS AF Maskey, Sabina Osti, Naresh C. Perahia, Dvora Grest, Gary S. TI Internal Correlations and Stability of Polydots, Soft Conjugated Polymeric Nanoparticles SO ACS MACRO LETTERS LA English DT Article ID MOLECULAR-DYNAMICS; CROSS-LINKING; SCATTERING; DOTS AB Conjugated polymers collapsed into long-lived highly luminescent nanoparticles, or polydots, have opened a new paradigm of tunable organic particles with an immense potential enhancing intracellular imaging and drug delivery. Albeit the chains are not in their equilibrium conformation and are not confined by cross-links, they remain stable over astounding long times. Using fully atomistic molecular dynamics simulations with an innovative method to controllably collapse an inherently rigid polymer, we determined for the first time the internal structure and stability of polydots made of dialkyl-para-phenylene ethynylene, immersed in water, a biological relevant medium. In contrast to natural aggregates, the aromatic rings within the polydots are uncorrelated, with little to no water in its interior. This lack of correlation explains the differences of luminescence characteristics between spontaneously aggregated conjugated polymers and polydots. Resolving the conformation and stability of these particles will enable transforming an idea to a new effective tool. C1 [Maskey, Sabina; Osti, Naresh C.; Perahia, Dvora] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Perahia, D (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA. EM dperahi@clemson.edu RI Osti, Naresh/B-3413-2016 OI Osti, Naresh/0000-0002-0213-2299 FU DOE [DE-FG02-12ER46843]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge financial support from DOE Grant No. DE-FG02-12ER46843. This work was made possible by advanced computational resources deployed and maintained by Clemson Computing and Information Technology. This work was performed, in part, at the Center for Integrated Nanotechnology, a U.S. Department of Energy and Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. We thank S. J. Plimpton, F. Pierce, and J. McNeill for helpful discussions. NR 21 TC 6 Z9 6 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD AUG PY 2013 VL 2 IS 8 BP 700 EP 704 DI 10.1021/mz400225d PG 5 WC Polymer Science SC Polymer Science GA 205VE UT WOS:000323472100013 ER PT J AU Ahn, SK Pickel, DL Kochemba, WM Chen, JH Uhrig, D Hinestrosa, JP Carrillo, JM Shao, M Do, C Messman, JM Brown, WM Sumpter, BG Kilbey, SM AF Ahn, Suk-kyun Pickel, Deanna L. Kochemba, W. Michael Chen, Jihua Uhrig, David Hinestrosa, Juan Pablo Carrillo, Jan-Michael Shao, Ming Do, Changwoo Messman, Jamie M. Brown, W. Michael Sumpter, Bobby G. Kilbey, S. Michael, II TI Poly(3-hexylthiophene) Molecular Bottlebrushes via Ring-Opening Metathesis Polymerization: Macromolecular Architecture Enhanced Aggregation SO ACS MACRO LETTERS LA English DT Article ID REGIOREGULAR POLY(3-HEXYLTHIOPHENE); SOLAR-CELLS; CONJUGATED POLYMERS; GRAFT-COPOLYMERS; SIDE-CHAINS; CATALYST; BRUSHES; FUNCTIONALIZATION; MACROMONOMERS; MORPHOLOGY AB We report a facile synthetic strategy based on a grafting through approach to prepare well-defined molecular bottlebrushes composed of regioregular poly(3-hexylthiophene) (rr-P3HT) as the conjugated polymeric side chain. To this end, the exo-norbornenyl-functionalized P3HT macromonomer was synthesized by Kumada catalyst transfer polycondensation (KCTP) followed by postpolymerization modifications, and the resulting conjugated macromonomer was successfully polymerized by ring-opening metathesis polymerization (ROMP) in a controlled manner. The P3HT molecular bottlebrushes display an unprecedented strong physical aggregation upon drying during recovery, as verified by several analyses of the solution and solid states. This remarkably strong aggregation behavior is attributed to a significant enhancement in the number of pi-pi interactions between grafted P3HT side chains, brought about due to the bottlebrush architecture. This behavior is qualitatively supported by coarse-grained molecular dynamics simulations. C1 [Ahn, Suk-kyun; Pickel, Deanna L.; Chen, Jihua; Uhrig, David; Hinestrosa, Juan Pablo; Shao, Ming; Messman, Jamie M.; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Carrillo, Jan-Michael; Brown, W. Michael] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Do, Changwoo] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Kochemba, W. Michael; Kilbey, S. Michael, II] Univ Tennessee, Dept Chem & Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Pickel, DL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM deannapickel@gmail.com; mkilbey@utk.edu RI Chen, Jihua/F-1417-2011; Carrillo, Jan-Michael/K-7170-2013; Sumpter, Bobby/C-9459-2013; Uhrig, David/A-7458-2016; Do, Changwoo/A-9670-2011 OI Chen, Jihua/0000-0001-6879-5936; Carrillo, Jan-Michael/0000-0001-8774-697X; Sumpter, Bobby/0000-0001-6341-0355; Uhrig, David/0000-0001-8447-6708; Do, Changwoo/0000-0001-8358-8417 FU Division of Scientific User Facilities, U.S. Department of Energy; TN-SCORE; NSF EPSCOR [EPS-1004083] FX This research was conducted at the Center for Nanophase Materials Sciences (CNMS) and the Leadership Computing Facility (OLCF), which are sponsored at Oak Ridge National Laboratory (ORNL) by the Division of Scientific User Facilities, U.S. Department of Energy, managed by UT-Battelle, LLC. S.-K.A. acknowledges fruitful discussions with Prof. B. Boudouris and Prof. J. Mays, Drs. K. Hong, B. Lokitz, R Kumar, and J. Keum. W.M.K. and S.M.K. acknowledge support from TN-SCORE which is sponsored by NSF EPSCOR (EPS-1004083). NR 34 TC 15 Z9 15 U1 2 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD AUG PY 2013 VL 2 IS 8 BP 761 EP 765 DI 10.1021/mz4003563 PG 5 WC Polymer Science SC Polymer Science GA 205VE UT WOS:000323472100026 ER PT J AU Huh, JH Kittleson, JT Arkin, AP Anderson, JC AF Huh, Jin H. Kittleson, Josh T. Arkin, Adam P. Anderson, J. Christopher TI Modular Design of a Synthetic Payload Delivery Device SO ACS SYNTHETIC BIOLOGY LA English DT Article DE synthetic biology; system level engineering modular design; payload delivery; tumor-killing bacterium ID LISTERIA-MONOCYTOGENES; ESCHERICHIA-COLI; INTRACELLULAR BACTERIA; EPITHELIAL-CELLS; MAMMALIAN-CELLS; GENE-TRANSFER; BIOLOGY; THERAPY; PROTEIN; SEQUENCE AB Predictable engineering of complex biological behaviors using characterized molecular functions remains a key challenge in synthetic biology. To explore the process of engineering biological behaviors, we applied a modular design strategy to the development of E. coli that deliver macromolecules to the cytoplasm of cancer cells in vitro. First, we specified five abstract, qualitative behaviors that would act in concert to achieve payload delivery. Drawing from disparate sources of previously described genetic components, we then designed, constructed, and tested individual genetic circuits to implement each module. Subsequent coupling of the modules and system optimization, aided by quantitative predictions, generated a system that delivers proteins to 80% of targeted cancer cells. Development of an effective delivery system provides strong evidence that advanced cellular behaviors, not just transcriptional circuits, can be rationally decomposed into a series of functional genetic modules and then constructed to achieve the target activity with the existing synthetic biology toolkit. C1 [Huh, Jin H.; Kittleson, Josh T.; Arkin, Adam P.; Anderson, J. Christopher] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Arkin, Adam P.; Anderson, J. Christopher] Univ Calif Berkeley, Calif Inst Quantitat Biol Res QB3, Berkeley, CA 94720 USA. [Huh, Jin H.; Kittleson, Josh T.; Arkin, Adam P.; Anderson, J. Christopher] Synthet Biol Engn Res Ctr SynBERC, Berkeley, CA 94720 USA. [Arkin, Adam P.; Anderson, J. Christopher] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys Sci, Berkeley, CA 94720 USA. RP Anderson, JC (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM jcanderson@berkeley.edu RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU National Science Foundation Synthetic Biology Engineering Research Center (SynBERC); National Science Foundation; Siebel Scholar award FX We thank the CNR Biological Imaging Facility (University of California, Berkeley) for assistance in microscopy. We also thank Lon Chubiz for providing a CRLM helper plasmid for integrating DNA into the attP21 site of the E. coil genome. This work was supported by the National Science Foundation Synthetic Biology Engineering Research Center (SynBERC). J.T.K. received support from a National Science Foundation Graduate Research Fellowship and a Siebel Scholar award. NR 40 TC 7 Z9 7 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD AUG PY 2013 VL 2 IS 8 BP 418 EP 424 DI 10.1021/sb300107h PG 7 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 204JX UT WOS:000323362700002 PM 23654275 ER PT J AU Straneo, F Heimbach, P Sergienko, O Hamilton, G Catania, G Griffies, S Hallberg, R Jenkins, A Joughin, I Motyka, R Pfeffer, WT Price, SF Rignot, E Scambos, T Truffer, M Vieli, A AF Straneo, Fiammetta Heimbach, Patrick Sergienko, Olga Hamilton, Gordon Catania, Ginny Griffies, Stephen Hallberg, Robert Jenkins, Adrian Joughin, Ian Motyka, Roman Pfeffer, W. Tad Price, Stephen F. Rignot, Eric Scambos, Ted Truffer, Martin Vieli, Andreas TI Challenges to Understanding the Dynamic Response of Greenland's Marine Terminating Glaciers to Oceanic and Atmospheric Forcing SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID SEA-LEVEL RISE; FULL STOKES MODEL; ICE-SHEET; JAKOBSHAVN ISBRAE; WEST GREENLAND; OUTLET GLACIERS; EAST GREENLAND; THERMOHALINE CIRCULATION; TIDEWATER GLACIERS; NORTH-ATLANTIC AB The recent retreat and speedup of outlet glaciers, as well as enhanced surface melting around the ice sheet margin, have increased Greenland's contribution to sea level rise to 0.6 +/- 0.1 mm yr(-1) and its discharge of freshwater into the North Atlantic. The widespread, near-synchronous glacier retreat, and its coincidence with a period of oceanic and atmospheric warming, suggests a common climate driver. Evidence points to the marine margins of these glaciers as the region from which changes propagated inland. Yet, the forcings and mechanisms behind these dynamic responses are poorly understood and are either missing or crudely parameterized in climate and ice sheet models. Resulting projected sea level rise contributions from Greenland by 2100 remain highly uncertain. This paper summarizes the current state of knowledge and highlights key physical aspects of Greenland's coupled ice sheet-ocean-atmosphere system. Three research thrusts are identified to yield fundamental insights into ice sheet, ocean, sea ice, and atmosphere interactions, their role in Earth's climate system, and probable trajectories of future changes: 1) focused process studies addressing critical glacier, ocean, atmosphere, and coupled dynamics; 2) sustained observations at key sites; and 3) inclusion of relevant dynamics in Earth system models. Understanding the dynamic response of Greenland's glaciers to climate forcing constitutes both a scientific and technological frontier, given the challenges of obtaining the appropriate measurements from the glaciers' marine termini and the complexity of the dynamics involved, including the coupling of the ocean, atmosphere, glacier, and sea ice systems. Interdisciplinary and international cooperation are crucial to making progress on this novel and complex problem. C1 [Straneo, Fiammetta] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Heimbach, Patrick] MIT, Cambridge, MA 02139 USA. [Sergienko, Olga] Princeton Univ, Princeton, NJ 08544 USA. [Sergienko, Olga; Griffies, Stephen; Hallberg, Robert] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Hamilton, Gordon] Univ Maine, Orono, ME USA. [Catania, Ginny] Univ Texas Austin, Austin, TX 78712 USA. [Jenkins, Adrian] British Antarctic Survey, Cambridge CB3 0ET, England. [Joughin, Ian] Univ Washington, Seattle, WA 98195 USA. [Motyka, Roman; Truffer, Martin] Univ Alaska Fairbanks, Fairbanks, AK USA. [Pfeffer, W. Tad] Univ Colorado, Boulder, CO 80309 USA. [Price, Stephen F.] Los Alamos Natl Lab, Los Alamos, NM USA. [Rignot, Eric] Univ Calif Irvine, Irvine, CA USA. [Rignot, Eric] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Scambos, Ted] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Vieli, Andreas] Univ Durham, Durham, England. RP Straneo, F (reprint author), Woods Hole Oceanog Inst, Mail Stop 21,266 Woods Hole Rd, Woods Hole, MA 02543 USA. EM fstraneo@whoi.edu RI Catania, Ginny/B-9787-2008; Heimbach, Patrick/K-3530-2013; Joughin, Ian/A-2998-2008; Price, Stephen /E-1568-2013; Rignot, Eric/A-4560-2014; OI Heimbach, Patrick/0000-0003-3925-6161; Joughin, Ian/0000-0001-6229-679X; Price, Stephen /0000-0001-6878-2553; Rignot, Eric/0000-0002-3366-0481; Vieli, Andreas/0000-0002-2870-5921; Straneo, Fiammetta/0000-0002-1735-2366 FU Norwegian Centre for International Cooperation in Education (SiU) FX This is a contribution to the activity of the U.S. CLIVAR Working Group on Greenland Ice Sheet-Ocean Interactions (GRISO). Mike Patterson is thanked for his engagement and guidance. The idea for establishment of such a working group originated during the Advanced Climate Dynamics Course (ACDC) 2010 on Ice Sheet-Ocean Interactions at the MIT-Fablab in Lyngen, Norway (see http://onlinelibrary.wiley.com/doi/10.1029/2010EO450006/abstract), with the Norwegian Centre for International Cooperation in Education (SiU) as its main sponsor. We thank three anonymous reviewers for their comments. NR 97 TC 51 Z9 51 U1 0 U2 80 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD AUG PY 2013 VL 94 IS 8 BP 1131 EP 1144 DI 10.1175/BAMS-D-12-00100.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 205YZ UT WOS:000323482200005 ER PT J AU Appel, AM Bercaw, JE Bocarsly, AB Dobbek, H DuBois, DL Dupuis, M Ferry, JG Fujita, E Hille, R Kenis, PJA Kerfeld, CA Morris, RH Peden, CHF Portis, AR Ragsdale, SW Rauchfuss, TB Reek, JNH Seefeldt, LC Thauer, RK Waldrop, GL AF Appel, Aaron M. Bercaw, John E. Bocarsly, Andrew B. Dobbek, Holger DuBois, Daniel L. Dupuis, Michel Ferry, James G. Fujita, Etsuko Hille, Russ Kenis, Paul J. A. Kerfeld, Cheal A. Morris, Robert H. Peden, Charles H. F. Portis, Archie R. Ragsdale, Stephen W. Rauchfuss, Thomas B. Reek, Joost N. H. Seefeldt, Lance C. Thauer, Rudolf K. Waldrop, Grover L. TI Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation SO CHEMICAL REVIEWS LA English DT Review ID CARBON-MONOXIDE DEHYDROGENASE; ASYMMETRIC TRANSFER HYDROGENATION; COENZYME-A SYNTHASE; FISCHER-TROPSCH SYNTHESIS; CONTAINING FORMATE DEHYDROGENASE; TRANSITION-METAL CATALYSTS; COUPLED ELECTRON-TRANSFER; WOOD-LJUNGDAHL PATHWAY; FRUSTRATED LEWIS PAIRS; ELECTROCHEMICAL REDUCTION C1 [Appel, Aaron M.; DuBois, Daniel L.; Dupuis, Michel; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Bercaw, John E.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Bocarsly, Andrew B.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Dobbek, Holger] Humboldt Univ, Inst Biol Strukturbiol Biochem, D-10099 Berlin, Germany. [Ferry, James G.] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16801 USA. [Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Hille, Russ] Univ Calif Riverside, Dept Biochem, Riverside, CA 92521 USA. [Kenis, Paul J. A.] Univ Illinois, Dept Chem & Biochem Engn, Urbana, IL 61801 USA. [Portis, Archie R.] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA. [Portis, Archie R.] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA. [Rauchfuss, Thomas B.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Kerfeld, Cheal A.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Kerfeld, Cheal A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Morris, Robert H.] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada. [Ragsdale, Stephen W.] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA. [Reek, Joost N. H.] Univ Amsterdam, vant Hoff Inst Mol Sci, NL-1098 XH Amsterdam, Netherlands. [Seefeldt, Lance C.] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. [Thauer, Rudolf K.] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany. [Waldrop, Grover L.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. RP DuBois, DL (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. EM daniel.dubois@pnnl.gov; sragsdal@umich.edu; rauchfuz@illinois.edu RI Morris, Robert/R-8760-2016; Kenis, Paul/S-7229-2016; OI Morris, Robert/0000-0002-7574-9388; Kenis, Paul/0000-0001-7348-0381; Peden, Charles/0000-0001-6754-9928; Appel, Aaron/0000-0002-5604-1253 FU Council on Chemical and Biochemical Sciences of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This article evolved from presentations and discussion at the workshop "Frontiers, Opportunities, and Challenges in the Biochemical and Chemical Catalysis of CO2" held in October 2011, in Annapolis, Maryland, sponsored by the Council on Chemical and Biochemical Sciences of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors thank the members of the Council for their encouragement and assistance in developing this workshop. In addition, the authors are indebted to the agencies responsible for funding of their individual research efforts, without which this work would not have been possible. NR 389 TC 379 Z9 385 U1 105 U2 950 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD AUG PY 2013 VL 113 IS 8 BP 6621 EP 6658 DI 10.1021/cr300463y PG 38 WC Chemistry, Multidisciplinary SC Chemistry GA 203NZ UT WOS:000323301200017 PM 23767781 ER PT J AU Budworth, H McMurray, CT AF Budworth, Helen McMurray, Cynthia T. TI Bidirectional transcription of trinucleotide repeats: Roles for excision repair SO DNA REPAIR LA English DT Article DE Bidirectional transcription; Trinucleotide; Excision repair; Neurodegenerative; Coding; RNA transcript ID THYMINE-DNA GLYCOSYLASE; FRAGILE-X-SYNDROME; RNA-BINDING PROTEIN; GROUP-B PROTEIN; MYOTONIC-DYSTROPHY; HUNTINGTONS-DISEASE; HUMAN-CELLS; FMR1 GENE; CHROMATIN-STRUCTURE; TET PROTEINS AB Genomic instability at repetitive DNA regions in cells of the nervous system leads to a number of neurodegenerative and neuromuscular diseases, including those with an expanded trinucleotide repeat (TNR) tract at or nearby an expressed gene. Expansion causes disease when a particular base sequence is repeated beyond the normal range, interfering with the expression or properties of a gene product. Disease severity and onset depend on the number of repeats. As the length of the repeat tract grows, so does the size of the successive expansions and the likelihood of another unstable event. In fragile X syndrome, for example, CGG repeat instability and pathogenesis are not typically observed below tracts of roughly 50 repeats, but occur frequently at or above 55 repeats, and are virtually certain above 100-300 repeats. Recent evidence points to bidirectional transcription as a new aspect of TNR instability and pathophysiology. Bidirectional transcription of TNR genes produces novel proteins and/or regulatory RNAs that influence both toxicity and epigenetic changes in TNR promoters. Bidirectional transcription of the TNR tract appears to influence aspects of its stability, gene processing, splicing, gene silencing, and chemical modification of DNAs. Paradoxically, however, some of the same effects are observed on both the expanded TNR gene and on its normal gene counterpart. In this review, we discuss the possible normal and abnormal effects of bidirectional transcription on trinucleotide repeat instability, the role of DNA repair in causing, preventing, or maintaining methylation, and chromatin environment of TNR genes. Published by Elsevier B.V. C1 [Budworth, Helen; McMurray, Cynthia T.] Univ Calif Berkeley, Div Life Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP McMurray, CT (reprint author), Univ Calif Berkeley, Div Life Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ctmcmurray@lbl.gov FU National Institutes of Health [NS40738, GM066359, NS062384, NS060115, CA092584] FX This work was supported by the National Institutes of Health grants NS40738 (CTM), GM066359 (CTM), NS062384 (to CTM), and NS060115 (to CTM), and CA092584 (CTM). NR 158 TC 8 Z9 8 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1568-7864 J9 DNA REPAIR JI DNA Repair PD AUG PY 2013 VL 12 IS 8 SI SI BP 672 EP 684 DI 10.1016/j.dnarep.2013.04.019 PG 13 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 200QS UT WOS:000323084600014 PM 23669397 ER PT J AU Zinkle, SJ AF Zinkle, Steven J. TI CHALLENGES IN DEVELOPING MATERIALS FOR FUSION TECHNOLOGY-PAST, PRESENT AND FUTURE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID RESEARCH-AND-DEVELOPMENT; PLASMA-FACING MATERIALS; HIGH-HEAT-FLUX; AUSTENITIC STAINLESS-STEELS; REACTOR MATERIALS RESEARCH; CASCADE DAMAGE CONDITIONS; LOW-ACTIVATION MATERIALS; REDUCED-ACTIVATION; MECHANICAL-PROPERTIES; MARTENSITIC STEELS AB A brief historical review of the evolution in structural materials options for fusion energy systems is presented, along with the author's perspective on emerging trends in advanced manufacturing techniques and new high-performance materials. C1 [Zinkle, Steven J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Zinkle, SJ (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM zinklesj@ornl.gov OI Zinkle, Steven/0000-0003-2890-6915 NR 152 TC 9 Z9 9 U1 0 U2 27 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 65 EP 75 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200002 ER PT J AU Pitcher, CS Barnsley, R Bertalot, L Encheva, A Feder, R Friconneau, JP Hu, Q Levesy, B Loesser, GD Lyublin, B Macklin, B Martins, JP Padasalagi, S Pak, S Reichle, R Sato, K Serikov, A Seyvet, F Suarez, A Udintsev, V Vayakis, G Veshchev, E Walker, C Walsh, M Watts, C Zhai, Y AF Pitcher, C. S. Barnsley, R. Bertalot, L. Encheva, A. Feder, R. Friconneau, J. P. Hu, Q. Levesy, B. Loesser, G. D. Lyublin, B. Macklin, B. Martins, J. P. Padasalagi, S. Pak, S. Reichle, R. Sato, K. Serikov, A. Seyvet, F. Suarez, A. Udintsev, V. Vayakis, G. Veshchev, E. Walker, C. Walsh, M. Watts, C. Zhai, Y. TI PORT-BASED PLASMA DIAGNOSTIC INFRASTRUCTURE ON ITER SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB The port-based plasma diagnostic infrastructure on ITER is described, including the port plugs, the interspace support structure and port cell structure. These systems are modular in nature with standardized dimensions. The design of the equatorial and upper port plugs and their modules is discussed, as well as the dominant loading mechanisms. The port infrastructure design has now matured to the point that port plugs are now being populated with multiple diagnostics supplied by a number of ITER partners - two port plug examples are given. C1 [Pitcher, C. S.; Barnsley, R.; Bertalot, L.; Encheva, A.; Friconneau, J. P.; Levesy, B.; Macklin, B.; Martins, J. P.; Reichle, R.; Udintsev, V.; Vayakis, G.; Veshchev, E.; Walker, C.; Walsh, M.; Watts, C.] ITER Org, F-13115 St Paul Les Durance, France. [Feder, R.; Loesser, G. D.; Zhai, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Hu, Q.] Chinese Acad Sci, Inst Plasma Phys, Beijing 100864, Peoples R China. [Lyublin, B.] Efremov, St Petersburg, Russia. [Padasalagi, S.] Inst Plasma Res, Gandhinagar, Gujarat, India. [Pak, S.] Natl Fus Res Inst, Taejon, South Korea. [Sato, K.] Japan Atom Energy Agcy, Naka, Ibaraki, Japan. [Serikov, A.] KIT, Eggenstein Leopoldshafen, Germany. [Seyvet, F.] F4E, Barcelona, Spain. [Suarez, A.] CIEMAT, E-28040 Madrid, Spain. RP Pitcher, CS (reprint author), ITER Org, Route Vinon Verdon, F-13115 St Paul Les Durance, France. NR 8 TC 1 Z9 1 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 118 EP 125 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200008 ER PT J AU Titus, PH Kalish, M Hause, CM Heitzenroeder, P Hsiao, J Pillsbury, R Daly, E AF Titus, Peter H. Kalish, Michael Hause, Christopher M. Heitzenroeder, Philip Hsiao, Jushin Pillsbury, Robert Daly, Edward TI DESIGN AND ANALYSIS OF THE ITER VERTICAL STABILITY (VS) COILS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB The ITER vertical stability (VS) coils have been developed through the preliminary design phase by Princeton Plasma Physics Laboratory (PPPL). Final design, prototyping and construction will be carried out by the Chinese Participant Team contributing lab, Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The VS coils are a part of the in-vessel coil systems which include edge localized mode (ELM) coils as well as the VS coils. The VS design employs four turns of stainless steel jacketed mineral insulated copper (SSMIC) conductors The mineral insulation is Magnesium Oxide (MgO). Joule and nuclear heat are removed by water flowing through the hollow copper conductor. The slightly elevated temperatures in the conductor and its support spine during operation impose compressive stresses that mitigate fatigue damage. Away from joints, and break-outs, conductor thermal stresses are low because of the axisymmetry of the winding (there are no corner bends as in the ELM coils). The joints, and break-out or terminal regions are designed with similar but imperfect constraint compared with the ring coil portion of the VS. The support for the break-out region is made from a high strength copper alloy, CuCrZr. This is needed to conduct nuclear heat to the actively cooled conductor and to the vessel wall. The support "spine" for the ring coil portion of the VS is 316 stainless steel, held to the vessel with preloaded Inconel 718 bolts. Lorentz loads resulting from normal operating loads, disruption loads and loads from disruption currents in the support spine shared with vessel, are applied to the VS coil. Stresses in the coil, joints, and break-outs are presented. These are compared with static and fatigue allowables. Design for fatigue is much less demanding than for the ELM coils. A total of 30,000 cycles is required for VS design. C1 [Titus, Peter H.; Kalish, Michael; Hause, Christopher M.; Heitzenroeder, Philip] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Pillsbury, Robert] Sherbrooke Consulting Inc, Sherbrooke, PQ, Canada. [Daly, Edward] ITER Org, Cadarache, France. RP Titus, PH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ptitus@pppl.gov NR 15 TC 1 Z9 1 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 136 EP 145 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200011 ER PT J AU Kotulski, JD Coats, RS Ulrickson, M AF Kotulski, J. D. Coats, R. S. Ulrickson, M. TI TRANSIENT ELECTROMAGNETIC ANALYSIS OF BLANKET MODULE 1 OF THE ITER BLANKET SYSTEM DUE TO PLASMA DISRUPTION SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB The prediction of electromagnetic loads on blanket module I of the ITER device during a plasma disruption event is considered This analysis is performed for a number of design variations (of the blanket module) and different disruption events. The key features of the analysis procedure will be presented including the geometric description of the blanket module composed of a first wall, shield block, and vacuum vessel. The modeling of the plasma current will also be described. The electromagnetic analyses are performed using the Opera-3d software. The transient eddy currents are first calculated, from which the electromagnetic loads are determined Once these loads have been calculated they can also be exported for additional post-processing to assess the mechanical loading effects. C1 [Kotulski, J. D.; Coats, R. S.; Ulrickson, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kotulski, JD (reprint author), Sandia Natl Labs, POB 5800,MS 1152, Albuquerque, NM 87185 USA. EM jdkotul@sandia.gov NR 6 TC 0 Z9 0 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 146 EP 150 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200012 ER PT J AU Loesser, GD Pitcher, CS Feder, R Johnson, D Pak, S Walsh, M Zhai, Y AF Loesser, G. D. Pitcher, C. S. Feder, R. Johnson, D. Pak, S. Walsh, M. Zhai, Y. TI ITER DIAGNOSTIC FIRST WALL SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels. This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The Diagnostic First Wall (DFW) design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the First Wall (FW). At the FW, a radiant heat flux of 35W/cm(2) combines with approximate peak volumetric heating rates of 8W/cm(3) (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement conflicts with the desire to have a thicker FW element to accommodate surface erosion and other off-normal plasma events. C1 [Loesser, G. D.; Feder, R.; Johnson, D.; Zhai, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Pitcher, C. S.; Walsh, M.] ITER Org, F-13115 St Paul Les Durance, France. [Pak, S.] Natl Fus Res Inst, Taejon, South Korea. RP Loesser, GD (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM dloesser@pppl.gov NR 4 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 156 EP 160 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200014 ER PT J AU Myatt, RL Martovetsky, NN Barbier, C Freudenberg, KD AF Myatt, R. Leonard Martovetsky, Nicolai N. Barbier, Charlotte Freudenberg, Kevin D. TI ITER CS CONDUCTOR HELIUM INLET DESIGN OPTIMIZATION AND EVALUATION SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB The ITER central solenoid (CS) is wound from cable-in-conduit-conductor (CICC) and cooled by supercritical Helium (He) delivered to similar to 120 inner diameter (ID) turns through integrally welded "inlets." The flow to each inlet splits and passes through two pancakes, exiting at outlets. While both the He supply and return points (outlets) require penetrating the conduit wag the inlets reside in the highest stress field, and thus become the more critical structural element. The CS Conceptual Design Review (CRD) reference He inlet design has a long, narrow slot in the inside diameter (ID) turn wall with pencil-tip shaped ends. This shape is optimized in order to minimize the hoop stress concentration. The slot length is chosen to expose each of the six superconducting (SC) sub-cables to the He cooling supply. Implementing this design at 120 inlet sites requires substantial machining and welding operations where even virgin conduit has minimal structural margin. A design space exploration produces numerous inlet options. One configuration emerges as the new reference configuration: the oblong, heavy-wall boss. It addresses all of the critical issues: bi-axial stress field, pressure drop and sub-cable flow uniformity, manufacturing costs (complexities and risks) and in-service robustness (least invasive, greatest margin). Finite element (FE) simulations are presented which highlight the results of the optimization and evaluation process. C1 [Myatt, R. Leonard] Myatt Consulting Inc, Norfolk, MA 02056 USA. [Martovetsky, Nicolai N.] ORNL, LLNL, Oak Ridge, TN 37831 USA. [Barbier, Charlotte; Freudenberg, Kevin D.] ORNL, Oak Ridge, TN 37831 USA. RP Myatt, RL (reprint author), Myatt Consulting Inc, 8 Eric Rd, Norfolk, MA 02056 USA. EM leonard.myatt@myattconsulting.com NR 4 TC 0 Z9 0 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 161 EP 167 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200015 ER PT J AU Daly, EF Ioki, K Loarte, A Martin, A Brooks, A Heitzenroeder, P Kalish, M Neumeyer, C Titus, P Zhai, Y Wu, Y Jin, H Long, F Song, Y Wang, Z Pillsbury, R Feng, J Bohm, T Sawan, M Preble, J AF Daly, E. F. Ioki, K. Loarte, A. Martin, A. Brooks, A. Heitzenroeder, P. Kalish, M. Neumeyer, C. Titus, P. Zhai, Y. Wu, Y. Jin, H. Long, F. Song, Y. Wang, Z. Pillsbury, R. Feng, J. Bohm, T. Sawan, M. Preble, J. TI UPDATE ON DESIGN OF THE ITER IN-VESSEL COILS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB The ITER project baseline now includes two sets of in-vessel coils, one to mitigate the effects of Edge Localized Modes (ELMs) and another to provide vertical stabilization (VS). The in-vessel location presents special challenges in terms of nuclear radiation and temperature, and requires the use of mineral-insulated conductors. An update to the preliminary design based on this conductor technology is presented for both coil designs. Results from an on-going R&D program consisting of conductor development, welding and brazing process development, electrical testing and mechanical testing in order to demonstrate manufacturability of this style of conductor are presented. Plans for two prototype coils, one of each type, are presented. C1 [Daly, E. F.; Ioki, K.; Loarte, A.; Martin, A.] ITER Org, F-13115 St Paul Les Durance, France. [Brooks, A.; Heitzenroeder, P.; Kalish, M.; Neumeyer, C.; Titus, P.; Zhai, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Wu, Y.; Jin, H.; Long, F.; Song, Y.; Wang, Z.] Chinese Acad Sci, Inst Plasma Phys, Beijing 100864, Anhui, Peoples R China. [Pillsbury, R.] Sherbrooke Consulting, Arlington, VA USA. [Feng, J.] MIT Plasma Sci & Fus Ctr, Cambridge, MA USA. [Bohm, T.; Sawan, M.] Univ Wisconsin, Fus Technol Inst, Madison, WI USA. [Preble, J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. RP Daly, EF (reprint author), ITER Org, Route Vinon, F-13115 St Paul Les Durance, France. EM Edward.Daly@iter.org NR 6 TC 11 Z9 11 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 168 EP 175 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200016 ER PT J AU Reyes, S Anklam, T Babineau, D Becnel, J Davis, R Dunne, M Farmer, J Flowers, D Kramer, K Martinez-Frias, J Miles, R Taylor, C AF Reyes, S. Anklam, T. Babineau, D. Becnel, J. Davis, R. Dunne, M. Farmer, J. Flowers, D. Kramer, K. Martinez-Frias, J. Miles, R. Taylor, C. TI LIFE TRITIUM PROCESSING: A SUSTAINABLE SOLUTION FOR CLOSING THE FUSION FUEL CYCLE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID HYDROGEN ISOTOPE-SEPARATION; ENERGY AB The Laser Inertial Fusion Energy (LIFE) power plant is being designed to deliver a transformative source of safe, secure, sustainable electricity, in a time scale that is consistent with the global energy market needs. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, re-fueling, accountability and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the in-process tritium inventory. The high fractional burn-up (similar to 30%) in an Inertial Fusion Energy (IFE) capsule relaxes the tritium breeding requirements, while the use of only milligram quantities of fuel per shot and choice of a pure lithium heat transfer fluid substantially reduce the amount of material entrained in the facility. Additionally, the high solubility of tritium in the lithium breeder is expected to mitigate the need for development of permeation barriers in the engine systems, normally required to control routine releases within the allowable regulatory limits. The present paper offers an overview of the design of the LIFE fuel cycle, including a summary of the technology development plan consistent with the delivery schedule of the LIFE market entry plant. C1 [Reyes, S.; Anklam, T.; Dunne, M.; Farmer, J.; Flowers, D.; Kramer, K.; Martinez-Frias, J.; Miles, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Babineau, D.; Becnel, J.] Savannah River Natl Lab, Aiken, SC USA. [Taylor, C.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Reyes, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM reyes20@llnl.gov RI Dunne, Mike/B-4318-2014; Johnson, Marilyn/E-7209-2011 OI Dunne, Mike/0000-0001-8740-3870; NR 12 TC 3 Z9 3 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 187 EP 193 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200018 ER PT J AU Rapp, J Biewer, TM Canik, J Caughman, JBO Goulding, RH Hillis, DL Lore, JD Owen, LW AF Rapp, J. Biewer, T. M. Canik, J. Caughman, J. B. O. Goulding, R. H. Hillis, D. L. Lore, J. D. Owen, L. W. TI THE DEVELOPMENT OF PLASMA-MATERIAL INTERACTION FACILITIES FOR THE FUTURE OF FUSION TECHNOLOGY SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID NEUTRON-IRRADIATION; SURFACE INTERACTION; TUNGSTEN; EROSION; DEVICES; ITER AB A new era of fusion research has started with ITER being constructed and DEMO for power demonstration on the horizon. However, the fusion nuclear science needs to be developed before DEMO can be designed One of the most crucial and most complex outstanding science issues to be solved is the plasma surface interaction (PSI) in the hostile environment of a nuclear fusion reactor. Not only are materials exposed to unprecedented steady-state and transient power fluxes, but they are also exposed to unprecedented neutron fluxes. Both the ion fluxes and the neutron fluxes will change the micro-structure of the plasma facing materials significantly even to the extent that their structural integrity is compromised. New devices have to be developed to address the challenges ahead Linear plasma-material interaction facilities can play a crucial role in advancing the plasma-material interaction science and the development of plasma facing components for future fusion reactors. C1 [Rapp, J.; Biewer, T. M.; Canik, J.; Caughman, J. B. O.; Goulding, R. H.; Hillis, D. L.; Lore, J. D.; Owen, L. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Rapp, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM rappj@ornl.gov RI Goulding, Richard/C-5982-2016; Caughman, John/R-4889-2016; OI Goulding, Richard/0000-0002-1776-7983; Caughman, John/0000-0002-0609-1164; Canik, John/0000-0001-6934-6681; Rapp, Juergen/0000-0003-2785-9280; Lore, Jeremy/0000-0002-9192-465X NR 27 TC 8 Z9 8 U1 1 U2 11 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 237 EP 244 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200026 ER PT J AU Zhang, H Titus, PH Ellis, R Harrison, S Vieira, R AF Zhang, Han Titus, Peter H. Ellis, Robert Harrison, Soren Vieira, Rui TI THERMAL ANALYSIS TO CALCULATE THE VESSEL TEMPERATURE AND STRESS IN ALCATOR C-MOD DUE TO THE DIVERTOR UPGRADE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB Alcator C-Mod is planning an upgrade to its outer divertor. The upgrade is intended to correct the existing outer divertor alignment with the plasma, and to operate at elevated temperatures. Higher temperature operation will allow study of edge physics behavior at reactor relevant temperatures. The outer divertor and tiles will be capable of operating at 600 degrees C. Longer pulse length, together with the plasma and RF heat of 9 MW, and the inclusion of heater elements within the outer divertor produces radiative energy which makes the sustained operation much more difficult than before. An ANSYS model was built for the global thermal analysis of C-Mod. It models the radiative surfaces inside the vessel and between the components, and also includes plasma energy deposition. Different geometries have been simulated and compared Results show that steady state operation with the divertor at 600 degrees C is possible with no damage to major vessel internal components. The differential temperature between inner divertor structure, or "girdle" and inner vessel wall is 70 degrees C. This differential temperature is limited by the capacity of the studs that hold the inner divertor backing plates to the vessel wall. At a 70 degrees C temperature differential the stress on the studs is within allowable limits. The thermal model was then used for a stress pass to quantify vessel shell stresses where thermal gradients are significant. C1 [Zhang, Han; Titus, Peter H.; Ellis, Robert; Harrison, Soren] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Harrison, Soren; Vieira, Rui] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Zhang, H (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM hzhang@pppl.gov NR 5 TC 2 Z9 2 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 250 EP 254 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200028 ER PT J AU Zhai, YH Titus, P Brooks, A Hatcher, R AF Zhai, Yuhu Titus, Peter Brooks, Art Hatcher, Ronald TI DISRUPTION ANALYSIS AND RESPONSE IMPLICATION OF PASSIVE PLATES FOR THE NSTX UPGRADE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB The National Spherical Torus eXperiment (NSTX) upgrade project requires analysis qualifications of existing vacuum vessel and passive stabilizing plates for increased plasma performance. Vertical stability is critically dependent on the passive conducting structure that surrounds the plasma. In this paper, the passive plate is analyzed for the upgrade condition during plasma disruption to ensure the level of stress in the plate and the fastener is within its design limits. The counter-bore of the passive plate for bolting is evaluated in detail and counter-bore bushing is redesigned to prevent shear failure during disruptions as a result of high pulling and pushing forces, particularly for support at corner bolts. C1 [Zhai, Yuhu; Titus, Peter; Brooks, Art; Hatcher, Ronald] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zhai, YH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM yzhai@pppl.gov NR 6 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 255 EP 259 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200029 ER PT J AU Youchison, DL Ulrickson, MA AF Youchison, Dennis L. Ulrickson, Michael A. TI PLASMA FACING COMPONENT DESIGN THROUGH MULTIPHYSICS SIMULATION SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID COMPUTATIONAL FLUID-DYNAMICS; ITER 1ST WALL AB Continual technology development for fusion has come to rely on the principle of "design by analysis" where advanced finite element analysis (FEA) or finite volume analysis provides insight on the performance of engineered systems. Extensive three-dimensional (3D) computations in fluid dynamics, heat transfer, neutronics, magneto-hydrodynamics and electro-magnetics are involved in an iterative design process for magnets, vacuum vessels and in-vessel components. Many difficulties arose in the integration of computer-assisted design (CAD) packages and the numeric models and results from different FEA codes. Over the last decade, engineers developed a vast array of specialized translators and interpolation programs to deal with geometry, mesh and load transfers between single-discipline codes, often with mixed outcomes. Now, several multiphysics codes that allow calculations on the same mesh and easy transfer of loads and other boundary conditions are emerging in the commercial market. These codes often have a robust library of physics models and solvers that address both steady state and transient phenomena and provide simultaneous solutions to heat transfer, fluid flow and structural mechanics problems. This article reviews three existing design tools, provides some examples of how the multiphysics codes are impacting practical engineering design, and identifies some important gaps that still exist today. C1 [Youchison, Dennis L.; Ulrickson, Michael A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Youchison, DL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dlyouch@sandia.gov OI Youchison, Dennis/0000-0002-7366-1710 NR 18 TC 0 Z9 0 U1 0 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 269 EP 276 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200031 ER PT J AU Harrison, S Vieira, R Lipschultz, B Ellis, R Karnes, D Titus, P Zhou, LH Zhang, H Beck, W AF Harrison, Soren Vieira, Rui Lipschultz, Bruce Ellis, Robert Karnes, Dan Titus, Peter Zhou, Lihua Zhang, Han Beck, William TI DESIGN AND R&D FOR THE C-MOD OUTER DIVERTOR UPGRADE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB Operational requirements and research considerations make a high-temperature, toroidally continuous outer divertor an important upgrade to the Alcator C-Mod tokamak. Leading edge melting of tiles, non-uniform heat loads, large electromagnetic forces, and localized impurity sources limit the performance of bulk plasmas. These issues can be addressed by the installation of a well-aligned, toroidally continuous outer divertor. Additionally, future long pulse operation will cause the temperature of the outer divertor to reach bulk temperatures as high as 500 - 600 degrees C. This future operational requirement combined with the strong temperature dependence of plasma surface interactions (especially fuel retention), makes a controllable, high-temperature outer divertor desirable and necessary. The motivation, criteria, design, and R&D for the upgrade are discussed below. C1 [Harrison, Soren; Ellis, Robert; Karnes, Dan; Titus, Peter; Zhou, Lihua; Zhang, Han] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Harrison, Soren; Vieira, Rui; Lipschultz, Bruce; Karnes, Dan; Beck, William] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Harrison, S (reprint author), Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08540 USA. EM harrison1@psfc.mit.edu RI Lipschultz, Bruce/J-7726-2012 OI Lipschultz, Bruce/0000-0001-5968-3684 NR 3 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 277 EP 281 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200032 ER PT J AU Zhou, LH Vieira, R Harrison, S Karnes, D Lipschultz, B AF Zhou, Lihua Vieira, Rui Harrison, Soren Karnes, Dan Lipschultz, Bruce TI HEAT TRANSFER SIMULATION OF A-FRAME ASSEMBLY TO SUPPORT ALCATOR C-MOD OUTER DIVERTOR UPGRADE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB To design the Alcator C-Mod outer divertor to operate at 600 degrees C and determine its effect on the surrounding vessel and diagnostics, heat transfer analysis must be performed. This paper describes the analysis and the results of heat transfer simulations of the outer divertor tiles, tile-mounting plate, support structure, and current shunt. Using Comsol, commercial FEA software package, a 3D wedge model that exploits the cyclic symmetry of the divertor, is created By adjusting the power level of each of the 7 heaters used to elevate and control the divertor temperature, a uniform poloidal temperature distribution is achieved and the power requirements for the heaters are determined The temperature of each component in the assembly is calculated, and results are used for further design changes. Additionally, radiation simulation on thermal shields are presented, which is used as ambient temperature for the heat transfer of the A-frame assembly. Furthermore, a full model of the entire outer divertor ring is presented with its toroidal temperature distribution. Finally, thermal stress of the plate is analyzed besides an analytical calculation of the maximum allowable temperature difference. C1 [Zhou, Lihua; Vieira, Rui; Harrison, Soren; Karnes, Dan; Lipschultz, Bruce] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Harrison, Soren; Karnes, Dan] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zhou, LH (reprint author), MIT, Plasma Sci & Fus Ctr, 190 Albany St, Cambridge, MA 02139 USA. EM lihua@psfc.mit.edu RI Lipschultz, Bruce/J-7726-2012 OI Lipschultz, Bruce/0000-0001-5968-3684 NR 2 TC 2 Z9 2 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 293 EP 297 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200035 ER PT J AU Berlinger, B Brooks, A Feder, H Gumbas, J Franckowiak, T Cohen, SA AF Berlinger, B. Brooks, A. Feder, H. Gumbas, J. Franckowiak, T. Cohen, S. A. TI USE OF POLYCARBONATE VACUUM VESSELS IN HIGH-TEMPERATURE FUSION-PLASMA RESEARCH SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID FIELD-REVERSED CONFIGURATIONS AB Magnetic fusion energy (MFE) research requires ultrahigh-vacuum conditions, primarily to reduce plasma contamination by impurities. For radiofrequency (RF)-heated plasmas, a great benefit may accrue from a non-conducting vacuum vessel, allowing external RF antennas to avoid the complications and cost of internal antennas and high-voltage high-current feedthroughs. In this paper we describe these and other criteria, e.g., safety, design flexibility, structural integrity, access, outgassing, transparency, and fabrication techniques that led to the selection and use of 25.4-cm OD, 1.6-cm wall polycarbonate pipe as the main vacuum vessel for an MFE research device whose plasmas are expected to reach keV energies for durations exceeding 0.1 s. C1 [Berlinger, B.; Brooks, A.; Feder, H.; Gumbas, J.; Franckowiak, T.; Cohen, S. A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Berlinger, B (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM BBerling@Princeton.edu NR 11 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 298 EP 302 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200036 ER PT J AU Ying, A Zhang, HJ Garde, JM Ulrickson, M AF Ying, Alice Zhang, Hongjie Garde, Joseph Mauricio Ulrickson, Mike TI STRUCTURAL ANALYSIS FOR EHF HYPERVAPOTRON TWIN FINGERS AND BERYLLIUM TILE SIZE STUDY SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID 1ST WALL AB The impact of Be tile size on the stress exerted on the CuCrZr heat sink for the ITER EHF finger was examined. The study especially focused on the areas beneath the tiles that are exposed to the high convective heat flux. For reference, in a Be tile size of 50x50x8 mm(3), the calculated equivalent strain range using elastic analysis for the path of interest through the side wall of the CuCrZr heat sink resulted in a peak value at the inner wall of similar to 0.492%. The corresponding fatigue lifetime of the heat sink locally is unacceptably low, 1400 cyclic operations. By using smaller tiles, lower stress amplitudes are observed due to a smaller deformation. In this paper, the total strain range under ITER projected pulsed operating conditions is analyzed for a range of Be tile sizes. The analysis model uses a complete pair of twin fingers as opposed to a sub-model of two tiles. The paper documents the calculated cyclic lifetime of the ITER EHF CuCrZr heat sink with respect to Be tile size and peak heat loads by evaluating the total strain range both from elastic and time independent elasto-plastic analyses for repeated cycle. C1 [Ying, Alice; Zhang, Hongjie] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. [Garde, Joseph Mauricio; Ulrickson, Mike] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ying, A (reprint author), Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. EM ying@fusion.ucla.edu NR 9 TC 1 Z9 1 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 309 EP 314 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200038 ER PT J AU Doody, J Granetz, R Lipschultz, B Zhang, H Titus, P Vieira, R AF Doody, Jeffrey Granetz, Robert Lipschultz, Bruce Zhang, Han Titus, Peter Vieira, Rui TI ANSYS MODEL TO PREDICT MAGNETIC FIELDS AND LOADS IN ALCATOR C-MOD'S NEW OUTER DIVERTOR DURING A DISRUPTION SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB A new outer divertor is being designed for installation on Alcator C-Mod. This divertor will be toroidally continuous such that the currents during a disruption will be driven in the toroidal direction and not cross Alcator's large toroidal field and it eliminates leading edges. However, currents will still cross the poloidal fields, and so it is important to properly predict the poloidal fields in the area of the divertor so that we can properly predict the loads on the divertor during a disruption. To that end, an ANSYS model has been built which can predict the fields and field transients in C-Mod given two inputs, the currents for the toroidal and poloidal field coils which come from measured data taken during a discharge, and the current in the plasma, which comes from another model that solves Maxwell's equations to reconstruct the plasma as 24 current carrying filaments. The advantage of using this method to predict fields is that it provides the ability to create a model based on actual measured data and to model whichever type of disruption, whether a midplane disruption or a vertical displacement event, is deemed necessary for the design. The ANSYS model then is able to predict the fields, including the shielding effects of the structures in the vessel, and the currents induced in the vessel and these structures. These results can then be mapped to a sub-model of the divertor to predict loading and stress during the disruption. C1 [Doody, Jeffrey; Granetz, Robert; Lipschultz, Bruce; Vieira, Rui] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Zhang, Han; Titus, Peter] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Doody, J (reprint author), MIT, Plasma Sci & Fus Ctr, 190 Albany St, Cambridge, MA 02139 USA. EM doody@psfc.mit.edu RI Lipschultz, Bruce/J-7726-2012 OI Lipschultz, Bruce/0000-0001-5968-3684 NR 5 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 320 EP 324 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200040 ER PT J AU Humrickhouse, PW Merrill, BJ AF Humrickhouse, Paul W. Merrill, Brad J. TI MELCOR ACCIDENT ANALYSIS FOR ARIES-ACT SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID DESIGN AB We model a loss of flow accident (LOFA) in the ARIES-ACT1 tokamak design. ARIES-ACT1 features an advanced SiC blanket with LiPb as coolant and breeder, a helium cooled steel structural ring and tungsten divertors, a thin-walled, helium cooled vacuum vessel, and a room temperature water-cooled shield outside the vacuum vessel. The water heat transfer system is designed to remove heat by natural circulation during a LOFA. The MELCOR model uses time-dependent decay heats for each component determined by 1-D modeling. The MELCOR model shows that, despite periodic boiling of the water coolant, that structures are kept adequately cool by the passive safety system. C1 [Humrickhouse, Paul W.; Merrill, Brad J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Humrickhouse, PW (reprint author), Idaho Natl Lab, POB 1625 MS 3840, Idaho Falls, ID 83415 USA. EM paul.humrickhouse@inl.gov NR 11 TC 3 Z9 3 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 340 EP 344 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200043 ER PT J AU Cadwallader, L Pinna, T AF Cadwallader, L. Pinna, T. TI RELIABILITY ESTIMATION FOR DOUBLE CONTAINMENT PIPING SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID STORAGE TANKS; SYSTEMS; PIPE AB Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. The authors recommend approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses. C1 [Cadwallader, L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Pinna, T.] ENEA, I-00044 Frascati, Rome, Italy. RP Cadwallader, L (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM lee.cadwallader@inl.gov RI Cadwallader, Lee/F-6933-2014 NR 26 TC 2 Z9 2 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD AUG PY 2013 VL 64 IS 2 BP 351 EP 356 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 198RE UT WOS:000322939200045 ER PT J AU Humble, TS AF Humble, Travis S. TI Quantum Security for the Physical Layer SO IEEE COMMUNICATIONS MAGAZINE LA English DT Article AB The physical layer describes how communication signals are encoded and transmitted across a channel. Physical security often requires either restricting access to the channel or performing periodic manual inspections. In this tutorial, we describe how the field of quantum communication offers new techniques for securing the physical layer. We describe the use of quantum seals as a unique way to test the integrity and authenticity of a communication channel and to provide security for the physical layer. We present the theoretical and physical underpinnings of quantum seals including the quantum optical encoding used at the transmitter and the test for non-locality used at the receiver. We describe how the envisioned quantum physical sublayer senses tampering and how coordination with higher protocol layers allows quantum seals to influence secure routing or tailor data management methods. We conclude by discussing challenges in the development of quantum seals, the overlap with existing quantum key distribution cryptographic services, and the relevance of a quantum physical sublayer to the future of communication security. C1 Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Humble, TS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM humblets@ornl.gov FU Defense Threat Reduction Agency; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the Defense Threat Reduction Agency. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 11 TC 5 Z9 5 U1 0 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0163-6804 J9 IEEE COMMUN MAG JI IEEE Commun. Mag. PD AUG PY 2013 VL 51 IS 8 BP 56 EP 62 PG 7 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 206AT UT WOS:000323488500007 ER PT J AU Bolotnikov, AE Butcher, J Camarda, GS Cui, YG De Geronimo, G Fried, J Fochuk, PM Hossain, A Kim, KH Kopach, OV Mahler, G Marshall, M McCall, B Petryk, M Vernon, E Yang, G James, RB AF Bolotnikov, Aleksey E. Butcher, Jamie Camarda, Giuseppe S. Cui, Yonggang De Geronimo, Gianluigi Fried, Jack Fochuk, P. M. Hossain, Anwar Kim, Kihyun H. Kopach, O. V. Mahler, G. Marshall, Matthew McCall, B. Petryk, Matthew Vernon, Emerson Yang, Ge. James, Ralph B. TI Design Considerations and Testing of Virtual Frisch-Grid CdZnTe Detector Arrays Using the H3D ASIC SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE CdZnTe; charge-loss correction; crystal defects; virtual Frisch grid detectors ID CHARGE-COLLECTION EVENTS; READOUT; PERFORMANCE; DEFECTS AB We discussed the design implementation and results from testing 2 x 2-, 3 x 3-, and 2 x 4-arrays of 6 x 6 x 15 mm(3) CdZnTe virtual Frisch-grid detectors. In these measurements we employed a data acquisition system based on the H3D ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan for 3D position-sensitive detectors. We used CZT crystals with a range of performance attributes to evaluate practical array configurations and detector-assembling procedures. The detector ratings were assigned based on the pulse-height spectra and correlated with data from X-ray diffraction topography measurements and X-ray response mapping obtained at BNL's National Synchrotron Light Source. The results helped us to better understand the performance limits of these detectors, and to identify future improvements in the array's design and requirements for the new readout ASIC. C1 [Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; De Geronimo, Gianluigi; Fried, Jack; Hossain, Anwar; Kim, Kihyun H.; Mahler, G.; Petryk, Matthew; Vernon, Emerson; Yang, Ge.; James, Ralph B.] Brookhaven Natl Lab, Upton, NY 11793 USA. [Butcher, Jamie] SUNY Coll Geneseo, Geneseo, NY 14454 USA. [Fochuk, P. M.; Kopach, O. V.] Chernivtsi Natl Univ, UA-58000 Chernovtsy, Ukraine. [Marshall, Matthew] Univ New Mexico, Albuquerque, NM 87131 USA. [McCall, B.] Alabama A&M Univ, Huntsville, AL 35810 USA. RP Bolotnikov, AE (reprint author), Brookhaven Natl Lab, Upton, NY 11793 USA. EM bolotnik@bnl.gov RI Fochuk, Petro/D-9409-2016; Kopach, Oleh/C-3993-2017; OI Fochuk, Petro/0000-0002-4149-4882; Kopach, Oleh/0000-0002-1513-5261; Marshall, Matthew/0000-0002-6440-8713 FU U.S. Department of Energy, Office of Nonproliferation and Verification Research Development [NA-22]; U.S. Defense Threat Reduction Agency (DTRA); BNL's Technology Maturation Award; U.S. Department of Energy [DE-AC02-98CH1-886] FX This work was supported by U.S. Department of Energy, Office of Nonproliferation and Verification Research & Development, NA-22, U.S. Defense Threat Reduction Agency (DTRA) and BNL's Technology Maturation Award. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract DE-AC02-98CH1-886 with the U.S. Department of Energy. NR 16 TC 3 Z9 3 U1 1 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 2875 EP 2882 DI 10.1109/TNS.2013.2274054 PN 2 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NT UT WOS:000323451800008 ER PT J AU Mandal, KC Muzykov, PG Chaudhuri, SK Terry, JR AF Mandal, Krishna C. Muzykov, Peter G. Chaudhuri, Sandeep K. Terry, J. Russell TI Low Energy X-Ray and gamma-Ray Detectors Fabricated on n-Type 4H-SiC Epitaxial Layer SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Defect delineating etching; epitaxial layer; Schottky barrier detector; thermally stimulated current (TSC) spectroscopy; x/gamma ray detection and XRD rocking curve; 4H-SiC ID SILICON-CARBIDE; SCHOTTKY DIODES; RADIATION DETECTORS AB Schottky barrier diode (SBD) radiation detectors have been fabricated on n-type 4H-SiC epitaxial layers and evaluated for low energy x- and gamma-rays detection. The detectors were found to be highly sensitive to soft x-rays in the 50 eV to few keV range and showed 2.1 % energy resolution for 59.6 keV gamma rays. The response to soft x-rays for these detectors was significantly higher than that of commercial off-the-shelf (COTS) SiC UV photodiodes. The devices have been characterized by current-voltage (I-V) measurements in the 94-700 K range, thermally stimulated current (TSC) spectroscopy, x-ray diffraction (XRD) rocking curve measurements, and defect delineating chemical etching. I-V characteristics of the detectors at 500 K showed low leakage current (<2 nA at 200 V) revealing a possibility of high temperature operation. The XRD rocking curve measurements revealed high quality of the epitaxial layer exhibiting a full width at half maximum (FWHM) of the rocking curve similar to 3.6 arc sec. TSC studies in a wide range of temperature (94-550 K) revealed presence of relatively shallow levels (similar to 0.25 eV) in the epi bulk with a density similar to 7 x 10(13) cm(-3) related to Al and B impurities and deeper levels located near the metal-semiconductor interface. C1 [Mandal, Krishna C.; Muzykov, Peter G.; Chaudhuri, Sandeep K.] Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. [Terry, J. Russell] Los Alamos Natl Lab, Space Sci & Applicat Grp, Intelligence & Space Res Div ISR 1, Los Alamos, NM 87545 USA. RP Mandal, KC (reprint author), Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. EM mandalk@cec.sc.edu FU Los Alamos National Laboratory/DOE [143479]; Advanced Support Program for Innovative Research Excellence-I (ASPIRE-I) of the University of South Carolina, Columbia [15530-A401] FX This work was supported in part by Los Alamos National Laboratory/DOE (Grant 143479) and the Advanced Support Program for Innovative Research Excellence-I (ASPIRE-I) of the University of South Carolina, Columbia, Grant 15530-A401. NR 25 TC 23 Z9 23 U1 4 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 2888 EP 2893 DI 10.1109/TNS.2013.2273673 PN 2 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NT UT WOS:000323451800010 ER PT J AU Hauf, S Kuster, M Batic, M Bell, ZW Hoffmann, DHH Lang, PM Neff, S Pia, MG Weidenspointner, G Zoglauer, A AF Hauf, Steffen Kuster, Markus Batic, Matej Bell, Zane W. Hoffmann, Dieter H. H. Lang, Philipp M. Neff, Stephan Pia, Maria Grazia Weidenspointner, Georg Zoglauer, Andreas TI Radioactive Decays in Geant4 SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE ENSDF; Geant4; Monte-Carlo Simulation; radioactive decay; validation ID ALGEBRAIC APPROACH; EQUATIONS; VALIDATION; SYSTEM AB The simulation of radioactive decays is a common task in Monte-Carlo systems such as Geant4. Usually, a system either uses an approach focusing on the simulations of every individual decay or an approach which simulates a large number of decays with a focus on correct overall statistics. The radioactive decay package presented in this work permits, for the first time, the use of both methods within the same simulation framework-Geant4. The accuracy of the statistical approach in our new package, RDM-extended, and that of the existing Geant4 per-decay implementation ( original RDM), which has also been refactored, are verified against the ENSDF database. The new verified package is beneficial for a wide range of experimental scenarios, as it enables researchers to choose the most appropriate approach for their Geant4-based application. C1 [Hauf, Steffen] European XFEL GmbH, Hamburg, Germany. [Hoffmann, Dieter H. H.; Lang, Philipp M.; Neff, Stephan] Tech Univ Darmstadt, Inst Nucl Sci, Darmstadt, Germany. [Batic, Matej; Pia, Maria Grazia] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Bell, Zane W.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Weidenspointner, Georg] Max Planck Halbleiter Labor, Munich, Germany. [Weidenspointner, Georg] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Zoglauer, Andreas] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Hauf, S (reprint author), European XFEL GmbH, Hamburg, Germany. EM steffen.hauf@xfel.eu RI Kuster, Markus/C-5742-2014; Pia, Maria Grazia/C-7034-2012; OI Pia, Maria Grazia/0000-0002-3579-9639; Bell, Zane/0000-0003-1115-8674 FU Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) [50 QR 0902, 50 QR 1102]; Deutsche Zentrum fuer Luft- und Raumfahrt (DLR) [50QR902, 50Q1102] FX This work has been supported by Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) under grants 50 QR 0902 and 50 QR 1102.; This work was supported by the Deutsche Zentrum fuer Luft- und Raumfahrt (DLR) under Grant number 50QR902 and 50Q1102. NR 42 TC 7 Z9 7 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 2966 EP 2983 DI 10.1109/TNS.2013.2270894 PN 2 PG 18 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NT UT WOS:000323451800019 ER PT J AU Hauf, S Kuster, M Batic, M Bell, ZW Hoffmann, DHH Lang, PM Neff, S Pia, MG Weidenspointner, G Zoglauer, A AF Hauf, Steffen Kuster, Markus Batic, Matej Bell, Zane W. Hoffmann, Dieter H. H. Lang, Philipp M. Neff, Stephan Pia, Maria Grazia Weidenspointner, Georg Zoglauer, Andreas TI Validation of Geant4-Based Radioactive Decay Simulation SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Geant4; high purity germanium detector; radioactive decay; simulation; validation ID EFFICIENCY CALIBRATION; ATOMIC RELAXATION; DETECTOR; CODE AB Radioactive decays are of concern in a wide variety of applications using Monte-Carlo simulations. In order to properly estimate the quality of such simulations, knowledge of the accuracy of the decay simulation is required. We present a validation of the original Geant4 Radioactive Decay Module, which uses a per-decay sampling approach, and of an extended package for Geant4-based simulation of radioactive decays, which, in addition to being able to use a refactored per-decay sampling, is capable of using a statistical sampling approach. The validation is based on measurements of calibration isotope sources using a high purity Germanium (HPGe) detector; no calibration of the simulation is performed. For the considered validation experiment equivalent simulation accuracy can be achieved with per-decay and statistical sampling. C1 [Hauf, Steffen; Kuster, Markus] European XFEL GmbH, Hamburg, Germany. [Batic, Matej; Pia, Maria Grazia] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Bell, Zane W.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Hoffmann, Dieter H. H.; Lang, Philipp M.; Neff, Stephan] Tech Univ Darmstadt, Inst Nucl Sci, Darmstadt, Germany. [Weidenspointner, Georg] Max Planck Halbleiter Labor, Munich, Germany. [Weidenspointner, Georg] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Zoglauer, Andreas] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Hauf, S (reprint author), European XFEL GmbH, Hamburg, Germany. EM steffen.hauf@xfel.eu RI Kuster, Markus/C-5742-2014; Pia, Maria Grazia/C-7034-2012; OI Pia, Maria Grazia/0000-0002-3579-9639; Bell, Zane/0000-0003-1115-8674 FU Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) [50 QR 0902, 50 QR 1102] FX This work has been supported by Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) under grants 50 QR 0902 and 50 QR 1102. NR 19 TC 6 Z9 6 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 2984 EP 2997 DI 10.1109/TNS.2013.2271047 PN 2 PG 14 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NT UT WOS:000323451800020 ER PT J AU Alamaniotis, M Heifetz, A Raptis, AC Tsoukalas, LH AF Alamaniotis, Miltiadis Heifetz, Alexander Raptis, Apostolos C. Tsoukalas, Lefteri H. TI Fuzzy-Logic Radioisotope Identifier for Gamma Spectroscopy in Source Search SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Fuzzy logic; maximum likelihood fitting; nuclear detection; radioisotope identifier; source search ID RAY SPECTRA; NEURAL-NETWORKS; ISOTOPE IDENTIFICATION; DETECTORS AB Detection and identification of radioactive nuclear materials in urban searches can be fully performed with a portable gamma ray detector-spectrometer. Due to limited acquisition time and, as a consequence, low signal to noise ratio (SNR), development of fast and accurate real-time radioisotope identifier (RIID) algorithms is essential for automated source detection. In this paper, we evaluate the performance of fuzzy logic real-time radioisotope identification (FL-RIID) in several urban search scenarios. FL-RIID performance is tested on a database of searches consisting of injections of synthetic sources into experimental nuclear background spectra, acquired in one-second time intervals with a moving sodium iodide (NaI) gamma radiation detector-spectrometer. Performance of FL-RIID is benchmarked against that of maximum-likelihood (ML) fitting method. Demonstrated advantages of FL-RIID over ML in search applications include lower false alarm rate and faster execution time. C1 [Alamaniotis, Miltiadis] Purdue Univ, Sch Nucl Engn, Appl Intelligent Syst Lab, W Lafayette, IN 47907 USA. [Heifetz, Alexander; Raptis, Apostolos C.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Tsoukalas, Lefteri H.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. RP Alamaniotis, M (reprint author), Univ Utah, Utah Nucl Engn Program, Salt Lake City, UT 84112 USA. EM miltos.alamaniotis@utah.edu; aheifetz@anl.gov; raptis@anl.gov; tsoukala@ecn.purdue.edu FU National Nuclear Security Administration, Office of Non-Proliferation and Verification, Research and Development [DR-PS52-09NA29330, NA-22] FX This work was supported in part by the National Nuclear Security Administration, Office of Non-Proliferation and Verification, Research and Development (NA-22), under Contract DR-PS52-09NA29330. NR 27 TC 8 Z9 8 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 3014 EP 3024 DI 10.1109/TNS.2013.2265307 PN 2 PG 11 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NT UT WOS:000323451800023 ER PT J AU Li, SR De Geronimo, G Chen, W D'Anadragora, A Fried, J Li, Z Pinelli, DA Smith, GC Gaskin, JA Ramsey, BD AF Li, Shaorui De Geronimo, Gianluigi Chen, Wei D'Anadragora, Alessio Fried, Jack Li, Zheng Pinelli, Donald A. Smith, Graham C. Gaskin, Jessica A. Ramsey, Brian D. TI A Low-Power, Radiation-Resistant ASIC for SDD-Based X-Ray Spectrometers SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE ASIC; radiation-resistant; SDD; x-ray spectrometer. ID COMMERCIAL CMOS TECHNOLOGIES; ISOLATION OXIDES; DEGRADATION AB We present an Application Specific Integrated Circuit (ASIC) for high resolution X-ray spectrometers (XRS) in radiation harsh environment (such as Jovian system). The ASIC was designed to read out signals from low resistivity pixelated Silicon-Drift-Detectors (SDD) to ensure radiation hardness. The readout is done by wire-bonding the anodes to the inputs of the ASIC. The ASIC dissipates 32 mW and provides 16 channels of low-noise charge amplification, high-order shaping with baseline stabilization, discrimination, pile-up rejection, and peak detection with analog memory. The readout is sparse and based on a custom low-power tri-stable low-voltage differential signaling digital interface. A unit of 64 SDD pixels, read out by four ASICs, covers an area of 12.8 cm(2), and dissipates less than 20 mW/cm(2). The ASICs were powered on and irradiated using a beam line with 203 MeV protons, to total doses ranging from 0.25 Mrad to 12 Mrad. Performance degradation due to radiation-induced leakage current was observed to peak around 2 Mrad dose. Critical contributors to the degradation were identified through simulation and measurements, and corresponding circuitry was thus modified to address the issues. Measurements on the radiation-resistant design have shown excellent radiation resistance at total doses ranging from 1 to 8 Mrad. C1 [Li, Shaorui; De Geronimo, Gianluigi; Chen, Wei; D'Anadragora, Alessio; Fried, Jack; Li, Zheng; Pinelli, Donald A.; Smith, Graham C.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gaskin, Jessica A.; Ramsey, Brian D.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Li, SR (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM shaoruili@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886]; NASA Research Opportunities in Space and Earth Science, Planetary Instrument Definition and Development Program FX This work was supported in part by the U.S. Department of Energy under Contract DE-AC02-98CH10886, and in part by the NASA Research Opportunities in Space and Earth Science, Planetary Instrument Definition and Development Program. NR 13 TC 0 Z9 0 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 3057 EP 3062 DI 10.1109/TNS.2013.2268980 PN 2 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NT UT WOS:000323451800028 ER PT J AU Cates, JW Hayward, JP Zhang, X AF Cates, J. W. Hayward, J. P. Zhang, X. TI Measurement of Achievable Timing Resolution With ZnO:Ga Films SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Achievable timing with scintillators; associated particle imaging; D-T neutron generator; timing resolution ID MATERIALS IDENTIFICATION SYSTEM; ALPHA-PARTICLE DETECTORS; NEUTRON GENERATOR; PHOTOMULTIPLIER SYSTEMS; SCINTILLATORS; PBI2; CDS AB ZnO:Ga films are attractive phosphors for a number of high energy physics and security applications because of their extremely fast temporal response (typically less than 1 ns). Significant efforts have been undertaken to study the dependence of luminescence properties of ZnO:Ga on dopant constituency and temperature. However, most of these studies simply report the decay time of the phosphor, and there is a lack of published values for measured timing resolution with ZnO:Ga. This work aims to present achievable timing resolution with ZnO:Ga through predictive models and experimentally measured values. Careful characterization of a ZnO:Ga sample's temporal distribution and photosensor response provided inputs for an analytical timing model to predict the timing performance of ZnO:Ga. Additionally, the statistical limit on timing performance is calculated via the Cramer-Rao statistic. The timing performance of a thin-film reference detector is quantified for alpha particle irradiation, and the timing resolution of a ZnO:Ga film is measured against the reference detector. A consistent and precise timestamp from the onset of the rising edge of the ZnO:Ga sample yielded a timing resolution of 52.5 +/- 10.0 ps FWHM was measured for the case of 50 detected photons. Good agreement is shown between measured and predicted timing performance, and the relation to the statistical limit is presented. The reported timing performance for a scintillator with an extremely fast decay but poor light yield has meaningful impact in many areas of study where a fast scintillator is required, including its use in the associated particle detector of a neutron generator to enable multimodal, time-of-flight (TOF) based imaging and TOF Positron Emission Tomography Imaging. C1 [Cates, J. W.; Hayward, J. P.; Zhang, X.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Hayward, J. P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Cates, JW (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM jcates7@utk.edu FU U.S. Department of Homeland Security, Domestic Nuclear Detection Office [2010-DN-077-ARI044-02] FX This work was supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded Grant Award 2010-DN-077-ARI044-02. This support does not constitute an express or implied endorsement on the part of the Government. NR 24 TC 1 Z9 1 U1 0 U2 23 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 3127 EP 3133 DI 10.1109/TNS.2013.2272883 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NT UT WOS:000323451800036 ER PT J AU Feng, PL Foster, ME AF Feng, Patrick L. Foster, Michael E. TI Pulse-Shape Discrimination in High-Symmetry Organic Scintillators SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Crystals; neutron detection; organic scintillator; pulse-shape discrimination ID EXCITATION-ENERGY TRANSFER; FAST-NEUTRON SPECTROMETRY; FLUORESCENCE; CRYSTALS; SYSTEMS AB In this work, we report the targeted structural modification of luminescent organic molecules to impart changes to the corresponding molecular and crystallographic symmetries. Fast neutron/gamma pulse-shape discrimination (PSD) has been characterized in high-symmetry organic crystals composed of chromophores that do not intrinsically exhibit PSD. These findings are rationalized in the context of second-rank tensor properties, which are symmetry-dependent factors that control key quantities such as the transport mobility, light yield anisotropy, refractive index, strain, and thermal expansion coefficient. Density-functional theory calculations confirm the role of crystallographic packing and symmetry upon the magnitude of exchange interactions between triplet excited states, as relevant to triplet-triplet annihilation and PSD. C1 [Feng, Patrick L.; Foster, Michael E.