FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Goldman, AI Kong, T Kreyssig, A Jesche, A Ramazanoglu, M Dennis, KW Bud'ko, SL Canfield, PC AF Goldman, Alan I. Kong, Tai Kreyssig, Andreas Jesche, Anton Ramazanoglu, Mehmet Dennis, Kevin W. Bud'ko, Sergey L. Canfield, Paul C. TI A family of binary magnetic icosahedral quasicrystals based on rare earths and cadmium SO NATURE MATERIALS LA English DT Article ID CD; ZN; TB; DY AB Examples of stable binary icosahedral quasicrystals are relatively rare, and at present there are no known examples featuring localized magnetic moments. These would represent an ideal model system for attaining a deeper understanding of the nature of magnetic interactions in aperiodic lattices. Here we report the discovery of a family of at least seven rare earth icosahedral binary quasicrystals, i-R-Cd (R = Gd to Tm, Y), six of which bear localized magnetic moments. Our work highlights the importance of carefully motivated searches through phase space(1) and supports the proposal that, like icosahedral Sc12Zn88 (ref. 2), binary quasicrystalline phases may well exist nearby known crystalline approximants, perhaps as peritectically forming compounds with very limited liquidus surfaces, offering very limited ranges of composition/temperature for primary solidification. C1 [Goldman, Alan I.; Kong, Tai; Kreyssig, Andreas; Jesche, Anton; Ramazanoglu, Mehmet; Dennis, Kevin W.; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Goldman, Alan I.; Kong, Tai; Kreyssig, Andreas; Jesche, Anton; Ramazanoglu, Mehmet; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Goldman, AI (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM goldman@ameslab.gov; canfield@ameslab.gov RI Canfield, Paul/H-2698-2014; OI Kong, Tai/0000-0002-5064-3464 FU Office of the Basic Energy Sciences, Materials Sciences Division, US Department of Energy (DOE); DOE by Iowa State University [DE-AC02-07CH11358]; US DOE [DE-AC02-06CH11357] FX We acknowledge and thank W. Straszheim for the WDS measurements, D. S. Robinson and A. Sapkota for assistance with the high-energy X-ray diffraction measurements and R. J. McQueeney for useful discussions. The research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, US Department of Energy (DOE). Ames Laboratory is operated for DOE by Iowa State University under contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 29 TC 36 Z9 36 U1 4 U2 44 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD AUG PY 2013 VL 12 IS 8 BP 714 EP 718 DI 10.1038/NMAT3672 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 187LB UT WOS:000322119100016 PM 23749264 ER PT J AU Cha, W Jeong, NC Song, S Park, HJ Pham, TCT Harder, R Lim, B Xiong, G Ahn, D McNulty, I Kim, J Yoon, KB Robinson, IK Kim, H AF Cha, Wonsuk Jeong, Nak Cheon Song, Sanghoon Park, Hyun-jun Tung Cao Thanh Pham Harder, Ross Lim, Bobae Xiong, Gang Ahn, Docheon McNulty, Ian Kim, Jungho Yoon, Kyung Byung Robinson, Ian K. Kim, Hyunjung TI Core-shell strain structure of zeolite microcrystals SO NATURE MATERIALS LA English DT Article ID X-RAY-DIFFRACTION; THERMAL-EXPANSION; TEMPLATE REMOVAL; MEMBRANES; MFI; SEPARATION AB Zeolites are crystalline aluminosilicate minerals featuring a network of 0.3-1.5-nm-wide pores, used in industry as catalysts for hydrocarbon interconversion, ion exchangers, molecular sieves and adsorbents(1). For improved applications, it is highly useful to study the distribution of internal local strains because they sensitively affect the rates of adsorption and diffusion of guest molecules within zeolites(2,3). Here, we report the observation of an unusual triangular deformation field distribution in ZSM-5 zeolites by coherent X-ray diffraction imaging(4), showing the presence of a strain within the crystal arising from the heterogeneous core-shell structure, which is supported by finite element model calculation and confirmed by fluorescence measurement. The shell is composed of H-ZSM-5 with intrinsic negative thermal expansion(5) whereas the core exhibits a different thermal expansion behaviour due to the presence of organic template residues, which usually remain when the starting materials are insufficiently calcined. Engineering such strain effects could have a major impact on the design of future catalysts. C1 [Cha, Wonsuk; Park, Hyun-jun; Kim, Hyunjung] Sogang Univ, Dept Phys, Seoul 121742, South Korea. [Jeong, Nak Cheon; Tung Cao Thanh Pham; Yoon, Kyung Byung] Sogang Univ, Dept Chem, Seoul 121742, South Korea. [Song, Sanghoon; Yoon, Kyung Byung; Kim, Hyunjung] Sogang Univ, Interdisciplinary Program Integrated Biotechnol, Seoul 121742, South Korea. [Harder, Ross] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lim, Bobae; Kim, Jungho] Sogang Univ, Dept Life Sci, Seoul 121742, South Korea. [Xiong, Gang; Robinson, Ian K.] UCL, London Ctr Nanotechnol, London WC1H 0AH, England. [Ahn, Docheon] Pohang Accelerator Lab, Pohang 790784, South Korea. [McNulty, Ian] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Robinson, Ian K.] Res Complex Harwell, Oxford OX11 0DE, England. RP Kim, H (reprint author), Sogang Univ, Dept Phys, Seoul 121742, South Korea. EM hkim@sogang.ac.kr RI Jeong, Nak Cheon/L-4082-2016 OI Jeong, Nak Cheon/0000-0003-3320-5750 FU Basic Science Research Program through the National Research Foundation of Korea (NRF); Ministry of Education; Ministry of Science, ICT & Future Planning of Korea [2007-0053982, 2011-0012251, 2008-0062606]; Sogang University; ERC FP7 [227711]; Seoul Scholarship Foundation; NRF [2012M1A2A2671784]; European Research Council; US Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] FX This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education and the Ministry of Science, ICT & Future Planning of Korea (Nos. 2007-0053982, 2011-0012251 and 2008-0062606, CELA-NCRC), Sogang University Research Grant of 2012 and an ERC FP7 Advanced Grant 227711. W.C. was also supported by a Hi Seoul Science/Humanities Fellowship from the Seoul Scholarship Foundation. K.B.Y. thanks the NRF project No. 2012M1A2A2671784. G.X. and I.K.R. were supported by the 'Nanoscupture' advanced grant from the European Research Council. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. NR 26 TC 23 Z9 23 U1 10 U2 155 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD AUG PY 2013 VL 12 IS 8 BP 729 EP 734 DI 10.1038/NMAT3698 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 187LB UT WOS:000322119100019 PM 23832126 ER PT J AU Najmaei, S Liu, Z Zhou, W Zou, XL Shi, G Lei, SD Yakobson, BI Idrobo, JC Ajayan, PM Lou, J AF Najmaei, Sina Liu, Zheng Zhou, Wu Zou, Xiaolong Shi, Gang Lei, Sidong Yakobson, Boris I. Idrobo, Juan-Carlos Ajayan, Pulickel M. Lou, Jun TI Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers SO NATURE MATERIALS LA English DT Article ID MOS2 THIN-LAYERS; LARGE-AREA; INORGANIC FULLERENES; MONOLAYER MOS2; COPPER FOILS; GRAPHENE; TRANSISTORS; MOO3; EXFOLIATION; NUCLEATION AB Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single-and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers. C1 [Najmaei, Sina; Liu, Zheng; Zou, Xiaolong; Shi, Gang; Lei, Sidong; Yakobson, Boris I.; Ajayan, Pulickel M.; Lou, Jun] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. [Zhou, Wu] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Zhou, Wu; Idrobo, Juan-Carlos] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Lou, J (reprint author), Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. EM jlou@rice.edu RI Zhou, Wu/D-8526-2011; Liu, Zheng/C-1813-2014; SHI, GANG/E-7878-2014; Idrobo, Juan/H-4896-2015; Lei, Sidong/A-8600-2016 OI Zhou, Wu/0000-0002-6803-1095; Liu, Zheng/0000-0002-8825-7198; SHI, GANG/0000-0002-3180-105X; Idrobo, Juan/0000-0001-7483-9034; Lei, Sidong/0000-0001-9129-2202 FU Welch Foundation [C-1716]; NSF [DMR-0928297, CNS-0821727, OCI-0959097]; US Army Research Office MURI [W911NF-11-1-0362]; US Office of Naval Research MURI [N000014-09-1-1066]; Nanoelectronics Research Corporation [S201006]; National Science Foundation [DMR-0938330]; Wigner Fellowship through the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; Office of Basic Energy Sciences, US Department of Energy FX This work was supported by the Welch Foundation grant C-1716, the NSF grant DMR-0928297, the US Army Research Office MURI grant W911NF-11-1-0362, the US Office of Naval Research MURI grant N000014-09-1-1066, and the Nanoelectronics Research Corporation contract S201006. This research was also supported in part by the National Science Foundation through grant No. DMR-0938330 and a Wigner Fellowship through the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy (WZ); Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program (JCI), which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. The computations were performed at the Cyberinfrastructure for Computational Research funded by NSF under Grant CNS-0821727 and the Data Analysis and Visualization Cyberinfrastructure funded by NSF under Grant OCI-0959097. NR 43 TC 533 Z9 534 U1 107 U2 831 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD AUG PY 2013 VL 12 IS 8 BP 754 EP 759 DI 10.1038/NMAT3673 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 187LB UT WOS:000322119100023 PM 23749265 ER PT J AU Mensa, JA Garraffo, Z Griffa, A Ozgokmen, TM Haza, A Veneziani, M AF Mensa, Jean Alberto Garraffo, Zulema Griffa, Annalisa Oezgoekmen, Tamay Mehmet Haza, Angelique Veneziani, Milena TI Seasonality of the submesoscale dynamics in the Gulf Stream region SO OCEAN DYNAMICS LA English DT Article DE Submesoscale; Seasonality; Frontogenesis; Mixed layer instabilities; Ageostrophic dynamics; Gulf Stream; HYCOM; Multi-scale ID MIXED-LAYER INSTABILITIES; CALIFORNIA CURRENT SYSTEM; OCEAN MODEL HYCOM; GEOSTROPHIC BAROCLINIC STABILITY; AIR-SEA FLUXES; NORTH-ATLANTIC; NUMERICAL-SIMULATION; VERTICAL COORDINATE; GRAND-BANKS; PART II AB Frontogenesis and frontal instabilities in the mixed layer are known to be important processes in the formation of submesoscale features. We study the seasonality of such processes in the Gulf Stream (GS) region. To approach this problem, a realistic simulation with the Hybrid Coordinate Ocean Model is integrated for 18 months at two horizontal resolutions: a high-resolution (1/48A degrees) simulation able to resolve part of the submesoscale regime and the full range of mesoscale dynamics, and a coarser resolution (1/12A degrees) case, in which submesoscales are not resolved. Results provide an insight into submesoscale dynamics in the complex GS region. A clear seasonal cycle is observed, with submesoscale features mostly present during winter. The submesoscale field is quantitatively characterized in terms of deviation from geostrophy and 2D dynamics. The limiting and controlling factor in the occurrence of submesoscales appears to be the depth of the mixed layer, which controls the reservoir of available potential energy available at the mesoscale fronts that are present most of the year. Atmospheric forcings are the main energy source behind submesoscale formation, but mostly indirectly through mixed layer deepening. The mixed layer instability scaling suggested in the (Fox-Kemper et al., J Phys Oceanogr 38:1145-1165, 2008) parametrization appears to hold, indicating that the parametrization is appropriate even in this complex and mesoscale dominated area. C1 [Mensa, Jean Alberto; Griffa, Annalisa; Oezgoekmen, Tamay Mehmet; Haza, Angelique] Univ Miami, RSMAS, Miami, FL 33149 USA. [Garraffo, Zulema] NOAA, IMSG, EMC, NCWCP, College Pk, MD 20740 USA. [Griffa, Annalisa] UOS Pozzuolo di Lerici SP, CNR, ISMAR, I-10932 Lerici, La Spezia, Italy. [Veneziani, Milena] Los Alamos Natl Lab, Div Fluid Dynam & Solid Mech MSB216 T3, Los Alamos, NM 87545 USA. RP Mensa, JA (reprint author), Univ Miami, RSMAS, 4600 Rickenbacker Csw, Miami, FL 33149 USA. EM jmensa@rsmas.miami.edu RI CNR, Ismar/P-1247-2014 OI CNR, Ismar/0000-0001-5351-1486 FU National Science Foundation [OCE-0850714, OCE-0850690]; Office of Naval Research [N00014-09-1-0267, DMS-1025323]; ONR under the Multidisciplinary University Research Initiative on Dynamical Systems Theory Ocean 3D + 1 [N00014-11-1-0087] FX We greatly appreciate the support of the National Science Foundation via grant OCE-0850714 and grant OCE-0850690 the Office of Naval Research via grant N00014-09-1-0267 and DMS-1025323. This research was also supported by the ONR grant N00014-11-1-0087 under the Multidisciplinary University Research Initiative on Dynamical Systems Theory Ocean 3D + 1. Discussions with ONR Lateral Mixing Group were most appreciated. We thank the computing center of the University of Miami (http://ccs.miami.edu/hpc/) Yeon Chang, Gustavo Mastrorocco Marques and the ISMAR-CNR in Lerici (SP, Italy) for the support. NR 84 TC 30 Z9 30 U1 2 U2 25 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 EI 1616-7228 J9 OCEAN DYNAM JI Ocean Dyn. PD AUG PY 2013 VL 63 IS 8 BP 923 EP 941 DI 10.1007/s10236-013-0633-1 PG 19 WC Oceanography SC Oceanography GA 191GE UT WOS:000322400300004 ER PT J AU Yang, ZQ Wang, TP AF Yang, Zhaoqing Wang, Taiping TI Tidal residual eddies and their effect on water exchange in Puget Sound SO OCEAN DYNAMICS LA English DT Article DE Tidal residual eddy; Vorticity; Headland; Puget Sound; Modeling ID COASTAL OCEAN MODEL; FINITE-VOLUME; CIRCULATION; ESTUARIES; TURBULENCE; VORTICITY; SANDBANKS; DYNAMICS; SHAMBLES; CHANNEL AB Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies exist in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its subbasins was evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other subbasins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound. C1 [Yang, Zhaoqing; Wang, Taiping] Pacific NW Natl Lab, Seattle, WA 98109 USA. RP Yang, ZQ (reprint