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Feng, PL (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM plfeng@sandia.gov FU office of NA-22, NNSA, U.S. Department of Energy; National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the office of NA-22, NNSA, U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 26 TC 1 Z9 1 U1 0 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2013 VL 60 IS 4 BP 3142 EP 3149 DI 10.1109/TNS.2013.2272893 PN 2 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 205NT UT WOS:000323451800038 ER PT J AU Franz, R Polcik, P Anders, A AF Franz, Robert Polcik, Peter Anders, Andre TI Ion Charge State Distributions of Al and Cr in Cathodic Arc Plasmas from Composite Cathodes in Vacuum, Argon, Nitrogen, and Oxygen SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE AlCr; cathodic arc; composite cathode; ionization; process gas ID MAGNETIC-FIELD; TEMPORAL DEVELOPMENT; ALLOY CATHODES; GAS-PRESSURE; EVAPORATION; COATINGS; FLUCTUATIONS; ENVIRONMENT; MECHANISM; TARGETS AB Multielement cathodes are increasingly used for advanced coatings, yet most cathodic arc plasma measurements have been reported for pure element cathodes. In this contribution, we measure the charge state distributions of aluminum and chromium ions from Al-Cr composite cathodes of different Al to Cr ratios. The arc discharges are pulsed, with pulse duration of around 300 mu s and currents of 175 A, operated at high vacuum and in gases with a pressure of up to 1.3 Pa of Ar, N-2, and O-2. For comparison with literature data, the measurements also included the plasma compositions of discharges using pure Al and Cr cathodes. As expected, the charge distributions are found to be affected by the cathode conditions, the type of gas, and the pressure of the gas into which the arc spot plasma is expanding. Generally, large effects of gas are observed when the pressure exceeded 0.1 Pa, which can be mainly associated with the ions' mean-free path with respect to charge exchange collisions. Differences between ions can be attributed to the energy-and species-dependent charge-exchange cross sections. Considering different cathode compositions, we found that Cr ions tend to have lower charge states from the composite cathodes compared with the pure element cathode, whereas Al ions are relatively unaffected by the cathode composition. Despite the wealth of detailed experimental results, it is difficult to discern trends and rules that could be generalized because measured data involve a convolution of cathode phenomena and gas collisional effects. C1 [Franz, Robert; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Polcik, Peter] PLANSEE Composite Mat GmbH, D-86983 Lechbruck, Germany. RP Franz, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rfranz@lbl.gov; peter.polcik@plansee.com; aanders@lbl.gov RI Franz, Robert/G-5263-2010; Anders, Andre/B-8580-2009 OI Franz, Robert/0000-0003-4842-7276; Anders, Andre/0000-0002-5313-6505 FU E. Schrodinger Program of the Austrian Science Fund (FWF) [J3168-N20] FX The authors would like to thank the E. Schrodinger Program under Project J3168-N20 of the Austrian Science Fund (FWF) for their financial support. NR 40 TC 7 Z9 7 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD AUG PY 2013 VL 41 IS 8 SI SI BP 1929 EP 1937 DI 10.1109/TPS.2013.2254135 PN 2 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 202JQ UT WOS:000323211500008 ER PT J AU Jiang, RW Wang, JH Zhang, MH Guan, YP AF Jiang, Ruiwei Wang, Jianhui Zhang, Muhong Guan, Yongpei TI Two-Stage Minimax Regret Robust Unit Commitment SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Benders' decomposition; minimax regret; uncertainty; unit commitment ID STOCHASTIC SECURITY; WIND POWER; DISCRETE OPTIMIZATION; LAGRANGIAN-RELAXATION; RISK ANALYSIS; MIN-MAX; SYSTEM; TRANSMISSION; UNCERTAINTY; GENERATION AB In addition to long-existing load uncertainty on power systems, continuously increasing renewable energy injections (such as wind and solar) have further made the power grid more volatile and uncertain. Stochastic and recently introduced robust optimization approaches have been studied to provide the day-ahead unit commitment decision with the consideration of real-time load and supply uncertainties. In this paper, we introduce an innovative minimax regret unit commitment model aiming to minimize the maximum regret of the day-ahead decision from the actual realization of the uncertain real-time wind power generation. Our approach will ensure the robustness of the unit commitment decision considering the inherent uncertainty in wind generation. Meanwhile, our approach will provide a system operator a clear picture in terms of the maximum regret value among all possible scenarios. A Benders' decomposition algorithm is developed to solve the problem. Finally, our extensive case studies compare the performances of three different approaches (robust optimization, minimax regret, and stochastic optimization) and verify the effectiveness of our proposed algorithm. C1 [Jiang, Ruiwei; Guan, Yongpei] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. [Wang, Jianhui] Argonne Natl Lab, Lemont, IL 60439 USA. [Zhang, Muhong] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85281 USA. RP Jiang, RW (reprint author), Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. EM rwjiang@ufl.edu; jianhui.wang@anl.gov; Muhong.Zhang@asu.edu; guan@ise.ufl.edu FU University of Chicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"); Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. National Science Foundation [ECCS-1202264] FX This work was supported in part by University of Chicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work was also supported in part by the U.S. National Science Foundation under Award ECCS-1202264. Paper no. TPWRS-00089-2012. NR 49 TC 52 Z9 54 U1 0 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD AUG PY 2013 VL 28 IS 3 BP 2271 EP 2282 DI 10.1109/TPWRS.2013.2250530 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA 199JD UT WOS:000322989900023 ER PT J AU Wang, QF Watson, JP Guan, YP AF Wang, Qianfan Watson, Jean-Paul Guan, Yongpei TI Two-Stage Robust Optimization for N -k Contingency-Constrained Unit Commitment SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Contingency analysis; N -k security criterion; robust optimization; unit commitment ID POWER-SYSTEM AB This paper proposes a two-stage robust optimization approach to solve the N -k contingency-constrained unit commitment (CCUC) problem. In our approach, both generator and transmission line contingencies are considered. Compared to the traditional approach using a given set of components as candidates for possible failures, our approach considers all possible component failure scenarios. We consider the objectives of minimizing the total generation cost under the worst-case contingency scenario and/or the total pre-contingency cost. We formulate CCUC as a two-stage robust optimization problem and develop a decomposition framework to enable tractable computation. In our framework, the master problem makes unit commitment decisions and the subproblem discovers the worst-case contingency scenarios. By using linearization techniques and duality theory, we transform the subproblem into a mixed-integer linear program (MILP). The most violated inequalities generated from the subproblem are fed back into the master problem during each iteration. Our approach guarantees a globally optimal solution in a finite number of iterations. In reported computational experiments, we test both primal and dual decomposition approaches. Our computational results verify the effectiveness of our proposed approach. C1 [Wang, Qianfan; Guan, Yongpei] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. [Watson, Jean-Paul] Sandia Natl Labs, Discrete Math & Complex Syst Dept, Albuquerque, NM 87185 USA. RP Wang, QF (reprint author), Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. EM jwatson@sandia.gov; guan@ise.ufl.edu FU Office of Advanced Scientific Computing Research within the Department of Energy's Office of Science as part of the Complex Interconnected Distributed Systems program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by the Office of Advanced Scientific Computing Research within the Department of Energy's Office of Science as part of the Complex Interconnected Distributed Systems program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Paper no. TPWRS-00207-2012. NR 24 TC 27 Z9 30 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD AUG PY 2013 VL 28 IS 3 BP 2366 EP 2375 DI 10.1109/TPWRS.2013.2244619 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 199JD UT WOS:000322989900032 ER PT J AU Zhao, CY Wang, JH Watson, JP Guan, YP AF Zhao, Chaoyue Wang, Jianhui Watson, Jean-Paul Guan, Yongpei TI Multi-Stage Robust Unit Commitment Considering Wind and Demand Response Uncertainties SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Benders' decomposition; demand response uncertainty; robust optimization; wind power uncertainty ID POWER-GENERATION; SECURITY AB With the increasing penetration of wind power into the power grid, maintaining system reliability has been a challenging issue for ISOs/RTOs, due to the intermittent nature of wind power. In addition to the traditional reserves provided by thermal, hydro, and gas generators, demand response (DR) programs have gained much attention recently as another reserve resource to mitigate wind power output uncertainty. However, the price-elastic demand curve is not exactly known in advance, which provides another dimension of uncertainty. To accommodate the combined uncertainties from wind power and DR, we allow the wind power output to vary within a given interval with the price-elastic demand curve also varying in this paper. We develop a robust optimization approach to derive an optimal unit commitment decision for the reliability unit commitment runs by ISOs/RTOs, with the objective of maximizing total social welfare under the joint worst-case wind power output and demand response scenario. The problem is formulated as a multi-stage robust mixed-integer programming problem. An exact solution approach leveraging Benders' decomposition is developed to obtain the optimal robust unit commitment schedule for the problem. Additional variables are introduced to parameterize the conservatism of our model and avoid over-protection. Finally, we test the performance of the proposed approach using a case study based on the IEEE 118-bus system. The results verify that our proposed approach can accommodate both wind power and demand response uncertainties, and demand response can help accommodate wind power output uncertainty by lowering the unit load cost. C1 [Zhao, Chaoyue; Guan, Yongpei] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Lemont, IL 60439 USA. [Watson, Jean-Paul; Guan, Yongpei] Sandia Natl Labs, Discrete Math & Complex Syst Dept, Albuquerque, NM 87185 USA. RP Zhao, CY (reprint author), Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. FU University of Chicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"); U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Office of Advanced Scientific Computing Research within the Department of Energy's Office of Science; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by University of Chicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work was also supported in part by the Office of Advanced Scientific Computing Research within the Department of Energy's Office of Science and Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The preliminary study of this research is published at the Proceedings of ISERC 2012 with the title "Two-stage robust optimization for power grid with uncertain demand response". Paper no. TPWRS-00522-2012. NR 29 TC 99 Z9 114 U1 3 U2 38 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD AUG PY 2013 VL 28 IS 3 BP 2708 EP 2717 DI 10.1109/TPWRS.2013.2244231 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 199JD UT WOS:000322989900067 ER PT J AU Wang, QF Wang, JH Guan, YP AF Wang, Qianfan Wang, Jianhui Guan, Yongpei TI Price-Based Unit Commitment With Wind Power Utilization Constraints SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Chance constrains; mixed integer programming; price based unit commitment; sample average approximation; stochastic programming; wind power ID AVERAGE APPROXIMATION METHOD; GENERATION; OPTIMIZATION; MARKETS AB This paper proposes an optimal bidding strategy for independent power producers (IPPs) in the deregulated electricity market. The IPPs are assumed to be price takers, whose objectives are to maximize their profits considering price and wind power output uncertainties, while ensuring high wind power utilization. The problem is formulated as a two-stage stochastic price-based unit commitment problem with chance constraints to ensure wind power utilization. In our model, the first stage decision includes unit commitment and quantity of electricity submitted to the day-ahead market. The second stage decision includes generation dispatch, actual usage of wind power, and amount of energy imbalance between the day-ahead and real-time markets. The chance constraint is applied to ensure a certain percentage of wind power utilization so as to comply with renewable energy utilization regulations. Finally, a sample average approximation (SAA) approach is applied to solve the problem, and the computational results are reported for the proposed SAA algorithm showing the sensitivity of the total profit as the requirement of wind power utilization changes. C1 [Wang, Qianfan; Guan, Yongpei] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Lemont, IL 60439 USA. RP Wang, QF (reprint author), Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. EM qfwang@ufl.edu; jianhui.wang@anl.gov; guan@ise.ufl.edu FU University of Chicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"); U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was supported in part by University of Chicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The preliminary two-page abstract of this paper, entitled "Wind Power Bidding Based on Chance-constrained Optimization," appears as the summary of an invited panel session presentation for the IEEE PES General Meeting 2011. Paper no. TPWRS-00523-2012. NR 29 TC 25 Z9 26 U1 1 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD AUG PY 2013 VL 28 IS 3 BP 2718 EP 2726 DI 10.1109/TPWRS.2012.2231968 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 199JD UT WOS:000322989900068 ER PT J AU Marinovici, LD Lian, JM Kalsi, K Du, PW Elizondo, M AF Marinovici, Laurentiu Dan Lian, Jianming Kalsi, Karanjit Du, Pengwei Elizondo, Marcelo TI Distributed Hierarchical Control Architecture for Transient Dynamics Improvement in Power Systems SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Automatic Generation Control; decentralized robust control; distributed hierarchical control; frequency restoration ID AUTOMATIC-GENERATION CONTROL; ROBUST DECENTRALIZED CONTROL; EXCITATION CONTROL; FEEDBACK; OSCILLATIONS; PERFORMANCE; DESIGN AB In this paper, a novel distributed hierarchical control architecture is proposed for large-scale power systems. The newly proposed architecture facilitates faster and more accurate frequency restoration during primary frequency control, by providing decentralized robust control to several selected pilot generators in each area. At the local level, these decentralized robust controllers are designed to quickly damp oscillations and restore frequency after large faults and disturbances in the system. Incorporating this supplementary governor control helps the system reach the nominal frequency without necessarily requiring secondary frequency control. Thus, at the area level, automatic generation control (AGC) actions are alleviated in terms of conducting frequency restoration. Moreover, at the area level, AGC coordinates with the decentralized robust controllers to successfully perform tie-line power balancing, while efficiently damping low-frequency inter-area oscillations. The interaction of local and area controllers is validated through detailed simulations. C1 [Marinovici, Laurentiu Dan; Lian, Jianming; Kalsi, Karanjit; Du, Pengwei] Pacific NW Natl Lab, Richland, WA 99354 USA. [Elizondo, Marcelo] Pacific NW Natl Lab, Seattle, WA 98109 USA. RP Marinovici, LD (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM Laurentiu.Marinovici@pnnl.gov; Jianming.Lian@pnnl.gov; Karanjit.Kalsi@pnnl.gov; Pengwei.Du@pnnl.gov; Marcelo.Elizondo@pnnl.gov FU Future Power Grid Initiative at Pacific Northwest National Laboratory; U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the Future Power Grid Initiative at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. Paper no. TPWRS-00767-2012. NR 27 TC 11 Z9 12 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD AUG PY 2013 VL 28 IS 3 BP 3065 EP 3074 DI 10.1109/TPWRS.2012.2236655 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 199JD UT WOS:000322989900104 ER PT J AU Hua, BW Bie, ZH Liu, C Li, GF Wang, XF AF Hua, Bowen Bie, Zhaohong Liu, Cong Li, Gengfeng Wang, Xifan TI Eliminating Redundant Line Flow Constraints in Composite System Reliability Evaluation SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Composite system reliability; linear programming; optimal power flow; redundant constraints ID MONTE-CARLO SIMULATION; POWER-SYSTEMS AB Reliability evaluation of composite systems involves extensive calculations. Current solutions to this computational burden have mainly focused on extracting failure states from the state space. Instead, the evaluation of failure states is accelerated by methods presented in this paper. The scale of optimizations required for generation redispatching and/or load shedding in failure states is reduced by eliminating redundant line flow constraints. First, a sufficient and necessary condition for a line flow constraint to be redundant is established in the form of a linear programming problem, based on the concept of steady-state security region (SSR). Then, two redundancy elimination methods are proposed-a conservative one based on a heuristic, and a radical one based on an analytical condition. Numerical tests are conducted on IEEE-RTS79 and a real-life system. More than half of the line flow constraints are eliminated by the conservative method and nearly 90% by the radical method. The proposed methods can be used in conjunction with most of the existing acceleration techniques to further improve efficiency. C1 [Hua, Bowen; Bie, Zhaohong; Li, Gengfeng; Wang, Xifan] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Dept Elect Engn, Xian 710049, Peoples R China. [Liu, Cong] Argonne Natl Lab, Lemont, IL 60439 USA. RP Hua, BW (reprint author), Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Dept Elect Engn, Xian 710049, Peoples R China. EM zhbie@mail.xjtu.edu.cn RI Li, Gengfeng/P-7068-2015; OI Li, Gengfeng/0000-0001-6488-4683; Bie, Zhaohong/0000-0002-8458-0887 FU National High Technology Research and Development Program of China (863 Program) [2012AA050201] FX Manuscript received October 20, 2012; revised January 13, 2013; accepted February 15, 2013. Date of publication March 18, 2013; date of current version July 18, 2013. This work was supported by the National High Technology Research and Development Program of China (863 Program) under Grant 2012AA050201. Paper no. TPWRS-01174-2012. NR 24 TC 2 Z9 4 U1 1 U2 24 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD AUG PY 2013 VL 28 IS 3 BP 3490 EP 3498 DI 10.1109/TPWRS.2013.2248762 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 199JD UT WOS:000322989900148 ER PT J AU Hansen, K Montavon, G Biegler, F Fazli, S Rupp, M Scheffler, M von Lilienfeld, OA Tkatchenko, A Muller, KR AF Hansen, Katja Montavon, Gregoire Biegler, Franziska Fazli, Siamac Rupp, Matthias Scheffler, Matthias von Lilienfeld, O. Anatole Tkatchenko, Alexandre Mueller, Klaus-Robert TI Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MIXED-EFFECTS MODELS; NEURAL-NETWORKS; SURFACES; DEEP; RECOGNITION; REGRESSION; SELECTION; NETS; BIAS AB The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables. C1 [Hansen, Katja; Scheffler, Matthias; Tkatchenko, Alexandre] Max Planck Gesell, Fritz Haber Inst, Berlin, Germany. [Montavon, Gregoire; Biegler, Franziska; Fazli, Siamac; Mueller, Klaus-Robert] TU Berlin, Machine Learning Grp, Berlin, Germany. [Rupp, Matthias] Swiss Fed Inst Technol, Inst Pharmaceut Sci, Zurich, Switzerland. [von Lilienfeld, O. Anatole] Argonne Natl Lab, Argonne Leadership Comp Facil, Lemont, IL USA. [Mueller, Klaus-Robert] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea. RP Hansen, K (reprint author), Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, Berlin, Germany. EM hansen@fhi-berlin.mpg.de; klaus-robert.mueller@tu-berlin.de RI von Lilienfeld, O. Anatole/D-8529-2011; Scheffler, Matthias/O-4649-2016; Rupp, Matthias/P-8680-2016; Montavon, Gregoire/Q-1836-2016 OI Rupp, Matthias/0000-0002-2934-2958; FU European Research Council (ERC); World Class University Program through the National Research Foundation of Korea; Ministry of Education, Science, and Technology [R31-10008]; Einstein Foundation; U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]; Natural Sciences and Engineering Research Council of Canada; DFG [MU 987/17-1]; FP7 programme of the European Community [Marie Curie IEF 273039] FX This work is supported by the European Research Council (ERC Starting Grant VDW-CMAT), by the World Class University Program through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology, under Grant R31-10008, the Einstein Foundation, and by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract # DE-AC02-06CH11357. The work of Franziska Biegler is funded, in part, by the Natural Sciences and Engineering Research Council of Canada. The authors also acknowledge partial support by DFG (MU 987/17-1). Matthias Rupp acknowledges support by FP7 programme of the European Community (Marie Curie IEF 273039). NR 78 TC 57 Z9 57 U1 7 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD AUG PY 2013 VL 9 IS 8 BP 3404 EP 3419 DI 10.1021/ct400195d PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 202DK UT WOS:000323193500015 PM 26584096 ER PT J AU Ho, MH Raugei, S Rousseau, R Dupuis, M Bullock, RM AF Ho, Ming-Hsun Raugei, Simone Rousseau, Roger Dupuis, Michel Bullock, R. Morris TI Evaluation of the Role of Water in the H-2 Bond Formation by Ni(II)-Based Electrocatalysts SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID COUPLED ELECTRON-TRANSFER; DENSITY-FUNCTIONAL THEORY; FREE HYDROGEN ACTIVATION; FRUSTRATED LEWIS PAIRS; AQUEOUS-SOLUTION; PENDANT AMINES; SN2 REACTION; ACTIVE-SITE; MOLECULAR CATALYSTS; TRANSITION-METALS AB We investigate the role of water in the H-H bond formation by a family of nickel molecular catalysts that exhibit high rates for H-2 production in acetonitrile solvent. A key feature leading to the high reactivity is the Lewis acidity of the Ni(II) center and pendant amines in the diphosphine ligand that function as Lewis bases, facilitating H-H bond formation or cleavage. Significant increases in the rate of H-2 production have been reported in the presence of added water. Our calculations show that molecular water can displace an acetonitrile solvent molecule in the first solvation shell of the metal. One or two water molecules can also participate in shuttling a proton that can combine with a metal hydride to form the H-H bond. However the participation of the water molecules does not lower the barrier to H-H bond formation. Thus these calculations suggest that the rate increase due to water in these electrocatalysts is not associated with the elementary step of H-H bond formation or cleavage but rather with the proton delivery steps. We attribute the higher barrier in the H-H bond formation in the presence of water to a decrease in direct interaction between the protic and hydridic hydrogen atoms forced by the water molecules. C1 [Ho, Ming-Hsun; Raugei, Simone; Rousseau, Roger; Dupuis, Michel; Bullock, R. Morris] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. RP Raugei, S (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, POB 999,K1-83, Richland, WA 99352 USA. EM simone.raugei@pnnl.gov; michel.dupuis@pnnl.gov RI Rousseau, Roger/C-3703-2014; Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU Center for Molecular Electrocatalysis, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences FX This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory-Pacific Northwest National Laboratory, the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, and the Jaguar supercomputer at Oak Ridge National Laboratory. NR 79 TC 6 Z9 6 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD AUG PY 2013 VL 9 IS 8 BP 3505 EP 3514 DI 10.1021/ct400396s PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 202DK UT WOS:000323193500026 PM 26584107 ER PT J AU Huang, L Roux, B AF Huang, Lei Roux, Benoit TI Automated Force Field Parameterization for Nonpolarizable and Polarizable Atomic Models Based on Ab Initio Target Data SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CLASSICAL DRUDE OSCILLATOR; PARTICLE MESH EWALD; POTENTIAL FUNCTIONS; VOLTAGE-SENSOR; NUCLEIC-ACIDS; FREE-ENERGIES; RESP MODEL; WATER; ALGORITHM AB Classical molecular dynamics (MD) simulations based on atomistic models are increasingly used to study a wide range of biological systems. A prerequisite for meaningful results from such simulations is an accurate molecular mechanical force field. Most biomolecular simulations are currently based on the widely used AMBER and CHARMM force fields, which were parametrized and optimized to cover a small set of basic compounds corresponding to the natural amino acids and nucleic acid bases. Atomic models of additional compounds are commonly generated by analogy to the parameter set of a given force field. While this procedure yields models that are internally consistent, the accuracy of the resulting models can be limited. In this work, we propose a method, general automated atomic model parameterization (GAAMP), for generating automatically the parameters of atomic models of small molecules using the results from ab initio quantum mechanical (QM) calculations as target data. Force fields that were previously developed for a wide range of model compounds serve as initial guesses, although any of the final parameter can be optimized. The electrostatic parameters (partial charges, polarizabilities, and shielding) are optimized on the basis of QM electrostatic potential (ESP) and, if applicable, the interaction energies between the compound and water molecules. The soft dihedrals are automatically identified and parametrized by targeting QM dihedral scans as well as the energies of stable conformers. To validate the approach, the solvation free energy is calculated for more than 200 small molecules and MD simulations of three different proteins are carried out. C1 [Huang, Lei; Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Roux, Benoit] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Roux, B (reprint author), Univ Chicago, Dept Biochem & Mol Biol, 929 East 57th St, Chicago, IL 60637 USA. EM roux@uchicago.edu FU NIH/NIGMS [U54-GM087519]; Argonne National Laboratory through NIH [S10 RR029030-0] FX We thank Drs. Alexander D. MacKerell Jr., Christopher N. Rowley, Janamejaya Chowdhary, James Gumbart, Haibo Yu, Yen-tin Lin, and Yilin Meng for valuable discussions. We thank Allen Zhu for preparing the molecule structures for 17 UAAs. We are grateful to two referees for their insightful comments and suggestions. This work was supported by NIH/NIGMS through grant U54-GM087519 and was carried out in the context of the Membrane Protein Structural Dynamics Consortium. The computations were made possible by the resources provided by the Computation Institute and the Biological Sciences Division of the University of Chicago and Argonne National Laboratory through NIH Grant S10 RR029030-0. NR 65 TC 51 Z9 51 U1 2 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD AUG PY 2013 VL 9 IS 8 BP 3543 EP 3556 DI 10.1021/ct4003477 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 202DK UT WOS:000323193500030 ER PT J AU Bea, SA Wainwright, H Spycher, N Faybishenko, B Hubbard, SS Denham, ME AF Bea, Sergio A. Wainwright, Haruko Spycher, Nicolas Faybishenko, Boris Hubbard, Susan S. Denham, Miles E. TI Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Reactive transport modeling; Acidic plume; Vadose zone; Richards equation; Uranium; Surface complexation modeling; Reactive facies; Uncertainty quantification; ASCEM ID VARIABLE CHEMICAL CONDITIONS; SURFACE COMPLEXATION; URANIUM(VI) ADSORPTION; CONTAMINATED GROUNDWATER; FACILITATED TRANSPORT; POROUS-MEDIA; WATER; AQUIFER; MIGRATION; KINETICS AB Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of dean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H+ adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates and Al concentrations at multiple locations. Mineral dissolution and precipitation combined with adsorption reactions on goethite and kaolinite (the main minerals present with quartz) could buffer pH at the site for long periods of time. UQ analysis using the Morris one-at-a-time (OAT) method indicates that the model/parameter is most sensitive to the pH of the waste solution, discharge rates, and the reactive surface area available for adsorption. However, as a key finding, UQ analysis also indicates that this model (and parameters) sensitivity evolves in space and time, and its understanding could be crucial to assess the temporal efficiency of a remediation strategy in contaminated sites. Results also indicate that residual U(VI) and H+ adsorbed in the vadose zone, as well as aquifer permeability, could have a significant impact on the acidic plume long-term mobility. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bea, Sergio A.; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Denham, Miles E.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Bea, SA (reprint author), CONICET IHLLA, Republ Italia 730, RA-7300 Azul, BA, Argentina. EM SABea@lbl.gov; HMWainwright@lbl.gov; NSpycher@lbl.gov; BFaybishenko@lbl.gov; SSHubbard@lbl.gov; MILES.Denham@srnl.doe.gov RI Bea, Sergio /A-9056-2012; Wainwright, Haruko/A-5670-2015; Hubbard, Susan/E-9508-2010; Spycher, Nicolas/E-6899-2010; Faybishenko, Boris/G-3363-2015 OI Bea, Sergio /0000-0001-9237-4103; Wainwright, Haruko/0000-0002-2140-6072; Faybishenko, Boris/0000-0003-0085-8499 FU Subsurface Science Scientific Focus Area (SFA); U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; U.S. Department of Energy Environmental Management [DE-AC02-05CH11231] FX This study was supported as part of the Subsurface Science Scientific Focus Area (SFA) funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research to the Sustainable Systems SFA and by the ASCEM project, which is supported by U.S. Department of Energy Environmental Management both under award number DE-AC02-05CH11231 to the LBNL. We sincerely thank Greg Flach (Savannah River National Laboratory) for the support in developing the site conceptual model and for providing the concentration data used in this study. NR 80 TC 5 Z9 5 U1 6 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD AUG PY 2013 VL 151 BP 34 EP 54 DI 10.1016/j.jconhyd.2013.04.005 PG 21 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 204XF UT WOS:000323403900003 PM 23707874 ER PT J AU Chen, MJ Abriola, LM Amos, BK Suchomel, EJ Pennell, KD Loeffler, FE Christ, JA AF Chen, Mingjie Abriola, Linda M. Amos, Benjamin K. Suchomel, Eric J. Pennell, Kurt D. Loeffler, Frank E. Christ, John A. TI Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE PCE; NAPL; Enhanced dissolution; Modeling; Model verification; Reductive dechlorination ID NONAQUEOUS PHASE LIQUID; SATURATED SUBSURFACE SYSTEMS; MASS-TRANSFER RATES; IN-SOURCE ZONES; TETRACHLOROETHENE DNAPL; FIELD-EVALUATION; COMPETITION; KINETICS; BIOAUGMENTATION; BIODEGRADATION AB Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time), strongly influenced the extent of reductive dechlorination. When cis-DCE inhibition was neglected, the model over-predicted ethene production ten-fold, while reductions in residence time (i.e., a two-fold decrease in column length or two-fold increase in flow rate) resulted in a more than 70% decline in ethene production. These results suggest that spatial and temporal variations in microbial community composition and activity must be understood to model, predict, and manage bioenhanced NAPL dissolution. Published by Elsevier B.V. C1 [Chen, Mingjie] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. [Abriola, Linda M.; Pennell, Kurt D.] Tufts Univ, Dept Civil & Environm Engn, Medford, MA 02155 USA. [Amos, Benjamin K.] Geosyntec Consultants, Kennesaw, GA 30144 USA. [Suchomel, Eric J.] Geosyntec Consultants, San Francisco, CA 94105 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Christ, John A.] US Air Force Acad, Dept Civil & Environm Engn, Colorado Springs, CO 80840 USA. RP Christ, JA (reprint author), USAF Acad, Dept Civil & Environm Engn, 2354 Fairchild Dr,Suite 6J-159, Colorado Springs, CO 80840 USA. EM john.christ@usafa.edu RI Loeffler, Frank/M-8216-2013; Pennell, Kurt/F-6862-2010 OI Pennell, Kurt/0000-0002-5788-6397 FU Strategic Environmental Research and Development Program (SERDP) [W912HQ-04-0006, ER-1293, W91HQ-08-C-0003, ER-1612, W912HQ-13-C-0011, ER-2311] FX This research was supported by the Strategic Environmental Research and Development Program (SERDP) under contract W912HQ-04-0006 (Project ER-1293), contract W91HQ-08-C-0003 (Project ER-1612), and contract W912HQ-13-C-0011 (Project ER-2311). This content of this manuscript has not been subject to agency review and does not necessarily represent the view of the agency sponsor. NR 61 TC 6 Z9 7 U1 2 U2 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD AUG PY 2013 VL 151 BP 117 EP 130 DI 10.1016/j.jconhyd.2013.05.005 PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 204XF UT WOS:000323403900009 PM 23774611 ER PT J AU Szecsody, JE Truex, MJ Qafoku, NP Wellman, DM Resch, T Zhong, LR AF Szecsody, Jim E. Truex, Mike J. Qafoku, Nikolla P. Wellman, Dawn M. Resch, Tom Zhong, Lirong TI Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Uranium; Subsurface contamination; Acidic waste; Alkaline waste; Uranium dissolution/precipitation; Uranium adsorption ID HANFORD TANK WASTE; VADOSE ZONE; CONTAMINATED SEDIMENTS; CANCRINITE; DISSOLUTION; EXTRACTION; SODALITE; PRECIPITATION; NITRATE; SOILS AB This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100 s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (<10 h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. (C) 2013 Elsevier B.V. All rights reserved. C1 [Szecsody, Jim E.; Truex, Mike J.; Qafoku, Nikolla P.; Wellman, Dawn M.; Resch, Tom; Zhong, Lirong] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Szecsody, JE (reprint author), Pacific NW Natl Lab, POB 999,MSIN K3-61, Richland, WA 99354 USA. EM jim.szecsody@pnnl.gov; mj.truex@pnnl.gov; Nik.Qafoku@pnnl.gov; Dawn.Wellman@pnnl.gov; Tom.Resch@pnnl.gov; Lirong.Zhong@pnnl.gov OI Qafoku, Nikolla P./0000-0002-3258-5379 FU U.S. Department of Energy Office of Environmental Management; Richland Operations Office; Department of Energy (DOE) [DE-AC05-76RL01830] FX Funding for this work was provided by the U.S. Department of Energy Office of Environmental Management and Richland Operations Office. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the Department of Energy (DOE) under Contract DE-AC05-76RL01830. NR 47 TC 8 Z9 8 U1 1 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD AUG PY 2013 VL 151 BP 155 EP 175 DI 10.1016/j.jconhyd.2013.05.009 PG 21 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 204XF UT WOS:000323403900012 PM 23851265 ER PT J AU Rau, P Steinheimer, J Schramm, S Stocker, H AF Rau, P. Steinheimer, J. Schramm, S. Stoecker, H. TI Chiral hadronic mean field model including quark degrees of freedom SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID HEAVY-ION COLLISIONS; EQUATION-OF-STATE; PHASE-TRANSITION; GLUON PLASMA; NUCLEAR-MATTER; FINITE-TEMPERATURE; LATTICE QCD; ELLIPTIC FLOW; THERMODYNAMICS; COLLABORATION AB In an approach inspired by Polyakov loop extended Nambu-Jona-Lasinio models, we present a nonlinear hadronic SU(3) sigma-omega mean field model augmented by quark degrees of freedom. By introducing the effective Polyakov loop related scalar field Phi and an associated effective potential, the model includes all known hadronic degrees of freedom at low temperatures and densities as well as a quark phase at high temperatures and densities. Hadrons in the model exhibit a finite volume in order to suppress baryons at high T and mu. This ensures that the right asymptotic degrees of freedom are attained for the description of strongly interacting matter and allows one to study the QCD phase diagram in a wide range of temperatures and chemical potentials. Therefore, with this model it is possible to study the phase transition of chiral restoration and deconfinement. In this paper, the impact of quarks on the resulting phase diagram is shown. The results from the chiral model are compared with recent data from lattice QCD. C1 [Rau, P.; Schramm, S.; Stoecker, H.] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. [Rau, P.; Schramm, S.] FIAS, D-60438 Frankfurt, Germany. [Steinheimer, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Stoecker, H.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. RP Rau, P (reprint author), Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM rau@th.physik.uni-frankfurt.de RI Stoecker, Horst/D-6173-2013; Stoecker, Horst/F-8382-2012 OI Stoecker, Horst/0000-0002-3282-3664; Stoecker, Horst/0000-0002-3282-3664 FU BMBF; GSI; Hessian excellence initiative LOEWE (Landesoffensive zur Entwicklung Wissenschaftlich-okonomischer Exzellenz) through the Helmholtz International Center for FAIR (HIC for FAIR); Helmholtz Graduate School for Hadron and Ion Research (HGS-HIRe); Feodor Lynen fellowship of the Alexander von Humboldt foundation FX This work was supported by BMBF, GSI, and by the Hessian excellence initiative LOEWE (Landesoffensive zur Entwicklung Wissenschaftlich-okonomischer Exzellenz) through the Helmholtz International Center for FAIR (HIC for FAIR), and the Helmholtz Graduate School for Hadron and Ion Research (HGS-HIRe). Computational resources were provided by the Center for the Scientific Computing (CSC) of the Goethe University Frankfurt. JS acknowledges a Feodor Lynen fellowship of the Alexander von Humboldt foundation. The authors thank M Bleicher for fruitful discussion. NR 95 TC 1 Z9 1 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD AUG PY 2013 VL 40 IS 8 AR 085001 DI 10.1088/0954-3899/40/8/085001 PG 22 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 200JE UT WOS:000323063900002 ER PT J AU Wandkowsky, N Drexlin, G Frankle, FM Gluck, F Groh, S Mertens, S AF Wandkowsky, N. Drexlin, G. Fraenkle, F. M. Glueck, F. Groh, S. Mertens, S. TI Validation of a model for radon-induced background processes in electrostatic spectrometers SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID RUNGE-KUTTA METHODS; DOUBLE-BETA DECAY; CROSS-SECTIONS; ALPHA-DECAY; IMPACT IONIZATION; NEUTRINO MASS; ELECTRONS; KATRIN; SCATTERING; MOLECULES AB The Karlsruhe Tritium Neutrino (KATRIN) experiment investigating tritium beta-decay close to the endpoint with unprecedented precision has stringent requirements on the background level of less than 10(-2) counts per second. Electron emission during the alpha-decay of Rn-219,Rn-220 atoms in the electrostatic spectrometers of KATRIN is a serious source of background exceeding this limit. In this paper we compare extensive simulations of Rn-induced background to specific measurements with the KATRIN pre-spectrometer to fully characterize the observed Rn-background rates and signatures and determine generic Rn emanation rates from the pre-spectrometer bulk material and its vacuum components. C1 [Wandkowsky, N.; Drexlin, G.; Fraenkle, F. M.; Glueck, F.; Groh, S.; Mertens, S.] Karlsruhe Inst Technol, KCETA, D-76131 Karlsruhe, Germany. [Fraenkle, F. M.] Univ N Carolina, Dept Phys, Chapel Hill, NC USA. [Glueck, F.] Res Inst Nucl & Particle Phys, Theory Dep, Budapest, Hungary. [Mertens, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. RP Wandkowsky, N (reprint author), Karlsruhe Inst Technol, KCETA, D-76131 Karlsruhe, Germany. EM nancy.wandkowsky@kit.edu FU Bundesministerium fur Bildung und Forschung (BMBF) [05A08VK2]; Deutsche Forschungsgemeinschaft (DFG) [Transregio 27]; Karlsruhe House of Young Scientists (KHYS) of KIT FX This work has been supported by the Bundesministerium fur Bildung und Forschung (BMBF) with project number 05A08VK2 and the Deutsche Forschungsgemeinschaft (DFG) via Transregio 27 'Neutrinos and beyond'. We also would like to thank the Karlsruhe House of Young Scientists (KHYS) of KIT for their support (SG, SM, NW). NR 57 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD AUG PY 2013 VL 40 IS 8 AR 085102 DI 10.1088/0954-3899/40/8/085102 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 200JE UT WOS:000323063900008 ER PT J AU Olson, IC Metzler, RA Tamura, N Kunz, M Killian, CE Gilbert, PUPA AF Olson, Ian C. Metzler, Rebecca A. Tamura, Nobumichi Kunz, Martin Killian, Christopher E. Gilbert, Pupa U. P. A. TI Crystal lattice tilting in prismatic calcite SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Biomineral; Mollusca; PIC-mapping; PEEM; Mesocrystal; Nanocrystal; Hardness ID RAY-ABSORPTION SPECTROSCOPY; MOLLUSK SHELL NACRE; PINCTADA-MARGARITIFERA; ATRINA-RIGIDA; ORIENTED ATTACHMENT; PINNA-NOBILIS; RED ABALONE; X-PEEM; CARBONATE; ORIENTATION AB We analyzed the calcitic prismatic layers in Atrina rigida (Ar), Haliotis iris (Hi), Haliotis laevigata (HL), Haliotis rufescens (Hrf), Mytilus californianus (Mc), Pinctada fucata (Pf), Pinctada margaritifera (Pm) shells, and the aragonitic prismatic layer in the Nautilus pompilius (Np) shell. Dramatic structural differences were observed across species, with 100-mu m wide single-crystalline prisms in Hi, HL and Hrf, 1-mu m wide needle-shaped calcite prisms in Mc, 1-mu m wide spherulitic aragonite prisms in Np, 20-mu m wide single-crystalline calcite prisms in Ar, and 20-mu m wide polycrystalline calcite prisms in Pf and Pm. The calcite prisms in Pf and Pm are subdivided into sub-prismatic domains of orientations, and within each of these domains the calcite crystal lattice tilts gradually over long distances, on the order of 100 mu m, with an angle spread of crystal orientation of 10-20 degrees. Furthermore, prisms in Pf and Pm are harder than in any other calcite prisms analyzed, their nanoparticles are smaller, and the angle spread is strongly correlated with hardness in all shells that form calcitic prismatic layers. One can hypothesize a causal relationship of these correlated parameters: greater angle spread may confer greater hardness and resistance to wear, thus providing Pf and Pm with a structural advantage in their environment. This is the first structure-property relationship thus far hypothesized in mollusk shell prisms. (c) 2013 Elsevier Inc. All rights reserved. C1 [Olson, Ian C.; Killian, Christopher E.; Gilbert, Pupa U. P. A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Metzler, Rebecca A.] Colgate Univ, Dept Phys & Astron, Hamilton, NY 13346 USA. [Tamura, Nobumichi; Kunz, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gilbert, Pupa U. P. A.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. RP Gilbert, PUPA (reprint author), Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. EM pupa@physics.wisc.edu FU NSF [DMR-1105167, EAR-103979]; DOE [DE-FG02-07ER15899, DE-AC02-05CH11231] FX We are grateful to an anonymous reviewer for requiring the Hall-Petch plot in Fig. 7B. We thank Robert O. Ritchie for discussions. We thank ALS beamline scientists Andreas Scholl and Anthony Young for their technical support during the PEEM-3 experiments, and Richard Celestre for help during shell sample preparation. This work was supported by NSF award DMR-1105167, and DOE Award DE-FG02-07ER15899 to PUPAG, and by NSF award EAR-103979 to RAM. The experiments were performed at the Berkeley Advanced Light Source, supported by DOE under contract DE-AC02-05CH11231. NR 94 TC 21 Z9 21 U1 5 U2 71 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD AUG PY 2013 VL 183 IS 2 BP 180 EP 190 DI 10.1016/j.jsb.2013.06.006 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 204XU UT WOS:000323405400009 PM 23806677 ER PT J AU Strelcov, E Kim, Y Jesse, S Cao, Y Ivanov, IN Kravchenko, II Wang, CH Teng, YC Chen, LQ Chu, YH Kalinin, SV AF Strelcov, Evgheni Kim, Yunseok Jesse, Stephen Cao, Ye Ivanov, Ilia N. Kravchenko, Ivan I. Wang, Chih-Hung Teng, Yung-Chun Chen, Long-Qing Chu, Ying Hao Kalinin, Sergei V. TI Probing Local Ionic Dynamics in Functional Oxides at the Nanoscale SO NANO LETTERS LA English DT Article DE SPM; ionic dynamics; Ca-BFO; voltage spectroscopy; oxygen vacancy; FORC-IV ID PIEZORESPONSE FORCE MICROSCOPY; ACTIVATION-ENERGY; TRANSPORT; DIFFUSION; FERROELECTRICS; POLARIZATION; SPECTROSCOPY; CHALLENGES; PROSPECTS; PHYSICS AB A scanning probe microscopy technique for probing local ionic dynamics in electrochemically active materials based on the first-order reversal curve current-voltage (FORC-IV) method is presented. FORC-IV imaging mode is applied to a Ca-substituted bismuth ferrite (Ca-BFO) system to separate the electronic and ionic phenomena in this material and visualize the spatial variability of these behaviors. The variable-temperature measurements further demonstrate the interplay between the thermally and electric-field-driven resistance changes in Ca-BFO. The FORC-IV is shown to be a simple, powerful, and flexible method for studying electrochemical activity of materials at the nanoscale and, in conjunction with the electrochemical strain microscopy, it can be used for differentiating ferroelectric and ionic behaviors. C1 [Strelcov, Evgheni; Kim, Yunseok; Jesse, Stephen; Ivanov, Ilia N.; Kravchenko, Ivan I.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wang, Chih-Hung; Teng, Yung-Chun; Chu, Ying Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Cao, Ye; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Kim, Yunseok] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, Gyeonggi Do, South Korea. RP Strelcov, E (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM strelcove@ornl.gov; sergei2@ornl.gov RI Ying-Hao, Chu/A-4204-2008; Strelcov, Evgheni/H-1654-2013; Chen, LongQing/I-7536-2012; ivanov, ilia/D-3402-2015; Kravchenko, Ivan/K-3022-2015; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Cao, Ye/L-1271-2016 OI Ying-Hao, Chu/0000-0002-3435-9084; Chen, LongQing/0000-0003-3359-3781; ivanov, ilia/0000-0002-6726-2502; Kravchenko, Ivan/0000-0003-4999-5822; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Cao, Ye/0000-0002-7365-7447 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Council of Republic of China [NSC-101-2119-M-009-003-MY2]; Ministry of Education [MOE-ATU 101W961]; Center for Interdisciplinary Science at National Chiao Tung University FX A part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The work in National Chiao Tung University was supported by the National Science Council of Republic of China (under contract No. NSC-101-2119-M-009-003-MY2), Ministry of Education (Grant MOE-ATU 101W961), and Center for Interdisciplinary Science at National Chiao Tung University. NR 54 TC 25 Z9 25 U1 4 U2 128 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2013 VL 13 IS 8 BP 3455 EP 3462 DI 10.1021/nl400780d PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 202SX UT WOS:000323241000002 PM 23865960 ER PT J AU Berciaud, S Li, XL Htoon, H Brus, LE Doorn, SK Heinz, TF AF Berciaud, Stephane Li, Xianglong Htoon, Han Brus, Louis E. Doorn, Stephen K. Heinz, Tony F. TI Intrinsic Line Shape of the Raman 2D-Mode in Freestanding Graphene Monolayers SO NANO LETTERS LA English DT Article DE Graphene; Raman spectroscopy; 2D-mode; multiphonon resonant Raman scattering; electrostatic doping; freestanding graphene ID SPECTROSCOPY; SCATTERING; GRAPHITE; LAYER AB We report a comprehensive study of the two-phonon intervalley (2D) Raman mode in graphene monolayers, motivated by recent reports of asymmetric 2D-mode line shapes in freestanding graphene. For photon energies in the range 1.53-2.71 eV, the 2D-mode Raman response of freestanding samples appears as bimodal, in stark contrast with the Lorentzian approximation that is commonly used for supported monolayers. The transition between the freestanding and supported cases is mimicked by electrostatically doping freestanding graphene at carrier densities above 2 x 10(11) cm(-2). This result quantitatively demonstrates that low levels of charging can obscure the intrinsically bimodal 2D-mode line shape of monolayer graphene. In pristine freestanding graphene, we observe a broadening of the 2D-mode feature with decreasing photon energy that cannot be rationalized using a simple one-dimensional model based on resonant inner and outer processes. This indicates that phonon wavevectors away from the high-symmetry lines of the Brillouin zone must contribute to the 2D-mode, so that a full two-dimensional calculation is required to properly describe multiphonon-resonant Raman processes. C1 [Berciaud, Stephane] Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, F-67034 Strasbourg 2, France. [Berciaud, Stephane] Univ Strasbourg, NIE, UMR 7504, F-67034 Strasbourg 2, France. [Berciaud, Stephane] CNRS, F-67034 Strasbourg 2, France. [Li, Xianglong; Htoon, Han; Doorn, Stephen K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Brus, Louis E.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Heinz, Tony F.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Heinz, Tony F.] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. RP Berciaud, S (reprint author), Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, 23 Rue Loess,BP43, F-67034 Strasbourg 2, France. EM stephane.berciaud@ipcms.unistra.fr RI Li, Xianglong/A-9010-2010; BERCIAUD, Stephane/B-5257-2015; Heinz, Tony/K-7797-2015; OI Li, Xianglong/0000-0002-6200-1178; BERCIAUD, Stephane/0000-0002-5753-3671; Heinz, Tony/0000-0003-1365-9464; Htoon, Han/0000-0003-3696-2896 FU MURI program AFOSR [FA9550-09-1-0705]; DOE [DE-FG02-11ER16224]; Universite de Strasbourg; CNRS; C'Nano GE; LANL LDRD program FX We are grateful to J. Maultzsch, F. Mauri, and R. Narula for inspiring discussions and to M.Y. Han and M. Romeo for experimental help. We acknowledge support from the MURI program AFOSR through grant FA9550-09-1-0705 for Raman measurements at shorter wavelengths and from the DOE through grant DE-FG02-11ER16224 for data analysis at Columbia University, from the Universite de Strasbourg, the CNRS, and C'Nano GE for research carried out in France, and from the LANL LDRD program. The Raman spectra at longer wavelengths were measured at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. NR 31 TC 35 Z9 35 U1 6 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD AUG PY 2013 VL 13 IS 8 BP 3517 EP 3523 DI 10.1021/nl400917e PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 202SX UT WOS:000323241000011 PM 23799800 ER PT J AU Conley, HJ Wang, B Ziegler, JI Haglund, RF Pantelides, ST Bolotin, KI AF Conley, Hiram J. Wang, Bin Ziegler, Jed I. Haglund, Richard F., Jr. Pantelides, Sokrates T. Bolotin, Kirill I. TI Bandgap Engineering of Strained Monolayer and Bilayer MoS2 SO NANO LETTERS LA English DT Article DE MoS2; strain; bandgap engineering; photoluminescence; Gruneisen parameter ID SINGLE-LAYER MOS2; VALLEY POLARIZATION; ELECTRICAL CONTROL AB We report the influence of uniaxial tensile mechanical strain in the range 0-2.2% on the phonon spectra and bandstructures of monolayer and bilayer molybdenum disulfide (MoS2) two-dimensional crystals. First, we employ Raman spectroscopy to observe phonon softening with increased strain, breaking the degeneracy in the E' Raman mode of MoS2, and extract a Gruneisen parameter of similar to 1.06. Second, using photoluminescence spectroscopy we measure a decrease in the optical band gap of MoS2 that is approximately linear with strain, similar to 45 meV/% strain for monolayer MoS2 and similar to 120 meV/% strain for bilayer MoS2. Third, we observe a pronounced strain-induced decrease in the photoluminescence intensity of monolayer MoS2 that is indicative of the direct-to-indirect transition of the character of the optical band gap of this material at applied strain of similar to 1%. These observations constitute a demonstration of strain engineering the band structure in the emergent class of two-dimensional crystals, transition-metal dichalcogenides. C1 [Conley, Hiram J.; Wang, Bin; Ziegler, Jed I.; Haglund, Richard F., Jr.; Pantelides, Sokrates T.; Bolotin, Kirill I.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Bolotin, KI (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM kirill.bolotin@vanderbilt.edu RI Wang, Bin/E-8301-2011; Bolotin, Kirill/O-5101-2016 OI Wang, Bin/0000-0001-8246-1422; FU NSF [DMR-1056859, EPS-1004083]; ONR [N000141310299]; DTRA [HDTRA1-1-10-1-0047] FX This research was supported by NSF DMR-1056859, NSF EPS-1004083, and ONR N000141310299. B.W. and J.I.Z. were supported by DTRA HDTRA1-1-10-1-0047. We thank John Fellenstein for help in designing the four point bending apparatus, Branton Campbell for teaching us about phonon naming conventions, and Ashwin Ramasubramaniam for discussions about the first-principles calculations. NR 32 TC 411 Z9 414 U1 86 U2 699 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD AUG PY 2013 VL 13 IS 8 BP 3626 EP 3630 DI 10.1021/nl4014748 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 202SX UT WOS:000323241000028 PM 23819588 ER PT J AU Iancu, V Zhang, XG Kim, TH Menard, LD Kent, PRC Woodson, ME Ramsey, JM Li, AP Weitering, HH AF Iancu, Violeta Zhang, X. -G. Kim, Tae-Hwan Menard, Laurent D. Kent, P. R. C. Woodson, Michael E. Ramsey, J. Michael Li, An-Ping Weitering, Hanno H. TI Polaronic Transport and Current Blockades in Epitaxial Silicide Nanowires and Nanowire Arrays SO NANO LETTERS LA English DT Article DE suicide nanowires; one-dimensional conductance; self-assembly; scanning tunneling microscopy; polarons ID TEMPERATURE-DEPENDENCE; SI(001); SURFACE; ELECTRON; STATE; WIRES AB Crystalline micrometer-long YSi2 nanowires with cross sections as small as 1 x 0.5 nm can be grown on the Si(001) surface. Their extreme aspect ratios make electron conduction within these nanowires almost ideally one-dimensional, while their compatibility with the silicon platform suggests application as metallic interconnect in Si-based nanoelectronic devices. Here we combine bottom-up epitaxial wire synthesis in ultrahigh vacuum with top-down miniaturization of the electrical measurement probes to elucidate the electronic conduction mechanism of both individual wires and arrays of nanowires. Temperature-dependent transport through individual nanowires is indicative of thermally assisted tunneling of small polarons between atomic-scale defect centers. In-depth analysis of complex wire networks emphasize significant electronic crosstalk between the nanowires due to the long-range Coulomb fields associated with polaronic charge fluctuations. This work establishes a semiquantitative correlation between the density and distributions of atomic-scale defects and resulting current-voltage characteristics of nanoscale network devices. C1 [Iancu, Violeta; Weitering, Hanno H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA. [Zhang, X. -G.; Kim, Tae-Hwan; Kent, P. R. C.; Li, An-Ping] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Menard, Laurent D.; Woodson, Michael E.; Ramsey, J. Michael] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. [Zhang, X. -G.; Kent, P. R. C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Weitering, Hanno H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Weitering, HH (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA. EM hanno@utk.edu RI Kent, Paul/A-6756-2008; Li, An-Ping/B-3191-2012; Kim, Tae-Hwan/A-5636-2010; Iancu, Violeta/B-7657-2008 OI Kent, Paul/0000-0001-5539-4017; Li, An-Ping/0000-0003-4400-7493; Kim, Tae-Hwan/0000-0001-5328-0913; Iancu, Violeta/0000-0003-1146-2959 FU NIH [R01HG002647]; NSF [DMR-1005488]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We thank Stephen Jesse for his help with the MM measurements. The experimental research was sponsored by NIH Grant R01HG002647 and NSF Grant DMR-1005488. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (X.G.Z., T.H.K, P.R.C.K, and A.P.L.). NR 23 TC 3 Z9 3 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2013 VL 13 IS 8 BP 3684 EP 3689 DI 10.1021/nl401574c PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 202SX UT WOS:000323241000038 PM 23902411 ER PT J AU Quan, ZW Luo, ZP Wang, YX Xu, HW Wang, CY Wang, ZW Fang, JY AF Quan, Zewei Luo, Zhiping Wang, Yuxuan Xu, Hongwu Wang, Chenyu Wang, Zhongwu Fang, Jiye TI Pressure-Induced Switching between Amorphization and Crystallization in PbTe Nanoparticles SO NANO LETTERS LA English DT Article DE Amorphization; crystallization; high pressure; PbTe nanoparticle; phase transformation; synchrotron XRD ID INDUCED STRUCTURAL TRANSFORMATIONS; PHASE-TRANSITION; NANOCRYSTALS; STABILITY; SURFACE; MEMORY AB Combining in situ high-pressure X-ray scattering with transmission electron microscopy, we investigated the pressure-induced structural switches between the rock salt and amorphous phases as well as the associated mechanisms of their crystallization and growth in 6 nm PbTe nanocrystal. It was observed that rock salt PbTe nanocrystal started to become amorphous above 10 GPa and then underwent a low-to-high density amorphous phase transformation at pressures over 15 GPa. The low-density amorphous phase exhibited a structural memory of the rock salt phase, as manifested by a backward transformation to the rock salt phase via single nucleation inside each nanoparticle upon the release of pressure. In contrast, the high-density amorphous phase remained stable and could be preserved at ambient conditions. In addition, electron beam-induced heating could drive a recrystallization of the rock salt phase on the recovered amorphous nanoparticles. These studies provide significant insights into structural mechanisms for pressure-induced switching between amorphous and crystalline phases as well as their associated growth processes. C1 [Quan, Zewei; Wang, Chenyu; Fang, Jiye] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. [Wang, Yuxuan; Fang, Jiye] SUNY Binghamton, Mat Sci & Engn Program, Binghamton, NY 13902 USA. [Quan, Zewei; Xu, Hongwu] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Luo, Zhiping] Texas A&M Univ, Microscopy & Imaging Ctr, College Stn, TX 77843 USA. [Luo, Zhiping] Fayetteville State Univ, Dept Chem & Phys, Fayetteville, NC 28301 USA. [Wang, Zhongwu] Cornell Univ, Wilson Lab, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA. RP Fang, JY (reprint author), SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. EM jfang@binghamton.edu RI Fang, Jiye/H-8266-2013; Luo, Zhiping/C-4435-2014; Quan, Zewei/G-4759-2011; Wang, Yuxuan/P-4470-2014; OI Luo, Zhiping/0000-0002-8264-6424; Xu, Hongwu/0000-0002-0793-6923 FU S3IP at Binghamton University; DOE STTR program; laboratory-directed research and development (LDRD) program of Los Alamos National Laboratory; DOE [DE-AC52-06NA25396]; NSF [DMR-0936384] FX This work was partially supported by S3IP at Binghamton University and DOE STTR program. Z.Q. acknowledges the J. Robert Oppenheimer (JRO) fellowship supported by the laboratory-directed research and development (LDRD) program of Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. Z.L. thanks Dr. Masahiro Kawasaki from JEOL USA Inc., for assistance in the electron dose calculations. CHESS is supported by the NSF award DMR-0936384. NR 24 TC 15 Z9 15 U1 5 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD AUG PY 2013 VL 13 IS 8 BP 3729 EP 3735 DI 10.1021/nl4016705 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 202SX UT WOS:000323241000045 PM 23805798 ER PT J AU Guo, HW Noh, JH Dong, S Rack, PD Gai, Z Xu, XS Dagotto, E Shen, J Ward, TZ AF Guo, Hangwen Noh, Joo H. Dong, Shuai Rack, Philip D. Gai, Zheng Xu, Xiaoshan Dagotto, Elbio Shen, Jian Ward, T. Zac TI Electrophoretic-like Gating Used To Control Metal-Insulator Transitions in Electronically Phase Separated Manganite Wires SO NANO LETTERS LA English DT Article DE Nanoconfined oxides; magnetotransport; electronic phase separation; electrophoretic switching transition metal oxides ID MIXED-VALENT MANGANITES; RESISTIVITY; PERCOLATION; PROSPECTS AB Electronically phase separated manganite wires are found to exhibit controllable metal insulator transitions under local electric fields. The switching characteristics are shown to be fully reversible, polarity independent, and highly resistant to thermal breakdown caused by repeated cycling. It is further demonstrated that multiple discrete resistive states can be accessed in a single wire. The results conform to a phenomenological model in which the inherent nanoscale insulating and metallic domains are rearranged through electrophoretic-like processes to open and close percolation channels. C1 [Guo, Hangwen; Dong, Shuai; Xu, Xiaoshan; Dagotto, Elbio; Ward, T. Zac] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Guo, Hangwen; Dong, Shuai; Dagotto, Elbio; Shen, Jian] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Noh, Joo H.; Rack, Philip D.] Univ Tennessee, Knoxville, TN 37996 USA. [Noh, Joo H.; Rack, Philip D.; Gai, Zheng; Xu, Xiaoshan] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dong, Shuai] SE Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China. [Shen, Jian] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. RP Shen, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM shenj5494@fudan.edu.cn; 5zw@ornl.gov RI Gai, Zheng/B-5327-2012; Dong (董), Shuai (帅)/A-5513-2008; Xu, Xiaoshan/B-1255-2009; Ward, Thomas/I-6636-2016; OI Gai, Zheng/0000-0002-6099-4559; Dong (董), Shuai (帅)/0000-0002-6910-6319; Xu, Xiaoshan/0000-0002-4363-392X; Ward, Thomas/0000-0002-1027-9186; Rack, Philip/0000-0002-9964-3254 FU US DOE, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; US DOE [DE-SC0002136]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Joint Institute of Advanced Materials; National Science Foundation of China [11274060]; National Basic Research Program of China (973 Program) [2011CB921801] FX This effort was supported by the US DOE, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (T.Z.W., E.D., and X.X.) and under US DOE grant DE-SC0002136 (H.W.G.). Nanofabrication (P.D.R, J.H.N.) and magnetization measurements (Z.G.) were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. J.H.N. also acknowledges support from the Joint Institute of Advanced Materials Partial support was also supplied from the National Science Foundation of China no. 11274060 (S.D.) and the National Basic Research Program of China (973 Program) under grant no. 2011CB921801 (J.S.). NR 38 TC 22 Z9 22 U1 7 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD AUG PY 2013 VL 13 IS 8 BP 3749 EP 3754 DI 10.1021/nl4016842 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 202SX UT WOS:000323241000048 PM 23899098 ER PT J AU Zheng, JM Gu, M Xiao, J Zuo, PJ Wang, CM Zhang, JG AF Zheng, Jianming Gu, Meng Xiao, Jie Zuo, Pengjian Wang, Chongmin Zhang, Ji-Guang TI Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process SO NANO LETTERS LA English DT Article DE Voltage fading; fragmentation; etched surface; Mn2+ formation; layered cathode; lithium ion battery ID LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; ANOMALOUS CAPACITY; CO ELECTRODES; NICKEL; OXIDES; MN; NI; LI1.2NI0.2MN0.6O2; LI2MNO3 AB The Li-rich, Mn-rich (LMR) layered structure materials exhibit very high discharge capacities exceeding 250 mAh g(-1) and are very promising cathodes to be used in lithium ion batteries. However, significant barriers, such as voltage fade and low rate capability, still need to be overcome before the practical applications of these materials. A detailed study of the voltage/capacity fading mechanism will be beneficial for further tailoring the electrode structure and thus improving the electrochemical performances of these layered cathodes. Here, we report detailed studies of structural changes of LMR layered cathode Li[Li0.2Ni0.2Mn0.6]O-2 after long-term cycling by aberration-corrected scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). The fundamental findings provide new insights into capacity/voltage fading mechanism of Li[Li0.2Ni0.2Mn0.6]O-2. Sponge-like structure and fragmented pieces were found on the surface of cathode after extended cycling. Formation of Mn2+ species and reduced Li content in the fragments leads to the significant capacity loss during cycling. These results also imply the functional mechanism of surface coatings, for example, AlF3, which can protect the electrode from etching by acidic species in the electrolyte, suppress cathode corrosion/fragmentation, and thus improve long-term cycling stability. C1 [Zheng, Jianming; Xiao, Jie; Zuo, Pengjian; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Gu, Meng; Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wang, CM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM chongmin.wang@pnnl.gov; jiguang.zhang@pnnl.gov RI Gu, Meng/B-8258-2013; Zheng, Jianming/F-2517-2014 OI Zheng, Jianming/0000-0002-4928-8194 FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231, 18769]; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RLO1830] FX This work is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 18769, under the Batteries for Advanced Transportation Technologies program. The microscopic study described in this paper is part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL). It was conducted under the Laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy (DOE). The work was conducted in the William R Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. NR 31 TC 123 Z9 125 U1 29 U2 304 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD AUG PY 2013 VL 13 IS 8 BP 3824 EP 3830 DI 10.1021/nl401849t PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 202SX UT WOS:000323241000060 PM 23802657 ER PT J AU Lau, PH Takei, K Wang, C Ju, Y Kim, J Yu, ZB Takahashi, T Cho, G Javey, A AF Lau, Pak Heng Takei, Kuniharu Wang, Chuan Ju, Yeonkyeong Kim, Junseok Yu, Zhibin Takahashi, Toshitake Cho, Gyoujin Javey, Ali TI Fully Printed, High Performance Carbon Nanotube Thin-Film Transistors on Flexible Substrates SO NANO LETTERS LA English DT Article DE Flexible electronics; thin-film transistors; semiconducting nanotube networks; printable electronics ID INTEGRATED-CIRCUITS; ELECTRONICS; SENSORS; INKS AB Fully printed transistors are a key component of ubiquitous flexible electronics. In this work, the advantages of an inverse gravure printing technique and the solution processing of semiconductor-enriched single-walled carbon nanotubes (SWNTs) are combined to fabricate fully printed thin-film transistors on mechanically flexible substrates. The fully printed transistors are configured in a top-gate device geometry and utilize silver metal electrodes and an inorganic/organic high-kappa (similar to 17) gate dielectric. The devices exhibit excellent performance for a fully printed process, with mobility and on/off current ratio of up to similar to 9 cm(2)/(V s) and 10(5), respectively. Extreme bendability is observed, without measurable change in the electrical performance down to a small radius of curvature of 1 mm. Given the high performance of the transistors, our high-throughput printing process serves as an enabling nanomanufacturing scheme for a wide range of large-area electronic applications based on carbon nanotube networks. C1 [Lau, Pak Heng; Takei, Kuniharu; Wang, Chuan; Yu, Zhibin; Takahashi, Toshitake; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Lau, Pak Heng; Takei, Kuniharu; Wang, Chuan; Yu, Zhibin; Takahashi, Toshitake; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Takei, Kuniharu; Wang, Chuan; Yu, Zhibin; Takahashi, Toshitake; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ju, Yeonkyeong; Kim, Junseok; Cho, Gyoujin] Sunchon Natl Univ, World Class Univ Program, Sunchon 540742, Jeonnam, South Korea. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Wang, Chuan/B-3649-2011; Javey, Ali/B-4818-2013 FU NSF NASCENT Center; World Class University program at Sunchon National University FX This work was supported by NSF NASCENT Center. A.J. and G.C. acknowledge support from the World Class University program at Sunchon National University NR 20 TC 140 Z9 140 U1 25 U2 215 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD AUG PY 2013 VL 13 IS 8 BP 3864 EP 3869 DI 10.1021/nl401934a PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 202SX UT WOS:000323241000066 PM 23899052 ER PT J AU Shao, YY Xiao, J Wang, W Engelhard, M Chen, XL Nie, ZM Gu, M Saraf, LV Exarhos, G Zhang, JG Liu, J AF Shao, Yuyan Xiao, Jie Wang, Wei Engelhard, Mark Chen, Xilin Nie, Zimin Gu, Meng Saraf, Laxmikant V. Exarhos, Gregory Zhang, Ji-Guang Liu, Jun TI Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams SO NANO LETTERS LA English DT Article DE Energy storage; sodium battery; surface driven reaction; oxygen functional group; nanocellular carbon foams ID LONG CYCLE LIFE; LITHIUM BATTERIES; ELECTRODE MATERIALS; LOW-COST; ELECTROCHEMICAL INTERCALATION; POSITIVE ELECTRODE; FUNCTIONAL-GROUPS; CATHODE MATERIAL; ANODE MATERIAL; METAL OXIDE AB Sodium ion (Na+) batteries have attracted increased attention for energy storage due to the natural abundance of sodium, but their development is hindered by poor intercalation property of Na+ in electrodes. This paper reports a detailed study of high capacity, high rate sodium ion energy storage in functionalized high-surface-area nanocellular carbon foams (NCCF). The energy storage mechanism is surface-driven reactions between Na+ and oxygen-containing functional groups on the surface of NCCF. The surface reaction, rather than a Na+ bulk intercalation reaction, leads to high rate performance and cycling stability due to the enhanced reaction kinetics and the absence of electrode structure change. The NCCF makes more surface area and surface functional groups available for the Na+ reaction. It delivers 152 mAh/g capacity at the rate of 0.1 A/g and a capacity retention of 90% for over 1600 cycles. C1 [Shao, Yuyan; Xiao, Jie; Wang, Wei; Engelhard, Mark; Chen, Xilin; Nie, Zimin; Gu, Meng; Saraf, Laxmikant V.; Exarhos, Gregory; Zhang, Ji-Guang; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shao, YY (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuyan.shao@pnnl.gov; jun.liu@pnnl.gov RI Shao, Yuyan/A-9911-2008; Chen, Xilin/A-1409-2012; Wang, Wei/F-4196-2010; Gu, Meng/B-8258-2013; OI Shao, Yuyan/0000-0001-5735-2670; Wang, Wei/0000-0002-5453-4695; Engelhard, Mark/0000-0002-5543-0812 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy (DOE); Department of Energy's Office of Biological and Environmental Research FX This work was primarily supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. We are grateful for the financial support from the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy (DOE) for developing the Na-ion storage battery technology. The XPS, TEM, and SEM work was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for DOE by Battelle. NR 56 TC 64 Z9 64 U1 12 U2 158 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD AUG PY 2013 VL 13 IS 8 BP 3909 EP 3914 DI 10.1021/nl401995a PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 202SX UT WOS:000323241000073 PM 23879207 ER PT J AU Raja, SN Olson, ACK Thorkelsson, K Luong, AJ Hsueh, L Chang, GQ Gludovatz, B Lin, LW Xu, T Ritchie, RO Alivisatos, AP AF Raja, Shilpa N. Olson, Andrew C. K. Thorkelsson, Kari Luong, Andrew J. Hsueh, Lillian Chang, Guoqing Gludovatz, Bernd Lin, Liwei Xu, Ting Ritchie, Robert O. Alivisatos, A. Paul TI Tetrapod Nanocrystals as Fluorescent Stress Probes of Electrospun Nanocomposites SO NANO LETTERS LA English DT Article DE Nanocomposite; polymer; nanocrystal; electrospinning; mechanical; sensor ID NANOTUBE-POLYMER COMPOSITES; ATOMIC-FORCE MICROSCOPE; MECHANICAL-PROPERTIES; VISCOELASTIC PROPERTIES; GREEN COMPOSITES; EPOXY COMPOSITES; SEEDED GROWTH; FIBER LENGTH; NANOFIBERS; NANOPARTICLES AB A nanoscale, visible-light, self-sensing stress probe would be highly desirable in a variety of biological, imaging, and materials engineering applications, especially a device that does not alter the mechanical properties of the material it seeks to probe. Here we present the CdSe-CdS tetrapod quantum dot, incorporated into polymer matrices via electrospinning, as an in situ luminescent stress probe for the mechanical properties of polymer fibers. The mechanooptical sensing performance is enhanced with increasing nanocrystal concentration while causing minimal change in the mechanical properties even up to 20 wt % incorporation. The tetrapod nanoprobe is elastic and recoverable and undergoes no permanent change in sensing ability even upon many cycles of loading to failure. Direct comparisons to side-by-side traditional mechanical tests further validate the tetrapod as a luminescent stress probe. The tetrapod fluorescence stress-strain curve shape matches well with uniaxial stress-strain curves measured mechanically at all filler concentrations reported. C1 [Raja, Shilpa N.; Olson, Andrew C. K.; Thorkelsson, Kari; Gludovatz, Bernd; Xu, Ting; Ritchie, Robert O.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Raja, Shilpa N.; Thorkelsson, Kari; Luong, Andrew J.; Hsueh, Lillian; Xu, Ting; Ritchie, Robert O.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Olson, Andrew C. K.; Xu, Ting; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Luong, Andrew J.; Hsueh, Lillian] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Chang, Guoqing; Lin, Liwei; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Ritchie, Robert/A-8066-2008; Alivisatos , Paul /N-8863-2015; OI Ritchie, Robert/0000-0002-0501-6998; Alivisatos , Paul /0000-0001-6895-9048; Gludovatz, Bernd/0000-0002-2420-3879 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [ECCS-0901864]; China Scholarship Council [2011619026] FX Work on tetrapod nanocrystal-polymer nanocomposite electrospinning and optical, mechanical, and structural characterization was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering, of the U.S. Department of Energy under contract DE-AC02-05CH11231, specifically on the Inorganic/Organic Nanocomposites NSET Program (to S.N.R, K.T., T.X., and A.P.A). Support for mechanical characterization was provided by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (to B.G. and R.O.R). K.T. further acknowledges an NSF Graduate Fellowship. Electrospinning work was supported by the China Scholarship Council (2011619026) (to G.C), and NSF Grant ECCS-0901864 (to L.L.). NR 58 TC 24 Z9 24 U1 7 U2 131 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2013 VL 13 IS 8 BP 3915 EP 3922 DI 10.1021/nl401999t PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 202SX UT WOS:000323241000074 PM 23815586 ER PT J AU Sun, YG Foley, JJ Peng, S Li, Z Gray, SK AF Sun, Yugang Foley, Jonathan J. Peng, Sheng Li, Zheng Gray, Stephen K. TI Interfaced Metal Heterodimers in the Quantum Size Regime SO NANO LETTERS LA English DT Article DE Metal nanoparticle dimers; surface plasmon resonance; plasmomics; quantum-size effects; epitaxial overgrowth; discrete dipole approximation ID DISCRETE-DIPOLE APPROXIMATION; PLASMON RESONANCES; NANOPARTICLES; NANOSTRUCTURES; PARTICLES; OXIDATION; NANORODS AB Synthesis of nanoparticle dimers made of asymmetric compositions is very challenging because of the difficulty in manipulating the nanoparticles' surface chemistries in order to control the assembly and/or growth of different nanoparticles. In this Letter, we report a seed-mediated, surface-confined epitaxial overgrowth strategy that enables the synthesis of high-quality interfaced Au-Ag heterodimers in the quantum size regime (diameters <10 nm). Au and Ag share a common face-centered cubic lattice and have nearly identical lattice constants, which facilitates epitaxial overgrowth and allows direct contact between the Au and Ag domains. Quantum size effects, formation of the Au/Ag interfaces, and chemical interactions with surfactant molecules strongly influence the optical properties of the dimers and lead to the observation of unique surface plasmon resonances. In particular, we find an unusual enhancement of the characteristic Au surface plasmon resonance and the emergence of a charge transfer plasmon across the Au/Ag domains, which together lead to broad-band absorption spanning visible to near-infrared wavelengths. A model that captures the changes in optical behavior due to chemical interactions and quantum size effects is used to calculate the absorption spectra of the interfaced heterodimers, resulting in good agreement with experimental measurements. C1 [Sun, Yugang; Foley, Jonathan J.; Peng, Sheng; Li, Zheng; Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov; gray@anl.gov RI Sun, Yugang /A-3683-2010; Li, Zheng/L-1355-2016 OI Sun, Yugang /0000-0001-6351-6977; Li, Zheng/0000-0001-5281-8101 FU Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; Electron Microscopy Center at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. The electron microscopy was partially accomplished at the Electron Microscopy Center at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory under contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. Help from Dr. Yuzi Liu on electron microscopy is appreciated. J.J.F. gratefully acknowledges Dr. Piotr Flatau for helpful discussion regarding convergence of the DDA method. NR 29 TC 15 Z9 15 U1 1 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2013 VL 13 IS 8 BP 3958 EP 3964 DI 10.1021/nl402361b PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 202SX UT WOS:000323241000081 PM 23879377 ER PT J AU Dera, P Finkelstein, GJ Duffy, TS Downs, RT Meng, Y Prakapenka, V Tkachev, S AF Dera, Przemyslaw Finkelstein, Gregory J. Duffy, Thomas S. Downs, Robert T. Meng, Yue Prakapenka, Vitali Tkachev, Sergey TI Metastable high-pressure transformations of orthoferrosilite Fs(82) SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE Ferrosilite; Enstatite; Pyroxenes; High-pressure phase transition; Upper mantle; Synchrotron single-crystal X-ray diffraction ID LATTICE-PREFERRED ORIENTATIONS; PHASE-TRANSITION; ORTHOENSTATITE MGSIO3; CRYSTAL-CHEMISTRY; ROOM-TEMPERATURE; ELECTRON-DENSITY; RICH PYROXENES; ORDER-DISORDER; FERROSILITE; MANTLE AB High-pressure single-crystal X-ray diffraction experiments with natural ferrosilite Fs(82) (Fe0.822+Mg0.16-Al0.01Ca0.01)(Si0.09Al0.01)O-3 orthopyroxene (opx) reveal that at ambient temperature the sample does not transform to the clinopyroxene (cpx) structure, as reported earlier for a synthetic Fs(100) end-member (Hugh-Jones et al., 1996), but instead undergoes a series of two polymorphic transitions, first above 10.1(1) GPa, to the monoclinic P2(1)/c phase beta-opx (distinctly different from both P2(1)/c and C2/c cpx), also observed in natural enstatite (Zhang et al., 2012), and then, above 12.3(1) GPa to a high-pressure ortho-rhombic Pbca phase gamma-opx, predicted for MgSiO3 by atomistic simulations (Jahn, 2008). The structures of phases alpha, beta and gamma have been determined from the single-crystal data at pressures of 2.3(1), 11.1(1), and 14.6(1) GPa, respectively. The two new high-pressure transitions, very similar in their character to the P2(1)/c-C2/c transformation of cpx, make opx approximately as dense as cpx above 12.3(1) GPa and significantly change the elastic anisotropy of the crystal, with the [100] direction becoming almost twice as stiff as in the ambient alpha-opx phase. Both transformations involve mainly tetrahedral rotation, are reversible and are not expected to leave microstructural evidence that could be used as a geobarometric proxy. The high Fe2+ content in Fs(82) shifts the alpha-beta transition to slightly lower pressure, compared to MgSiO3, and has a very dramatic effect on reducing the (meta) stability range of the beta-phase. (C) 2013 Elsevier B.V. All rights reserved. C1 [Dera, Przemyslaw; Prakapenka, Vitali; Tkachev, Sergey] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. [Finkelstein, Gregory J.; Duffy, Thomas S.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Downs, Robert T.] Univ Arizona, Dept Geol, Tucson, AZ 85721 USA. [Meng, Yue] Carnegie Inst Sci, High Pressure Collaborat Access Team, Washington, DC USA. [Dera, Przemyslaw] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. RP Dera, P (reprint author), Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Sch Ocean & Earth Sci & Technol, 1680 East West Rd,POST Bldg,Off 819 EHonolulu, Honolulu, HI 96822 USA. EM dera@cars.uchicago.edu RI Duffy, Thomas/C-9140-2017 OI Duffy, Thomas/0000-0002-5357-1259 FU DOE-NNSA; DOE-BES; NSF; National Science Foundation - Earth Sciences [EAR-1128799]; Department of Energy - Geosciences [DE-FG02-94ER14466]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was performed at HPCAT (Sector 16) and GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by CIW, CDAC, UNLV and LANL through funding from DOE-NNSA and DOE-BES, with partial instrumentation funding by NSF. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-1128799) and Department of Energy - Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 58 TC 13 Z9 13 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD AUG PY 2013 VL 221 BP 15 EP 21 DI 10.1016/j.pepi.2013.06.006 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 204YS UT WOS:000323407800002 ER PT J AU Jing, DW Shi, JW Shen, SH Guo, LJ AF Jing, Dengwei Shi, Jinwen Shen, Shaohua Guo, Liejin TI Efficient Photocatalytic Hydrogen Evolution Under Visible Light Over a Mesoporous Titania Crystallized by Thermal Treatment in Hydrogen SO SCIENCE OF ADVANCED MATERIALS LA English DT Article DE Hydrogenation; Visible Light; Crystal Structure; Hydrogen Production ID NANOPARTICLES; TIO2 AB TiO2 was prepared by a sot gel method with TiCl4 as precursor and calcined under N-2, Ar, air, and H-2, respectively. The samples are subjected to various physiochemical characterizations. Our results showed that the reducing hydrogen gas atmosphere significantly affected the growth of TiO2 crystallite, leading to formation of mesoporous TiO2 with crystalline framework and high surface area. It also shows high photocatalytic activity for hydrogen production under visible light. Our report shows that the mesoporous TiO2 exhibiting high photocatalytic activity under visible light can be obtained by thermal treatment in certain atmosphere, needless of additional ionic doping which is often employed in traditional strategies. Our finding is believed to be useful for the batch production of TiO2 with high activity and especially with visible light response for the utilization of Solar hydrogen fuel production. C1 [Jing, Dengwei; Shi, Jinwen; Shen, Shaohua; Guo, Liejin] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Int Res Ctr Renewable Energy, Xian 710049, Peoples R China. [Shen, Shaohua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Jing, DW (reprint author), Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Int Res Ctr Renewable Energy, Xian 710049, Peoples R China. EM dwjing@mail.xjtu.edu.cn; lj-guo@mail.xjtu.edu.cn RI Shi, Jinwen/D-3054-2011; Shen, Shaohua/E-9507-2011; Jing, Dengwei/J-2819-2012 OI Shi, Jinwen/0000-0001-7291-2840; FU National Natural Science Foundation of China [50821064, 21276206]; National Basic Research Program of China [2009CB220000] FX The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (Nos. 50821064, 21276206) and National Basic Research Program of China (Nos. 2009CB220000). NR 20 TC 7 Z9 7 U1 1 U2 26 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1947-2935 J9 SCI ADV MATER JI Sci. Adv. Mater. PD AUG PY 2013 VL 5 IS 8 BP 982 EP 986 DI 10.1166/sam.2013.1546 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 204HK UT WOS:000323356000009 ER PT J AU Forni, O Maurice, S Gasnault, O Wiens, RC Cousin, A Clegg, SM Sirven, JB Lasue, J AF Forni, Olivier Maurice, Sylvestre Gasnault, Olivier Wiens, Roger C. Cousin, Agnes Clegg, Samuel M. Sirven, Jean-Baptiste Lasue, Jeremie TI Independent component analysis classification of laser induced breakdown spectroscopy spectra SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Laser induced breakdown spectroscopy; Chemometrics/statistics; ChemCam; Mars ID SOURCE SEPARATION; INSTRUMENT AB The ChemCam instrument on board Mars Science Laboratory (MSL) rover uses the laser-induced breakdown spectroscopy (LIBS) technique to remotely analyze Martian rocks. It retrieves spectra up to a distance of seven meters to quantify and to quantitatively analyze the sampled rocks. Like any field application, on-site measurements by LIBS are altered by diverse matrix effects which induce signal variations that are specific to the nature of the sample. Qualitative aspects remain to be studied, particularly LIBS sample identification to determine which samples are of interest for further analysis by ChemCam and other rover instruments. This can be performed with the help of different chemometric methods that model the spectra variance in order to identify a the rock from its spectrum. In this paper we test independent components analysis (ICA) rock classification by remote LIBS. We show that using measures of distance in ICA space, namely the Manhattan and the Mahalanobis distance, we can efficiently classify spectra of an unknown rock. The Mahalanobis distance gives overall better performances and is easier to manage than the Manhattan distance for which the determination of the cut-off distance is not easy. However these two techniques are complementary and their analytical performances will improve with time during MSL operations as the quantity of available Martian spectra will grow. The analysis accuracy and performances will benefit from a combination of the two approaches. (C) 2013 Elsevier B.V. All rights reserved. C1 [Forni, Olivier; Maurice, Sylvestre; Gasnault, Olivier; Cousin, Agnes; Lasue, Jeremie] Univ Toulouse, Inst Rech Astrophys & Planetol, UPS OMP, Toulouse, France. [Forni, Olivier; Maurice, Sylvestre; Gasnault, Olivier; Cousin, Agnes; Lasue, Jeremie] CNRS, IRAP, F-31028 Toulouse 4, France. [Wiens, Roger C.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Cousin, Agnes; Clegg, Samuel M.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87544 USA. [Sirven, Jean-Baptiste] CEA Saclay, DEN, DPC, SCP, F-91191 Gif Sur Yvette, France. RP Forni, O (reprint author), CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. EM olivier.forni@irap.omp.eu; sylvestre.maurice@irap.omp.eu; olivier.gasnault@irap.omp.eu; rwiens@lanl.gov; acousin@lanl.gov; sclegg@lanl.gov; jean-baptiste.sirven@cea.f; jeremie.lasue@irap.omp.eu RI Sirven, Jean-Baptiste/H-5782-2013; Gasnault, Olivier/F-4327-2010; OI Sirven, Jean-Baptiste/0000-0002-5523-6809; Gasnault, Olivier/0000-0002-6979-9012; Forni, Olivier/0000-0001-6772-9689; Clegg, Sam/0000-0002-0338-0948 FU ChemCam Project through CNES, France; NASA, US; LANL Lab-Directed Research and Development (LDRD) FX This work was supported by the ChemCam Project through CNES funding in France and NASA funding in the US. Additional support to RCW was provided by LANL Lab-Directed Research and Development (LDRD) funding. We thank an anonymous reviewer for her/his helpful comments. NR 23 TC 29 Z9 29 U1 4 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD AUG 1 PY 2013 VL 86 BP 31 EP 41 DI 10.1016/j.sab.2013.05.003 PG 11 WC Spectroscopy SC Spectroscopy GA 203MX UT WOS:000323298400004 ER PT J AU Cheng, CL Perfect, E Mills, RT AF Cheng, C. -L. Perfect, E. Mills, R. T. TI Forward Prediction of Height-Averaged Capillary Pressure-Saturation Parameters Using the BC-vG Upscaler SO VADOSE ZONE JOURNAL LA English DT Article ID HETEROGENEOUS POROUS-MEDIA; HYDRAULIC FUNCTIONS; 2-PHASE FLOW; BROOKS-COREY; SOILS AB There is ongoing interest in approaches for upscaling point (e.g., pixel or voxel scale) measurements of soil hydraulic properties to predict column-scale behavior in the laboratory, or even field-scale processes. We have developed the BC-vG Upscaler for estimating the height-averaged capillary pressure-saturation relationship, (theta) over bar((h) over bar), for a given porous medium based on equations used in the TrueCell program. Whereas TrueCell inversely estimates point Brooks and Corey (BC) equation parameters from (theta) over bar((h) over bar) data, the BC-vG Upscaler uses point BC parameters as inputs for the forward prediction of height-averaged van Genuchten (vG) parameters. The BC-vG Upscaler was verified using previously published, independent point and height-averaged capillary pressure-saturation data sets for silica sand. The capability of the BC-vG Upscaler was demonstrated in three separate applications. The first showed how the program can be used to predict height-averaged vG equation parameters using three different relationships between n and m. The second explored the effects of varying column height on the predicted vG parameters for a hypothetical porous medium. The third used the BC-vG Upscaler to predict height-averaged vG parameters for a 50-cm-tall column based on previously published point BC parameters for a wide range of porous media. The BC-vG Upscaler is available free upon request. It should prove useful for converting point BC parameters into height-averaged vG parameters suitable for inclusion in numerical models for simulating variably saturated flow. The program could also be used to develop new scale-dependent relationships between the parameters of the BC and vG equations. C1 [Cheng, C. -L.; Perfect, E.] Univ Tennessee, Dep Earth & Planetary Sci, Knoxville, TN 37996 USA. [Mills, R. T.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Perfect, E (reprint author), Univ Tennessee, Dep Earth & Planetary Sci, Knoxville, TN 37996 USA. EM eperfect@utk.edu RI Cheng, Chu-Lin/G-3471-2013 OI Cheng, Chu-Lin/0000-0002-1900-463X FU Joint Directed Research and Development (JDRD) program of the UT-ORNL Science Alliance at the University of Tennessee-Knoxville; Laboratory Directed Research and Development (LDRD) program of Oak Ridge National Laboratory (ORNL); U.S. Department of Energy [DE-AC05-00OR22725] FX Funding for C.-L. Cheng was provided by the Joint Directed Research and Development (JDRD) program of the UT-ORNL Science Alliance at the University of Tennessee-Knoxville and the Laboratory Directed Research and Development (LDRD) program of Oak Ridge National Laboratory (ORNL). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. We thank Dr. Toshihiro Sakaki for providing the data from Sakaki and Illangasekare (2007) in spreadsheet format. NR 19 TC 1 Z9 1 U1 0 U2 10 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2013 VL 12 IS 3 DI 10.2136/vzj2012.0174 PG 9 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 201RV UT WOS:000323161600003 ER PT J AU Kang, M Perfect, E Cheng, CL Bilheux, HZ Gragg, M Wright, DM Lamanna, JM Horita, J Warren, JM AF Kang, M. Perfect, E. Cheng, C. L. Bilheux, H. Z. Gragg, M. Wright, D. M. Lamanna, J. M. Horita, J. Warren, J. M. TI Diffusivity and Sorptivity of Berea Sandstone Determined using Neutron Radiography SO VADOSE ZONE JOURNAL LA English DT Article ID POROUS BUILDING-MATERIALS; SOIL-WATER DIFFUSIVITY; HORIZONTAL INFILTRATION; SPONTANEOUS IMBIBITION; ROCK SAMPLES; MEDIA; ABSORPTION; FLOW; CAPILLARITY; TOMOGRAPHY AB Neutron radiography is increasingly being used to study the dynamics of water movement in variably saturated porous media. It has been applied to visualize water imbibition in both natural and engineered materials, including soil, rock, brick, concrete, and glass. The sorptivity, S, and unsaturated diffusivity, D(theta), are important parameters for describing water movement under partially saturated conditions. Estimates of S and D(theta) have been obtained using a variety of techniques, including neutron imaging. However, we could find no previous reports of such measurements for the Berea sandstone, regardless of the method employed. Berea sandstone is a widespread, medium-to fine-grained terrestrial sandstone of Mississippian age that is used extensively as a standard porous medium in the geology and petroleum engineering fields. We used the CG-1D neutron imaging facility at the High Flux Isotope Reactor of Oak Ridge National Laboratory to estimate S and D(theta) from radiographs acquired every 26 s. A 25 mu m thick LiF/ZnS scintillator was employed in conjunction with a DW936 IkonL ANDOR charge coupled device (CCD) camera system, giving a spatial imaging resolution of similar to 75 mu m. Four replicate cores were investigated. The positions of the observed wetting fronts were linearly regressed against the square root of time. Sorptivity values calculated from the slopes of these relations ranged from 0.89 to 1.46 mm s(-1/2). Further analysis yielded D(theta) functions. These functions were very reproducible and showed good agreement with independent D(theta) values calculated from relative permeability and capillary pressure-saturation data for Berea sandstone. To the best of our knowledge, these are the first published estimates of S and D(theta) for Berea sandstone. Our results clearly demonstrate the effectiveness of neutron imaging in providing high quality, quantitative data for the computation of unsaturated flow parameters. C1 [Kang, M.; Perfect, E.; Cheng, C. L.; Gragg, M.; Wright, D. M.] Univ Tennessee, Dep Earth & Planetary Sci, Knoxville, TN 37996 USA. [Kang, M.; Bilheux, H. Z.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Lamanna, J. M.] Univ Tennessee, Dep Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Horita, J.] Texas Tech Univ, Dept Geosci, Lubbock, TX 79409 USA. [Warren, J. M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. RP Perfect, E (reprint author), Univ Tennessee, Dep Earth & Planetary Sci, Knoxville, TN 37996 USA. EM eperfect@utk.edu RI Cheng, Chu-Lin/G-3471-2013; Warren, Jeffrey/B-9375-2012; Bilheux, Hassina/H-4289-2012 OI Cheng, Chu-Lin/0000-0002-1900-463X; Warren, Jeffrey/0000-0002-0680-4697; Bilheux, Hassina/0000-0001-8574-2449 FU Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy; Laboratory Directed Research and Development Program of ORNL; Joint Directed Research and Development Program of the UT-ORNL Science Alliance at UTK FX This paper is based in part on assignments prepared by graduate students participating in a seminar course on imaging water in porous media (GEOL 685) taught by E. Perfect at the University of Tennessee-Knoxville (UTK) in the spring semester of 2012. The neutron imaging at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy, which is managed by UT-Battelle, LLC. Lakeisha Walker provided excellent technical support at HFIR. Portions of the MATLAB code used for the quantitative image analyses were developed by Keely Willis and Sophie Voisin at ORNL. Funding was provided by the Laboratory Directed Research and Development Program of ORNL and the Joint Directed Research and Development Program of the UT-ORNL Science Alliance at UTK. NR 60 TC 6 Z9 6 U1 5 U2 32 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2013 VL 12 IS 3 DI 10.2136/vzj2012.0135 PG 8 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 201RV UT WOS:000323161600021 ER PT J AU Andrade, GA Pistner, AJ Yap, GPA Lutterman, DA Rosenthal, J AF Andrade, Gabriel A. Pistner, Allen J. Yap, Glenn P. A. Lutterman, Daniel A. Rosenthal, Joel TI Photocatalytic Conversion of CO2 to CO Using Rhenium Bipyridine Platforms Containing Ancillary Phenyl or BODIPY Moieties SO ACS CATALYSIS LA English DT Article DE BODIPY; carbon dioxide; catalysis; electrochemistry; photochemistry; rhenium bipyridine derivatives ID PORPHYRIN-CATALYZED REDUCTION; ELECTROGENERATED CHEMILUMINESCENCE; ELECTRON-TRANSFER; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; ELECTROCHEMISTRY; PHOTOPHYSICS; COMPLEXES; COBALT; PHOTOCHEMISTRY AB Harnessing of solar energy to drive the reduction of carbon dioxide to fuels requires the development of efficient catalysts that absorb sunlight. In this work, we detail the synthesis, electrochemistry, and photophysical properties of a set of homologous fac-Re-1(CO)(3) complexes containing either an ancillary phenyl (8) or BODIPY (12) substituent. These studies demonstrate that both the electronic properties of the rhenium center and BODIPY chromophore are maintained for these complexes. Photolysis studies demonstrate that both assemblies 8 and 12 are competent catalysts for the photochemical reduction of CO2 to CO in dimethylformamide (DMF) using triethanolamine (TEOA) as a sacrificial reductant. Both compounds 8 and 12 display turnover frequencies (TOFs) for photocatalytic CO production upon irradiation with light (lambda(ex) >= 400 nm) of similar to 5 h(-1). with turnover number (TON) values of approximately 20. Although structural and photophysical measurements demonstrate that electronic coupling between the BODIPY and fac-Re-1(CO)(3) units is limited for complex 12, this work dearly shows that the photoactive BODIPY moiety is tolerated during catalysis and does not interfere with the observed photochemistry. When taken together, these results provide a clear roadmap for the development of advanced rhenium bipyridine complexes bearing ancillary BODIPY groups for the efficient photocatalytic reduction of CO2 using visible light. C1 [Andrade, Gabriel A.; Pistner, Allen J.; Yap, Glenn P. A.; Rosenthal, Joel] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. [Lutterman, Daniel A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Lutterman, DA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM luttermanda@ornl.gov; joelr@udel.edu RI Lutterman, Daniel/C-9704-2016 OI Lutterman, Daniel/0000-0002-4875-6056 FU Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health [P20GM103541]; NSF; American Chemical Society's Petroleum Research Fund; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory FX Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant P20GM103541. G.A.A. and J.R. were supported through an NSF sponsored LSAMP, "bridge to the doctorate fellowship" and a DuPont Young Professor award, respectively. J.R. also thanks the University of Delaware Research Foundation and the donors of the American Chemical Society's Petroleum Research Fund for financial support. D.A.L. was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. NMR and other data were acquired at UD using instrumentation obtained with assistance from the NSF and NIH (NSF-MRI 0421224, NSF-CRIF CHE-0840401 and CHE-1048367, NIH P20 RR017716). NR 53 TC 25 Z9 26 U1 5 U2 126 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD AUG PY 2013 VL 3 IS 8 BP 1685 EP 1692 DI 10.1021/cs400332y PG 8 WC Chemistry, Physical SC Chemistry GA 197LO UT WOS:000322852900001 PM 24015374 ER PT J AU Martin, SL He, LL Meilleur, F Guenther, RH Sit, TL Lommel, SA Heller, WT AF Martin, Stanton L. He, Lilin Meilleur, Flora Guenther, Richard H. Sit, Tim L. Lommel, Steven A. Heller, William T. TI New insight into the structure of RNA in red clover necrotic mosaic virus and the role of divalent cations revealed by small-angle neutron scattering SO ARCHIVES OF VIROLOGY LA English DT Article ID CUCUMBER-NECROSIS-VIRUS; BUSHY STUNT VIRUS; BIOLOGICAL STRUCTURES; PROTEIN COMPLEXES; BIPARTITE GENOME; ORGANIZATION; DIFFRACTION; RESOLUTION; SEQUENCE; PARTICLE AB Red clover necrotic mosaic virus (RCNMV) is a 36-nm-diameter, T = 3 icosahedral plant virus with a genome that is split between two single-stranded RNA molecules of approximately 3.9 kb and 1.5 kb, as well as a 400-nucleotide degradation product. The structure of the virus capsid and its response to removing Ca2+ and Mg2+ was previously studied by cryo-electron microscopy (cryo-EM) (Sherman et al. J Virol 80:10395-10406, 2006) but the structure of the RNA was only partially resolved in that study. To better understand the organization of the RNA and conformational changes resulting from the removal of divalent cations, small-angle neutron scattering with contrast variation experiments were performed. The results expand upon the cryo-EM results by clearly showing that virtually all of the RNA is contained in a thin shell that is in contact with the interior domains of the viral capsid protein, and they provide new insight into changes in the RNA packing that result from removal of divalent cations. C1 [Martin, Stanton L.; Guenther, Richard H.; Sit, Tim L.; Lommel, Steven A.] N Carolina State Univ, Dept Plant Pathol, Raleigh, NC 27695 USA. [He, Lilin; Heller, William T.] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. [He, Lilin; Heller, William T.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [He, Lilin; Meilleur, Flora; Heller, William T.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Meilleur, Flora] N Carolina State Univ, Dept Mol & Struct Biochem, Raleigh, NC 27695 USA. RP Heller, WT (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM hellerwt@ornl.gov OI He, Lilin/0000-0002-9560-8101 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL); U.S. Department of Energy's Office of Biological and Environmental Research [FWP ERKP291]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy [DO-AC05-00OR22725, DE-AC05-00OR22725] FX This research was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL). The research at ORNL's Center for Structural Molecular Biology (FWP ERKP291) was supported by the U.S. Department of Energy's Office of Biological and Environmental Research. Work at HFIR was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract No. DO-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 35 TC 4 Z9 4 U1 0 U2 11 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0304-8608 J9 ARCH VIROL JI Arch. Virol. PD AUG PY 2013 VL 158 IS 8 BP 1661 EP 1669 DI 10.1007/s00705-013-1650-6 PG 9 WC Virology SC Virology GA 191BF UT WOS:000322386900004 PM 23483344 ER PT J AU Bahnfleth, WP Fisk, WJ Burroughs, HEB Persily, A Martin, SB Stanke, D Li, YG AF Bahnfleth, William P. Fisk, William J. Burroughs, H. E. Barney Persily, Andrew Martin, Stephen B. Stanke, Dennis Li, Yuguo TI Shaping the Next Indoor Air Quality SO ASHRAE JOURNAL LA English DT Article C1 [Fisk, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Indoor Environm Grp, Berkeley, CA 94720 USA. [Persily, Andrew] NIST, Div Energy & Environm, Indoor Air Qual & Ventilat Grp, Gaithersburg, MD USA. [Martin, Stephen B.] NIOSH, Ctr Dis Control & Prevent, Div Resp Dis Studies, Field Studies Branch, Washington, DC USA. [Li, Yuguo] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China. NR 3 TC 0 Z9 0 U1 1 U2 7 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD AUG PY 2013 VL 55 IS 8 BP 50 EP + PG 7 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 202DH UT WOS:000323193200015 ER PT J AU Rutberg, M Hastbacka, M Bouza, A AF Rutberg, Michael Hastbacka, Mildred Bouza, Antonio TI TES for Residential Settings SO ASHRAE JOURNAL LA English DT Editorial Material C1 [Rutberg, Michael] Mech Syst Grp, Lexington, MA USA. [Hastbacka, Mildred] TIAX LLC, Lexington, MA USA. [Bouza, Antonio] US DOE, Washington, DC USA. RP Rutberg, M (reprint author), Mech Syst Grp, Lexington, MA USA. NR 11 TC 1 Z9 1 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD AUG PY 2013 VL 55 IS 8 BP 92 EP 94 PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 202DH UT WOS:000323193200020 ER PT J AU Guo, YC Ferguson, HC Giavalisco, M Barro, G Willner, SP Ashby, MLN Dahlen, T Donley, JL Faber, SM Fontana, A Galametz, A Grazian, A Huang, KH Kocevski, DD Koekemoer, AM Koo, DC McGrath, EJ Peth, M Salvato, M Wuyts, S Castellano, M Cooray, AR Dickinson, ME Dunlop, JS Fazio, GG Gardner, JP Gawiser, E Grogin, NA Hathi, NP Hsu, LT Lee, KS Lucas, RA Mobasher, B Nandra, K Newman, JA van der Wel, A AF Guo, Yicheng Ferguson, Henry C. Giavalisco, Mauro Barro, Guillermo Willner, S. P. Ashby, Matthew L. N. Dahlen, Tomas Donley, Jennifer L. Faber, Sandra M. Fontana, Adriano Galametz, Audrey Grazian, Andrea Huang, Kuang-Han Kocevski, Dale D. Koekemoer, Anton M. Koo, David C. McGrath, Elizabeth J. Peth, Michael Salvato, Mara Wuyts, Stijn Castellano, Marco Cooray, Asantha R. Dickinson, Mark E. Dunlop, James S. Fazio, G. G. Gardner, Jonathan P. Gawiser, Eric Grogin, Norman A. Hathi, Nimish P. Hsu, Li-Ting Lee, Kyoung-Soo Lucas, Ray A. Mobasher, Bahram Nandra, Kirpal Newman, Jeffery A. van der Wel, Arjen TI CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; galaxies: high-redshift; galaxies: photometry; methods: data analysis; techniques: image processing ID ORIGINS DEEP SURVEY; SPECTRAL ENERGY-DISTRIBUTIONS; STAR-FORMATION HISTORY; SIMILAR-TO 2; GMASS ULTRADEEP SPECTROSCOPY; EXTRAGALACTIC LEGACY SURVEY; REST-FRAME ULTRAVIOLET; UV LUMINOSITY FUNCTION; HIGH-REDSHIFT GALAXIES; SPACE-TELESCOPE AB We present a UV to mid-infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W band. The F160W mosaic includes the data from CANDELS deep and wide observations as well as previous ERS and HUDF09 programs. The mosaic reaches a 5 sigma limiting depth (within an aperture of radius 0 ''.17) of 27.4, 28.2, and 29.7 AB for CANDELS wide, deep, and HUDF regions, respectively. The catalog contains 34,930 sources with the representative 50% completeness reaching 25.9, 26.6, and 28.1 AB in the F160W band for the three regions. In addition to WFC3 bands, the catalog also includes data from UV (U band from both CTIO/MOSAIC and VLT/VIMOS), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), and infrared (HST/WFC3 F098M, VLT/ISAAC K s, VLT/HAWK-I K s, and Spitzer/IRAC 3.6, 4.5, 5.8, 8.0 mu m) observations. The catalog is validated via stellar colors, comparison with other published catalogs, zero-point offsets determined from the best-fit templates of the spectral energy distribution of spectroscopically observed objects, and the accuracy of photometric redshifts. The catalog is able to detect unreddened star-forming (passive) galaxies with stellar mass of 10(10) M-circle dot at a 50% completeness level to z similar to 3.4 (2.8), 4.6 (3.2), and 7.0 (4.2) in the three regions. As an example of application, the catalog is used to select both star-forming and passive galaxies at z similar to 2-4 via the Balmer break. It is also used to study the color-magnitude diagram of galaxies at 0 < z < 4. C1 [Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C.] Univ Calif Santa Cruz, Lick Observ, Dept Astron & Astrophys, UCO, Santa Cruz, CA 95064 USA. [Guo, Yicheng; Giavalisco, Mauro] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Ferguson, Henry C.; Dahlen, Tomas; Huang, Kuang-Han; Koekemoer, Anton M.; Lucas, Ray A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Willner, S. P.; Ashby, Matthew L. N.; Fazio, G. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Donley, Jennifer L.] Los Alamos Natl Lab, Los Alamos, NM USA. [Fontana, Adriano; Galametz, Audrey; Grazian, Andrea; Castellano, Marco] INAF, Osservatorio Astron, I-00040 Monte Porzio Catone, Italy. [Huang, Kuang-Han; Peth, Michael] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kocevski, Dale D.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [McGrath, Elizabeth J.] Colby Coll, Dept Phys & Astron, Waterville, ME 04901 USA. [Salvato, Mara; Wuyts, Stijn; Hsu, Li-Ting; Nandra, Kirpal] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Salvato, Mara] Excellence Cluster, D-85748 Garching, Germany. [Cooray, Asantha R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Dickinson, Mark E.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Dunlop, James S.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Gardner, Jonathan P.] NASAs Goddard Space Flight Ctr, Astrophys Sci Div, Observat Cosmol Lab, Greenbelt, MD USA. [Gawiser, Eric] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. [Hathi, Nimish P.] Carnegie Observ, Pasadena, CA USA. [Lee, Kyoung-Soo] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Mobasher, Bahram] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Newman, Jeffery A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [van der Wel, Arjen] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Guo, YC (reprint author), Univ Calif Santa Cruz, Lick Observ, Dept Astron & Astrophys, UCO, Santa Cruz, CA 95064 USA. EM ycguo@ucolick.org RI Hathi, Nimish/J-7092-2014; OI Hathi, Nimish/0000-0001-6145-5090; Koekemoer, Anton/0000-0002-6610-2048; Castellano, Marco/0000-0001-9875-8263; fontana, adriano/0000-0003-3820-2823 FU NASA through a grant from the Space Telescope Science Institute [HST-GO-12060]; NASA [NAS5-26555]; NASA HST [GO-12060.10-A]; NSF [AST-0808133]; European Research Council; Royal Society FX We thank the anonymous referee for constructive comments that improve this article. Support for program number HST-GO-12060 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. Y.G. and the authors from UCSC acknowledge support from NASA HST grant GO-12060.10-A and NSF grant AST-0808133. J.S.D. acknowledges the support of the European Research Council via the award of an Advanced Grant and the support of the Royal Society via a Wolfson Research Merit Award. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 84 TC 120 Z9 121 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD AUG PY 2013 VL 207 IS 2 AR UNSP 24 DI 10.1088/0067-0049/207/2/24 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 195NO UT WOS:000322710000006 ER PT J AU Pal'shin, VD Hurley, K Svinkin, DS Aptekar, RL Golenetskii, SV Frederiks, DD Mazets, EP Oleynik, PP Ulanov, MV Cline, T Mitrofanov, IG Golovin, DV Kozyrev, AS Litvak, ML Sanin, AB Boynton, W Fellows, C Harshman, K Trombka, J McClanahan, T Starr, R Goldsten, J Gold, R Rau, A von Kienlin, A Savchenko, V Smith, DM Hajdas, W Barthelmy, SD Cummings, J Gehrels, N Krimm, H Palmer, D Yamaoka, K Ohno, M Fukazawa, Y Hanabata, Y Takahashi, T Tashiro, M Terada, Y Murakami, T Makishima, K Briggs, MS Kippen, RM Kouveliotou, C Meegan, C Fishman, G Connaughton, V Boer, M Guidorzi, C Frontera, F Montanari, E Rossi, F Feroci, M Amati, L Nicastro, L Orlandini, M DelMonte, E Costa, E Donnarumma, I Evangelista, Y Lapshov, I Lazzarotto, F Pacciani, L Rapisarda, M Soffitta, P Di Cocco, G Fuschino, F Galli, M Labanti, C Marisaldi, M Atteia, JL Vanderspek, R Ricker, G AF Pal'shin, V. D. Hurley, K. Svinkin, D. S. Aptekar, R. L. Golenetskii, S. V. Frederiks, D. D. Mazets, E. P. Oleynik, P. P. Ulanov, M. V. Cline, T. Mitrofanov, I. G. Golovin, D. V. Kozyrev, A. S. Litvak, M. L. Sanin, A. B. Boynton, W. Fellows, C. Harshman, K. Trombka, J. McClanahan, T. Starr, R. Goldsten, J. Gold, R. Rau, A. von Kienlin, A. Savchenko, V. Smith, D. M. Hajdas, W. Barthelmy, S. D. Cummings, J. Gehrels, N. Krimm, H. Palmer, D. Yamaoka, K. Ohno, M. Fukazawa, Y. Hanabata, Y. Takahashi, T. Tashiro, M. Terada, Y. Murakami, T. Makishima, K. Briggs, M. S. Kippen, R. M. Kouveliotou, C. Meegan, C. Fishman, G. Connaughton, V. Boer, M. Guidorzi, C. Frontera, F. Montanari, E. Rossi, F. Feroci, M. Amati, L. Nicastro, L. Orlandini, M. DelMonte, E. Costa, E. Donnarumma, I. Evangelista, Y. Lapshov, I. Lazzarotto, F. Pacciani, L. Rapisarda, M. Soffitta, P. Di Cocco, G. Fuschino, F. Galli, M. Labanti, C. Marisaldi, M. Atteia, J. -L. Vanderspek, R. Ricker, G. TI INTERPLANETARY NETWORK LOCALIZATIONS OF KONUS SHORT GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma-ray burst: general; techniques: miscellaneous ID ARRIVAL-TIME LOCALIZATIONS; PIONEER-VENUS-ORBITER; ULYSSES SUPPLEMENT; GIANT FLARE; LIGO OBSERVATIONS; GRB 051103; CATALOG; MISSION; BATSE; SPECTROMETER AB Between the launch of the Global Geospace Science Wind spacecraft in 1994 November and the end of 2010, the Konus-Wind experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified as short bursts with extended emission). During this period, the Interplanetary Network (IPN) consisted of up to 11 spacecraft, and using triangulation, the localizations of 271 bursts were obtained. We present the most comprehensive IPN localization data on these events. The short burst detection rate, similar to 18 yr(-1), exceeds that of many individual experiments. C1 [Pal'shin, V. D.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Oleynik, P. P.; Ulanov, M. V.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Cline, T.; Trombka, J.; McClanahan, T.; Starr, R.; Barthelmy, S. D.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B.] Space Res Inst, Moscow 117997, Russia. [Boynton, W.; Fellows, C.; Harshman, K.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Goldsten, J.; Gold, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Rau, A.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Savchenko, V.] Univ Paris Diderot, Observ Paris, Francois Arago Ctr, APC,CNRS,CEA,Irfu,IN2P3, F-75205 Paris 13, France. [Smith, D. M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Smith, D. M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Hajdas, W.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Cummings, J.; Krimm, H.] NASA, UMBC, CRESST, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cummings, J.] UMBC Phys Dept, Baltimore, MD 21250 USA. [Krimm, H.] Univ Space Res Assoc, Columbia, MD 20144 USA. [Palmer, D.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yamaoka, K.; Takahashi, T.] Inst Space & Astronaut Sci ISAS JAXA, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Ohno, M.; Fukazawa, Y.; Hanabata, Y.] Hiroshima Univ, Dept Phys, Hiroshima 7398526, Japan. [Tashiro, M.; Terada, Y.] Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan. [Murakami, T.] Kanazawa Univ, Dept Phys, Kanazawa, Ishikawa 9201192, Japan. [Makishima, K.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Briggs, M. S.; Connaughton, V.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Briggs, M. S.; Connaughton, V.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Kouveliotou, C.; Fishman, G.] NASA, Space Sci Off, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Meegan, C.] Univ Space Res Assoc, Huntsville, AL 35805 USA. [Boer, M.] Observ Haute Provence CNRS, F-04870 St Michel lObservatoire, France. [Guidorzi, C.; Frontera, F.; Montanari, E.; Rossi, F.] Univ Ferrara, Dept Phys, I-44100 Ferrara, Italy. [Frontera, F.; Amati, L.; Nicastro, L.; Orlandini, M.; Di Cocco, G.; Fuschino, F.; Labanti, C.; Marisaldi, M.] INAF, Ist Astrofis Spaziale & Fis Cosm Bologna, I-40129 Bologna, Italy. [Montanari, E.] Ist IS Calvi, I-41034 Finale Emilia, MO, Italy. [Feroci, M.; DelMonte, E.; Costa, E.; Donnarumma, I.; Evangelista, Y.; Lapshov, I.; Lazzarotto, F.; Pacciani, L.; Rapisarda, M.; Soffitta, P.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Galli, M.] ENEA Bologna, I-40129 Bologna, Italy. [Atteia, J. -L.] Univ Toulouse, F-31400 Toulouse, France. [Atteia, J. -L.] UPS OMP, F-31400 Toulouse, France. [Atteia, J. -L.] CNRS, F-31400 Toulouse, France. [Atteia, J. -L.] IRAP, F-31400 Toulouse, France. [Vanderspek, R.; Ricker, G.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. RP Pal'shin, VD (reprint author), AF Ioffe Phys Tech Inst, Politekhnicheskaya 26, St Petersburg 194021, Russia. EM val@mail.ioffe.ru RI Oleynik, Philipp/C-1104-2014; Svinkin, Dmitry/C-1934-2014; Frederiks, Dmitry/C-7612-2014; Amati, Lorenzo/N-5586-2015; Pal'shin, Valentin/F-3973-2014; Orlandini, Mauro/H-3114-2014; Ulanov, Mikhail/B-3467-2015; Aptekar, Raphail/B-3456-2015; Golenetskii, Sergey/B-3818-2015; Terada, Yukikatsu/A-5879-2013; Nicastro, Luciano/F-5866-2015 OI Costa, Enrico/0000-0003-4925-8523; Donnarumma, Immacolata/0000-0002-4700-4549; Marisaldi, Martino/0000-0002-4000-3789; Labanti, Claudio/0000-0002-5086-3619; galli, marcello/0000-0002-9135-3228; Pacciani, Luigi/0000-0001-6897-5996; Frederiks, Dmitry/0000-0002-1153-6340; Feroci, Marco/0000-0002-7617-3421; Soffitta, Paolo/0000-0002-7781-4104; Fuschino, Fabio/0000-0003-2139-3299; Lazzarotto, Francesco/0000-0003-4871-4072; Amati, Lorenzo/0000-0001-5355-7388; Orlandini, Mauro/0000-0003-0946-3151; Ulanov, Mikhail/0000-0002-0076-5228; Terada, Yukikatsu/0000-0002-2359-1857; Nicastro, Luciano/0000-0001-8534-6788 FU Russian Space Agency; RFBR [12-02-00032a, 13-02-12017-ofi-m]; IPN under NASA; IPN under JPL; IPN under MIT; JPL [958056, 1268385, 1282043]; [NNX07AH52G]; [NNX12AE41G]; [NAG5-12614]; [NNG04GM50G]; [NNG06GE69G]; [NNX07AQ22G]; [NNX08AC90G]; [NNX08AX95G]; [NNX09AR28G]; [NNG05GTF72G]; [NNG06GI89G]; [NNX07AJ65G]; [NNX08AN23G]; [NNX09AO97G]; [NNX10AI23G]; [NNX12AD68G]; [NAG5-3500]; [NAG5-9503]; [MIT-SC-R-293291]; [NAG5-11451]; [NNX06AI36G]; [NNX08AB84G]; [NNX08AZ85G]; [NNX09AV61G]; [NNX10AR12G]; [NNX09AU03G]; [NNX10AU34G]; [NNX11AP96G]; [NNX07AR71G]; [NAG5-7766]; [NAG5-9126]; [NAG5-10710] FX The Konus-Wind experiment is supported by a Russian Space Agency contract and RFBR grants 12-02-00032a and 13-02-12017-ofi-m. K. H. is grateful for IPN support under the following NASA, JPL, and MIT grants and contracts. JPL 958056 and 1268385 (Ulysses); NNX07AH52G and NNX12AE41G (ADA and ADAP); NAG5-12614, NNG04GM50G, NNG06GE69G, NNX07AQ22G, NNX08AC90G, NNX08AX95G and NNX09AR28G (INTEGRAL); NNG05GTF72G, NNG06GI89G, NNX07AJ65G, NNX08AN23G, NNX09AO97G, NNX10AI23G, and NNX12AD68G (Swift); NAG5-3500 and NAG5-9503 (NEAR); MIT-SC-R-293291 and NAG5-11451 (HETE-2); JPL 1282043 (Odyssey); NNX06AI36G, NNX08AB84G, NNX08AZ85G, NNX09AV61G, NNX10AR12G (Suzaku); NNX09AU03G, NNX10AU34G, and NNX11AP96G (Fermi); NNX07AR71G (MESSENGER); NAG5-7766, NAG5-9126, and NAG5-10710 (BeppoSAX). NR 65 TC 8 Z9 8 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD AUG PY 2013 VL 207 IS 2 AR UNSP 38 DI 10.1088/0067-0049/207/2/38 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 195NO UT WOS:000322710000020 ER PT J AU Trajano, HL Engle, NL Foston, M Ragauskas, AJ Tschaplinski, TJ Wyman, CE AF Trajano, Heather L. Engle, Nancy L. Foston, Marcus Ragauskas, Arthur J. Tschaplinski, Timothy J. Wyman, Charles E. TI The fate of lignin during hydrothermal pretreatment SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Condensation; Depolymerization; Flowthrough pretreatment; Hydrothermal pretreatment; Lignin-carbohydrate complex; Phase transition ID EXTRACTED AUTOHYDROLYSIS LIGNIN; POPULUS-TREMULOIDES LIGNINS; MILLED WOOD LIGNIN; TOTAL MASS REMOVAL; CORN STOVER; ENZYMATIC-HYDROLYSIS; STRUCTURAL-CHANGES; MODEL COMPOUNDS; ASPEN WOOD; FLOW-RATE AB Background: Effective enzymatic hydrolysis of lignocellulosic biomass benefits from lignin removal, relocation, and/or modification during hydrothermal pretreatment. Phase transition, depolymerization/repolymerization, and solubility effects may all influence these lignin changes. To better understand how lignin is altered, Populus trichocarpa x P. deltoides wood samples and cellulolytic enzyme lignin (CEL) isolated from P. trichocarpa x P. deltoides were subjected to batch and flowthrough pretreatments. The residual solids and liquid hydrolysate were characterized by gel permeation chromatography, heteronuclear single quantum coherence NMR, compositional analysis, and gas chromatography-mass spectrometry. Results: Changes in the structure of the solids recovered after the pretreatment of CEL and the production of aromatic monomers point strongly to depolymerization and condensation being primary mechanisms for lignin extraction and redeposition. The differences in lignin removal and phenolic compound production from native P. trichocarpa x P. deltoides and CEL suggested that lignin-carbohydrate interactions increased lignin extraction and the extractability of syringyl groups relative to guaiacyl groups. Conclusions: These insights into delignification during hydrothermal pretreatment point to desirable pretreatment strategies and plant modifications. Because depolymerization followed by repolymerization appears to be the dominant mode of lignin modification, limiting the residence time of depolymerized lignin moieties in the bulk liquid phase should reduce lignin content in pretreated biomass. In addition, the increase in lignin removal in the presence of polysaccharides suggests that increasing lignin-carbohydrate cross-links in biomass would increase delignification during pretreatment. C1 [Trajano, Heather L.; Wyman, Charles E.] Univ Calif Riverside, Dept Environm Chem & Engn, Riverside, CA 92507 USA. [Trajano, Heather L.; Wyman, Charles E.] Univ Calif Riverside, Ctr Environm Res & Technol, Bourns Coll Engn, Riverside, CA 92507 USA. [Engle, Nancy L.; Tschaplinski, Timothy J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Foston, Marcus; Ragauskas, Arthur J.] Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, Atlanta, GA 30332 USA. [Foston, Marcus] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Trajano, Heather L.; Engle, Nancy L.; Foston, Marcus; Ragauskas, Arthur J.; Tschaplinski, Timothy J.; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Wyman, CE (reprint author), Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM cewyman@engr.ucr.edu OI Tschaplinski, Timothy/0000-0002-9540-6622; Engle, Nancy/0000-0003-0290-7987 FU Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science; U.S. Government [DE-AC05-00OR22725] FX We thank the Office of Biological and Environmental Research in the DOE Office of Science for supporting this work through the BioEnergy Science Center (BESC). BESC is a U.S. Department of Energy Bioenergy Reseach Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This manuscript has been co-authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. We also wish to thank Dr. Shilin Cao, previously at the School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology and now at the College of Material Engineering at Fujian Agriculture and Forestry University, for preparing the cellulolytic enzyme lignin for this study. We acknowledge support by the Ford Motor Company for the Chair in Environmental Engineering at the University of California Riverside (UCR) that augments our ability to perform such research. NR 48 TC 48 Z9 48 U1 7 U2 132 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD AUG 1 PY 2013 VL 6 AR 110 DI 10.1186/1754-6834-6-110 PG 16 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 201TN UT WOS:000323166000001 PM 23902789 ER PT J AU Fiaux, P Sun, MY Bradel, L North, C Ramakrishnan, N Endert, A AF Fiaux, Patrick Sun, Maoyuan Bradel, Lauren North, Chris Ramakrishnan, Naren Endert, Alex TI Bixplorer: Visual Analytics with Biclusters SO COMPUTER LA English DT Editorial Material AB A prototype visual analytics tool uses data mining algorithms to find patterns in textual datasets and then supports exploration of these patterns in the form of biclusters on a high-resolution display. C1 [Fiaux, Patrick; Sun, Maoyuan; Bradel, Lauren; North, Chris] Virginia Tech, Dept Comp Sci, Blacksburg, VA USA. [North, Chris] Virginia Tech, InfoVis Lab, Nashville, TN USA. [Endert, Alex] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Fiaux, P (reprint author), Virginia Tech, Dept Comp Sci, Blacksburg, VA USA. EM pfiaux@cs.vt.edu; smaoyuan@cs.vt.edu; lbradel1@vt.edu; north@vt.edu; naren@cs.vt.edu; alex.endert@pnnl.gov NR 0 TC 3 Z9 3 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 J9 COMPUTER JI Computer PD AUG PY 2013 VL 46 IS 8 BP 90 EP 94 PG 5 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 201LL UT WOS:000323143000021 ER PT J AU Shekhawat, D Srivastava, RD Ciferno, J Litynski, J Morreale, BD AF Shekhawat, Dushyant Srivastava, Rameshwar D. Ciferno, Jared Litynski, John Morreale, Bryan D. TI Accelerating Technology Development through Integrated Computation and Experimentation SO ENERGY & FUELS LA English DT Editorial Material C1 [Shekhawat, Dushyant; Ciferno, Jared; Litynski, John; Morreale, Bryan D.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Srivastava, Rameshwar D.] US DOE, Natl Energy Technol Lab, KeyLog Syst Inc, Pittsburgh, PA 15236 USA. RP Shekhawat, D (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. NR 0 TC 0 Z9 0 U1 0 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2013 VL 27 IS 8 BP 4085 EP 4086 DI 10.1021/ef400975r PG 2 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 203OA UT WOS:000323301300001 ER PT J AU Miller, DD Siriwardane, R AF Miller, Duane D. Siriwardane, Ranjani TI Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO2 SO ENERGY & FUELS LA English DT Article ID OXYGEN STORAGE CAPACITY; 3-WAY CATALYSTS; IRON-OXIDE; CERIA; CARRIERS; REACTIVITY; SYSTEM; MOBILITY; HYDROGEN; BEHAVIOR AB Chemical looping combustion (CLC) is a promising technology for fossil fuel combustion that produces sequestration-ready CO2 stream, reducing the energy penalty of CO2 separation from flue gases. An effective oxygen carrier for CLC will readily react with the fuel gas and will be reoxidized upon contact with oxygen. This study investigated the development of a CeO2-promoted Fe2O3-hematite oxygen carrier suitable for the methane CLC process. Composition of CeO2 is between S and 25 wt % and is lower than what is generally used for supports in Fe2O3 carrier preparations. The incorporation of CeO2 to the natural ore hematite strongly modifies the reduction behavior in comparison to that of CeO2 and hematite alone. Temperature-programmed reaction studies revealed that the addition of even 5 wt % CeO2 enhances the reaction capacity of the Fe2O3 oxygen carrier by promoting the decomposition and partial oxidation of methane. Fixed-bed reactor data showed that the 5 wt % cerium oxides with 95 wt % iron oxide produce 2 tithes as much carbon dioxide in comparison to the sum of carbon dioxide produced when the oxides were tested separately. This effect is likely due to the reaction of CeO2 with methane forming intermediates, which are reactive for extracting oxygen from Fe2O3 at a considerably faster rate than the rate of the direct reaction of Fe2O3 with methane. These studies reveal that 5 wt % CeO2/Fe2O3 gives stable conversions over 15 reduction/oxidation cycles. Lab-scale reactor studies (pulsed Mode) suggest the methane reacts initially with CeO2 lattice oxygen to form partial oxidation products (CO + H-2), which continue to react with oxygen from neighboring Fe2O3, leading to its complete oxidation to form CO2. The reduced cerium oxide promotes the methane decomposition reaction to form C + H-2, which continue to react with Fe2O3/Fe3O4 to form CO/CO2 and H2O. This mechanism is supported by the characterization studies, which also suggest that the formation of carbonaceous intermediates may affect the reaction rate and selectivity of the oxygen carrier. C1 [Miller, Duane D.; Siriwardane, Ranjani] US DOE, NETL, Morgantown, WV 26507 USA. [Miller, Duane D.] URS Corp, Morgantown, WV 26507 USA. RP Miller, DD (reprint author), US DOE, NETL, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM duane.miller@netl.doe.gov FU NETL's ongoing research on CO2 capture in the Separations and Fuels Processing Division [DE-FE0004000] FX We thank Esmail Monazam for his help with the Gibbs energy calculations. This technical work was performed in support of NETL's ongoing research on CO2 capture in the Separations and Fuels Processing Division (Project DE-FE0004000). NR 40 TC 12 Z9 13 U1 6 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2013 VL 27 IS 8 BP 4087 EP 4096 DI 10.1021/ef302132e PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 203OA UT WOS:000323301300002 ER PT J AU Tian, HJ Siriwardane, R Simonyi, T Poston, J AF Tian, Hanjing Siriwardane, Ranjani Simonyi, Thomas Poston, James TI Natural Ores as Oxygen Carriers in Chemical Looping Combustion SO ENERGY & FUELS LA English DT Article ID SOLID FUELS; COAL; HYDROGEN; NIO; ILMENITE; KINETICS; MN3O4; FE2O3 AB Chemical looping combustion (CLC) is a combustion technology that utilizes from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe2O3 due to low-concentration of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magenetite, and limonite (Fe-based) demonstrated better reaction performance than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe2O3-based ores process greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC process were also studied by scanning electron microscopy (SEM). C1 [Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Tian, Hanjing; Simonyi, Thomas] URS, Morgantown, WV 26507 USA. RP Siriwardane, R (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM ranjani.siriwardane@netl.doe.gov NR 26 TC 16 Z9 16 U1 6 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2013 VL 27 IS 8 BP 4108 EP 4118 DI 10.1021/ef301486n PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 203OA UT WOS:000323301300004 ER PT J AU Godec, ML Kuuskraa, VA Dipietro, P AF Godec, Michael L. Kuuskraa, Vello A. Dipietro, Phil TI Opportunities for Using Anthropogenic CO2 for Enhanced Oil Recovery and CO2 Storage SO ENERGY & FUELS LA English DT Article AB CO2-enhanced Oil recovery (CO2=EOR) has emerged as a Major option for productively using CO2 emissions. captured from electric power and other industrial facilities as part of carbon capture and storage (CCS) operations. Not only can depleting oil fields provide secure, well-characterized sites for storing CO2, such fields can also provide a source of revenues to offset the costs of capturing CO2 by producing incremental oil. This paper draws significantly on work by Advanced Resources International, Inc. (ARI), sponsored by the United States Department of Energy's National Energy Technology Laboratory (U.S. DOE/NETL) [Advanced Resources International, Inc. (ARI). Improving Domestic Energy Security and Lowering CO2 Emissions with "Next Generation" CO2-Enhanced Oil Recovery; ARI: Arlington, VA; 2011; http://www.netl.doe.gov/energy-analyses/pubs/storing%20co2%20w%eor_final.pdf] and the International Energy Agency Greenhouse Gas Research and Development Programme (IEAGHG) [Advanced Resources International, Inc: (ARI). CO2 Storage in Depleted,Oilfields Global Application Criteria for Carbon. Dioxide Enhanced Oil Recovery; ARI: Arlington, VA, Dec 2009; IEAGHG Programme Technical Report Number 2009-12], that demonstrates that CO2-EOR Offers large CO2 storage capacity potential and could accommodate a major portion of the CO2 captured from industrial facilities for the next 30 years. This work also demonstrates that CO2 can be effectively and permanently stored when deployed in association with CO2-EOR, with the amount stored depending upon the, priority placed on maximizing storage. In addition to showing that CCS benefits from CO2-EOR by providing the revenues from sale of CO2, overcoming other barriers, while producing oil with a lower CO2 emissions "footprint", the report demonstrates that, CO2-EOR needs CCS, because large-scale future implementation of CO2-EOR will be dependent upon CO2 supplies from industrial sources. C1 [Godec, Michael L.; Kuuskraa, Vello A.] Adv Resources Int Inc ARI, Arlington, VA 22203 USA. [Dipietro, Phil] US DOE, NETL, Pittsburgh, PA 15236 USA. RP Godec, ML (reprint author), Adv Resources Int Inc ARI, 4501 Fairfax Dr,Suite 910, Arlington, VA 22203 USA. EM mgodec@adv-res.com FU U.S. DOE/NETL; IEAGHG; U.K. Department of Energy and Climate Change FX The results presented in this paper were sponsored by the U.S. DOE/NETL, the IEAGHG, and the U.K. Department of Energy and Climate Change. NR 9 TC 20 Z9 22 U1 3 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2013 VL 27 IS 8 BP 4183 EP 4189 DI 10.1021/ef302040u PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 203OA UT WOS:000323301300012 ER PT J AU Brunet, JPL Li, L Karpyn, ZT Kutchko, BG Strazisar, B Bromhal, G AF Brunet, Jean-Patrick Leopold Li, Li Karpyn, Zuleima T. Kutchko, Barbara G. Strazisar, Brian Bromhal, Grant TI Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon Sequestration SO ENERGY & FUELS LA English DT Article ID H WELL CEMENT; PERMEABILITY-POROSITY RELATIONSHIPS; CO2 STORAGE-CONDITIONS; AQUEOUS NACL SOLUTIONS; REACTIVE SURFACE-AREA; LIMESTONE DISSOLUTION; HYDROTHERMAL SYSTEMS; CHEMICAL-REACTIONS; PORE-SCALE; LEAKAGE AB Assessing the possibility of CO2 leakage is one of the challenges for geological carbon sequestration. Injected CO2 can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations understand and predict the property evolution of Cement in direct contact with CO2-saturated brine under, diffusion controlled conditions. The model reproduced the observed zones, of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times This work also quantified the role of initial cement properties, in particular the ratio of the initial portlandite content to porosity (defined here as phi), in determining the evolution of cement properties. Portlandite-rich cement with large phi values results in a, localized "sharp" reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement-brine interface with large phi values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone also leads to orders of magnitude decrease in provides a valuable tool to link cement-CO2 reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO2 sequestration. C1 [Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T.] Penn State Univ, Earth & Mineral Sci EMS Energy Inst, University Pk, PA 16802 USA. [Li, Li] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Kutchko, Barbara G.; Strazisar, Brian] US DOE, NETL, Pittsburgh, PA 15236 USA. [Bromhal, Grant] US DOE, NETL, Morgantown, WV 26507 USA. RP Li, L (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. EM lili@eme.psu.edu RI Li, Li/A-6077-2008 OI Li, Li/0000-0002-1641-3710 FU National Energy Technology Laboratory (NETL), U.S. Department of Energy, an agency of the United States Government [RES1000026]; URS Energy and Construction, Inc. FX This project was funded by the National Energy Technology Laboratory (NETL), U.S. Department of Energy, an agency of the United States Government, through a support contract through Project RES1000026 with URS Energy and Construction, Inc. NR 73 TC 24 Z9 24 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2013 VL 27 IS 8 BP 4208 EP 4220 DI 10.1021/ef302023v PG 13 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 203OA UT WOS:000323301300015 ER PT J AU Deng, H Ellis, BR Peters, CA Fitts, JP Crandall, D Bromhal, GS AF Deng, Hang Ellis, Brian R. Peters, Catherine A. Fitts, Jeffrey P. Crandall, Dustin Bromhal, Grant S. TI Modifications of Carbonate Fracture Hydrodynamic Properties by CO2-Acidified Brine Flow SO ENERGY & FUELS LA English DT Article ID ROUGH-WALLED FRACTURES; FLUID-FLOW; APERTURE FIELDS; SINGLE FRACTURE; ROCK FRACTURES; CO2 STORAGE; PERMEABILITY; TRANSPORT; DISSOLUTION; SYSTEMS AB Acidic reactive flow in fractures is relevant in subsurface activities, such as CO2 geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynmic properties is essential for predicting subsurface flows, such as leakage, injectability, and fluid production. In this study, X-ray computed tomography scans of a fractured carbonate caprock were used. to create three-dimensional (3D) reconstructions of the fracture before and after reaction with CO2-acidified brine (Ellis; B; Peters, C.; Fitts, J.; Bromhal, G.; McIntyre, D.; Warzinski, R.; Rosenbaum, E. Deterioration of a fractured carbonate caprock exposed to CO2-acidified brine flow. Greenhouse Gases: Sci. Technol. 2011, 1, 248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways, including "comb-tooth" structures created from preferential dissolution of calcite in transverse sedimentary, bands and the creation of degraded zones, i.e., porous calcite-depleted areas in reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z(2) parameters and fractal dimensions D-f. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic apertaure, fracture transmissivity, and permeability. The result shows that the effective hydraulic aperatures are smaller than the mechanical aperatures and the changes in hydraulic aperatures are nonlinear. Overestimation of the flow rate by a factor of 2 or more would be introduced if fracture hydrodynamic properties were based on mechanical aperatures or if hydraulic aperture is assumed to change proportionally with mechanical aperture The difference can be attributed, in part, to the increase in roughness after reaction and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the one-dimensional (1D) statistical model and two-dimensional (2D) local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume but cover 70-80% of the fracture surface. When the degraded zones are treated as part of the the fracture transmissivities are 2-4 times larger because the fracture, surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly, increase mechanical aperture, this type of feature cannot he ignored and should be treated with prudence when predicting fracture hydrodynamic properties. C1 [Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.] Princeton Univ, Princeton, NJ 08544 USA. [Crandall, Dustin; Bromhal, Grant S.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Crandall, Dustin] URS Corp, Morgantown, WV 26507 USA. RP Peters, CA (reprint author), Princeton Univ, Princeton, NJ 08544 USA. EM cap@princeton.edu RI Fitts, Jeffrey/J-3633-2012; Peters, Catherine/B-5381-2013; Deng, Hang/E-5302-2015 OI Peters, Catherine/0000-0003-2418-795X; Deng, Hang/0000-0001-5784-996X FU Department of Energy (DOE) [DE-FE0000749, DE-FG02-09ER64748]; National Science Foundation (NSF) [CBET-1134397]; National Energy Technology Laboratory under the RES [DE-FE0004000] FX This work is funded by Department of Energy (DOE) awards DE-FE0000749 and DE-FG02-09ER64748, as well as by National Science Foundation (NSF) Grant CBET-1134397. Additional support came from the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. We also thank the anonymous reviewers for their insightful comments, which led to valuable improvements in the manuscript. NR 52 TC 25 Z9 25 U1 9 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2013 VL 27 IS 8 BP 4221 EP 4231 DI 10.1021/ef302041s PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 203OA UT WOS:000323301300016 ER PT J AU Siriwardane, HJ Gondle, RK Bromhal, GS AF Siriwardane, Hema J. Gondle, Raj K. Bromhal, Grant S. TI Coupled Flow and Deformation Modeling of Carbon Dioxide Migration in the Presence of a Caprock Fracture during Injection SO ENERGY & FUELS LA English DT Article ID RESERVOIR-GEOMECHANICAL ANALYSIS; DEEP SALINE AQUIFERS; NORTHERN NORTH-SEA; CO2 STORAGE SITE; FLUID-FLOW; GEOLOGICAL STORAGE; PLUME BEHAVIOR; GAS-RESERVOIRS; SEQUESTRATION; PRESSURE AB Understanding the transport of carbon dioxide (CO2) during long-term CO2 injection into a typical geologic reservoir, such as a saline aquifer, could be complicated because of changes in geochemical, hydrogeological, and hydromechanical behaviour. While the caprock layer overlying the target aquifer is intended to provide a tight, impermeable seal in securing injected CO2, the presence of geologic uncertainties, such as a caprock fracture or fault, may provide a channel for CO2 leakage. There could also be a possibility of the activation of a new or existing dormant fault or fracture, which could act as a leakage pathway. Such a leakage event during CO2 injection may lead to a different pressure and ground response over a period of time. In the present study, multiphase fluid flow simulations in porous media coupled with geomechanics were used to investigate the overburden geologic response and plume behavior during CO2 injection in the presence of a hypothetical permeable fractured zone in a caprock, existing or activated. Both single-phase and multiphase fluid flow simulations were performed. The CO2 migration through an existing fractured zone leads to changes in the fluid pressure in the overburden geologic layers and could have a significant impact on ground deformation behavior. Results of the study show that pressure signature and displacement patterns are significantly different in the presence of a fractured zone in the caprock layer. The variation in pressure and displacement signatures because of the presence of a fractured zone in the caprock at different locations may be useful in identifying the presence of a fault/fractured zone in the caprock. The pressure signatures can also serve as a mechanism to identify the activation of leakage pathways through the caprock during CO2 injection. Pressure response and ground deformation behaviour from sequestration modeling could be useful in the development of smart technologies to monitor safe CO2 storage and understand CO2 transport, with limited field instrumentation. C1 [Siriwardane, Hema J.; Gondle, Raj K.] W Virginia Univ, NETL RUA, Morgantown, WV 26506 USA. [Siriwardane, Hema J.; Gondle, Raj K.] W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA. [Bromhal, Grant S.] US DOE, NETL, Morgantown, WV 26507 USA. RP Siriwardane, HJ (reprint author), W Virginia Univ, NETL RUA, Morgantown, WV 26506 USA. EM hema.siriwardane@mail.wvu.edu FU URS Energy & Construction, Inc. under RES [RES1000023] FX The work presented in this paper was performed with the funding provided by URS Energy & Construction, Inc. under RES Contract RES1000023 to support National Energy Technology Laboratory's ongoing research in CO2 sequestration. Also, the authors greatly acknowledge the Computer Modeling Group (CMG) for their technical support. NR 64 TC 7 Z9 8 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2013 VL 27 IS 8 BP 4232 EP 4243 DI 10.1021/ef400194n PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 203OA UT WOS:000323301300017 ER PT J AU Lister, TE Dufek, EJ AF Lister, Tedd E. Dufek, Eric J. TI Chlor-syngas: Coupling of Electrochemical Technologies for Production of Commodity Chemicals SO ENERGY & FUELS LA English DT Article ID CARBON-DIOXIDE; METAL-ELECTRODES; LOW-TEMPERATURE; AG ELECTRODES; CO2 REDUCTION; REACTOR; CELL; OPERATION; METHANE; FUTURE AB This paper describes a novel electrolysis process called chlor-syngas, where synthesis gas is produced at the cathode and chlorine gas is produced at the anode. The work presented is an extension of previous electrolysis system development, where syngas was cathodically generated from water, CO2, and electricity. The process described here uses chloride-based electrolytes. Using HCl as the anolyte provides a low-cost source of Cl-, and leakage of excess protons lowers the catholyte pH, preventing carbonate buildup in the catholyte. Initial electrolysis data are presented here to demonstrate the feasibility of the process in KCl/KCl and KCl/HCl electrolytes. Using the electrolysis data, an estimation of the energetic and environmental benefits is presented. The process could be a path to a more sustainable chemical industry, where the starting materials are low-value or wastes from other related processes. C1 [Lister, Tedd E.; Dufek, Eric J.] INL, Idaho Falls, ID 83404 USA. RP Lister, TE (reprint author), INL, POB 1625, Idaho Falls, ID 83404 USA. EM tedd.lister@inl.gov RI Dufek, Eric/B-8847-2017 OI Dufek, Eric/0000-0003-4802-1997 FU INL Laboratory Directed Research and Development (LDRD) Program under DOE Idaho Operations Office; U.S. Department of Energy [DE-AC07-05ID14517] FX We acknowledge Dr. Lenny Scott of Olin Chemical (Augusta, GA) for providing helpful discussion in the development of this concept. We also acknowledge Simon Stone at Giner, Inc. for helpful discussions about this work. Work was supported through the INL Laboratory Directed Research and Development (LDRD) Program under DOE Idaho Operations Office. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract DE-AC07-05ID14517 with the U.S. Department of Energy. NR 31 TC 3 Z9 3 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2013 VL 27 IS 8 BP 4244 EP 4249 DI 10.1021/ef302033j PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 203OA UT WOS:000323301300018 ER PT J AU Siefert, NS Shekhawat, D Litster, S Berry, DA AF Siefert, Nicholas S. Shekhawat, Dushyant Litster, Shawn Berry, David A. TI Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture SO ENERGY & FUELS LA English DT Article ID CALCIUM-OXIDE SORBENTS; CO2 CAPTURE; HYDROGEN-PRODUCTION; CATALYTIC GASIFICATION; DIOXIDE CAPTURE; SOLID FUELS; SEQUESTRATION; CALCINATION; PERFORMANCE; TECHNOLOGY AB We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalyst capture agents. using different coal types and temperatures 700 and 900 degrees C, we studied the effect of these catalyst-capture agents on (1) the syngas composition, (2) CO2 and H2S capture, and (3) the stem-coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steam-coal gasification kinetic rate when adding small amounts of potassium hydroxide to coal when operating a CaO-CaCO3 chemical looping gasification reactor. For example, the steam-coal, gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium-hydroxide at a K/C molar, ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO3 was calcined by heating to 900 degrees C regenerate the CaO, which was then reused repeated CaO-CaCO3 cycles. The increased steam-coal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 2-4% per CaO-CaCO3 cycle. We also discuss an important application of this combined gasifier-calciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements cement at the cement kiln on the amount of CaSO4 and ash in the precalcined feedstock. C1 [Siefert, Nicholas S.] US DOE, NETL, Pittsburgh, PA 15236 USA. [Siefert, Nicholas S.; Litster, Shawn] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. [Shekhawat, Dushyant; Berry, David A.] US DOE, NETL, Morgantown, WV 26507 USA. RP Siefert, NS (reprint author), US DOE, NETL, Pittsburgh, PA 15236 USA. EM nicholas.siefert@netl.doe.gov FU NETL Strategic Center for Coal FX We thank the NETL Strategic Center for Coal for their support of this research. In particular, we thank Tristan McQuain, Jack Ferrel, Richard Bergen, David Ruehl, and William Grimes for their expertise during the operation of the gasifier. NR 41 TC 6 Z9 6 U1 3 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2013 VL 27 IS 8 BP 4278 EP 4289 DI 10.1021/ef302192p PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 203OA UT WOS:000323301300022 ER PT J AU Smith, MW Shekhawa, D Berry, DA Haynes, DJ Floyd, DL Spivey, JJ Zondlo, JW AF Smith, Mark W. Shekhawa, Dushyant Berry, David A. Haynes, Daniel J. Floyd, Donald L. Spivey, James J. Zondlo, John W. TI Effect of the Catalyst Bed Configuration on the Partial Oxidation of Liquid Hydrocarbons SO ENERGY & FUELS LA English DT Article ID SYNTHESIS GAS-FORMATION; N-TETRADECANE; HIGH YIELDS; METHANE; SYNGAS; METAL; PYROCHLORES; SULFUR; RH; COMBUSTION AB Rh-substituted pyrochlores have been shown to be excellent diesel reforming catalysts. However, it is desirable to reduce the amount of this expensive material while maintaining acceptable level of hydrogen production. This study demonstrates that a segmented catalyst bed approach can be used to achieve this objective. Two strategies were examined: (1) promotion of the indirect reforming mechanism with a combustion catalyst in the reactor inlet, followed by a reforming catalyst, and (2) placement of catalysts in regions of the reactor that have conditions in which they are less likely to deactivate. The first approach demonstrated that a Ni-substituted barium hexaaluminate catalyst can be used in the reactor inlet to promote combustion with a Rh-substituted pyrochlore in the reactor outlet, but the combustion catalyst should fill less than 50% of the reactor. The second approach showed a benefit in the use of a sulfur-tolerant noble metal catalyst in the reactor outlet and that a significant portion of the carbon formed on the Ni-substituted pyrochlore is located of e catalyst bed. C1 [Smith, Mark W.; Shekhawa, Dushyant; Berry, David A.; Haynes, Daniel J.; Floyd, Donald L.; Spivey, James J.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Smith, Mark W.; Floyd, Donald L.] URS Corp, Morgantown, WV 26507 USA. [Smith, Mark W.; Zondlo, John W.] W Virginia Univ, Morgantown, WV 26506 USA. [Spivey, James J.] Louisiana State Univ, Baton Rouge, LA 70803 USA. RP Smith, MW (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM mark.smith@contr.netl.doe.gov FU National Energy Technology Laboratory (NETL), U.S. Department of Energy, Morgantown, WV, under the SECA program; NETL [FE-000004000, 3.610.248.003] FX This work was supported by the National Energy Technology Laboratory (NETL), U.S. Department of Energy, Morgantown, WV, under the SECA program, and was performed in support of NETL's ongoing research in fuel processing under Contract FE-000004000 Subtask 3.610.248.003. NR 41 TC 4 Z9 4 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2013 VL 27 IS 8 BP 4363 EP 4370 DI 10.1021/ef3021975 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 203OA UT WOS:000323301300027 ER PT J AU Pomerantz, AE Seifert, DJ Bake, KD Craddock, PR Mullins, OC Kodalen, BG Mitra-Kirtley, S Bolin, TB AF Pomerantz, Andrew E. Seifert, Douglas J. Bake, Kyle D. Craddock, Paul R. Mullins, Oliver C. Kodalen, Brian G. Mitra-Kirtley, Sudipa Bolin, Trudy B. TI Sulfur Chemistry of Asphaltenes from a Highly Compositionally Graded Oil Column SO ENERGY & FUELS LA English DT Article ID RAY-ABSORPTION-SPECTROSCOPY; NEAR-EDGE STRUCTURE; NUCLEAR-MAGNETIC-RESONANCE; LASER MASS-SPECTROMETRY; X-RAY; PETROLEUM ASPHALTENES; XANES SPECTROSCOPY; ORGANIC SULFUR; SPECIATION; MODEL AB Hydrocarbons in subsurface reservoirs are generally found to be compositionally graded, with fluids deeper in connected and equilibrated reservoirs being relatively enriched in asphaltenes. These gradients result from effects such as gravity, entropy, and solubility. However, it is unclear if those same effects lead to gradients in the detailed molecular composition of asphaltenes. Here, we investigate the sulfur chemistry of asphaltenes from a reservoir with a large gradient in asphaltene content. Measurements of the sulfur content from combustion as well as measurements of sulfur speciation from K-edge X-ray absorption near edge structure (XANES) spectroscopy find no significant difference in the composition of the asphaltenes. Thus, different locations within this reservoir contain oils with different asphaltene concentrations, but the asphaltenes from throughout the reservoir all have the same sulfur chemistry. This result suggests that gradients in asphaltene content can be successfully modeled with the simplifying assumption that the asphaltene molecular composition is not graded in connected and equilibrated reservoirs. C1 [Pomerantz, Andrew E.; Bake, Kyle D.; Craddock, Paul R.; Mullins, Oliver C.] Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA. [Seifert, Douglas J.] Saudi Aramco, Dhahran 31311, Saudi Arabia. [Kodalen, Brian G.; Mitra-Kirtley, Sudipa] Rose Hulman Inst Technol, Terre Haute, IN 47803 USA. [Bolin, Trudy B.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Pomerantz, AE (reprint author), Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA. EM apomerantz@slb.com OI Craddock, Paul/0000-0003-4702-0204 FU U.S. DOE [DE-AC02-06CH11357] FX Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract DE-AC02-06CH11357. NR 45 TC 28 Z9 28 U1 0 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD AUG PY 2013 VL 27 IS 8 BP 4604 EP 4608 DI 10.1021/ef400773f PG 5 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 203OA UT WOS:000323301300051 ER PT J AU Allured, R Fernandez-Perea, M Soufli, R Alameda, JB Pivovaroff, MJ Gullikson, EM Kaaret, P AF Allured, Ryan Fernandez-Perea, Monica Soufli, Regina Alameda, Jennifer B. Pivovaroff, Michael J. Gullikson, Eric M. Kaaret, Philip TI A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Multilayers; X-ray polarimetry; Beamsplitters; Thin films ID TELESCOPE AB A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a angle to the BRP detector, and transmit 2-10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 mu m thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developed and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing. C1 [Allured, Ryan; Kaaret, Philip] Univ Iowa, Iowa City, IA 52242 USA. [Fernandez-Perea, Monica; Soufli, Regina; Alameda, Jennifer B.; Pivovaroff, Michael J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Gullikson, Eric M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Allured, R (reprint author), Univ Iowa, Iowa City, IA 52242 USA. EM rallured@gmail.com RI Pivovaroff, Michael/M-7998-2014 OI Pivovaroff, Michael/0000-0001-6780-6816 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; University of California Lawrence Berkeley National Laboratory [DE-AC03-76F00098]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; NASA [NNX08AY58G] FX The authors would like to thank Bruce Lairson of Luxel Corp. for providing helpful advice, many polyimide samples for analysis, and confocal microscope data. We also thank Steve McBride for use of his thermal cycling chamber, and John Tomsick for making the arrangements. Ryan Allured and Philip Kaaret are grateful to Takashi Okajima and Yang Soong at GSFC for guidance during the early stages of reflector development. We acknowledge that nearly all of our multilayer modeling was made possible with David Windt's IMD software. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and by the University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC03-76F00098. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Ryan Allured and Philip Kaaret acknowledge partial support from NASA grant NNX08AY58G. NR 17 TC 1 Z9 1 U1 1 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD AUG PY 2013 VL 36 IS 1-2 BP 371 EP 388 DI 10.1007/s10686-013-9337-2 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 198HV UT WOS:000322914200013 ER PT J AU Jacob, RE Colby, SM Kabilan, S Einstein, DR Carson, JP AF Jacob, Richard E. Colby, Sean M. Kabilan, Senthil Einstein, Daniel R. Carson, James P. TI In situ casting and imaging of the rat airway tree for accurate 3D reconstruction SO EXPERIMENTAL LUNG RESEARCH LA English DT Article DE airways; bronchial cast; CT; pulmonary; warping ID RESPIRATORY AIRWAYS; AEROSOL DEPOSITION; PULMONARY AIRWAYS; HUMAN LUNGS; MODELS; FLOW; SIMULATIONS; REPAIR; VOLUME AB The use of anatomically accurate, animal-specific airway geometries is important for understanding and modeling the physiology of the respiratory system. One approach for acquiring detailed airway architecture is to create a bronchial cast of the conducting airways. However, typical casting procedures either do not faithfully preserve the in vivo branching angles or produce rigid casts that when removed for imaging are fragile and thus easily damaged. We address these problems by creating an in situ bronchial cast of the conducting airways in rats that can be subsequently imaged in situ using three-dimensional micro-CT imaging. We also demonstrate that deformations in airway branch angles resulting from the casting procedure are small, and that these angle deformations can be reversed through an interactive adjustment of the segmented cast geometry. Animal work was approved by the Institutional Animal Care and Use Committee of Pacific Northwest National Laboratory. C1 [Jacob, Richard E.; Colby, Sean M.; Kabilan, Senthil; Einstein, Daniel R.; Carson, James P.] Pacific NW Natl Lab, Dept Syst Toxicol, Richland, WA 99352 USA. RP Jacob, RE (reprint author), Pacific NW Natl Lab, Dept Syst Toxicol, 902 Battelle Blvd, Richland, WA 99352 USA. EM richard.jacob@pnnl.gov FU National Heart, Lung, and Blood Institute [R01HL073598]; PNNL through internal Laboratory Directed Research and Development LDR [DE-AC05-76RL01830] FX We thank Tao Ju of Washington University in St. Louis for his helpful discussions, and T. Curry of PNNL for assistance with animal handling. This work was supported by award number R01HL073598 from the National Heart, Lung, and Blood Institute, and by PNNL through internal Laboratory Directed Research and Development LDRD DE-AC05-76RL01830. NR 33 TC 5 Z9 5 U1 1 U2 15 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 0190-2148 J9 EXP LUNG RES JI Exp. Lung Res. PD AUG PY 2013 VL 39 IS 6 BP 249 EP 257 DI 10.3109/01902148.2013.801535 PG 9 WC Respiratory System SC Respiratory System GA 198MZ UT WOS:000322928300004 PM 23786464 ER PT J AU Luu, T AF Luu, Thomas TI Multi-Baryon Systems from Lattice QCD SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th International IUPAP Conference on Few-Body Problems in Physics (FB) CY AUG 20-25, 2012 CL Fukuoka, JAPAN SP IUPAP ID DIBARYON; STATES AB I provide a short overview of the current status of nuclear physics calculations using lattice quantum chromodynamics (LQCD). I give an heuristic description of how LQCD calculations are performed and how nuclear scattering data are extracted from these calculations, emphasizing the overlap between traditional nuclear many-body theory and LQCD calculations. I look at the Omega (-) Omega (-) system as a concrete example, and in so doing demonstrate the predictive nature of LQCD calculations as applied to nuclear physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Luu, T (reprint author), Lawrence Livermore Natl Lab, POB 808,L-059, Livermore, CA 94551 USA. EM tluu@llnl.gov NR 21 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD AUG PY 2013 VL 54 IS 7-10 BP 835 EP 841 DI 10.1007/s00601-013-0695-0 PG 7 WC Physics, Multidisciplinary SC Physics GA 192MV UT WOS:000322489800009 ER PT J AU Quaglioni, S Navratil, P Hupin, G Langhammer, J Romero-Redondo, C Roth, R AF Quaglioni, Sofia Navratil, Petr Hupin, Guillaume Langhammer, Joachim Romero-Redondo, Carolina Roth, Robert TI No-Core Shell Model Analysis of Light Nuclei SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th International IUPAP Conference on Few-Body Problems in Physics (FB) CY AUG 20-25, 2012 CL Fukuoka, JAPAN SP IUPAP AB The fundamental description of both structural properties and reactions of light nuclei in terms of constituent protons and neutrons interacting through nucleon-nucleon and three-nucleon forces is a long-sought goal of nuclear theory. I will briefly present a promising technique, built upon the ab initio no-core shell model, which emerged recently as a candidate to reach such a goal: the no-core shell model/resonating-group method. This approach, capable of describing simultaneously both bound and scattering states in light nuclei, complements a microscopic cluster technique with the use of two-nucleon realistic interactions, and a microscopic and consistent description of the nucleon clusters. I will discuss applications to light nuclei binary scattering processes and fusion reactions that power stars and Earth based fusion facilities, such as the deuterium-He-3 fusion, and outline the progress toward the inclusion of the three-nucleon force into the formalism and the treatment of three-body clusters. C1 [Quaglioni, Sofia; Navratil, Petr; Hupin, Guillaume] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Navratil, Petr; Romero-Redondo, Carolina] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Langhammer, Joachim; Roth, Robert] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. RP Quaglioni, S (reprint author), Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94551 USA. EM quaglioni1@llnl.gov RI Romero-Redondo, Carolina/D-2381-2014 NR 19 TC 4 Z9 4 U1 0 U2 7 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 EI 1432-5411 J9 FEW-BODY SYST JI Few-Body Syst. PD AUG PY 2013 VL 54 IS 7-10 BP 877 EP 884 DI 10.1007/s00601-012-0505-0 PG 8 WC Physics, Multidisciplinary SC Physics GA 192MV UT WOS:000322489800015 ER PT J AU Bacher, AD Casey, DT Frenje, JA Johnson, MJG Manuel, M Sinenian, N Zylstra, AB Seguin, FH Li, CK Petrasso, RD Glebov, VY Radha, PB Meyerhofer, DD Sangster, TC McNabb, DP Amendt, PA Boyd, RN Caggiano, JA Hatchett, SP Pino, JE Quaglioni, S Rygg, JR Thompson, IJ Herrmann, HW Kim, YH AF Bacher, A. D. Casey, D. T. Frenje, J. A. Johnson, M. J. Gatu Manuel, M. Sinenian, N. Zylstra, A. B. Seguin, F. H. Li, C. K. Petrasso, R. D. Glebov, V. Yu Radha, P. B. Meyerhofer, D. D. Sangster, T. C. McNabb, D. P. Amendt, P. A. Boyd, R. N. Caggiano, J. A. Hatchett, S. P. Pino, J. E. Quaglioni, S. Rygg, J. R. Thompson, I. J. Herrmann, H. W. Kim, Y. H. TI T-T Neutron Spectrum from Inertial Confinement Implosions SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th International IUPAP Conference on Few-Body Problems in Physics (FB) CY AUG 20-25, 2012 CL Fukuoka, JAPAN SP IUPAP AB A new technique that uses inertial confinement implosions for measuring low-energy nuclear reactions important to nuclear astrophysics is described. Simultaneous measurements of n-D and n-T elastic scattering at 14.1 MeV using deuterium-tritium gas-filled capsules provide a proof of principle for this technique. Measurements have been made of D(d,p)T (dd) and T(t,2n)He-4 (tt) reaction yields relative to the D(t,n)He-4 (dt) reaction yield for deuterium-tritium mixtures with f (T) /f (D) between 0.62 and 0.75 and for a wide range of ion temperatures to test our understanding of the implosion processes. Measurements of the shape of the neutron spectrum from the T(t,2n)He-4 reaction have been made for each of these target configurations. C1 [Bacher, A. D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Casey, D. T.; Frenje, J. A.; Johnson, M. J. Gatu; Manuel, M.; Sinenian, N.; Zylstra, A. B.