author), Pacific NW Natl Lab, 1100 Dexter Ave North,Suite 400, Seattle, WA 98109 USA. EM zhaoqing.yang@pnnl.gov NR 40 TC 10 Z9 10 U1 0 U2 28 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 J9 OCEAN DYNAM JI Ocean Dyn. PD AUG PY 2013 VL 63 IS 8 BP 995 EP 1009 DI 10.1007/s10236-013-0635-z PG 15 WC Oceanography SC Oceanography GA 191GE UT WOS:000322400300008 ER PT J AU Kim, Y Park, S Gilmour, SJ Thomashow, MF AF Kim, YongSig Park, Sunchung Gilmour, Sarah J. Thomashow, Michael F. TI Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis SO PLANT JOURNAL LA English DT Article DE CAMTA proteins; salicylic acid; CBF proteins; gene regulation; low temperature; freezing tolerance; Arabidopsis thaliana ID SYSTEMIC ACQUIRED-RESISTANCE; COLD RESPONSE PATHWAY; REGULATED GENE-EXPRESSION; PLANT IMMUNITY; SIGNAL-TRANSDUCTION; ACCLIMATION; THALIANA; DEFENSE; CALCIUM; ACTIVATORS AB Previous studies in Arabidopsis thaliana established roles for CALMODULIN BINDING TRANSCRIPTION ACTIVATOR3 (CAMTA3) in the rapid cold induction of CRT/DRE BINDING FACTOR (CBF) genes CBF1 and CBF2, and the repression of salicylic acid (SA) biosynthesis at warm temperature. Here we show that CAMTA1 and CAMTA2 work in concert with CAMTA3 at low temperature (4 degrees C) to induce peak transcript levels of CBF1, CBF2 and CBF3 at 2h, contribute to up-regulation of approximately 15% of the genes induced at 24h, most of which fall outside the CBF pathway, and increase plant freezing tolerance. In addition, CAMTA1, CAMTA2 and CAMTA3 function together to inhibit SA biosynthesis at warm temperature (22 degrees C). However, SA levels increase in Arabidopsis plants that are exposed to low temperature for more than 1week. We show that this chilling-induced SA biosynthesis proceeds through the isochorismate synthase (ICS) pathway, with cold induction of ICS1 (which encodes ICS), and two genes encoding transcription factors that positively regulate ICS1 - CBP60g and SARD1 -, paralleling SA accumulation. The three CAMTA proteins effectively repress the accumulation of ICS1, CBP60g and SARD1 transcripts at warm temperature but not at low temperature. This impairment of CAMTA function may involve post-transcriptional regulation, as CAMTA transcript levels did not decrease at low temperature. Salicylic acid biosynthesis at low temperature did not contribute to freezing tolerance, but had a major role in configuring the transcriptome, including the induction of defense response' genes, suggesting the possible existence of a pre-emptive defense strategy programmed by prolonged chilling temperatures. C1 [Kim, YongSig; Park, Sunchung; Gilmour, Sarah J.; Thomashow, Michael F.] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Thomashow, Michael F.] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. RP Thomashow, MF (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM thomash6@msu.edu FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy [DE-FG02-91ER20021] FX We are grateful to A. Daniel Jones and Lijun Chen of the Mass Spectrometry Facility at Michigan State University (Department of Biochemistry and Molecular Biology) for help with the SA and SAG measurements, Kristen Schotts for help in growing plants and generating the camta mutants, Laurent Mene-Saffrane and Dean DellaPenna (Department of Biochemistry and Molecular Biology, Michigan State University) for kindly providing the sid2-1 and NahG mutants, and Sheng Yang He and Gregg Howe for discussions about SA and plant defense. SALK lines were obtained from the Arabidopsis Biological Resource Center at Ohio State University (http://abrc.osu.edu/). This research was supported by a grant from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy (DE-FG02-91ER20021) and institutional support from the Michigan Agricultural Experiment Station. NR 54 TC 47 Z9 52 U1 5 U2 78 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 J9 PLANT J JI Plant J. PD AUG PY 2013 VL 75 IS 3 BP 364 EP 376 DI 10.1111/tpj.12205 PG 13 WC Plant Sciences SC Plant Sciences GA 187ZJ UT WOS:000322160200002 PM 23581962 ER PT J AU Cho, YR Ohm, RA Grigoriev, IV Srivastava, A AF Cho, Yangrae Ohm, Robin A. Grigoriev, Igor V. Srivastava, Akhil TI Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola SO PLANT JOURNAL LA English DT Article DE pathogenesis mechanism; pathogenesis regulator; necrotrophic fungus; plant response to pathogen; gene expression profile; gene induction; Alternaria brassicicola; Brassica oleracea. ID RICE BLAST FUNGUS; ANIMAL HOST-CELLS; MAGNAPORTHE-GRISEA; PROTEIN-KINASE; MAP KINASE; SCLEROTINIA-SCLEROTIORUM; HYPERSENSITIVE RESPONSE; NECROTROPHIC PATHOGENS; ARABIDOPSIS-THALIANA; FUSARIUM-GRAMINEARUM AB Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. To identify molecular determinants of pathogenicity, we created non-pathogenic mutants of a transcription factor-encoding gene, AbPf2. The frequency and timing of germination and appressorium formation on host plants were similar between the non-pathogenic abpf2 mutants and wild-type A.brassicicola. The mutants were also similar in vitro to wild-type A.brassicicola in terms of vegetative growth, conidium production, and responses to a phytoalexin, reactive oxygen species and osmolites. The hyphae of the mutants grew slowly but did not cause disease symptoms on the surface of host plants. Transcripts of the AbPf2 gene increased exponentially soon after wild-type conidia contacted their host plants . A small amount of AbPf2 protein, as monitored using GFP fusions, was present in young, mature conidia. The protein level decreased during saprophytic growth, but increased and was located primarily in fungal nuclei during pathogenesis. Levels of the proteins and transcripts sharply decreased following colonization of host tissues beyond the initial infection site. When expression of the transcription factor was induced in the wild-type during early pathogenesis, 106 fungal genes were also induced in the wild-type but not in the abpf2 mutants. Notably, 33 of the 106 genes encoded secreted proteins, including eight putative effector proteins. Plants inoculated with abpf2 mutants expressed higher levels of genes associated with photosynthesis, the pentose phosphate pathway and primary metabolism, but lower levels of defense-related genes. Our results suggest that AbPf2 is an important regulator of pathogenesis, but does not affect other cellular processes in A.brassicicola. C1 [Cho, Yangrae; Srivastava, Akhil] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Cho, Yangrae] Korea Res Inst Biosci & Biotechnol, Ochang 363883, Chungbuk, South Korea. [Ohm, Robin A.; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Cho, YR (reprint author), Univ Hawaii Manoa, 3190 Maile Way,St John 317, Honolulu, HI 96822 USA. EM yangrae@hawaii.edu RI Ohm, Robin/I-6689-2016 FU HATCH funds; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We thank Wayne Borth, Anne Alvarez and John Hu for generously sharing their research equipment, Tina M. Carvalho for assisting with the confocal microscopy, Johnson Siu and Hui Trung for plant growth, and Fred Brooks for critical reading of the manuscript. We are especially grateful to Chang-Hyun Khang (Department of Plant Biology, Georgia University, GA) and Barbara Valent (Department of Plant Pathology, Kansas State University, KS) for sharing plasmid pBV579 encoding mCherry tagged with a nuclear localization signal. This research was supported by HATCH funds to Y.C., administered by the College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI. Analysis of RNA-seq data was supported by the Office of Science of the US Department of Energy under contract number DE-AC02-05CH11231. NR 61 TC 7 Z9 8 U1 1 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD AUG PY 2013 VL 75 IS 3 BP 498 EP 514 DI 10.1111/tpj.12217 PG 17 WC Plant Sciences SC Plant Sciences GA 187ZJ UT WOS:000322160200012 PM 23617599 ER PT J AU Trupiano, D Yordanov, Y Regan, S Meilan, R Tschaplinski, T Scippa, GS Busov, V AF Trupiano, Dalila Yordanov, Yordan Regan, Sharon Meilan, Richard Tschaplinski, Timothy Scippa, Gabriella Stefania Busov, Victor TI Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus SO PLANTA LA English DT Article DE Activation tagging; Auxin; Ethylene responsive factor; Poplar ID ASYMMETRIC CELL-DIVISION; ARABIDOPSIS-THALIANA; POWERFUL TOOL; GENE FAMILY; ETHYLENE; AUXIN; POPLAR; ACTIVATION; INITIATION; TRANSFORMATION AB Using activation tagging in Populus, we have identified five mutant lines showing changes in their adventitious rooting. Among the affected lines, three showed increased and two decreased adventitious rooting. We have positioned the tag in the mutant lines via recovering genomic sequences flanking the left-hand border of the activation tagging vector and validated the transcriptional activation of the proximal genes. We further characterized one line in which the cause of the observed rooting phenotype was up-regulation of a gene encoding a transcription factor of the AP2/ERF family of unknown function (PtaERF003). We show, through retransformation, that this gene has a positive effect on both adventitious and lateral root proliferation. Comparative expression analyses show that the phenotype does not result from ectopic expression but rather up-regulation of the native expression pattern of the gene. PtaERF003 function is linked to auxin signal transduction pathway, as suggested by the rapid induction and accentuated phenotypes of the transgenic plants in presence of the hormone. Upregulation of PtaERF003 led to most significant metabolic changes in the shoot suggesting of a broader regulatory role of the gene that is not restricted to root growth and development. Our study shows that dominant tagging approaches in poplar can successfully identify novel molecular factors controlling adventitious and lateral root formation in woody plants. Such discoveries can lead to technologies that can increase root proliferation and, thus, have significant economic and environmental benefits. C1 [Trupiano, Dalila; Scippa, Gabriella Stefania] Univ Molise, Dipartimento Biosci & Terr, I-86090 Pesche, IS, Italy. [Yordanov, Yordan; Busov, Victor] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. [Regan, Sharon] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada. [Meilan, Richard] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA. [Tschaplinski, Timothy] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Busov, V (reprint author), Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. EM vbusov@mtu.edu RI SCIPPA, GABRIELLA/F-6007-2012; OI Trupiano, Dalila/0000-0002-3907-2816; SCIPPA, GABRIELLA/0000-0003-0573-1235; Tschaplinski, Timothy/0000-0002-9540-6622; Yordanov, Yordan/0000-0002-9371-2095 FU US Department of Energy (DOE); Poplar Genome Based Research for Carbon Sequestration in Terrestrial Ecosystems [DE-FG02-06ER64185, DE-FG02-05ER64113]; Consortium for Plant Biotechnology Research, Inc. [GO12026-203A]; United States Department of Agriculture (USDA) CSREES; USDA-NRI Plant Genome program [2003-04345]; USDA CSREES; Biotechnology Risk Assessment Research Grants Program [2004-35300-14687]; Plant Feedstock Genomics for Bioenergy: A Joint Research Program of USDA and DOE [2009-65504-05767]; Office of Biological and Environmental Research in the DOE Office of Science; U.S. Government [DE-AC05-00OR22725] FX This work was supported in part by grants from the US Department of Energy (DOE), Poplar Genome Based Research for Carbon Sequestration in Terrestrial Ecosystems (DE-FG02-06ER64185, DE-FG02-05ER64113), the Consortium for Plant Biotechnology Research, Inc. (GO12026-203A), the United States Department of Agriculture (USDA) CSREES, the USDA-NRI Plant Genome program (2003-04345) and USDA CSREES, the Biotechnology Risk Assessment Research Grants Program (2004-35300-14687), Plant Feedstock Genomics for Bioenergy: A Joint Research Program of USDA and DOE (2009-65504-05767). The research at ORNL was supported by the Office of Biological and Environmental Research in the DOE Office of Science. This manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. NR 53 TC 25 Z9 28 U1 5 U2 55 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0032-0935 EI 1432-2048 J9 PLANTA JI Planta PD AUG PY 2013 VL 238 IS 2 BP 271 EP 282 DI 10.1007/s00425-013-1890-4 PG 12 WC Plant Sciences SC Plant Sciences GA 189IG UT WOS:000322260100004 PM 23645259 ER PT J AU Huo, CQ Lundin, D Raadu, MA Anders, A Gudmundsson, JT Brenning, N AF Huo, Chunqing Lundin, Daniel Raadu, Michael A. Anders, Andre Gudmundsson, Jon Tomas Brenning, Nils TI On sheath energization and Ohmic heating in sputtering magnetrons SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article ID ELECTRON-EMISSION; DISCHARGE; FIELD AB In most models of sputtering magnetrons, the mechanism for energizing the electrons in the discharge is assumed to be sheath energization. In this process, secondary emitted electrons from the cathode surface are accelerated across the cathode sheath into the plasma, where they either ionize directly or transfer energy to the local lower energy electron population that subsequently ionizes the gas. In this work, we present new modeling results in support of an alternative electron energization mechanism. A model is experimentally constrained, by a fitting procedure, to match a set of experimental data taken over a large range in discharge powers in a high-power impulse magnetron sputtering (HiPIMS) device. When the model is matched to real data in this way, one finding is that the discharge can run with high power and large gas rarefaction without involving the mechanism of secondary electron emission by twice-ionized sputtered metal. The reason for this is that direct Ohmic heating of the plasma electrons