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Glebov, V. Yu; Radha, P. B.; Meyerhofer, D. D.; Sangster, T. C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [McNabb, D. P.; Amendt, P. A.; Boyd, R. N.; Caggiano, J. A.; Hatchett, S. P.; Pino, J. E.; Quaglioni, S.; Rygg, J. R.; Thompson, I. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Herrmann, H. W.; Kim, Y. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bacher, AD (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. EM bacher@indiana.edu RI Pino, Jesse/C-9183-2014; Manuel, Mario/L-3213-2015 OI Manuel, Mario/0000-0002-5834-1161 NR 10 TC 1 Z9 1 U1 1 U2 10 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD AUG PY 2013 VL 54 IS 7-10 BP 1599 EP 1602 DI 10.1007/s00601-012-0524-x PG 4 WC Physics, Multidisciplinary SC Physics GA 192MV UT WOS:000322489800169 ER PT J AU Gibson, BF Afnan, IR AF Gibson, B. F. Afnan, I. R. TI The Triton from the Reid93 Potential in the UPA SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 20th International IUPAP Conference on Few-Body Problems in Physics (FB) CY AUG 20-25, 2012 CL Fukuoka, JAPAN SP IUPAP ID 3-NUCLEON SYSTEM AB The unitary pole approximation (UPA) provides an effective means to construct a rank one separable potential for calculations in which one requires a simple representation of the deuteron and/or triton ground-state wave function. By construction the deuteron wave function and the S-1(0) anti-bound state wave function of the original potential are reproduced. We report results for the corresponding triton ground state. We choose to utilize the realistic Reid93 potential for this purpose. The Reid93 potential, generated by the Nijmegen group, is a Reid-like, partial-wave local potential that produces a chi(2) representation of the nucleon-nucleon (NN) scattering data that is as precise as an NN partial-wave analysis. Results for properties of H-2 and H-3 from the UPA are compared with those for the original potential. To further illustrate the precision of the method, results for properties of the deuteron and triton from the UPA are also compared with those for the original Reid68 potential. C1 [Gibson, B. F.] Los Alamos Natl Lab, Div Theoret, Astrophys & Cosmol Grp, Los Alamos, NM 87545 USA. [Afnan, I. R.] Flinders Univ S Australia, Sch Chem & Phys Sci, Adelaide, SA 5001, Australia. RP Gibson, BF (reprint author), Los Alamos Natl Lab, Div Theoret, Astrophys & Cosmol Grp, Los Alamos, NM 87545 USA. EM bfgibson@lanl.gov; iraj@chariot.net.au NR 10 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD AUG PY 2013 VL 54 IS 7-10 BP 1641 EP 1643 DI 10.1007/s00601-012-0515-y PG 3 WC Physics, Multidisciplinary SC Physics GA 192MV UT WOS:000322489800179 ER PT J AU Patel, GP Anderson, DE Peplov, VV Saethre, RB Solley, DJ Wezensky, MW AF Patel, Gunjan P. Anderson, David E. Peplov, Vladimir V. Saethre, Robert B. Solley, Dennis J. Wezensky, Mark W. TI Experimental Results from Droop Compensation for the High Voltage Converter Modulators SO IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION LA English DT Article DE Accelerators; resonant power conversion; insulated gate bipolar transistors; pulse width modulation; losses; reliability AB The High Voltage Convertor Modulators are used to power the RF klystrons used throughout the linear accelerator at the Spallation Neutron Source. The output voltage of the modulator has significant voltage droop and ripple which, combined with low level RF system limitations, affect performance and stability of the accelerator cavities. In conjunction with the progress in the development of the new controller, different modulation techniques were implemented and studied on the test modulator rated at 75 kV, 125 A. This paper presents experimental results from implementation of frequency sweep, phase sweep and combined phase and frequency sweep modulation on the modulator output voltage pulse. Thermal measurements were carried out to determine the effect of these modulations schemes on long term reliability of the modulator. Future plans are also discussed. C1 [Patel, Gunjan P.; Anderson, David E.; Peplov, Vladimir V.; Saethre, Robert B.; Solley, Dennis J.; Wezensky, Mark W.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Patel, GP (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. OI Saethre, Robert/0000-0002-7907-3960 FU U.S. Department of Energy [DE-AC05-00OR22725] FX This work is performed at Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 16 TC 0 Z9 0 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1070-9878 J9 IEEE T DIELECT EL IN JI IEEE Trns. Dielectr. Electr. Insul. PD AUG PY 2013 VL 20 IS 4 BP 1093 EP 1100 PG 8 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 197EO UT WOS:000322832600013 ER PT J AU Vanderburg, A Stefani, F Motes, D Surls, D Crawford, M AF Vanderburg, Andrew Stefani, Francis Motes, Doyle Surls, Dwayne Crawford, Mark TI Measurements of Electrical Specific Action to Melt for Brass and Aluminum Alloys SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Al 2024; Al 6061; aluminum alloy; brass; C27400; electrical action to melt; exploding wire experiment; specific action to melt AB This paper describes a novel method for determining the specific action to melt the metals, and reports the values for action to melt that measure for several elements and three alloys: aluminum 2024, aluminum 6061, and C27400 brass. We electrically heat small diameter wires (127 mu m) to the point of vaporization using a slow regime exploding wire experiment. Using high-resolution voltage and current data, we compute the derivative of electrical resistivity with respect to specific electrical action. Features in the plot of this derivative clearly show the onset of melting for many of the materials we tested. We compare our results for copper, silver, aluminum, molybdenum, and titanium to those published by Tucker and Toth in the 1970s. Our data agree with their published values for silver and molybdenum, but not with those for copper, aluminum, and titanium. This paper presents our results and discusses possible reasons for the discrepancies between some of our measurements and those of Tucker and Toth. C1 [Vanderburg, Andrew] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Stefani, Francis] Univ Texas Austin, Inst Adv Technol, Austin, TX 78759 USA. [Motes, Doyle] Texas Res Int, Austin, TX 78733 USA. [Surls, Dwayne] Univ Texas Austin, Austin, TX 78759 USA. [Crawford, Mark] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Vanderburg, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM andrew.vanderburg@berkeley.edu; stefani@iat.utexas.edu; dmotes@tri-austin.com; dwayne_surls@iat.utexas.edu; mtc@lanl.gov FU U.S. Army [W911QX-07-D-0002] FX This work was supported by the U.S. Army under Contract W911QX-07-D-0002. NR 8 TC 1 Z9 1 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD AUG PY 2013 VL 41 IS 8 BP 2427 EP 2433 DI 10.1109/TPS.2013.2266900 PN 3 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 202JX UT WOS:000323212400027 ER PT J AU Smilowitz, HM Slatkin, DN Micca, PL Miura, M AF Smilowitz, Henry M. Slatkin, Daniel N. Micca, Peggy L. Miura, Michiko TI Microlocalization of lipophilic porphyrins: Non-toxic enhancers of boron neutron-capture therapy SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article DE Porphyrins; carborane; confocal microscopy; BNCT ID TUMOR-BEARING MICE; GLIOBLASTOMA-MULTIFORME; COPPER OCTABROMOTETRACARBORANYLPHENYLPORPHYRIN; SUBCELLULAR-LOCALIZATION; BRAIN-TUMORS; PHASE-II; BIODISTRIBUTION; TOXICITY; CELLS; BORONOPHENYLALANINE AB Purpose : To compare the macroscopic and microscopic distributions of the novel non-toxic lipophilic porphyrins copper (II) 5,10,15,20-tetrakis-(3-[1,2 dicarba-closo -dodecaboranyl]methoxyphenyl)- porphyrin (CuTCPH), potentially useful for boron neutron-capture therapy (BNCT), with those of its zinc fluorescent congener zinc (II) 5,10,15,20-tetrakis-(3-[1,2 dicarba-closo-dodecaboranyl] methoxyphenyl)-porphyrin (ZnTCPH) in tissues of tumor-bearing mice. Materials and methods : ZnTCPH and CuTCPH were synthesized, then injected intraperitoneally (ip) into tumor-bearing mice. Macroscopic biodistribution was assessed by determining average boron concentrations in tumor, blood, brain, skin, and liver using atomic-emission spectrometry. The euthanized mice and their vital organs were photographed first under an ultraviolet lamp and then under a bright fluorescent lamp. Thin sections of liver and tumor were analyzed by confocal fluorescence microscopy (CFM). Results : ZnTCPH-injected, but not CuTCPH-injected mice bearing subcutaneous tumors showed fluorescence from liver, spleen and tumors. Macrodistributions of boron in various tissues were similar in mice whether injected with ZnTCPH or CuTCPH. CFM of unfixed liver sections showed cytoplasmic fluorescence from Kupffer cells in a periportal lobular distribution evenly throughout the liver. In the tumors studied, such fluorescence was also cytoplasmic but unlike liver fluorescence, was macroscopically heterogeneous. Conclusion : ZnTCPH serves as a useful fluorescent experimental surrogate for CuTCPH to delineate its macroscopic and microscopic distributions in organs and tumors. C1 [Smilowitz, Henry M.] Univ Connecticut, Ctr Hlth, Dept Cell Biol, Farmington, CT 06030 USA. [Slatkin, Daniel N.; Micca, Peggy L.; Miura, Michiko] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. RP Smilowitz, HM (reprint author), Univ Connecticut, Ctr Hlth, Dept Cell Biol, 263 Farmington Ave, Farmington, CT 06030 USA. EM Smilowitz@nso1.uchc.edu FU Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-98CH10986] FX This work was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy under Contract DE-AC02-98CH10986. NR 35 TC 1 Z9 1 U1 2 U2 13 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 0955-3002 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD AUG PY 2013 VL 89 IS 8 BP 611 EP 617 DI 10.3109/09553002.2013.782446 PG 7 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 193VG UT WOS:000322589000003 PM 23484623 ER PT J AU Cunningham, P Linn, RR Koo, E Wilson, CJ AF Cunningham, Philip Linn, Rodman R. Koo, Eunmo Wilson, Cathy J. TI Large-Eddy Simulations of Air Flow and Turbulence within and around Low-Aspect-Ratio Cylindrical Open-Top Chambers SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Airflow; Mixing; Turbulence; Vegetation-atmosphere interactions; Large eddy simulations; Biosphere-atmosphere interaction ID OIL STORAGE TANKS; CIRCULAR-CYLINDER; INFRARED HEATER; WIND-TUNNEL; FLAT-PLATE; FIELD; MODEL; RESPONSES; BEHAVIOR; SURFACE AB The flow around cylindrical open-top chambers (OTCs) with aspect ratios (i.e., height-to-diameter ratios) much less than unity is investigated using a large-eddy simulation (LES) model. The solid structures are represented using the immersed boundary method, and the ambient flow in which the OTCs are embedded is representative of a turbulent atmospheric boundary layer. Results from the LES model show that the flow inside OTCs depends strongly on the height of the chamber wall. In particular, as chamber height increases the flow impinging on the upstream wall is deflected more in the vertical direction, a stronger recirculation flow develops inside the chamber, turbulence intensities are greater, and there is stronger vertical transport and mixing within the OTC, even at or near the ground. For low wall heights (i.e., very low aspect ratios), however, the flow impinging on the OTC is only diverted weakly in the vertical direction; aside from a small recirculation zone inside the OTC near the upstream wall and a small region near the downstream wall as the flow separates from the ground, there is minimal vertical mixing and the turbulence intensities are small. The results of these simulations, while general in nature, are particularly relevant to design considerations for manipulative field experiments in highly heterogeneous, low-stature ecosystems such as Arctic shrubs and grasses. C1 [Cunningham, Philip; Linn, Rodman R.; Koo, Eunmo; Wilson, Cathy J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cunningham, P (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, EES 16, Los Alamos, NM 87545 USA. EM pcunning@lanl.gov OI Koo, Eunmo/0000-0001-9943-9694 FU Regional Climate Impacts project; Next Generation Ecosystem Experiments (NGEE Arctic) project; U.S. Department of Energy Office of Science, Biological and Environmental Research Program FX This research was supported by the Regional Climate Impacts and Next Generation Ecosystem Experiments (NGEE Arctic) projects, both sponsored by the U.S. Department of Energy Office of Science, Biological and Environmental Research Program. Computational resources for the numerical simulations were provided by Los Alamos National Laboratory Institutional Computing. The authors thank Stan Wullschleger, Nathan McDowell, and Jon Reisner for insightful comments and suggestions throughout the course of this work. NR 44 TC 1 Z9 1 U1 0 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD AUG PY 2013 VL 52 IS 8 BP 1716 EP 1737 DI 10.1175/JAMC-D-12-041.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 200BP UT WOS:000323041800004 ER PT J AU Yang, Q Berg, LK Pekour, M Fast, JD Newsom, RK Stoelinga, M Finley, C AF Yang, Qing Berg, Larry K. Pekour, Mikhail Fast, Jerome D. Newsom, Rob K. Stoelinga, Mark Finley, Catherine TI Evaluation of WRF-Predicted Near-Hub-Height Winds and Ramp Events over a Pacific Northwest Site with Complex Terrain SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Model evaluation; performance; Renewable energy ID PART I; MODEL; IMPLEMENTATION; SENSITIVITY; CONVECTION AB One challenge with wind-power forecasts is the accurate prediction of rapid changes in wind speed (ramps). To evaluate the Weather Research and Forecasting (WRF) model's ability to predict such events, model simulations, conducted over an area of complex terrain in May 2011, are used. The sensitivity of the model's performance to the choice among three planetary boundary layer (PBL) schemes [Mellor-Yamada-Janji (MYJ), University of Washington (UW), and Yonsei University (YSU)] is investigated. The simulated near-hub-height winds (62 m), vertical wind speed profiles, and ramps are evaluated against measurements obtained from tower-mounted anemometers, a Doppler sodar, and a radar wind profiler deployed during the Columbia Basin Wind Energy Study (CBWES). The predicted winds at near-hub height have nonnegligible biases in monthly mean under stable conditions. Under stable conditions, the simulation with the UW scheme better predicts upward ramps and the MYJ scheme is the most successful in simulating downward ramps. Under unstable conditions, simulations using the YSU and UW schemes show good performance in predicting upward ramps and downward ramps, with the YSU scheme being slightly better at predicting ramps with durations longer than 1 h. The largest differences in mean wind speed profiles among simulations using the three PBL schemes occur during upward ramps under stable conditions, which were frequently associated with low-level jets. The UW scheme has the best overall performance in ramp prediction over the CBWES site when evaluated using prediction accuracy and capture-rate statistics, but no single PBL parameterization is clearly superior to the others when all atmospheric conditions are considered. C1 [Yang, Qing; Berg, Larry K.; Pekour, Mikhail; Fast, Jerome D.; Newsom, Rob K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Stoelinga, Mark] 3TIER Inc, Seattle, WA USA. [Finley, Catherine] WindLogics Inc, Grand Rapids, MI USA. RP Yang, Q (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM qing.yang@pnnl.gov RI Yang, Qing/H-3275-2011; Berg, Larry/A-7468-2016 OI Yang, Qing/0000-0003-2067-5999; Berg, Larry/0000-0002-3362-9492 FU U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy; DOE [DE-AC06-76RL01830] FX We thank Julia Flaherty of Pacific Northwest National Laboratory (PNNL) for providing Fig. 1. We also thank Prof. Songyou Hong for the helpful discussion and two anonymous reviewers for their helpful comments and suggestions. This work was supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy. The RWP was provided by the DOE's Atmospheric Radiation Measurement Program Climate Research Facility, and the tower anemometer data were provided by the Bonneville Power Administration. A portion of the research was performed using PNNL Institutional Computing. PNNL is operated by Battelle for the DOE under Contract DE-AC06-76RL01830. NR 25 TC 13 Z9 14 U1 1 U2 27 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD AUG PY 2013 VL 52 IS 8 BP 1753 EP 1763 DI 10.1175/JAMC-D-12-0267.1 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 200BP UT WOS:000323041800006 ER PT J AU Collis, S Protat, A May, PT Williams, C AF Collis, Scott Protat, Alain May, Peter T. Williams, Christopher TI Statistics of Storm Updraft Velocities from TWP-ICE Including Verification with Profiling Measurements SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Tropics; Dynamics; Vertical motion; Monsoons; Profilers; atmospheric; Radars; Radar observations ID VERTICAL VELOCITY; MICROPHYSICAL EVOLUTION; FLORIDA CUMULONIMBUS; RADAR NETWORK; WIND PROFILER; DOPPLER; MOTION; PRECIPITATION; BAND AB Comparisons between direct measurements and modeled values of vertical air motions in precipitating systems are complicated by differences in temporal and spatial scales. On one hand, vertically profiling radars more directly measure the vertical air motion but do not adequately capture full storm dynamics. On the other hand, vertical air motions retrieved from two or more scanning Doppler radars capture the full storm dynamics but require model constraints that may not capture all updraft features because of inadequate sampling, resolution, numerical constraints, and the fact that the storm is evolving as it is scanned by the radars. To investigate the veracity of radar-based retrievals, which can be used to verify numerically modeled vertical air motions, this article presents several case studies from storm events around Darwin, Northern Territory, Australia, in which measurements from a dual-frequency radar profiler system and volumetric radar-based wind retrievals are compared. While a direct comparison was not possible because of instrumentation location, an indirect comparison shows promising results, with volume retrievals comparing well to those obtained from the profiling system. This prompted a statistical analysis of an extended period of an active monsoon period during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Results show less vigorous deep convective cores with maximum updraft velocities occurring at lower heights than some cloud-resolving modeling studies suggest. C1 [Collis, Scott] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Protat, Alain; May, Peter T.] Australian Bur Meteorol, Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia. [Williams, Christopher] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Williams, Christopher] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Collis, S (reprint author), Argonne Natl Lab, Div Environm Sci, Bldg 240,9700 South Cass Ave, Argonne, IL 60439 USA. EM scollis@anl.gov RI Williams, Christopher/A-2723-2015 OI Williams, Christopher/0000-0001-9394-8850 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-06CH11357]; Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE) as part of the ARM Program; DOE Atmospheric Sciences Research (ASR) program [DE-SC0007080] FX Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under Contract DE-AC02-06CH11357. This work has been supported by the Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE) as part of the ARM Program. Author CRW was supported by DOE Atmospheric Sciences Research (ASR) program Grant DE-SC0007080. We thank all involved in the TWP-ICE field program for their work in collecting a world-class dataset. Special thanks are given to Brad Atkinson and Dennis Klau for the continual upkeep of the CPOL radar. Thanks are also given to Kao-Shen Chung and Isztar Zawadzki for providing the original McGill multi-Doppler code. The bulk of the code has been written using the open-source NumPy and SciPy projects, and the authors are grateful to the authors of these projects. This manuscript has benefited greatly from reviews from Susan Rennie and Edwin Campos and the two anonymous reviewers. NR 31 TC 22 Z9 22 U1 0 U2 17 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD AUG PY 2013 VL 52 IS 8 BP 1909 EP 1922 DI 10.1175/JAMC-D-12-0230.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 200BP UT WOS:000323041800016 ER PT J AU Lovejoy, KS Davis, LE McClellan, LM Lillo, AM Welsh, JD Schmidt, EN Sanders, CK Lou, AJ Fox, DT Koppisch, AT Del Sesto, RE AF Lovejoy, Katherine S. Davis, Lauren E. McClellan, Lisa M. Lillo, Antonietta M. Welsh, John D. Schmidt, Emily N. Sanders, Claire K. Lou, Alexander J. Fox, David T. Koppisch, Andrew T. Del Sesto, Rico E. TI Evaluation of ionic liquids on phototrophic microbes and their use in biofuel extraction and isolation SO JOURNAL OF APPLIED PHYCOLOGY LA English DT Article DE Botryococcenes; Milking; Ionic liquids; Biofuels ID MICROALGA BOTRYOCOCCUS-BRAUNII; WHOLE-CELL BIOCATALYSIS; DUNALIELLA-SALINA; HYDROCARBONS; SOLVENTS; CAROTENOIDS; RECOVERY; SYSTEMS; WATER; ACID AB Multiple ionic liquids (ILs) were assessed for their ability to extract branched, unsaturated hydrocarbons from an aqueous medium. In addition, IL cytotoxicity studies were performed on two phototrophic microbes, Synechocystis sp. PCC6803 and Botryococcus braunii var Showa. The optimum IL for use in an isoprenoid hydrocarbon extraction may vary based on the biological source of the isoprenoids. Our results suggest that ionic liquids have the potential to serve as novel biocompatible milking agents for extracting high-value chemicals from the microbes, with toxicity to both species minimized by considerations of ionic liquid structure and hydrophobicity. C1 [Lovejoy, Katherine S.; Davis, Lauren E.; Lou, Alexander J.; Del Sesto, Rico E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McClellan, Lisa M.; Lillo, Antonietta M.; Welsh, John D.; Schmidt, Emily N.; Sanders, Claire K.; Fox, David T.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Koppisch, Andrew T.] No Arizona Univ, Dept Chem & Biochem, Flagstaff, AZ 86011 USA. RP Del Sesto, RE (reprint author), Los Alamos Natl Lab, POB 1663,MS J514, Los Alamos, NM 87545 USA. EM dfox@lanl.gov; andy.koppisch@nau.edu; ricod@lanl.gov OI Lovejoy, Katherine/0000-0002-9606-9453 FU US Department of Energy LANL LDRD Program; National Alliance for Advanced Biofuels and Bioproducts; Los Alamos National Flow Cytometry Resource; National Center for Research Resources of NIH [P41-RR01315]; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This work was supported by the US Department of Energy LANL LDRD Program, National Alliance for Advanced Biofuels and Bioproducts, and the Los Alamos National Flow Cytometry Resource funded by the National Center for Research Resources of NIH (grant P41-RR01315). The authors are grateful to Cytec Canada for supplying the [R3R'P]Cl starting material and to Taylor Weiss and Dr. Tim Devarenne (Texas A&M University) for supplying an authentic sample of isolated botryococcenes. We also thank Dr. Taraka Dale (LANL) for the critical analysis of the flow cytometry data. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 37 TC 10 Z9 10 U1 2 U2 34 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0921-8971 J9 J APPL PHYCOL JI J. Appl. Phycol. PD AUG PY 2013 VL 25 IS 4 BP 973 EP 981 DI 10.1007/s10811-012-9907-0 PG 9 WC Biotechnology & Applied Microbiology; Marine & Freshwater Biology SC Biotechnology & Applied Microbiology; Marine & Freshwater Biology GA 180JA UT WOS:000321588800006 ER PT J AU Knoshaug, EP Shi, B Shannon, TG Mleziva, MM Pienkos, PT AF Knoshaug, Eric P. Shi, Bo Shannon, Tom G. Mleziva, Mark M. Pienkos, Philip T. TI The potential of photosynthetic aquatic species as sources of useful cellulose fibers-a review SO JOURNAL OF APPLIED PHYCOLOGY LA English DT Review DE Cellulose; Papermaking; Macroalgae; Microalgae; Aquatic plants ID HYACINTH EICHHORNIA-CRASSIPES; WATER-HYACINTH; CELL-WALLS; RED ALGAE; CLADOPHORA CELLULOSE; CHEMICAL-COMPOSITION; NATIVE CELLULOSE; PAPER-PRODUCTION; CODIUM-FRAGILE; WASTE-WATER AB Photosynthetic aquatic species, i.e., micro- and macroalgae and fresh or salt water plants, contain cellulose or other fibrous materials potentially suitable for paper making. Photosynthetic aquatic species having cellulosic or fibrous characteristics necessary for paper production were reviewed. These characteristics include overall fiber content, fiber size and morphology, and fiber composition. Several species of algae and aquatic plants are reported to possess cellulose in quantities greater than 10 % of total dry weight, and in general, the cellulose content in aquatic species is lower than that of most wood species. Commercial application of these aquatic algal or plant materials has been limited to simple milling, and no commercial applications utilizing processes to isolate the cellulosic fibers from these materials have yet been found. C1 [Knoshaug, Eric P.; Pienkos, Philip T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Shi, Bo; Mleziva, Mark M.] Kimberly Clark Inc, Corp Res & Engn, Neenah, WI 54956 USA. [Shannon, Tom G.] Kimberly Clark Inc, Family Care Res & Dev, North Atlantic Consumer Prod, Neenah, WI 54956 USA. RP Knoshaug, EP (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Eric.Knoshaug@nrel.gov FU Kimberly-Clark Corporation, Neenah, WI FX We would like to thank David Johnson and Ashutosh Mittal for technical input. The funding for this project was provided by Kimberly-Clark Corporation, Neenah, WI. NR 80 TC 6 Z9 6 U1 2 U2 55 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0921-8971 EI 1573-5176 J9 J APPL PHYCOL JI J. Appl. Phycol. PD AUG PY 2013 VL 25 IS 4 BP 1123 EP 1134 DI 10.1007/s10811-012-9958-2 PG 12 WC Biotechnology & Applied Microbiology; Marine & Freshwater Biology SC Biotechnology & Applied Microbiology; Marine & Freshwater Biology GA 180JA UT WOS:000321588800022 ER PT J AU Kim, HC Fthenakis, V AF Kim, Hyung Chul Fthenakis, Vasilis TI Life Cycle Energy and Climate Change Implications of Nanotechnologies A Critical Review SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Article DE climate change; energy consumption; industrial ecology; nanocoatings; nanocomposites; nanomaterials ID NANOPARTICLE PRODUCTION; ENVIRONMENTAL-IMPACT; CARBON; CONSUMPTION; COMPOSITES; COST AB The potential environmental and health impacts of nanotechnologies triggered a recent surge of life cycle assessment (LCA) studies on nanotechnologies. Focusing on the energy use and greenhouse gas emissions impacts, we reviewed 22 LCA-based studies on nanomaterials, coatings, photovoltaic devices, and fabrication technologies that were published until 2011. The reviewed LCA studies indicate that nanomaterials have higher cradle-to-gate energy demand per functional unit, and thus higher global warming impact, than their conventional counterparts. Depending on the synthesis method, carbon-based nanoparticles (i.e., carbon nanofibers, carbon nanotubes, and fullerenes) require 1 to 900 gigajoules per kilogram (GJ/kg) of primary energy to produce, compared with similar to 200 megajoules per kilogram (MJ/kg) for aluminum. This is mainly attributed to the fact that nanomaterials involve an energy-intensive synthesis process or an additional mechanical process to reduce particle size. Most reviewed studies ascertain, however, that the cradle-to-grave energy demand and global warming impact from nanotechnologies at a device level are lower than from conventional technologies because nanomaterials are typically used in a small amount to improve functionality and the upgraded functionality offers more energy-efficient operation of the device. Because of the immature status of most nanotechnologies, the studies reviewed here often rely on inventory data estimated from literature values and parametric analyses based on laboratory or prototype production, warranting future analyses to confirm the current findings. C1 [Kim, Hyung Chul; Fthenakis, Vasilis] Brookhaven Natl Lab, Upton, NY 11973 USA. [Fthenakis, Vasilis] Columbia Univ, Earth & Environm Engn Dept, New York, NY USA. RP Kim, HC (reprint author), Ford Res & Innovat Ctr, 2101 Village Rd, Dearborn, MI 48124 USA. EM hkim41@ford.com OI Kim, Hyung Chul/0000-0002-0992-4547 NR 28 TC 21 Z9 21 U1 6 U2 43 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1088-1980 J9 J IND ECOL JI J. Ind. Ecol. PD AUG PY 2013 VL 17 IS 4 BP 528 EP 541 DI 10.1111/j.1530-9290.2012.00538.x PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA 195QS UT WOS:000322719300006 ER PT J AU Abraham, P Adams, RM Tuskan, GA Hettich, RL AF Abraham, Paul Adams, Rachel M. Tuskan, Gerald A. Hettich, Robert L. TI Moving Away from the Reference Genome: Evaluating a Peptide Sequencing Tagging Approach for Single Amino Acid Polymorphism Identifications in the Genus Populus SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE plant proteomics; Populus; single amino acid polymorphisms; mass spectrometry; peptide sequence tagging; high energy collisional dissociation ID TANDEM MASS-SPECTRA; SITE LOCALIZATION; POSTTRANSLATIONAL MODIFICATIONS; PROTEIN MODIFICATIONS; SHOTGUN PROTEOMICS; MS/MS; FRAGMENTATION; TRICHOCARPA; ACCURATE; SEARCH AB The genetic diversity across natural populations of the model organism, Populus, is extensive, containing a single nucleotide polymorphism roughly every 200 base pairs. When deviations from the reference genome occur in coding regions, they can impact protein sequences. Rather than relying on a static reference database to profile protein expression, we employed a peptide sequence tagging (PST) approach capable of decoding the plasticity of the Populus proteome. Using shotgun proteomics data from two genotypes of P. trichocarpa, a tag-based approach enabled the detection of 6653 unexpected sequence variants. Through manual validation, our study investigated how the most abundant chemical modification (methionine oxidation) could masquerade as a sequence variant (Ala-->Ser) when few site-determining ions existed. In fact, precise localization of an oxidation site for peptides with more than one potential placement was indeterminate for 70% of the MS/MS spectra. We demonstrate that additional fragment ions made available by high energy collisional dissociation enhances the robustness of the peptide sequence tagging approach (81% of oxidation events could be exclusively localized to a methionine). We are confident that augmenting fragmentation processes for a PST approach will further improve the identification of single amino acid polymorphism in Populus and potentially other species as well. C1 [Abraham, Paul; Adams, Rachel M.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37830 USA. [Abraham, Paul; Adams, Rachel M.; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Tuskan, Gerald A.] Oak Ridge Natl Lab, Biol Sci Div, Oak Ridge, TN 37831 USA. RP Hettich, RL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM hettichrl@ornl.gov RI Abraham, Paul/K-5599-2015; Hettich, Robert/N-1458-2016; Tuskan, Gerald/A-6225-2011 OI Hettich, Robert/0000-0001-7708-786X; Tuskan, Gerald/0000-0003-0106-1289 FU U.S. Department of Energy, Office of Biological and Environmental Research, Genome Sciences Program; Genome Science and Technology Graduate Program at the University of Tennessee FX This study was conducted as part of the BioEnergy Science Center through funding from the U.S. Department of Energy, Office of Biological and Environmental Research, Genome Sciences Program. P.A. and R.A. would like to acknowledge financial support from the Genome Science and Technology Graduate Program at the University of Tennessee. Oak Ridge National Laboratory is managed for the U.S. Department of Energy by the University of Tennessee - Battelle, L.L.C. NR 35 TC 5 Z9 6 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD AUG PY 2013 VL 12 IS 8 BP 3642 EP 3651 DI 10.1021/pr400192r PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 197LN UT WOS:000322852800009 PM 23795892 ER PT J AU Saparov, B Sefat, AS AF Saparov, Bayrammurad Sefat, Athena S. TI Crystals, magnetic and electronic properties of a new ThCr2Si2-type BaMn2Bi2 and K-doped compositions SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Superconductivity; ThCr2Si2 structure; Hole doping; Transition-metal pnictide; BaMn2Bi2; Correlated electron materials ID SINGLE-CRYSTALS; SUPERCONDUCTIVITY; BAMN2SB2; METAL; BREAKING; SYSTEM; BA AB This is a report on the new 122 ternary transition-metal pnictide of BaMn2Bi2, which is crystallized from bismuth flux. BaMn2Bi2 adopts ThCr2Si2-type structure (I4/mmm) with 0=4.4902(3) angstrom and c=14.687(1) angstrom; it is antiferromagnetic with anisotropic magnetic susceptibility and semiconducting with a band gap of E-g=6 meV. Heat capacity result confirms the insulating ground state in BaMn2Bi2 with the electronic residual Sommerfeld coefficient of gamma=0. The high temperature magnetization results show that magnetic ordering temperature is T-N similar to 400 K. Hole-doping in BaMn2Bi2 via potassium in Ba1-xKxMn2Bi2 results in metallic behavior for x=0.10(1), 032(1) and 036(1). With K-doping, more magnetically anisotropic behavior is observed. Although there is a downturn in electrical resistivity and low-field magnetization data below 4 K in > 30%-doped crystals, there is no sign of zero resistance or diamagnetism. Published by Elsevier Inc. C1 [Saparov, Bayrammurad; Sefat, Athena S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Saparov, B (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008,Bldg 4100,1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM saparovbi@ornl.gov RI Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 FU Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. We thank R. Custelcean for his assistance with the single crystal X-ray diffraction experiments. NR 42 TC 12 Z9 12 U1 2 U2 63 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD AUG PY 2013 VL 204 BP 32 EP 39 DI 10.1016/j.jssc.2013.05.010 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 198OQ UT WOS:000322932600006 ER PT J AU Silverstein, HJ Sharma, AZ Cruz-Kan, K Zhou, HD Huq, A Flacau, R Wiebe, CR AF Silverstein, H. J. Sharma, A. Z. Cruz-Kan, K. Zhou, H. D. Huq, A. Flacau, R. Wiebe, C. R. TI Complex long-range magnetic ordering in the Mn-bearing dugganite Pb3TeMn3P2O14 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Langasite; Dugganite; Neutron scattering; Antiferromagnetic; Ba3NbFe3S12O14; Pb3TeMn3P2O14 ID CA3GA2GE4O14 STRUCTURE; POWDER DIFFRACTION; LANGASITE FAMILY; CRYSTALS; DISTORTIONS; GROWTH; STATE AB Spin liquids, multiferroics, and doubly-chiral helical structures are just some of the exotic magnetic states found in the langasite compounds. A subclass of the langasite group, the Te6+-containing dugganites, has also shown exotic magnetism including magnetoelectric coupling, coexisting complex long-ranged ordered structures, and low-field induced magnetic transitions. Here, we present the first detailed structural study of Pb3TeMn3P2O14 as well as the first neutron scattering measurements. This material undergoes long-range magnetic ordering, similar to the multiferroic Ba3NbFe3Si2O14, at T-N=6.6 K, which is consistent with previous magnetization measurements. However unlike any other langasite or dugganite studied to date, we present evidence of a large, pseudohexagonal incommensurate supercell that alters the nuclear and magnetic structures away from the langasite ideal. (C) 2013 Elsevier Inc. All rights reserved. C1 [Silverstein, H. J.; Wiebe, C. R.] Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2, Canada. [Sharma, A. Z.; Cruz-Kan, K.; Wiebe, C. R.] Univ Winnipeg, Dept Chem, Winnipeg, MB R3B 2E9, Canada. [Zhou, H. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Huq, A.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Flacau, R.] CNR, Chalk River Labs, Chalk River, ON K0J 1J0, Canada. RP Silverstein, HJ (reprint author), Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2, Canada. EM harlyn.silverstein@gmail.com RI Huq, Ashfia/J-8772-2013; Zhou, Haidong/O-4373-2016; OI Huq, Ashfia/0000-0002-8445-9649; Silverstein, Harlyn/0000-0002-7743-9842 FU NSERC; CFI; ACS Petroleum Fund; Vanier CGS; MGS; University of Manitoba; NSERC USRA Program; Canada Research Chair Program (Tier II); Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (APS) [DE-AC02-06CH11357] FX The authors would like to thank NSERC, CFI and the ACS Petroleum Fund for funding. HJS gratefully acknowledges funding from the Vanier CGS, MGS, and University of Manitoba. KC-K would like to thank the NSERC USRA Program for funding. CRW would like to thank the Canada Research Chair Program (Tier II) for funding. Portions of this research at the Oak Ridge National Laboratory's SNS and Argonne National Laboratory's APS were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (APS under Contract no. DE-AC02-06CH11357). Additionally, we would like to thank the amazing support staff at the CNBC, the SNS, and the APS, and useful discussions with P. Whitfield and M. Bieringer. NR 38 TC 3 Z9 3 U1 0 U2 30 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD AUG PY 2013 VL 204 BP 102 EP 107 DI 10.1016/j.jssc.2013.05.019 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 198OQ UT WOS:000322932600017 ER PT J AU Xiong, YX AF Xiong, Yongliang TI An Aqueous Thermodynamic Model for the Solubility of Potassium Ferrate in Alkaline Solutions to High Ionic Strengths from 283.15 to 333.15 K SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE K2FeO4(cr); Solubility product; Aqueous solubility; Standard thermodynamic properties ID SUPER-IRON BATTERY; RESEARCH PROGRESS; REMEDIATION; OXIDATION; CHEMISTRY; OXIDANT AB Potassium ferrate, K2FeO4(cr), has numerous promising environmental applications. An aqueous thermodynamic model applicable to high ionic strengths is essential for guiding its applications. In this study, a thermodynamic model is developed for the solubility of K2FeO4(cr) in aqueous alkali metal hydroxide solutions, from 283.15 to 333.15 K to high ionic strengths, up to saturation of KOH and NaOH, based on the Pitzer activity coefficient model for aqueous species. The solubility products for K2FeO4(cr) at infinite dilution in the temperature range from 283.15 to 333.15 K were obtained. Based on the thermodynamic solubility product of K2FeO4(cr) at 298.15 and its temperature dependence, in combination with thermodynamic properties for and K+ from the literature, standard thermodynamic properties of K2FeO4(cr) at 298.15 K and 0.1 MPa (1 bar) are derived for the first time as follows: Delta(f) G (0) = -(896 +/- A 8) kJ center dot mol(-1), Delta(f) H (0) = -(1026 +/- A 4) kJ center dot mol(-1), and S (0) = (130 +/- A 17) J center dot mol(-1)center dot K-1. Using the above thermodynamic properties for K2FeO4(cr), the potential presence or preservation of K2FeO4(cr) in the Martian soils under the conditions relevant to Mars were quantitatively evaluated. Thermodynamic calculations pertaining to the Martian conditions indicate that the presence or preservation of K2FeO4(cr) as a strong oxidant in the Martian soils can be supported. C1 [Xiong, Yongliang] Univ Idaho, Dept Geol Sci, Moscow, ID 83844 USA. RP Xiong, YX (reprint author), Sandia Natl Labs, Carlsbad Programs Grp, 4100 Natl Pk Highway, Carlsbad, NM 88220 USA. EM yxiong@sandia.gov NR 29 TC 0 Z9 0 U1 1 U2 23 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD AUG PY 2013 VL 42 IS 7 BP 1393 EP 1403 DI 10.1007/s10953-013-0038-2 PG 11 WC Chemistry, Physical SC Chemistry GA 202WC UT WOS:000323250200003 ER PT J AU Rai, D Yui, M Kitamura, A Yoshikawa, H Felmy, AR AF Rai, Dhanpat Yui, Mikazu Kitamura, Akira Yoshikawa, Hideki Felmy, A. R. TI Thermodynamic Model for the Solubility of NdF3(cr) in the Na+-NH (+)(4)-Nd3+-F--H2O System at 25 degrees C SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE Solubility; Neodymium; Fluoride complexes of Nd; Solubility product; Thermodynamic data; NdF2+; NdF2+; NdF3(cr); Nd(OH)(3)(aq) ID RARE-EARTH-ELEMENTS; FLUORO COMPLEXES; AQUEOUS-SOLUTION; EQUILIBRIUM-CONSTANTS; STABILITY-CONSTANTS; GEOCHEMICAL SYSTEMS; AM3+-F INTERACTION; IONIC-STRENGTH; TRACE-ELEMENTS; MIXED SYSTEM AB The major objective of this study, based on critical review and experimental studies, was to develop a reliable thermodynamic model for the Nd-F system at 25 A degrees C. The SIT model was used to convert concentration constants reported in the literature to constants at zero ionic strengths for cross comparison and selection of reliable values. The critically evaluated thermodynamic constants for the formation of NdF2+ and NdF (2) (+) were then used to interpret the extensive NdF3(cr) solubility data in NaF and NH4F solutions, ranging in concentrations from extremely low values to as high as 1.0 mol center dot kg(-1), equilibrated for different periods ranging up to as long as 72 days. These efforts have resulted in for the reaction [Nd3+ + nF(-) a double dagger OE NdF (n) (3-n) ] of (3.81 +/- A 0.10), (5.89 +/- A 0.77), and < 12.48 for n values of 1-3, respectively. The for the solubility of NdF3(cr) (NdF3(cr) a double dagger OE Nd3+ + 3F(-)) was determined to be (-20.49 +/- A 0.37). Because (1) Nd is an excellent analog for trivalent actinides-An(III) (i.e., Pu(III), Am(III), and Cm(III)), and (2) the available data for the An(III)-F system, especially the solubility products of AnF(3)(cr), are of extremely poor quality, the critical literature review in combination with the experimental Nd-F system data have been used to assign thermodynamic constants for the An(III)-F reactions until good quality specific data for them becomes available. C1 [Rai, Dhanpat] Rai Enviro Chem LLC, Yachats, OR 97498 USA. [Yui, Mikazu; Kitamura, Akira; Yoshikawa, Hideki] Japan Atom Energy Agcy, Tokai, Ibaraki, Japan. [Felmy, A. R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rai, D (reprint author), Rai Enviro Chem LLC, 1000 Hanley Dr,POB 784, Yachats, OR 97498 USA. EM dhan.rai@raienvirochem.com FU Japan Atomic Energy Agency (JAEA) [PNC ZA0865 92-001] FX This research was supported by Japan Atomic Energy Agency (JAEA) Tokai Works, under a collaborative agreement between JAEA and Rai Enviro-Chem., LLC. The experimental data were developed at Battelle Northwest Division under funding from and reported in JAEA internal report (PNC ZA0865 92-001). We thank Marv Mason and Bob Fulton for technical support. The senior author gratefully acknowledges the financial support for this research provided by JAEA. NR 38 TC 3 Z9 3 U1 0 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD AUG PY 2013 VL 42 IS 7 BP 1500 EP 1517 DI 10.1007/s10953-013-0049-z PG 18 WC Chemistry, Physical SC Chemistry GA 202WC UT WOS:000323250200010 ER PT J AU Halvorsen, MB Zeddies, DG Chicoine, D Popper, AN AF Halvorsen, Michele B. Zeddies, David G. Chicoine, David Popper, Arthur N. TI Effects of low-frequency naval sonar exposure on three species of fish SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID HIGH-INTENSITY; RAINBOW-TROUT; ACTIVE SONAR; HEARING; NOISE AB To address growing concern over the impact of anthropogenic sound on fishes, a series of experiments was conducted that exposed several fish species to high-intensity low-frequency naval sonar. This study extends auditory findings by adding largemouth bass, yellow perch, and channel catfish. No effects on hearing were found in largemouth bass and yellow perch and only small effects in channel catfish (a fish with morphological adaptations for enhanced pressure reception). Together with prior findings, these results suggest limited impact on hearing from high-intensity sonar. Susceptibility may be due to genetic stock, developmental conditions, seasonal variation, and/or buoyancy during exposure. (C) 2013 Acoustical Society of America C1 [Halvorsen, Michele B.; Zeddies, David G.; Popper, Arthur N.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. [Halvorsen, Michele B.; Zeddies, David G.; Popper, Arthur N.] Univ Maryland, Ctr Comparat & Evolutionary Biol Hearing, College Pk, MD 20742 USA. [Chicoine, David] New York State Chiropract Coll, Seneca Falls, NY 13148 USA. RP Halvorsen, MB (reprint author), Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. EM Mhalvy@gmail.com; david.zeddies@jasco.com; drchicoine@gmail.com; apopper@umd.edu NR 11 TC 5 Z9 5 U1 1 U2 31 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD AUG PY 2013 VL 134 IS 2 BP EL205 EP EL210 DI 10.1121/1.4812818 PN 1 PG 6 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 195YE UT WOS:000322738900013 PM 23927226 ER PT J AU Rossol, MN Shaw, JH Bale, H Ritchie, RO Marshall, DB Zok, FW AF Rossol, Michael N. Shaw, John H. Bale, Hrishikesh Ritchie, Robert O. Marshall, David B. Zok, Frank W. TI Characterizing Weave Geometry in Textile Ceramic Composites Using Digital Image Correlation SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID MICRO-COMPUTED-TOMOGRAPHY AB Techniques for characterizing tow architectures and defects in woven ceramic composites are required for generating high-fidelity geometric models and subsequently probing effects of defects on composite performance. Although X-ray computed tomography (CT) has been shown to provide the requisite information with potentially sub-m resolution, the technique is inherently limited to probing only small volumes: on the order of a few unit cells of typical weaves. Here, we present an assessment of the efficacy of a complementary 2D technique, based on surface topography mapping via 3-D (three-dimensional) digital image correlation (DIC), with potential for ascertaining long-range features in weaves and defects that cannot be gleaned from CT imaging alone. Upon comparing surfaces reconstructed from CT and DIC data, we find that DIC is capable of resolving surface heights with a root mean square(RMS) error of similar to 10m (about twice the CT voxel size, 4.4m) and a spatial resolution of similar to 20m over areas of several cm(2). Achieving this level of resolution requires use of sufficiently small speckles (similar to 50m) and small subset size (similar to 300m) relative to the characteristic tow dimensions (similar to 1mm). The error is somewhat higher (about 20m) in areas where surface discontinuities or rapid changes in topography exist (e.g., at tow boundaries). C1 [Rossol, Michael N.; Shaw, John H.; Zok, Frank W.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Bale, Hrishikesh; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Bale, Hrishikesh; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Marshall, David B.] Teledyne Sci Co, Thousand Oaks, CA 91360 USA. RP Zok, FW (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM zok@engineering.ucsb.edu RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 FU US AFOSR [FA9550-09-1-0477, B9U538772]; NASA under the National Hypersonics Science Center for Materials and Structures; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the US AFOSR (Ali Sayir) and NASA (Anthony Calomino) under the National Hypersonics Science Center for Materials and Structures (AFOSR Prime Contract No. FA9550-09-1-0477 to Teledyne Scientific and Subcontract No. B9U538772 to UCSB and to UCB). The use of the X-ray microtomography beam line (8.3.2) at the Advanced Light Source.; (Lawrence Berkeley National Laboratory) was supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The authors also gratefully acknowledge fruitful discussions with Varun Rajan (UCSB). NR 10 TC 8 Z9 9 U1 0 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2013 VL 96 IS 8 BP 2362 EP 2365 DI 10.1111/jace.12468 PG 4 WC Materials Science, Ceramics SC Materials Science GA 199AE UT WOS:000322965300003 ER PT J AU Dai, SX AF Dai, Steve X. TI Localized Temperature Stability in Low-Temperature Cofired Ceramics SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID COEFFICIENT; RESONATORS; CRYSTALLIZATION; DENSIFICATION; FREQUENCY; FILTERS AB Low-temperature cofired ceramic (LTCC) is a multilayer 3D packaging, interconnection, and integration technology. For LTCC modules targeting radio and microwave frequency (RF and MW) applications, a low or near 0ppm/degrees C temperature coefficient of resonant frequency ((f)) ensures temperature stability of embedded resonator and filter functions. The base dielectrics of most commercial LTCC systems have a (f) in the range -50 to -80ppm/degrees C. This study explored a method to achieve a zero (f) on stripline (SL) resonators by locally cofiring, in a multilayer LTCC structure, compensating dielectrics (CD) with an opposite (f) to that of the host dielectric. The formulation, synthesis, dielectric properties, and microstructure of SrTiO3 (STO)-based low-fire (f) CD are presented. Chemical interactions and physical compatibility between the compensating and the host LTCC dielectrics are investigated for cofireability. The dependence of (f) compensation on the wt% of STO, the printed thickness, and the location of the CD in multilayer LTCC are discussed. The most effective (f) compensation is achieved by integrating CD next to the resonator lines, and can be explained by the concentration of electromagnetic energy via total internal reflection of electromagnetic waves inside the CD layer. C1 Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA. RP Dai, SX (reprint author), Sandia Natl Labs, Mat Sci & Engn Ctr, POB 5800, Albuquerque, NM 87185 USA. EM sxdai@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The author would like to thank Dr Lung-Hwa Hsieh for the design of SL resonators, Dr Mark Rodriguez for XRD analysis, Bonnie Mckenzie for SEM characterization, Tom Chavez for synthesis of STO-based compensating dielectrics, and Shelley Williams for LTCC panel fabrication. The author also thanks Dr Robert Grubbs for his critical review of the manuscript. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 22 TC 1 Z9 1 U1 3 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2013 VL 96 IS 8 BP 2499 EP 2505 DI 10.1111/jace.12347 PG 7 WC Materials Science, Ceramics SC Materials Science GA 199AE UT WOS:000322965300024 ER PT J AU Jackson, MD Moon, J Gotti, E Taylor, R Chae, SR Kunz, M Emwas, AH Meral, C Guttmann, P Levitz, P Wenk, HR Monteiro, PJM AF Jackson, Marie D. Moon, Juhyuk Gotti, Emanuele Taylor, Rae Chae, Sejung R. Kunz, Martin Emwas, Abdul-Hamid Meral, Cagla Guttmann, Peter Levitz, Pierre Wenk, Hans-Rudolf Monteiro, Paulo J. M. TI Material and Elastic Properties of Al-Tobermorite in Ancient Roman Seawater Concrete SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID C-S-H; HYDROUS CALCIUM SILICATES; ADVANCED-LIGHT-SOURCE; SUBSTITUTED TOBERMORITES; AUTOCLAVING PROCESS; CRYSTAL-CHEMISTRY; NMR-SPECTROSCOPY; AERATED CONCRETE; CATION-EXCHANGE; MINERALS AB The material characteristics and elastic properties of aluminum-substituted 11 angstrom tobermorite in the relict lime clasts of 2000-year-old Roman seawater harbor concrete are described with TG-DSC and Si-29 MAS NMR studies, along with nanoscale tomography, X-ray microdiffraction, and high-pressure X-ray diffraction synchrotron radiation applications. The crystals have aluminum substitution for silicon in tetrahedral bridging and branching sites and 11.49(3)angstrom interlayer (002) spacing. With prolonged heating to 350 degrees C, the crystals exhibit normal behavior. The experimentally measured isothermal bulk modulus at zero pressure, K-0, 55 +/- 5GPa, is less than ab initio and molecular dynamics models for ideal tobermorite with a double-silicate chain structure. Even so, K-0, is substantially higher than calcium-aluminum-silicate-hydrate binder (C-A-S-H) in slag concrete. Based on nanoscale tomographic study, the crystal clusters form a well connected solid, despite having about 52% porosity. In the pumiceous cementitious matrix, Al-tobermorite with 11.27 angstrom interlayer spacing is locally associated with phillipsite, similar to geologic occurrences in basaltic tephra. The ancient concretes provide a sustainable prototype for producing Al-tobermorite in high-performance concretes with natural volcanic pozzolans. C1 [Jackson, Marie D.; Moon, Juhyuk; Taylor, Rae; Chae, Sejung R.; Meral, Cagla; Monteiro, Paulo J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Moon, Juhyuk] SUNY Stony Brook, Dept Mech Engn, Civil Engn Program, Stony Brook, NY 11794 USA. [Gotti, Emanuele] CTG Italcementi SpA, I-24126 Bergamo, Italy. [Kunz, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Emwas, Abdul-Hamid] King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia. [Meral, Cagla] Middle E Tech Univ, TR-06800 Ankara, Turkey. [Guttmann, Peter] Helmholtz Zentrum Mat & Energie GmbH, Inst Soft Matter & Funct Mat, D-12489 Berlin, Germany. [Levitz, Pierre] Univ Paris 06, CNRS, Lab PECSA, F-75005 Paris, France. [Wenk, Hans-Rudolf] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Monteiro, PJM (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM monteiro@ce.berkeley.edu RI Meral, Cagla/K-8590-2013; Guttmann, Peter/H-9869-2015; OI Meral, Cagla/0000-0001-8720-1216; Guttmann, Peter/0000-0002-0534-238X; Jackson, Marie D./0000-0002-5180-3060; Moon, Juhyuk/0000-0002-7049-892X FU King Abdullah University of Science and Technology (KAUST) [KUS-l1-004021]; Office of Science, Department of Energy [DE-AC02-05CH11231]; Advanced Nanofabrication Imaging and Characterization Laboratories at King Abdullah University of Science and Technology; ROMACONS drilling program FX This research was supported by Award No. KUS-l1-004021, from King Abdullah University of Science and Technology (KAUST). Data were acquired at beamlines 12.2.2 and 12.3.2 at the Advanced Light Source at the Lawrence Berkeley Laboratories, supported by the Director of the Office of Science, Department of Energy, under Contract No. DE-AC02-05CH11231, and the Advanced Nanofabrication Imaging and Characterization Laboratories at King Abdullah University of Science and Technology. We thank CTG Italcementi researchers and staff, especially B. Zanga, in Bergamo, Italy; G. Vola at Cimprogetti S.p.A., Dalmine, Italy; S. Clark at the 12.2.2 beamline; and N. Tamura at the 12.3.2 beamline; and the ROMACONS drilling program: J. P. Oleson, C. Brandon, R. Hohlfelder. T. Teague, D. Hernandez, C. Hargis, I. A. Delaney, and B. Black provided research support. We thank J. G. Moore, M. Sintubin, G. Sposito, P.-A. Itty, and J. Kirz for critical discussions, and three anonymous reviewers whose comments improved the manuscript. NR 72 TC 21 Z9 21 U1 4 U2 49 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2013 VL 96 IS 8 BP 2598 EP 2606 DI 10.1111/jace.12407 PG 9 WC Materials Science, Ceramics SC Materials Science GA 199AE UT WOS:000322965300040 ER PT J AU Joshi, BN Yoon, H van Hest, MFAM Yoon, SS AF Joshi, Bhavana N. Yoon, Hyun van Hest, Maikel F. A. M. Yoon, Sam S. TI Niobium-Doped Titania Photocatalyst Film Prepared via a Nonaqueous Sol-Gel Method SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID TIO2 THIN-FILMS; POLYCRYSTALLINE FILMS; ANATASE TIO2; NANOPARTICLES; DEPOSITION AB Niobium-doped Titanium dioxide (Nb:TiO2) transparent films were successfully deposited on glass substrates using a non-aqueous sol-gel spin coating technique. The effect of Nb concentration on the structural and photocatalytic properties of Nb:TiO2 films was studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV visible spectroscopy. The films with 12at.% (atomic percent) Nb doped TiO2 showed excellent photocatalytic activity through 97.3% degradation of methylene blue (MB) after 2h of UV irradiation. C1 [Joshi, Bhavana N.; Yoon, Hyun; Yoon, Sam S.] Korea Univ Anamdong, Sch Mech Eng, Seoul 136713, South Korea. [van Hest, Maikel F. A. M.] Natl Renewable Energy Lab, Golden, CO 80407 USA. RP Yoon, SS (reprint author), Korea Univ Anamdong, Sch Mech Eng, Seoul 136713, South Korea. EM skyoon@korea.ac.kr FU cooperative RD Program [B551179-08-03-00]; Korea Research Council Industrial Science and Technology, Republic of Korea; Converging Research Center Program through the Ministry of Education, Science and Technology [2010K000969]; [NRF-2012029433]; [NRF-2012-0001169]; [NRF-2012K1A3A1A09054910] FX This study was supported by a grant from the cooperative R&D Program (B551179-08-03-00) funded by Korea Research Council Industrial Science and Technology, Republic of Korea. This research was also supported by Converging Research Center Program through the Ministry of Education, Science and Technology (2010K000969), and NRF-2012029433, NRF-2012-0001169, and NRF-2012K1A3A1A09054910. NR 18 TC 5 Z9 5 U1 5 U2 59 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2013 VL 96 IS 8 BP 2623 EP 2627 DI 10.1111/jace.12336 PG 5 WC Materials Science, Ceramics SC Materials Science GA 199AE UT WOS:000322965300043 ER PT J AU Petrick, N Sahiner, B Armato, SG Bert, A Correale, L Delsanto, S Freedman, MT Fryd, D Gur, D Hadjiiski, L Huo, ZM Jiang, YL Morra, L Paquerault, S Raykar, V Samuelson, F Summers, RM Tourassi, G Yoshida, H Zheng, B Zhou, C Chan, HP AF Petrick, Nicholas Sahiner, Berkman Armato, Samuel G., III Bert, Alberto Correale, Loredana Delsanto, Silvia Freedman, Matthew T. Fryd, David Gur, David Hadjiiski, Lubomir Huo, Zhimin Jiang, Yulei Morra, Lia Paquerault, Sophie Raykar, Vikas Samuelson, Frank Summers, Ronald M. Tourassi, Georgia Yoshida, Hiroyuki Zheng, Bin Zhou, Chuan Chan, Heang-Ping TI Evaluation of computer-aided detection and diagnosis systems SO MEDICAL PHYSICS LA English DT Article DE computer-aided detection and diagnosis (CAD); computer-aided detection (CADe); computer-aided diagnosis (CADx); performance assessment; standalone performance; reader performance; clinical performance ID OPERATING CHARACTERISTIC ANALYSIS; BREAST-CANCER DETECTION; MAXIMUM-LIKELIHOOD-ESTIMATION; IMAGE DATABASE CONSORTIUM; SMALL PULMONARY NODULES; MEMORIAL FUND LECTURE; CT COLONOGRAPHY; LUNG NODULES; SCREENING MAMMOGRAPHY; OBSERVER-PERFORMANCE AB Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. Computer-aided detection systems mark regions of an image that may reveal specific abnormalities and are used to alert clinicians to these regions during image interpretation. Computer-aided diagnosis systems provide an assessment of a disease using image-based information alone or in combination with other relevant diagnostic data and are used by clinicians as a decision support in developing their diagnoses. While CAD systems are commercially available, standardized approaches for evaluating and reporting their performance have not yet been fully formalized in the literature or in a standardization effort. This deficiency has led to difficulty in the comparison of CAD devices and in understanding how the reported performance might translate into clinical practice. To address these important issues, the American Association of Physicists in Medicine (AAPM) formed the Computer Aided Detection in Diagnostic Imaging Subcommittee (CADSC), in part, to develop recommendations on approaches for assessing CAD system performance. The purpose of this paper is to convey the opinions of the AAPM CADSC members and to stimulate the development of consensus approaches and "best practices" for evaluating CAD systems. Both the assessment of a standalone CAD system and the evaluation of the impact of CAD on end-users are discussed. It is hoped that awareness of these important evaluation elements and the CADSC recommendations will lead to further development of structured guidelines for CAD performance assessment. Proper assessment of CAD system performance is expected to increase the understanding of a CAD system's effectiveness and limitations, which is expected to stimulate further research and development efforts on CAD technologies, reduce problems due to improper use, and eventually improve the utility and efficacy of CAD in clinical practice. (C) 2013 American Association of Physicists in Medicine. C1 [Petrick, Nicholas; Sahiner, Berkman; Samuelson, Frank] US FDA, Ctr Devices & Radiol Hlth, Silver Spring, MD 20993 USA. [Armato, Samuel G., III; Jiang, Yulei] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA. [Bert, Alberto; Correale, Loredana; Delsanto, Silvia; Morra, Lia] im3D SpA, I-10153 Turin, Italy. [Freedman, Matthew T.] Georgetown Univ, Lombardi Comprehens Canc Ctr, Washington, DC 20057 USA. [Fryd, David] Riverain Med, Miamisburg, OH 45342 USA. [Gur, David] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15213 USA. [Hadjiiski, Lubomir; Zhou, Chuan; Chan, Heang-Ping] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA. [Huo, Zhimin] Carestream Hlth Inc, Rochester, NY 14615 USA. [Raykar, Vikas] IBM Res, Nagawara Bangalore 560045, India. [Summers, Ronald M.] NIH, Ctr Clin, Bethesda, MD 20892 USA. [Tourassi, Georgia] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Yoshida, Hiroyuki] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA. [Yoshida, Hiroyuki] Harvard Univ, Sch Med, Boston, MA 02114 USA. [Zheng, Bin] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA. RP Chan, HP (reprint author), Univ Michigan, Dept Radiol, 1500 East Med Ctr Dr,MIB C479, Ann Arbor, MI 48109 USA. EM chanhp@umich.edu OI Bert, Alberto/0000-0001-8391-7508; Tourassi, Georgia/0000-0002-9418-9638; Zheng, Bin/0000-0002-7682-6648 FU Intramural Research Program of the National Institutes of Health, Clinical Center; University of Chicago; iCAD; Riverain Technologies through Georgetown University Medical Center FX The authors are grateful to the members and participants of the CADSC who have contributed to the stimulating discussions during many meetings and teleconferences. R. M. S. is supported in part by the Intramural Research Program of the National Institutes of Health, Clinical Center; the views expressed in this paper are the opinions of the authors and do not necessarily represent the views of the National Institutes of Health or the Department of Health and Human Services. S. G. A. and H.Y. receive royalties and licensing fees through the University of Chicago related to CAD. R. M. S. receives patent royalties and research support related to CAD from iCAD. M. T. F. receives funding from Riverain Technologies through Georgetown University Medical Center. NR 139 TC 9 Z9 10 U1 4 U2 34 PU AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0094-2405 J9 MED PHYS JI Med. Phys. PD AUG PY 2013 VL 40 IS 8 AR 087001 DI 10.1118/1.4816310 PG 17 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 195XC UT WOS:000322735900073 PM 23927365 ER PT J AU Salmeron, M AF Salmeron, Miquel TI Physics and chemistry of material surfaces under ambient conditions of gases and liquids: What's new? SO MRS BULLETIN LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; IN-SITU; CO; OXIDATION; ICE AB The atoms at the surfaces of materials represent the frontier separating the bulk from the surrounding medium. Over the last decades, scientists have intensely studied the structure and properties of surfaces with the goal of understanding and improving the electronic and chemical properties of materials. The surface-medium interaction determines wetting, friction, chemical, biological, and electronic properties. The activity of catalysts, phenomena occurring in water droplets and particles in the atmosphere, and the electronic properties of semiconductor devices are direct consequences of surface-environment interactions. While the need to pursue studies in the normal environment that surrounds a material has always been recognized, the techniques used in the past have only partially fulfilled this need, as most of them work best under high vacuum conditions. My research over the last 10 years has focused on discovering the structure of a surface and its dynamics in real life-in everyday environments. This required the development of new techniques and methods. I present some of the new tools developed in my laboratory and new properties that were discovered by their application in the areas of environmental science, surface chemistry, and catalysis. C1 Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. RP Salmeron, M (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. EM mbsalmeron@lbl.gov FU Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the United States [DE-AC02-05CH11231] FX This is the work of a large number of students and postdoctoral researchers in my group and of collaborations with many colleagues in various fields, which would be long and difficult to mention here. Their names appear in the many publications that have resulted from it and are cited here. I am fortunate to have enjoyed the support of the Laboratory Director and of the Advanced Light Source, the Berkeley Synchrotron, during the development and commissioning stages of the APPES project. I also want to thank the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the United States, currently under Contract No. DE-AC02-05CH11231, for its support of my research for more than 30 years. NR 19 TC 6 Z9 6 U1 2 U2 40 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD AUG PY 2013 VL 38 IS 8 BP 650 EP 657 DI 10.1557/mrs.2013.162 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 198JF UT WOS:000322918100017 ER PT J AU Ruan, LJ AF Ruan, Lijuan CA STAR Collaboration TI The di-lepton physics program at STAR SO NUCLEAR PHYSICS A LA English DT Article DE di-electron continuum; cocktail simulation; low-mass enhancement; QGP thermal radiation; mu-e correlation ID PARTICLE IDENTIFICATION; AU COLLISIONS; RESTORATION; TPC AB The recent results on di-electron production in p + p and Au+Au collisions at root s(NN) = 200 GeV are presented. The cocktail simulations of di-electrons from light and heavy flavor hadron decays are reported and compared with data. The perspectives for di-lepton measurements in lower energy Au+Au collisions and with future detector upgrades are discussed. C1 [Ruan, Lijuan; STAR Collaboration] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Ruan, LJ (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM ruanlj@rcf.rhic.bnl.gov NR 39 TC 0 Z9 0 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 171 EP 178 DI 10.1016/j.nuclphysa.2012.12.084 PG 8 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900023 ER PT J AU Vogt, R Nelson, RE Frawley, AD AF Vogt, R. Nelson, R. E. Frawley, A. D. TI Improving the J/psi Production Baseline at RHIC and the LHC SO NUCLEAR PHYSICS A LA English DT Article DE quarkonium; cold nuclear matter ID COLLISIONS AB We assess the theoretical uncertainties on the inclusive J/psi production cross section in the Color Evaporation Model (CEM) using values for the charm quark mass, renormalization and factorization scales obtained from a fit to the charm production data. We use our new results to provide improved baseline comparison calculations at RHIC and the LHC. We also study cold matter effects on J/psi production at leading relative to next-to-leading order in the CEM within this approach. C1 [Vogt, R.; Nelson, R. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vogt, R.; Nelson, R. E.] Univ Calif Davis, Davis, CA 95616 USA. [Frawley, A. D.] Florida State Univ, Tallahassee, FL 32301 USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM vogt2@11n1.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; JET Collaboration; National Science Foundation [PHY-07-54674] FX We thank M. Cheng, L. Linden Levy, P. Petreczky, R. Soltz and P. Vranas for discussions. The work of R. V. and R. E. N. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was also supported in part by the JET Collaboration. The work of A. D. F. was supported by the National Science Foundation grant PHY-07-54674. NR 14 TC 0 Z9 0 U1 3 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 231 EP 234 DI 10.1016/j.nuclphysa.2012.12.106 PG 4 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900035 ER PT J AU Zhang, BW He, YC Neufeld, RB Vitev, I Wang, EK AF Zhang, Ben-Wei He, Yuncun Neufeld, R. B. Vitev, Ivan Wang, Enke TI Probing nuclear matter with jets SO NUCLEAR PHYSICS A LA English DT Article DE Quark-gluon plasma (QGP); jet production; parton energy loss; perturbative QCD ID HEAVY-ION REACTIONS; ORDER ALPHA-S(3); COLLISIONS; GLUONS AB Jet physics in relativistic heavy ion collisions, which combines perturbative QCD jet production with quark and gluon energy loss and in-medium parton shower modification, has emerged as a powerful tool to probe the properties of strongly-interacting matter formed in high-energy nuclear reactions. We present selected results for the modification of jet cross sections and related observables in the ambiance of hot and/or dense nuclear medium. We focus on the inclusive jet spectrum and dijets [O(alpha(3)(s))], and Z(0)/y* tagged jets [O(G(F)alpha(2)(s))] in the framework of perturbative QCD. C1 [Zhang, Ben-Wei; He, Yuncun; Wang, Enke] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Zhang, Ben-Wei; He, Yuncun; Wang, Enke] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Neufeld, R. B.; Vitev, Ivan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zhang, BW (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. EM bwzhang@iopp.ccnu.edu.cn FU US Department of Energy, Office of Science; MOE of China [NCET-09-0411]; NSF of China [11075062, 11221504]; NSF of Hubei [2010CDA075]; CCNU FX This research is supported by the US Department of Energy, Office of Science, and by the MOE of China with the Program NCET-09-0411, by NSF of China with Project Nos. 11075062 and 11221504, and NSF of Hubei with Project No. 2010CDA075, and in party by CCNU self-determined fundings. NR 18 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 256 EP 259 DI 10.1016/j.nuclphysa.2012.12.113 PG 4 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900041 ER PT J AU Jia, JY AF Jia, Jiangyong CA ATLAS Collaboration TI Measurement of Event Plane Correlations in Pb-Pb Collisions at root s(NN)=2.76 TeV with the ATLAS Detector SO NUCLEAR PHYSICS A LA English DT Article AB A measurement of correlations between event-plane angles Phi(n) is presented as a function of centrality for Pb-Pb collisions at root s(NN) = 2.76 TeV. These correlations are estimated from observed event-plane angles Psi(n) obtained from charged particle or transverse energy flow measured over a large pseudorapidity range vertical bar eta vertical bar < 4.8, followed by a resolution correction that accounts for the dispersion of Psi(n) relative to Phi(n). Various correlators involving two or three event planes with acceptable resolution are measured. Significant positive correlations are observed for 4(Phi(2) - Phi(4)), 6(Phi(2) - Phi(6)), 6(Phi(3) - Phi(6)), 2 Phi(2) + 3 Phi(3) - 5 Phi(5), 2 Phi(2) + 4 Phi(4) - 6 Phi(6) and 10 Phi(2) + 4 Phi(4) + 6 Phi(6). However, the measured correlations for 2 Phi(2) - 6 Phi(3) + 4 Phi(4) are negative. These results may shed light on the patterns of the fluctuation of the created matter in the initial state as well as the subsequent hydrodynamic evolution. C1 [Jia, Jiangyong] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Phys, Brookhaven, NY 11796 USA. RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM jjia@bnl.gov RI Pacheco Pages, Andres/C-5353-2011 OI Pacheco Pages, Andres/0000-0001-8210-1734 FU NSF [PHY-1019387] FX This work is in part supported by NSF under award number PHY-1019387. NR 12 TC 19 Z9 19 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 276 EP 280 DI 10.1016/j.nuclphysa.2012.12.043 PG 5 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900046 ER PT J AU de Barros, GOV Fenton-Olsen, B Jacobs, P Ploskon, M AF de Barros, G. O. V. Fenton-Olsen, Bo Jacobs, Peter Ploskon, Mateusz TI Data-driven analysis methods for the measurement of reconstructed jets in heavy ion collisions at RHIC and LHC SO NUCLEAR PHYSICS A LA English DT Article DE Jet Reconstruction; Heavy Ion Collisions; Iterative Bayesian Unfolding AB We present data-driven methods for the full reconstruction of jets in heavy ion collisions, for inclusive and coincidence jet measurements at both RHIC and LHC. The complex structure of heavy ion events generates a large background of combinatorial jets, and smears the measured energy of the true hard jet signal. Techniques to correct for these background effects can induce biases in the reported jet distributions, which must be well controlled for accurate measurement of jet quenching. Using model studies, we evaluate the proposed methods for measuring jet distributions accurately while minimizing the fragmentation bias of the measured population. C1 [de Barros, G. O. V.] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil. [Fenton-Olsen, Bo; Jacobs, Peter; Ploskon, Mateusz] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Jacobs, Peter] CERN, CH-1211 Geneva 23, Switzerland. RP de Barros, GOV (reprint author), Univ Sao Paulo, Inst Fis, Rua Matao Travessa R 187, BR-05508090 Sao Paulo, Brazil. EM gbarros@dfn.if.usp.br NR 13 TC 3 Z9 3 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 314 EP 318 DI 10.1016/j.nuclphysa.2012.12.019 PG 5 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900055 ER PT J AU Read, KF AF Read, K. F. CA PHENIX Collaboration TI Open Heavy Flavor Production at Forward Angles in PHENIX SO NUCLEAR PHYSICS A LA English DT Article DE PHENIX; heavy ions; heavy flavor AB The measurement of the nuclear modification factor (R-AA) for heavy-flavor production in heavy-ion collisions tests predictions for cold- and hot-nuclear-matter effects. Heavy-flavor production in p+p collisions tests pQCD calculations and serves as a reference for understanding heavy-flavor production in heavy-ion collisions. Using the PHENIX muon-arm spectrometers, the transverse momentum spectra of inclusive muon candidates are measured for p+p and Cu + Cu collisions at root s(NN) = 200 GeV. After subtracting backgrounds, we obtain the measured invariant yields of negative muons from the decay of heavy flavor mesons. For p+p collisions, we measure the charm-production cross section integrated over p(T) and in the rapidity range 1.4 < y < 1.9 to be d sigma(cc)/dy = 0.139 +/- 0.029 (stat)(-0.058)(+0.051) (syst) mb. This result is compared to a recent FONLL calculation and to a PHENIX measurement at mid-rapidity. For Cu + Cu collisions, we measure the R-AA for heavy-flavor muons in three centrality bins for 1 < p(T) < 4 GeV/c, with suppression observed for central collisions. We compare our measurement for central collisions to a recent theoretical prediction. C1 [Read, K. F.; PHENIX Collaboration] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Read, KF (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM readkf@ornl.gov OI Read, Kenneth/0000-0002-3358-7667 FU Office of Nuclear Physics, U.S. Department of Energy FX Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy NR 8 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 359 EP 362 DI 10.1016/j.nuclphysa.2012.12.080 PG 4 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900066 ER PT J AU Steinberg, P AF Steinberg, Peter TI Measurement of high p(T) isolated prompt photons in lead-lead collisions at root s(NN)=2.76 TeV with the ATLAS detector at the LHC SO NUCLEAR PHYSICS A LA English DT Article DE Large Hadron Collider; ultrarelativistic heavy ion collisions; prompt photons ID PP AB Prompt photons are a powerful tool to study heavy ion collisions. Their production rates provide access to the initial state parton distribution functions and also provide a means to calibrate the expected energy of the recoil jet. The ATLAS detector measures photons with its hermetic, longitudinally segmented calorimeter, which gives excellent spatial and energy resolutions, and detailed information about the shower shape of each measured photon. This provides significant rejection against the expected background from the decays of neutral pions in jets. Rejection against jet fragmentation products is further enhanced by requiring candidate photons to be isolated. First results on the spectra of isolated prompt photons from a dataset with an integrated luminosity of approximately 0.13 nb(-1) of lead-lead collisions at root s(NN) = 2.76 TeV are shown as a function of transverse momentum and centrality. The measured spectra are compared to expectations from perturbative QCD calculations. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Steinberg, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM peter.steinberg@bnl.gov NR 16 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 371 EP 375 DI 10.1016/j.nuclphysa.2012.12.090 PG 5 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900069 ER PT J AU Zhao, J AF Zhao, Jie CA STAR Collaboration TI Dielectron production from root sNN=200 GeV Au + Au collisions at STAR SO NUCLEAR PHYSICS A LA English DT Article DE Dielectron; Quark-Gluon Plasma ID COLLISIONS; STAR AB We present the first STAR dielectron measurement in 200 GeV Au + Au collisions. Results are compared to hadron decay cocktail to search for in-medium modification of vector mesons in low mass region and thermal radiation in the intermediate mass region. The transverse mass slope parameters in the intermediate mass region are also discussed. C1 [Zhao, Jie] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Zhao, Jie; STAR Collaboration] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zhao, J (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. EM zhaojie@sinap.ac.cn FU National Natural Science Foundation of China [11035009, 10905085, 11275250]; Chinese Academy of Sciences [KJCX2-EW-N01] FX This work was supported in part by the National Natural Science Foundation of China under contract No. 11035009, 10905085, 11275250 and the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant No. KJCX2-EW-N01. NR 13 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 383 EP 386 DI 10.1016/j.nuclphysa.2012.12.114 PG 4 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900072 ER PT J AU Dusling, K Epelbaum, T Gelis, F Venugopalan, R AF Dusling, K. Epelbaum, T. Gelis, F. Venugopalan, R. TI Initial state and thermalization SO NUCLEAR PHYSICS A LA English DT Article DE Heavy ion collisions; Color Glass Condensate; Thermalization; Bose-Einstein condensation ID COLOR GLASS CONDENSATE; FLUCTUATIONS AB We report recent results on the role of instabilities in the isotropization and thermalization of a longitudinally expanding system of quantum fields. C1 [Dusling, K.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Epelbaum, T.; Gelis, F.] CEA, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Venugopalan, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Dusling, K (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM francois.gelis@cea.fr OI Dusling, Kevin/0000-0001-9598-0416 FU Agence Nationale de la Recherche [11-BS04-015-01]; US Department of Energy under DOE Contract [DE-AC02-98CH10886]; LORD grant from Brookhaven Science Associates FX F.G. and T.E. are supported by the Agence Nationale de la Recherche project # 11-BS04-015-01. R.V.'s work is supported by the US Department of Energy under DOE Contract No.DE-AC02-98CH10886 and by an LORD grant from Brookhaven Science Associates. NR 13 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 437 EP 441 DI 10.1016/j.nuclphysa.2012.12.035 PG 5 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900085 ER PT J AU Xing, HX Guo, Y Wang, EK Wang, XN AF Xing, Hongxi Guo, Yun Wang, Enke Wang, Xin-Nian TI Parton energy loss in cold nuclei SO NUCLEAR PHYSICS A LA English DT Article DE Multiple scattering; high twist; perturbative QCD; parton energy loss ID SCATTERING; COLLISIONS AB Within the generalized high-twist factorization formalism, we express the contribution from multiple parton scattering and induced gluon radiation to the DY dilepton spectra in terms of nuclear modified effective beam quark distribution function. We show that beam quark energy loss is characterized by jet transport parameter (q) over cap, which is related to the local gluon density of the medium. Using the value of (q) over cap determined from the deeply inelastic scattering (DIS) data, we evaluate the nuclear modification factor in the Drell-Yan process in p+A collisions. Effects of parton energy loss in the DY spectra are found negligible in the Fermilab experimental data at E-lab = 800 GeV relative to parton shadowing while the predicted suppression of the DY spectra are significant at E-lab, = 120 GeV. C1 [Xing, Hongxi; Wang, Enke; Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Guo, Yun] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China. RP Xing, HX (reprint author), Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. EM xnwang@lbl.gov OI Wang, Xin-Nian/0000-0002-9734-9967 FU NSFC of China [10825523, 11205035]; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the NSFC of China under Projects Nos. 10825523, 11205035 and by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and within the framework of the JET Collaboration. NR 14 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 442 EP 445 DI 10.1016/j.nuclphysa.2012.12.107 PG 4 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900086 ER PT J AU Young, C Schenke, B Icon, S Gale, C AF Young, Clint Schenke, Bjoern Icon, Sangyong Gale, Charles TI Realistic modelling of jets in heavy-ion collisions SO NUCLEAR PHYSICS A LA English DT Article AB The reconstruction of jets in heavy-ion collisions provides insight into the dynamics of hard partons in media. Unlike the spectrum of single hadrons, the spectrum of jets is highly sensitive to (q) over cap (perpendicular to), as well as being sensitive to partonic energy loss and radiative processes. We use MARTINI, an event generator, to study how finite-temperature processes at leading order affect dijets. C1 [Young, Clint; Icon, Sangyong; Gale, Charles] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Schenke, Bjoern] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Young, C (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. EM clinty@physics.mcgill.ca NR 12 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 494 EP 497 DI 10.1016/j.nuclphysa.2012.12.112 PG 4 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900099 ER PT J AU Xu, R Deng, WT Wang, XN AF Xu, Rong Deng, Wei-Tian Wang, Xin-Nian TI Suppression of high p(T) hadron spectra in p plus A collisions SO NUCLEAR PHYSICS A LA English DT Article DE Cronin effect; HIJING; valence quark number conservation AB Multiple hard and semi-hard parton scatterings in high-energy p + A collisions involve multi-parton correlation inside the projectile in both momentum and flavor which will lead to modification of the final hadron spectra relative to that in p + p collisions. Such modification of the final hadron transverse momentum spectra in p + A collisions is studied within HIJING 2.1 Monte Carlo model which includes nuclear shadowing of the initial parton distributions and transverse momentum broadening. Multi-parton flavor and momentum correlation inside the projectile are incorporated through flavor and momentum conservation which are shown to modify the flavor content and momentum spectra of final partons and most importantly lead to suppression of large PT hadron spectra in p + A collisions at both RHIC and LHC energies. C1 [Xu, Rong; Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Deng, Wei-Tian] KEK, IPNS, Ctr Theory, Tsukuba, Ibaraki 3050801, Japan. [Deng, Wei-Tian] FIAS, D-60438 Frankfurt, Germany. [Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Xu, R (reprint author), Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. EM deng@post.kek.jp FU NSFC [10825523]; CCNU from the colleges basic research and operation of MOE; Helmholtz International Center for FAIR within the framework of the LOEWE program; State of Hesse, US Depart of Energy [DE-AC02-05CH11231]; Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [22340064] FX This work was supported in part by the NSFC under the project No. 10825523, by self-determined research funds of CCNU from the colleges basic research and operation of MOE, Helmholtz International Center for FAIR within the framework of the LOEWE program launched by the State of Hesse, US Depart of Energy under Contract No. DE-AC02-05CH11231 and within the framework of the JET Collaboration, and Grant-in Aid for Scientific Research (No. 22340064) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. NR 12 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG PY 2013 VL 910 BP 514 EP 517 DI 10.1016/j.nuclphysa.2012.12.025 PG 4 WC Physics, Nuclear SC Physics GA 198NZ UT WOS:000322930900104 ER PT J AU Aharmim, B Ahmed, SN Anthony, AE Barros, N Beier, EW Bellerive, A Beltran, B Bergevin, M Biller, SD Boudjemline, K Boulay, MG Cai, B Chan, YD Chauhan, D Chen, M Cleveland, BT Cox, GA Dai, X Deng, H Detwiler, JA DiMarco, M Doe, PJ Doucas, G Drouin, PL Duncan, FA Dunford, M Earle, ED Elliott, SR Evans, HC Ewan, GT Farine, J Fergani, H Fleurot, F Ford, RJ Formaggio, JA Gagnon, N Goon, JTM Graham, K Guillian, E Habib, S Hahn, RL Hallin, AL Hallman, ED Harvey, PJ Hazama, R Heintzelman, WJ Heise, J Helmer, RL Hime, A Howard, C Huang, M Jagam, P Jamieson, B Jelley, NA Jerkins, M Keeter, KJ Klein, JR Kormos, LL Kos, M Kraus, C Krauss, CB Kruger, A Kutter, T Kyba, CCM Lange, R Law, J Lawson, IT Lesko, KT Leslie, JR Loach, JC MacLellan, R Majerus, S Mak, HB Maneira, J Martin, R McCauley, N McDonald, AB McGee, SR Miller, ML Monreal, B Monroe, J Nickel, BG Noble, AJ O'Keeffe, HM Oblath, NS Ollerhead, RW Gann, GDO Oser, SM Ott, RA Peeters, SJM Poon, AWP Prior, G Reitzner, SD Rielage, K Robertson, BC Robertson, RGH Rosten, RC Schwendener, MH Secrest, JA Seibert, SR Simard, O Simpson, JJ Skensved, P Sonley, TJ Stonehill, LC Tesic, G Tolich, N Tsui, T Van Berg, R VanDevender, BA Virtue, CJ Tseung, HWC Wark, DL Watson, PJS Wendland, J West, N Wilkerson, JF Wilson, JR Wouters, JM Wright, A Yeh, M Zhang, F Zuber, K AF Aharmim, B. Ahmed, S. N. Anthony, A. E. Barros, N. Beier, E. W. Bellerive, A. Beltran, B. Bergevin, M. Biller, S. D. Boudjemline, K. Boulay, M. G. Cai, B. Chan, Y. D. Chauhan, D. Chen, M. Cleveland, B. T. Cox, G. A. Dai, X. Deng, H. Detwiler, J. A. DiMarco, M. Doe, P. J. Doucas, G. Drouin, P. -L. Duncan, F. A. Dunford, M. Earle, E. D. Elliott, S. R. Evans, H. C. Ewan, G. T. Farine, J. Fergani, H. Fleurot, F. Ford, R. J. Formaggio, J. A. Gagnon, N. Goon, J. T. M. Graham, K. Guillian, E. Habib, S. Hahn, R. L. Hallin, A. L. Hallman, E. D. Harvey, P. J. Hazama, R. Heintzelman, W. J. Heise, J. Helmer, R. L. Hime, A. Howard, C. Huang, M. Jagam, P. Jamieson, B. Jelley, N. A. Jerkins, M. Keeter, K. J. Klein, J. R. Kormos, L. L. Kos, M. Kraus, C. Krauss, C. B. Kruger, A. Kutter, T. Kyba, C. C. M. Lange, R. Law, J. Lawson, I. T. Lesko, K. T. Leslie, J. R. Loach, J. C. MacLellan, R. Majerus, S. Mak, H. B. Maneira, J. Martin, R. McCauley, N. McDonald, A. B. McGee, S. R. Miller, M. L. Monreal, B. Monroe, J. Nickel, B. G. Noble, A. J. O'Keeffe, H. M. Oblath, N. S. Ollerhead, R. W. Gann, G. D. Orebi Oser, S. M. Ott, R. A. Peeters, S. J. M. Poon, A. W. P. Prior, G. Reitzner, S. D. Rielage, K. Robertson, B. C. Robertson, R. G. H. Rosten, R. C. Schwendener, M. H. Secrest, J. A. Seibert, S. R. Simard, O. Simpson, J. J. Skensved, P. Sonley, T. J. Stonehill, L. C. Tesic, G. Tolich, N. Tsui, T. Van Berg, R. VanDevender, B. A. Virtue, C. J. Tseung, H. Wan Chan Wark, D. L. Watson, P. J. S. Wendland, J. West, N. Wilkerson, J. F. Wilson, J. R. Wouters, J. M. Wright, A. Yeh, M. Zhang, F. Zuber, K. CA SNO Collaboration TI Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory SO PHYSICAL REVIEW C LA English DT Article ID CALIBRATION SOURCE; OSCILLATIONS; MATTER; MODEL AB We report results from a combined analysis of solar neutrino data from all phases of the Sudbury Neutrino Observatory (SNO). By exploiting particle identification information obtained from the proportional counters installed during the third phase, this analysis improved background rejection in that phase of the experiment. The combined analysis of the SNO data resulted in a total flux of active neutrino flavors from B-8 decays in the Sun of (5.25 +/- 0.16(stat.)(-0.13)(+0.11)(syst.)) x 10(6) cm(-2)s(-1), while a two-flavor neutrino oscillation analysis yielded Delta m(21)(2) = (5.6(-1.4)(+1.9)) x 10(-5) eV(2) and tan(2) theta(12) = 0.427(-0.029)(+0.033). A three-flavor neutrino oscillation analysis combining the SNO result with results of all other solar neutrino experiments and reactor neutrino experiments yielded Delta m(21)(2) = (7.46(-0.19)(+0.20)) x 10(-5) eV(2), tan(2) theta(12) = 0.443(-0.025)(+0.030), and sin(2) theta(13) = (2.49(-0.32)(+0.20)) x 10(-2). C1 [Beltran, B.; Habib, S.; Hallin, A. L.; Howard, C.; Krauss, C. B.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2R3, Canada. [Heise, J.; Jamieson, B.; Oser, S. M.; Tsui, T.; Wendland, J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hahn, R. L.; Lange, R.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Bellerive, A.; Boudjemline, K.; Dai, X.; Drouin, P. -L.; Farine, J.; Graham, K.; Noble, A. J.; Simard, O.; Tesic, G.; Watson, P. J. S.; Zhang, F.] Carleton Univ, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada. [Bergevin, M.; Jagam, P.; Law, J.; Lawson, I. T.; Nickel, B. G.; Ollerhead, R. W.; Reitzner, S. D.; Simpson, J. J.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Aharmim, B.; Chauhan, D.; Farine, J.; Fleurot, F.; Hallman, E. D.; Huang, M.; Kraus, C.; Kruger, A.; Schwendener, M. H.; Virtue, C. J.] Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. [Bergevin, M.; Chan, Y. D.; Detwiler, J. A.; Gagnon, N.; Lesko, K. T.; Loach, J. C.; Martin, R.; Poon, A. W. P.; Prior, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. [Bergevin, M.; Chan, Y. D.; Detwiler, J. A.; Gagnon, N.; Lesko, K. T.; Loach, J. C.; Martin, R.; Poon, A. W. P.; Prior, G.] Univ Calif Berkeley, Div Nucl Sci, Berkeley, CA 94720 USA. [Barros, N.; Maneira, J.] Lab Instrumentacao & Fis Expt Particulas, P-1000149 Lisbon, Portugal. [Elliott, S. R.; Gagnon, N.; Heise, J.; Hime, A.; Rielage, K.; Seibert, S. R.; Stonehill, L. C.; Wouters, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goon, J. T. M.; Kutter, T.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Formaggio, J. A.; Miller, M. L.; Monreal, B.; Monroe, J.; Oblath, N. S.; Ott, R. A.; Sonley, T. J.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Biller, S. D.; Cleveland, B. T.; Dai, X.; Doucas, G.; Fergani, H.; Gagnon, N.; Jelley, N. A.; Loach, J. C.; Majerus, S.; McCauley, N.; O'Keeffe, H. M.; Gann, G. D. Orebi; Peeters, S. J. M.; Tseung, H. Wan Chan; West, N.; Wilson, J. R.; Zuber, K.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Beier, E. W.; Deng, H.; Dunford, M.; Heintzelman, W. J.; Klein, J. R.; Kyba, C. C. M.; McCauley, N.; Gann, G. D. Orebi; Secrest, J. A.; Seibert, S. R.; Van Berg, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Ahmed, S. N.; Boudjemline, K.; Boulay, M. G.; Cai, B.; Chen, M.; Dai, X.; DiMarco, M.; Duncan, F. A.; Earle, E. D.; Evans, H. C.; Ewan, G. T.; Ford, R. J.; Graham, K.; Guillian, E.; Harvey, P. J.; Heise, J.; Keeter, K. J.; Kormos, L. L.; Kos, M.; Kraus, C.; Leslie, J. R.; MacLellan, R.; Mak, H. B.; Martin, R.; McDonald, A. B.; Noble, A. J.; Robertson, B. C.; Skensved, P.; Wright, A.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. [Wark, D. L.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Duncan, F. A.; Ford, R. J.; Lawson, I. T.] SNOLAB, Sudbury, ON P3Y 1M3, Canada. [Anthony, A. E.; Huang, M.; Jerkins, M.; Klein, J. R.; Seibert, S. R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Helmer, R. L.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Cox, G. A.; Doe, P. J.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; McGee, S. R.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Rosten, R. C.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Tseung, H. Wan Chan; Wilkerson, J. F.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Cox, G. A.; Doe, P. J.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; McGee, S. R.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Rosten, R. C.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Tseung, H. Wan Chan; Wilkerson, J. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Aharmim, B (reprint author), Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. RI Prior, Gersende/I-8191-2013; Maneira, Jose/D-8486-2011; Barros, Nuno/O-1921-2016; OI Maneira, Jose/0000-0002-3222-2738; Barros, Nuno/0000-0002-1192-0705; Prior, Gersende/0000-0002-6058-1420; Rielage, Keith/0000-0002-7392-7152 FU Natural Sciences and Engineering Research Council, Canada; Industry Canada, Canada; National Research Council, Canada; Atomic Energy of Canada, Ltd., Canada; Ontario Power Generation, Canada; High Performance Computing Virtual Laboratory, Canada; Canada Foundation for Innovation, Canada; Canada Research Chairs, Canada; Department of Energy, US; National Energy Research Scientific Computing Center, US; Alfred P. Sloan Foundation, US; Science and Technology Facilities Council, UK; Fundacao para a Ciencia e a Tecnologia, Portugal; Northern Ontario Heritage Fund, Canada FX This research was supported by Canada: Natural Sciences and Engineering Research Council, Industry Canada, National Research Council, Northern Ontario Heritage Fund, Atomic Energy of Canada, Ltd., Ontario Power Generation, High Performance Computing Virtual Laboratory, Canada Foundation for Innovation, Canada Research Chairs; US: Department of Energy, National Energy Research Scientific Computing Center, Alfred P. Sloan Foundation; UK: Science and Technology Facilities Council; Portugal: Fundacao para a Ciencia e a Tecnologia. We thank the SNO technical staff for their strong contributions. We thank Vale (formerly Inco, Ltd.) for hosting this project. NR 55 TC 81 Z9 81 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 1 PY 2013 VL 88 IS 2 AR 025501 DI 10.1103/PhysRevC.88.025501 PG 27 WC Physics, Nuclear SC Physics GA 195SM UT WOS:000322723900002 ER PT J AU Soderstrom, PA Lorusso, G Watanabe, H Nishimura, S Doornenbal, P Thiamova, G Browne, F Gey, G Jung, HS Sumikama, T Taprogge, J Vajta, Z Wu, J Xu, ZY Baba, H Benzoni, G Chae, KY Crespi, FCL Fukuda, N Gernhauser, R Inabe, N Isobe, T Jungclaus, A Kameda, D Kim, GD Kim, YK Kojouharov, I Kondev, FG Kubo, T Kurz, N Kwon, YK Lane, GJ Li, Z Montaner-Piza, A Moschner, K Naqvi, F Niikura, M Nishibata, H Odahara, A Orlandi, R Patel, Z Podolyak, Z Sakurai, H Schaffner, H Simpson, GS Steiger, K Suzuki, H Takeda, H Wendt, A Yagi, A Yoshinaga, K AF Soederstoerm, P. -A. Lorusso, G. Watanabe, H. Nishimura, S. Doornenbal, P. Thiamova, G. Browne, F. Gey, G. Jung, H. S. Sumikama, T. Taprogge, J. Vajta, Zs. Wu, J. Xu, Z. Y. Baba, H. Benzoni, G. Chae, K. Y. Crespi, F. C. L. Fukuda, N. Gernhaeuser, R. Inabe, N. Isobe, T. Jungclaus, A. Kameda, D. Kim, G. D. Kim, Y. -K. Kojouharov, I. Kondev, F. G. Kubo, T. Kurz, N. Kwon, Y. K. Lane, G. J. Li, Z. Montaner-Piza, A. Moschner, K. Naqvi, F. Niikura, M. Nishibata, H. Odahara, A. Orlandi, R. Patel, Z. Podolyak, Zs. Sakurai, H. Schaffner, H. Simpson, G. S. Steiger, K. Suzuki, H. Takeda, H. Wendt, A. Yagi, A. Yoshinaga, K. TI Shape evolution in Ru-116,Ru-118: Triaxiality and transition between the O(6) and U(5) dynamical symmetries SO PHYSICAL REVIEW C LA English DT Article ID INTERACTING BOSON MODEL; RU ISOTOPES; NEUTRON; FISSION; NUCLEI; PROTON; STATES; ASYMMETRY; EUROBALL; DETECTOR AB Ru-116 and Ru-118 have been studied via beta-delayed gamma-ray spectroscopy of nuclei produced in fragmentation reactions at the Radioactive Ion-Beam Factory (RIBF) facility. Level schemes with positive-parity states up to spin J = 6 have been constructed. The results have been discussed in terms of the interacting boson model, the algebraic collective model, and total Routhian surfaces. We conclude that the very neutron-rich nuclei still show many features associated with triaxial gamma-soft nuclei, represented by the O(6) symmetry, but are approaching a spherical structure, the U(5) symmetry, with increasing neutron number towards the N = 82 shell closure. In Ru-118, hints of a shape transition in the ground state have been observed. C1 [Soederstoerm, P. -A.; Lorusso, G.; Watanabe, H.; Nishimura, S.; Doornenbal, P.; Browne, F.; Gey, G.; Taprogge, J.; Vajta, Zs.; Wu, J.; Baba, H.; Fukuda, N.; Inabe, N.; Isobe, T.; Kameda, D.; Kubo, T.; Sakurai, H.; Suzuki, H.; Takeda, H.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Watanabe, H.] Beihang Univ, Dept Phys, Beijing 100191, Peoples R China. [Thiamova, G.; Gey, G.; Simpson, G. S.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, LPSC,IN2P3, F-38026 Grenoble, France. [Browne, F.] Univ Brighton, Sch Comp Engn & Math, Brighton BN2 4JG, E Sussex, England. [Jung, H. S.] Chung Ang Univ, Dept Phys, Seoul 156756, South Korea. [Sumikama, T.] Tohoku Univ, Dept Phys, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Taprogge, J.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Taprogge, J.; Jungclaus, A.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain. [Vajta, Zs.] Hungarian Acad Sci, Inst Nucl Res, H-4001 Debrecen, Hungary. [Wu, J.] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Xu, Z. Y.; Niikura, M.; Sakurai, H.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Benzoni, G.; Crespi, F. C. L.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Chae, K. Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Crespi, F. C. L.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Gernhaeuser, R.; Steiger, K.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Kim, G. D.; Kim, Y. -K.; Kwon, Y. K.] Inst for Basic Sci Korea, Rare Isotope Sci Project, Taejon 305811, South Korea. [Kim, Y. -K.] Hanyang Univ, Dept Nucl Engn, Seoul 133791, South Korea. [Kojouharov, I.; Kurz, N.; Schaffner, H.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Lane, G. J.] Australian Natl Univ, RSPE, Dept Nucl Phys, Canberra, ACT 0200, Australia. [Li, Z.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Montaner-Piza, A.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain. [Moschner, K.; Wendt, A.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Naqvi, F.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Nishibata, H.; Odahara, A.; Yagi, A.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Orlandi, R.] Univ Louvain, KU Leuven, Inst Kern Stralingsfys, B-3001 Louvain, Belgium. [Patel, Z.; Podolyak, Zs.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Yoshinaga, K.] Tokyo Univ Sci, Dept Phys, Noda, Chiba 2788510, Japan. RP Soderstrom, PA (reprint author), RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM pasoder@ribf.riken.jp RI Lane, Gregory/A-7570-2011; SAKURAI, HIROYOSHI/G-5085-2014; OI Lane, Gregory/0000-0003-2244-182X; Soderstrom, Par-Anders/0000-0002-9504-2814 FU Rare Isotope Science Project; Ministry of Science, ICT & Future Planning (MSIP); National Research Foundation (NRF) of Korea; Japan Society for the Promotion of Science (JSPS) Kakenhi [23.01752]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; OTKA [K100835]; Spanish Ministerio de Ciencia e Innovacion [FPA2009-13377-C02, FPA2011-29854-C04]; Priority Centers Research Program in Korea [2009-0093817]; National Research Foundation of Korea [NRF-2012R1A1A1041763]; U.S. DOE [DE-FG02-91ER-40609] FX We would like to thank Dr. V. Werner for valuable discussions about the IBM calculations. This work was carried out at the RIBF operated by the RIKEN Nishina Center, RIKEN and CNS, University of Tokyo. We acknowledge the EUROBALL Owners Committee for the loan of germanium detectors and the PreSpec Collaboration for the readout electronics of the cluster detectors. Part of the WAS3ABi was supported by the Rare Isotope Science Project which is funded by the Ministry of Science, ICT & Future Planning (MSIP) and the National Research Foundation (NRF) of Korea. P.A.S. was financed by the Japan Society for the Promotion of Science (JSPS) Kakenhi Grant No. 23.01752. F.G.K. was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. Zs.V. was supported by OTKA Contract No. K100835. We acknowledge financial support from the Spanish Ministerio de Ciencia e Innovacion under Contracts No. FPA2009-13377-C02 and No. FPA2011-29854-C04. H.S.J. was supported by the Priority Centers Research Program in Korea (2009-0093817). K.Y.C. was supported by National Research Foundation of Korea Grant No. NRF-2012R1A1A1041763. F.N. was supported by U.S. DOE Grant No. DE-FG02-91ER-40609. NR 44 TC 11 Z9 11 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD AUG 1 PY 2013 VL 88 IS 2 AR 024301 DI 10.1103/PhysRevC.88.024301 PG 10 WC Physics, Nuclear SC Physics GA 195SM UT WOS:000322723900001 ER PT J AU Barnes, M Parra, FI Lee, JP Belli, EA Nave, MFF White, AE AF Barnes, M. Parra, F. I. Lee, J. P. Belli, E. A. Nave, M. F. F. White, A. E. TI Intrinsic Rotation Driven by Non-Maxwellian Equilibria in Tokamak Plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOROIDAL ROTATION; TRANSPORT; TURBULENCE; MODE AB The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of cocurrent toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation. C1 [Barnes, M.; Parra, F. I.; Lee, J. P.; White, A. E.] MIT, Plasma Sci & Fusion Ctr, Cambridge, MA 02138 USA. [Barnes, M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Belli, E. A.] Gen Atom, San Diego, CA 92168 USA. [Nave, M. F. F.] Inst Plasmas & Fusao Nucl, Assoc EURATOM IST, P-1049001 Lisbon, Portugal. RP Barnes, M (reprint author), MIT, Plasma Sci & Fusion Ctr, Cambridge, MA 02138 USA. EM mabarnes@mit.edu RI Parra, Felix I./C-1442-2012; Nave, Maria/A-5581-2013 OI Parra, Felix I./0000-0001-9621-7404; Nave, Maria/0000-0003-2078-6584 FU U.S. DoE FES Postdoctoral Fellowship program; U.S. DoE [DE-SC008435]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank J. Candy and P. J. Catto for useful discussions. M. B. was supported by a U.S. DoE FES Postdoctoral Fellowship program, F.I.P. was supported by U.S. DoE Grant No. DE-SC008435, and computing time was provided by the National Energy Scientific Computing Center, supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 34 TC 27 Z9 27 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2013 VL 111 IS 5 AR 055005 DI 10.1103/PhysRevLett.111.055005 PG 5 WC Physics, Multidisciplinary SC Physics GA 196LQ UT WOS:000322777400007 PM 23952414 ER PT J AU Qi, J Durakiewicz, T Trugman, SA Zhu, JX Riseborough, PS Baumbach, R Bauer, ED Gofryk, K Meng, JQ Joyce, JJ Taylor, AJ Prasankumar, RP AF Qi, J. Durakiewicz, T. Trugman, S. A. Zhu, J. -X. Riseborough, P. S. Baumbach, R. Bauer, E. D. Gofryk, K. Meng, J. -Q. Joyce, J. J. Taylor, A. J. Prasankumar, R. P. TI Measurement of Two Low-Temperature Energy Gaps in the Electronic Structure of Antiferromagnetic USb2 Using Ultrafast Optical Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID CYLINDRICAL FERMI SURFACES; COHERENT PHONONS; CRYSTAL-GROWTH; THIN-FILMS; SUPERCONDUCTIVITY; YBA2CU3O7-DELTA; SCATTERING; DYNAMICS; RELAXATION; SILICON AB Ultrafast optical spectroscopy is used to study the antiferromagnetic f-electron system USb2. We observe the opening of two charge gaps at low temperatures (less than or similar to 45 K), arising from renormalization of the electronic structure. Analysis of our data indicates that one gap is due to hybridization between localized f-electron and conduction electron bands, while band renormalization involving magnons leads to the emergence of the second gap. These experiments thus enable us to shed light on the complex electronic structure emerging at the Fermi surface in f-electron systems. C1 [Qi, J.; Durakiewicz, T.; Trugman, S. A.; Zhu, J. -X.; Baumbach, R.; Bauer, E. D.; Gofryk, K.; Meng, J. -Q.; Joyce, J. J.; Taylor, A. J.; Prasankumar, R. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Qi, J.] Peac Inst Multiscale Sci, Chengdu 610225, Sichuan, Peoples R China. [Qi, J.] Sichuan Univ, Chengdu 610225, Sichuan, Peoples R China. [Riseborough, P. S.] Temple Univ, Philadelphia, PA 19121 USA. RP Prasankumar, RP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rpprasan@lanl.gov RI Meng, Jianqiao/D-2667-2013; Riseborough, Peter/D-4689-2011; Gofryk, Krzysztof/F-8755-2014; OI Meng, Jianqiao/0000-0003-3168-9819; Gofryk, Krzysztof/0000-0002-8681-6857; Trugman, Stuart/0000-0002-6688-7228; Bauer, Eric/0000-0003-0017-1937; Zhu, Jianxin/0000-0001-7991-3918 FU Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences; National Nuclear Security administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was performed under the auspices of the Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences. Los Alamos National Laboratory, is operated by Los Alamos National Security, LLC, for the National Nuclear Security administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 40 TC 13 Z9 13 U1 4 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 1 PY 2013 VL 111 IS 5 AR 057402 DI 10.1103/PhysRevLett.111.057402 PG 5 WC Physics, Multidisciplinary SC Physics GA 196LQ UT WOS:000322777400012 PM 23952443 ER PT J AU Saul, L Wurz, P Vorburger, A Rodriguez, DF Fuselier, SA McComas, DJ Mobius, E Barabash, S Funsten, H Janzen, P AF Saul, L. Wurz, P. Vorburger, A. Rodriguez M, D. F. Fuselier, S. A. McComas, D. J. Moebius, E. Barabash, S. Funsten, Herb Janzen, Paul TI Solar wind reflection from the lunar surface: The view from far and near SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Moon; ENAs; IBEX ID CHANDRAYAAN-1 MISSION; MOON; INSTRUMENT AB The Moon appears bright in the sky as a source of energetic neutral atoms (ENAs). These ENAs have recently been imaged over a broad energy range both from near the lunar surface, by India's Chandrayaan-1 mission (CH-1), and from a much more distant Earth orbit by NASA's Interstellar Boundary Explorer (IBEX) satellite. Both sets of observations have indicated that a relatively large fraction of the solar wind is reflected from the Moon as energetic neutral hydrogen. CH-l's angular resolution over different viewing angles of the lunar surface has enabled measurement of the emission as a function of angle. IBEX in contrast views not just a swath but a whole quadrant of the Moon as effectively a single pixel, as it subtends even at the closest approach no more than a few degrees on the sky. Here we use the scattering function measured by CH-1 to model global lunar ENA emission and combine these with IBEX observations. The deduced global reflection is modestly larger (by a factor of 1.25) when the angular scattering function is included. This provides a slightly updated IBEX estimate of A(H) = 0.11 +/- 0.06 for the global neutralized albedo, which is similar to 25% larger than the previous values of 0.09 +/- 0.05, based on an assumed uniform scattering distribution. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Saul, L.; Wurz, P.; Vorburger, A.; Rodriguez M, D. F.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Fuselier, S. A.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Moebius, E.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Barabash, S.] Swedish Inst Space Phys, SE-98128 Kiruna, Sweden. [Funsten, Herb] Los Alamos Natl Lab, Los Alamos, NM USA. [Janzen, Paul] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. RP Saul, L (reprint author), Univ Bern, Inst Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. EM saul@space.unibe.ch RI Funsten, Herbert/A-5702-2015; OI Funsten, Herbert/0000-0002-6817-1039; Vorburger, Audrey/0000-0002-7400-9142; Moebius, Eberhard/0000-0002-2745-6978 NR 17 TC 3 Z9 3 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD AUG PY 2013 VL 84 BP 1 EP 4 DI 10.1016/j.pss.2013.02.004 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 196VI UT WOS:000322805100001 ER PT J AU Kvasnytsya, V Wirth, R Dobrzhinetskaya, L Matzel, J Jacobsen, B Hutcheon, I Tappero, R Kovalyukh, M AF Kvasnytsya, Victor Wirth, Richard Dobrzhinetskaya, Larissa Matzel, Jennifer Jacobsen, Benjamin Hutcheon, Ian Tappero, Ryan Kovalyukh, Mykola TI New evidence of meteoritic origin of the Tunguska cosmic body SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Diamond; Lonsdaleite; Graphite; Troilite; Taenite; gamma-iron; Schreibersite; Intergrowths; Meteorite; Tunguska area ID NOVO UREI METEORITES; ION-BEAM FIB; EXPLOSION SITE; CANYON DIABLO; IRON-METEORITES; IMPACT CRATER; DIAMONDS; CARBON; PEAT; ANOMALIES AB Diamond-lonsdaleite-graphite micro-samples collected from peat after the 1908 catastrophic blast in the Tunguska area were studied with scanning (SEM) and transmission electron (TEM) microscopy, NanoSecondary Ion Mass Spectrometry (NanoSIMS) and X-ray synchrotron technique. The high-pressure carbon allotropes in the Tunguska samples are being described for the first time and contain inclusions of FeS (troilite), Fe-Ni (taenite), gamma-Fe and (FeNi)(3)P (schreibersite). The samples are nodule-like in shape and consist of 99.5% carbon minerals, e.g. diamond > lonsdaleite > graphite. Micro- and nanoinclusions of troilite (up to 0.5 vol%), taenite, gamma-iron and schreibersite fill cracks, cleavages and pores in the carbon matrix. Carbon isotope studies from the two analyses of the Tunguska foil showed delta C-13=-16.0 +/- 1.9 parts per thousand and delta C-13=-15.2 +/- 2.1 parts per thousand, suggesting delta C-13=-15.6 +/- 2 parts per thousand as an average characteristic of the carbon reservoir. That value is close to delta C-13 of some extraterrestrial samples. A negligible concentration of Ir and Os in the carbonaceous matrix promotes some controversial interpretation of the origin of the studied materials. Attributing this fact to the primary inhomogeneity, and considering the micro-structural features such as cracks, deformation of the crystal lattices, etc. coupled with high-pressure carbon allotropes association with metals, sulfides and phosphides, and the high ratio of Fe:Ni=22:1 suggest that the studied samples are meteorite micro-remnants. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kvasnytsya, Victor] Natl Acad Sci Ukraine, Inst Geochem Mineral & Ore Format, UA-03680 Kiev 142, Ukraine. [Wirth, Richard] GFZ, German Res Ctr Geosci, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany. [Dobrzhinetskaya, Larissa] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA. [Matzel, Jennifer; Jacobsen, Benjamin; Hutcheon, Ian] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tappero, Ryan] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kovalyukh, Mykola] Natl Acad Sci Ukraine, Inst Environm Geochem, UA-03680 Kiev 142, Ukraine. RP Kvasnytsya, V (reprint author), Natl Acad Sci Ukraine, Inst Geochem Mineral & Ore Format, Palladin Ave 34, UA-03680 Kiev 142, Ukraine. EM vmkvas@hotmail.com FU German Science Foundation (DFG), Bonn-Bad Godesberg; LAB-FEE Research Grant; US Department of Energy-Geosciences [DE-FG02-92ER14244]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX VK thanks the German Science Foundation (DFG), Bonn-Bad Godesberg for a travel grant. Part of this research conducted in the Lawrence Livermore National Laboratory was supported by LAB-FEE Research Grant (LD-JM-BJ-IH). The work performed at Beamline X27A, National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory. It was supported in part by the US Department of Energy-Geosciences (DE-FG02-92ER14244 to The University of Chicago-CARS). Use of the NSLS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-98CH10886. A. Schreiber (GFZ Potsdam) is thanked for the TEM sample preparation with FIB. Thanks to M. M. Taran for useful advices and discussion. We also thank anonymous reviewers and Felix Kaminsky for helpful criticism that significantly improved the manuscript. NR 58 TC 7 Z9 7 U1 3 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD AUG PY 2013 VL 84 BP 131 EP 140 DI 10.1016/j.pss.2013.05.003 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 196VI UT WOS:000322805100013 ER PT J AU Chatterjee, S Bryan, SA Seliskar, CJ Heineman, WR AF Chatterjee, Sayandev Bryan, Samuel A. Seliskar, Carl J. Heineman, William R. TI Three-component spectroelectrochemical sensor module for the detection of pertechnetate (TcO4-) SO REVIEWS IN ANALYTICAL CHEMISTRY LA English DT Article DE pertechnetate; technetium; three-component sensor ID DMPE = 1,2-BIS(DIMETHYLPHOSPHINO)ETHANE; ELECTRON-TRANSFER REACTIONS; OPTICALLY TRANSPARENT ELECTRODES; SINGLE DEVICE; RHENIUM COMPLEXES; SELECTIVITY; TECHNETIUM; BEHAVIOR; SORPTION; FILMS AB This rewview looks at the advancements in the development of a sensor for technetium (Tc) that is applicable to characterizing and monitoring the vadose zone and associated subsurface water. Subsurface contamination by Tc is of particular concern for two reasons: the long lifetime of its most common isotope Tc-99 (half-life = 2 x 10(5) years) and the fast migration in soils of pertechnetate (TcO4-), which is considered to be the dominant 99 Tc species in ground water. TcO4- does not have a characteristic spectral signature which prevents its rapid, sensitive, and economic in situ detection. To address this problem, a novel spectroelectrochemical sensor has been designed, that combines three modes of selectivity (electrochemistry, spectroscopy, and selective partitioning) into a single sensor to substantially improve specificity, which is critical in the specific detection of an analyte in the presence of potential interfering species. The sensor consists of a basic spectroelectrochemical configuration: a waveguide with an optically transparent electrode (OTE) that is coated with a thin chemically-selective film that preconcentrates the analyte. The key to adapting this generic sensor to detect TcO4- and Tc complexes lies in the development of chemically-selective films that preconcentrate the analyte and, when necessary, chemically convert it into a complex with electrochemical and spectroscopic properties appropriate for sensing. The chemically selective films can be combined with ligands which are capable of reacting with TcO4- to form coordination complexes, the spectral properties of which can be used to enhance the sensitivity of detection. The first half of this review describes the general concept of the sensor and the rationale for the selection of its specific components, and the development and characterization of the sensor for the different detection modules. The second half summarizes the synthesis and characterization of complexes relevant for the detection of technetium, and the progress in the utilization of the sensor module for the effective detection of these complexes. C1 [Chatterjee, Sayandev; Bryan, Samuel A.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Seliskar, Carl J.; Heineman, William R.] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. RP Chatterjee, S (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM sayandev.chatterjee@pnnl.gov; sam.bryan@pnnl.gov; carl.j.seliskar@uc.edu; william.heineman@uc.edu RI Bryan, Samuel/D-5457-2015; OI Bryan, Samuel/0000-0001-5664-3249; Chatterjee, Sayandev/0000-0003-2218-5635 NR 51 TC 2 Z9 2 U1 1 U2 13 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0793-0135 EI 2191-0189 J9 REV ANAL CHEM JI Rev. Anal. Chem. PD AUG PY 2013 VL 32 IS 3 BP 209 EP 224 DI 10.1515/revac-2013-0001 PG 16 WC Chemistry, Analytical SC Chemistry GA 200AV UT WOS:000323039000004 ER PT J AU Zhu, GD AF Zhu, Guangdong TI Development of an analytical optical method for linear Fresnel collectors SO SOLAR ENERGY LA English DT Article DE Concentrating solar power; Linear Fresnel collector; Solar thermal; Non-imaging optics; Intercept factor; Incidence angle modifier ID SOLAR CONCENTRATORS; GEOMETRIC ANALYSIS AB An analytical optical approach-First-principle OPTical Intercept Calculation (FirstOPTIC)-is developed for the optical performance evaluation of linear Fresnel collectors. Instead of treating all optical error sources as probability distributions and convolving them with the sun shape into an overall beam spread function, FirstOPTIC treats mirror slope error, receiver position error, and collector tracking error as geometric modifications to the collector, as interpreted in laboratory measurements. Calculation of intercept factors is analytically derived through a rigorous mathematical model. It is shown through test cases that FirstOPTIC can provide accurate and fast calculation of collector intercept factors as a function of incidence angle. Finally, FirstOPTIC is used to conduct analysis on the incidence angle modifier (JAM) and indicates that the factorized IAM representation with respect to independent transversal and longitudinal components can be a good approximation but in general underestimates the optical performance of a linear Fresnel collector. (C) 2013 Elsevier Ltd. All rights reserved. C1 Natl Renewable Energy Lab, Concentrating Solar Power Program, Golden, CO USA. RP Zhu, GD (reprint author), Natl Renewable Energy Lab, Concentrating Solar Power Program, 15013 Denver West Pkwy, Golden, CO USA. EM Guangdong.Zhu@nrel.gov FU U.S. Department of Energy under National Renewable Energy Laboratory (NREL) [DE-AC36-08GO28308] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory (NREL). NR 28 TC 15 Z9 15 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD AUG PY 2013 VL 94 BP 240 EP 252 DI 10.1016/j.solener.2013.05.003 PG 13 WC Energy & Fuels SC Energy & Fuels GA 198RX UT WOS:000322941100021 ER PT J AU Idriss, H Bagus, PS Ilton, ES AF Idriss, Hicham Bagus, Paul S. Ilton, Eugene S. TI Progress in Electronic and Vibrational Spectroscopy of Catalytic Materials and Catalytic Reactions: Theoretical and Experimental Studies SO TOPICS IN CATALYSIS LA English DT Editorial Material C1 [Idriss, Hicham] Univ Aberdeen, Dept Chem, Aberdeen, Scotland. [Idriss, Hicham] SABIC T&I, Riyadh, Saudi Arabia. [Idriss, Hicham] KAUST, CRI, Thuwal, Saudi Arabia. [Bagus, Paul S.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Idriss, H (reprint author), SABIC T&I, Riyadh, Saudi Arabia. EM h.idriss@abdn.ac.uk; bagus@unt.edu; Ilton@pnnl.gov RI Bagus, Paul/M-1273-2015 NR 0 TC 0 Z9 0 U1 0 U2 10 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD AUG PY 2013 VL 56 IS 12 BP 1047 EP 1048 DI 10.1007/s11244-013-0081-7 PG 2 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 200WF UT WOS:000323100900001 ER PT J AU Gross, E Somorjai, GA AF Gross, Elad Somorjai, Gabor A. TI The Impact of Electronic Charge on Catalytic Reactivity and Selectivity of Metal-Oxide Supported Metallic Nanoparticles SO TOPICS IN CATALYSIS LA English DT Article DE Heterogeneous catalysis; Selectivity; Charge transfer; CO oxidation; Metal-oxide; Metal-support interactions ID GENERATION VIBRATIONAL SPECTROSCOPY; CO OXIDATION; HETEROGENEOUS CATALYST; NANOCRYSTALLINE CEO2; CARBON-MONOXIDE; TITANIUM-OXIDE; LEWIS ACIDITY; SYNTHESIS GAS; GOLD; HYDROGENATION AB The catalytic reactivity and selectivity of metallic nanoclusters supported on a metal-oxide can be tuned by electronic charge. In this review, different approaches for controlling the electronic properties of metallic nanoclusters and its impact on catalytic reactions are discussed. Electronic charge can transfer from the metal-oxide support to the metallic catalyst and change the metal-reactants interaction and as a consequence modify as-well the catalytic reactivity and selectivity. In other cases, the electronic properties of the metal-oxide have an active role in the catalytic process and the metal oxide can be used as a co-catalyst. Another approach is to directly change the electronic properties of the metallic catalyst. It is demonstrated that dendrimer-encapsulated metallic nanoparticles can be directly oxidized by the addition of an inorganic oxidizer to the solution phase. In this case, even while supported on inert oxides, novel catalytic reactivity and selectivity can be gained by the formation of highly oxidized metal ions. C1 [Gross, Elad; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Gross, Elad; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu FU Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 47 TC 12 Z9 12 U1 3 U2 83 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD AUG PY 2013 VL 56 IS 12 BP 1049 EP 1058 DI 10.1007/s11244-013-0069-3 PG 10 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 200WF UT WOS:000323100900002 ER PT J AU Choi, YM Kuttiyiel, KA Labis, JP Sasaki, K Park, GG Yang, TH Adzic, RR AF Choi, YongMan Kuttiyiel, Kurian A. Labis, Joselito P. Sasaki, Kotaro Park, Gu-Gon Yang, Tae-Hyun Adzic, Radoslav R. TI Enhanced Oxygen Reduction Activity of IrCu Core Platinum Monolayer Shell Nano-electrocatalysts SO TOPICS IN CATALYSIS LA English DT Article DE Fuel cells; Electrocatalysis; Core-shell catalyst; Pt monolayer; Cu underpotential deposition; Oxygen reduction ID CATALYTIC-ACTIVITY; NANOPARTICLES; STABILITY AB Designing novel cathode materials for a proton exchange membrane fuel cell with high activity for the oxygen reduction reaction, low Pt loading, and enhanced long-term stability is imperative for its sustainability. To date, Pt monolayer based electrocatalysts deposited on a metallic core substrate have shown promising possibilities. In this study, we synthesized bimetallic IrCu nanoparticles and used them as a core for Pt monolayer electrocatalysts. It was found that the de-alloyed IrCu nanoparticle surfaces increased both the mass and specific activities of the resulting Pt monolayer catalyst. In addition, we demonstrated that Pt monolayer electrocatalysts with a de-alloyed IrCu core have a better stability than those using a non-dealloyed core based on a 5,000 potential cycling test. These data describe a new simple synthesis of a high-performance catalyst suitable for practical applications. C1 [Choi, YongMan] SABIC Technol Ctr, Riyadh 11551, Saudi Arabia. [Choi, YongMan; Kuttiyiel, Kurian A.; Sasaki, Kotaro; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Labis, Joselito P.] King Saud Univ, King Abdullah Inst Nanotechnol, Riyadh 11451, Saudi Arabia. [Park, Gu-Gon; Yang, Tae-Hyun] Korea Inst Energy Res, Fuel Cell Res Ctr, Taejon 305343, South Korea. RP Choi, YM (reprint author), SABIC Technol Ctr, Riyadh 11551, Saudi Arabia. EM choiy@sabic.com; adzic@bnl.gov RI Choi, YongMan/N-3559-2014; Park, Gu-Gon/A-6175-2013 OI Choi, YongMan/0000-0003-4276-1599; Park, Gu-Gon/0000-0002-4606-0661 FU Brookhaven National laboratory [DE-AC02-98CH10886]; Korea Institute of Energy Research (KIER) [B3-2415] FX This research was performed at Brookhaven National laboratory under contract DE-AC02-98CH10886 with the US Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences Division. This work was conducted under the framework of Research and Development Program of the Korea Institute of Energy Research (KIER) (B3-2415). Y.C. truly acknowledges the kind support by Drs. Hicham Idriss and Essam H. Jamea to carry out this project in Brookhaven National Laboratory. Also, Y.C. thanks Dr. Toseef N. Ahmed and Hugh Issacs and Wei-Fu Chen for SEM/EDX measurements and fruitful discussion on electrochemistry, respectively. NR 25 TC 11 Z9 11 U1 6 U2 94 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD AUG PY 2013 VL 56 IS 12 BP 1059 EP 1064 DI 10.1007/s11244-013-0070-x PG 6 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 200WF UT WOS:000323100900003 ER PT J AU Tobin, JG Yu, SW Chung, BW AF Tobin, J. G. Yu, S. -W. Chung, B. W. TI Splittings, Satellites and Fine Structure in the Soft X-ray Spectroscopy of the Actinides SO TOPICS IN CATALYSIS LA English DT Article DE XAS U d levels; XAS Ce d levels; Lanthanides satellites fine structure; U 5f DOS; XPS U 4d; EELS Ce 3d; UO2 Bremstrahlung isochromat spectroscopy (BIS); UO2 resonant inverse photoelectron spectroscopy (RIPES) ID UNOCCUPIED ELECTRONIC-STRUCTURE; RESONANT INVERSE-PHOTOEMISSION; URANIUM-DIOXIDE; PHOTOELECTRON; THORIUM; SYSTEMS; ENERGY; STATES; 5F AB Perhaps the most demanding and powerful actinide spectroscopy is that using soft X-ray and VUV photons. Because of the relatively low energy and fairly small sampling depths of these photons and the corresponding electrons, it is necessary to use un-encapsulated samples with highly cleaned and well-prepared surfaces. This causes a myriad of sample containment problems for these radioactive materials. Despite these hindrances and difficulties, the soft-X-ray and ultra-violet spectroscopy of the actinides can provide an amazing level of detailed information, particularly having to do with 5f electronic structure. In this paper, the splittings, satellites and fine structure of the following actinide soft X-ray spectroscopies will be discussed: X-ray photoelectron spectroscopy; X-ray absorption spectroscopy; and inverse photoelectron spectroscopy, including Bremstrahlung isochromat spectroscopy and resonant inverse photoelectron spectroscopy. C1 [Tobin, J. G.; Yu, S. -W.; Chung, B. W.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Tobin, JG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM Tobin1@LLNL.Gov RI Tobin, James/O-6953-2015; Chung, Brandon/G-2929-2012 FU U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; DOE Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. This work was supported by the DOE Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering. NR 34 TC 2 Z9 2 U1 0 U2 36 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD AUG PY 2013 VL 56 IS 12 BP 1104 EP 1111 DI 10.1007/s11244-013-0076-4 PG 8 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 200WF UT WOS:000323100900009 ER PT J AU Bagus, P Ilton, E AF Bagus, Paul S. Ilton, Eugene S. TI Theory for the XPS of Actinides SO TOPICS IN CATALYSIS LA English DT Article DE XPS; Actinides; Covalent bonding; Electronic structure; Wavefunctions; Intermediate coupling ID RAY PHOTOEMISSION SPECTRA; TRANSITION-METALS; IONIC-CRYSTALS; FIELD; SPECTROSCOPY; SATELLITES; STATES; UO2 AB Two aspects of the electronic structure of actinide oxides that significantly affect the X-ray photoelectron spectroscopy (XPS) spectra are described; these aspects are also important for the materials properties of the oxides. The two aspects considered are: (1) The spin-orbit coupling of the open 5f shell electrons in actinide cations and how this coupling affects the electronic structure. And, (2) the covalent character of the metal oxygen interaction in actinide compounds. Because of this covalent character, there are strong departures from the nominal oxidation states that are significantly larger in core-hole states than in the ground state. The consequences of this covalent character for the XPS are examined. A proper understanding of the way in which they influence the XPS makes it possible to use the XPS to correctly characterize the electronic structure of the oxides. C1 [Bagus, Paul S.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bagus, PS (reprint author), Univ N Texas, Dept Chem, Denton, TX 76203 USA. EM bagus@unt.edu RI Bagus, Paul/M-1273-2015 FU Geosciences Research Program, Office of Basic Energy Sciences, U.S. DOE FX We acknowledge support by the Geosciences Research Program, Office of Basic Energy Sciences, U.S. DOE. NR 35 TC 5 Z9 5 U1 2 U2 21 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD AUG PY 2013 VL 56 IS 12 BP 1121 EP 1128 DI 10.1007/s11244-013-0078-2 PG 8 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 200WF UT WOS:000323100900011 ER PT J AU Liebschner, D Dauter, M Brzuszkiewicz, A Dauter, Z AF Liebschner, Dorothee Dauter, Miroslawa Brzuszkiewicz, Anna Dauter, Zbigniew TI On the reproducibility of protein crystal structures: five atomic resolution structures of trypsin SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID INDEPENDENTLY REFINED MODELS; X-RAY CRYSTALLOGRAPHY; RADIATION-DAMAGE; ACCURACY; DIFFRACTION; HYDRATION; GEOMETRY; DATABASE AB Structural studies of proteins usually rely on a model obtained from one crystal. By investigating the details of this model, crystallographers seek to obtain insight into the function of the macromolecule. It is therefore important to know which details of a protein structure are reproducible or to what extent they might differ. To address this question, the high-resolution structures of five crystals of bovine trypsin obtained under analogous conditions were compared. Global parameters and structural details were investigated. All of the models were of similar quality and the pairwise merged intensities had large correlation coefficients. The C-alpha and backbone atoms of the structures superposed very well. The occupancy of ligands in regions of low thermal motion was reproducible, whereas solvent molecules containing heavier atoms (such as sulfur) or those located on the surface could differ significantly. The coordination lengths of the calcium ion were conserved. A large proportion of the multiple conformations refined to similar occupancies and the residues adopted similar orientations. More than three quarters of the water-molecule sites were conserved within 0.5 angstrom and more than one third were conserved within 0.1 angstrom. An investigation of the protonation states of histidine residues and carboxylate moieties was consistent for all of the models. Radiation-damage effects to disulfide bridges were observed for the same residues and to similar extents. Main-chain bond lengths and angles averaged to similar values and were in agreement with the Engh and Huber targets. Other features, such as peptide flips and the double conformation of the inhibitor molecule, were also reproducible in all of the trypsin structures. Therefore, many details are similar in models obtained from different crystals. However, several features of residues or ligands located in flexible parts of the macromolecule may vary significantly, such as side-chain orientations and the occupancies of certain fragments. C1 [Liebschner, Dorothee; Brzuszkiewicz, Anna; Dauter, Zbigniew] NCI, Argonne Natl Lab, MCL, Synchrotron Radiat Res Sect, Argonne, IL 60439 USA. [Dauter, Miroslawa] Argonne Natl Lab, Basic Res Program, SAIC Frederick Inc, Argonne, IL 60439 USA. [Brzuszkiewicz, Anna] Univ Wroclaw, Fac Chem, PL-50383 Wroclaw, Poland. RP Dauter, Z (reprint author), NCI, Argonne Natl Lab, MCL, Synchrotron Radiat Res Sect, Argonne, IL 60439 USA. EM dauter@anl.gov FU National Cancer Institute, National Institutes of Health [NO1-CO-12400]; NIH, National Cancer Institute, Center for Cancer Research; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX This work was supported in part with Federal funds from the National Cancer Institute, National Institutes of Health contract No. NO1-CO-12400 and the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products or organizations imply endorsement by the US Government. Diffraction data were collected on the NE-CAT beamline 24-ID at the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. NR 41 TC 23 Z9 24 U1 2 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD AUG PY 2013 VL 69 BP 1447 EP 1462 DI 10.1107/S0907444913009050 PN 8 PG 16 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 191WJ UT WOS:000322445100012 PM 23897468 ER PT J AU Finfrock, YZ Stern, EA Alkire, RW Kas, JJ Evans-Lutterodt, K Stein, A Duke, N Lazarski, K Joachimiak, A AF Finfrock, Y. Zou Stern, Edward A. Alkire, R. W. Kas, Joshua J. Evans-Lutterodt, Kenneth Stein, Aaron Duke, Norma Lazarski, Krzysztof Joachimiak, Andrzej TI Mitigation of X-ray damage in macromolecular crystallography by submicrometre line focusing SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID RADIATION-DAMAGE; PROTEIN CRYSTALS; CRYOGENIC TEMPERATURES; DIFFRACTION; DEPENDENCE; ELECTRON; BEAM; RESOLUTION; SULFUR; CASINO AB Reported here are measurements of the penetration depth and spatial distribution of photoelectron (PE) damage excited by 18.6 keV X-ray photons in a lysozyme crystal with a vertical submicrometre line-focus beam of 0.7 mm full-width half-maximum (FWHM). The experimental results determined that the penetration depth of PEs is 5 +/- 0.5 mu m with a monotonically decreasing spatial distribution shape, resulting in mitigation of diffraction signal damage. This does not agree with previous theoretical predication that the mitigation of damage requires a peak of damage outside the focus. A new improved calculation provides some qualitative agreement with the experimental results, but significant errors still remain. The mitigation of radiation damage by line focusing was measured experimentally by comparing the damage in the X-ray-irradiated regions of the submicrometre focus with the large-beam case under conditions of equal exposure and equal volumes of the protein crystal, and a mitigation factor of 4.4 +/- 0.4 was determined. The mitigation of radiation damage is caused by spatial separation of the dominant PE radiation-damage component from the crystal region of the line-focus beam that contributes the diffraction signal. The diffraction signal is generated by coherent scattering of incident X-rays (which introduces no damage), while the overwhelming proportion of damage is caused by PE emission as X-ray photons are absorbed. C1 [Finfrock, Y. Zou; Stern, Edward A.; Kas, Joshua J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Alkire, R. W.; Duke, Norma; Lazarski, Krzysztof] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. [Evans-Lutterodt, Kenneth; Stein, Aaron] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Joachimiak, Andrzej] Argonne Natl Lab, Ctr Mechanist Biol & Biotechnol, Argonne, IL 60439 USA. RP Stern, EA (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM stern@phys.washington.edu OI Stein, Aaron/0000-0003-4424-5416 FU National Science Foundation (NSF) [0650547]; US Department of Energy (DOE), Office of Biological and Environmental Research [DE-AC02-06CH11357]; US DOE, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors wish to thank the members of the Structural Biology Center at Argonne National Laboratory for their help with data collection on the 19-ID beamline, Kenneth Thompson and Jim Greenwell at the University of Washington Physics Shop for helping with the design and construction of the apparatus and Yizhak Yacoby from Hebrew University for valuable discussions. This work was supported by the National Science Foundation (NSF) under Grant No. 0650547 and by the US Department of Energy (DOE), Office of Biological and Environmental Research under contract DE-AC02-06CH11357. The lenses were fabricated in part at the Brookhaven National Laboratory CFN supported by the US DOE, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886 and in part at the Cornell CNF, a member of the NNIN, supported by the NSF. NR 34 TC 4 Z9 4 U1 3 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD AUG PY 2013 VL 69 BP 1463 EP 1469 DI 10.1107/S0907444913009335 PN 8 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 191WJ UT WOS:000322445100013 PM 23897469 ER PT J AU Saleh, AA Pereloma, EV Clausen, B Brown, DW Tome, CN Gazder, AA AF Saleh, Ahmed A. Pereloma, Elena V. Clausen, Bjorn Brown, Donald W. Tome, Carlos N. Gazder, Azdiar A. TI On the evolution and modelling of lattice strains during the cyclic loading of TWIP steel SO ACTA MATERIALIA LA English DT Article DE TWIP steel; Neutron diffraction; Lattice strain; Bauschinger effect; EPSC ID INDUCED PLASTICITY STEELS; STACKING-FAULT ENERGY; STAINLESS-STEEL; SINGLE-CRYSTALS; INTERGRANULAR STRAINS; STRESS-RELAXATION; ELASTIC-CONSTANTS; INTERNAL-STRESSES; AUSTENITIC STEEL; METAL CRYSTALS AB The evolution of lattice strains in fully annealed Fe-24Mn-3Al-2Si-1Ni-0.06C twinning-induced plasticity (TWIP) steel is investigated via in situ neutron diffraction during cyclic (tension compression) loading between strain limits of +/- 1%. The pronounced Bauschinger effect observed upon load reversal is accounted for by a combination of the intergranular residual stresses and the intragranular sources of back stress, such as dislocation pile-ups at the intersection of stacking faults. The recently modified elasto-plastic self-consistent (EPSC) model which empirically accounts for both intergranular and intragranular back stresses has been successfully used to simulate the macroscopic stress-strain response and the evolution of the lattice strains. The EPSC model captures the experimentally observed tension-compression asymmetry as it accounts for the directionality of twinning as well as Schmid factor considerations. For the strain limits used in this study, the EPSC model also predicts that the lower flow stress on reverse shear loading reported in earlier Bauschinger-type experiments on TWIP steel is a geometrical or loading path effect. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Saleh, Ahmed A.; Pereloma, Elena V.; Gazder, Azdiar A.] Univ Wollongong, Sch Mech Mat & Mechatron Engn, Wollongong, NSW 2522, Australia. [Pereloma, Elena V.; Gazder, Azdiar A.] Univ Wollongong, Electron Microscopy Ctr, Wollongong, NSW 2519, Australia. [Clausen, Bjorn] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Brown, Donald W.; Tome, Carlos N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Saleh, AA (reprint author), Univ Wollongong, Sch Mech Mat & Mechatron Engn, Wollongong, NSW 2522, Australia. EM asaleh@uow.edu.au RI Clausen, Bjorn/B-3618-2015; Tome, Carlos/D-5058-2013; OI Clausen, Bjorn/0000-0003-3906-846X; Saleh, Ahmed/0000-0002-0807-6718 FU Commonwealth of Australia under the International Science Linkages program; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [FWP 06SCPE401, W-7405-ENG-36]; Office of Basic Energy Sciences (DOE), USA; Engineering Materials Institute, UOW, Australia; Los Alamos National Security LLC under US DOE [DE AC52 06NA25396] FX The authors are grateful to Prof. D.B. Santos of the Federal University of Minas Gerais, Brazil for providing the source material. The access to major research facilities program (AMRFP) is supported by the Commonwealth of Australia under the International Science Linkages program. Dr. Carlos Tome was fully supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Project FWP 06SCPE401 under US DOE Contract No. W-7405-ENG-36. This work has benefited from the use of the Lu-jan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE), USA and from the partial funding from the Engineering Materials Institute, UOW, Australia. The Los Alamos National Laboratory is operated by Los Alamos National Security LLC under US DOE Contract DE AC52 06NA25396. NR 60 TC 13 Z9 13 U1 2 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2013 VL 61 IS 14 BP 5247 EP 5262 DI 10.1016/j.actamat.2013.05.017 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 196CK UT WOS:000322750800013 ER PT J AU Porta, M Lookman, T AF Porta, Marcel Lookman, Turab TI Heterogeneity and phase transformation in materials: Energy minimization, iterative methods and geometric nonlinearity SO ACTA MATERIALIA LA English DT Article DE Strain compatibility; Finite deformation; Ferroelastics; Spectral methods; Dynamics ID MARTENSITIC-TRANSFORMATION; COMPOSITES; COMPATIBILITY; STRAINS; FERROELASTICS; DISLOCATIONS; MECHANICS; CONTRAST; KINETICS; ALLOYS AB We consider the relationship between methods used to solve problems involving heterogeneities with a focus on phase transformations. We compare methods that solve for mechanical equilibrium based on iterative spectral techniques with those evolving a free energy using inertial and relaxational dynamics in terms of microstructure, convergence and efficiency for the two-dimensional versions of the cubic-to-tetragonal and hexagonal-to-orthorhombic transformations. We generalize the strain-based approach using kinematic compatibility, in conjunction with a Landau-based nonconvex energy functional, to the geometrically nonlinear case for computation using the iterative spectral as well energy-minimizing methods. Our approach uses the strain compatibility equations for geometrically nonlinear elasticity in two dimensions, the geometrically linear strain compatibility equations being recovered in the small strain limit. We show how for the two-dimensional version of the hexagonal-to-orthorhombic transformation with three variant distortions in the microstructure, the linear compatibility equations capture relatively large rotations with small to moderate stains. We propose a reconstruction that uses the mapping between displacement gradients and Lagrange strains to approximate the geometrically nonlinear result within the scope of the linear strain theory if the linear strains are substituted for the Lagrange strains. We illustrate this by evaluating the disclination angle associated with the unique microstructure for this transformation, which otherwise requires geometric nonlinear theory to correctly capture. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Porta, Marcel; Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Porta, M (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM mportatena@gmail.com OI Porta Tena, Marcel/0000-0001-7582-9671 FU US DOE [DE-AC52-06NA25396]; NSERC of Canada FX We thank A. Acharya, K. Barros, K. Dayal, R. Groger, R.A. Lebensohn and S.R. Shenoy for stimulating discussions on aspects of this work. Support from the US DOE under Contract No. DE-AC52-06NA25396 and NSERC of Canada is gratefully acknowledged. NR 44 TC 4 Z9 4 U1 2 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2013 VL 61 IS 14 BP 5311 EP 5340 DI 10.1016/j.actamat.2013.05.022 PG 30 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 196CK UT WOS:000322750800018 ER PT J AU Tracey, B Wolpert, D Alonso, JJ AF Tracey, Brendan Wolpert, David Alonso, Juan J. TI Using Supervised Learning to Improve Monte Carlo Integral Estimation SO AIAA JOURNAL LA English DT Article ID POLYNOMIAL CHAOS AB Monte Carlo techniques are used to estimate the integrals of a function using randomly generated samples. The interest in uncertainty quantification and robust design makes calculating the expected values of such functions (e.g., performance measures) important. Recent developments in scramjets, aircraft technology forecasting, structural reliability, and robust low-boom aircraft designs use Monte Carlo techniques to ensure the appropriate quantification of uncertainties. Because of high variance and slow convergence, Monte Carlo techniques require a large number of function evaluations, limiting the fidelity of the tools that can be used to predict performance. Stacked Monte Carlo is presented, which is a new method for postprocessing an existing set of Monte Carlo samples to improve integral estimation. Stacked Monte Carlo is based on combining fitting functions with cross-validation and should reduce the variance of any type of Monte Carlo integral estimate (importance sampling, quasi-Monte Carlo, etc.) without adding bias. An extensive set of experiments is reported, confirming that the stacked Monte Carlo estimate is more accurate than both the unprocessed Monte Carlo estimate and the estimate from a functional fit. Stacked Monte Carlo is applied to estimate the fuel-burn metrics of future commercial aircraft and sonic boom loudness measures, and the efficiency of Monte Carlo is compared with that of more standard methods. It is shown that for negligible, additional, computational cost, significant increases in accuracy are gained. C1 [Tracey, Brendan; Alonso, Juan J.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Wolpert, David] Los Alamos Natl Lab, Informat Sci Grp, Santa Fe Inst, Los Alamos, NM 87545 USA. RP Tracey, B (reprint author), Stanford Univ, Dept Aeronaut & Astronaut, Durand Bldg 496 Lomita Mall, Stanford, CA 94305 USA. NR 23 TC 4 Z9 4 U1 0 U2 8 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD AUG PY 2013 VL 51 IS 8 BP 2015 EP 2023 DI 10.2514/1.J051655 PG 9 WC Engineering, Aerospace SC Engineering GA 193JZ UT WOS:000322557400019 ER PT J AU Swisher, JA Lin, LC Kim, J Smit, B AF Swisher, Joseph A. Lin, Li-Chiang Kim, Jihan Smit, Berend TI Evaluating mixture adsorption models using molecular simulation SO AICHE JOURNAL LA English DT Article DE adsorption; gas; simulation; molecular; computer simulations (MC and MD); thermodynamics; classical; zeolites ID METAL-ORGANIC FRAMEWORKS; ADSORBED SOLUTION THEORY; CARBON-DIOXIDE ADSORPTION; MONTE-CARLO SIMULATIONS; MIXED-GAS ADSORPTION; ACTIVATED CARBON; BINARY-MIXTURES; HETEROGENEOUS SURFACES; NANOPOROUS MATERIALS; NONIDEAL MIXTURES AB The design of adsorption-based separation processes using novel adsorbents requires reliable data for the adsorption of fluid mixtures on candidate adsorbents. Due to the difficulty of generating sufficient data across possible operating conditions, process designs generally rely on interpolation of pure-component data using a model, most commonly ideal adsorbed solution theory (IAST), and related theories. There are many cases where IAST fails to provide an adequate description of mixture adsorption, usually due to the fact that practical adsorbents do not have uniform surfaces. We have evaluated the use of a segregated version of IAST, where competition is assumed to occur at isolated adsorption sites. This simple modification can provide the correct description of adsorption across a large range of pressures using ideal isotherm models. We also demonstrate the importance of identifying multiple sites even for weakly adsorbing components to provide the correct behavior at high pressure. (c) 2013 American Institute of Chemical Engineers AIChE J, 59: 3054-3064, 2013 C1 [Swisher, Joseph A.; Lin, Li-Chiang; Kim, Jihan] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Swisher, Joseph A.; Lin, Li-Chiang; Kim, Jihan; Smit, Berend] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Smit, Berend] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Smit, B (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM berend-smit@berkeley.edu RI Smit, Berend/B-7580-2009; EFRC, CGS/I-6680-2012; Kim, Jihan/H-8002-2013; Lin, Li-Chiang/J-8120-2014; Stangl, Kristin/D-1502-2015; OI Smit, Berend/0000-0003-4653-8562; Lin, Li-Chiang/0000-0002-2821-9501 FU Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy; Deutsche Forschungsgemeinschaft (DFG) [SPP 1570]; U.S. Department of Energy through the Carbon Capture Simulation Initiative (CCSI) [DE-AC02-05CH11231]; Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015]; NIH; Theoretical and Computational Biophysics group at the Beckman Institute, University of Illinois at Urbana-Champaign FX J.A.S. was supported by funding from the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy. L.-C. L. was supported by the Deutsche Forschungsgemeinschaft (DFG, priority program SPP 1570). J.K. was supported by the U.S. Department of Energy under contract DE-AC02-05CH11231 through the Carbon Capture Simulation Initiative (CCSI). B. S. was supported as part of the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001015. Figures 3, 5, and 7 were made with VMD software support. VMD is developed with NIH support by the Theoretical and Computational Biophysics group at the Beckman Institute, University of Illinois at Urbana-Champaign. NR 41 TC 9 Z9 9 U1 2 U2 48 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 J9 AICHE J JI AICHE J. PD AUG PY 2013 VL 59 IS 8 BP 3054 EP 3064 DI 10.1002/aic.14058 PG 11 WC Engineering, Chemical SC Engineering GA 185IG UT WOS:000321960400029 ER PT J AU Spagnolo, V Patimisco, P Borri, S Scamarcio, G Bernacki, BE Kriesel, J AF Spagnolo, Vincenzo Patimisco, Pietro Borri, Simone Scamarcio, Gaetano Bernacki, Bruce E. Kriesel, Jason TI Mid-infrared fiber-coupled QCL-QEPAS sensor SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID QUANTUM CASCADE LASER; ENHANCED PHOTOACOUSTIC-SPECTROSCOPY AB An innovative spectroscopic system based on an external cavity quantum cascade laser (EC-QCL) coupled with a mid-infrared (mid-IR) fiber and quartz enhanced photoacoustic spectroscopy (QEPAS) is described. SF6 has been selected as a target gas in demonstration of the system for trace gas sensing. Single mode laser delivery through the prongs of the quartz tuning fork has been obtained employing a hollow waveguide fiber with inner silver-silver iodine (Ag-AgI) coatings and internal core diameter of 300 mu m. A detailed design and realization of the QCL fiber coupling and output collimator system allowed almost practically all (99.4 %) of the laser beam to be transmitted through the spectrophone module. The achieved sensitivity of the system is 50 parts per trillion in 1 s, corresponding to a record for QEPAS normalized noise-equivalent absorption of 2.7 x 10(-10) W cm(-1) Hz(-1/2). C1 [Spagnolo, Vincenzo; Patimisco, Pietro; Borri, Simone; Scamarcio, Gaetano] Univ Bari, Dipartimento Interateneo Fis, Bari, Italy. [Spagnolo, Vincenzo; Patimisco, Pietro; Borri, Simone; Scamarcio, Gaetano] Politecn Bari, CNR IFN UOS BARI, Bari, Italy. [Bernacki, Bruce E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kriesel, Jason] Optoknowledge Syst Inc, Torrance, CA USA. RP Spagnolo, V (reprint author), Univ Bari, Dipartimento Interateneo Fis, Via Amendola 173, Bari, Italy. EM spagnolo@fisica.uniba.it RI Scamarcio, Gaetano/I-7674-2014; OI Scamarcio, Gaetano/0000-0003-0808-4336; Borri, Simone/0000-0001-8471-2803; Spagnolo, Vincenzo/0000-0002-4867-8166 FU [PON01_02238]; [PON02_00675] FX The authors acknowledge financial support from the Italian research projects: PON01_02238 and PON02_00675. NR 26 TC 35 Z9 36 U1 6 U2 55 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD AUG PY 2013 VL 112 IS 1 BP 25 EP 33 DI 10.1007/s00340-013-5388-3 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA 194ZP UT WOS:000322671500003 ER PT J AU Kuncarayakti, H Doi, M Aldering, G Arimoto, N Maeda, K Morokuma, T Pereira, R Usuda, T Hashiba, Y AF Kuncarayakti, Hanindyo Doi, Mamoru Aldering, Greg Arimoto, Nobuo Maeda, Keiichi Morokuma, Tomoki Pereira, Rui Usuda, Tomonori Hashiba, Yasuhito TI INTEGRAL FIELD SPECTROSCOPY OF SUPERNOVA EXPLOSION SITES: CONSTRAINING THE MASS AND METALLICITY OF THE PROGENITORS. II. TYPE II-P AND II-L SUPERNOVAE SO ASTRONOMICAL JOURNAL LA English DT Article DE stars: massive; supernovae: general ID CORE-COLLAPSE SUPERNOVAE; RED SUPERGIANT PROGENITOR; STAR-CLUSTERS; SPIRAL GALAXIES; EVOLUTIONARY SEQUENCES; RADIATIVE OPACITIES; STELLAR MODELS; HOST GALAXIES; SN 2002HH; REGIONS AB Thirteen explosion sites of Type II-P and II-L supernovae (SNe) in nearby galaxies have been observed using integral field spectroscopy, enabling both spatial and spectral study of the explosion sites. We used the properties of the parent stellar population of the coeval SN progenitor star to derive its metallicity and initial mass. The spectrum of the parent stellar population yields estimates of metallicity via the strong-line method and age via a comparison with simple stellar population models. These metallicity and age parameters are adopted for the progenitor star. Age, or lifetime of the star, was used to derive the initial (zero-age main sequence) mass of the star using comparisons with stellar evolution models. With this technique, we were able to determine the metallicities and initial masses of the SN progenitors in our sample. Our results indicate that some Type II SN progenitors may have been stars with masses comparable to those of SN Ib/c progenitors. C1 [Kuncarayakti, Hanindyo; Maeda, Keiichi] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Kuncarayakti, Hanindyo; Doi, Mamoru; Morokuma, Tomoki; Hashiba, Yasuhito] Univ Tokyo, Grad Sch Sci, Inst Astron, Mitaka, Tokyo 1810015, Japan. [Kuncarayakti, Hanindyo; Hashiba, Yasuhito] Univ Tokyo, Grad Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Doi, Mamoru] Univ Tokyo, Res Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan. [Aldering, Greg] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Arimoto, Nobuo] Natl Astron Observ Japan, Mitaka, Tokyo 1810015, Japan. [Arimoto, Nobuo; Usuda, Tomonori] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Pereira, Rui] Inst Phys Nucl, CNRS, IN2P3, F-69622 Villeurbanne, France. RP Kuncarayakti, H (reprint author), Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. EM hanindyo.kuncarayakti@ipmu.jp FU JSPS core-to-core program "International Research Network for Dark Energy"; JSPS; National Astronomical Observatory of Japan; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Aeronautics and Space Administration; [23740141] FX We acknowledge the anonymous referee for helpful comments and suggestions. H.K. acknowledges generous support from the Japanese government MEXT (Monbukagakusho) scholarship. Useful help from R. Pain, S. Rodney, and P. Weilbacher on working with data cubes is appreciated. We thank G. Leloudas for carefully reading the draft and providing important comments. We also thank J. Sollerman and F. Taddia for helpful comments on the draft of the manuscript. This work was supported in part by a JSPS core-to-core program "International Research Network for Dark Energy" and by JSPS research grants. This work is based on the data from the University of Hawaii 88 inch Telescope (UH88); the telescope time was afforded from funding from the National Astronomical Observatory of Japan. The work of K.M. is supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and Grant-in-aid for Scientific Research (23740141). G.A. was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SNIFS on the UH 2.2 m telescope is part of the Nearby Supernova Factory II project, a scientific collaboration among the Centre de Recherche Astronomique de Lyon, Institut de Physique Nucleaire de Lyon, Laboratoire de Physique Nucleaire et des Hautes Energies, Lawrence Berkeley National Laboratory, Yale University, University of Bonn, Max Planck Institute for Astrophysics, Tsinghua Center for Astrophysics, and the Centre de Physique des Particules de Marseille. This research has made use of the SIMBAD database and ALADIN, operated at CDS, Strasbourg, France. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 66 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD AUG PY 2013 VL 146 IS 2 AR 31 DI 10.1088/0004-6256/146/2/31 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 183TW UT WOS:000321841100013 ER PT J AU Kuncarayakti, H Doi, M Aldering, G Arimoto, N Maeda, K Morokuma, T Pereira, R Usuda, T Hashiba, Y AF Kuncarayakti, Hanindyo Doi, Mamoru Aldering, Greg Arimoto, Nobuo Maeda, Keiichi Morokuma, Tomoki Pereira, Rui Usuda, Tomonori Hashiba, Yasuhito TI INTEGRAL FIELD SPECTROSCOPY OF SUPERNOVA EXPLOSION SITES: CONSTRAINING THE MASS AND METALLICITY OF THE PROGENITORS. I. TYPE Ib AND Ic SUPERNOVAE SO ASTRONOMICAL JOURNAL LA English DT Article DE stars: massive; supernovae: general ID CORE-COLLAPSE SUPERNOVAE; STAR-FORMATION; OBSERVATIONAL CONSTRAINTS; MULTIOBJECT SPECTROGRAPH; EVOLUTIONARY SEQUENCES; SUPERGIANT PROGENITOR; RELATIVE FREQUENCIES; RADIATIVE OPACITIES; STELLAR POPULATIONS; SYNTHESIS MODELS AB Integral field spectroscopy of 11 Type Ib/Ic supernova (SN Ib/Ic) explosion sites in nearby galaxies has been obtained using UH88/SNIFS and Gemini-N/GMOS. The use of integral field spectroscopy enables us to obtain both spatial and spectral information about the explosion site, enabling the identification of the parent stellar population of the SN progenitor star. The spectrum of the parent population provides metallicity determination via strong-line method and age estimation obtained via comparison with simple stellar population models. We adopt this information as the metallicity and age of the SN progenitor, under the assumption that it was coeval with the parent stellar population. The age of the star corresponds to its lifetime, which in turn gives the estimate of its initial mass. With this method we were able to determine both the metallicity and initial (zero-age main sequence) mass of the progenitor stars of SNe Ib and Ic. We found that on average SN Ic explosion sites are more metal-rich and younger than SN Ib sites. The initial mass of the progenitors derived from parent stellar population age suggests that SN Ic has more massive progenitors than SN Ib. In addition, we also found indication that some of our SN progenitors are less massive than similar to 25M(circle dot), indicating that they may have been stars in a close binary system that have lost their outer envelope via binary interactions to produce SNe Ib/Ic, instead of single Wolf-Rayet stars. These findings support the current suggestions that both binary and single progenitor channels are in effect in producing SNe Ib/Ic. This work also demonstrates the power of integral field spectroscopy in investigating SN environments and active star-forming regions. C1 [Kuncarayakti, Hanindyo; Maeda, Keiichi] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Kuncarayakti, Hanindyo; Doi, Mamoru; Morokuma, Tomoki; Hashiba, Yasuhito] Univ Tokyo, Grad Sch Sci, Inst Astron, Mitaka, Tokyo 1810015, Japan. [Kuncarayakti, Hanindyo; Hashiba, Yasuhito] Univ Tokyo, Grad Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Doi, Mamoru] Univ Tokyo, Res Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan. [Aldering, Greg] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Arimoto, Nobuo] Natl Astron Observ Japan, Mitaka, Tokyo 1810015, Japan. [Arimoto, Nobuo; Usuda, Tomonori] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Pereira, Rui] Inst Phys Nucl, CNRS, IN2P3, F-69622 Villeurbanne, France. RP Kuncarayakti, H (reprint author), Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. EM hanindyo.kuncarayakti@ipmu.jp FU National Astronomical Observatory of Japan; JSPS core-to core program "International Research Network for Dark Energy"; JSPS; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Aeronautics and Space Administration; [23740141] FX We acknowledge the anonymous referee for helpful comments and suggestions. H.K. acknowledges generous support from the Japanese government MEXT (Monbukagakusho) scholarship. Useful help from R. Pain, S. Rodney, and P. Weilbacher on working with data cubes is appreciated. We thank G. Leloudas for carefully reading the draft and providing important comments. We also thank J. Sollerman and F. Taddia for helpful comments on the draft of the manuscript. We acknowledge excellent support from Gemini Observatory staff for our observation. This work is based on data collected using the Gemini Telescope, the opportunity for which was made available by making use of the inter-observatory time-exchange framework between Gemini and Subaru Observatories. This work is based on data using the University of Hawaii 88 inch Telescope (UH88), for which the telescope time was afforded by funding from the National Astronomical Observatory of Japan. This work was supported in part by a JSPS core-to core program "International Research Network for Dark Energy" and by JSPS research grants. The work of K.M. is supported by a World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and a Grant-in-aid for Scientific Research (23740141). G.A. was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SNIFS on the UH 2.2 m telescope is part of the Nearby Supernova Factory II project, a scientific collaboration among the Centre de Recherche Astronomique de Lyon, Institut de Physique Nucleaire de Lyon, Laboratoire de Physique Nucleaire et des Hautes Energies, Lawrence Berkeley National Laboratory, Yale University, University of Bonn, Max Planck Institute for Astrophysics, Tsinghua Center for Astrophysics, and the Centre de Physique des Particules de Marseille. This research has made use of the SIMBAD database and ALADIN, operated at CDS, Strasbourg, France. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 90 TC 20 Z9 20 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD AUG PY 2013 VL 146 IS 2 AR 30 DI 10.1088/0004-6256/146/2/30 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 183TW UT WOS:000321841100012 ER PT J AU Sesar, B Ivezic, Z Stuart, JS Morgan, DM Becker, AC Sharma, S Palaversa, L Juric, M Wozniak, P Oluseyi, H AF Sesar, Branimir Ivezic, Zeljko Stuart, J. Scott Morgan, Dylan M. Becker, Andrew C. Sharma, Sanjib Palaversa, Lovro Juric, Mario Wozniak, Przemyslaw Oluseyi, Hakeem TI EXPLORING THE VARIABLE SKY WITH LINEAR. II. HALO STRUCTURE AND SUBSTRUCTURE TRACED BY RR LYRAE STARS TO 30 kpc SO ASTRONOMICAL JOURNAL LA English DT Article DE Galaxy: halo; Galaxy: stellar content; Galaxy: structure; stars: variables: RR Lyrae ID HORIZONTAL-BRANCH STARS; WAY STELLAR HALO; SURVEY STRIPE 82; MILKY-WAY; GALACTIC HALO; GLOBULAR-CLUSTERS; PHOTOMETRIC SURVEY; GALAXY FORMATION; VELOCITY GROUPS; PROPER MOTIONS AB We present a sample of similar to 5000 RR Lyrae stars selected from the recalibrated LINEAR data set and detected at heliocentric distances between 5 kpc and 30 kpc over similar to 8000 deg(2) of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We analyze in detail the light curve properties and Galactic distribution of the subset of similar to 4000 type ab RR Lyrae (RRab) stars, including a search for new halo substructures and the number density distribution as a function of Oosterhoff type. We find evidence for the Oosterhoff dichotomy among field RR Lyrae stars, with the ratio of the type II and I subsamples of about 1:4, but with a weaker separation than for globular cluster stars. The wide sky coverage and depth of this sample allow unique constraints for the number density distribution of halo RRab stars as a function of galactocentric distance: it can be described as an oblate ellipsoid with an axis ratio q = 0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Consistent with previous studies, we find that the Oosterhoff type II subsample has a steeper number density profile than the Oosterhoff type I subsample. Using the group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters are suggestive of tidal streams possibly originating from globular clusters. Spectroscopic follow-up of detected halo groups is encouraged. C1 [Sesar, Branimir] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Ivezic, Zeljko; Morgan, Dylan M.; Becker, Andrew C.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Stuart, J. Scott] MIT, Lincoln Lab, Lexington, MA 02420 USA. [Sharma, Sanjib] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Palaversa, Lovro] Univ Geneva, Astron Observ, CH-1290 Sauverny, Switzerland. [Juric, Mario] Univ Arizona, Steward Observ, Tucson, AZ 85121 USA. [Juric, Mario] LSST Corp, Tucson, AZ 85721 USA. [Wozniak, Przemyslaw] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Oluseyi, Hakeem] Florida Inst Technol, Melbourne, FL 32901 USA. RP Sesar, B (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. OI Wozniak, Przemyslaw/0000-0002-9919-3310; Sharma, Sanjib/0000-0002-0920-809X FU NSF grant [AST-0908139, AST-0707901, AST-1008784, AST-0551161]; Croatian National Science Foundation [O-1548-2009]; NASA ADP grant [NNX09AC77G]; National Aeronautics and Space Administration at MIT Lincoln Laboratory under Air Force Contract [FA8721-05-C-0002] FX B.S. is grateful for NSF grant AST-0908139 to Judith G. Cohen for partial support. Z.I. acknowledges support by NSF grants AST-0707901 and AST-1008784 to the University of Washington, by NSF grant AST-0551161 to LSST for design and development activity, and by the Croatian National Science Foundation grant O-1548-2009. A.C.B. acknowledges support from NASA ADP grant NNX09AC77G. The LINEAR program is funded by the National Aeronautics and Space Administration at MIT Lincoln Laboratory under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government. NR 67 TC 33 Z9 33 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2013 VL 146 IS 2 AR 21 DI 10.1088/0004-6256/146/2/21 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 183TW UT WOS:000321841100003 ER PT J AU Smee, SA Gunn, JE Uomoto, A Roe, N Schlegel, D Rockosi, CM Carr, MA Leger, F Dawson, KS Olmstead, MD Brinkmann, J Owen, R Barkhouser, RH Honscheid, K Harding, P Long, D Lupton, RH Loomis, C Anderson, L Annis, J Bernardi, M Bhardwaj, V Bizyaev, D Bolton, AS Brewington, H Briggs, JW Burles, S Burns, JG Castander, FJ Connolly, A Davenport, JRA Ebelke, G Epps, H Feldman, PD Friedman, SD Frieman, J Heckman, T Hull, CL Knapp, GR Lawrence, DM Loveday, J Mannery, EJ Malanushenko, E Malanushenko, V Merrelli, AJ Muna, D Newman, PR Nichol, RC Oravetz, D Pan, K Pope, AC Ricketts, PG Shelden, A Sandford, D Siegmund, W Simmons, A Smith, DS Snedden, S Schneider, DP SubbaRao, M Tremonti, C Waddell, P York, DG AF Smee, Stephen A. Gunn, James E. Uomoto, Alan Roe, Natalie Schlegel, David Rockosi, Constance M. Carr, Michael A. Leger, French Dawson, Kyle S. Olmstead, Matthew D. Brinkmann, Jon Owen, Russell Barkhouser, Robert H. Honscheid, Klaus Harding, Paul Long, Dan Lupton, Robert H. Loomis, Craig Anderson, Lauren Annis, James Bernardi, Mariangela Bhardwaj, Vaishali Bizyaev, Dmitry Bolton, Adam S. Brewington, Howard Briggs, John W. Burles, Scott Burns, James G. Javier Castander, Francisco Connolly, Andrew Davenport, James R. A. Ebelke, Garrett Epps, Harland Feldman, Paul D. Friedman, Scott D. Frieman, Joshua Heckman, Timothy Hull, Charles L. Knapp, Gillian R. Lawrence, David M. Loveday, Jon Mannery, Edward J. Malanushenko, Elena Malanushenko, Viktor Merrelli, Aronne James Muna, Demitri Newman, Peter R. Nichol, Robert C. Oravetz, Daniel Pan, Kaike Pope, Adrian C. Ricketts, Paul G. Shelden, Alaina Sandford, Dale Siegmund, Walter Simmons, Audrey Smith, D. Shane Snedden, Stephanie Schneider, Donald P. SubbaRao, Mark Tremonti, Christy Waddell, Patrick York, Donald G. TI THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology: observations; instrumentation: spectrographs; surveys ID 9TH DATA RELEASE; SDSS-III; ACOUSTIC-OSCILLATIONS; TARGET SELECTION; GALAXY SAMPLE; TELESCOPE; CALIBRATION; SYSTEM; STARS; CCDS AB We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Ly alpha absorption of 160,000 high redshift quasars over 10,000 deg(2) of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = lambda/FWHM similar to 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances. C1 [Smee, Stephen A.; Barkhouser, Robert H.; Feldman, Paul D.; Heckman, Timothy] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Gunn, James E.; Carr, Michael A.; Lupton, Robert H.; Loomis, Craig; Knapp, Gillian R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Uomoto, Alan; Hull, Charles L.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Roe, Natalie; Schlegel, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Rockosi, Constance M.; Epps, Harland; Sandford, Dale] Univ Calif Santa Cruz, UC Observ, Santa Cruz, CA 95064 USA. [Rockosi, Constance M.; Epps, Harland; Sandford, Dale] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Leger, French; Owen, Russell; Anderson, Lauren; Bhardwaj, Vaishali; Connolly, Andrew; Davenport, James R. A.; Mannery, Edward J.; Siegmund, Walter] Univ Washington, Dept Astron, Seattle, WA 09195 USA. [Dawson, Kyle S.; Olmstead, Matthew D.; Bolton, Adam S.; Lawrence, David M.; Ricketts, Paul G.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Brinkmann, Jon; Long, Dan; Bizyaev, Dmitry; Brewington, Howard; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Newman, Peter R.; Oravetz, Daniel; Pan, Kaike; Shelden, Alaina; Simmons, Audrey; Snedden, Stephanie] Apache Point Observ, Sunspot, NM 88349 USA. [Honscheid, Klaus; Burns, James G.; Smith, D. Shane] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Honscheid, Klaus; Burns, James G.; Smith, D. Shane] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Harding, Paul] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Annis, James; Frieman, Joshua] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bernardi, Mariangela; SubbaRao, Mark] Univ Penn, Dept Astron & Astrophys, Philadelphia, PA 19104 USA. [Briggs, John W.] Mittelman Family Fdn, HUT Observ, Eagle, CO 81631 USA. [Burles, Scott] MIT, Dept Phys, Cambridge, MA 02139 USA. [Javier Castander, Francisco] Inst Ciencies Espai IEEC CSIC, E-08193 Barcelona, Spain. [Javier Castander, Francisco; Friedman, Scott D.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Loveday, Jon] Univ Sussex, Ctr Astron, Brighton BN1 9QJ, E Sussex, England. [Merrelli, Aronne James] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Muna, Demitri] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Pope, Adrian C.] Argonne Natl Lab, Div High Energy Phys, Lemont, IL 60439 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Tremonti, Christy] Univ Wisconsin, Dept Astron, Madison, WI 53703 USA. [Waddell, Patrick] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [York, Donald G.] Univ Chicago, Fermi Inst, Chicago, IL 60637 USA. RP Smee, SA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. EM smee@pha.jhu.edu OI Davenport, James/0000-0002-0637-835X FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 49 TC 223 Z9 223 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2013 VL 146 IS 2 AR 32 DI 10.1088/0004-6256/146/2/32 PG 40 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 183TW UT WOS:000321841100014 ER PT J AU Engel, K Sasaki, T Wang, Q Kuriyan, J AF Engel, Kate Sasaki, Tomoaki Wang, Qi Kuriyan, John TI A highly efficient peptide substrate for EGFR activates the kinase by inducing aggregation SO BIOCHEMICAL JOURNAL LA English DT Article DE activation; aggregation; dimer; epidermal growth factor receptor (EGFR); fibril; kinetics ID GROWTH-FACTOR RECEPTOR; PROTEIN-TYROSINE KINASE; KINETIC-PROPERTIES; BINDING AFFINITY; MECHANISM; DIMERIZATION; INHIBITOR; DOMAIN; AUTOPHOSPHORYLATION; PHOSPHORYLATION AB Formation of an asymmetric dimer by the EGFR (epidermal growth factor receptor) kinase domains results in allosteric activation. Since this dimer does not readily form in solution, the EGFR kinase domain phosphorylates most peptide substrates with a relatively low catalytic efficiency. Peptide C is a synthetic peptide substrate of EGFR developed by others that is phosphorylated with a significantly higher catalytic efficiency, and we sought to understand the basis for this. Peptide C was found to increase EGFR kinase activity by promoting formation of the EGFR kinase domain asymmetric dimer. Activation of the kinase domain by Peptide C also enhances phosphorylation of other substrates. Aggregation of the EGFR kinase domain by Peptide C probably underlies activation, and Peptide C precipitates several other proteins. Peptide C was found to form fibrils independent of the presence of EGFR, and these fibrils may facilitate aggregation and activation of the kinase domain. These results establish that a peptide substrate of EGFR may increase catalytic activity by promoting kinase domain dimerization by an aggregation-mediated mechanism. C1 [Engel, Kate; Sasaki, Tomoaki; Wang, Qi; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Engel, Kate; Sasaki, Tomoaki; Wang, Qi; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Kuriyan, John] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu FU Howard Hughes Medical Institute; National Cancer Institute [2-R01-CA096504-06]; Susan G. Komen for the Cure [KG081684] FX This work was funded by institutional funds from the Howard Hughes Medical Institute, the National Cancer Institute [grant number 2-R01-CA096504-06] and Susan G. Komen for the Cure [grant number KG081684]. NR 28 TC 2 Z9 2 U1 0 U2 8 PU PORTLAND PRESS LTD PI LONDON PA THIRD FLOOR, EAGLE HOUSE, 16 PROCTER STREET, LONDON WC1V 6 NX, ENGLAND SN 0264-6021 EI 1470-8728 J9 BIOCHEM J JI Biochem. J. PD AUG 1 PY 2013 VL 453 BP 337 EP 344 DI 10.1042/BJ20130537 PN 3 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 190RU UT WOS:000322358700003 PM 23734957 ER PT J AU Muckerman, JT Skone, JH Ning, M Wasada-Tsutsui, Y AF Muckerman, James T. Skone, Jonathan H. Ning, Ming Wasada-Tsutsui, Yuko TI Toward the accurate calculation of pK(a) values in water and acetonitrile SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Article DE pK(a) value; Solvation model; Acidity ID GAS-PHASE ACIDITIES; DENSITY-FUNCTIONAL THEORY; SOLVATION FREE-ENERGIES; PRINCIPLES-BASED METHOD; AB-INITIO CALCULATIONS; PROTON AFFINITIES; ORGANIC-ACIDS; DISSOCIATION-CONSTANTS; DIMETHYL-SULFOXIDE; CARBOXYLIC-ACIDS AB We present a simple approach for the calculation of accurate pK(a) values in water and acetonitrile based on the straightforward calculation of the gas-phase absolute free energies of the acid and conjugate base with use of only a continuum solvation model to obtain the corresponding solution-phase free energies. Most of the error in such an approach arises from inaccurate differential solvation free energies of the acid and conjugate base which is removed in our approach using a correction based on the realization that the gas-phase acidities have only a small systematic error relative to the dominant systematic error in the differential solvation. The methodology is outlined in the context of the calculation of a set of neutral acids with water as the solvent for a reasonably accurate electronic structure level of theory (DFT), basis set, and implicit solvation model. It is then applied to the comparison of results for three different hybrid density functionals to illustrate the insensitivity to the functional. Finally, the approach is applied to the comparison of results for sets of neutral acids and protonated amine cationic acids in both aqueous (water) and nonaqueous (acetonitrile) solvents. The methodology is shown to generally predict the pK(a) values for all the cases investigated to within I pH unit so long as the differential solvation error is larger than the systematic error in the gas-phase acidity calculations. Such an approach is rather general and does not have additional complications that would arise in a cluster-continuum method, thus giving it strength as a simple high-throughput means to calculate absolute pK(a) values. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. (C) 2013 Elsevier B.V. All rights reserved. C1 [Muckerman, James T.; Skone, Jonathan H.; Ning, Ming] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Wasada-Tsutsui, Yuko] Nagoya Inst Technol, Grad Sch Engn, Showa Ku, Nagoya, Aichi 4668555, Japan. RP Muckerman, JT (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM muckerma@bnl.gov NR 68 TC 18 Z9 18 U1 2 U2 63 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD AUG-SEP PY 2013 VL 1827 IS 8-9 SI SI BP 882 EP 891 DI 10.1016/j.bbabio.2013.03.011 PG 10 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 191LK UT WOS:000322414300003 PM 23567870 ER PT J AU King, PW AF King, Paul W. TI Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Review DE Interface; Electron-transfer; Nanoparticle; Photocatalysis; Enzyme biohybrid; Solar conversion ID DIRECT ELECTRON-TRANSFER; PHOTOELECTROCHEMICAL BIOFUEL CELL; SEMICONDUCTOR QUANTUM DOTS; WALL CARBON NANOTUBES; PHOTOSYSTEM-I; CLOSTRIDIUM-PASTEURIANUM; CHARGE-TRANSFER; H-2 PRODUCTION; CHLAMYDOMONAS-REINHARDTII; PHOTOSYNTHETIC ORGANISMS AB The direct conversion of sunlight into biofuels is an intriguing alternative to a continued reliance on fossil fuels. Natural photosynthesis has long been investigated both as a potential solution, and as a model for utilizing solar energy to drive a water-to-fuel cycle. The molecules and organizational structure provide a template to inspire the design of efficient molecular systems for photocatalysis. A clear design strategy is the coordination of molecular interactions that match kinetic rates and energetic levels to control the direction and flow of energy from light harvesting to catalysis. Energy transduction and electron-transfer reactions occur through interfaces formed between complexes of donor-acceptor molecules. Although the structures of several of the key biological complexes have been solved, detailed descriptions of many electron-transfer complexes are lacking, which presents a challenge to designing and engineering biomolecular systems for solar conversion. Alternatively, it is possible to couple the catalytic power of biological enzymes to light harvesting by semiconductor nanomaterials. In these molecules, surface chemistry and structure can be designed using ligands. The passivation effect of the ligand can also dramatically affect the photophysical properties of the semiconductor, and energetics of external charge-transfer. The length, degree of bond saturation (aromaticity), and solvent exposed functional groups of ligands can be manipulated to further tune the interface to control molecular assembly, and complex stability in photocatalytic hybrids. The results of this research show how ligand selection is critical to designing molecular interfaces that promote efficient self-assembly, charge-transfer and photocatalysis. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. (C) 2013 Elsevier B.V. All rights reserved. C1 Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP King, PW (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. EM paul.king@nrel.gov RI King, Paul/D-9979-2011 OI King, Paul/0000-0001-5039-654X FU U.S. Department of Energy, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX I would like to thank Dr. Katherine A. Brown (NREL), Prof. Gordana Dukovic (CU-Boulder), Dr. Maria L Ghirardi (NREL), Dr. David W. Mulder (NREL), Michael W. Ratzloff (NREL) and Dr. Qing Song (IBM) for insights and helpful discussions in preparation of this manuscript, and to Drs. Brown and Song for the use of preliminary data shown in Fig. 5.1 am grateful for funding support from the U.S. Department of Energy, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences; and for support by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 115 TC 30 Z9 30 U1 10 U2 176 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD AUG-SEP PY 2013 VL 1827 IS 8-9 SI SI BP 949 EP 957 DI 10.1016/j.bbabio.2013.03.006 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 191LK UT WOS:000322414300008 PM 23541891 ER PT J AU Fujita, E Muckerman, JT Himeda, Y AF Fujita, Etsuko Muckerman, James T. Himeda, Yuichiro TI Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Review DE CO2 hydrogenation; Formic acid; Dehydrogenation; Ir complexes; H-2 storage; Bio-inspired catalysts ID SUPERCRITICAL CARBON-DIOXIDE; AQUEOUS HYDROGEN CARBONATE; HALF-SANDWICH COMPLEXES; FE-ONLY HYDROGENASE; HOMOGENEOUS HYDROGENATION; CATALYTIC-HYDROGENATION; MILD CONDITIONS; RUTHENIUM CATALYSTS; AMBIENT-TEMPERATURE; WATER SOLUBILITY AB Recent investigations of the interconversion of CO2 and formic acid using Ru, Ir and Fe complexes are summarized in this review. During the past several years, both the reaction rates and catalyst stabilities have been significantly improved. Remarkably, the interconversion (i.e., reversibility) has also been achieved under mild conditions in environmentally benign water solvent by slightly changing the pH of the aqueous solution. Only a few catalysts seem to reflect a bin-inspired design such as the use of proton responsive ligands, ligands with pendent bases or acids for a second-coordination-sphere interaction, electroresponsive ligands, and/or ligands having a hydrogen bonding function with a solvent molecule or an added reagent. The most successful of these is an iridium dinuclear complex catalyst that at least has the first three of these characteristics associated with its bridging ligand. By utilizing an acid/base equilibrium for proton removal, the ligand becomes a strong electron donor, resulting in Ir(I) character with a vacant coordination site at each metal center in slightly basic solution. Complemented by DFT calculations, kinetic studies of the rates of formate production using a related family of Ir complexes with and without such functions on the ligand reveal that the rate-determining step for the CO2 hydrogenation is likely to be H-2 addition through heterolytic cleavage involving a "proton relay" through the pendent base. The dehydrogenation of formic acid, owing to the proton responsive ligands changing character under slightly acidic pH conditions, is likely to occur by a mechanism with a different rate-determining step. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. (C) 2012 Elsevier B.V. All rights reserved. C1 [Fujita, Etsuko; Muckerman, James T.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Himeda, Yuichiro] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. RP Fujita, E (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM fujita@bnl.gov RI Himeda, Yuichiro/E-8613-2014 FU U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences; Japanese Ministry of Economy, Trade, and Industry FX The work at BNL was carried out under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences. YH thanks the Japanese Ministry of Economy, Trade, and Industry for financial support. NR 62 TC 45 Z9 46 U1 6 U2 157 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD AUG-SEP PY 2013 VL 1827 IS 8-9 SI SI BP 1031 EP 1038 DI 10.1016/j.bbabio.2012.11.004 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 191LK UT WOS:000322414300014 PM 23174332 ER PT J AU Shaw, WJ Helm, ML DuBois, DL AF Shaw, Wendy J. Helm, Monte L. DuBois, Daniel L. TI A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Review DE Hydrogen; Electrochemistry; Hydrogenase mimic; Homogeneous catalysis; Proton transport ID OUTER-COORDINATION SPHERE; FE-ONLY HYDROGENASE; H-2 PRODUCTION; ACTIVE-SITE; IRON HYDROGENASE; PROTON RELAYS; DESULFOVIBRIO-DESULFURICANS; LOW OVERPOTENTIALS; OXYGEN REDUCTION; PENDANT AMINES AB This review discusses the development of molecular electrocatalysts for H-2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first, second, and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride donor abilities and other important thermodynamic parameters. The second coordination sphere includes functional groups such as pendent acids or bases that can interact with bound substrates such as H-2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H-2, controlling intra-and intermolecular proton transfer reactions, and providing a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor ability of the catalysts using the first coordination sphere and the proton donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H-2 production, oxidation, or bidirectional (catalyzing both H-2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that is beyond the second coordination sphere. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes, and these simple systems provide insights into enzyme function and reactivity that may be difficult to probe in enzymes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. (C) 2013 Elsevier B.V. All rights reserved. C1 [Shaw, Wendy J.; Helm, Monte L.; DuBois, Daniel L.] Pacific NW Natl Lab, Div Phys Sci, POB 999,K2-57, Richland, WA 99352 USA. RP Helm, ML (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,K2-57, Richland, WA 99352 USA. EM monte.helm@pnnl.gov FU Center for Molecular Electrocatalysis, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences.; DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences FX MLH and DLD acknowledge the support of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. WJS acknowledges the support of the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 71 TC 48 Z9 48 U1 3 U2 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 EI 0006-3002 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD AUG-SEP PY 2013 VL 1827 IS 8-9 SI SI BP 1123 EP 1139 DI 10.1016/j.bbabio.2013.01.003 PG 17 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 191LK UT WOS:000322414300020 PM 23313415 ER PT J AU Kwon, HY Mueller, S Dunn, JB Wander, MM AF Kwon, Ho-Young Mueller, Steffen Dunn, Jennifer B. Wander, Michelle M. TI Modeling state-level soil carbon emission factors under various scenarios for direct land use change associated with United States biofuel feedstock production SO BIOMASS & BIOENERGY LA English DT Article DE Soil C emissions factors; Direct land use change; United States biofuel feedstock production; Process-based modeling; Surrogate CENTURY soil organic C model ID MISCANTHUS X GIGANTEUS; ORGANIC-MATTER; LONG-TERM; CHEMICAL-COMPOSITION; GREAT-PLAINS; CROP; NITROGEN; BIOMASS; DYNAMICS; TILLAGE AB Current estimates of life cycle greenhouse gas emissions of biofuels produced in the US can be improved by refining soil C emission factors (EF; C emissions per land area per year) for direct land use change associated with different biofuel feedstock scenarios. We developed a modeling framework to estimate these EFs at the state-level by utilizing remote sensing data, national statistics databases, and a surrogate model for CENTURY's soil organic C dynamics submodel (SCSOC). We estimated the forward change in soil C concentration within the 0-30 cm depth and computed the associated EFs for the 2011 to 2040 period for croplands, grasslands or pasture/hay, croplands/conservation reserve, and forests that were suited to produce any of four possible biofuel feedstock systems [corn (Zea Mays L)-corn, corn-corn with stover harvest, switchgrass (Panicum virgatum L), and miscanthus (Miscanthus x giganteus Greef et Deuter)]. Our results predict smaller losses or even modest gains in sequestration for corn based systems, particularly on existing croplands, than previous efforts and support assertions that production of perennial grasses will lead to negative emissions in most situations and that conversion of forest or established grasslands to biofuel production would likely produce net emissions. The proposed framework and use of the SCSOC provide transparency and relative simplicity that permit users to easily modify model inputs to inform biofuel feedstock production targets set forth by policy. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kwon, Ho-Young; Wander, Michelle M.] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA. [Mueller, Steffen] Univ Illinois, Energy Resources Ctr, Chicago, IL 60607 USA. [Dunn, Jennifer B.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Kwon, HY (reprint author), Univ Illinois, Dept Nat Resources & Environm Sci, W-503 Turner Hall,MC 047,1102 South Goodwin Ave, Urbana, IL 61801 USA. EM hkwon2@illinois.edu; muellers@uic.edu; jdunn@anl.gov; mwander@illinois.edu FU Biomass Program of the Office of Energy Efficiency and Renewable Energy of the United States Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Biomass Program of the Office of Energy Efficiency and Renewable Energy of the United States Department of Energy, under contract DE-AC02-06CH11357. The authors are very grateful to Dr. Michael Q. Wang of Argonne National Laboratory for helpful discussions. NR 63 TC 18 Z9 18 U1 1 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD AUG PY 2013 VL 55 BP 299 EP 310 DI 10.1016/j.biombioe.2013.02.021 PG 12 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 180LE UT WOS:000321595900032 ER PT J AU Shao, QJ Cheng, C Ong, RG Zhu, L Zhao, C AF Shao, Qianjun Cheng, Cheng Ong, Rebecca G. Zhu, Li Zhao, Chao TI Hydrogen peroxide presoaking of bamboo prior to AFEX pretreatment and impact on enzymatic conversion to fermentable sugars SO BIORESOURCE TECHNOLOGY LA English DT Article DE Bamboo; Pretreatment; Enzymatic hydrolysis; Hydrogen peroxide; AFEX ID FIBER EXPANSION AFEX; DEGRADATION-PRODUCTS; CORN STOVER; BIOMASS; AMMONIA; HYDROLYSIS; OPTIMIZATION; SWITCHGRASS; CELLULOSE; BIOFUELS AB Bamboo is a fast growing plant found worldwide that has high potential as an energy crop. This project evaluated the effectiveness of AFEX pretreatment for converting moso bamboo (Phyllostachys heterocycla var. pubescens) to fermentable sugars, both with and without pre-soaking in hydrogen peroxide. Pretreatment conditions including temperature, water loading, residence time, ammonia loading, and hydrogen peroxide loadings were varied to maximize hydrolysis yields. The optimal conditions for AFEX were 150 degrees C, 0.8 or 2.0 (w/w) water loading, 10-30 min residence time, and 2.0-5.0 (w/w) ammonia loading. The optimal conditions for H-AFEX were same AFEX conditions with 0.7-1.9 (w/w) 30% (wt) hydrogen peroxide solutions loading. Using 15 FPU/g glucan cellulase and under optimal conditions, AFEX pretreatment achieved a theoretical sugars yield of 64.8-72.7% and addition of hydrogen peroxide presoaking increased the yield to 83.4-92.1%. It is about 5-fold and 7-fold increase in sugars yield for AFEX-treated and H-AFEX-treated bamboo respectively. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Shao, Qianjun; Cheng, Cheng; Zhu, Li; Zhao, Chao] Zhejiang A&F Univ, Sch Engn, Linan 311300, Zhejiang, Peoples R China. [Shao, Qianjun] Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, BioEnergy Sci Ctr, Atlanta, GA 30332 USA. [Ong, Rebecca G.] Michigan State Univ, Dept Chem Engn & Mat Sci, Biomass Convers Res Lab, Lansing, MI 48910 USA. [Ong, Rebecca G.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Shao, QJ (reprint author), Zhejiang A&F Univ, Sch Engn, Linan 311300, Zhejiang, Peoples R China. EM shawqj@gmail.com OI Shao, Qianjun/0000-0002-7101-6654; Ong, Rebecca/0000-0001-5020-646X FU National Natural Science Foundation of China [30871991]; Innovative Research Team of Zhejiang Province [2009R50012]; Research Foundation of Education Bureau of Zhejiang Province [Z201017451] FX This research was supported by funds from National Natural Science Foundation of China (No. 30871991), Innovative Research Team of Zhejiang Province (No. 2009R50012), and Research Foundation of Education Bureau of Zhejiang Province (No. Z201017451). NR 34 TC 12 Z9 16 U1 2 U2 50 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD AUG PY 2013 VL 142 BP 26 EP 31 DI 10.1016/j.biortech.2013.05.011 PG 6 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 189UC UT WOS:000322292800004 PM 23732919 ER PT J AU Merkulov, IA Yoon, M Geohegan, DB AF Merkulov, I. A. Yoon, Mina Geohegan, David B. TI How the shape of catalyst nanoparticles determines their crystallographic orientation during carbon nanofiber growth SO CARBON LA English DT Article ID FCC METALS AB A theoretical model is presented that explains spontaneous changes in the crystalline orientation of nanoparticles. The spontaneous changes in crystalline orientation are attributed to the crystal anisotropy of the surface energy of nanocrystalline particles. We consider an important specific case of the chemical vapor deposition growth of carbon nanofibers, where previous studies have shown that both the catalyst nanoparticle shape and the nanofiber growth rate change with changes in the chemical potential of diluted carbon. Energetic considerations of the nanoparticle's free surface and its interfacial energy with the nanofiber during these shape changes are shown to force a reorientation of the nanoparticle crystallographic axes at a critical growth rate. The model therefore reveals the mechanism by which the shape and crystallographic orientation of the catalyst nanoparticle are linked to the nanofiber growth rate. The model suggests a new way, based upon measurable geometry of nanoparticles during in situ growth experiments, to estimate the role of chemisorption in the attraction of the graphene film to the curved catalyst surface and the anisotropy energy of this interface. Published by Elsevier Ltd. C1 [Merkulov, I. A.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Merkulov, I. A.; Yoon, Mina; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Merkulov, I. A.] RAS, AF Ioffe Physicotech Inst, St Petersburg 19021, Russia. RP Yoon, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM myoon@ornl.gov RI Yoon, Mina/A-1965-2016; Geohegan, David/D-3599-2013 OI Yoon, Mina/0000-0002-1317-3301; Geohegan, David/0000-0003-0273-3139 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; theme research at the Center for Nanophase Materials Sciences FX We would like to thank A.V. Melechko for fruitful discussions. Synthesis science (M.Y., D.G.) supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. General theory of nanoparticle energetics (I.M., M.Y.) supported by theme research at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 19 TC 5 Z9 5 U1 0 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD AUG PY 2013 VL 60 BP 41 EP 45 DI 10.1016/j.carbon.2013.03.054 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 180MB UT WOS:000321598200005 ER PT J AU Sharma, P Mayes, MA Tang, GP AF Sharma, Prasesh Mayes, Melanie A. Tang, Guoping TI Role of soil organic carbon and colloids in sorption and transport of TNT, RDX and HMX in training range soils SO CHEMOSPHERE LA English DT Article DE Explosives; Colloids; Organic carbon; Operational training range; Column experiments ID ADSORPTION; 2,4,6-TRINITROTOLUENE; EXPLOSIVES; BINDING; MATTER; WATER; CLAY; DEGRADATION; METABOLITES; SUBSURFACE AB Contamination of soils and groundwater by munitions compounds (MCs) is of significant concern at many U.S. Department of Defense sites. Soils were collected from operational training ranges in Maryland (APG), Massachusetts (MMR-B and MMR-E) and Washington (JBLM) and sorption and transport studies were conducted to investigate the effects of soil organic carbon (OC) and textural clay content on fate of dissolved MCs (TNT, RDX, HMX). Sorption experiments showed higher distribution coefficients [TNT:42-68 L kg(-1), RDX:6.9-8.7 L kg(-1) and HMX:2.6-3.1 L kg(-1)] in OC rich soils (JBLM, MMR-E) compared to clay rich soils (MMR-B and APG) [TNT:19-21 L kg(-1), RDX:2.5-3.4 L kg(-1), HMX:0.9-1.2 L kg(-1)]. In column experiments, breakthrough of MCs was faster in MMR-B and APG compared to MMR-E and JBLM soils. Among TNT, RDX and HMX, breakthrough was fastest for RDX followed by HMX and TNT for all columns. Defining the colloidal fraction as the difference between unfiltered samples and samples filtered with a 3 kDa filter, similar to 36%, similar to 15% and similar to 9% of TNT, RDX and HMX were found in the colloidal fraction in the solutions from sorption experiments, and around 20% of TNT in the effluent from the transport experiments. Results demonstrate that OC rich soils may enhance sorption and delay transport of TNT, RDX and HMX compared to clay-rich soils. Further, transport of TNT may be associated with soil colloid mobilization. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Sharma, Prasesh; Mayes, Melanie A.; Tang, Guoping] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Tang, GP (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Bethel Valley Rd,MS-6038, Oak Ridge, TN 37831 USA. EM mayesma@ornal.org RI Tang, Guoping/A-5141-2010 OI Tang, Guoping/0000-0003-1090-3564 FU Strategic Environmental Research and Development Program (SERDP) [ER-1690]; University of Tennessee-Battelle, LLC [DE-AC05-00OR22725]; U.S. DOE FX This work was supported by the Strategic Environmental Research and Development Program (SERDP) Project ER-1690 to MAM. We would like to thank Wei Wang, Balaji Rao, Jana Phillips, Tonia Melhorn, Sindhu Jagadamma from ORNL, Matthew Jones (University of Tennessee and ORNL) for their help with analysis and/or suggestions for improving the manuscript. Oak Ridge National Laboratory is managed by the University of Tennessee-Battelle, LLC, under Contract DE-AC05-00OR22725 with the U.S. DOE. NR 42 TC 4 Z9 5 U1 6 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD AUG PY 2013 VL 92 IS 8 BP 993 EP 1000 DI 10.1016/j.chemosphere.2013.03.028 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA 191QU UT WOS:000322428500017 PM 23602657 ER PT J AU Chen, MJ Sun, YW Fu, PC Carrigan, CR Lu, ZM Tong, CH Buscheck, TA AF Chen, Mingjie Sun, Yunwei Fu, Pengcheng Carrigan, Charles R. Lu, Zhiming Tong, Charles H. Buscheck, Thomas A. TI Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks SO COMPUTERS & GEOSCIENCES LA English DT Article DE Hydraulic fracturing; Fractal dimension; Surrogate model; Optimization; Global sensitivity ID REGRESSION; SYSTEMS; DESIGN; CONNECTIVITY; ENSEMBLE AB Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Buscheck, Thomas A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. [Lu, Zhiming] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Tong, Charles H.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Chen, MJ (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, POB 808,L-223, Livermore, CA 94551 USA. EM cmj1014@yahoo.com RI Sun, Yunwei/C-9751-2010; Fu, Pengcheng/D-7483-2012; OI Fu, Pengcheng/0000-0002-7408-3350; Lu, Zhiming/0000-0001-5800-3368 FU U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; LDRD-SI program of Lawrence Livermore National Laboratory FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under contract DE-AC52-07NA27344. This work was supported by LDRD-SI program of Lawrence Livermore National Laboratory. We wish to thank Andrew Tompson at LLNL and two anonymous reviewers for their comments that improved the paper. NR 43 TC 5 Z9 5 U1 3 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD AUG PY 2013 VL 58 BP 69 EP 79 DI 10.1016/j.cageo.2013.05.006 PG 11 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 190PT UT WOS:000322353400009 ER PT J AU Moridis, GJ Reagan, MT Kuzma, HA Blasingame, TA Huang, YW Santos, R Boyle, KL Freeman, CM Ilk, D Cossio, M Bhattacharya, S Nikolaou, M AF Moridis, George J. Reagan, Matthew T. Kuzma, Heidi Anderson Blasingame, Thomas A. Huang, Y. Wayne Santos, Ralph Boyle, Katie L. Freeman, Craig M. Ilk, Dilhan Cossio, Manuel Bhattacharya, Srimoyee Nikolaou, Michael TI SeTES: A self-teaching expert system for the analysis, design, and prediction of gas production from unconventional gas resources SO COMPUTERS & GEOSCIENCES LA English DT Article DE Machine learning; Expert system; Bayesian networks; Simulation; Optimization; Unconventional gas AB SeTES is a self-teaching expert system that (a) can incorporate evolving databases involving any type and amount of relevant data (geological, geophysical, geomechanical, stimulation, petrophysical, reservoir, production, etc.) originating from unconventional gas reservoirs, i.e., tight sands, shale or coalbeds, (b) can continuously update its built-in public database and refine the its underlying decision-making metrics and process, (c) can make recommendations about well stimulation, well location, orientation, design, and operation, (d) offers predictions of the performance of proposed wells (and quantitative estimates of the corresponding uncertainty), and (e) permits the analysis of data from installed wells for parameter estimation and continuous expansion of its database. Thus, SeTES integrates and processes information from multiple and diverse sources to make recommendations and support decision making at multiple time-scales, while expanding its internal database and explicitly addressing uncertainty. It receives and manages data in three forms: public data, that have been made available by various contributors, semi-public data, which conceal some identifying aspects but are available to compute important statistics, and a user's private data, which can be protected and used for more targeted design and decision making. It is the first implementation of a novel architecture that allows previously independent analysis methods and tools to share data, integrate results, and intelligently and iteratively extract the most value from the dataset. SeTES also presents a new paradigm for communicating research and technology to the public and distributing scientific tools and methods. It is expected to result in a significant improvement in reserve estimates, and increases in production by increasing efficiency and reducing uncertainty. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Moridis, George J.; Reagan, Matthew T.; Santos, Ralph; Boyle, Katie L.; Freeman, Craig M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Blasingame, Thomas A.; Freeman, Craig M.; Ilk, Dilhan; Cossio, Manuel] Texas A&M Univ, Dept Petr Engn, College Stn, TX 77843 USA. [Huang, Y. Wayne] Linear Time Informat LLC, Kansas City, MO USA. [Bhattacharya, Srimoyee; Nikolaou, Michael] Univ Houston, Dept Chem Engn, Houston, TX 77204 USA. RP Moridis, GJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 84R0171, Berkeley, CA 94720 USA. EM GJMoridis@lbl.gov RI Reagan, Matthew/D-1129-2015 OI Reagan, Matthew/0000-0001-6225-4928 FU Research Partnership to Secure Energy for America (RPSEA) through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research [07122-23] FX This work was funded by the Research Partnership to Secure Energy for America (RPSEA-Contract No. 07122-23) through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program as authorized by the US Energy Policy Act (EPAct) of 2005. NR 25 TC 1 Z9 1 U1 6 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD AUG PY 2013 VL 58 BP 100 EP 115 DI 10.1016/j.cageo.2013.04.001 PG 16 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 190PT UT WOS:000322353400012 ER PT J AU Kim, TN Underwood, N Inouye, BD AF Kim, Tania N. Underwood, Nora Inouye, Brian D. TI Insect herbivores change the outcome of plant competition through both inter- and intraspecific processes SO ECOLOGY LA English DT Article DE biocontrol; coexistence; competition; density dependence; insect herbivory; intrinsic rate of increase; model selection; old-field communities; plant-insect interactions; response surface; Solanum carolinense; Solidago altissima ID SOLANUM-CAROLINENSE; INTERSPECIFIC COMPETITION; 2-SPECIES COMPETITION; SPECIES COEXISTENCE; SOLIDAGO-CANADENSIS; COMMUNITIES; FIELD; CONSEQUENCES; SUCCESSION; GOLDENROD AB Insect herbivores can affect plant abundance and community composition, and theory suggests that herbivores influence plant communities by altering interspecific interactions among plants. Because the outcome of interspecific interactions is influenced by the per capita competitive ability of plants, density dependence, and intrinsic rates of increase, measuring herbivore effects on all these processes is necessary to understand the mechanisms by which herbivores influence plant communities. We fit alternative competition models to data from a response surface experiment conducted over four years to examine how herbivores affected the outcome of competition between two perennial plants, Solidago altissima and Solanum carolinense. Within a growing season, herbivores reduced S. carolinense plant size but did not affect the size of S. altissima, which exhibited compensatory growth. Across seasons, herbivores did not affect S. carolinense density or biomass but reduced both the density and population growth of S. altissima. The best-fit models indicated that the effects of herbivores varied with year. In some years, herbivores increased the per capita competitive effect of S. altissima on S. carolinense; in other years, herbivores influenced the intrinsic rate of increase of S. altissima. We examined possible herbivore effects on the longer-term outcome of competition (over the time scale of a typical old-field habitat), using simulations based on the best-fit models. In the absence of herbivores, plant coexistence was observed. In the presence of herbivores, S. carolinense was excluded by S. altissima in 72.3% of the simulations. We demonstrate that herbivores can influence the outcome of competition through changes in both per capita competitive effects and intrinsic rates of increase. We discuss the implications of these results for ecological succession and biocontrol. C1 [Kim, Tania N.; Underwood, Nora; Inouye, Brian D.] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA. RP Kim, TN (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. EM tkim@glbrc.wisc.edu FU Robert K. Godfrey award in Botany; NSF [DEB-0717221] FX We thank B. J. Spiesman, T. E. Miller, A. A. Winn, members of the Underwood and Inouye labs, and two anonymous reviewers for helpful comments on earlier drafts of the manuscript. We also thank the staff at the Mission Road Research Facilities at Florida State University for logistical support. This research was supported by the Robert K. Godfrey award in Botany to T. Kim and NSF DEB-0717221 to N. Underwood. NR 42 TC 11 Z9 12 U1 8 U2 182 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9658 J9 ECOLOGY JI Ecology PD AUG PY 2013 VL 94 IS 8 BP 1753 EP 1763 DI 10.1890/12-1261.1 PG 11 WC Ecology SC Environmental Sciences & Ecology GA 190JU UT WOS:000322336600010 PM 24015519 ER PT J AU Lee, PKH Cheng, D West, KA Alvarez-Cohen, L He, JZ AF Lee, Patrick K. H. Cheng, Dan West, Kimberlee A. Alvarez-Cohen, Lisa He, Jianzhong TI Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID REDUCTIVE DEHALOGENASE GENES; VINYL-CHLORIDE REDUCTASE; 16S RIBOSOMAL-RNA; CONTAMINATED GROUNDWATER; TRANS-DICHLOROETHENE; ANAEROBIC BACTERIUM; ELECTRON-ACCEPTORS; CIS-DICHLOROETHENE; QUANTITATIVE PCR; TETRACHLOROETHENE AB Microbial reductive dechlorination of trichloroethene (TCE) in groundwater often results in the accumulation of dichloroethenes (DCEs). Dehalococcoides mccartyi (Dhc) are the only known bacteria capable of dechlorination beyond DCE to non-toxic ethene. In this study, two newly isolated Dhc strains (11a and 11a5) with dissimilar functional abilities are described. Strain 11a reductively dechlorinates TCE, 1,1-DCE, cis-DCE, trans-DCE, and vinyl chloride (VC) to ethene, while strain 11a5 dechlorinates TCE and all three DCE isomers only to VC. Each of these dechlorination reactions are coupled to growth by these strains. The VC dechlorination rate of strain 11a occurs at a rate of 258 nmol per min per mg of protein, about two times faster than previously reported stains. Strain 11a possesses the vcrA gene while strain 11a5 contains the tceA gene. Strains 11a and 11a5 share 100% 16S rRNA gene sequence identity with previously sequenced Dhc strains BAV1 and CBDB1, placing it within the Pinellas subgroup, and 85.4% and 89.5% of all genes present in the CBDB1 and BAV1 genomes were detected in strains 11a and 11a5, respectively, using a custom-designed microarray targeting four sequenced Dhc strains. Genes that were not detected in strains 11a and 11a5 are mostly within the high plasticity regions or integrated elements of the sequenced strains. This study reports the functional description and comparative genomics of two additional Dhc isolates and provides evidence that the observed functional incongruence between the activity and core genome phylogenies of Dhc strains is likely driven by the horizontal transfer of key reductive dehalogenase-encoding genes. C1 [Lee, Patrick K. H.; West, Kimberlee A.; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Lee, Patrick K. H.] City Univ Hong Kong, Sch Energy & Environm, Hong Kong, Hong Kong, Peoples R China. [Cheng, Dan; He, Jianzhong] Natl Univ Singapore, Dept Civil & Environm Engn, Singapore 117576, Singapore. [Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu; jianzhong.he@nus.edu.sg RI Lee, Patrick K H/L-1844-2016 OI Lee, Patrick K H/0000-0003-0911-5317 FU Strategic Environmental Research and Development Program [ER-1587]; NIEHS Superfund Basic Research Project [ES04705-19]; Singapore National Research Foundation [NRF - CRP 5-2009-05]; Singapore Agency for Science, Technology and Research (A*STAR) of the Science and Engineering Research Council [102 101 0025] FX This research was supported by the Strategic Environmental Research and Development Program through Grant ER-1587, the NIEHS Superfund Basic Research Project ES04705-19, the Competitive Research Programme from Singapore National Research Foundation under Project No.: NRF - CRP 5-2009-05, and the Singapore Agency for Science, Technology and Research (A*STAR) of the Science and Engineering Research Council under Project No. 102 101 0025. We would like to thank Beiping Zhang from the Huazhong University of Science and Technology (Wuhan, Hubei, China) for providing sediments for this study. NR 50 TC 7 Z9 7 U1 0 U2 53 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD AUG PY 2013 VL 15 IS 8 BP 2293 EP 2305 DI 10.1111/1462-2920.12099 PG 13 WC Microbiology SC Microbiology GA 194IP UT WOS:000322625500013 PM 23480482 ER PT J AU Honnicke, MG Huang, XR Cusatis, C Koditwuakku, CN Cai, YQ AF Hoennicke, Marcelo Goncalves Huang, Xianrong Cusatis, Cesar Koditwuakku, Chaminda Nalaka Cai, Yong Q. TI High-quality quartz single crystals for high-energy-resolution inelastic X-ray scattering analyzers SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID GRADED MULTILAYER MIRROR; SYNTHETIC QUARTZ; SPECTROMETER; BACKSCATTERING; SPECTROSCOPY; REFLECTIONS; TOPOGRAPHY; INTENSITY AB Spherical analyzers are well known instruments for inelastic X-ray scattering (IXS) experiments. High-resolution IXS experiments almost always use Si single crystals as monochromators and spherical analyzers. At higher energies (>20 keV) Si shows a high energy resolution (<10 meV), at an exact symmetric back-diffraction condition, since the energy resolution is given by the real part of the susceptibility or polarizability. However, at low energies (<10 keV), high energy resolution is difficult to achieve with Si. alpha-SiO2 (quartz) can be an option, since it offers high energy resolution at low energies. In this work, the characterization of high-quality alpha-SiO2 is presented. Such characterization is made by high-resolution rocking curve, topography and lattice parameter mapping in different samples from a single block. X-ray optics with alpha-SiO2 for IXS at lower energies (from 2.5 to 12.6 keV) with medium to high energy resolution (from 90 to 11 meV) are proposed and theoretically exploited. C1 [Hoennicke, Marcelo Goncalves] Univ Fed Integracao Latinoamer, BR-85867970 Foz Do Iguacu, Parana, Brazil. [Huang, Xianrong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Cusatis, Cesar] Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil. [Koditwuakku, Chaminda Nalaka; Cai, Yong Q.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Honnicke, MG (reprint author), Univ Fed Integracao Latinoamer, Caixa Postal 2044, BR-85867970 Foz Do Iguacu, Parana, Brazil. EM marcelo.honnicke@unila.edu.br RI Cusatis, Cesar/N-7559-2014; Cai, Yong/C-5036-2008; Honnicke, Marcelo/I-8624-2012 OI Cusatis, Cesar/0000-0002-1621-3727; Cai, Yong/0000-0002-9957-6426; FU CNPq/PQ [305034/2010-3, 311570/2009-7]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC-02-06CH11357, DE-AC-02-98CH10886] FX MGH is grateful to CNPq/PQ (305034/2010-3) for his research fellowship. CC acknowledges CNPq/PQ (311570/2009-7) for support. This work was also supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract numbers DE-AC-02-06CH11357 and DE-AC-02-98CH10886. NR 28 TC 5 Z9 5 U1 2 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD AUG PY 2013 VL 46 BP 939 EP 944 DI 10.1107/S0021889813004731 PN 4 PG 6 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 186HI UT WOS:000322032300018 ER PT J AU Toby, BH Madden, TJ Suchomel, MR Baldwin, JD Von Dreele, RB AF Toby, B. H. Madden, T. J. Suchomel, M. R. Baldwin, J. D. Von Dreele, R. B. TI A scanning CCD detector for powder diffraction measurements SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID POSITION-SENSITIVE DETECTOR; SWISS LIGHT-SOURCE; CRYSTALLOGRAPHY; ACQUISITION; ASYMMETRY; BEAMLINE AB Several different approaches have traditionally been used for detection of X-ray powder diffraction patterns, including area detectors, point detectors and position-sensitive detectors. Each has advantages. This paper discusses use of a low-cost CCD detector attached to a diffractometer arm, where line-by-line readout of the CCD is coupled to continuous motion of the arm. When this type of detector is used and where X-ray optics are employed to focus the source image onto the detector plane both high-resolution and rapid measurements can be performed, with data collection over a complete 2 theta range. This is particularly advantageous for synchrotron applications but valuable also for Guinier diffractometer laboratory instruments. Peak resolutions are shown to be moderately better than what can be obtained with a position-sensitive detector and significantly better than with an area detector. Many samples have intrinsically broadened peak shapes for which little improvement in data quality could be obtained with an analyzer-crystal detector. With comparable numbers of modules, these CCD data collection speeds can be close to those with position-sensitive detectors, but without the low-angle asymmetry seen in the latter. C1 [Toby, B. H.; Madden, T. J.; Suchomel, M. R.; Baldwin, J. D.; Von Dreele, R. B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Von Dreele, RB (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. EM vondreele@anl.gov RI Toby, Brian/F-3176-2013; Suchomel, Matthew/C-5491-2015; OI Toby, Brian/0000-0001-8793-8285; SUCHOMEL, Matthew/0000-0002-9500-5079 FU US DOE [DE-AC02-06CH11357] FX Use of the Advanced Photon Source, an Office of Science user facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract No. DE-AC02-06CH11357. We thank Lynn Ribaud for his great assistance with data collection at APS beamline 11-BM. The jadrarite sample was kindly provided by Dr Pamela Whitfield of the National Research Council Canada. NR 33 TC 0 Z9 0 U1 0 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD AUG PY 2013 VL 46 BP 1058 EP 1063 DI 10.1107/S0021889813013824 PN 4 PG 6 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 186HI UT WOS:000322032300032 ER PT J AU Borziak, K Fleetwood, AD Zhulin, IB AF Borziak, Kirill Fleetwood, Aaron D. Zhulin, Igor B. TI Chemoreceptor Gene Loss and Acquisition via Horizontal Gene Transfer in Escherichia coli SO JOURNAL OF BACTERIOLOGY LA English DT Article ID SIGNAL TRANSDUCER; VIRULENCE FACTORS; CHEMOTAXIS; STRAINS; SEQUENCE; SHIGELLA; AER; ADAPTATION; EVOLUTION; TAP AB Chemotaxis allows bacteria to more efficiently colonize optimal microhabitats within their larger environment. Chemotaxis in Escherichia coli is the best-studied model system, and a large number of E. coli strains have been sequenced. The Escherichia/Shigella genus encompasses a great variety of commensal and pathogenic strains, but the role of chemotaxis in their association with the host remains poorly understood. Here we show that the core chemotaxis genes are lost in many, but not all, nonmotile strains but are well preserved in all motile strains. The genes encoding the Tar, Tsr, and Aer chemoreceptors, which mediate chemotaxis to a broad spectrum of chemical and physical cues, are also nearly uniformly conserved in motile strains. In contrast, the clade of extraintestinal pathogenic E. coli strains apparently underwent an ancestral loss of Trg and Tap chemoreceptors, which sense sugars, dipeptides, and pyrimidines. The broad range of time estimated for the loss of these genes (1 to 3 million years ago) corresponds to the appearance of the genus Homo. C1 [Borziak, Kirill; Fleetwood, Aaron D.; Zhulin, Igor B.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Zhulin, Igor B.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. RP Borziak, K (reprint author), Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA. EM ijouline@utk.edu RI Zhulin, Igor/A-2308-2012 OI Zhulin, Igor/0000-0002-6708-5323 FU National Institutes of Health [GM072295]; Graduate Program in Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory FX This work was supported by National Institutes of Health grant GM072295 (to I.B.Z.). K.B. and A.D.F. received support from the Graduate Program in Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory. NR 60 TC 4 Z9 4 U1 2 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD AUG PY 2013 VL 195 IS 16 BP 3596 EP 3602 DI 10.1128/JB.00421-13 PG 7 WC Microbiology SC Microbiology GA 188VX UT WOS:000322226100011 PM 23749975 ER PT J AU Xie, SC Liu, XH Zhao, CF Zhang, YY AF Xie, Shaocheng Liu, Xiaohong Zhao, Chuanfeng Zhang, Yuying TI Sensitivity of CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation Parameterization SO JOURNAL OF CLIMATE LA English DT Article DE Aerosols; Cloud microphysics; Ice crystals; Climate models; Cloud parameterizations; Model evaluation; performance ID COMMUNITY ATMOSPHERE MODEL; INSTRUMENT SIMULATORS; CLIMATE SIMULATIONS; REMOTE SENSORS; VERSION-3 CAM3; GLOBAL-MODELS; PART I; NUCLEI; MICROPHYSICS; SHEBA AB Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model, version 5, to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN concentration at all latitudes while changes in cloud amounts and properties are mainly seen at high- and midlatitude storm tracks. In the Arctic, there is a considerable increase in midlevel clouds and a decrease in low-level clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path caused by the slowdown of the Bergeron-Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low-level cloud simulations over most of the Arctic but produces too many midlevel clouds. Considerable improvements are seen in the simulated low-level clouds and their properties when compared with Arctic ground-based measurements. Issues with the observations and the model-observation comparison in the Arctic region are discussed. C1 [Xie, Shaocheng; Zhao, Chuanfeng; Zhang, Yuying] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Liu, Xiaohong] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Xie, SC (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div L103, POB 808, Livermore, CA 94550 USA. EM xie2@llnl.gov RI Liu, Xiaohong/E-9304-2011; Zhang, Yuying/H-5011-2012; Zhao, Chuanfeng/G-8546-2013; Xie, Shaocheng/D-2207-2013 OI Liu, Xiaohong/0000-0002-3994-5955; Xie, Shaocheng/0000-0001-8931-5145 FU Earth System Modeling Program of the Office of Science at the U.S. Department of Energy (DOE); Atmospheric Radiation Measurement Program of the Office of Science at the U.S. Department of Energy (DOE); DOE Office of Science Atmospheric System Research (ASR) Program; DOE Office of Science Earth System Modeling Program; DOE, Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Battelle Memorial Institute [DE-AC06-76RLO 1830] FX S. Xie, C. Zhao, and Y. Zhang are supported by the Earth System Modeling Program and Atmospheric Radiation Measurement Program of the Office of Science at the U.S. Department of Energy (DOE). Support for X. Liu was provided by the DOE Office of Science Atmospheric System Research (ASR) Program and Earth System Modeling Program. Work at LLNL was performed under the auspices of the DOE, Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. Discussions with Neil Barton, Stephen Klein, James Boyle, and Yunyan Zhang of Lawrence Livermore National Laboratory were helpful. We also thank the anonymous reviewers, whose valuable comments helped to clarify and improve the paper. NR 66 TC 22 Z9 23 U1 4 U2 35 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD AUG PY 2013 VL 26 IS 16 BP 5981 EP 5999 DI 10.1175/JCLI-D-12-00517.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 196FU UT WOS:000322759700016 ER PT J AU Kamarchik, E Jasper, AW AF Kamarchik, Eugene Jasper, Ahren W. TI Anharmonic Vibrational Properties from Intrinsic n-Mode State Densities SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID ENERGY-LEVEL SUMS; PARTITION-FUNCTION; HINDERED ROTORS; LARGE MOLECULES; OF-STATES; QUANTUM; NUMBERS; APPROXIMATION; ACCURATE; SYSTEMS AB A method for calculating fully anharmonic vibrational state counts, state densities, and partition functions for molecules is presented. The method makes use of a new quantity, the intrinsic density of states, which is associated with the states that uniquely arise from a given mode, mode pairing, or higher-order mode coupling. By using only low-order intrinsic densities, the fully coupled anharmonic vibrational result can be constructed, as shown by our application of the method to methane, CH4, and cyclopropene, C3H4. Truncation of the intrinsic expansion at the coupling of pairs of modes yields greatly improved scaling over direct evaluation of the full-dimensional result and recovers a large fraction of the total anharmonicity. We also discuss the relation of the new quantities to the structure of the potential energy surface. C1 [Kamarchik, Eugene; Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Kamarchik, E (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM ekamarc@sandia.gov; ajasper@sandia.gov RI Jasper, Ahren/A-5292-2011 FU United States Department of Energy [DE-AC04-94-AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. NR 40 TC 6 Z9 6 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 1 PY 2013 VL 4 IS 15 BP 2430 EP 2435 DI 10.1021/jz401181q PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 196WH UT WOS:000322807600006 ER PT J AU Hong, WT Gadre, M Lee, YL Biegalski, MD Christen, HM Morgan, D Shao-Horn, Y AF Hong, Wesley T. Gadre, Milind Lee, Yueh-Lin Biegalski, Michael D. Christen, Hans M. Morgan, Dane Shao-Horn, Yang TI Tuning the Spin State in LaCoO3 Thin Films for Enhanced High-Temperature Oxygen Electrocatalysis SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID OXIDE FUEL-CELLS; SURFACE EXCHANGE KINETICS; REDUCTION KINETICS; TRACER DIFFUSION; CATHODES; ION; LA0.6SR0.4COO3-DELTA; CONDUCTIVITY; PEROVSKITES; COEFFICIENT AB The slow kinetics of oxygen surface exchange hinders the efficiency of high-temperature oxygen electrocatalytic devices such as solid oxide fuel cells and oxygen separation membranes. Systematic investigations of material properties that link to catalytic activity can aid in the rational design of highly active cathode materials. Here, we explore LaCoO3 thin films as a model system for tuning catalytic activity through strain-induced changes in the Co spin state. We demonstrate that Raman spectroscopy can be used to probe the Co-O bond strength at different temperatures to determine the relative spin occupancies of LaCoO3. We find that strain can be used to reduce the spin transition temperature and promote the occupation of higher spin states that weaken the Co-O bond. The decrease in Co-O bond strength and increased spin moment of the thin films result in significant enhancements of the oxygen surface exchange kinetics by up to 2 orders of magnitude. C1 [Hong, Wesley T.; Shao-Horn, Yang] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Hong, Wesley T.; Gadre, Milind; Lee, Yueh-Lin; Shao-Horn, Yang] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA. [Shao-Horn, Yang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Gadre, Milind; Morgan, Dane] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Biegalski, Michael D.; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Shao-Horn, Y (reprint author), MIT, Dept Mat Sci & Engn, 31-056,77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI Hong, Wesley/H-1102-2014; Albe, Karsten/F-1139-2011; Christen, Hans/H-6551-2013; LEE, YUEH-LIN/F-6274-2011 OI Christen, Hans/0000-0001-8187-7469; LEE, YUEH-LIN/0000-0003-2477-6412 FU U.S. Department of Energy [SISGR DE-SC0002633]; Oak Ridge National Laboratory; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation [DMR-08-19762] FX This work was supported in part by the U.S. Department of Energy (SISGR DE-SC0002633). Pulsed laser deposition was performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This work made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under Award Number DMR-08-19762. We thank Dongkyu Lee and Zhenxing Feng for their help with sample preparation for this study and Justin Breucop for his help with developing the Raman measurement protocol. NR 47 TC 21 Z9 21 U1 1 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 1 PY 2013 VL 4 IS 15 BP 2493 EP 2499 DI 10.1021/jz401271m PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 196WH UT WOS:000322807600015 ER PT J AU Liu, SD Wang, XP Li, EY Douglas, CJ Chen, JG Wang, SC AF Liu, Shanda Wang, Xiaoping Li, Eryang Douglas, Carl J. Chen, Jin-Gui Wang, Shucai TI R2R3 MYB transcription factor PtrMYB192 regulates flowering time in Arabidopsis by activating FLOWERING LOCUS C SO JOURNAL OF PLANT BIOLOGY LA English DT Article DE Arabidopsis; Flowering time; MYB transcription factors; Populus trichocarpa ID EXPRESSION ANALYSIS; EPIGENETIC REGULATION; POPULUS-TRICHOCARPA; WALL BIOSYNTHESIS; GENE FAMILY; THALIANA; VERNALIZATION; CONSTANS; PATHWAY; PROTEIN AB R2R3 MYB transcription factors regulate multiple aspects of plant growth and development. Here we report the identification of PtrMYB192, a Populus R2R3 MYB transcription factor, as a negative regulator of flowering time. By using quantitative RT-PCR, we found that PtrMYB192, but not its closely homologous gene PtrMYB028, is highly expressed in mature leaves in Populus. Heterologously expression of PtrMYB192 under control of 35S promoter in Arabidopsis resulted in late flowering phenotypes under both long and short day conditions, indicating that PtrMYB192 controls flowering time independent of the photoperiod pathway. Domain swapping experiment showed that neither PtrMYB028DB-192AD nor PtrMYB192DB-028AD affected flowering time when heterologously expressed in Arabidopsis. However, when recruit to the promoter of a GAL4-GUS reporter gene by a GAL4 DNA binding domain in Arabidopsis protoplasts, both of PtrMYB028DB-192AD and PtrMYB192DB-028AD activated the reporter gene. Quantitative RT-PCR results showed an elevated expression of the floral repressor gene FLOWERING LOCUS C (FLC), but not the flowering-promoting gene CONSTANS (CO) in PtrMYB192 transgenic plants. Taken together, these results suggest that PtrMYB192 is a transcription activator that negatively regulating flowering time in Arabidopsis by activating FLC and possible other genes, and that both R2R3 DNA binding domain and activation domain maybe required for its full function. C1 [Liu, Shanda; Wang, Xiaoping; Wang, Shucai] NE Normal Univ, Key Lab Mol Epigenet MOE, Changchun 130024, Peoples R China. [Liu, Shanda; Wang, Xiaoping; Wang, Shucai] NE Normal Univ, Inst Genet & Cytol, Changchun 130024, Peoples R China. [Li, Eryang; Douglas, Carl J.] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. [Chen, Jin-Gui] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Wang, SC (reprint author), NE Normal Univ, Key Lab Mol Epigenet MOE, Changchun 130024, Peoples R China. EM wangsc550@nenu.edu.cn RI Chen, Jin-Gui/A-4773-2011 OI Chen, Jin-Gui/0000-0002-1752-4201 FU Northeast Normal University; Programme for Introducing Talents to Universities [B07017]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX We thank Drs. Tom Guilfoyle and Gretchen Hagen (University of Missouri-Columbia) for providing vectors for Arabidopsis protoplast transfection assays. This work was supported by a startup fund from Northeast Normal University [to S. W.], the Programme for Introducing Talents to Universities (B07017) and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory [to J.-G.C]. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 43 TC 6 Z9 6 U1 2 U2 43 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1226-9239 J9 J PLANT BIOL JI J. Plant Biol. PD AUG PY 2013 VL 56 IS 4 BP 243 EP 250 DI 10.1007/s12374-013-0135-1 PG 8 WC Plant Sciences SC Plant Sciences GA 195WE UT WOS:000322733500006 ER PT J AU Fortino, G North, MJ AF Fortino, G. North, M. J. TI Simulation-based development and validation of multi-agent systems: AOSE and ABMS approaches SO JOURNAL OF SIMULATION LA English DT Article DE agent-based modelling; agent-oriented software engineering; multi-agent systems ID AGENT; METHODOLOGY; DESIGN AB This paper briefly surveys an emerging research area: the integration of agent-oriented software engineering (AOSE) and agent-based modelling and simulation (ABMS). Both AOSE and ABMS are well-established research areas in the agent-based computing domain. Specifically, this paper provides an overview of the main simulation-based methodologies for developing multi-agent systems (MASs) that describe interesting ABMS application domains where the integration of AOSE and ABMS can benefit MAS development. C1 [Fortino, G.] Univ Calabria, DIMES, DEIS, I-87036 Arcavacata Di Rende, CS, Italy. [North, M. J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP North, MJ (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave,Bldg 221, Argonne, IL 60439 USA. EM north@anl.gov OI Fortino, Giancarlo/0000-0002-4039-891X NR 40 TC 2 Z9 2 U1 2 U2 9 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1747-7778 J9 J SIMUL JI J. Simul. PD AUG PY 2013 VL 7 IS 3 SI SI BP 137 EP 143 DI 10.1057/jos.2013.12 PG 7 WC Computer Science, Interdisciplinary Applications; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA 196CC UT WOS:000322750000001 ER PT J AU Hagos, S Feng, Z McFarlane, S Leung, LR AF Hagos, Samson Feng, Zhe McFarlane, Sally Leung, L. Ruby TI Environment and the Lifetime of Tropical Deep Convection in a Cloud-Permitting Regional Model Simulation SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article DE Cloud resolving models; Clouds; Cumulus clouds; Model evaluation; performance; Regional models ID LIVED SQUALL LINES; PACIFIC WARM POOL; WESTERN PACIFIC; STRATIFORM PRECIPITATION; TOGA COARE; SYSTEMS; RESOLUTION AB By applying a cloud-tracking algorithm to tropical convective systems in a regional high-resolution model simulation, this study documents the environmental conditions before and after convective systems are initiated over ocean and land by following them during their lifetime. The comparative roles of various mechanisms of convection-environment interaction on the longevity of convective systems are quantified. The statistics of lifetime, maximum area, and propagation speed of the simulated deep convection agree well with geostationary satellite observations.Among the environmental variables considered, lifetime of convective systems is found to be most related to midtropospheric moisture before as well as after the initiation of convection. Over ocean, convective systems enhance surface fluxes through the associated cooling and drying of the boundary layer as well as increased wind gusts. This process appears to play a minor positive role in the longevity of systems. For systems of equal lifetime, those over land tend to be more intense than those over ocean especially during the early stages of their life cycle. Both over ocean and land, convection is found to transport momentum vertically to increase low-level shear and decrease upper-level shear, but no discernible effect of shear on the lifetime of the convective systems is found. C1 [Hagos, Samson; Feng, Zhe; McFarlane, Sally; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hagos, S (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM samson.hagos@pnnl.gov RI Feng, Zhe/D-9531-2013; Feng, Zhe/E-1877-2015 OI Feng, Zhe/0000-0002-7540-9017 FU U.S. Department of Energy under the Atmospheric System Research Program; U.S. Department of Energy under the Regional and Global Climate Modeling Program; U.S. Department of Energy [AC06-76RLO1830] FX The authors thank Dr. Jin-Ho Yoon for his comments and suggestions. This work is supported by the U.S. Department of Energy under the Atmospheric System Research Program and the Regional and Global Climate Modeling Program. Computing resources for the simulations are provided by the National Center for Computational Sciences (NCCS) through the INCITE Climate End Station project and National Energy Research Scientific Computing Center (NERSC). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO1830. NR 27 TC 9 Z9 9 U1 2 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD AUG PY 2013 VL 70 IS 8 BP 2409 EP 2425 DI 10.1175/JAS-D-12-0260.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 195RK UT WOS:000322721100005 ER PT J AU Li, ACY Nozick, L Davidson, R Brown, N Jones, DA Wolshon, B AF Li, Anna C. Y. Nozick, Linda Davidson, Rachel Brown, Nathanael Jones, Dean A. Wolshon, Brian TI Approximate Solution Procedure for Dynamic Traffic Assignment SO JOURNAL OF TRANSPORTATION ENGINEERING LA English DT Article DE Hurricane evacuation; Dynamic traffic assignment; User equilibrium ID VARIATIONAL INEQUALITY FORMULATION; ROUTE CHOICE PROBLEM; KINEMATIC WAVES; ROAD NETWORKS; MODEL; EVACUATION; ALGORITHM; FLOWS AB This paper proposes an approximate dynamic traffic assignment algorithm for the analysis of traffic conditions in large-scale road networks over several days. The time-dependent origin-destination trips are assumed to be known. A case study for evacuation of the New Orleans metropolitan area prior to the landfall of Hurricane Katrina is presented to test the efficiency and effectiveness of the proposed procedure. The model results are compared to the traffic counts collected during the evacuation and then further tested by the mesoscopic simulation-based model, DynusT. The study shows that the traffic pattern produced by the proposed procedure is a good approximation to traffic count data and that the algorithm provides a good approximation to the computations performed by DynusT. (C) 2013 American Society of Civil Engineers. C1 [Li, Anna C. Y.; Nozick, Linda] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Davidson, Rachel] Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19716 USA. [Brown, Nathanael; Jones, Dean A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wolshon, Brian] Louisiana State Univ, Dept Civil & Environm Engn, Gulf Coast Res Ctr Evacuat & Transportat Resilien, Baton Rouge, LA 70803 USA. RP Nozick, L (reprint author), Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. EM lkn3@cornell.edu FU National Science Foundation [SES-0826832] FX This work has been funded by the National Science Foundation under grant No. SES-0826832. The authors gratefully acknowledge the continuing support and data provided by the Louisiana Department of Transportation and Development. NR 49 TC 2 Z9 2 U1 2 U2 26 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-947X J9 J TRANSP ENG JI J. Transp. Eng. PD AUG 1 PY 2013 VL 139 IS 8 BP 822 EP 832 DI 10.1061/(ASCE)TE.1943-5436.0000518 PG 11 WC Engineering, Civil; Transportation Science & Technology SC Engineering; Transportation GA 195RH UT WOS:000322720800006 ER PT J AU Matsuda, K Brown, CR Foley, B Goeken, R Whitted, S Dang, Q Wu, F Plishka, R Buckler-White, A Hirscha, VM AF Matsuda, Kenta Brown, Charles R. Foley, Brian Goeken, Robert Whitted, Sonya Dang, Que Wu, Fan Plishka, Ronald Buckler-White, Alicia Hirscha, Vanessa M. TI Laser Capture Microdissection Assessment of Virus Compartmentalization in the Central Nervous Systems of Macaques Infected with Neurovirulent Simian Immunodeficiency Virus SO JOURNAL OF VIROLOGY LA English DT Article ID CNS PENETRATION-EFFECTIVENESS; ANTIRETROVIRAL THERAPY; CHOROID-PLEXUS; PROGRESSOR MACAQUES; CEREBROSPINAL-FLUID; HIV-INFECTION; BRAIN-REGIONS; TYPE-1; SEQUENCES; ENCEPHALITIS AB Nonhuman primate-simian immunodeficiency virus (SIV) models are powerful tools for studying the pathogenesis of human immunodeficiency virus type 1 (HIV-1) in the brain. Our laboratory recently isolated a neuropathogenic viral swarm, SIVsmH804E, a derivative of SIVsmE543-3, which was the result of sequential intravenous passages of viruses isolated from the brains of rhesus macaques with SIV encephalitis. Animals infected with SIVsmH804E or its precursor (SIVsmH783Br) developed SIV meningitis and/or encephalitis at high frequencies. Since we observed macaques with a combination of meningitis and encephalitis, as well as animals in which meningitis or encephalitis was the dominant component, we hypothesized that distinct mechanisms could be driving the two pathological states. Therefore, we assessed viral populations in the meninges and the brain parenchyma by laser capture microdissection. Viral RNAs were isolated from representative areas of the meninges, brain parenchyma, terminal plasma, and cerebrospinal fluid (CSF) and from the inoculum, and the SIV envelope fragment was amplified by PCR. Phylogenetic analysis of envelope sequences from the conventional progressors revealed compartmentalization of viral populations between the meninges and the parenchyma. In one of these animals, viral populations in meninges were closely related to those from CSF and shared signature truncations in the cytoplasmic domain of gp41, consistent with a common origin. Apart from magnetic resonance imaging (MRI) and positron-emission tomography (PET) imaging, CSF is the most accessible assess to the central nervous system for HIV-1-infected patients. However, our results suggest that the virus in the CSF may not always be representative of viral populations in the brain and that caution should be applied in extrapolating between the properties of viruses in these two compartments. C1 [Matsuda, Kenta; Brown, Charles R.; Goeken, Robert; Whitted, Sonya; Dang, Que; Wu, Fan; Plishka, Ronald; Buckler-White, Alicia; Hirscha, Vanessa M.] NIAID, Mol Microbiol Lab, NIH, Bethesda, MD 20892 USA. [Foley, Brian] Los Alamos Natl Lab, Grp T 6, Los Alamos, NM USA. RP Hirscha, VM (reprint author), NIAID, Mol Microbiol Lab, NIH, Bethesda, MD 20892 USA. EM vhirsch@niaid.nih.gov OI Foley, Brian/0000-0002-1086-0296 FU NIAID, NIH; JSPS Research Fellowship for Japanese Biomedical and Behavioral Researchers at NIH FX This work was supported by the intramural research program of NIAID, NIH, and by a JSPS Research Fellowship for Japanese Biomedical and Behavioral Researchers at NIH. NR 47 TC 11 Z9 11 U1 3 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD AUG PY 2013 VL 87 IS 16 BP 8896 EP 8908 DI 10.1128/JVI.00874-13 PG 13 WC Virology SC Virology GA 193CS UT WOS:000322535600008 PM 23720733 ER PT J AU Payne, SJ McCaffrey, R Kattenhorn, SA AF Payne, S. J. McCaffrey, R. Kattenhorn, S. A. TI Extension-driven right-lateral shear in the Centennial shear zone adjacent to the eastern Snake River Plain, Idaho SO LITHOSPHERE LA English DT Article ID LIMA RESERVOIR FAULT; SEISMIC REFRACTION; SOUTHWESTERN MONTANA; CRUSTAL STRUCTURE; RANGE PROVINCE; STRAIN RATES; BORAH PEAK; BASIN; DEFORMATION; EARTHQUAKE AB We evaluate global positioning system (GPS) surface velocities and gravitational potential energy (GPE) variations to assess the causes of right-lateral shear in the Centennial shear zone, a NE-trending accommodation zone between the extensional Centennial tectonic belt (Montana-Idaho) and volcanic terrain of the eastern Snake River Plain (Idaho). We test the hypothesized "bookshelf" faulting model and find that the normal faults in the Centennial tectonic belt do not accommodate distributed dextral shear. Instead, GPS data reveal that rapid extension in the Centennial tectonic belt adjacent to the much more slowly deforming region of the Snake River Plain drives right-lateral shear between them at rates of 0.3-1.5 mm yr(-1). GPE variations support gravitational collapse at a higher rate in the Centennial tectonic belt due to higher topography than in eastern Snake River Plain, which has lower GPE variations due to its low-relief, flat topography and a denser crustal composition. Surface velocity gradients observed in GPS data across the 40-45-km-wide Centennial shear zone reveal distributed deformation due to strike-slip faulting, distributed simple shear, regional-scale rotation, or some combination thereof. In the Centennial shear zone, the fastest lateral shearing is closest to the Yellowstone Plateau, where fault plane solutions with components of right-lateral strike slip are documented within a NE-trending zone of seismicity. Here, two Basin and Range normal faults have Holocene and late Pleistocene slip along their segments that suggest they each may have linked under right-lateral shear. We also propose that right-lateral strike-slip motion may be accommodated on existing NE-trending faults. C1 [Payne, S. J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [McCaffrey, R.] Portland State Univ, Dept Geol, Portland, OR 97207 USA. [Kattenhorn, S. A.] Univ Idaho, Dept Geol Sci, Moscow, ID 83844 USA. RP Payne, SJ (reprint author), Idaho Natl Lab, POB 1625,MS 2203, Idaho Falls, ID 83415 USA. FU Idaho National Laboratory through the U.S. Department of Energy Idaho Operations Office [DE-AC07-05ID14517]; National Earthquake Hazards Research Program (NEHRP) [2010-0006]; National Science Foundation (NSF) [EAR-1062251] FX We very much appreciate the reviews by David Anastasio, Eric Kirby, and an anonymous reviewer, which helped improve the manuscript. We thank Bob King for his support and processing of the global positioning system data used in the study. We also thank Mike Stickney for providing us with fault plane solutions from the unpublished Montana Bureau of Mines and Geology catalog. Payne appreciates the helpful discussions and reviews by Seth Carpenter. The research was funded in part by the Idaho National Laboratory through the U.S. Department of Energy Idaho Operations Office contract DE-AC07-05ID14517. The research was supported by the National Earthquake Hazards Research Program (NEHRP) grant 2010-0006 and National Science Foundation (NSF) grant EAR-1062251 to McCaffrey. NR 61 TC 3 Z9 3 U1 0 U2 6 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 1941-8264 J9 LITHOSPHERE-US JI Lithosphere PD AUG PY 2013 VL 5 IS 4 BP 407 EP 419 DI 10.1130/L200.1 PG 13 WC Geochemistry & Geophysics; Geology SC Geochemistry & Geophysics; Geology GA 193GW UT WOS:000322548100006 ER PT J AU Baidoo, EEK Keasling, JD AF Baidoo, Edward E. K. Keasling, Jay D. TI Microbial metabolomics: welcome to the real world! SO METABOLOMICS LA English DT Editorial Material C1 [Baidoo, Edward E. K.