is found to dominate over sheath energization by typically an order of magnitude. This holds from low power densities, as typical for dc magnetrons, to so high powers that the discharge is close to self-sputtering, i.e. dominated by the ionized vapor of the sputtered gas. The location of Ohmic heating is identified as an extended presheath with a potential drop of typically 100-150V. Such a feature, here indirectly derived from modeling, is in agreement with probe measurements of the potential profiles in other HiPIMS experiments, as well as in conventional dc magnetrons. C1 [Huo, Chunqing; Lundin, Daniel; Raadu, Michael A.; Brenning, Nils] Royal Inst Technol, Sch Elect Engn, Div Space & Plasma Phys, SE-10044 Stockholm, Sweden. [Lundin, Daniel] Univ Paris 11, CNRS, UMR 8578, Phys Gaz & Plasmas Lab, F-91405 Orsay, France. [Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gudmundsson, Jon Tomas] Shanghai Jiao Tong Univ, Univ Michigan Shanghai Jiao Tong Univ Joint Inst, Shanghai 200240, Peoples R China. [Gudmundsson, Jon Tomas] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. RP Huo, CQ (reprint author), Royal Inst Technol, Sch Elect Engn, Div Space & Plasma Phys, SE-10044 Stockholm, Sweden. EM chunqing.huo@ee.kth.se RI Gudmundsson, Jon/D-2345-2012; Lundin, Daniel/C-8741-2009; Anders, Andre/B-8580-2009; Brenning, Nils/B-5965-2017 OI Gudmundsson, Jon/0000-0002-8153-3209; Lundin, Daniel/0000-0001-8591-1003; Anders, Andre/0000-0002-5313-6505; FU US Department of Energy [DE-AC02-05CH11231]; Icelandic Research Fund [130029-51] FX AA acknowledges support by the US Department of Energy under Contract No DE-AC02-05CH11231 and JTG acknowledges the support by the Icelandic Research Fund under Contract No 130029-51. This work benefited from stimulating discussion within the COST action MP0804. NR 25 TC 22 Z9 22 U1 4 U2 33 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD AUG PY 2013 VL 22 IS 4 AR 045005 DI 10.1088/0963-0252/22/4/045005 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 185WO UT WOS:000322001300006 ER PT J AU He, W Luo, JT Bourguet, F Xing, L Yi, SK Gao, TJ Blanchette, C Henderson, PT Kuhn, E Malfatti, M Murphy, WJ Cheng, RH Lam, KS Coleman, MA AF He, Wei Luo, Juntao Bourguet, Feliza Xing, Li Yi, Sun K. Gao, Tingjuan Blanchette, Craig Henderson, Paul T. Kuhn, Edward Malfatti, Mike Murphy, William J. Cheng, R. Holland Lam, Kit S. Coleman, Matthew A. TI Controlling the diameter, monodispersity, and solubility of ApoA1 nanolipoprotein particles using telodendrimer chemistry SO PROTEIN SCIENCE LA English DT Article DE nanolipoproteins; telodendrimer; cell-free expression; apolipoprotein; nanotechnology; membrane protein; mono-dispersity ID INTEGRAL MEMBRANE-PROTEINS; CELL-FREE SYNTHESIS; HIGH-THROUGHPUT; DENSITY-LIPOPROTEINS; PACLITAXEL DELIVERY; IN-VITRO; EXPRESSION; APOLIPOPROTEIN; DETERGENTS; CANCER AB Nanolipoprotein particles (NLPs) are nanometer-scale discoidal particles that feature a phospholipid bilayer confined within an apolipoprotein "scaffold," which are useful for solubilizing hydrophobic molecules such as drugs and membrane proteins. NLPs are synthesized either by mixing the purified apolipoprotein with phospholipids and other cofactors or by cell-free protein synthesis followed by self-assembly of the nanoparticles in the reaction mixture. Either method can be problematic regarding the production of homogeneous and monodispersed populations of NLPs, which also currently requires multiple synthesis and purification steps. Telodendrimers (TD) are branched polymers made up of a dendritic oligo-lysine core that is conjugated to linear polyethylene glycol (PEG) on one end, and the lysine "branches" are terminated with cholic acid moieties that enable the formation of nanomicelles in aqueous solution. We report herein that the addition of TD during cell-free synthesis of NLPs produces unique hybrid nanoparticles that have drastically reduced polydispersity as compared to NLPs made in the absence of TD. This finding was supported by dynamic light scattering, fluorescence correlation spectroscopy, and cryo transmission electron microscopy (Cryo-EM). These techniques demonstrate the ability of TDs to modulate both the NLP size (6-30 nm) and polydispersity. The telodendrimer NLPs (TD-NLPs) also showed 80% less aggregation as compared to NLPs alone. Furthermore, the versatility of these novel nanoparticles was shown through direct conjugation of small molecules such as fluorescent dyes directly to the TD as well as the insertion of a functional membrane protein. C1 [He, Wei; Gao, Tingjuan; Coleman, Matthew A.] NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [He, Wei; Yi, Sun K.; Coleman, Matthew A.] Univ Calif Davis, Med Ctr, Dept Radiat Oncol, Sacramento, CA 95817 USA. [Luo, Juntao] SUNY Upstate Med Univ, SUNY Upstate Canc Res Inst, Dept Pharmacol, Syracuse, NY 13210 USA. [Bourguet, Feliza; Blanchette, Craig; Kuhn, Edward; Malfatti, Mike; Coleman, Matthew A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Xing, Li; Cheng, R. Holland] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Henderson, Paul T.; Lam, Kit S.] Univ Calif Davis, Med Ctr, Dept Internal Med, Div Hematol & Oncol, Sacramento, CA 95817 USA. [Murphy, William J.] Univ Calif Davis, Med Ctr, Dept Dermatol, Sacramento, CA 95817 USA. [Lam, Kit S.] Univ Calif Davis, Med Ctr, Dept Biochem & Mol Med, Sacramento, CA 95817 USA. RP Coleman, MA (reprint author), Univ Calif Davis, Sch Med, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. EM mcoleman@ucdavis.edu OI Coleman, Matthew/0000-0003-1389-4018 FU University of California Discovery Grant Program, University of California and Life Technologies Corporation; NIH/NCI [RO1-CA155642-01A, R01CA115483, R01CA140449]; National Science Foundation, University of California [PHY 0120999]; U.S. Department of Energy [DE-AC52-07NA27344] FX Grant sponsor: University of California Discovery Grant Program, University of California and Life Technologies Corporation; Grant sponsor: NIH/NCI; Grant number: RO1-CA155642-01A; Grant sponsor: National Science Foundation, University of California; Grant number: PHY 0120999; Grant sponsor: U.S. Department of Energy; Grant number: DE-AC52-07NA27344; Grant sponsor: NIH/NCI; Grant numbers: R01CA115483, R01CA140449. NR 31 TC 5 Z9 5 U1 5 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD AUG PY 2013 VL 22 IS 8 BP 1078 EP 1086 DI 10.1002/pro.2292 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 190DM UT WOS:000322318600006 PM 23754445 ER PT J AU Garabalino, MA Heber, EM Hughes, AM Gonzalez, SJ Molinari, AJ Pozzi, ECC Nievas, S Itoiz, ME Aromando, RF Nigg, DW Bauer, W Trivillin, VA Schwint, AE AF Garabalino, Marcela A. Heber, Elisa M. Monti Hughes, Andrea Gonzalez, Sara J. Molinari, Ana J. Pozzi, Emiliano C. C. Nievas, Susana Itoiz, Maria E. Aromando, Romina F. Nigg, David W. Bauer, William Trivillin, Veronica A. Schwint, Amanda E. TI Biodistribution of sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) in an oral cancer model SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article DE Boron neutron capture therapy; BNCT; Oral cancer; Hamster cheek pouch; Precancerous tissue; BSH ID HAMSTER-CHEEK POUCH; SQUAMOUS-CELL CARCINOMA; MERCAPTOUNDECAHYDRO-CLOSO-DODECABORATE; RECURRENT HEAD; NECK-CANCER; GLIOBLASTOMA-MULTIFORME; PRECANCEROUS TISSUE; LIVER METASTASES; BRAIN-TUMORS; BUCCAL POUCH AB Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg B-10/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible. C1 [Garabalino, Marcela A.; Heber, Elisa M.; Monti Hughes, Andrea; Molinari, Ana J.; Itoiz, Maria E.; Aromando, Romina F.; Trivillin, Veronica A.; Schwint, Amanda E.] Natl Atom Energy Commiss CNEA, Dept Radiobiol, Buenos Aires, DF, Argentina. [Gonzalez, Sara J.] Natl Atom Energy Commiss CNEA, Dept Instrumentat & Control, Buenos Aires, DF, Argentina. [Gonzalez, Sara J.; Trivillin, Veronica A.; Schwint, Amanda E.] Natl Res Council CONICET, Buenos Aires, DF, Argentina. [Pozzi, Emiliano C. C.] Natl Atom Energy Commiss CNEA, Dept Res & Prod Reactors, Buenos Aires, DF, Argentina. [Nievas, Susana] Natl Atom Energy Commiss CNEA, Dept Chem, Buenos Aires, DF, Argentina. [Itoiz, Maria E.; Aromando, Romina F.] Univ Buenos Aires, Dept Oral Pathol, Fac Dent, RA-1122 Buenos Aires, DF, Argentina. [Nigg, David W.; Bauer, William] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Schwint, AE (reprint author), Natl Atom Energy Commiss CNEA, Dept Radiobiol, Ave Gen Paz 1499,B1650KNA, Buenos Aires, DF, Argentina. EM schwint@cnea.gov.ar RI Bauer, William/B-8357-2016 OI Bauer, William/0000-0002-7190-9700 FU Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina [PICT2006-00700, PICT2010-0175]; National Research Council (CONICET), Argentina [PIP2010-00204]; Department of Energy through Idaho National Laboratory (US) FX This work was partially funded by Grant of Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina (Principal Investigator A.E. Schwint, PICT2006-00700, PICT2010-0175) and Grant of the National Research Council (CONICET), Argentina (Principal Investigator A. E. Schwint, PIP2010-00204). In addition, it was partially supported by the Department of Energy through Idaho National Laboratory (US). NR 65 TC 3 Z9 3 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD AUG PY 2013 VL 52 IS 3 BP 351 EP 361 DI 10.1007/s00411-013-0467-8 PG 11 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 186HN UT WOS:000322033000006 PM 23591915 ER PT J AU Hossain, MA Zegkinoglou, I Chuang, YD Geck, J Bohnenbuck, B Gonzalez, AGC Wu, HH Schussler-Langeheine, C Hawthorn, DG Denlinger, JD Mathieu, R Tokura, Y Satow, S Takagi, H Yoshida, Y Hussain, Z Keimer, B Sawatzky, GA Damascelli, A AF Hossain, M. A. Zegkinoglou, I. Chuang, Y. -D. Geck, J. Bohnenbuck, B. Gonzalez, A. G. Cruz Wu, H. -H. Schuessler-Langeheine, C. Hawthorn, D. G. Denlinger, J. D. Mathieu, R. Tokura, Y. Satow, S. Takagi, H. Yoshida, Y. Hussain, Z. Keimer, B. Sawatzky, G. A. Damascelli, A. TI Electronic superlattice revealed by resonant scattering from random impurities in Sr3Ru2O7 SO SCIENTIFIC REPORTS LA English DT Article ID SPIN CORRELATIONS; CHARGE AB Resonant elastic x-ray scattering (REXS) is an exquisite element-sensitive tool for the study of subtle charge, orbital, and spin superlattice orders driven by the valence electrons, which therefore escape detection in conventional x-ray diffraction (XRD). Although the power of REXS has been demonstrated by numerous studies of complex oxides performed in the soft x-ray regime, the cross section and photon wavelength of the material-specific elemental absorption edges ultimately set the limit to the smallest superlattice amplitude and periodicity one can probe. Here we show - with simulations and REXS on Mn-substituted Sr3Ru2O7 - that these limitations can be overcome by performing resonant scattering experiments at the absorption edge of a suitably-chosen, dilute impurity. This establishes that - in analogy with impurity-based methods used in electron-spin-resonance, nuclear-magnetic resonance, and Mo "ssbauer spectroscopy -randomly distributed impurities can serve as a non-invasive, but now momentum-dependent probe, greatly extending the applicability of resonant x-ray scattering techniques. C1 [Hossain, M. A.; Geck, J.; Hawthorn, D. G.; Sawatzky, G. A.; Damascelli, A.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hossain, M. A.; Chuang, Y. -D.; Gonzalez, A. G. Cruz; Denlinger, J. D.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Zegkinoglou, I.; Bohnenbuck, B.; Keimer, B.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Wu, H. -H.; Schuessler-Langeheine, C.] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany. [Mathieu, R.; Tokura, Y.] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. [Satow, S.; Takagi, H.] Univ Tokyo, Dept Adv Mat Sci, Kashiwa, Chiba 2778581, Japan. [Yoshida, Y.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Sawatzky, G. A.; Damascelli, A.] Univ British Columbia, Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada. RP Hossain, MA (reprint author), Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. EM mahossain@lbl.gov; damascelli@physics.ubc.ca RI SchuSSler-Langeheine, Christian/C-3186-2008; Hossain, Muhammed/G-3876-2012; Hawthorn, David/I-6491-2012; Tokura, Yoshinori/C-7352-2009; Takagi, Hidenori/B-2935-2010; damascelli, andrea/P-6329-2014; Zegkinoglou, Ioannis/H-2343-2013 OI SchuSSler-Langeheine, Christian/0000-0002-4553-9726; Hossain, Muhammed/0000-0003-1440-3161; Hawthorn, David/0000-0002-7002-0416; damascelli, andrea/0000-0001-9895-2226; FU Killam Steacie Fellowships; Alfred P. Sloan Steacie Fellowships; Alexander von Humboldt Steacie Fellowships; NSERC's Steacie Fellowships; Canada Research Chairs Program; ALS; CFI; CIFAR Quantum Materials FX We thank M.Z. Hasan for the use of the ALS scattering chamber and E. Schierle, E. Weschke for the BESSY/HMI scattering chamber and M. Le Tacon for fruitful discussions. This work was supported by the Max Planck - UBC Centre for Quantum Materials, the Killam, Alfred P. Sloan, Alexander von Humboldt, and NSERC's Steacie Fellowships (A.D.), the Canada Research Chairs Program (A.D. and G.A.S.), ALS and NSERC postdoctoral fellowships (M.A.H), NSERC, CFI, CIFAR Quantum Materials, and BCSI. H.-H.W. and C.S.