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Bioenergy Inst, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Bioenergy Inst, Phys Biosci Div, Berkeley, CA 94720 USA. EM eebaidoo@lbl.gov; jdkeasling@lbl.gov RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 NR 0 TC 1 Z9 1 U1 0 U2 43 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1573-3882 J9 METABOLOMICS JI Metabolomics PD AUG PY 2013 VL 9 IS 4 BP 755 EP 756 DI 10.1007/s11306-013-0562-5 PG 2 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 186CJ UT WOS:000322019100001 ER PT J AU Ganeshalingam, M Li, WD Filippenko, AV AF Ganeshalingam, Mohan Li, Weidong Filippenko, Alexei V. TI Constraints on dark energy with the LOSS SN Ia sample SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; cosmological parameters; cosmology: observations; distance scale ID OBSERVATORY SUPERNOVA SEARCH; HUBBLE-SPACE-TELESCOPE; DIGITAL SKY SURVEY; PHOTOMETRIC STANDARD STARS; BVRI LIGHT CURVES; 2-PARAMETER LUMINOSITY CORRECTION; AUTOMATIC IMAGING TELESCOPE; LEGACY SURVEY; LOW-REDSHIFT; DATA RELEASE AB We present a cosmological analysis of the Lick Observatory Supernova Search (LOSS) Type Ia supernova (SN Ia) photometry sample introduced by Ganeshalingam et al. These supernovae (SNe) provide an effective anchor point to estimate cosmological parameters when combined with data sets at higher redshift. The data presented by Ganeshalingam et al. have been rereduced in the natural system of the Katzman Automatic Imaging Telescope (KAIT) and Nickel telescopes to minimize systematic uncertainties. We have run the light-curve-fitting software salt2 on our natural-system light curves to measure light-curve parameters for LOSS light curves and available SN Ia data sets in the literature. We present a Hubble diagram of 586 SNe in the redshift range z = 0.01-1.4 with a residual scatter of 0.176 mag. Of the 226 low-z SNe Ia in our sample, 91 objects are from LOSS, including 45 without previously published distances. Assuming a flat Universe, we find that the best fit for the dark energy equation-of-state parameter w = -0.86(-0.16)(+0.13) +/- 0.11 (sys) from SNe alone, consistent with a cosmological constant. Our data prefer a Universe with an accelerating rate of expansion with 99.999 per cent confidence. When looking at Hubble residuals as a function of host-galaxy morphology, we do not see evidence for a significant trend, although we find a somewhat reduced scatter in Hubble residuals from SNe residing within a projected distance < 10 kpc of the host-galaxy nucleus (Sigma = 0.156 mag). Similar to the results of Blondin, Mandel and Kirshner and Silverman et al., we find that Hubble residuals do not correlate with the expansion velocity of Si ii lambda 6355 measured in optical spectra near maximum light. Our data are consistent with no presence of a local 'Hubble bubble.' Improvements in cosmological analyses within low-z samples can be achieved by better constraining calibration uncertainties in the zero-points of photometric systems. C1 [Ganeshalingam, Mohan; Li, Weidong; Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Ganeshalingam, Mohan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ganeshalingam, M (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM mganeshalingam@lbl.gov FU US National Science Foundation (NSF) [AST-0908886, AST-1211916]; TABASGO Foundation; Christopher R. Redlich Fund; US Department of Energy SciDAC grant [DE-FC02-06ER41453]; US Department of Energy [DE-FG02-08ER41563]; NASA FX The work of AVF's supernova group at UC Berkeley has been generously supported by the US National Science Foundation (NSF; most recently through grants AST-0908886 and AST-1211916), the TABASGO Foundation, the Christopher R. Redlich Fund, US Department of Energy SciDAC grant DE-FC02-06ER41453 and US Department of Energy grant DE-FG02-08ER41563. KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia and Jim Katzman Foundation, the Christopher R. Redlich Fund, the Richard and Rhoda Goldman Fund, and the TABASGO Foundation. We give particular thanks to Russell M. Genet, who made KAIT possible with his initial special gift to AVF; Joseph S. Miller, who allowed KAIT to be placed at Lick Observatory and provided staff support; Jack Borde, who provided invaluable advice regarding the KAIT optics; Richard R. Treffers, KAIT's chief engineer; and the TABASGO Foundation, without which this work would not have been completed. We made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 124 TC 19 Z9 19 U1 0 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2013 VL 433 IS 3 BP 2240 EP 2258 DI 10.1093/mnras/stt893 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 191HK UT WOS:000322403800040 ER PT J AU Schneider, MD Cole, S Frenk, CS Kelvin, L Mandelbaum, R Norberg, P Bland-Hawthorn, J Brough, S Driver, S Hopkins, A Liske, J Loveday, J Robotham, A AF Schneider, Michael D. Cole, Shaun Frenk, Carlos S. Kelvin, Lee Mandelbaum, Rachel Norberg, Peder Bland-Hawthorn, Joss Brough, Sarah Driver, Simon Hopkins, Andrew Liske, Jochen Loveday, Jon Robotham, Aaron TI Galaxy And Mass Assembly (GAMA): galaxy radial alignments in GAMA groups SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: general; galaxies: formation; galaxies: statistics ID DIGITAL SKY SURVEY; DARK-MATTER SUBHALOES; WEAK-LENSING SURVEYS; INTRINSIC ALIGNMENTS; SATELLITE GALAXIES; CLUSTER GALAXIES; COMA CLUSTER; ORIENTATIONS; SIMULATIONS; CATALOG AB We constrain the distributions of projected radial alignment angles of satellite galaxy shapes within the Galaxy And Mass Assembly survey group catalogue. We identify the galaxy groups using spectroscopic redshifts and measure galaxy projected ellipticities from Sloan Digital Sky Survey imaging. With a sample of 3850 groups with 13 655 satellite galaxies with high quality shape measurements, we find a less than 2 Sigma signal of radial alignments in the mean projected ellipticity components and the projected position angle when using galaxy shape estimates optimized for weak lensing measurements. Our radial alignment measurement increases to greater than 3 Sigma significance relative to the expectation for no alignments if we use 2D Sersic model fits to define galaxy orientations. Our weak measurement of radial alignments is in conflict with predictions from dark-matter N-body simulations, which we interpret as evidence for large misalignments of baryons and dark matter in group and cluster satellites. Within our uncertainties, that are dominated by our small sample size, we find only weak and marginally significant trends of the radial alignment angle distributions on projected distance from the group centre, host halo mass, and redshift that could be consistent with a tidal torquing mechanism for radial alignments. Using our lensing optimized shape estimators, we estimate that intrinsic alignments of galaxy group members may contribute a systematic error to the mean differential projected surface mass density of groups inferred from weak lensing observations by -1 +/- 20 per cent at scales around 300 h(-1) kpc from the group centre assuming a photometric redshift rms error of 10 per cent, and given our group sample with median redshift of 0.17 and median virial masses similar to 10(13) h(-1) M-circle dot. C1 [Schneider, Michael D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Schneider, Michael D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Cole, Shaun; Frenk, Carlos S.; Norberg, Peder] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. [Kelvin, Lee; Driver, Simon; Robotham, Aaron] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Kelvin, Lee; Driver, Simon; Robotham, Aaron] Univ Western Australia, Int Ctr Radio Astron Res, Perth, WA 6009, Australia. [Mandelbaum, Rachel] Princeton Univ Observ, Princeton, NJ 08544 USA. [Mandelbaum, Rachel] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Bland-Hawthorn, Joss] Univ Sydney, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Brough, Sarah; Hopkins, Andrew] Australian Astron Observ, Epping, NSW 1710, Australia. [Liske, Jochen] European So Observ, D-85748 Garching, Germany. [Loveday, Jon] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. RP Schneider, MD (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. EM schneider@ucdavis.edu RI Robotham, Aaron/H-5733-2014; Mandelbaum, Rachel/N-8955-2014; Driver, Simon/H-9115-2014 OI Liske, Jochen/0000-0001-7542-2927; Robotham, Aaron/0000-0003-0429-3579; Mandelbaum, Rachel/0000-0003-2271-1527; Driver, Simon/0000-0001-9491-7327 FU ERC StG grant [DEGAS-259586]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; STFC (UK); Astrophysical Research Consortium (ARC; Australia); AAO; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX We thank Jonathan Blazek for helpful feedback on an early version of this paper and an anonymous referee for many helpful improvements including the suggestion to measure alignments for different galaxy morphologies. PN acknowledges a Royal Society URF and ERC StG grant (DEGAS-259586). Part of this work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programs including GALEX MIS, VST KIDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the Astrophysical Research Consortium (ARC; Australia), the AAO and the participating institutions. The GAMA website is http://www.gama-survey.org/.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.; The SDSS is managed by the ARC for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 43 TC 18 Z9 18 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2013 VL 433 IS 4 BP 2727 EP 2738 DI 10.1093/mnras/stt855 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 191IF UT WOS:000322405900003 ER PT J AU Chuang, CH Prada, F Cuesta, AJ Eisenstein, DJ Kazin, E Padmanabhan, N Sanchez, AG Xu, XY Beutler, F Manera, M Schlegel, DJ Schneider, DP Weinberg, DH Brinkmann, J Brownstein, JR Thomas, D AF Chuang, Chia-Hsun Prada, Francisco Cuesta, Antonio J. Eisenstein, Daniel J. Kazin, Eyal Padmanabhan, Nikhil Sanchez, Ariel G. Xu, Xiaoying Beutler, Florian Manera, Marc Schlegel, David J. Schneider, Donald P. Weinberg, David H. Brinkmann, Jon Brownstein, Joel R. Thomas, Daniel TI The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements and the strong power of f(z)Sigma(8)(z) on constraining dark energy SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmological parameters; cosmology: observations; distance scale; large-scale structure of Universe ID DIGITAL SKY SURVEY; LUMINOUS RED GALAXIES; 2-POINT CORRELATION-FUNCTION; REDSHIFT-SPACE DISTORTIONS; DATA RELEASE; ACOUSTIC-OSCILLATIONS; COSMOLOGICAL IMPLICATIONS; TO 0.5; SCALE; SAMPLE AB We present measurements of the anisotropic galaxy clustering from the Data Release 9 (DR9) CMASS sample of the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS). We analyse the broad-range shape of the monopole and quadrupole correlation functions to obtain constraints, at the effective redshift z = 0.57 of the sample, on the Hubble expansion rate H(z), the angular-diameter distance D-A(z), the normalized growth rate f (z)Sigma(8)(z), the physical matter density (m)h(2), and the biased amplitude of matter fluctuation b Sigma(8)(z). We obtain H(0.57), D-A(0.57), f (0.57)Sigma(8)(0.57), (m)h(2), b Sigma(8)(0.57) = 87.6_-6.8 boolean AND+6.7 kms(-1) Mpc(-1), 1396 +/- 73 Mpc, 0.428 +/- 0.066,0.126_-0.010+0.008, 1.19 +/- 0.14} and their covariance matrix as well. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets [i.e. cosmic microwave background (CMB)] are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e. CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. We show that the major power on constraining dark energy from the anisotropic galaxy clustering signal, as compared to the angular-averaged one (monopole), arises from including the normalized growth rate f (z)Sigma(8)(z). In the case of the cosmological model assuming a constant dark energy equation of state and a flat universe (wCDM), our single-probe CMASS constraints, combined with CMB (WMAP9+SPT), yield a value for the dark energy equation-of-state parameter of w = -0.90 +/- 0.11. Therefore, it is important to include f (z)Sigma(8)(z) while investigating the nature of dark energy with current and upcoming large-scale galaxy surveys. C1 [Chuang, Chia-Hsun; Prada, Francisco] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain. [Prada, Francisco] Univ Autonoma Madrid, CSIC, E-28049 Madrid, Spain. [Prada, Francisco] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Cuesta, Antonio J.; Padmanabhan, Nikhil] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Eisenstein, Daniel J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kazin, Eyal] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Xu, Xiaoying] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Beutler, Florian; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Manera, Marc; Thomas, Daniel] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Weinberg, David H.] Ohio State Univ, CCAPP, Columbus, OH 43210 USA. [Brinkmann, Jon] Apache Point Observ, Sunspot, NM 88349 USA. [Brownstein, Joel R.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. RP Chuang, CH (reprint author), Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain. EM chuang@nhn.ou.edu FU Spanish MICINN [MultiDarkCSD2009-00064, AYA201021231- C02-01]; Comunidad de Madrid [HEPHACOS S2009/ESP-1473]; NASA Office of Space Science; ICG; SEPNet; University of Portsmouth; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; Harvard University; Instituto de Astrofisica de Canarias; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; Princeton University; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX We would like to thank Graeme Addison, Chris Blake, Ryan Keisler, Savvas Nesseris, Christian Reichardt, Beth Reid, Lado Samushia and Kyle Story for useful discussions. CC and FP acknowledge support from the Spanish MICINN Consolider-Ingenio 2010 Programme under grant MultiDarkCSD2009-00064 andAYA201021231- C02-01 grant. CC and FP were also supported by the Comunidad de Madrid under grant HEPHACOS S2009/ESP-1473.; We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. The mock catalogues used were produced in SCIAMA High Performance Supercomputer (HPC) cluster, supported by the ICG, SEPNet and the University of Portsmouth.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University. NR 83 TC 34 Z9 34 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2013 VL 433 IS 4 BP 3559 EP 3571 DI 10.1093/mnras/stt988 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 191IF UT WOS:000322405900063 ER PT J AU Allan, MP Massee, F Morr, DK Van Dyke, J Rost, AW Mackenzie, AP Petrovic, C Davis, JC AF Allan, M. P. Massee, F. Morr, D. K. Van Dyke, J. Rost, A. W. Mackenzie, A. P. Petrovic, C. Davis, J. C. TI Imaging Cooper pairing of heavy fermions in CeCoIn5 SO NATURE PHYSICS LA English DT Article ID QUASI-PARTICLE INTERFERENCE; SUPERCONDUCTIVITY; CEIRIN5; LATTICE; ORDER AB The Cooper pairing mechanism of heavy fermion superconductors(1-4), long thought to be due to spin fluctuations(5-7), has not yet been determined. It is the momentum space (k-space) structure of the superconducting energy gap Delta(k) that encodes specifics of this pairing mechanism. However, because the energy scales are so low, it has not been possible to directly measure Delta(k) for any heavy fermion superconductor. Bogoliubov quasiparticle interference imaging(8), a proven technique for measuring the energy gaps of superconductors with high critical temperatures(9-11), has recently been proposed(12) as a new method to measure Delta(k) in heavy fermion superconductors, specifically CeCoIn5 (ref. 13). By implementing this method, we detect a superconducting energy gap whose nodes are oriented along k parallel to (+/- 1; +/- 1)pi/a(0) directions(14-17). Moreover, for the first time in any heavy fermion superconductor, we determine the detailed structure of its multiband energy gaps Delta(i)(k). For CeCoIn5, this information includes: the complex band structure and Fermi surface of the hybridized heavy bands, the fact that largest magnitude Delta(k) opens on a high-k band so that the primary gap nodes occur at unforeseen k-space locations, and that the Bogoliubov quasiparticle interference patterns are most consistent with d(x2-y2) gap symmetry. Such quantitative knowledge of both the heavy band-structure and superconducting gap-structure will be critical in identifying the microscopic pairing mechanism of heavy fermion superconductivity. C1 [Allan, M. P.; Massee, F.; Petrovic, C.; Davis, J. C.] Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA. [Allan, M. P.; Massee, F.; Rost, A. W.; Davis, J. C.] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA. [Allan, M. P.; Rost, A. W.; Mackenzie, A. P.; Davis, J. C.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Allan, M. P.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Morr, D. K.; Van Dyke, J.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Mackenzie, A. P.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Davis, J. C.] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. RP Morr, DK (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. EM dkmorr@uic.edu; jcseamusdavis@gmail.com RI Allan, Milan/D-7763-2012; Rost, Andreas/F-3004-2011; Petrovic, Cedomir/A-8789-2009; Mackenzie, Andrew/K-6742-2015; Massee, Freek/N-2617-2015 OI Allan, Milan/0000-0002-5437-1945; Petrovic, Cedomir/0000-0001-6063-1881; FU US DOE [DEAC02-98CH10886, DE-FG02-05ER46225]; UK EPSRC; ETH Fellowship program; Royal Society-Wolfson Award FX We are particularly grateful to I. Eremin, J. E. Hoffman, D-H. Lee and A. R. Schmidt for advice and discussions. We acknowledge and thank A. Akbari, M. Aprili, M. H. Fischer, M. Hamidian, E-A. Kim, S. A. Kivelson, M. Norman, J. P. Reid, D-H. Lee, D. J. Scalapino and K. Shen for helpful discussions, advice and communications. Supported by US DOE under contract number DEAC02-98CH10886 (J.C.D. and C.P.) and under Award No. DE-FG02-05ER46225 (D. K. M., J. v. D.); by the UK EPSRC under programme grant 'Topological Protection and Non-equilibrium States in Correlated Electron Systems' (A.R., A.P.M.); M.P.A. acknowledges support through the ETH Fellowship program; A.P.M. acknowledges support of a Royal Society-Wolfson Award. NR 34 TC 71 Z9 72 U1 10 U2 75 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD AUG PY 2013 VL 9 IS 8 BP 468 EP 473 DI 10.1038/NPHYS2671 PG 6 WC Physics, Multidisciplinary SC Physics GA 193WK UT WOS:000322592000014 ER PT J AU Zhou, BB Misra, S Neto, EHD Aynajian, P Baumbach, RE Thompson, JD Bauer, ED Yazdani, A AF Zhou, Brian B. Misra, Shashank da Silva Neto, Eduardo H. Aynajian, Pegor Baumbach, Ryan E. Thompson, J. D. Bauer, Eric D. Yazdani, Ali TI Visualizing nodal heavy fermion superconductivity in CeCoIn5 SO NATURE PHYSICS LA English DT Article ID UNCONVENTIONAL SUPERCONDUCTORS; STATES; BI2SR2CACU2O8+DELTA; PSEUDOGAP; PRECURSOR; MAGNETISM; SYSTEMS AB Understanding the origin of superconductivity in strongly correlated electron systems continues to be at the forefront of the unsolved problems of physics(1). Among the heavy f-electron systems, CeCoIn5 is one of the most fascinating, as it shares many of the characteristics of correlated d-electron high-T-c cuprate and pnictide superconductors(2-4), including competition between antiferromagnetism and superconductivity(5). Although there has been evidence for unconventional pairing in this compound(6-11), high-resolution spectroscopic measurements of the superconducting state have been lacking. Previously, we have used high-resolution scanning tunnelling microscopy (STM) techniques to visualize the emergence of heavy fermion excitations in CeCoIn5 and demonstrate the composite nature of these excitations well above T-c (ref. 12). Here we extend these techniques to much lower temperatures to investigate how superconductivity develops within a strongly correlated band of composite excitations. We find the spectrum of heavy excitations to be strongly modified just before the onset of superconductivity by a suppression of the spectral weight near the Fermi energy (E-F), reminiscent of the pseudogap state(13,14) in the cuprates. By measuring the response of superconductivity to various perturbations, through both quasiparticle interference (QPI) and local pair-breaking experiments, we demonstrate the nodal d-wave character of superconducting pairing in CeCoIn5. C1 [Zhou, Brian B.; Misra, Shashank; da Silva Neto, Eduardo H.; Aynajian, Pegor; Yazdani, Ali] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Zhou, Brian B.; Misra, Shashank; da Silva Neto, Eduardo H.; Aynajian, Pegor; Yazdani, Ali] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Baumbach, Ryan E.; Thompson, J. D.; Bauer, Eric D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yazdani, A (reprint author), Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. EM yazdani@princeton.edu OI Bauer, Eric/0000-0003-0017-1937 FU DOE-BES; Princeton Nanoscale Microscopy Laboratory [NSF-DMR1104612]; NSF-MRSEC program through Princeton Center for Complex Materials [DMR-0819860]; Linda and Eric Schmidt Transformative Fund; W. M. Keck Foundation; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering FX We thank K. D. Eaton for helpful discussions. The work at Princeton was primarily supported by a grant from DOE-BES. The instrumentation and infrastructure at the Princeton Nanoscale Microscopy Laboratory used for this work were also supported by grants from NSF-DMR1104612, the NSF-MRSEC program through Princeton Center for Complex Materials (DMR-0819860), the Linda and Eric Schmidt Transformative Fund, and the W. M. Keck Foundation. Work at Los Alamos was performed under the auspices of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. NR 35 TC 74 Z9 75 U1 8 U2 70 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD AUG PY 2013 VL 9 IS 8 BP 474 EP 479 DI 10.1038/NPHYS2672 PG 6 WC Physics, Multidisciplinary SC Physics GA 193WK UT WOS:000322592000015 ER PT J AU Cao, Y Waugh, JA Zhang, XW Luo, JW Wang, Q Reber, TJ Mo, SK Xu, Z Yang, A Schneeloch, J Gu, GD Brahlek, M Bansal, N Oh, S Zunger, A Dessau, DS AF Cao, Yue Waugh, J. A. Zhang, X-W. Luo, J-W. Wang, Q. Reber, T. J. Mo, S. K. Xu, Z. Yang, A. Schneeloch, J. Gu, G. D. Brahlek, M. Bansal, N. Oh, S. Zunger, A. Dessau, D. S. TI Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators SO NATURE PHYSICS LA English DT Article ID SINGLE DIRAC CONE; SUPERCONDUCTORS AB Understanding the structure of the wavefunction is essential for depicting the surface states of a topological insulator. Owing to the inherent strong spin-orbit coupling, the conventional hand-waving picture of the Dirac surface state with a single chiral spin texture is incomplete, as this ignores the orbital components of the Dirac wavefunction and their coupling to the spin textures. Here, by combining orbital-selective angle-resolved photoemission experiments and first-principles calculations, we deconvolve the in-plane and out-of-plane p-orbital components of the Dirac wavefunction. The in-plane orbital wavefunction is asymmetric relative to the Dirac point. It is predominantly tangential (radial) to the k-space constant energy surfaces above (below) the Dirac point. This orbital texture switch occurs exactly at the Dirac point, and therefore should be intrinsic to the topological physics. Our results imply that the Dirac wavefunction has a spin-orbital texture-a superposition of orbital wavefunctions coupled with the corresponding spin textures. C1 [Cao, Yue; Waugh, J. A.; Wang, Q.; Reber, T. J.; Dessau, D. S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Zhang, X-W.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Zhang, X-W.; Luo, J-W.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Mo, S. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Xu, Z.; Yang, A.; Schneeloch, J.; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Brahlek, M.; Bansal, N.; Oh, S.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Zunger, A.] Univ Colorado, Boulder, CO 80309 USA. RP Cao, Y (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM ycao@colorado.edu; Dessau@colorado.edu RI ZHANG, XIUWEN/K-7383-2012; xu, zhijun/A-3264-2013; Mo, Sung-Kwan/F-3489-2013; LUO, JUNWEI/B-6545-2013; OI xu, zhijun/0000-0001-7486-2015; Mo, Sung-Kwan/0000-0003-0711-8514; Schneeloch, John/0000-0002-3577-9574; Cao, Yue/0000-0002-3989-158X FU DOE Office of Basic Science [DE-FG02-03ER46066]; NSF [DMR-1007014]; Center for Inverse Design, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DEAC 36-08GO28308]; REMRSEC under NSF [DMR-0820518]; Colorado School of Mines, Golden, Colorado; IAMDN of Rutgers University, National Science Foundation [NSF DMR-0845464]; Office of Naval Research [ONR N000140910749]; DOE [DE-AC03-76SF00098] FX We acknowledge helpful discussions with S-C. Zhang, S-R. Park, M. Hermele, A. Essin and G. Chen. The ARPES work was carried out at the Advanced Light Source, LBL, and was supported by the DOE Office of Basic Science by grant DE-FG02-03ER46066 and by the NSF under DMR-1007014. A.Z., X-W.Z. and J-W.L. were supported as part of the Center for Inverse Design, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award number DEAC 36-08GO28308. X-W.Z. also acknowledges the administrative support of REMRSEC under NSF grant number DMR-0820518, Colorado School of Mines, Golden, Colorado. The Rutgers work was supported by IAMDN of Rutgers University, National Science Foundation (NSF DMR-0845464) and Office of Naval Research (ONR N000140910749), and the Brookhaven work was supported by the DOE under contract number DE-AC03-76SF00098. Both LBL and BNL are supported by the DOE, Office of Basic Energy Sciences. NR 27 TC 42 Z9 42 U1 6 U2 104 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD AUG PY 2013 VL 9 IS 8 BP 499 EP 504 DI 10.1038/NPHYS2685 PG 6 WC Physics, Multidisciplinary SC Physics GA 193WK UT WOS:000322592000020 ER PT J AU Sun, JC Evrin, C Samel, SA Fernandez-Cid, A Riera, A Kawakami, H Stillman, B Speck, C Li, HL AF Sun, Jingchuan Evrin, Cecile Samel, Stefan A. Fernandez-Cid, Alejandra Riera, Alberto Kawakami, Hironori Stillman, Bruce Speck, Christian Li, Huilin TI Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID REPLICATION ORIGIN RECOGNITION; SACCHAROMYCES-CEREVISIAE; MCM2-7 HELICASE; ATPASE ACTIVITY; CONFORMATIONAL-CHANGES; ELECTRON-MICROSCOPY; EUKARYOTIC CELLS; PROTEIN COMPLEX; CMG COMPLEX; IN-VITRO AB In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-gamma S, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action. C1 [Sun, Jingchuan; Li, Huilin] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Evrin, Cecile; Samel, Stefan A.; Fernandez-Cid, Alejandra; Riera, Alberto; Speck, Christian] Univ London Imperial Coll Sci Technol & Med, DNA Replicat Grp, MRC, Clin Sci Ctr,Fac Med, London, England. [Kawakami, Hironori; Stillman, Bruce] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. RP Stillman, B (reprint author), Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA. EM stillman@cshl.edu; chris.speck@csc.mrc.ac.uk; hli@bnl.gov RI Speck, Christian/G-2882-2011; OI Speck, Christian/0000-0001-6646-1692; Stillman, Bruce/0000-0002-9453-4091; Fernandez-Cid, Alejandra/0000-0002-6746-6791 FU US National Institutes of Health [GM45436, GM74985]; United Kingdom Medical Research Council; Japan Society for the Promotion of Science; Uehara Memorial Foundation FX We thank M. Smulczeski and S. Zhang for helping to manually select a large number of particles from raw cryo-EM micrographs and E. Gardenal and C. Winkler for the MCM2-7-Cdc6 interaction analysis. This work was supported by US National Institutes of Health grants GM45436 (to B. S.) and GM74985 (to H. L.) and the United Kingdom Medical Research Council (to C. S.). H. K. was supported by Postdoctoral Fellowships for Research Abroad from the Japan Society for the Promotion of Science and the Uehara Memorial Foundation. NR 60 TC 51 Z9 51 U1 0 U2 25 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD AUG PY 2013 VL 20 IS 8 BP 944 EP + DI 10.1038/nsmb.2629 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 195PH UT WOS:000322715300007 PM 23851460 ER PT J AU Zhu, XF Feng, L Zhang, P Yin, XB Zhang, X AF Zhu, Xuefeng Feng, Liang Zhang, Peng Yin, Xiaobo Zhang, Xiang TI One-way invisible cloak using parity-time symmetric transformation optics SO OPTICS LETTERS LA English DT Article ID METAMATERIALS; LIGHT AB We propose a one-way invisible cloak using transformation optics of parity-time (PT) symmetric optical materials. At the spontaneous PT-symmetry breaking point, light is scattered only for incidence along one direction since the phase-matching condition is unidirectionally satisfied, making the cloak one-way invisible. Moreover, optical scattering from the one-way cloak can be further engineered to realize more interesting effects, for example, creating a unidirectional optical illusion of the concealed object. (C) 2013 Optical Society of America C1 [Zhu, Xuefeng; Feng, Liang; Zhang, Peng; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhu, Xuefeng] Huazhong Univ Sci & Technol, Wuhan 430074, Hubei, Peoples R China. [Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Peng/D-9624-2011; Yin, Xiaobo/A-4142-2011; Feng, Liang/H-7367-2014; Zhang, Xiang/F-6905-2011 FU US ARO MURI program [W911NF-09-1-0539]; Bird Nest Plan of HUST FX This work was supported by the US ARO MURI program (W911NF-09-1-0539). X. F. Zhu acknowledges the financial support from the Bird Nest Plan of HUST. NR 24 TC 41 Z9 41 U1 2 U2 52 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD AUG 1 PY 2013 VL 38 IS 15 BP 2821 EP 2824 DI 10.1364/OL.38.002821 PG 4 WC Optics SC Optics GA 193QM UT WOS:000322576200057 PM 23903152 ER PT J AU Schwaller, P Tait, TMP Vega-Morales, R AF Schwaller, Pedro Tait, Tim M. P. Vega-Morales, Roberto TI Dark matter and vectorlike leptons from gauged lepton number SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; BOSON; SYMMETRY; PARTICLE; SEARCH; BARYON; MASS; LHC AB We investigate a simple model where lepton number is promoted to a local U(1)(L) gauge symmetry which is then spontaneously broken, leading to a viable thermal dark matter (DM) candidate and vectorlike leptons as a byproduct. The dark matter arises as part of the exotic lepton sector required by the need to satisfy anomaly cancellation and is a Dirac electroweak (mostly) singlet neutrino. It is stabilized by an accidental global symmetry of the renormalizable Lagrangian which is preserved even after the gauged lepton number is spontaneously broken and can annihilate efficiently to give the correct thermal relic abundance. We examine the ability of this model to give a viable DM candidate and discuss both direct and indirect detection implications. We also examine some of the LHC phenomenology of the associated exotic lepton sector and in particular its effects on Higgs decays. C1 [Schwaller, Pedro] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Schwaller, Pedro] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Tait, Tim M. P.] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. [Vega-Morales, Roberto] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Vega-Morales, Roberto] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Schwaller, P (reprint author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU NSF [PHY-0970171]; University of California, Irvine; Fermilab Graduate Student Fellowship program; Fermi Research Alliance, LLC [De-AC02-07CH11359]; U.S. Department of Energy; U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357, DE-FG02-12ER41811] FX The authors thank Andre de Gouvea, Bogdan Dobrescu, Patrick Fox, Roni Harnik, Carlos Wagner, and Felix Yu for useful conversations. The research of T. M. P. T. is supported in part by NSF Grant No. PHY-0970171 and by the University of California, Irvine through a Chancellor's fellowship. R. V.-M. is supported by the Fermilab Graduate Student Fellowship program. This research is also partially supported by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the U.S. Department of Energy. The work of P. S. is supported in part by the U.S. Department of Energy, Division of High Energy Physics, under Grants No. DE-AC02-06CH11357 and No. DE-FG02-12ER41811. NR 57 TC 13 Z9 13 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 1 PY 2013 VL 88 IS 3 AR 035001 DI 10.1103/PhysRevD.88.035001 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 195TF UT WOS:000322725800001 ER PT J AU Lazerson, SA Chapman, IT AF Lazerson, S. A. Chapman, I. T. TI STELLOPT modeling of the 3D diagnostic response in ITER SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 17th Annual Workshop on Magnetohydrodynamic (MHD) Stability Control - Addressing the Disruption Challenge for ITER CY NOV 05-07, 2012 CL Columbia Univ, New York, NY HO Columbia Univ ID EQUILIBRIUM AB The ITER three-dimensional (3D) diagnostic response to an n = 3 resonant magnetic perturbation (RMP) is modeled using the STELLOPT code. The in-vessel coils apply a RMP field which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20% changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low-field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria. C1 [Lazerson, S. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Chapman, I. T.] EURATOM CCFE Fus Assoc Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Lazerson, SA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM lazerson@pppl.gov RI Lazerson, Samuel/E-4816-2014 OI Lazerson, Samuel/0000-0001-8002-0121 NR 19 TC 10 Z9 10 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD AUG PY 2013 VL 55 IS 8 AR 084004 DI 10.1088/0741-3335/55/8/084004 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 195LB UT WOS:000322702700005 ER PT J AU Sassenberg, K Richardson, AS Brennan, DP Finn, JM AF Sassenberg, K. Richardson, A. S. Brennan, D. P. Finn, J. M. TI Control of magnetohydrodynamic modes in reversed field pinches with normal and tangential magnetic field sensing and two resistive walls SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 17th Annual Workshop on Magnetohydrodynamic (MHD) Stability Control - Addressing the Disruption Challenge for ITER CY NOV 05-07, 2012 CL Columbia Univ, New York, NY HO Columbia Univ ID POLOIDAL CURRENT DRIVE; ACTIVE MHD CONTROL; FEEDBACK-CONTROL; HELICITY STATES; EXTRAP T2R; RFX-MOD; SINGLE; PARADIGM; PLASMAS; TORUS AB Numerical results are presented on control of magnetohydrodynamic (MHD) modes in reversed field pinches (RFPs) for a geometry with two resistive walls. We use measurements of the normal component of the magnetic field and introduce the use of both tangential components. In Richardson et al (2010 Phys. Plasmas 17 112511), RFP control studies were performed sensing the radial (normal) component of the magnetic field and a single tangential component just inside the wall, showing that it is possible to stabilize the MHD modes in an RFP for current up to the ideal plasma-ideal wall limit in that configuration. Here, we extend our modeling by including two resistive walls, in a configuration relevant to experiments such as RFX-mod, and measuring all three magnetic field components, i.e. including a second tangential component, as an exploratory effort. We present our study incrementally, starting with a single resistive wall, and conclude that with the first tangential sensor located inside the wall, the plasma can be stabilized up to the ideal plasma-ideal wall limit, as in Richardson et al. With the first tangential sensor outside the wall, stabilization is possible only up to the ideal wall-resistive plasma (tearing) limit. We then show that for experimentally relevant parameters the thin-wall approximation is indeed valid for the MHD modes of interest but invalid for the high-frequency magnetosonic mode (Richardson et al) driven by the (first) tangential component feedback. In fact, when a thick-wall formulation with realistic parameters is considered, the high-frequency magnetosonic mode is found to be destabilized only for a very high gain parameter, and we conclude that this mode can be ignored for an experimentally relevant analysis. Consequently, the plasma can be stabilized in a much larger region of feedback gain parameter space than found in Richardson et al. In the presence of two walls, with the first tangential component measured just outside the inner wall and with RFX-mod relevant time constants, we show that feedback control can stabilize the plasma at currents much larger than the ideal wall-resistive plasma limit. The current limit is still less, however, than the ideal plasma-ideal wall limit. Use of the second tangential component appears in all cases to lead to significantly different but not necessarily improved feedback stabilization. These results may lead to better understanding and improved stability properties in current-day RFP experiments through robust access to quasi-single-helicity states. C1 [Sassenberg, K.; Brennan, D. P.] Univ Tulsa, Dept Phys, Tulsa, OK 74104 USA. [Richardson, A. S.] Naval Res Lab, Washington, DC 20375 USA. [Finn, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sassenberg, K (reprint author), Univ Tulsa, Dept Phys, Tulsa, OK 74104 USA. EM dylan-brennan@utulsa.edu OI Richardson, Andrew/0000-0002-3056-6334 NR 31 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD AUG PY 2013 VL 55 IS 8 AR 084002 DI 10.1088/0741-3335/55/8/084002 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 195LB UT WOS:000322702700003 ER PT J AU Green, MA Emery, K Hishikawa, Y Warta, W Dunlop, ED AF Green, Martin A. Emery, Keith Hishikawa, Yoshihiro Warta, Wilhelm Dunlop, Ewan D. TI Solar cell efficiency tables (version 42) SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar cell efficiency; photovoltaic efficiency; energy conversion efficiency ID MULTICRYSTALLINE; CONCENTRATOR; STABILITY; MODULE AB Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2013 are reviewed. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Green, Martin A.] Univ New S Wales, Australian Ctr Adv Photovolta, Sydney, NSW 2052, Australia. [Emery, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hishikawa, Yoshihiro] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta RCPV, Tsukuba, Ibaraki 3058568, Japan. [Warta, Wilhelm] Fraunhofer Inst Solar Energy Syst, Solar Cells Mat & Technol Dept, D-79110 Freiburg, Germany. [Dunlop, Ewan D.] European Commiss Joint Res Ctr, Renewable Energy Unit, Inst Energy, IT-21027 Ispra, Italy. RP Green, MA (reprint author), Univ New S Wales, Australian Ctr Adv Photovolta, Sydney, NSW 2052, Australia. EM m.green@unsw.edu.au FU Australian Renewable Energy Agency FX The Australian Centre for Advanced Photovoltaics commenced operation in 2013 with support from the Australian Renewable Energy Agency. NR 45 TC 318 Z9 319 U1 9 U2 269 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD AUG PY 2013 VL 21 IS 5 BP 827 EP 837 DI 10.1002/pip.2404 PG 11 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 186AF UT WOS:000322012700002 ER PT J AU Peshek, TJ Zhang, L Singh, RK Tang, ZZ Vahidi, M To, B Coutts, TJ Gessert, TA Newman, N van Schilfgaarde, M AF Peshek, Timothy J. Zhang, Lei Singh, Rakesh K. Tang, ZhiZhong Vahidi, Mahmoud To, Bobby Coutts, Timothy J. Gessert, Timothy A. Newman, Nathan van Schilfgaarde, Mark TI Criteria for improving the properties of ZnGeAs2 solar cells SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE ZnGeAs2; chalcopyrites; earth-abundant; photovoltaics; pulsed laser deposition; solar cell ID GROWTH AB We explore the potential utility of the II-IV-V semiconductor ZnGeAs2 as the absorber material in solar cells. As-deposited ZnGeAs2 films prepared by pulsed laser deposition are amorphous because of the limited substrate temperature that can be used without the rapid loss of volatile Zn and As. Thermal processing above 450 degrees C results in crystallization and improved electrical properties with hole mobilities as high as 58cm(2)/Vs. The annealed films were used to fabricate p-type ZnGeAs2: n-type CdS cells on SnO2-buffered borosilicate glass substrates in the so-called superstrate geometry. Light-induced currents of up to similar to 2mA/cm(2) and open-circuit voltages of up to 470mV were observed using backside illumination, indicating that these nascent devices hold potential for realizing high performance solar cells from earth-abundant elements. The performance of the devices fabricated to-date is degraded by conduction through shorts resulting from the presence of micron-sized pinholes in the absorber layer. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Peshek, Timothy J.; Zhang, Lei; Singh, Rakesh K.; Tang, ZhiZhong; Vahidi, Mahmoud; Newman, Nathan; van Schilfgaarde, Mark] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Peshek, Timothy J.; To, Bobby; Coutts, Timothy J.; Gessert, Timothy A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Peshek, Timothy J.] LLC, eQED, Mayfield Village, OH 44143 USA. RP Peshek, TJ (reprint author), LLC, eQED, Mayfield Village, OH 44143 USA. EM tpeshek@asu.edu RI Newman, Nathan/E-1466-2011 OI Newman, Nathan/0000-0003-2819-9616 FU DOE-EERE [DE-FG36-08GO18002] FX The authors would like to recognize the LeRoy Eyring Center for Solid State Science at Arizona State University and the National Center for Photovoltaics at the National Renewable Energy Laboratory for facilities to make this work possible. This project was supported by DOE-EERE grant DE-FG36-08GO18002. NR 21 TC 6 Z9 6 U1 0 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD AUG PY 2013 VL 21 IS 5 BP 906 EP 917 DI 10.1002/pip.2177 PG 12 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 186AF UT WOS:000322012700010 ER PT J AU Cruz-Campa, JL Nielson, GN Resnick, PJ Okandan, M Young, R Zubia, D Gupta, V AF Cruz-Campa, Jose L. Nielson, Gregory N. Resnick, Paul J. Okandan, Murat Young, Ralph Zubia, David Gupta, Vipin TI Ultrathin and micro-sized solar cell performance optimization via simulations SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar cell simulation; ultrathin solar cell; microsystems-enabled photovoltaics; miniature solar cells; optimization solar cells AB Back-contacted, ultrathin (<10 mu m), and submillimeter-sized solar cells made with microsystem tools are a new type of cell that has not been optimized for performance. The literature reports efficiencies up to 15% using thicknesses of 14 mu m and cell sizes of 250 mu m. In this paper, we present the design, conditions, and fabrication parameters necessary to optimize these devices. The optimization was performed using commercial simulation tools from the microsystems arena. A systematic variation of the different parameters that influence the performance of the cell was accomplished. The researched parameters were resistance, Shockley-Read-Hall (SRH) lifetime, contact separation, implant characteristics (size, dosage, energy, and ratio between the species), contact size, substrate thickness, surface recombination, and light concentration. The performance of the cell was measured with efficiency, open-circuit voltage, and short-circuit current. Among all the parameters investigated, surface recombination and SRH lifetime proved to be the most important. Through completing the simulations, an optimized concept solar cell design was introduced for two scenarios: high and low quality materials/passivation. Simulated efficiencies up to 23.4% (1sun) and 26.7% (100suns) were attained for 20-mu m-thick devices. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Cruz-Campa, Jose L.; Nielson, Gregory N.; Resnick, Paul J.; Okandan, Murat] Sandia Natl Labs, MEMS Technol, Albuquerque, NM 87185 USA. [Young, Ralph] Sandia Natl Labs, Rad Hard CMOS Technol, Albuquerque, NM 87185 USA. [Zubia, David] Univ Texas El Paso, El Paso, TX 79968 USA. [Cruz-Campa, Jose L.; Gupta, Vipin] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Cruz-Campa, JL (reprint author), Sandia Natl Labs, POB 5800,MS 1080, Albuquerque, NM 87185 USA. EM jlcruzc@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE Solar Energy Technology Program Seed Fund FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was sponsored by the DOE Solar Energy Technology Program Seed Fund. NR 15 TC 3 Z9 3 U1 1 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD AUG PY 2013 VL 21 IS 5 BP 1114 EP 1126 DI 10.1002/pip.2214 PG 13 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 186AF UT WOS:000322012700030 ER PT J AU Gray, MF Zalupski, P Nilsson, M AF Gray, Michael F. Zalupski, Peter Nilsson, Mikael TI Determination of Activity Coefficients of di-(2-ethylhexyl) Phosphoric Acid Dimer in Select Organic Solvents Using Vapor Phase Osmometry SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE di-(2-ethylhexyl) phosphoric acid; vapor pressure osmometry; activity coefficients; solubility parameters ID PRESSURE OSMOMETRY; REFERENCE SOLUTES; SELF-ASSOCIATION; EXTRACTANTS; OCTYLAMINE; BENZENE; SYSTEMS AB Effective models for solvent extraction require accurate characterization of the nonideality effects for each component, including the extractants. In this study, the nonideal behavior of the industrial extractant di(2-ethylhexyl) phosphoric acid has been investigated using vapor pressure osmometry (VPO). From the osmometry data, activity coefficients for the HDEHP dimer were obtained based on a formulation of the regular solution theory of Scatchard and Hildebrand, and the Margules two- and three-suffix equations. The results show similarity with a slope-analysis based relation from previous literature, although important differences are highlighted. The work points towards VPO as a useful technique for this type of study, but care must be taken with the choice of standard and method of analysis. C1 [Gray, Michael F.; Nilsson, Mikael] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA. [Zalupski, Peter] Idaho Natl Lab, Dept Aqueous Separat & Radiochem, Idaho Falls, ID 83415 USA. RP Nilsson, M (reprint author), Univ Calif Irvine, Dept Chem Engn & Mat Sci, 916 Engn Tower, Irvine, CA 92697 USA. EM nilssonm@uci.edu FU Idaho National Laboratory, Fuel Cycle Research and Development program (FCR&D), U.S. DOE, Office of Nuclear Energy; [107827] FX Work was supported under subcontract number 107827 with the Idaho National Laboratory, Fuel Cycle Research and Development program (FCR&D), U.S. DOE, Office of Nuclear Energy. NR 23 TC 0 Z9 0 U1 2 U2 17 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0736-6299 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD AUG 1 PY 2013 VL 31 IS 5 BP 550 EP 563 DI 10.1080/07366299.2013.785870 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 194FC UT WOS:000322615400006 ER PT J AU Genc, A Kovarik, L Gu, M Cheng, HK Plachinda, P Pullan, L Freitag, B Wang, CM AF Genc, Arda Kovarik, Libor Gu, Meng Cheng, Huikai Plachinda, Paul Pullan, Lee Freitag, Bert Wang, Chongmin TI XEDS STEM tomography for 3D chemical characterization of nanoscale particles SO ULTRAMICROSCOPY LA English DT Article DE Tomography; XEDS; STEM; Silicon drift detector; Li ion battery; 3D chemical mapping; Li1.2Ni0.2Mn0.6O2 ID SPECTROSCOPIC TOMOGRAPHY; RUTHERFORD SCATTERING; ELECTRON TOMOGRAPHY; EFTEM TOMOGRAPHY; Z-CONTRAST; FIB AB We present a tomography technique which couples scanning transmission electron microscopy (STEM) and X-ray energy dispersive spectrometry (XEDS) to resolve 3D distribution of elements in nanoscale materials. STEM imaging when combined with XEDS mapping using a symmetrically arranged XEDS detector design around the specimen overcomes many of the obstacles in 3D chemical imaging of nanoscale materials and successfully elucidates the 3D chemical information in a large field of view of the transmission electron microscopy (TEM) sample. We employed this technique to investigate 3D distribution of Nickel (Ni), Manganese (Mn) and Oxygen (0) in a Li1.2Ni0.2Mn0.6O2 (LNMO) nanoparticle used as a cathode material in Lithium (Li) ion batteries. For this purpose, 2D elemental maps were acquired for a range of tilt angles and reconstructed to obtain 3D elemental distribution in an isolated LNMO nanoparticle. The results highlight the strength of this technique in 3D chemical analysis of nanoscale materials by successfully resolving Ni, Mn and 0 elemental distributions in 3D and discovering the new phenomenon of Ni surface segregation in this material. Furthermore, the comparison of simultaneously acquired high angle annular dark field (HAADF) STEM and XEDS STEM tomography results shows that XEDS STEM tomography provides additional 3D chemical information of the material especially when there is low atomic number (Z) contrast in the material of interest. (C) 2013 Elsevier BY. All rights reserved. C1 [Genc, Arda; Cheng, Huikai; Plachinda, Paul; Pullan, Lee] FEI Co, Hillsboro, OR 97124 USA. [Kovarik, Libor; Gu, Meng; Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Freitag, Bert] FEI Co, NL-5600 KA Eindhoven, Netherlands. RP Genc, A (reprint author), FEI Co, 5350 NE Dawson Creek Dr, Hillsboro, OR 97124 USA. EM arda.genc@fei.com RI Gu, Meng/B-8258-2013; Kovarik, Libor/L-7139-2016; OI Kovarik, Libor/0000-0002-2418-6925 FU DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RLO1830] FX The authors would like to thank Dr. Dapeng Wang, Bias Belharouak and Khalil Amine at Argonne National Laboratory for the sample synthesis. Research described in this paper is part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory. It was conducted under the Laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. Part of the work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. NR 23 TC 33 Z9 34 U1 3 U2 96 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD AUG PY 2013 VL 131 BP 24 EP 32 DI 10.1016/j.ultramic.2013.03.023 PG 9 WC Microscopy SC Microscopy GA 194KG UT WOS:000322631200003 PM 23676452 ER PT J AU Passian, A Tetard, L Thundat, T AF Passian, Ali Tetard, Laurene Thundat, Thomas TI Comments on the paper "A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces" by Sohrab Eslami and Nader Jalili SO ULTRAMICROSCOPY LA English DT Editorial Material DE Microscopy; AFM; MSAFM; Imaging; Nonlinear dynamics; Nanomechanical forces ID MICROSCOPY; HOLOGRAPHY AB This comment on the paper "A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces" by Sohrab Eslami and Jalili (2012)[1] aims to: (1) discuss and elucidate the concept of "virtual resonance" and thus (2) avert a misinterpretation of the experimental results and findings reported in the Tetard et al. Physical Review Letters 106, 180801 (2011) [2]. (C) 2013 Elsevier B.V. All rights reserved. C1 [Passian, Ali; Tetard, Laurene] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Passian, Ali] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Passian, Ali] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Thundat, Thomas] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada. RP Passian, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM passianan@ornl.gov NR 15 TC 0 Z9 0 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD AUG PY 2013 VL 131 BP 92 EP 93 DI 10.1016/j.ultramic.2013.03.016 PG 2 WC Microscopy SC Microscopy GA 194KG UT WOS:000322631200010 PM 23735319 ER PT J AU Tu, QC He, ZL Deng, Y Zhou, JH AF Tu, Qichao He, Zhili Deng, Ye Zhou, Jizhong TI Strain/Species-Specific Probe Design for Microbial Identification Microarrays SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID FUNCTIONAL GENE MICROARRAYS; OLIGONUCLEOTIDE DESIGN; COMMUNITY COMPOSITION; CRITERIA AB Specific identification of microorganisms in the environment is important but challenging, especially at the species/strain level. Here, we have developed a novel k-mer-based approach to select strain/species-specific probes for microbial identification with diagnostic microarrays. Application of this approach to human microbiome genomes showed that multiple (>= 10 probes per strain) strain-specific 50-mer oligonucleotide probes could be designed for 2,012 of 3,421 bacterial strains of the human microbiome, and species-specific probes could be designed for most of the other strains. The method can also be used to select strain/species-specific probes for sequenced genomes in any environments, such as soil and water. C1 [Tu, Qichao; He, Zhili; Deng, Ye; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Zhou, JH (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. EM zhili.he@ou.edu; jzhou@ou.edu OI ?, ?/0000-0002-7584-0632 FU Ecosystems and Networks Integrated with Genes and Molecular Assemblies (ENIGMA) [DE-AC02-05CH11231]; Oklahoma Center for the Advancement of Science and Technology (OCAST) through Oklahoma Applied Research Support (OARS) project [AR11-035] FX This work was supported by Ecosystems and Networks Integrated with Genes and Molecular Assemblies (ENIGMA) under contract no. DE-AC02-05CH11231 and by the Oklahoma Center for the Advancement of Science and Technology (OCAST) through Oklahoma Applied Research Support (OARS) project AR11-035. NR 18 TC 5 Z9 5 U1 2 U2 20 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD AUG PY 2013 VL 79 IS 16 BP 5085 EP 5088 DI 10.1128/AEM.01124-13 PG 4 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 187ZV UT WOS:000322161700037 PM 23747703 ER PT J AU Lee, JC Xu, Y Huber, GW AF Lee, Jechan Xu, Ye Huber, George W. TI High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Aqueous-phase hydrogenation; Aqueous-phase hydrogenolysis; Binding energy; Biomass conversion; Heterogeneous catalysts; High-throughput ID SUPPORTED METAL-CATALYSTS; ETHYLENE-GLYCOL; HETEROGENEOUS CATALYSIS; RUTHENIUM CATALYST; LIQUID ALKANES; PD; HYDROCARBONS; KINETICS; XYLOSE; CO AB The initial reaction rates on a per site basis for aqueous-phase hydrogenation (APH) of different oxygenated compounds: including acetaldehyde, propanal, acetone, xylose, furfural, and furfuryl alcohol and aqueous-phase hydrogenolysis of tetrahydrofurfuryl alcohol (THFA) and xylitol were measured over various alumina-supported monometallic catalysts (Pd, Pt, Ru, Rh, Ni, and Co) in a high-throughput reactor. These oxygenated compounds have the same functionality that is found in aqueous solutions derived from biomass including pyrolysis oils and aqueous hydrolysis solutions. The initial rate of APH of the different carbonyls groups was dependent on the functionality of the feed molecule and catalyst used. Ru was the most active metal for APH of acetaldehyde, propanal, acetone, and xylose. Pd was the most active metal for APH of furfural and furfuryl alcohol. Only Pt and Ni catalysts were able to produce 1,2-pentanediol and 1,5-pentanediol from aqueous-phase hydrogenolysis of THFA. Ru was active for conversion of THFA but only made coke. The initial activity for aqueous-phase hydrogenolysis of xylitol decreased in the order of Ru > Co > Pt > Ni >= Pd. The initial rates of APH of carbonyl groups (C=O bond) measured in this study decreased in the order: hydrogenation of acetone > hydrogenation of acetaldehyde and propanal > hydrogenation of xylose > hydrogenation of furfural. The initial rates of aqueous-phase hydrogenolysis of THFA and xylitol were much lower than the initial rate for APH of C=O and C=C bonds. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lee, Jechan; Huber, George W.] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. [Xu, Ye] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Huber, GW (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA. EM huber@engr.wisc.edu RI Xu, Ye/B-5447-2009; Lee, Jechan/J-1229-2016 OI Xu, Ye/0000-0002-6406-7832; Lee, Jechan/0000-0002-9759-361X FU Catalysis Center for Energy Innovation, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001004]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; US-DOE Office of Science [DE-AC02-05CH11231] FX This work was supported as part of the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004. Theoretical work was performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, and used computing resources of the National Energy Research Scientific Computing Center, which is supported by US-DOE Office of Science under Contract DE-AC02-05CH11231. NR 86 TC 44 Z9 44 U1 22 U2 226 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD AUG-SEP PY 2013 VL 140 BP 98 EP 107 DI 10.1016/j.apcatb.2013.03.031 PG 10 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 185ST UT WOS:000321991300012 ER PT J AU Ji, YY Toops, TJ Crocker, M AF Ji, Yaying Toops, Todd. J. Crocker, Mark TI Isocyanate formation and reactivity on a Ba-based LNT catalyst studied by DRIFTS SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE NOx reduction; Isocyanate; Ba nitrate; Carbon monoxide; Hydrolysis; Isotopic labeling ID NOX TRAP CATALYSTS; STORED NOX; REDUCTION CATALYST; NITROGEN-OXIDES; REDUCING AGENT; NH3 FORMATION; STORAGE; H-2; REGENERATION; CO AB Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectrometry (MS), coupled with the use of isotopically-labeled reactants ((NO)-N-15-O-18 and (CO)-C-13), were employed to study the formation of isocyanate species during NOx reduction with CO, as well as isocyanate reactivity toward typical exhaust gas components. DRIFTS demonstrated that both Ba-NCO and Al-NCO were simultaneously formed during NOx reduction by CO under dry lean-rich cycling conditions. The Ba-NCO band was more intense than that of Al-NCO, and became comparatively stronger at high temperatures. During rich purging at 300 and 400 degrees C, a near linear relationship was found between the increase in Ba-NCO band intensity and the decrease in Ba-NO3 band intensity, suggesting that Ba-NCO is directly derived from the reaction of Ba nitrate with CO. Both temperature-programmed surface reaction (TPSR) and isothermal reaction modes (ISR) were utilized to study the reactivity of isocyanate species under lean conditions. Simultaneous DRIFTS and mass spectrometric measurements during TPSR indicated that isocyanate reaction with H2O, O-2, NO and NO/O-2 took place almost immediately the temperature was raised above 100 degrees C, and that all NCO species were removed below 300 degrees C. The evolution of the NCO IR bands during ISR at 350 degrees C demonstrated that the kinetics of NCO hydrolysis are fast, although a delay in N-2 formation indicated that N-2 is not the initial product of the reaction. In contrast, immediate N-2 evolution was observed during NCO reaction with O-2 and with NO + O-2. Overall, it can be inferred that under dry cycling conditions with CO as the sole reductant, N-2 is mainly generated via NCO reaction with NO/O-2 after the switch to lean conditions, rather than being evolved during the rich phase. However, in the presence of water, isocyanate undergoes rapid hydrolysis in the rich phase, N-2 generation proceeding via NH3. (C) 2013 Elsevier B.V. All rights reserved. C1 [Ji, Yaying; Crocker, Mark] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Toops, Todd. J.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Crocker, M (reprint author), Univ Kentucky, Ctr Appl Energy Res, 3572 Iron Works Pike, Lexington, KY 40511 USA. EM mark.crocker@uky.edu FU U.S. Department of Energy (DOE) [DE-EE0000205, DE-AC05-00OR22725] FX This project was funded by the U.S. Department of Energy (DOE) under award number DE-EE0000205. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725. NR 33 TC 8 Z9 8 U1 2 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD AUG-SEP PY 2013 VL 140 BP 265 EP 275 DI 10.1016/j.apcatb.2013.04.017 PG 11 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 185ST UT WOS:000321991300031 ER PT J AU Jung, HB Um, W AF Jung, Hun Bok Um, Wooyong TI Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration SO APPLIED GEOCHEMISTRY LA English DT Article ID WET SUPERCRITICAL CO2; DEGRADATION; FORSTERITE; AQUIFERS; IMPACTS AB Hydrated Portland cement was reacted with CO2 in supercritical, gaseous and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from a deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images showed that the cement alteration was significantly more extensive with CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50 degrees C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integrated XMT, XRD and SEM-EDS analyses identified the formation of an extensive carbonated zone filled with CaCO3(s), as well as a porous degradation front and an outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. Cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. An extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of CO2 indicates that the extent of cement carbonation can be significantly heterogeneous depending on the CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous and aqueous phases of CO2 during geologic C sequestration is unlikely to damage the wellbore integrity because cement alteration by all phases of CO2 is dominated by carbonation reactions. This is consistent with previous field studies of wellbore cement with extensive carbonation after exposure to CO2 for three decades. However, XMT imaging indicates that preferential cement alteration by supercritical CO2 or CO2-saturated groundwater can occur along the cement-steel or cement-rock interfaces. This highlights the importance of further investigation of cement degradation along the interfaces of wellbore materials to ensure permanent geologic carbon storage. Published by Elsevier Ltd. C1 [Jung, Hun Bok; Um, Wooyong] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Um, W (reprint author), Pacific NW Natl Lab, POB 999,P7-54,902 Battelle Blvd, Richland, WA 99354 USA. EM wooyong.um@pnnl.gov FU National Risk Assessment Partnership (NRAP) in the US Department of Energy Office of Fossil Energy's Carbon Sequestration Program; US DOE [DE-AC06-76RLO 1830] FX The authors are grateful to Toni Owen, Tamas Varga and Danielle Jansik for XMT data collection and analyses, as well as Paul Martin for experimental setup. The authors would like to thank Mark Bowden for micro-XRD analysis and Laxmikant Saraf for SEM-EDS analysis in EMSL (Environmental Molecular Sciences Laboratory), a DOE national scientific user facility at Pacific Northwest National Laboratory (PNNL). Funding for this research was provided by the National Risk Assessment Partnership (NRAP) in the US Department of Energy Office of Fossil Energy's Carbon Sequestration Program. PNNL is operated by Battelle for the US DOE under Contract DE-AC06-76RLO 1830. NR 37 TC 17 Z9 17 U1 2 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD AUG PY 2013 VL 35 BP 161 EP 172 DI 10.1016/j.apgeochem.2013.04.007 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 186SR UT WOS:000322065800017 ER PT J AU Smith, SD Solomon, DK Gardner, WP AF Smith, Stanley D. Solomon, D. Kip Gardner, W. Payton TI Testing helium equilibrium between quartz and pore water as a method to determine pore water helium concentrations SO APPLIED GEOCHEMISTRY LA English DT Article ID NOBLE-GASES; COSMOGENIC HE-3; DIFFUSION; GROUNDWATER; TRANSPORT; MINERALS; AQUITARD; CRUSTAL; ROCKS; CLAY AB The effectiveness of carbon capture and geologic storage depends on many factors, including and especially the permeability of the reservoir's caprock. While caprock integrity is generally assumed if petroleum has been preserved, it is poorly constrained in reservoirs containing only saline waters, and CO2 leakage poses a potential risk to shallow aquifers. Naturally-occurring He accumulates in pore waters over time with the concentration being strongly dependent on the long term flux of fluid through the caprock. Furthermore, a small fraction of pore-water He diffuses into quartz and this may be used as a proxy for He concentrations in pore water, where dissolved gas samples are difficult to obtain, such as in deep sedimentary basins. In this paper He contained in quartz grains is measured and compared to previously measured pore water concentrations. Quartz was purified from core samples from the San Juan Basin, New Mexico and the Great Artesian Basin, South Australia. Quartz separates were heated at 290 degrees C to release He from the quartz. The quartz from the San Juan Basin and high purity quartz from the Spruce Pine Intrusion, North Carolina was repeatedly impregnated at varying pressures using pure He, heated and analyzed to build He sorption isotherms. The isotherms appear linear but vary between samples, possibly due to fluid inclusions within the quartz grains as high purity quartz samples partition only 1.5% of He that partitions into San Juan Basin samples. Concentrations of He in the pore water were calculated using the He-accessible volume of the quartz and the air-water He solubility. The mean San Juan Basin He pore water concentration was 2 x 10(-5) cc STP He/g water, similar to 400 times greater than atmospheric solubility. Great Artesian Basin samples contain a mean He concentration of 3 x 10(-6) cc STP He/g water or 65 times greater than atmospheric solubility. However, pore water He concentrations in both the San Juan and Great Artesian Basins differ by up to an order of magnitude compared to samples collected with an alternate method. The reason for the offset is attributable to either partial saturation of the pore volume or a lack of He equilibrium between quartz and pore water. Coating of clay or other mineral phases on quartz grains, which tends to reduce the effective diffusion coefficient, may cause the latter. This technique of assessing permeability is promising due to the abundance of existing core samples from numerous basins where carbon sequestration may ultimately occur. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Smith, Stanley D.; Solomon, D. Kip] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA. [Gardner, W. Payton] CSIRO, Land & Water, Glen Osmond, SA 5064, Australia. [Gardner, W. Payton] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Smith, SD (reprint author), Univ Utah, Dept Geol & Geophys, 115 S 1460 E, Salt Lake City, UT 84112 USA. EM stan.smith@csiro.au RI Smith, Stanley/E-2351-2013; Solomon, Douglas/C-7951-2016 OI Solomon, Douglas/0000-0001-6370-7124 FU EPA STAR Program [RD-83438601] FX The authors would like to thank V. Heilweil and an anonymous reviewer for their contributions towards a better article. This work was supported by the EPA STAR Program Award RD-83438601. High purity quartz from the Spruce Pine Pluton was provided by Unimin Inc. Core samples from the Kirtland Formation were provided by Jason Heath. NR 35 TC 2 Z9 2 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD AUG PY 2013 VL 35 BP 187 EP 195 DI 10.1016/j.apgeochem.2013.04.010 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 186SR UT WOS:000322065800019 ER PT J AU Chatellier, X Grybos, M Abdelmoula, M Kemner, KM Leppard, GG Mustin, C West, MM Paktunc, D AF Chatellier, Xavier Grybos, Malgorzata Abdelmoula, Mustapha Kemner, Kenneth M. Leppard, Gary G. Mustin, Christian West, M. Marcia Paktunc, Dogan TI Immobilization of P by oxidation of Fe(II) ions leading to nanoparticle formation and aggregation SO APPLIED GEOCHEMISTRY LA English DT Article ID RAY-ABSORPTION-SPECTROSCOPY; K-EDGE EXAFS; BACTERIAL SURFACES; GROWTH MECHANISMS; MOSSBAUER-SPECTRA; AQUEOUS-SOLUTIONS; FE OXYHYDROXIDE; FERROUS-IONS; GREEN RUST; PO4 IONS AB Ferrous iron was oxidized at pH 6.0 in the presence of dissolved oxygen and increasing concentrations of phosphate. The resulting precipitates were characterized by TEM, SEM, XRD, IR spectroscopy, Mossbauer spectroscopy, EXAFS spectroscopy, and chemical analyses. The kinetics and the stoichiometry of oxidation were also determined. Chemical analyses revealed that all the P introduced was immobilized up to an introduced P/Fe molar ratio of 0.6-0.7. In the presence of excess phosphate, the maximum P/Fe ratio of the precipitates was found to be equal to about 0.86. Incorporation of phosphate hindered the sorption of dissolved carbonates, but favored the immobilization of monovalent cations such as Na or K. The number of OH ions per Fe atom introduced during the reaction decreased from 2 in the absence of P to about 1.5 +/- 0.1 in the presence of excess phosphate. In all cases, no residual Fe(II) could be detected. In the absence of phosphate, the samples were composed of poorly crystallized ferrihydrite, lepidocrocite and goethite nanoparticles. Even just a small amount of phosphate (P/Fe = 0.02) was sufficient to effectively restrict the formation of goethite. In contrast, the formation of lepidocrocite was detected by XRD for P/Fe ratios as high as 0.1. At higher P/Fe ratios, only non-crystalline particles were detected. For 0.1 < P/Fe < 0.5, the characteristic size of all particles was smaller than 10 nm. For P/Fe > 0.5, a new category of particles with characteristic length scales larger than 10 nm appeared and became prominent as P/Fe increased. The transition was accompanied by a change in color of the suspension, from dark red to light yellow. For an introduced P/Fe ratio larger than 1, only the larger particles remained. As the introduced P/Fe ratio increased further, the incorporated P/Fe ratio increased only slightly. In contrast the size of the particles increased significantly, reaching a size larger than 50 nm in the presence of a large excess of PO43-. The kinetics of oxidation and hydrolysis were shown to obey a typical autocatalytic process in the presence as well as in the absence of PO43-. Published by Elsevier Ltd. C1 [Chatellier, Xavier] Univ Rennes 1, CNRS, F-35042 Rennes, France. [Grybos, Malgorzata] Univ Limoges FST, GRESE, F-87060 Limoges, France. [Abdelmoula, Mustapha] Univ Lorraine, CNRS, UMR 7564, Lab Chim Phys & Microbiol Environnement, F-54600 Villers Les Nancy, France. [Kemner, Kenneth M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Leppard, Gary G.] Natl Water Res Inst Branch, Aquat Ecosyst Management Res Div, Burlington, ON L7R 4A6, Canada. [Mustin, Christian] Univ Lorraine, CNRS, LIMOS, F-54506 Vandoeuvre Les Nancy, France. [West, M. Marcia] McMaster Univ, Fac Hlth Sci, Hamilton, ON L8N 3Z5, Canada. [Paktunc, Dogan] CANMET Min & Mineral Sci Labs, Ottawa, ON K1A 0G1, Canada. RP Chatellier, X (reprint author), Burgemeester Patijnlaan 90, NL-2585 BL The Hague, Netherlands. EM xavier.chatellier@univ-rennes1.fr RI ID, MRCAT/G-7586-2011 FU Argonne Subsurface Science Focus Area is part of the United States Department of Energy (US DOE), Office of Science (OS), Office of Biological and Environmental Research Subsurface Biogeochemical Research Program; US DOE OS Office of Basic Energy Science (BES); MRCAT/EnviroCAT member institutions; US DOE OS BES [DE-AC02-06CH11357] FX We thank Bruce Ravel, Martine Bouhnik-Le Coz, Beatrice Trinkler, and Joseph Le Lannic for contributing to the EXAFS spectroscopy, ICP-MS, CN and SEM measurements, respectively. We thank Patrice Petitjean for performing AAS measurements (not shown here), which confirmed the ICP-MS results. We thank Odile Henin for some valuable help in the laboratory. This work was supported in part by the Argonne Subsurface Science Focus Area, which is part of the United States Department of Energy (US DOE), Office of Science (OS), Office of Biological and Environmental Research Subsurface Biogeochemical Research Program. Use of the MRCAT/EnviroCAT at the Advanced Photon Source (APS) was supported by the US DOE OS Office of Basic Energy Science (BES) and the MRCAT/EnviroCAT member institutions. Use of the APS was supported by the US DOE OS BES under contract DE-AC02-06CH11357. NR 66 TC 13 Z9 13 U1 4 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD AUG PY 2013 VL 35 BP 325 EP 339 DI 10.1016/j.apgeochem.2013.04.019 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 186SR UT WOS:000322065800031 ER PT J AU Huh, SS Gunter, D Chivers, D Mihailescu, L Vetter, K AF Huh, Sam S. Gunter, Donald Chivers, Daniel Mihailescu, Lucian Vetter, Kai TI Unbiased and biased estimators in coded aperture imaging for far field standoff detection at low count rates SO APPLIED OPTICS LA English DT Article ID UNIFORMLY REDUNDANT ARRAYS AB In general, the reconstructed image in coded aperture imaging is affected by the source configuration. Fenimore's balanced convolution method in conjunction with the uniformly redundant array can remove the interference due to the source configuration. As an extensiono of Fenimore's balanced convolution method, we present general conditions for designing an unbiased mean estimator for a far-field coded aperture imaging system with a random binary mask. As part of the general conditions, we propose decoding arrays whose elements are variable with respect to source directions. We also show that the unbiased mean estimator from Fenimore's balanced convolution method is a special case of the general conditions. We also present a practical example of designing restoring arrays for a coded aperture system with a random mask. (C) 2013 Optical Society of America C1 [Huh, Sam S.; Gunter, Donald; Chivers, Daniel; Mihailescu, Lucian; Vetter, Kai] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Appl Nucl Phys Program, Berkeley, CA 94720 USA. [Vetter, Kai] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Huh, SS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Appl Nucl Phys Program, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM sshuh@lbl.gov NR 6 TC 0 Z9 0 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X J9 APPL OPTICS JI Appl. Optics PD AUG 1 PY 2013 VL 52 IS 22 BP 5478 EP 5492 DI 10.1364/AO.52.005478 PG 15 WC Optics SC Optics GA 193OP UT WOS:000322569800035 PM 23913069 ER PT J AU Maroni, VA Johnson, CS Rood, SCM Kropf, AJ Bass, DA AF Maroni, Victor A. Johnson, Christopher S. Rood, Shawn C. M. Kropf, A. Jeremy Bass, Dean A. TI Characterization of Novel Lithium Battery Cathode Materials by Spectroscopic Methods: The Li5+xFeO4 System SO APPLIED SPECTROSCOPY LA English DT Article DE Raman; X-ray absorption; X-ray diffraction; Lithium battery; Cathode material; Li5FeO4 (LFO) ID ION BATTERIES; SECONDARY BATTERIES; METAL-OXIDES; LI5FEO4; CELLS; FE AB The novel, lithium-rich oxide-phase Li5FeO4 (LFO) could, in theory, deliver a specific capacity >900 mAh/g when deployed as a cathode or cathode precursor in a battery with a lithium-based anode. However, research results to date on LFO indicate that less than one of the five Li+ cations can be reversibly de-intercalated/re-intercalated during repetitive charging and discharging cycles. In the present research, the system Li5+xFeO4 with x values in the range of 0.0-2.0 was investigated by a combination of Raman and X-ray absorption spectroscopic methods supported by X-ray diffraction (XRD) analysis in order to determine if the Li5FeO4 lattice would accommodate additional Li+ ions, with concomitant lowering of the valence on the Fe-III cations. Both the Raman phonon spectra and the XRD patterns were invariant for all values of x, strongly indicating that additional Li+ did not enter the Li5FeO4 lattice. Also, Raman spectral results and high-resolution synchrotron XRD data revealed the presence of second-phase Li2O in all samples with x greater than 0.0. Synchrotron X-ray absorption spectroscopy at the Fe k alpha edge performed on the sample with a Li-Fe ratio of 7.0 (i.e., x = 2.0) showed no evidence for the presence of Fe-II. This resistance to accepting more lithium into the Li5FeO4 structure is attributed to the exceedingly stable nature of high-spin Fe-III in tetrahedral "(FeO4)-O-III" structural units of Li5FeO4. Partial substitution of the Fern with other cations could provide a path toward increasing the reversible Li+ content of Li5xFeO4-type phases. C1 [Maroni, Victor A.; Johnson, Christopher S.; Rood, Shawn C. M.; Kropf, A. Jeremy; Bass, Dean A.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Maroni, VA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Maroni@anl.gov RI Rood, Shawn/O-9843-2015 OI Rood, Shawn/0000-0002-5416-9894 FU U.S. Department of Energy (USDOE) [DE-FG02-09ER85385]; University of Chicago Argonne, L.L.C. [DE-AC02-06CH11357]; USDOE [DE-AC02-06CH11357] FX The research described in this paper was sponsored by the U.S. Department of Energy (USDOE) as part of a Phase H Small Business Innovative Research Project (no. DE-FG02-09ER85385) between Farasis Energy, Inc., and ANL. The support and encouragement of Dr. Keith Kepler at Farasis Energy, Inc., and the assistance of Dr. David Gosztola with the use of the Raman instrumentation is gratefully acknowledged. Use of instrumentation at Argonne's Center for Nanoscale Materials and Advanced Photon Source was supported by the USDOE, Office of Science, Office of Basic Energy Sciences. The work carried out at the ANL was performed under contract DE-AC02-06CH11357 between University of Chicago Argonne, L.L.C., and the USDOE. NR 26 TC 3 Z9 3 U1 5 U2 51 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD AUG PY 2013 VL 67 IS 8 BP 903 EP 912 DI 10.1366/12-06893 PG 10 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 193KW UT WOS:000322559700011 PM 23876729 ER PT J AU Jones, S Hirschi, R Nomoto, K Fischer, T Timmes, FX Herwig, F Paxton, B Toki, H Suzuki, T Martinez-Pinedo, G Lam, YH Bertolli, MG AF Jones, S. Hirschi, R. Nomoto, K. Fischer, T. Timmes, F. X. Herwig, F. Paxton, B. Toki, H. Suzuki, T. Martinez-Pinedo, G. Lam, Y. H. Bertolli, M. G. TI ADVANCED BURNING STAGES AND FATE OF 8-10 M-circle dot STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE nuclear reactions, nucleosynthesis, abundances; stars: AGB and post-AGB; stars: evolution; stars: neutron; supernovae: general ID ELECTRON-CAPTURE SUPERNOVAE; MASSIVE AGB STARS; CORE-COLLAPSE SUPERNOVAE; WEAK INTERACTION RATES; GIANT BRANCH STARS; DEGENERATE CORES; MODEL STAR; CONDUCTIVE PROPAGATION; STELLAR EVOLUTION; NUCLEAR FLAMES AB The stellar mass range 8 less than or similar to M/M-circle dot less than or similar to 12 corresponds to the most massive asymptotic giant branch (AGB) stars and the most numerous massive stars. It is host to a variety of supernova (SN) progenitors and is therefore very important for galactic chemical evolution and stellar population studies. In this paper, we study the transition from super-AGB (SAGB) star to massive star and find that a propagating neon-oxygen-burning shell is common to both the most massive electron capture supernova (EC-SN) progenitors and the lowest mass iron-core-collapse supernova (FeCCSN) progenitors. Of the models that ignite neon-burning off-center, the 9.5 M-circle dot star would evolve to an FeCCSN after the neon-burning shell propagates to the center, as in previous studies. The neon-burning shell in the 8.8 M-circle dot model, however, fails to reach the center as the URCA process and an extended (0.6 M-circle dot) region of low Y-e (0.48) in the outer part of the core begin to dominate the late evolution; the model evolves to an EC-SN. This is the first study to follow the most massive EC-SN progenitors to collapse, representing an evolutionary path to EC-SN in addition to that from SAGB stars undergoing thermal pulses (TPs). We also present models of an 8.75 M-circle dot SAGB star through its entire TP phase until electron captures on Ne-20 begin at its center and of a 12 M-circle dot star up to the iron core collapse. We discuss key uncertainties and how the different pathways to collapse affect the pre-SN structure. Finally, we compare our results to the observed neutron star mass distribution. C1 [Jones, S.; Hirschi, R.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Hirschi, R.; Nomoto, K.] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Fischer, T.; Martinez-Pinedo, G.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Fischer, T.; Martinez-Pinedo, G.; Lam, Y. H.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Timmes, F. X.] Univ Arizona, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Timmes, F. X.; Herwig, F.] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. [Herwig, F.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Paxton, B.] Univ Calif Santa Barbara, KITP, Santa Barbara, CA 93106 USA. [Paxton, B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Toki, H.] Osaka Univ, Res Ctr Nucl Phys RCNP, Osaka 5670047, Japan. [Suzuki, T.] Nihon Univ, Coll Human & Sci, Dept Phys, Setagaya Ku, Tokyo 1568550, Japan. [Suzuki, T.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Bertolli, M. G.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Jones, S (reprint author), Keele Univ, Astrophys Grp, Lennard Jones Bldg, Keele ST5 5BG, Staffs, England. EM s.w.jones@keele.ac.uk RI Martinez-Pinedo, Gabriel/A-1915-2013 OI Martinez-Pinedo, Gabriel/0000-0002-3825-0131 FU European Research Council under the European Union's Seventh Framework Programme/ERC [306901]; NSF [PHY 02-16783, PHY 0922648]; Eurocore project Eurogenesis; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Swiss National Science Foundation [PBBSP2-133378]; National Science Foundation [PHY 11-25915, AST 11-09174]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 306901. NuGrid acknowledges significant support from NSF grants PHY 02-16783 and PHY 0922648 (Joint Institute for Nuclear Astrophysics, JINA). R.H. thanks the Eurocore project Eurogenesis for support. K.N., R.H., and S.J. acknowledge support from the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. T.F. acknowledges support from the Swiss National Science Foundation under project no. PBBSP2-133378 and HIC for FAIR. B.P.'s research has been supported by the National Science Foundation under grants PHY 11-25915 and AST 11-09174. M.G.B.'s research was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under contract No. DE-AC52-06NA25396. NR 56 TC 40 Z9 40 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2013 VL 772 IS 2 AR 150 DI 10.1088/0004-637X/772/2/150 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 186EL UT WOS:000322024700072 ER PT J AU Luo, B Brandt, WN Alexander, DM Harrison, FA Stern, D Bauer, FE Boggs, SE Christensen, FE Comastri, A Craig, WW Fabian, AC Farrah, D Fiore, F Fuerst, F Grefenstette, BW Hailey, CJ Hickox, R Madsen, KK Matt, G Ogle, P Risaliti, G Saez, C Teng, SH Walton, DJ Zhang, WW AF Luo, B. Brandt, W. N. Alexander, D. M. Harrison, F. A. Stern, D. Bauer, F. E. Boggs, S. E. Christensen, F. E. Comastri, A. Craig, W. W. Fabian, A. C. Farrah, D. Fiore, F. Fuerst, F. Grefenstette, B. W. Hailey, C. J. Hickox, R. Madsen, K. K. Matt, G. Ogle, P. Risaliti, G. Saez, C. Teng, S. H. Walton, D. J. Zhang, W. W. TI WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS? SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; galaxies: active; galaxies: nuclei; quasars: absorption lines; quasars: emission lines; X-rays: general ID ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; SPECTRAL ENERGY-DISTRIBUTIONS; OPTICALLY SELECTED QUASARS; XMM-NEWTON SPECTROSCOPY; HUBBLE-SPACE-TELESCOPE; ACCRETION DISK WINDS; RADIO-LOUD QUASARS; SEYFERT 1 GALAXIES; 7TH DATA RELEASE AB We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approximate to 400-600 hard X-ray (greater than or similar to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N-H less than or similar to 10(24) cm(-2)). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N-H approximate to 7 x 10(24) cm(-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K alpha line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%. C1 [Luo, B.; Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Luo, B.; Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Alexander, D. M.; Hickox, R.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bauer, F. E.; Saez, C.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Comastri, A.] INAF, Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fabian, A. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Fiore, F.] Osserv Astron Roma, I-00040 Monte Porzio Catone, Italy. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Hickox, R.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Matt, G.] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Ogle, P.] CALTECH, IPAC, Pasadena, CA 91125 USA. [Risaliti, G.] INAF, Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Risaliti, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Teng, S. H.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Luo, B (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. RI Boggs, Steven/E-4170-2015; Brandt, William/N-2844-2015; Comastri, Andrea/O-9543-2015; OI Boggs, Steven/0000-0001-9567-4224; Brandt, William/0000-0002-0167-2453; Comastri, Andrea/0000-0003-3451-9970; Alexander, David/0000-0002-5896-6313; Fiore, Fabrizio/0000-0002-4031-4157; Risaliti, Guido/0000-0002-3556-977X FU California Institute of Technology (Caltech) NuSTAR [44A-1092750]; NASA ADP Grant [NNX10AC99G]; Leverhulme trust; Science Technology and Facilities Council; Basal-CATA [PFB-06/2007]; CONICYT-Chile [FONDECYT 1101024, Anillo ACT1101, FONDECYT 3120198]; NASA [NNG08FD60C]; National Aeronautics and Space Administration FX We acknowledge support from the California Institute of Technology (Caltech) NuSTAR subcontract 44A-1092750 (B.L. and W.N.B.), NASA ADP Grant NNX10AC99G (B.L. and W.N.B.), the Leverhulme trust and the Science Technology and Facilities Council (D.M.A.), Basal-CATA Grant PFB-06/2007 and CONICYT-Chile Grants FONDECYT 1101024 and Anillo ACT1101 (F.E.B.), and CONICYT-Chile Grant FONDECYT 3120198 (C.S.). We thank M. Young for help with the planning of this project and K. Forster for help with the NuSTAR data access, and we thank M. Balokovic, K. Boydstun, T. N. Lu, B. P. Miller, Jianfeng Wu, and T. Yaqoob for helpful discussions. We thank the referee, S. C. Gallagher, for carefully reviewing the manuscript and providing helpful comments.; This work was supported under NASA contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by Caltech, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of NuSTAR-DAS jointly developed by the ASI Science Data Center (ASDC, Italy) and Caltech (USA). NR 146 TC 24 Z9 24 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2013 VL 772 IS 2 AR 153 DI 10.1088/0004-637X/772/2/153 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 186EL UT WOS:000322024700075 ER PT J AU Muratov, AL Gnedin, OY Gnedin, NY Zemp, M AF Muratov, Alexander L. Gnedin, Oleg Y. Gnedin, Nickolay Y. Zemp, Marcel TI REVISITING THE FIRST GALAXIES: THE EFFECTS OF POPULATION III STARS ON THEIR HOST GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; galaxies: evolution; galaxies: formation; methods: numerical; stars: formation ID HIGH-REDSHIFT GALAXIES; KENNICUTT-SCHMIDT RELATION; INITIAL MASS FUNCTION; LAMBDA-CDM UNIVERSE; COSMOLOGICAL SIMULATIONS; RADIATIVE FEEDBACK; DWARF GALAXIES; PRIMORDIAL GAS; PROTOSTELLAR FEEDBACK; STELLAR POPULATIONS AB We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H-2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10(8) years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 x 10(6) M-circle dot re-accrete most of their baryons and transition to metal-enriched Pop II star formation. C1 [Muratov, Alexander L.; Gnedin, Oleg Y.; Zemp, Marcel] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Zemp, Marcel] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. RP Muratov, AL (reprint author), Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. EM muratov@umich.edu OI Zemp, Marcel/0000-0002-0498-3812; Gnedin, Oleg/0000-0001-9852-9954 FU Rackham pre-Doctoral Fellowship; University of Michigan; NSF [AST-0708087, AST-0708154]; NASA [NNX12AG44G]; DOE at Fermilab; Peking University FX A.L.M. acknowledges the support of the Rackham pre-Doctoral Fellowship awarded by The University of Michigan. O.Y.G. was supported in part by NSF grant AST-0708087 and NASA grant NNX12AG44G. This work was supported in part by the DOE at Fermilab and by NSF grant AST-0708154. M.Z. is in part supported by a 985 grant from Peking University. We thank the anonymous referee for a thorough and insightful report. We also thank Alexander Heger for discussion of the evolution of a 100 Mcircle dot star, and John Wise, Andrey Kravtsov, Milos Milosavljevic, Michael Anderson, Wen-Hsin Hsu, and Doug Rudd for various constructive suggestions. NR 70 TC 11 Z9 11 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2013 VL 772 IS 2 AR 106 DI 10.1088/0004-637X/772/2/106 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 186EL UT WOS:000322024700028 ER PT J AU Silverman, JM Nugent, PE Gal-Yam, A Sullivan, M Howell, DA Filippenko, AV Pan, YC Cenko, SB Hook, IM AF Silverman, Jeffrey M. Nugent, Peter E. Gal-Yam, Avishay Sullivan, Mark Howell, D. Andrew Filippenko, Alexei V. Pan, Yen-Chen Cenko, S. Bradley Hook, Isobel M. TI LATE-TIME SPECTRAL OBSERVATIONS OF THE STRONGLY INTERACTING TYPE Ia SUPERNOVA PTF11kx SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; supernovae: general; supernovae: individual (PTF11kx) ID DARK-ENERGY CONSTRAINTS; WHITE-DWARF STAR; IIN SUPERNOVA; CIRCUMSTELLAR INTERACTION; SODIUM-ABSORPTION; LEGACY SURVEY; SN 2011FE; PROGENITOR; 2009DC; 2010JL AB PTF11kx was a Type Ia supernova (SN Ia) that showed time-variable absorption features, including saturated Ca II H and K lines that weakened and eventually went into emission. The strength of the emission component of H alpha gradually increased, implying that the SN was undergoing significant interaction with its circumstellar medium (CSM). These features, and many others, were blueshifted slightly and showed a P-Cygni profile, likely indicating that the CSM was directly related to, and probably previously ejected by, the progenitor system itself. These and other observations led Dilday et al. to conclude that PTF11kx came from a symbiotic nova progenitor like RS Oph. In this work we extend the spectral coverage of PTF11kx to 124-680 rest-frame days past maximum brightness. The late-time spectra of PTF11kx are dominated by Ha emission (with widths of full width at half-maximum intensity approximate to 2000 km s(-1)), strong Ca II emission features (similar to 10,000 km s(-1) wide), and a blue "quasi-continuum" due to many overlapping narrow lines of Fe II. Emission from oxygen, He I, and Balmer lines higher than Ha is weak or completely absent at all epochs, leading to large observed H alpha/H beta intensity ratios. The H alpha emission appears to increase in strength with time for similar to 1 yr, but it subsequently decreases significantly along with the Ca II emission. Our latest spectrum also indicates the possibility of newly formed dust in the system as evidenced by a slight decrease in the red wing of H alpha. During the same epochs, multiple narrow emission features from the CSM temporally vary in strength. The weakening of the H alpha and Ca II emission at late times is possible evidence that the SN ejecta have overtaken the majority of the CSM and agrees with models of other strongly interacting SNe Ia. The varying narrow emission features, on the other hand, may indicate that the CSM is clumpy or consists of multiple thin shells. C1 [Silverman, Jeffrey M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Silverman, Jeffrey M.; Nugent, Peter E.; Filippenko, Alexei V.; Cenko, S. Bradley] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Nugent, Peter E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gal-Yam, Avishay] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Sullivan, Mark] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Howell, D. Andrew] Las Cumbres Observ, Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Pan, Yen-Chen; Hook, Isobel M.] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Hook, Isobel M.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, RM, Italy. RP Silverman, JM (reprint author), Univ Texas Austin, Dept Astron, RLM 15308, Austin, TX 78712 USA. EM jsilverman@astro.as.utexas.edu OI Sullivan, Mark/0000-0001-9053-4820; Hook, Isobel/0000-0002-2960-978X FU W. M. Keck Foundation; NASA; Alfred P. Sloan Foundation; National Science Foundation (NSF); U.S. Department of Energy Office of Science; Richard and Rhoda Goldman Fund; Christopher R. Redlich Fund; TABASGO Foundation; NSF [AST-0908886, AST-1211916]; ISF; BSF; GIF; Minerva, an FP7/ERC grant; Helen and Martin Kimmel Award for Innovative Investigation; Royal Society FX We thank J. S. Bloom, K. Clubb, A. A. Miller, and A. Morgan for their assistance with some of the observations, B. Dilday, O. Fox, and L. Wang for helpful discussions, and the anonymous referee for providing comments and suggestions that improved the manuscript. We are grateful to the staffs at the WHT and the Keck Observatory for their support. The WHT is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration (NASA); the observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community; we are most fortunate to have the opportunity to conduct observations from this mountain. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation (NSF), and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/. Supernova research by A.V.F.'s group at U.C. Berkeley is supported by Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF Grants AST-0908886 and AST-1211916. Work by A.G.-Y. and his group is supported by grants from the ISF, BSF, GIF, and Minerva, an FP7/ERC grant, and the Helen and Martin Kimmel Award for Innovative Investigation. M. S. acknowledges support from the Royal Society. NR 55 TC 13 Z9 13 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2013 VL 772 IS 2 AR 125 DI 10.1088/0004-637X/772/2/125 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 186EL UT WOS:000322024700047 ER PT J AU Van Dyk, SD Zheng, WK Clubb, KI Filippenko, AV Cenko, SB Smith, N Fox, OD Kelly, PL Shivvers, I Ganeshalingam, M AF Van Dyk, Schuyler D. Zheng, WeiKang Clubb, Kelsey I. Filippenko, Alexei V. Cenko, S. Bradley Smith, Nathan Fox, Ori D. Kelly, Patrick L. Shivvers, Isaac Ganeshalingam, Mohan TI THE PROGENITOR OF SUPERNOVA 2011dh HAS VANISHED SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: individual (NGC 5194); stars: evolution; supernovae: general; supernovae: individual (SN 2011dh) ID RED SUPERGIANT PROGENITOR; SN 2011DH; IIB SUPERNOVA; EVOLUTION; 1993J; STAR; M51; SPECTRA; COMPACT; SEARCH AB We conducted Hubble Space Telescope (HST) Snapshot observations of the Type IIb supernova (SN) 2011dh in M51 at an age of similar to 641 days with the Wide Field Camera 3. We find that the yellow supergiant star, clearly detected in pre-SN HST images, has disappeared, implying that this star was almost certainly the progenitor of the SN. Interpretation of the early time SN data which led to the inference of a compact nature for the progenitor, and to the expected survival of this yellow supergiant, is now clearly incorrect. We also present ground-based UBVRI light curves obtained with the Katzman Automatic Imaging Telescope at Lick Observatory up to SN age similar to 70 days. From the light-curve shape including the very late time HST data, and from recent interacting binary models for SN 2011dh, we estimate that a putative surviving companion star to the now deceased yellow supergiant could be detectable by late 2013, especially in the ultraviolet. No obvious light echoes are detectable yet in the SN environment. C1 [Van Dyk, Schuyler D.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Zheng, WeiKang; Clubb, Kelsey I.; Filippenko, Alexei V.; Cenko, S. Bradley; Fox, Ori D.; Kelly, Patrick L.; Shivvers, Isaac] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Cenko, S. Bradley] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Smith, Nathan] Univ Arizona, Steward Observ, Tucson, AZ 85720 USA. [Ganeshalingam, Mohan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Van Dyk, SD (reprint author), CALTECH, Spitzer Sci Ctr, Mailcode 220-6, Pasadena, CA 91125 USA. EM vandyk@ipac.caltech.edu OI Shivvers, Isaac/0000-0003-3373-8047; Van Dyk, Schuyler/0000-0001-9038-9950 FU NASA [NAS 05-26555]; NASA from STScI [AR-12623, GO-13029]; Richard and Rhoda Goldman Fund; Christopher R. Redlich Fund; TABASGO Foundation; NSF [AST-1211916] FX This work is based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 05-26555. KAIT and its ongoing research were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. Support for this research was provided by NASA through grants AR-12623 and GO-13029 from STScI. A.V.F. and his group at UC Berkeley also wish to acknowledge generous support from Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST-1211916. NR 43 TC 39 Z9 39 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2013 VL 772 IS 2 AR L32 DI 10.1088/2041-8205/772/2/L32 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 186CR UT WOS:000322020000019 ER PT J AU Fosso-Tande, J Harrison, RJ AF Fosso-Tande, Jacob Harrison, Robert J. TI Confinement effects of solvation on a molecule physisorbed on a polarizable continuum particle SO COMPUTATIONAL AND THEORETICAL CHEMISTRY LA English DT Article DE Multiresolution; Multiwavelet; Physisorption; Confinement; Electrostatic; Enhancement; Poisson's equation ID SURFACE-ENHANCED RAMAN; SINGLE MOLECULES; 2ND HYPERPOLARIZABILITY; SCATTERING SERS; SILVER; NANOPARTICLES; SPECTRA; ELECTRODE; MODELS AB We investigate the effects of solvation on the static properties of a molecule physisorbed on a spherical polarizable continuum particle, with a static dielectric constant. The effective polarizability of the physisorbed molecule is enhanced by a factor of 10(5) in vacuo and by only 10(2) when solvated. The electrostatic interaction between molecules and the polarizable continuum particle (PCP) results in a magnified reflected electric field with a magnitude that depends on the PCP-molecule separation. A similar and greater magnification effect in reflected field also results from the PCP-field (external electric field) interaction. The variation of the polarizability of the molecules with respect to the changes in their environment illustrates the importance of electrostatic interaction in the enhancement of the effective polarizability. In the course of the investigation, the solute and the continuous body are represented with the same adaptive multi-wavelet basis functions, thereby, within the user specified precision, eliminating basis set error. Published by Elsevier B.V. C1 [Fosso-Tande, Jacob; Harrison, Robert J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Harrison, Robert J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Fosso-Tande, J (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall,142 Circle Dr, Knoxville, TN 37996 USA. EM jtande@utk.edu FU National Science Foundation [OCI-0904972]; Department of Energy [DE-AC05-00OR22725] FX This work was supported by the National Science Foundation under Grant OCI-0904972 (Computational Chemistry and Physics Beyond the Petascale). Simulations were performed at the National Center for Computational Sciences at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 from the Department of Energy. NR 27 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2210-271X J9 COMPUT THEOR CHEM JI Comput. Theor. Chem. PD AUG 1 PY 2013 VL 1017 BP 22 EP 30 DI 10.1016/j.comptc.2013.05.006 PG 9 WC Chemistry, Physical SC Chemistry GA 189VV UT WOS:000322297300004 ER PT J AU Zhai, P Haussener, S Ager, J Sathre, R Walczak, K Greenblatt, J McKone, T AF Zhai, Pei Haussener, Sophia Ager, Joel Sathre, Roger Walczak, Karl Greenblatt, Jeffery McKone, Thomas TI Net primary energy balance of a solar-driven photoelectrochemical water-splitting device SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID LIFE-CYCLE ASSESSMENT; HYDROGEN-PRODUCTION; CHALLENGES; FUTURE; ELECTROCATALYSTS; ELECTRODES; SYSTEMS AB A fundamental requirement for a renewable energy generation technology is that it should produce more energy during its lifetime than is required to manufacture it. In this study we evaluate the primary energy requirements of a prospective renewable energy technology, solar-driven photoelectrochemical (PEC) production of hydrogen from water. Using a life cycle assessment (LCA) methodology, we evaluate the primary energy requirements for upstream raw material preparation and fabrication under a range of assumptions of processes and materials. As the technology is at a very early stage of research and development, the analysis has considerable uncertainties. We consider and analyze three cases that we believe span a relevant range of primary energy requirements: 1550 MJ m(-2) (lower case), 2110 MJ m(-2) (medium case), and 3440 MJ m(-2) (higher case). We then use the medium case primary energy requirement to estimate the net primary energy balance (energy produced minus energy requirement) of the PEC device, which depends on device performance, e. g. longevity and solar-to-hydrogen (STH) efficiency. We consider STH efficiency ranging from 3% to 10% and longevity ranging from 5 to 30 years to assist in setting targets for research, development and future commercialization. For example, if STH efficiency is 3%, the longevity must be at least 8 years to yield a positive net energy. A sensitivity analysis shows that the net energy varies significantly with different assumptions of STH efficiency, longevity and thermo-efficiency of fabrication. Material choices for photoelectrodes or catalysts do not have a large influence on primary energy requirements, though less abundant materials like platinum may be unsuitable for large scale-up. C1 [Zhai, Pei; Haussener, Sophia; Sathre, Roger; Greenblatt, Jeffery; McKone, Thomas] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Haussener, Sophia; Ager, Joel; Walczak, Karl] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA USA. [Haussener, Sophia] Ecole Polytech Fed Lausanne, Inst Engn Mech, CH-1015 Lausanne, Switzerland. [Ager, Joel] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. RP Zhai, P (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM clarezhai@gmail.com OI Ager, Joel/0000-0001-9334-9751 FU Lawrence Berkeley National Laboratory (LBNL); US Department of Energy [DE-AC02-05CH11231]; Joint Center for Artificial Photosynthesis (JCAP), a DOE Energy Innovation Hub; Office of Science of the US Department of Energy [DE-SC0004993] FX This research was supported by Laboratory Directed Research and Development funding at the Lawrence Berkeley National Laboratory (LBNL), which is operated for US Department of Energy under Contract Grant no. DE-AC02-05CH11231 (Zhai, Ager, Sathre, Greenblatt and McKone). The work was also supported in part by the Joint Center for Artificial Photosynthesis (JCAP), a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under Award no. DE-SC0004993 (Haussener and Walczak). NR 49 TC 25 Z9 25 U1 4 U2 71 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD AUG PY 2013 VL 6 IS 8 BP 2380 EP 2389 DI 10.1039/c3ee40880a PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 185QB UT WOS:000321983800010 ER PT J AU McDaniel, AH Miller, EC Arifin, D Ambrosini, A Coker, EN O'Hayre, R Chueh, WC Tong, JH AF McDaniel, Anthony H. Miller, Elizabeth C. Arifin, Darwin Ambrosini, Andrea Coker, Eric N. O'Hayre, Ryan Chueh, William C. Tong, Jianhua TI Sr- and Mn-doped LaAlO3-delta for solar thermochemical H-2 and CO production SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID HYDROGEN-PRODUCTION; CYCLES; OXIDE; CERIA; FERRITES AB The increasing global appetite for energy within the transportation sector will inevitably result in the combustion of more fossil fuel. A renewable-derived approach to carbon-neutral synthetic fuels is therefore needed to offset the negative impacts of this trend, which include climate change. In this communication we report the use of nonstoichiometric perovskite oxides in two-step, solar-thermochemical water or carbon dioxide splitting cycles. We find that LaAlO3 doped with Mn and Sr will efficiently split both gases. Moreover the H-2 yields are 9x greater, and the CO yields 6x greater, than those produced by the current state-of-the-art material, ceria, when reduced at 1350 degrees C and re-oxidized at 1000 degrees C. The temperature at which O-2 begins to evolve from the perovskite is fully 300 degrees C below that of ceria. The materials are also very robust, maintaining their redox activity over at least 80 CO2 splitting cycles. This discovery has profound implications for the development of concentrated solar fuel technologies. C1 [McDaniel, Anthony H.; Miller, Elizabeth C.; Arifin, Darwin; Chueh, William C.] Sandia Natl Labs, Livermore, CA 94551 USA. [Miller, Elizabeth C.; Ambrosini, Andrea; Coker, Eric N.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [O'Hayre, Ryan; Tong, Jianhua] Colorado Sch Mines, Golden, CO 80401 USA. RP McDaniel, AH (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM amcdani@sandia.gov; jhtongm@gmail.com RI Tong, Jianhua/C-8324-2016 OI Tong, Jianhua/0000-0002-0684-1658 FU DOE NNSA [DE-FC52-08NA28752]; Sandia National Laboratories Truman Fellowship in National Security Science and Engineering; National Science Foundation MRSEC program [DMR-0820518]; DOE Fuel Cell Technologies Office as part of the Production technology development area; Laboratory Directed Research and Development at Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX E.C.M. was supported by a DOE NNSA Stewardship Science Graduate Fellowship, grant number DE-FC52-08NA28752. W. C. C. was supported by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering. Work conducted at Colorado School of Mines was supported by the National Science Foundation MRSEC program under grant no. DMR-0820518. Work at Sandia was supported by the DOE Fuel Cell Technologies Office as part of the Production technology development area, and by Laboratory Directed Research and Development at Sandia National Laboratories. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 25 TC 72 Z9 73 U1 12 U2 130 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD AUG PY 2013 VL 6 IS 8 BP 2424 EP 2428 DI 10.1039/c3ee41372a PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 185QB UT WOS:000321983800013 ER PT J AU Shirpour, M Cabana, J Doeff, M AF Shirpour, Mona Cabana, Jordi Doeff, Marca TI New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SOLID-ELECTROLYTE INTERPHASE; LITHIUM-ION BATTERIES; ENERGY-STORAGE; RECHARGEABLE BATTERIES; CRYSTAL-STRUCTURE; ANODE; INSERTION; TIO2; STABILITY; NA2TI3O7 AB The electrochemical properties of materials derived from NaTi3O6(OH)center dot 2H(2)O have been investigated for the first time. The parent compound has a corrugated layered structure consisting of {Ti6O14}(4-) units with hydrated sodium cations and protons in the interlayer spaces. Upon heating to 600 degrees C, water is removed irreversibly, the interlayer distances become smaller, and connecting bonds between the octahedral layers form. It was found that this material can reversibly intercalate both lithium and sodium. The initial specific discharge capacities, as measured in half-cells, varied with the state of hydration and the nature of the counter electrode (Na or Li). The electrochemical potential showed a non-linear sloping dependence with degree of intercalation, indicative of a solid-solution mechanism of intercalation. The process was centered at a low average potential of about 0.3 V vs. Na or Li, the lowest ever reported for titanate-based Li hosts. The higher density and potential for higher rate capability of this compound, in comparison to carbonaceous materials with similar voltage and reversible capacities, make a compelling case for its development as an anode material, for both lithium and sodium ion batteries. C1 [Shirpour, Mona; Cabana, Jordi; Doeff, Marca] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Shirpour, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM MShirpour@lbl.gov RI Cabana, Jordi/G-6548-2012; OI Cabana, Jordi/0000-0002-2353-5986; Doeff, Marca/0000-0002-2148-8047 FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract DE-AC02-05CH11231. NR 56 TC 74 Z9 74 U1 20 U2 293 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD AUG PY 2013 VL 6 IS 8 BP 2538 EP 2547 DI 10.1039/c3ee41037d PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 185QB UT WOS:000321983800027 ER PT J AU Kelkar, S Srinivasan, G Robinson, BA Roback, R Viswanathan, H Rehfeldt, K Tucci, P AF Kelkar, S. Srinivasan, G. Robinson, B. A. Roback, R. Viswanathan, H. Rehfeldt, K. Tucci, P. TI Breakthrough of contaminant plumes in saturated volcanic rock: implications from the Yucca Mountain site SO GEOFLUIDS LA English DT Review DE contaminant transport; fractured rock; plumes; saturated zone; transverse dispersion ID RIVER PLAIN AQUIFER; FRACTURED POROUS-MEDIA; SOLUTE TRANSPORT; STOCHASTIC-ANALYSIS; RADIONUCLIDE MIGRATION; TRANSVERSE DISPERSION; ZONE; MODEL; FLOW; SORPTION AB This manuscript addresses the topic of transverse dispersion and its impact on the behavior of the saturated zone below Yucca Mountain, a site that had been proposed for a US nuclear waste repository. Guided by a review of relevant observations of dispersion in similar formations, this study evaluates the importance of uncertainty in dispersion, particularly dispersion transverse to the mean transport direction, on metrics of interest to the Yucca Mountain risk assessment. Although as expected, larger values of transverse dispersivity lead to greater spreading of the plume in directions orthogonal to the mean flow direction, a corresponding sensitivity is not observed to the travel time statistics of the breakthrough curve at the compliance boundary. Thus, when a risk assessment is based on contaminant mass flux at compliance well or 'fence line' downstream from the source, as in the Yucca Mountain case, transverse dispersion may be of secondary importance to other parameters that more directly impact travel times. This result is in contrast to systems in which reactive transport processes are important to the attenuation of the plume, in which case transverse dispersion and mixing may be expected to play a dominant role in controlling the reaction rates and contaminant concentrations in the plume. C1 [Kelkar, S.; Srinivasan, G.; Robinson, B. A.; Roback, R.; Viswanathan, H.; Rehfeldt, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Tucci, P.] US Geol Survey, Denver, CO 80225 USA. RP Kelkar, S (reprint author), Los Alamos Natl Lab, MS T003,EES 16, Los Alamos, NM 87545 USA. EM kelkar@lanl.gov OI Roback, Robert/0000-0003-2748-1580 FU US Department of Energy [DE-AC04-94AL85000, DE-AI28-02RW12167] FX This manuscript has been authored by Los Alamos National Laboratory, under contract to Sandia National Laboratories under Contract DE-AC04-94AL85000 with the US Department of Energy, and the United States Geological Survey, under interagency agreement number DE-AI28-02RW12167 with the US Department of Energy. The statements expressed in this article are those of the authors and do not necessarily reflect the views or policies of the United States Department of Energy, Sandia National Laboratories, and Los Alamos National Laboratory. Additionally, Gary LeCain of the US Geological Survey participated in this study by reviewing the literature and summarizing the results for several of the sites included in the study, and Bill Arnold of Sandia National Laboratories provided the authors with insights on the performance assessment studies for Yucca Mountain. The authors would also like to acknowledge the efforts of the anonymous reviewers, whose editorial and substantive comments greatly improve the quality of the manuscript. NR 48 TC 0 Z9 1 U1 1 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1468-8115 J9 GEOFLUIDS JI Geofluids PD AUG PY 2013 VL 13 IS 3 BP 273 EP 282 DI 10.1111/gfl.12035 PG 10 WC Geochemistry & Geophysics; Geology SC Geochemistry & Geophysics; Geology GA 187ZI UT WOS:000322160100001 ER PT J AU Han, WS Lu, M McPherson, BJ Keating, EH Moore, J Park, E Watson, ZT Jung, NH AF Han, W. S. Lu, M. McPherson, B. J. Keating, E. H. Moore, J. Park, E. Watson, Z. T. Jung, N. -H. TI Characteristics of CO2-driven cold-water geyser, Crystal Geyser in Utah: experimental observation and mechanism analyses SO GEOFLUIDS LA English DT Article DE CO2; geologic CO2 sequestration; geyser; Navajo Sandstone; seismicity ID CO2 GEOLOGICAL STORAGE; YELLOWSTONE-NATIONAL-PARK; EARTH TIDAL FORCES; CARBON-DIOXIDE; BAROMETRIC-PRESSURE; INDUSTRIAL ANALOGS; TECTONIC STRESSES; MAMMOTH MOUNTAIN; GAS-RESERVOIRS; LEAKAGE AB Geologic carbon capture and storage (CCS) is an option for reducing CO2 emissions, but leakage to the surface is a risk factor. Natural CO2 reservoirs that erupt from abandoned oil and gas holes leak to the surface as spectacular cold geysers in the Colorado Plateau, United States. A better understanding of the mechanisms of CO2-driven cold-water geysers will provide valuable insight about the potential modes of leakage from engineered CCS sites. A notable example of a CO2-driven cold-water geyser is Crystal Geyser in central Utah. We investigated the fluid mechanics of this regularly erupting geyser by instrumenting its conduit with sensors and measuring pressure and temperature every 20 sec over a period of 17 days. Analyses of these measurements suggest that the timescale of a single-eruption cycle is composed of four successive eruption types with two recharge periods ranging from 30 to 40 h. Current eruption patterns exhibit a bimodal distribution, but these patterns evolved during past 80 years. The field observation suggests that the geyser's eruptions are regular and predictable and reflect pressure and temperature changes resulting from Joule-Thomson cooling and endothermic CO2 exsolution. The eruption interval between multiple small-scale eruptions is a direct indicator of the subsequent large-scale eruption. C1 [Han, W. S.; Watson, Z. T.; Jung, N. -H.] Univ Wisconsin, Dept Geosci, Milwaukee, WI 53201 USA. [Lu, M.] CSIRO, Div Earth Sci & Resource Engn, Clayton North, Vic, Australia. [McPherson, B. J.] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT USA. [Keating, E. H.] Los Alamos Natl Lab, Dept Computat Geosci, Los Alamos, NM USA. [Moore, J.] Univ Utah, Energy & Geosci Inst, Salt Lake City, UT USA. [Park, E.] Kyungpook Natl Univ, Dept Geol, Taegu, South Korea. RP Han, WS (reprint author), Univ Wisconsin, Dept Geosci, POB 413,Lapham Hall 366, Milwaukee, WI 53201 USA. EM hanw@uwm.edu FU National Science Foundation [EAR-1246404]; Korea National Oil Corporation; Korea Institute of Energy Technology Evaluation and Planning [2011T100100331] FX The authors would like to thank an anonymous reviewer and Jim Evans for their technical review and Amir Mijatovic and Rich Esser for assisting field work. All financial support for this research was provided by both National Science Foundation (EAR-1246404) and Korea National Oil Corporation funded by the Korea Institute of Energy Technology Evaluation and Planning (2011T100100331). NR 88 TC 15 Z9 15 U1 1 U2 34 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1468-8115 J9 GEOFLUIDS JI Geofluids PD AUG PY 2013 VL 13 IS 3 BP 283 EP 297 DI 10.1111/gfl.12018 PG 15 WC Geochemistry & Geophysics; Geology SC Geochemistry & Geophysics; Geology GA 187ZI UT WOS:000322160100002 ER PT J AU DasGupta, S Kaplar, RJ Atcitty, S Marinella, MJ AF DasGupta, Sandeepan Kaplar, Robert J. Atcitty, Stanley Marinella, Matthew J. TI Photocapacitance Decay Technique for Interface Trap Characterization Near Inversion Band in Wide Bandgap MOS Capacitors SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Metal-oxide-semiconductor (MOS); photocapacitance; wide bandgap ID FIELD-EFFECT TRANSISTORS; SILICON-CARBIDE; 4H-SIC MOSFETS; NITRIC-OXIDE; DENSITIES; MOBILITY; DEVICES; STATES; 4H AB A technique to characterize interface traps near the minority carrier band for wide bandgap metal-oxide-semiconductor (MOS) capacitors at room temperature is presented. The method uses photogeneration of minority carriers and transient analysis of the subsequent photocapacitance decay to evaluate trap response times. The technique is demonstrated using n-type substrate 6H-SiC/SiO2 MOS capacitors to extract interface trap density (D-it) ranging in energy from 0.2 to 0.8 eV above the valence band edge (E-nu) and trap cross sections from 0.4 to 0.7 eV above E-nu. For the given material system, traps near Ev exhibit significant differences between n- and p-type substrate MOS capacitors. C1 [DasGupta, Sandeepan; Kaplar, Robert J.; Atcitty, Stanley; Marinella, Matthew J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP DasGupta, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sdasgup@sandia.gov; rjkapla@sandia.gov; satcitt@sandia.gov; mmarine@sandia.gov FU Sandia National Laboratories, a multiprogram laboratory managed by the Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, the U.S. Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000]; DOE Energy Storage Program FX This work was supported in part by the Sandia National Laboratories, a multiprogram laboratory managed by the Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC0494AL85000, and the DOE Energy Storage Program managed by Dr. Imre Gyuk of the DOE Office of Electricity. The review of this paper was arranged by Editor Z. Celik-Butler. NR 33 TC 0 Z9 0 U1 2 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9383 EI 1557-9646 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD AUG PY 2013 VL 60 IS 8 BP 2619 EP 2625 DI 10.1109/TED.2013.2270287 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 187MV UT WOS:000322124100029 ER PT J AU Nerva, JG Genzale, CL Kook, S Garcia-Oliver, JM Pickett, LM AF Nerva, Jean-Guillaume Genzale, Caroline L. Kook, Sanghoon Garcia-Oliver, Jose M. Pickett, Lyle M. TI Fundamental spray and combustion measurements of soy methyl-ester biodiesel SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Biodiesel; soy methyl-ester; liquid length; spray penetration; ignition; lift-off length; soot volume fraction; spray combustion modelling; diesel engine ID LIQUID-PHASE PENETRATION; HSDI DIESEL-ENGINE; SOOT FORMATION; FUEL; PRESSURE; STABILIZATION; TEMPERATURE; EMISSIONS; IGNITION; FLAME AB Although biodiesel has begun to penetrate the fuel market, its effect on injection processes, combustion and emission formation under diesel engine conditions remains somewhat unclear. Typical exhaust measurements from engines running biodiesel indicate that particulate matter, carbon monoxide and unburnt hydrocarbons are decreased, whereas nitrogen oxide emissions tend to be increased. However, these observations are the result of complex interactions between physical and chemical processes occurring in the combustion chamber, for which understanding is still needed. To characterize and decouple the physical and chemical influences of biodiesel on spray mixing, ignition, combustion and soot formation, a soy methyl-ester (SME) biodiesel is injected into a constant-volume combustion facility under diesel-like operating conditions. A range of optical diagnostics is performed, comparing biodiesel to a conventional #2 diesel at the same injection and ambient conditions. Schlieren high-speed imaging shows virtually the same vapour-phase penetration for the two fuels, while simultaneous Mie-scatter imaging shows that the maximum liquid-phase penetration of biodiesel is higher than diesel. Differences in the liquid-phase penetration are expected because of the different boiling-point temperatures of the two fuels. However, the different liquid-phase penetration does not affect overall mixing rate and downstream vapour-phase penetration because each fuel spray has similar momentum and spreading angle. For the biodiesel and diesel samples used in this study, the ignition delay and lift-off length are only slightly less for biodiesel compared to diesel, consistent with the fuel cetane number (51 for biodiesel, 46 for diesel). Because of the similarity in lift-off length, the differences in equivalence ratio distribution at the lift-off length are mainly affected by the oxygen content of the fuels. For biodiesel, the equivalence ratio is reduced, which, along with the fuel molecular structure and oxygen content, significantly affects soot formation downstream. Spatially resolved soot volume fraction measurements obtained by combining line-of-sight laser extinction measurements with planar laser-induced incandescence imaging show that the soot concentration can be reduced by an order of magnitude for biodiesel. These integrated measurements of spray mixing, combustion and quantitative soot concentration provide new validation data for the development of computational fluid dynamics spray, combustion and soot formation models suitable for the latest biofuels. C1 [Nerva, Jean-Guillaume; Garcia-Oliver, Jose M.] Univ Politecn Valencia, CMT Motores Term, Valencia 46022, Spain. [Genzale, Caroline L.] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Kook, Sanghoon] Univ New S Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia. [Pickett, Lyle M.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Nerva, JG (reprint author), Univ Politecn Valencia, CMT Motores Term, Edificio 6D,Camino Vera S-N, Valencia 46022, Spain. EM jeaner1@mot.upv.es RI Garcia-Oliver, Jose/L-6517-2014; Kook, Sanghoon/C-5372-2009 OI Garcia-Oliver, Jose/0000-0002-2676-9681; Kook, Sanghoon/0000-0002-7620-9789 FU Spanish Ministry of Science and Innovation through the OPTICOMB project [TRA2007-67961-C03-01] FX This work was supported by the Spanish Ministry of Science and Innovation for Jean-Guillaume Nerva's visiting research, through the OPTICOMB project [TRA2007-67961-C03-01]. NR 66 TC 19 Z9 20 U1 3 U2 33 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 J9 INT J ENGINE RES JI Int. J. Engine Res. PD AUG PY 2013 VL 14 IS 4 BP 373 EP 390 DI 10.1177/1468087412456688 PG 18 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA 188NB UT WOS:000322198600006 ER PT J AU Shade, A Caporaso, JG Handelsman, J Knight, R Fierer, N AF Shade, Ashley Caporaso, J. Gregory Handelsman, Jo Knight, Rob Fierer, Noah TI A meta-analysis of changes in bacterial and archaeal communities with time SO ISME JOURNAL LA English DT Article DE similarity-decay; species-time relationship; beta diversity; 16S rRNA; turnover; high-throughput sequencing ID MICROBIAL COMMUNITIES; ECOLOGICAL COMMUNITIES; DISTANCE-DECAY; TEMPORAL VARIABILITY; SPECIES RICHNESS; GLOBAL PATTERNS; RARE BIOSPHERE; EUTROPHIC LAKE; DIVERSITY; DYNAMICS AB Ecologists have long studied the temporal dynamics of plant and animal communities with much less attention paid to the temporal dynamics exhibited by microbial communities. As a result, we do not know if overarching temporal trends exist for microbial communities or if changes in microbial communities are generally predictable with time. Using microbial time series assessed via high-throughput sequencing, we conducted a meta-analysis of temporal dynamics in microbial communities, including 76 sites representing air, aquatic, soil, brewery wastewater treatment, human- and plant-associated microbial biomes. We found that temporal variability in both within- and between-community diversity was consistent among microbial communities from similar environments. Community structure changed systematically with time in less than half of the cases, and the highest rates of change were observed within ranges of 1 day to 1 month for all communities examined. Microbial communities exhibited species-time relationships (STRs), which describe the accumulation of new taxa to a community, similar to those observed previously for plant and animal communities, suggesting that STRs are remarkably consistent across a broad range of taxa. These results highlight that a continued integration of microbial ecology into the broader field of ecology will provide new insight into the temporal patterns of microbial and 'macro'-bial communities alike. C1 [Shade, Ashley; Handelsman, Jo] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT USA. [Caporaso, J. Gregory] No Arizona Univ, Dept Comp Sci, Flagstaff, AZ 86011 USA. [Caporaso, J. Gregory] Argonne Natl Lab, Argonne, IL 60439 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Biofrontiers Inst, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. [Fierer, Noah] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Fierer, Noah] Univ Colorado, Dept Ecol & Evolut Biol, Boulder, CO 80309 USA. RP Fierer, N (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, 216 UCB, Boulder, CO 80309 USA. EM noah.fierer@colorado.edu RI Knight, Rob/D-1299-2010; OI Shade, Ashley/0000-0002-7189-3067 FU National Science Foundation; US Department of Agriculture; Howard Hughes Medical Institute; National Institutes of Health FX This work would not have been possible without the generosity and collaborative spirit of the many primary authors of the data sets included in the meta-analysis. AS is a Gordon and Betty Moore Foundation Fellow of the Life Sciences Research Foundation. We thank Petr Keil for insightful discussions. We thank Jack Gilbert for the Western English Channel dataset, and Jack Gilbert and Trina McMahon for the lakes dataset. NF was supported by funding from the National Science Foundation and the US Department of Agriculture. RK was supported, in part, by the Howard Hughes Medical Institute and the National Institutes of Health. NR 98 TC 80 Z9 84 U1 23 U2 293 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD AUG PY 2013 VL 7 IS 8 BP 1493 EP 1506 DI 10.1038/ismej.2013.54 PG 14 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 187LF UT WOS:000322119600004 PM 23575374 ER PT J AU Pint, BA AF Pint, B. A. TI High-Temperature Corrosion in Fossil Fuel Power Generation: Present and Future SO JOM LA English DT Article ID COAL-FIRED BOILERS; NI-CR ALLOYS; OXIDATION BEHAVIOR; WATER-VAPOR; GAS-TURBINES; MATERIALS TECHNOLOGY; STEAM OXIDATION; PLANTS; COATINGS; COMBUSTION AB Fossil fuels have historically represented two-thirds of all electricity generation in the United States and are projected to continue to play a similar role despite historically low projected growth rates in electricity demand and the recent dramatic shift from coal to more natural gas usage. Economic and environmental drivers will require more reliable and efficient fossil fuel generation systems in the future, likely with new system designs, higher operating temperatures, and more aggressive environments. Some of the current corrosion issues in power plants are reviewed along with research on materials solutions for systems envisioned for the near future, such as coal gasification and oxy-fired coal boilers. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 FU Electric Power Research Institute (EPRI); U.S. Department of Energy, Office of Fossil Energy, Advanced Research Materials Program; Office of Coal and Power RD FX The research shown was sponsored by the Electric Power Research Institute (EPRI) and the U.S. Department of Energy, Office of Fossil Energy, Advanced Research Materials Program and the Office of Coal and Power R&D. The author is grateful from insights gained from discussions with I.G. Wright, R. Klueh, and P.J. Maziasz at ORNL; V. Cedro, R. Dennis, and B. White at NETL; J. Shingledecker at EPRI; B. Nagaraj at General Electric; A. Kulkarni at Siemens; and S. Sampath at Stonybrook University. The author is thankful also for the assistance of S. Dryepondt, J. Thomson, G. Garner, T. Lowe, H. Longmire, and T. Jordan with the experimental work at ORNL. P. F. Tortorelli and M. P. Brady at ORNL provided helpful comments on the manuscript. NR 54 TC 15 Z9 15 U1 5 U2 45 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD AUG PY 2013 VL 65 IS 8 BP 1024 EP 1032 DI 10.1007/s11837-013-0642-z PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 187RN UT WOS:000322136400018 ER PT J AU Caro, M Woloshun, K Rubio, F Maloy, SA Hosemann, P AF Caro, M. Woloshun, K. Rubio, F. Maloy, S. A. Hosemann, P. TI Heavy Liquid Metal Corrosion of Structural Materials in Advanced Nuclear Systems SO JOM LA English DT Article ID COOLED FAST-REACTOR; BISMUTH EUTECTIC SYSTEMS; FLOWING LEAD-BISMUTH; 450 DEGREES-C; PB-BI; MOLTEN LEAD; STAINLESS-STEEL; EROSION TEST; FUEL-CYCLE; DESIGN AB Interest in advanced nuclear concepts using liquid metal coolant has increased in the past few years. Liquid metal coolants have been proposed for the next generation of small-sized nuclear reactors, which offer exceptional safety and reliability, sustainability, nonproliferation, and economic competitiveness. Heavy liquid metal coolants are investigated for advanced fast reactors that operate at high temperatures, reaching high efficiencies. Lead and lead-bismuth eutectic (LBE) coolants are also proposed as coolants and targets of accelerator driven systems. High temperature, corrosive environment, high fast neutron flux, high fluence, and radiation damage, among other physical phenomena, challenge the integrity of materials in these advanced systems. Excellent compatibility with the liquid coolant is recognized as a key factor in the selection of structural materials for advanced concepts. In this article, we review materials requirements for heavy metal cooled systems with emphasis on lead and LBE materials corrosion properties. We describe experimental corrosion tests currently ongoing at the Los Alamos National Laboratory (LANL) Development of Lead Alloy Technical Applications (DELTA) loop. DELTA is a facility designed to study the long-term corrosive effects of LBE on structural materials under relevant conditions of chemistry, flow, and temperature. The research studies will provide data of corrosion rates and corrosion mechanisms in selected steel exposed to high velocity (above 2 m/s) in flowing LBE at 500A degrees C. Fundamental research studies will help support conceptual design efforts and further the development of heavy liquid metals technology. C1 [Caro, M.; Woloshun, K.; Rubio, F.; Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hosemann, P.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Caro, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM magda@lanl.gov RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Hosemann, Peter/0000-0003-2281-2213 FU NRC faculty development grant [NRC-38-09-948]; Department of Energy [DE-EE0005941] FX The work described here summarizes the contribution of the effort of several people and institutions in the United States and abroad. The test matrix selection is the result of numerous fruitful discussions. The authors want to thank the NRC faculty development grant number NRC-38-09-948. This material is also partially based on work supported by the Department of Energy under Award Number DE-EE0005941. NR 83 TC 5 Z9 5 U1 4 U2 53 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD AUG PY 2013 VL 65 IS 8 BP 1057 EP 1066 DI 10.1007/s11837-013-0663-7 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 187RN UT WOS:000322136400021 ER PT J AU Lin, YL Zhao, M Ming, Y Golaz, JC Donner, LJ Klein, SA Ramaswamy, V Xie, SC AF Lin, Yanluan Zhao, Ming Ming, Yi Golaz, Jean-Christophe Donner, Leo J. Klein, Stephen A. Ramaswamy, V. Xie, Shaocheng TI Precipitation Partitioning, Tropical Clouds, and Intraseasonal Variability in GFDL AM2 SO JOURNAL OF CLIMATE LA English DT Article DE Climate models; Convective parameterization; Intraseasonal variability ID MADDEN-JULIAN OSCILLATION; GENERAL-CIRCULATION MODELS; STATIC ENERGY BUDGET; LARGE-SCALE MODELS; CONVECTIVE PARAMETERIZATION; ARAKAWA-SCHUBERT; ECMWF MODEL; ATMOSPHERE; FREQUENCY; WAVES AB A set of Geophysical Fluid Dynamics Laboratory (GFDL) Atmospheric Model version 2 (AM2) sensitivity simulations by varying an entrainment threshold rate to control deep convection occurrence are used to investigate how cumulus parameterization impacts tropical cloud and precipitation characteristics. In the tropics, model convective precipitation (CP) is frequent and light, while large-scale precipitation (LSP) is intermittent and strong. With deep convection inhibited, CP decreases significantly over land and LSP increases prominently over ocean. This results in an overall redistribution of precipitation from land to ocean. A composite analysis reveals that cloud fraction (low and middle) and cloud condensate associated with LSP are substantially larger than those associated with CP. With about the same total precipitation and precipitation frequency distribution over the tropics, simulations having greater LSP fraction tend to have larger cloud condensate and low and middle cloud fraction.Simulations having a greater LSP fraction tend to be drier and colder in the upper troposphere. The induced unstable stratification supports strong transient wind perturbations and LSP. Greater LSP also contributes to greater intraseasonal (20-100 days) precipitation variability. Model LSP has a close connection to the low-level convergence via the resolved grid-scale dynamics and, thus, a close coupling with the surface heat flux. Such wind-evaporation feedback is essential to the development and maintenance of LSP and enhances model precipitation variability. LSP has stronger dependence and sensitivity on column moisture than CP. The moisture-convection feedback, critical to tropical intraseasonal variability, is enhanced in simulations with large LSP. Strong precipitation variability accompanied by a worse mean state implies that an optimal precipitation partitioning is critical to model tropical climate simulation. C1 [Lin, Yanluan; Zhao, Ming] Univ Corp Atmospheric Res, Boulder, CO USA. [Lin, Yanluan; Zhao, Ming; Ming, Yi; Golaz, Jean-Christophe; Donner, Leo J.; Ramaswamy, V.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Klein, Stephen A.; Xie, Shaocheng] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Lin, YL (reprint author), Princeton Univ, NOAA, Geophys Fluid Dynam Lab, Forrestal Campus,POB 308, Princeton, NJ 08540 USA. EM yanluan.lin@noaa.gov RI Ming, Yi/F-3023-2012; Golaz, Jean-Christophe/D-5007-2014; lin, yanluan/A-6333-2015; Xie, Shaocheng/D-2207-2013; Zhao, Ming/C-6928-2014; Klein, Stephen/H-4337-2016 OI Golaz, Jean-Christophe/0000-0003-1616-5435; Xie, Shaocheng/0000-0001-8931-5145; Klein, Stephen/0000-0002-5476-858X FU Office of Science (BER), U.S. Department of Energy; Office of Science at the U.S. Department of Energy; U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This research is supported by the Office of Science (BER), U.S. Department of Energy (Lin). Support for S. A. Klein and S. Xie was provided by the Atmospheric System Research and Regional and Global Climate Modeling Programs of the Office of Science at the U.S. Department of Energy. Their contribution to this work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. We are grateful to Dr. Waliser for providing us with the ice retrievals from CloudSat. We thank Hiram Levy II and Huan Guo for their comments on the manuscript. We also acknowledge the three anonymous reviewers for their constructive comments, which significantly improved the organization and clarity of the paper. NR 53 TC 5 Z9 5 U1 2 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD AUG PY 2013 VL 26 IS 15 BP 5453 EP 5466 DI 10.1175/JCLI-D-12-00442.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 190GP UT WOS:000322327700009 ER PT J AU Song, H Lin, WY Lin, YL Wolf, AB Neggers, R Donner, LJ Del Genio, AD Liu, YG AF Song, Hua Lin, Wuyin Lin, Yanluan Wolf, Audrey B. Neggers, Roel Donner, Leo J. Del Genio, Anthony D. Liu, Yangang TI Evaluation of Precipitation Simulated by Seven SCMs against the ARM Observations at the SGP Site SO JOURNAL OF CLIMATE LA English DT Article DE Model comparison; Model evaluation; performance; Single column models ID SINGLE-COLUMN MODEL; GENERAL-CIRCULATION MODELS; LARGE-SCALE MODELS; COMMUNITY ATMOSPHERE MODEL; DIURNAL CYCLE; CUMULUS PARAMETERIZATION; CONVECTIVE PRECIPITATION; CLIMATE SIMULATIONS; MOIST CONVECTION; GREAT-PLAINS AB This study evaluates the performances of seven single-column models (SCMs) by comparing simulated surface precipitation with observations at the Atmospheric Radiation Measurement Program Southern Great Plains (SGP) site from January 1999 to December 2001. Results show that although most SCMs can reproduce the observed precipitation reasonably well, there are significant and interesting differences in their details. In the cold season, the model-observation differences in the frequency and mean intensity of rain events tend to compensate each other for most SCMs. In the warm season, most SCMs produce more rain events in daytime than in nighttime, whereas the observations have more rain events in nighttime. The mean intensities of rain events in these SCMs are much stronger in daytime, but weaker in nighttime, than the observations. The higher frequency of rain events during warm-season daytime in most SCMs is related to the fact that most SCMs produce a spurious precipitation peak around the regime of weak vertical motions but rich in moisture content. The models also show distinct biases between nighttime and daytime in simulating significant rain events. In nighttime, all the SCMs have a lower frequency of moderate-to-strong rain events than the observations for both seasons. In daytime, most SCMs have a higher frequency of moderate-to-strong rain events than the observations, especially in the warm season. Further analysis reveals distinct meteorological backgrounds for large underestimation and overestimation events. The former occur in the strong ascending regimes with negative low-level horizontal heat and moisture advection, whereas the latter occur in the weak or moderate ascending regimes with positive low-level horizontal heat and moisture advection. C1 [Song, Hua; Lin, Wuyin; Lin, Yanluan; Liu, Yangang] Brookhaven Natl Lab, Upton, NY 11973 USA. [Lin, Yanluan; Donner, Leo J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Wolf, Audrey B.] Columbia Univ, New York, NY USA. [Neggers, Roel] Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands. [Del Genio, Anthony D.] NASA Goddard Inst Space Studies, New York, NY USA. RP Song, H (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, 75 Rutherford Dr,Bldg 815E, Upton, NY 11973 USA. EM hsong@bnl.gov RI Liu, Yangang/H-6154-2011; lin, yanluan/A-6333-2015 FU U.S. Department of Energy Earth System Modeling (ESM) program FX This work is part of the FASTER project (http://www.bnl.gov/faster/) supported by the U.S. Department of Energy Earth System Modeling (ESM) program. The authors thank the two anonymous reviewers for their constructive comments. The first author also would like to express her sincere gratitude to her former advisor Dr. Minghua Zhang for his incessant support and encouragement throughout her research. NR 60 TC 12 Z9 12 U1 0 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD AUG PY 2013 VL 26 IS 15 BP 5467 EP 5492 DI 10.1175/JCLI-D-12-00263.1 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 190GP UT WOS:000322327700010 ER PT J AU Xin, HLL Dwyer, C Muller, DA Zheng, HM Ercius, P AF Xin, Huolin L. Dwyer, Christian Muller, David A. Zheng, Haimei Ercius, Peter TI Scanning Confocal Electron Energy-Loss Microscopy Using Valence-Loss Signals SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT 10th EMAS Regional Workshop CY JUN 17-20, 2012 CL Padua, ITALY DE scanning confocal electron energy-loss microscopy; inelastic confocal; aberration-corrected electron microscopy; chromatic aberration correction ID INELASTICALLY SCATTERED ELECTRONS; SPATIAL-FREQUENCY CUTOFFS; IMAGE-FORMATION; BRIGHT-FIELD; ATOMIC-SCALE; RESOLUTION; 3D; TOMOGRAPHY; STEM; PROSPECTS AB Finding a faster alternative to tilt-series electron tomography is critical for rapidly evolving fields such as the semiconductor industry, where failure analysis could greatly benefit from higher throughput. We present a theoretical and experimental evaluation of scanning confocal electron energy-loss microscopy (SCEELM) using valence-loss signals, which is a promising technique for the reliable reconstruction of materials with sub-10-nm resolution. Such a confocal geometry transfers information from the focused portion of the electron beam and enables rapid three-dimensional (3D) reconstruction by depth sectioning. SCEELM can minimize or eliminate the missing-information cone and the elongation problem that are associated with other depth-sectioning image techniques in a transmission electron microscope. Valence-loss SCEELM data acquisition is an order of magnitude faster and requires little postprocessing compared with tilt-series electron tomography. With postspecimen chromatic aberration (C-c) correction, SCEELM signals can be acquired in parallel in the direction of energy dispersion with the aid of a physical pinhole. This increases the efficiency by 10X-100X, and can provide 3D resolved chemical information for multiple core-loss signals simultaneously. C1 [Xin, Huolin L.; Zheng, Haimei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Dwyer, Christian] Monash Univ, Monash Ctr Electron Microscopy, ARC Ctr Excellence Design Light Met, Dept Mat Engn, Clayton, Vic 3800, Australia. [Muller, David A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14850 USA. [Muller, David A.] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14850 USA. [Ercius, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Xin, HLL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM hxin@lbl.gov; percius@lbl.gov RI Xin, Huolin/E-2747-2010; Muller, David/A-7745-2010 OI Xin, Huolin/0000-0002-6521-868X; Muller, David/0000-0003-4129-0473 FU Materials Sciences Division, Lawrence Berkeley National Laboratory; U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX Research was support by Materials Sciences Division, Lawrence Berkeley National Laboratory. Electron microscopy facilities in National Center for Electron Microscopy at Lawrence Berkeley National Laboratory was supported by the U.S. Department of Energy (DOE) under Contract #DE-AC02-05CH11231. NR 48 TC 4 Z9 4 U1 1 U2 30 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 EI 1435-8115 J9 MICROSC MICROANAL JI Microsc. microanal. PD AUG PY 2013 VL 19 IS 4 BP 1036 EP 1049 DI 10.1017/S1431927613001438 PG 14 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 182SP UT WOS:000321764700031 PM 23692691 ER PT J AU Van Weverberg, K AF Van Weverberg, Kwinten TI Impact of Environmental Instability on Convective Precipitation Uncertainty Associated with the Nature of the Rimed Ice Species in a Bulk Microphysics Scheme SO MONTHLY WEATHER REVIEW LA English DT Article DE Cloud microphysics; Convective storms; Cloud parameterizations; Cloud resolving models; Numerical weather prediction; forecasting; Parameterization ID SIMULATED SQUALL LINE; VERTICAL WIND SHEAR; PARAMETERIZATION; STORMS; SIZE AB Despite a number of studies dedicated to the sensitivity of deep convection simulations to the properties of the rimed ice species in microphysics schemes, no consensus has been achieved on the nature of the impact. Considering the need for improved quantitative precipitation forecasts, it is crucial that the cloud modeling community better understands the reasons for these differing conclusions and knows the relevance of these sensitivities for the numerical weather prediction. This study examines the role of environmental conditions and storm type on the sensitivity of precipitation simulations to the nature of the rimed ice species (graupel or hail). Idealized 3D simulations of supercells/multicells and squall lines have been performed in varying thermodynamic environments. It has been shown that for simulation periods of sufficient length (>2 h), graupel-containing and hail-containing storms produce domain-averaged surface precipitation that is more similar than many earlier studies suggest. While graupel is lofted to higher altitudes and has a longer residence time aloft than hail, these simulations suggest that most of this graupel eventually reaches the surface and the surface precipitation rates of hail- and graupel-containing storms converge. However, environmental conditions play an important role in the magnitude of this sensitivity. Storms in large-CAPE environments (typical of storms in the U.S. Midwest) are more sensitive than their low-CAPE counterparts (typical of storms in Europe) to the nature of the rimed ice species in terms of domain-average surface precipitation. Supercells/multicells are more sensitive than squall lines to the nature of the rimed ice species in terms of spatial precipitation distribution and peak precipitation, disregarding of the amount of CAPE. C1 [Van Weverberg, Kwinten] Brookhaven Natl Lab, Upton, NY 11973 USA. [Van Weverberg, Kwinten] Catholic Univ Louvain, B-1348 Louvain, Belgium. RP Van Weverberg, K (reprint author), Catholic Univ Louvain, Georges Lemaitre Ctr Earth & Climate Res, SC10-L4-03-08 Mercator,Pl Louis Pasteur 3, B-1348 Louvain, Belgium. EM kwinten.vanweverberg@uclouvain.be FU U.S. Department of Energy's Atmospheric System Research (ASR), an Office of Science Program; Earth System Modeling Program via the Fast-Physics System Testbed and Research (FASTER) project FX This research was supported by the U.S. Department of Energy's Atmospheric System Research (ASR), an Office of Science Program, and by the Earth System Modeling Program via the Fast-Physics System Testbed and Research (FASTER) project (www.bnl.gov/esm). The author is grateful to Andy M. Vogelmann for stimulating discussions and to H. Morrison for assistance with the cold pool initiation of the squall-line simulations. NR 16 TC 7 Z9 7 U1 0 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD AUG PY 2013 VL 141 IS 8 BP 2841 EP 2849 DI 10.1175/MWR-D-13-00036.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 188VR UT WOS:000322225200015 ER PT J AU Haudry, A Platts, AE Vello, E Hoen, DR Leclercq, M Williamson, RJ Forczek, E Joly-Lopez, Z Steffen, JG Hazzouri, KM Dewar, K Stinchcombe, JR Schoen, DJ Wang, XW Schmutz, J Town, CD Edger, PP Pires, JC Schumaker, KS Jarvis, DE Mandakova, T Lysak, MA van den Bergh, E Schranz, ME Harrison, PM Moses, AM Bureau, TE Wright, SI Blanchette, M AF Haudry, Annabelle Platts, Adrian E. Vello, Emilio Hoen, Douglas R. Leclercq, Mickael Williamson, Robert J. Forczek, Ewa Joly-Lopez, Zoe Steffen, Joshua G. Hazzouri, Khaled M. Dewar, Ken Stinchcombe, John R. Schoen, Daniel J. Wang, Xiaowu Schmutz, Jeremy Town, Christopher D. Edger, Patrick P. Pires, J. Chris Schumaker, Karen S. Jarvis, David E. Mandakova, Terezie Lysak, Martin A. van den Bergh, Erik Schranz, M. Eric Harrison, Paul M. Moses, Alan M. Bureau, Thomas E. Wright, Stephen I. Blanchette, Mathieu TI An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions SO NATURE GENETICS LA English DT Article ID ARABIDOPSIS-THALIANA; HUMAN GENOME; DNA ELEMENTS; ULTRACONSERVED ELEMENTS; BRASSICA-OLERACEA; GENE-EXPRESSION; EVOLUTION; DROSOPHILA; SIZE; ANNOTATION AB Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions. Much of this sequence can be localized to approximately 90,000 conserved noncoding sequences (CNSs) that show evidence of transcriptional and post-transcriptional regulation. Population genomics analyses of two crucifer species, A. thaliana and Capsella grandiflora, confirm that most of the identified CNSs are evolving under medium to strong purifying selection. Overall, these CNSs highlight both similarities and several key differences between the regulatory DNA of plants and other species. C1 [Haudry, Annabelle; Williamson, Robert J.; Hazzouri, Khaled M.; Stinchcombe, John R.; Moses, Alan M.; Wright, Stephen I.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada. [Haudry, Annabelle] Univ Lyon 1, CNRS, UMR 5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France. [Platts, Adrian E.; Vello, Emilio; Leclercq, Mickael; Blanchette, Mathieu] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada. [Platts, Adrian E.; Vello, Emilio; Leclercq, Mickael; Blanchette, Mathieu] McGill Univ, McGill Ctr Bioinformat, Montreal, PQ, Canada. [Hoen, Douglas R.; Forczek, Ewa; Joly-Lopez, Zoe; Schoen, Daniel J.; Harrison, Paul M.; Bureau, Thomas E.] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada. [Steffen, Joshua G.] Colby Sawyer Coll, Nat Sci Dept, New London, NH USA. [Dewar, Ken] McGill Univ, Dept Human Genet, Montreal, PQ, Canada. [Wang, Xiaowu] Chinese Acad Agr Sci, Inst Vegetables & Flowers, Beijing 100193, Peoples R China. [Schmutz, Jeremy] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL USA. [Town, Christopher D.] J Craig Venter Inst, Rockville, MD USA. [Edger, Patrick P.; Pires, J. Chris] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. [Schumaker, Karen S.; Jarvis, David E.] Univ Arizona, Sch Plant Sci, Tucson, AZ USA. [Mandakova, Terezie; Lysak, Martin A.] Masaryk Univ, Cent European Inst Technol CEITEC, Brno, Czech Republic. [van den Bergh, Erik; Schranz, M. Eric] Wageningen Univ, Biosystemat Grp, NL-6700 AP Wageningen, Netherlands. [Wright, Stephen I.] Univ Toronto, Ctr Anal Genome Evolut & Funct, Toronto, ON, Canada. RP Blanchette, M (reprint author), McGill Univ, Sch Comp Sci, Montreal, PQ, Canada. EM alan.moses@utoronto.ca; thomas.bureau@mcgill.ca; stephen.wright@utoronto.ca; blanchem@cs.mcgill.ca RI Lysak, Martin/D-2439-2014; Wright, Stephen/C-3113-2008; Haudry, Annabelle/A-1887-2013; Mandakova, Terezie/E-1365-2012; Schranz, Michael/D-7155-2017; Stinchcombe, John/A-2941-2008; Platts, Adrian/H-5633-2013; Schmutz, Jeremy/N-3173-2013; OI Lysak, Martin/0000-0003-0318-4194; Wright, Stephen/0000-0001-9973-9697; Schranz, Michael/0000-0001-6777-6565; Stinchcombe, John/0000-0003-3349-2964; Platts, Adrian/0000-0001-9238-9647; Schmutz, Jeremy/0000-0001-8062-9172; van den Bergh, Erik/0000-0001-9865-574X; Pires, J Chris/0000-0001-9682-2639; Williamson, Robert/0000-0001-9732-0964 FU Genome Canada/Genome Quebec; European Regional Development Fund [CZ.1.05/1.1.00/02.0068]; Czech Science Foundation [P501/12/G090]; National Science Foundation (NSF) [0929262]; Netherlands Organisation for Scientific Research FX We would like to thank the US Department of Energy Joint Genome Institute (for the C. rubella genome sequence, produced under a Community Sequencing Program (CSP) proposal submitted by D. Weigel and colleagues, and the E. salsugineum genome sequence, produced under a CSP proposal submitted by K. Schumaker, R. Wing and T. Mitchell-Olds) and R. Clark (for A. lyrata mRNA sequencing). We also thank S.-C. Chantha for assistance with genome sequencing in L. alabamica, S. Joly for suggestions on the genomic DNA isolation protocol and D. Scofield for helpful discussions about intron-exon structure. We thank M. Freeling, D. Weigel, E. Harmsen and I. Lacroix for comments on the manuscript. This project was funded by a Genome Canada/Genome Quebec grant to T. E. B., S. I. W., M. B., J.S., A. M. M., D.J.S. and P. M. H. In addition, T. M. and M. A. L. were supported by the European Regional Development Fund (CZ.1.05/1.1.00/02.0068) and by the Czech Science Foundation (excellence cluster P501/12/G090). J.G.S. was supported by National Science Foundation (NSF) award 0929262. M. E. S. and E.v.d.B. were supported by a Vidi grant from the Netherlands Organisation for Scientific Research. NR 95 TC 94 Z9 95 U1 2 U2 84 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1061-4036 J9 NAT GENET JI Nature Genet. PD AUG PY 2013 VL 45 IS 8 BP 891 EP U228 DI 10.1038/ng.2684 PG 10 WC Genetics & Heredity SC Genetics & Heredity GA 190WW UT WOS:000322374900011 PM 23817568 ER PT J AU Soukoulis, CM AF Soukoulis, Costas M. TI Greece in crisis SO NATURE MATERIALS LA English DT Editorial Material C1 [Soukoulis, Costas M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Soukoulis, Costas M.] Ames Lab, Ames, IA 50011 USA. [Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Engn, Iraklion, Greece. RP Soukoulis, CM (reprint author), Iowa State Univ, Dept Phys, Ames, IA 50011 USA. EM soukouli@iastate.edu NR 4 TC 1 Z9 1 U1 0 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD AUG PY 2013 VL 12 IS 8 BP 683 EP 685 DI 10.1038/nmat3727 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 187LB UT WOS:000322119100002 PM 23877387 ER PT J AU Wang, YM Sansoz, F LaGrange, T Ott, RT Marian, J Barbee, TW Hamza, AV AF Wang, Y. Morris Sansoz, Frederic LaGrange, Thomas Ott, Ryan T. Marian, Jaime Barbee, Troy W., Jr. Hamza, Alex V. TI Defective twin boundaries in nanotwinned metals SO NATURE MATERIALS LA English DT Article ID DEFORMATION MECHANISMS; PLASTIC-DEFORMATION; MAXIMUM STRENGTH; COPPER; ORIENTATION; ANISOTROPY; NANOSCALE AB Coherent twin boundaries (CTBs) are widely described, both theoretically and experimentally, as perfect interfaces that play a significant role in a variety of materials. Although the ability of CTBs in strengthening, maintaining the ductility and minimizing the electron scattering is well documented(1-3), most of our understanding of the origin of these properties relies on perfect-interface assumptions. Here we report experiments and simulations demonstrating that as-grown CTBs in nanotwinned copper are inherently defective with kink-like steps and curvature, and that these imperfections consist of incoherent segments and partial dislocations. We further show that these defects play a crucial role in the deformation mechanisms and mechanical behaviour of nanotwinned copper. Our findings offer a view of the structure of CTBs that is largely different from that in the literature(2,4,5), and underscore the significance of imperfections in nanotwin-strengthened materials. C1 [Wang, Y. Morris; LaGrange, Thomas; Marian, Jaime; Barbee, Troy W., Jr.; Hamza, Alex V.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Sansoz, Frederic] Univ Vermont, Sch Engn, Burlington, VT 05405 USA. [Ott, Ryan T.] Ames Lab USDOE, Div Engn & Mat Sci, Ames, IA 50011 USA. RP Wang, YM (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM ymwang@llnl.gov RI Wang, Yinmin (Morris)/F-2249-2010 OI Wang, Yinmin (Morris)/0000-0002-7161-2034 FU US Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Ames Laboratory (Office of Basic Energy Sciences) [DE-AC02-07CH11358]; US DOE [DE-AC02-06CH11357]; NSF CAREER program [DMR-0747658]; Vermont Advanced Computing Centre (NASA) [NNX06AC88G]; US DOE Early Career Research Program FX The authors thank V. Bulatov and A. Stukowski for helpful discussions, and M. Besser, J. Almer, N. Teslich and R. Gross for experimental assistance. This work was performed under the auspices of the US Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Ames Laboratory (Office of Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. The use of APS was supported by the US DOE under Contract No. DE-AC02-06CH11357. F.S. is grateful for support from the NSF CAREER program (grant DMR-0747658) and the computational resources provided by the Vermont Advanced Computing Centre (NASA grant NNX06AC88G). T.L. and IPFOM measurements are supported by US DOE, Office of Basic Energy Sciences. J.M. acknowledges financial support from the US DOE Early Career Research Program. NR 31 TC 81 Z9 82 U1 18 U2 221 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD AUG PY 2013 VL 12 IS 8 BP 697 EP 702 DI 10.1038/NMAT3646 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 187LB UT WOS:000322119100013 PM 23685864 ER EF