-L. are supported by DGF through SFB 608. The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 23 TC 3 Z9 3 U1 4 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD AUG 1 PY 2013 VL 3 AR 2299 DI 10.1038/srep02299 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 193MV UT WOS:000322564800001 PM 23903555 ER PT J AU Rangamani, P Agrawal, A Mandadapu, KK Oster, G Steigmann, DJ AF Rangamani, Padmini Agrawal, Ashutosh Mandadapu, Kranthi K. Oster, George Steigmann, David J. TI Interaction between surface shape and intra-surface viscous flow on lipid membranes SO BIOMECHANICS AND MODELING IN MECHANOBIOLOGY LA English DT Article DE Lipid bilayers; Viscous membranes; Surface flow; Bending elasticity ID FLUIDS; ELASTICITY; FILMS AB The theory of intra-surface viscous flow on lipid bilayers is developed by combining the equations for flow on a curved surface with those that describe the elastic resistance of the bilayer to flexure. The model is derived directly from balance laws and augments an alternative formulation based on a variational principle. Conditions holding along an edge of the membrane are emphasized, and the coupling between flow and membrane shape is simulated numerically. C1 [Rangamani, Padmini; Oster, George] Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 94720 USA. [Agrawal, Ashutosh] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA. [Mandadapu, Kranthi K.] Sandia Natl Labs, Livermore, CA 94551 USA. [Steigmann, David J.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Steigmann, DJ (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM steigman@me.berkeley.edu FU NIGMS NIH HHS [R01 GM104979] NR 20 TC 11 Z9 11 U1 0 U2 14 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-7959 J9 BIOMECH MODEL MECHAN JI Biomech. Model. Mechanobiol. PD AUG PY 2013 VL 12 IS 4 BP 833 EP 845 DI 10.1007/s10237-012-0447-y PG 13 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 173VM UT WOS:000321109700015 PM 23086137 ER PT J AU Zhou, YY Eom, J Clarke, L AF Zhou, Yuyu Eom, Jiyong Clarke, Leon TI The effect of global climate change, population distribution, and climate mitigation on building energy use in the US and China SO CLIMATIC CHANGE LA English DT Article ID MODEL PROJECTIONS; DEMAND; MARKET AB Climate change will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate change on heating and cooling demands requires taking into account not only the manner in which the building sector might evolve over time, but also important uncertainty about the nature of climate change itself. In this study, we explore the uncertainty in climate change impacts on heating and cooling requirement by constructing estimates of heating and cooling degree days (HDD/CDDs) for both reference (no-policy) and 550 ppmv CO2 concentration pathways built from three different Global Climate Models (GCMs) output and three scenarios of gridded population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China are then explored by using the results of HDD/CDDs as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). The results across the modeled changes in climate and population distributions indicate that unabated climate change would cause building sector's final energy consumption to decrease modestly (6 % decrease or less depending on climate models) in both the U.S. and China by the end of the century as decreased heating consumption more than offsets increased cooling using primarily electricity. However, global climate change virtually has negligible effect on total CO2 emissions in the buildings sector in both countries. The results also indicate more substantial implications for the fuel mix with increases in electricity and decreases in other fuels, which may be consistent with climate mitigation goals. The variation in results across all scenarios due to variation of population distribution is smaller than variation due to the use of different climate models. C1 [Zhou, Yuyu; Clarke, Leon] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Eom, Jiyong] Sogang Univ, Grad Sch Management Technol, Seoul 121742, South Korea. RP Zhou, YY (reprint author), Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM yuyu.zhou@pnnl.gov; eomjiyong@sogang.ac.kr RI Eom, Jiyong/A-1161-2014 FU Environmental Protection Agency; Global Technology Strategy Project; Integrated Assessment Research Program in the Office of Science of the U.S. Department of Energy; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX The authors are grateful for research support provided by Environmental Protection Agency, the Global Technology Strategy Project, and the Integrated Assessment Research Program in the Office of Science of the U.S. Department of Energy for funding this research. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. The authors would like to thank James J. Dooley and three anonymous reviewers for constructive comments and the many colleagues and organizations that shared data used in this project. The views and opinions expressed in this paper are those of the authors alone. NR 28 TC 17 Z9 17 U1 4 U2 56 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD AUG PY 2013 VL 119 IS 3-4 BP 979 EP 992 DI 10.1007/s10584-013-0772-x PG 14 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 185GO UT WOS:000321955300033 ER PT J AU Prague, M Commenges, D Guedj, J Drylewicz, J Thiebaut, R AF Prague, Melanie Commenges, Daniel Guedj, Jeremie Drylewicz, Julia Thiebaut, Rodolphe TI NIMROD: A program for inference via a normal approximation of the posterior in models with random effects based on ordinary differential equations SO COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE LA English DT Article DE Maximum likelihood; Maximum a posteriori; HIV; Non-linear mixed-effects model; Ordinary differential equations; Pharmacokinetics ID MAXIMUM-LIKELIHOOD-ESTIMATION; HIV-INFECTED PATIENTS; MIXED EFFECTS MODELS; BAYESIAN-INFERENCE; DYNAMICS MODELS; AMPRENAVIR; ALGORITHM; RITONAVIR; PARAMETERS AB Models based on ordinary differential equations (ODE) are widespread tools for describing dynamical systems. In biomedical sciences, data from each subject can be sparse making difficult to precisely estimate individual parameters by standard non-linear regression but information can often be gained from between-subjects variability. This makes natural the use of mixed-effects models to estimate population parameters. Although the maximum likelihood approach is a valuable option, identifiability issues favour Bayesian approaches which can incorporate prior knowledge in a flexible way. However, the combination of difficulties coming from the ODE system and from the presence of random effects raises a major numerical challenge. Computations can be simplified by making a normal approximation of the posterior to find the maximum of the posterior distribution (MAP). Here we present the NIMROD program (normal approximation inference in models with random effects based on ordinary differential equations) devoted to the MAP estimation in ODE models. We describe the specific implemented features such as convergence criteria and an approximation of the leave-one-out cross-validation to assess the model quality of fit. In pharmacokinetics models, first, we evaluate the properties of this algorithm and compare it with FOCE and MCMC algorithms in simulations. Then, we illustrate NIMROD use on Amprenavir pharmacokinetics data from the PUZZLE clinical trial in HIV infected patients. (C) 2013 Elsevier Ireland Ltd. All rights reserved. C1 [Prague, Melanie; Commenges, Daniel; Thiebaut, Rodolphe] Univ Bordeaux, ISPED, Ctr INSERM Epidemiol Biostat U897, F-33000 Bordeaux, France. [Prague, Melanie; Commenges, Daniel; Thiebaut, Rodolphe] INSERM, ISPED, Ctr INSERM Epidemiol Biostat U897, F-33000 Bordeaux, France. [Guedj, Jeremie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Drylewicz, Julia] Univ Med Ctr Utrecht, Lab Translat Immunol, NL-3508 AB Utrecht, Netherlands. [Drylewicz, Julia] Univ Utrecht, Dept Biol, NL-3584 CH Utrecht, Netherlands. RP Prague, M (reprint author), Univ Bordeaux, ISPED, Ctr INSERM Epidemiol Biostat U897, F-33000 Bordeaux, France. EM melanie.prague@isped.u-bordeaux2.fr RI Guedj, Jeremie/A-6842-2017 OI Guedj, Jeremie/0000-0002-5534-5482 NR 46 TC 5 Z9 5 U1 2 U2 10 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0169-2607 EI 1872-7565 J9 COMPUT METH PROG BIO JI Comput. Meth. Programs Biomed. PD AUG PY 2013 VL 111 IS 2 BP 447 EP 458 DI 10.1016/j.cmpb.2013.04.014 PG 12 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Engineering, Biomedical; Medical Informatics SC Computer Science; Engineering; Medical Informatics GA 176ZN UT WOS:000321345400018 PM 23764196 ER PT J AU Wang, H Wu, PD Wang, J AF Wang, H. Wu, P. D. Wang, J. TI Modeling inelastic behavior of magnesium alloys during cyclic loading-unloading SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Inelasticity; Cyclic loading; Twinning; Crystal plasticity; Magnesium ID SITU NEUTRON-DIFFRACTION; TEXTURE DEVELOPMENT; STRESS-RELAXATION; AZ31B SHEET; MECHANICAL-BEHAVIOR; HARDENING EVOLUTION; CONSTITUTIVE MODEL; PLASTICITY MODELS; ZIRCONIUM ALLOYS; BASAL TEXTURE AB The inelastic behavior presenting in magnesium alloys during cyclic loading-unloading have been investigated through the finite strain elastic viscoplastic self-consistent (EVPSC) model for polycrystals (EVPSC-TDT), which has been updated by implementing the twinning and de-twinning (TDT) model. Corresponding to the existing experiments of extruded bars of Mg alloys, we constructed the extruded bars of magnesium alloys with different initial textures in our simulations to study the effects of initial textures and deformation processes (tension and compression) on inelastic behavior during cyclic loading and unloading. Taking the advantage of numerical modeling, the evolution of the instantaneous gradients, the activity of the deformation mechanisms and the evolution of twin volume fraction are characterized to interpret the inelastic behavior. We found that the alternation of deformation mechanisms corresponds to the inelastic behavior; in particular, the inelastic behavior becomes more pronounced when twinning and de-twinning are activated. Thus, a strong extrusion texture reduces the hysteresis loops of the loading-unloading cycle under uniaxial tension, while magnifies the inelastic behavior under uniaxial compression, because twinning and de-twinning are more active for extrude bars with the strong extrusion texture under compression. The simulated results are in agreement with the available experimental observations. Published by Elsevier Ltd. C1 [Wang, H.; Wu, P. D.] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. [Wang, J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM wangj6@gmail.com RI Wang, Huamiao/F-7693-2010; Wu, Peidong/A-7009-2008; Wang, Jian/F-2669-2012 OI Wang, Huamiao/0000-0002-7167-2483; Wang, Jian/0000-0001-5130-300X FU Natural Sciences and Engineering Research Council of Canada (NSERC); Ontario Ministry of Research and Innovation; US Department of Energy, Office of Basic Energy Sciences [FWP-06SCPE401] FX This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Ontario Ministry of Research and Innovation. JW thanks the support provided by the US Department of Energy, Office of Basic Energy Sciences (Project No: FWP-06SCPE401). NR 49 TC 53 Z9 54 U1 6 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD AUG PY 2013 VL 47 BP 49 EP 64 DI 10.1016/j.ijplas.2013.01.007 PG 16 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 177YB UT WOS:000321410200004 ER PT J AU Ally, MR Munk, JD Baxter, V Gehl, AC AF Ally, Moonis R. Munk, Jeffrey D. Baxter, Van D. Gehl, Anthony C. TI Exergy and energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID LA English DT Article DE Exergy; Heat pump; Thermodynamics; Renewable energy; Water heating; Ground-source; Geothermal ID SYSTEM AB This paper presents analysis of a 5.275 kW (1.5-ton) water-to-water ground source heat pump (WW-GSHP) satisfying hot water needs in a 345 m(2) research house operated under simulated occupancy conditions. The hot water use protocol from the Building America Research Benchmark Definition claims to capture the living habits of the average American household and its impact on energy consumption. Energy and exergy analyses provide insight on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP shared the ground loop with a 7.56 kW water to air ground source heat pump (WA-GSHP) to space condition the same house. Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource. Published by Elsevier Ltd. C1 [Ally, Moonis R.; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Ally, MR (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. EM allymr@ornl.gov FU U.S. Department of Energy's Buildings Technology program FX The authors would like to thank Dr. Brian Fricke, Dr. Bo Shen, and Mr. Vishaldeep Sharma for reviewing this paper and suggesting changes. The authors also appreciate support by the U.S. Department of Energy's Buildings Technology program that provided funding for this project. NR 20 TC 12 Z9 12 U1 1 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0140-7007 J9 INT J REFRIG JI Int. J. Refrig.-Rev. Int. Froid PD AUG PY 2013 VL 36 IS 5 BP 1417 EP 1430 DI 10.1016/j.ijrefrig.2013.03.006 PG 14 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 181QG UT WOS:000321683000003 ER PT J AU Streit, J Razani, A AF Streit, James Razani, Arsalan TI Thermodynamic optimization of reverse Brayton cycles of different configurations for cryogenic applications SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID LA English DT Article DE Reverse-Brayton refrigeration cycle; Cryocooler; Auxiliary cooling; 2nd law analysis; Exergy ID SPACE APPLICATIONS; REFRIGERATION CYCLE; CRYOCOOLER; DESIGN AB The thermodynamic optimization of differing Reverse Brayton Refrigeration (RBR) cycle configurations is presented in this study. These cycle configurations include: Conventional 1-stage compression cycle; Conventional 2-stage compression cycle; 1-stage compression Modified cycle with intermediate cooling of the recuperator using an auxiliary cooler; and an Integrated 2-stage expansion RBR cycle. For high pressure ratio applications, multi-stage compressors with intercooling are considered. Analytical solutions for the conventional cycles are developed including thermal and fluid flow irreversibilities of the recuperators and all heat exchangers in addition to the compression and expansion processes. Exergy analysis is performed and the exergy destruction of different components of the RBR cycles for different configurations is presented and the effects of important system parameters on performance are investigated. Thermodynamic optimization of the cycles with intermediate cooling of the recuperator is included. Effects of the 2nd law/exergy efficiency of the auxiliary cooler on the total system efficiencies are presented. (C) 2013 Elsevier Ltd and IIR. All rights reserved. C1 [Streit, James] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Razani, Arsalan] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. RP Streit, J (reprint author), Los Alamos Natl Lab, POB 1663,Mail Stop K778, Los Alamos, NM 87545 USA. EM jstreit@lanl.gov NR 26 TC 1 Z9 2 U1 0 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0140-7007 J9 INT J REFRIG JI Int. J. Refrig.-Rev. Int. Froid PD AUG PY 2013 VL 36 IS 5 BP 1529 EP 1544 DI 10.1016/j.ijrefrig.2013.03.005 PG 16 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 181QG UT WOS:000321683000014 ER PT J AU Allaf, RM Rivero, IV Abidi, N Ivanov, IN AF Allaf, Rula M. Rivero, Iris V. Abidi, Noureddine Ivanov, Ilia N. TI Porous poly(epsilon-caprolactone) scaffolds for load-bearing tissue regeneration: Solventless fabrication and characterization SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS LA English DT Article DE scaffolds; polymer; tissue engineering; cryomilling; porosity ID CARTILAGE TISSUE; POLYMER BLENDS; PCL SCAFFOLDS; PORE-SIZE; COMPOSITES; MORPHOLOGY; COPOLYMER; ACID) AB Three-dimensional interconnected porous poly(epsilon-caprolactone) scaffolds have been prepared by a novel solventless scaffold fabrication approach combining cryomilling and compression molding/porogen leaching techniques. This study investigated the effects of processing parameters on scaffold morphology and properties for tissue regeneration. Specifically, the effects of molding temperature, cryomilling time, and porogen mix were examined. Fifty percentage of porous scaffolds were fabricated with a range of properties: mean pore size from approximate to 40 to 125 m, water uptake from approximate to 50 to 86%, compressive modulus from approximate to 45 to 84 MPa, and compressive strength at 10% strain from approximate to 3 to 4 MPa. Addition of 60 wt % NaCl salt resulted in a approximate to 50% increase in porosity in multimodal pore-size structures that depended on the method of NaCl addition. Water uptake ranged from approximate to 61 to 197%, compressive modulus from approximate to 4 to 8.6 MPa, and compressive strength at 10% strain from approximate to 0.36 to 0.40 MPa. Results suggest that this approach provides a controllable strategy for the design and fabrication of 3D interconnected porous biodegradable scaffolds for load-bearing tissue regeneration. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013. C1 [Allaf, Rula M.] German Jordanian Univ, Dept Ind Engn, Amman 11180, Jordan. [Rivero, Iris V.] Iowa State Univ, Ames, IA 50011 USA. [Abidi, Noureddine] Texas Tech Univ, Fiber & Biopolymer Res Inst, Dept Plant & Soil Sci, Lubbock, TX 79409 USA. [Ivanov, Ilia N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Rivero, IV (reprint author), Iowa State Univ, Ames, IA 50011 USA. EM rivero@iastate.edu RI ivanov, ilia/D-3402-2015 OI ivanov, ilia/0000-0002-6726-2502 FU Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy [CNMS2009-052] FX The authors acknowledge the Texas Tech University Imaging Center for use of the Hitachi S-4300SE/N (NSF MRI 04-511), and Payam Aminayi from the Fiber and Biopolymer Research Institute at Texas Tech University for carrying out the water droplet test. Thermal analysis was performed under project CNMS2009-052 at the Center for Nanophase Materials Sciences sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 30 TC 8 Z9 8 U1 0 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1552-4973 J9 J BIOMED MATER RES B JI J. Biomed. Mater. Res. Part B PD AUG PY 2013 VL 101B IS 6 BP 1050 EP 1060 DI 10.1002/jbm.b.32915 PG 11 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 181KA UT WOS:000321665300018 PM 23559444 ER PT J AU Nemer, MB Santoro, P Chen, X Blawzdziewicz, J Loewenberg, M AF Nemer, M. B. Santoro, P. Chen, X. Blawzdziewicz, J. Loewenberg, M. TI Coalescence of drops with mobile interfaces in a quiescent fluid SO JOURNAL OF FLUID MECHANICS LA English DT Article DE breakup/coalescence; drops; emulsions ID 2 VISCOUS DROPS; BUOYANCY-DRIVEN MOTION; LIQUID-LIQUID SYSTEMS; DER-WAALS FORCES; FILM DRAINAGE; POLYMER BLENDS; THIN-FILM; DEFORMABLE DROPS; DROPLETS; FLOW AB A study on the axisymmetric near-contact motion of drops with tangentially mobile interfaces under the action of a body force in a quiescent fluid is described. A long-time asymptotic analysis is presented for small-deformation conditions. Under these conditions the drops are nearly spherical, except in the near-contact region, where a flattened thin film forms. According to our analysis, a hydrostatic dome does not form in the near-contact region at long times, in contrast to the assumption underlying all previous analyses of this problem. Instead, the shape of the film in the near-contact region results from the absence of tangential stresses acting on it. As a result, the long-time behaviour of the system is qualitatively different than previously predicted. According to the theory presented herein, the minimum film thickness (rim region) decays with time as h(m) similar to t(-4/5), and the thickness at the centre of the film decays as h(0) similar to t(-3/5), which is a faster decay than predicted by prior analyses based on a hydrostatic dome. Numerical thin-film simulations quantitatively confirm the predictions of our small-deformation theory. Boundary-integral simulations of the full two-drop problem suggest that the theory also describes qualitatively the long-time evolution under finite-deformation conditions. C1 [Nemer, M. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Santoro, P.] Jefferies Int Ltd, London EC4V 3BJ, England. [Chen, X.] Citigrp, Exot Credit Derivat Trading, New York, NY 10013 USA. [Blawzdziewicz, J.] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. [Loewenberg, M.] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA. RP Nemer, MB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mbnemer@sandia.gov FU NASA [NAG3-2477, 0553551]; NSF [0553551, CBET-1059745]; Sandia [1016545, 1244783]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX M.B.N. was supported by NASA grant NAG3-2477, P.S. by NSF grant 0553551, M. L. by Sandia Contracts 1016545 and 1244783, X.C. by NASA grant NAG3-2722, and J.B. by NSF grant CBET-1059745. M.B.N. acknowledges helpful discussions with Professor V.Rokhlin. Sandia National Laboratories is a multi-Program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 51 TC 3 Z9 3 U1 3 U2 54 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD AUG PY 2013 VL 728 BP 471 EP 500 DI 10.1017/jfm.2013.288 PG 30 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 183RO UT WOS:000321835100024 ER PT J AU Inoue, H Fujii, T Yoshimi, M Taylor, LE Decker, SR Kishishita, S Nakabayashi, M Ishikawa, K AF Inoue, Hiroyuki Fujii, Tatsuya Yoshimi, Miho Taylor, Larry E., II Decker, Stephen R. Kishishita, Seiichiro Nakabayashi, Makoto Ishikawa, Kazuhiko TI Construction of a starch-inducible homologous expression system to produce cellulolytic enzymes from Acremonium cellulolyticus SO JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY LA English DT Article DE Acremonium cellulolyticus; Protein expression; Cellulase production; Homologous expression; Glucoamylase; Cellobiohydrolase I ID TRICHODERMA-REESEI CELLULASE; RICE STRAW; PURIFICATION; IDENTIFICATION; CONVERSION; PROMOTERS; MIXTURES; ETHANOL; CLONING; CEL7B AB A starch-inducible homologous expression system in Acremonium cellulolyticus was constructed to successfully produce recombinant cellulolytic enzymes. A. cellulolyticus Y-94 produced amylolytic enzymes and cellulolytic enzymes as major proteins in the culture supernatant when grown with soluble starch (SS) and Solka-Flock cellulose (SF), respectively. To isolate a strong starch-inducible promoter, glucoamylase (GlaA), which belongs to glycoside hydrolase family 15, was purified from the SS culture of Y-94, and its gene was identified in the genome sequence. The 1.4-kb promoter and 0.4-kb terminator regions of glaA were amplified by polymerase chain reaction (PCR) and used in the construction of a plasmid that drives the expression of the cellobiohydrolase I (Cel7A) gene from A. cellulolyticus. The resultant expression plasmid, containing pyrF as a selection marker, was randomly integrated into the genome of the A. cellulolyticus Y-94 uracil auxotroph. The prototrophic transformant, Y203, produced recombinant Cel7A as an extracellular protein under control of the glaA promoter in the SS culture. Recombinant and wild-type Cel7A were purified from the SS culture of Y203 and the SF culture of A. cellulolyticus CF-2612, respectively. Both enzymes were found to have the same apparent molecular weight (60 kDa), thermostability (T (m) 67.0 A degrees C), and optimum pH (pH 4.5), and showed similar catalytic properties for soluble and insoluble substrates. These results suggest that the A. cellulolyticus starch-inducible expression system will be helpful for characterization and improvement of fungal cellulolytic enzymes. C1 [Inoue, Hiroyuki; Fujii, Tatsuya; Yoshimi, Miho; Kishishita, Seiichiro; Nakabayashi, Makoto; Ishikawa, Kazuhiko] Natl Inst Adv Ind Sci & Technol, Biomass Refinery Res Ctr, Higashihiroshima, Hiroshima 7390046, Japan. [Taylor, Larry E., II; Decker, Stephen R.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Inoue, H (reprint author), Natl Inst Adv Ind Sci & Technol, Biomass Refinery Res Ctr, 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 7390046, Japan. EM inoue-h@aist.go.jp RI Kishishita, Seiichiro/H-1836-2011; Inoue, Hiroyuki/L-9990-2016 OI Kishishita, Seiichiro/0000-0001-7587-2581; Inoue, Hiroyuki/0000-0003-0190-2893 FU Japan-US cooperation project for research and standardization of Clean Energy Technologies FX This work was supported by the Japan-US cooperation project for research and standardization of Clean Energy Technologies. NR 31 TC 16 Z9 17 U1 0 U2 12 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1367-5435 J9 J IND MICROBIOL BIOT JI J. Ind. Microbiol. Biotechnol. PD AUG PY 2013 VL 40 IS 8 BP 823 EP 830 DI 10.1007/s10295-013-1286-2 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 185MN UT WOS:000321972400005 PM 23700177 ER PT J AU Savukov, I Karaulanov, T Wurden, CJV Schultz, L AF Savukov, I. Karaulanov, T. Wurden, C. J. V. Schultz, L. TI Non-cryogenic ultra-low field MRI of wrist-forearm area SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE Ultra-low field; Anatomical; Imaging; Low-cost; Portable; Alternative MRI ID ATOMIC MAGNETOMETER; MICROTESLA MRI; STRENGTH; ACQUISITION; RELAXATION; CONTRAST; HAND AB Ultra-low field (ULF) MRI as an alternative to high field MRI can find some niche applications where high field is a liability. Previously we demonstrated hand images with a non-cryogenic ULF MRI system, but such a system was restrictive to the size of the imaging objects. We have modified the previous setup to increase the imaging volume and demonstrate the image of human hand near the wrist area. One goal for the demonstration is the evaluation of quality of larger bone structure to project image quality to other parts of extremities, such as elbows, shoulders, and knees. We found that after 12 min of acquisition, the image quality was quite satisfactory. To achieve this image quality, several problems were solved that appeared in the new system. The increase in the imaging volume size led to an increase in transient time and various measures were taken to reduce this time. We also explored a method of overcoming the artifacts and image quality reduction arising from field drifts present in the system due to heating of the coils. We believe that our results can be useful for evaluation of diagnostic capability of non-cryogenic ULF MRI of extremities and other parts of the body. The system can be also applied to image animals and tissues. (C) 2013 Elsevier Inc. All rights reserved. C1 [Savukov, I.; Karaulanov, T.; Wurden, C. J. V.; Schultz, L.] Los Alamos Natl Lab, Appl Modern Phys Grp, Los Alamos, NM 87545 USA. RP Savukov, I (reprint author), Los Alamos Natl Lab, Appl Modern Phys Grp, MS D454, Los Alamos, NM 87545 USA. EM isavukov@lanl.gov OI Savukov, Igor/0000-0003-4190-5335 FU NIH [5 R01 EB009355] FX This work is sponsored by NIH Grant 5 R01 EB009355. NR 25 TC 5 Z9 5 U1 3 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 J9 J MAGN RESON JI J. Magn. Reson. PD AUG PY 2013 VL 233 BP 103 EP 106 DI 10.1016/j.jmr.2013.05.012 PG 4 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA 188QV UT WOS:000322209600014 PM 23796804 ER PT J AU Cristancho, D Zhou, Y Cooper, R Huitink, D Aksoy, F Liu, Z Liang, H Seminario, JM AF Cristancho, Dahiyana Zhou, Yan Cooper, Rodrigo Huitink, David Aksoy, Funda Liu, Zhi Liang, Hong Seminario, Jorge M. TI Degradation of polyvinyl alcohol under mechanothermal stretching SO JOURNAL OF MOLECULAR MODELING LA English DT Article DE XPS; PVA; Binding energy; Deconvolution; Quantum chemistry; Ab initio ID MOLECULAR-ORBITAL METHODS; VALENCE BASIS-SETS; LOWEST ENERGY-STATES; CROSS-LINKING; DECOMPOSITION STEPS; 2ND-ROW ELEMENTS; 1ST-ROW ELEMENTS; MODEL CHEMISTRY; FORCE-FIELDS; TANTALUM AB Mechanical and thermal properties of polyvinyl alcohol (PVA) are characterized and analyzed using in situ X-ray photoelectron spectroscopy (XPS) and quantum chemistry calculations. It is found that the carbon peaks-commonly used as the reference for spectroscopic analysis-shift under mechanical and thermal stretching. Results also indicate that, at different temperatures and among the various functional groups present in PVA, the carbon in the C-O group is the most stable. Computational calculations showed that Hartree-Fock/10-31G (d) reproduces the binding energy of core carbon electrons with an accuracy of 95 %, which is enough to characterize bonds, allowing the results of the spectroscopic analysis to be corroborated. C1 [Cristancho, Dahiyana; Seminario, Jorge M.] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. [Cristancho, Dahiyana; Zhou, Yan; Liang, Hong; Seminario, Jorge M.] Texas A&M Univ, Mat Sci & Engn Grad Program, College Stn, TX USA. [Zhou, Yan; Cooper, Rodrigo; Huitink, David; Liang, Hong] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Seminario, Jorge M.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX USA. [Aksoy, Funda; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Seminario, JM (reprint author), Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. EM hliang@tamu.edu; seminario@tamu.edu RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU U.S. Defense Threat Reduction Agency (DTRA) through the U.S. Army Research Office [W91NF-06-1-0231]; ARO/DURINT [W91NF-07-1-0199]; ARO/MURI [W911NF-11-1-0024]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX JMS and DC acknowledge the financial support of the U.S. Defense Threat Reduction Agency (DTRA) through the U.S. Army Research Office, project no. W91NF-06-1-0231, ARO/DURINT project no. W91NF-07-1-0199, and ARO/MURI project no. W911NF-11-1-0024. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under contract no. DE-AC02-05CH11231. NR 57 TC 1 Z9 1 U1 1 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1610-2940 J9 J MOL MODEL JI J. Mol. Model. PD AUG PY 2013 VL 19 IS 8 BP 3245 EP 3253 DI 10.1007/s00894-013-1828-6 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Chemistry, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Biochemistry & Molecular Biology; Biophysics; Chemistry; Computer Science GA 184VU UT WOS:000321922600032 PM 23649348 ER PT J AU Johnston, AL Hall, AC McCloskey, JF AF Johnston, Allison Lynne Hall, Aaron Christopher McCloskey, James Francis TI Effect of Process Inputs on Coating Properties in the Twin-Wire Arc Zinc Process SO JOURNAL OF THERMAL SPRAY TECHNOLOGY LA English DT Article DE microstructure; wire arc spray; zinc ID SPRAY PROCESS; ADHESION; MICROSTRUCTURE; CONCRETE; SYSTEM AB Relationships between process inputs and coating properties were characterized using a twin-wire arc torch spraying zinc. Specifically, standoff distance, primary and secondary atomizing gas pressures, and arc current were varied in order to determine their effects on deposition efficiency, surface roughness, coating porosity, and spray particle size. Process associations were investigated using an analysis of variance with a design of experiments approach with the intent of determining which spray parameters affect each of the aforementioned coating properties. The associations found are consistent with other studies of the twin-wire arc spray process and provide a framework for selecting process operating conditions based on desired coating properties. Such a specific outline has not been previously available. C1 [Johnston, Allison Lynne] Syracuse Univ, Syracuse, NY 13244 USA. [Hall, Aaron Christopher; McCloskey, James Francis] Sandia Natl Labs, Multiscale Met Sci & Technol Dept, Albuquerque, NM 87185 USA. RP Johnston, AL (reprint author), Syracuse Univ, 223 Link Hall, Syracuse, NY 13244 USA. EM achall@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 20 TC 3 Z9 3 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9630 J9 J THERM SPRAY TECHN JI J. Therm. Spray Technol. PD AUG PY 2013 VL 22 IS 6 BP 856 EP 863 DI 10.1007/s11666-013-9949-0 PG 8 WC Materials Science, Coatings & Films SC Materials Science GA 184EB UT WOS:000321869400001 ER PT J AU Zhang, F Fan, HL Huang, J Su, ZM He, LH AF Zhang Fang Fan Honglei Huang Jin Su Zhongmin He Lihong TI Structure and mechanical properties of waterborne polyurethane-based composites filled with self-assembled supramolecular nanoplatelets SO JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION LA English DT Article DE waterborne polyurethane; supramolecular nanoplatelets; polyrotaxane; cyclodextrin inclusion; composites; mechanical properties ID BIODEGRADABLE BLOCK-COPOLYMERS; INCLUSION-COMPOUNDS; GAMMA-CYCLODEXTRIN; ALPHA-CYCLODEXTRIN; POLY(METHYL METHACRYLATE); NANOTUBE COMPOSITES; NANOCOMPOSITES; MORPHOLOGY; POLYMERS; COMPLEX AB New composites of waterborne polyurethane (WPU) as a matrix were prepared by incorporating rigid supramolecular nanoplatelets (SNs) as filler, which were self-assembled by the selective inclusion of beta-cyclodextrin (beta-CD) onto poly(propylene oxide) (PPO) segment in the poly(ethylene oxide)-block-PPO-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO). It is worth noting that, when the loading level of SN is lower than 3wt%, the SNs with moderate PEO length result in the simultaneous increase in strength, elongation and Young's modulus in contrast with neat WPU. If there is no stretching free PEO chain, both strength and elongation decrease in spite of an increase in Young's modulus. However, too long PEO chains result in the decrease of mechanical performances while the relatively higher loading-level of SNs also inhibits the enhancement of strength and elongation. C1 [Zhang Fang; Su Zhongmin] NE Normal Univ, Fac Chem, Inst Funct Mat Chem, Changchun 130024, Peoples R China. [Fan Honglei; Huang Jin] Wuhan Univ Technol, Coll Chem Engn, Wuhan 430070, Peoples R China. [He Lihong] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Su, ZM (reprint author), NE Normal Univ, Fac Chem, Inst Funct Mat Chem, Changchun 130024, Peoples R China. EM zhang_fang2121@sina.com; fhl850602@163.com; zmsu@nenu.edu.cn RI Huang, Jin/E-4537-2011 FU National Natural Science Foundation of China [20404014, 50843031]; Fundamental Research Funds for the Central Universities (Self-Determined and Innovative Research Funds of WUT) [2012-Ia-006] FX Funded by the National Natural Science Foundation of China (20404014 and 50843031), and the Fundamental Research Funds for the Central Universities (Self-Determined and Innovative Research Funds of WUT 2012-Ia-006) NR 33 TC 1 Z9 1 U1 1 U2 34 PU JOURNAL WUHAN UNIV TECHNOLOGY PI WUHAN PA WUHAN UNIV TECHNOLOGY, WUHAN 430070, PEOPLES R CHINA SN 1000-2413 J9 J WUHAN UNIV TECHNOL JI J. Wuhan Univ. Technol.-Mat. Sci. Edit. PD AUG PY 2013 VL 28 IS 4 BP 773 EP 780 DI 10.1007/s11595-013-0767-5 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 184EF UT WOS:000321869900025 ER PT J AU Comparat, J Jullo, E Kneib, JP Schimd, C Shan, HY Erben, T Ilbert, O Brownstein, J Ealet, A Escoffier, S Moraes, B Mostek, N Newman, JA Pereira, MES Prada, F Schlegel, DJ Schneider, DP Brandt, CH AF Comparat, Johan Jullo, Eric Kneib, Jean-Paul Schimd, Carlo Shan, HuanYuan Erben, Thomas Ilbert, Olivier Brownstein, Joel Ealet, Anne Escoffier, Stephanie Moraes, Bruno Mostek, Nick Newman, Jeffrey A. Pereira, M. E. S. Prada, Francisco Schlegel, David J. Schneider, Donald P. Brandt, Carlos H. TI Stochastic bias of colour-selected BAO tracers by joint clustering-weak lensing analysis SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: haloes; galaxies: statistics; cosmology: observations; dark matter; large-scale structure of Universe ID DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; BARYON ACOUSTIC-OSCILLATIONS; LARGE-SCALE STRUCTURE; DARK-ENERGY CONSTRAINTS; GALAXY REDSHIFT SURVEY; 9TH DATA RELEASE; LY-ALPHA FOREST; SDSS-III; PHOTOMETRIC REDSHIFTS AB The baryon acoustic oscillation (BAO) feature in the two-point correlation function of galaxies supplies a standard ruler to probe the expansion history of the Universe. We study here several galaxy selection schemes, aiming at building an emission-line galaxy (ELG) sample in the redshift range 0.6 < z < 1.7, that would be suitable for future BAO studies, providing a highly biased galaxy sample. We analyse the angular galaxy clustering of galaxy selections at the redshifts 0.5, 0.7, 0.8, 1 and 1.2 and we combine this analysis with a halo occupation distribution (HOD) model to derive the properties of the haloes these galaxies inhabit, in particular the galaxy bias on large scales. We also perform a weak lensing analysis (aperture statistics) to extract the galaxy bias and the cross-correlation coefficient and compare to the HOD prediction. We apply this analysis on a data set composed of the photometry of the deep co-addition on Sloan Digital Sky Survey (SDSS) Stripe 82 (225 deg(2)), of Canada-France-Hawaii Telescope/Stripe 82 deep i-band weak lensing survey and of the Wide-Field Infrared Survey Explorer infrared photometric band W1. The analysis on the SDSS-III/constant mass galaxies selection at z = 0.5 is in agreement with previous studies on the tracer, moreover we measure its cross-correlation coefficient r = 1.16 +/- 0.35. For the higher redshift bins, we confirm the trends that the brightest galaxy populations selected are strongly biased (b > 1.5), but we are limited by current data sets depth to derive precise values of the galaxy bias. A survey using such tracers of the mass field will guarantee a high significance detection of the BAO. C1 [Comparat, Johan; Jullo, Eric; Kneib, Jean-Paul; Schimd, Carlo; Ilbert, Olivier] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Kneib, Jean-Paul; Schimd, Carlo] Ecole Polytech Fed Lausanne, Lab Astrophys, Observ Sauverny, CH-1290 Versoix, Switzerland. [Shan, HuanYuan] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Shan, HuanYuan] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Erben, Thomas] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Brownstein, Joel] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Ealet, Anne; Escoffier, Stephanie] Univ Aix Marseille, CNRS IN2P3, Ctr Phys Particules Marseille, F-13288 Marseille, France. [Moraes, Bruno; Pereira, M. E. S.; Brandt, Carlos H.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. [Moraes, Bruno; Pereira, M. E. S.] Lab Interinst & Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Mostek, Nick; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Newman, Jeffrey A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Newman, Jeffrey A.] Univ Pittsburgh, PITT PACC, Pittsburgh, PA 15260 USA. [Prada, Francisco] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain. [Prada, Francisco] Inst Astrofis Andalucia CSIC, E-18080 Granada, Spain. [Prada, Francisco] Campus Int Excellence UAM CSIC, E-28049 Madrid, Spain. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, Carlos H.] Lab Nacl Comp Cient, BR-25651075 Rio De Janeiro, RJ, Brazil. RP Comparat, J (reprint author), Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. EM johan.comparat@oamp.fr RI Kneib, Jean-Paul/A-7919-2015; Shan, Huanyuan/G-3353-2015; OI Kneib, Jean-Paul/0000-0002-4616-4989; Shan, Huanyuan/0000-0001-8534-837X; Escoffier, Stephanie/0000-0002-2847-7498; Jullo, Eric/0000-0002-9253-053X FU Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Agence Nationale de la Recherche [ANR-08-BLAN-0222]; National Aeronautics and Space Administration; Spanish MultiDark Consolider Project [CSD2009-00064]; Ministry of Science, Technology and Inovation (MCTI) of Brazil FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the US Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University.; The BOSS French Participation Group is supported by Agence Nationale de la Recherche under grant ANR-08-BLAN-0222.; This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.; The MultiDark Database used in this paper and the web application providing online access to it were constructed as part of the activities of the German Astrophysical Virtual Observatory as result of a collaboration between the Leibniz-Institute for Astrophysics Potsdam (AIP) and the Spanish MultiDark Consolider Project CSD2009-00064. The Bolshoi and MultiDark simulations were run on the NASA's Pleiades supercomputer at the NASA Ames Research Center.; We also thank the Laboratorio Interinstitucional de e-Astronomia (LIneA) operated jointly by the Centro Brasileiro de Pesquisas Fisicas (CBPF), the Laboratorio Nacional de Computacao Cientifica (LNCC) and the Observatorio Nacional (ON) and funded by the Ministry of Science, Technology and Inovation (MCTI) of Brazil. NR 94 TC 12 Z9 12 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2013 VL 433 IS 2 BP 1146 EP 1160 DI 10.1093/mnras/stt797 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 178QK UT WOS:000321462300019 ER PT J AU Sanchez, AG Kazin, EA Beutler, F Chuang, CH Cuesta, AJ Eisenstein, DJ Manera, M Montesano, F Nichol, RC Padmanabhan, N Percival, W Prada, F Ross, AJ Schlegel, DJ Tinker, J Tojeiro, R Weinberg, DH Xu, XY Brinkmann, J Brownstein, JR Schneider, DP Thomas, D AF Sanchez, Ariel G. Kazin, Eyal A. Beutler, Florian Chuang, Chia-Hsun Cuesta, Antonio J. Eisenstein, Daniel J. Manera, Marc Montesano, Francesco Nichol, Robert C. Padmanabhan, Nikhil Percival, Will Prada, Francisco Ross, Ashley J. Schlegel, David J. Tinker, Jeremy Tojeiro, Rita Weinberg, David H. Xu, Xiaoying Brinkmann, J. Brownstein, Joel R. Schneider, Donald P. Thomas, Daniel TI The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological constraints from the full shape of the clustering wedges SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmological parameters; large-scale structure of Universe ID DIGITAL SKY SURVEY; LUMINOUS RED GALAXIES; REDSHIFT-SPACE DISTORTIONS; PROBE WMAP OBSERVATIONS; MICROWAVE BACKGROUND ANISOTROPIES; HALO OCCUPATION DISTRIBUTION; 2-POINT CORRELATION-FUNCTION; SCALE POWER SPECTRUM; ACOUSTIC-OSCILLATIONS; DARK ENERGY AB We explore the cosmological implications of the clustering wedges, xi(perpendicular to)(s) and xi()(s), of the CMASS Data Release 9 sample of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey. These clustering wedges are defined by averaging the full two-dimensional correlation function, xi(mu, s), over the ranges 0 < mu < 0.5 and 0.5 < mu < 1, respectively. These measurements allow us to constrain the parameter combinations D-A(z)/r(s)(z(d)) = 9.03 +/- 0.21 and cz/(r(s)(z(d))H(z)) = 12.14 +/- 0.43 at the mean redshift of the sample, z = 0.57. We combine the information from the clustering wedges with recent measurements of cosmic microwave background (CMB), baryon acoustic oscillations and Type Ia supernovae to obtain constraints on the cosmological parameters of the standard Lambda cold dark matter (Lambda CDM) model and a number of potential extensions. The information encoded in the clustering wedges is most useful when the dark energy equation of state is allowed to deviate from its standard Lambda CDM value. The combination of all data sets shows no evidence of a deviation from a constant dark energy equation of state, in which case we find w(DE) = -1.013 +/- 0.064, in complete agreement with a cosmological constant. We explore potential deviations from general relativity (GR) by constraining the growth rate f(z) = d ln D(a)/d ln a, in which case the combination of the CMASS clustering wedges with CMB data implies f(z = 0.57) = 0.719(-0.096)(+0.092), in accordance with the predictions of GR. Our results clearly illustrate the additional constraining power of anisotropic clustering measurements with respect to that of angle-averaged quantities. C1 [Sanchez, Ariel G.; Montesano, Francesco] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Kazin, Eyal A.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Kazin, Eyal A.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Hawthorn, Vic 3122, Australia. [Beutler, Florian; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chuang, Chia-Hsun; Prada, Francisco] Univ Autonoma Madrid, UAM CSIC, Inst Fis Teor, E-28049 Madrid, Spain. [Cuesta, Antonio J.; Padmanabhan, Nikhil] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Eisenstein, Daniel J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Manera, Marc; Nichol, Robert C.; Percival, Will; Ross, Ashley J.; Tojeiro, Rita; Thomas, Daniel] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Prada, Francisco] Campus Int Excellence UAM CSIC, E-28049 Madrid, Spain. [Prada, Francisco] Inst Astrofis Andalucia CSIC, E-18080 Granada, Spain. [Tinker, Jeremy] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Weinberg, David H.] Ohio State Univ, CCAPP, Columbus, OH 43210 USA. [Xu, Xiaoying] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Brinkmann, J.] Apache Point Observ, Sunspot, NM 88349 USA. [Brownstein, Joel R.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. RP Sanchez, AG (reprint author), Max Planck Inst Extraterr Phys, Postfach 1312,Giessenbachstr, D-85741 Garching, Germany. EM arielsan@mpe.mpg.de OI Beutler, Florian/0000-0003-0467-5438; Cuesta Vazquez, Antonio Jose/0000-0002-4153-9470 FU Transregional Collaborative Research Centre TR33 'The Dark Universe' of the German Research Foundation (DFG); Australian Research Council Centre of Excellence for All-sky Astrophysics (CAAS-TRO) [CE110001020]; ICG; SEPNet; University of Portsmouth; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; NASA Office of Space Science FX AGS acknowledges support by the Transregional Collaborative Research Centre TR33 'The Dark Universe' of the German Research Foundation (DFG). EK is supported by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAAS-TRO), through project number CE110001020.; Numerical computations for the PTHALOS mocks were done on the Sciama High Performance Compute (HPC) cluster which is supported by the ICG, SEPNet and the University of Portsmouth.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the U.S. Department of Energy.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University.; We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 123 TC 48 Z9 48 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2013 VL 433 IS 2 BP 1202 EP 1222 DI 10.1093/mnras/stt799 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 178QK UT WOS:000321462300023 ER PT J AU Phillipps, S Young, AJ Drinkwater, MJ Gregg, MD Karick, A AF Phillipps, S. Young, A. J. Drinkwater, M. J. Gregg, M. D. Karick, A. TI X-ray sources in compact stellar systems in the Fornax Cluster SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; galaxies: clusters: individual: Fornax; galaxies: dwarf; galaxies: star clusters; X-rays: binaries. ID ULTRACOMPACT DWARF GALAXIES; CHANDRA MULTIWAVELENGTH PROJECT; MASSIVE STAR-CLUSTERS; HIGH M/L RATIOS; GLOBULAR-CLUSTERS; LUMINOSITY FUNCTION; ELLIPTIC GALAXIES; VIRGO-CLUSTER; SOURCE POPULATIONS; CENTRAL REGION AB Compact stellar systems (CSS) range in mass from globular clusters (GCs), through the more recently discovered ultracompact dwarfs (UCDs), to the rare compact elliptical galaxies. Given their intermediate position, the origin of UCDs, and hence whether they should be counted as galaxies or star clusters, remains unclear. In this paper, we compare the population of X-ray point sources (expected to be low-mass X-ray binaries; LMXBs) in UCD candidates, that is, relatively high-luminosity compact systems, with that known to exist in lower mass GCs. Any difference in LMXB populations may then indicate physical differences between GCs and UCDs. We find that, despite their much larger masses and hence numbers of stars, UCDs and UCD candidates are, if anything, less likely to contain bright X-ray point sources than are GCs. The LMXB content per unit stellar mass is therefore much lower for the UCD candidates, intermediate between that for GCs and for elliptical galaxies. This difference between UCDs and GCs can be explained if UCDs have significantly lower central densities than lower mass GCs, as this will reduce the stellar encounter rate and therefore the production of suitable binary systems. This supports the previously proposed idea of structural differences between UCDs and GCs, though not necessarily ruling out a close relationship between these two types of CSS. C1 [Phillipps, S.; Young, A. J.] Univ Bristol, HH Wills Phys Lab, Astrophys Grp, Bristol BS8 1TL, Avon, England. [Drinkwater, M. J.] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia. [Gregg, M. D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Gregg, M. D.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. [Karick, A.] Univ Oxford, Dept Phys, Astrophys Grp, Oxford OX1 3RH, England. RP Phillipps, S (reprint author), Univ Bristol, HH Wills Phys Lab, Astrophys Grp, Tyndall Ave, Bristol BS8 1TL, Avon, England. EM s.phillipps@bristol.ac.uk RI Drinkwater, Michael/A-2201-2008; OI Drinkwater, Michael/0000-0003-4867-0022; Phillipps, Steven/0000-0001-5991-3486 NR 76 TC 6 Z9 6 U1 0 U2 10 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2013 VL 433 IS 2 BP 1444 EP 1452 DI 10.1093/mnras/stt820 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 178QK UT WOS:000321462300044 ER PT J AU Chevalier, S Pint, B Monceau, D AF Chevalier, Sebastien Pint, Bruce Monceau, Daniel TI Alloy Development for High Temperature Corrosion and Protection SO OXIDATION OF METALS LA English DT Editorial Material C1 [Chevalier, Sebastien] Univ Bourgogne, Dijon, France. [Pint, Bruce] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Monceau, Daniel] CIRIMAT, INP Toulouse CNRS, F-31030 Toulouse, France. RP Chevalier, S (reprint author), Univ Bourgogne, Dijon, France. EM sebastien.chevalier@u-bourgogne.fr; pintba@ornl.gov; daniel.monceau@ensiacet.fr RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 0 TC 0 Z9 0 U1 2 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD AUG PY 2013 VL 80 IS 1-2 SI SI BP 1 EP 1 DI 10.1007/s11085-013-9372-4 PG 1 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 185HZ UT WOS:000321959700001 ER PT J AU Dogan, ON Nielsen, BC Hawk, JA AF Dogan, Omer N. Nielsen, Benjamin C. Hawk, Jeffrey A. TI Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S SO OXIDATION OF METALS LA English DT Article DE Sulfidation; High-entropy alloys; Syngas ID HIGH-PURITY WATER; AQUEOUS ENVIRONMENTS; MULTIPRINCIPAL ELEMENTS; GLASSY ALLOY; MICROSTRUCTURE; BEHAVIOR; RESISTANCE; EVOLUTION; SYSTEM; BORON AB High-entropy alloys are formed by synthesizing five or more principal elements in equimolar or near equimolar concentrations. Microstructure of the CoCrCuFeNiAl0.5Bx (x = 0, 0.2, 0.6, 1) high-entropy alloys under investigation is composed of a mixture of disordered bcc and fcc phases and borides. These alloys were tested gravimetrically for their corrosion resistance in simulated syngas containing 0, 0.01, 0.1, and 1 % H2S at 500 A degrees C. The exposed coupons were characterized using XRD and SEM. No significant corrosion was detected at 500 A degrees C in syngas containing 0 and 0.01 % H2S while significant corrosion was observed in syngas containing 0.1 and 1 % H2S. Cu1.96S was the primary sulfide in the external corrosion scale on the low-boron high-entropy alloys, whereas FeCo4Ni4S8 on the high-boron high-entropy alloys. Multi-phase Cu-rich regions in the low-B high-entropy alloys were vulnerable to corrosive attack. C1 [Dogan, Omer N.; Nielsen, Benjamin C.; Hawk, Jeffrey A.] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. [Nielsen, Benjamin C.] URS Corp, Albany, OR 97321 USA. RP Dogan, ON (reprint author), US DOE, Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM omer.dogan@netl.doe.gov FU RES [DE-FE0004000]; agency of the United States Government FX The authors wish to thank Prof. Jien-Wei Yeh of National Tsing Hua University in Taiwan and Prof. Peter Liaw of University of Tennessee for providing the high entropy alloy samples. The authors also thank Joe Tylczak for the use of the SECERF facility at NETL for performing the exposure tests, Paul Danielson for metallographic preparation of samples, David Smith for XRD analysis, and Dr. Kirk Gerdes for gas exchange rate calculations. This technical effort was performed in support of ongoing research at NETL under the RES contract DE-FE0004000. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 25 TC 6 Z9 6 U1 5 U2 40 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD AUG PY 2013 VL 80 IS 1-2 SI SI BP 177 EP 190 DI 10.1007/s11085-013-9407-x PG 14 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 185HZ UT WOS:000321959700014 ER PT J AU Lincoln, D AF Lincoln, Don TI Beyond the God Particle SO SCIENTIFIC AMERICAN LA English DT Editorial Material C1 Fermilab Natl Accelerator Lab, Batavia, IL USA. RP Lincoln, D (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0036-8733 J9 SCI AM JI Sci.Am. PD AUG PY 2013 VL 309 IS 2 BP 12 EP 12 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 185VI UT WOS:000321998000012 PM 23923195 ER PT J AU Zapata, F Kreinovich, V Joslyn, C Hogan, E AF Zapata, Francisco Kreinovich, Vladik Joslyn, Cliff Hogan, Emilie TI Orders on intervals over partially ordered sets: extending Allen's algebra and interval graph results SO SOFT COMPUTING LA English DT Article DE Intervals in posets; Allen's algebra; Interval orders; Weak order; Strong order; Interval graph AB To make a decision, we need to compare the values of quantities. In many practical situations, we know the values with interval uncertainty. In such situations, we need to compare intervals. Allen's algebra describes all possible relations between intervals on the real line which are generated by the ordering of endpoints; ordering relations between such intervals have also been well studied. In this paper, we extend this description to intervals in an arbitrary partially ordered set (poset). In particular, we explicitly describe ordering relations between intervals that generalize relation between points. As auxiliary results, we provide a logical interpretation of the relation between intervals, and extend the results about interval graphs to intervals over posets. C1 [Zapata, Francisco; Kreinovich, Vladik] Univ Texas El Paso, Dept Comp Sci, El Paso, TX 79968 USA. [Joslyn, Cliff] Pacific NW Natl Lab, Natl Secur Directorate, Seattle, WA 98109 USA. [Hogan, Emilie] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Kreinovich, V (reprint author), Univ Texas El Paso, Dept Comp Sci, 500 W Univ, El Paso, TX 79968 USA. EM fazg74@gmail.com; vladik@utep.edu; cjoslyn@pnnl.gov; Emilie.hogan@pnnl.gov FU CONACyT; National Science Foundation [HRD-0734825, DUE-0926721]; National Institutes of Health [1 T36 GM078000-01] FX This work was partly supported by a CONACyT scholarship, by the National Science Foundation grants HRD-0734825 and DUE-0926721, and by Grant 1 T36 GM078000-01 from the National Institutes of Health. The authors are thankful to all the participants of the Dagstuhl 2011 seminar Uncertainty Modeling and Analysis with Intervals: Foundations, Tools, Applications for valuable discussions, and to the anonymous referees for useful suggestions. NR 16 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-7643 J9 SOFT COMPUT JI Soft Comput. PD AUG PY 2013 VL 17 IS 8 SI SI BP 1379 EP 1391 DI 10.1007/s00500-013-1010-1 PG 13 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications SC Computer Science GA 181CC UT WOS:000321644600007 ER PT J AU Benseman, TM Koshelev, AE Kwok, WK Welp, U Kadowaki, K Cooper, JR Balakrishnan, G AF Benseman, T. M. Koshelev, A. E. Kwok, W-K Welp, U. Kadowaki, K. Cooper, J. R. Balakrishnan, G. TI The ac Josephson relation and inhomogeneous temperature distributions in large Bi2Sr2CaCu2O8+delta mesas for THz emission SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID SUPERCONDUCTORS AB We have studied the terahertz emission from a 720 x 60 x 1.2 mu m(3) mesa patterned from under-doped Bi2Sr2CaCu2O8+delta. This device has an S-shaped current-voltage characteristic due to self-heating, allowing us to compare its THz emission behaviours at up to three different bias currents for the same voltage. The THz frequency generated along the lowest current branch follows the expected Josephson relation for a stack of intrinsic Josephson junctions connected in series. However, in the high current regimes, THz emission occurs at a significantly lower frequency than expected. We show that this behaviour is consistent with strongly non-uniform self-heating of the mesa at high bias currents. C1 [Benseman, T. M.; Koshelev, A. E.; Kwok, W-K; Welp, U.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kadowaki, K.] Univ Tsukuba, Inst Mat Sci, Ibaraki 3058753, Japan. [Cooper, J. R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Balakrishnan, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. RP Benseman, TM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tbenseman@anl.gov RI Koshelev, Alexei/K-3971-2013; Balakrishnan, Geetha/P-5977-2016 OI Koshelev, Alexei/0000-0002-1167-5906; Balakrishnan, Geetha/0000-0002-5890-1149 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; EPSRC, UK [EP/I007210/1] FX Work at Argonne National Laboratory was funded by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357, which also funds Argonne's Center for Nanoscale Materials (CNM) where the patterning of the BSCCO mesas was performed. We thank R Divan and L Ocola for their help with sample fabrication. GB thanks EPSRC, UK for financial support through Grant EP/I007210/1. NR 29 TC 11 Z9 11 U1 0 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD AUG PY 2013 VL 26 IS 8 AR 085016 DI 10.1088/0953-2048/26/8/085016 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 181ZL UT WOS:000321709400022 ER PT J AU Clem, JR Malozemoff, AP AF Clem, John R. Malozemoff, A. P. TI Flux-transfer losses in helically wound superconducting power cables SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID HARD SUPERCONDUCTORS; CONDUCTORS; AC AB Minimization of ac losses is essential for economic operation of high-temperature superconductor (HTS) ac power cables. A favorable configuration for the phase conductor of such cables has two counter-wound layers of HTS tape-shaped wires lying next to each other and helically wound around a flexible cylindrical former. However, if magnetic materials such as magnetic substrates of the tapes lie between the two layers, or if the winding pitch angles are not opposite and essentially equal in magnitude to each other, current distributes unequally between the two layers. Then, if at some point in the ac cycle the current of either of the two layers exceeds its critical current, a large ac loss arises from the transfer of flux between the two layers. A detailed review of the formalism, and its application to the case of paramagnetic substrates including the calculation of this flux-transfer loss, is presented. C1 [Clem, John R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Clem, John R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Malozemoff, A. P.] AMSC, Devens, MA 01434 USA. RP Clem, JR (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM amalozemoff@amsc.com FU AMSC; Department of Energy-Basic Energy Sciences [DE-AC027CH11358]; Center for Emergent Superconductivity, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0298CH1088]; Prysmian Power Cables and Systems USA LLC FX JRC's work on this paper was supported primarily by AMSC but also in part at Ames Laboratory with support by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC027CH11358 and by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-AC0298CH1088; his work in establishing the framework for this theory was done as part of a research project funded by Pirelli Cable Corporation (now Prysmian Power Cables and Systems USA LLC). The authors thank G Snitchler, S Fleshler and W Carter for helpful conversations. NR 18 TC 1 Z9 1 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD AUG PY 2013 VL 26 IS 8 AR 085008 DI 10.1088/0953-2048/26/8/085008 PG 10 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 181ZL UT WOS:000321709400014 ER PT J AU Patlolla, A Baumann, P Xu, W Senanayake, SD Rodriguez, JA Frenkel, AI AF Patlolla, A. Baumann, P. Xu, W. Senanayake, S. D. Rodriguez, J. A. Frenkel, A. I. TI Characterization of Metal-Oxide Catalysts in Operando Conditions by Combining X-ray Absorption and Raman Spectroscopies in the Same Experiment SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 9th International Conference on Mechanisms of Catalytic Reactions (MCR) CY OCT 22-25, 2012 CL St. Petersburg, RUSSIA DE Multi-technique characterization; Operando studies; Metal Oxide catalysts; Oxygen reservoir ID WATER-GAS SHIFT; IN-SITU; ETHYL-ACETATE; CO OXIDATION; ACTIVE-SITE; COPPER; METHANOL; CELL; TITANIA; SILICA AB We have developed a new instrumental setup that combines simultaneous X-ray absorption spectroscopy, Raman spectroscopy and online mass spectrometry for operando studies of catalytic reactions. The importance of combining these techniques in the same experiment is demonstrated with the example of CO oxidation over nanoscale copper oxide catalysts supported on high surface area titanium oxide. X-ray absorption near edge structure (XANES) spectroscopy provides information on the charge state and local geometry of the catalytically active atoms. Extended X-ray absorption fine-structure (EXAFS) technique adds information about their local coordination environment. Raman spectroscopy adds sensitivity to crystallographic phase and long range order that both XANES and EXAFS are lacking. Together, these measurements enable simultaneous studies of the structural and electronic properties of all components present in metal-oxide catalysts. Coupled with online reactant and product analysis, this new setup allows one to elucidate the synergy between different components of a catalytic system and shed light on its catalytic activity and selectivity. C1 [Patlolla, A.; Baumann, P.; Frenkel, A. I.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA. [Baumann, P.] Univ Appl Sci Northwestern Switzerland, CH-4132 Muttenz, Switzerland. [Xu, W.; Senanayake, S. D.; Rodriguez, J. A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Frenkel, AI (reprint author), Yeshiva Univ, Dept Phys, 245 Lexington Ave, New York, NY 10016 USA. EM Anatoly.Frenkel@yu.edu RI Frenkel, Anatoly/D-3311-2011; Senanayake, Sanjaya/D-4769-2009 OI Frenkel, Anatoly/0000-0002-5451-1207; Senanayake, Sanjaya/0000-0003-3991-4232 FU U.S. DOE [DE-FG02-03ER15476]; Synchrotron Catalysis Consortium (U.S. DOE) [DE-FG02-05ER15688]; U.S. Department of Energy, Chemical Science Division [DE-AC02-98CH10886] FX The authors are grateful to L. Barrio for preparing the catalyst used in this work. AIF and AP acknowledge the support of this work by the U.S. DOE Grant No. DE-FG02-03ER15476. X19A beamline is supported, in part, by Synchrotron Catalysis Consortium (U.S. DOE Grant No. DE-FG02-05ER15688). The work carried out at the Chemistry Department of BNL was supported by the U.S. Department of Energy, Chemical Science Division (DE-AC02-98CH10886). NR 47 TC 9 Z9 9 U1 2 U2 64 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD AUG PY 2013 VL 56 IS 11 BP 896 EP 904 DI 10.1007/s11244-013-0053-y PG 9 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 181JP UT WOS:000321664200006 ER PT J AU Kwon, J Brandes, MC Phani, PS Pilchak, AP Gao, YF George, EP Pharr, GM Mills, MJ AF Kwon, J. Brandes, M. C. Phani, P. Sudharshan Pilchak, A. P. Gao, Y. F. George, E. P. Pharr, G. M. Mills, M. J. TI Characterization of deformation anisotropies in an alpha-Ti alloy by nanoindentation and electron microscopy SO ACTA MATERIALIA LA English DT Article DE Ti alloy; Nanoindentation; Transmission electron microscopy analysis; Dislocation structures ID SINGLE-CRYSTALS; ORIENTATION; BEHAVIOR AB The crystallographic dependence of the mechanical responses of an alpha-Ti-7 wt.% Al alloy was measured by nanoindentation using spherical and Berkovich indenters. Both elastic moduli and hardness responses of indents on the (0001), ((1) over bar 100) and ((1) over bar2 (1) over bar0) planes were quantified. The dislocation structures resulting from indentation were characterized by electron microscopy. While scanning electron microscopy techniques were used for the observation of surface slip structures, site-specific focused-ion-beam thin foil preparation and scanning transmission electron microscopy techniques were employed for the imaging of sub-surface dislocation structures. Elastic modulus, hardness and load at pop-in were found to vary with crystallographic orientation. Indentation-induced plasticity was found to occur by multiple slip/twin mechanisms and to be dependent on crystal orientation, although < a > slip on (0001) planes was found to be common to all orientations. The observed dislocation structures are rationalized on the basis of theoretical predictions based on the anisotropic elastic contact analysis and resolved shear stress calculations. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Kwon, J.; Brandes, M. C.; Mills, M. J.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43221 USA. [Phani, P. Sudharshan; Gao, Y. F.; George, E. P.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Pilchak, A. P.] AFRL RXLM, Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Gao, Y. F.; George, E. P.; Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kwon, J (reprint author), Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43221 USA. EM id1214@gmail.com RI Mills, Michael/I-6413-2013; George, Easo/L-5434-2014; Gao, Yanfei/F-9034-2010 OI Gao, Yanfei/0000-0003-2082-857X FU Center for Defect Physics, an Energy Frontier Research Center; US Department of Energy, Office of Basic Energy Sciences FX This work was sponsored by the Center for Defect Physics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences. NR 19 TC 29 Z9 29 U1 2 U2 71 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2013 VL 61 IS 13 BP 4743 EP 4756 DI 10.1016/j.actamat.2013.05.005 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 180NH UT WOS:000321601400005 ER PT J AU Li, W Zhang, ZY Bithell, EG Batsanov, AS Barton, PT Saines, PJ Jain, P Howard, CJ Carpenter, MA Cheetham, AK AF Li, Wei Zhang, Zhiying Bithell, Erica G. Batsanov, Andrei S. Barton, Phillip T. Saines, Paul J. Jain, Prashant Howard, Christopher J. Carpenter, Michael A. Cheetham, Anthony K. TI Ferroelasticity in a metal-organic framework perovskite; towards a new class of multiferroics SO ACTA MATERIALIA LA English DT Article DE Metal-organic framework; Perovskite; Ferroelasticity; Phase transition; Resonant ultrasound spectroscopy ID STRAIN/ORDER-PARAMETER RELATIONSHIPS; STRUCTURAL PHASE-TRANSITIONS; JAHN-TELLER TRANSITIONS; THERMODYNAMIC PROPERTIES; ELASTIC ANOMALIES; SYMMETRY RULES; FORMATE; TEMPERATURE; CALIBRATION; LAWSONITE AB A metal organic framework perovskite, [(CH2)(3)NH2][Mn(HCOO)(3)], exhibits a weakly first order ferroelastic phase transition at similar to 272 K, from orthorhombic Pnma to monoclinic P2(1)/n, and a further transition associated with antiferromagnetic ordering at similar to 8.5 K. The main structural changes, through the phase transition, are orientational ordering of the azetidium groups and associated changes in hydrogen bonding. In marked contrast to conventional improper ferroelastic oxide perovskites, the driving mechanism is associated with the X-point of the cubic Brillouin zone rather than being driven by R- and M-point octahedral tilting. The total ferroelastic shear strain of up to similar to 5% is substantially greater than found for typical oxide perovskites, and highlights the potential of the flexible framework to undergo large relaxations in response to local structural changes. Measurements of elastic and anelastic properties by resonant ultrasound spectroscopy show some of the characteristic features of ferroelastic materials. In particular, acoustic dissipation below the transition point can be understood in terms of mobility of twin walls under the influence of external stress with relaxation times on the order of similar to 10(-7) s. Elastic softening as the transition is approached from above is interpreted in terms of coupling between acoustic modes and dynamic local ordering of the azetidium groups. Subsequent stiffening with further temperature reduction is interpreted in terms of classical strain order parameter coupling at an improper ferroelastic transition which is close to being tricritical. By way of contrast, there are no overt changes in elastic or anelastic properties near 9 K, implying that any coupling of the antiferromagnetic order parameter with strain is weak or negligible. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Li, Wei; Bithell, Erica G.; Cheetham, Anthony K.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Zhang, Zhiying; Carpenter, Michael A.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Batsanov, Andrei S.] Univ Durham, Dept Chem, Durham DH1 3LE, England. [Barton, Phillip T.] Univ Calif Santa Barbara, MRL, Santa Barbara, CA 93106 USA. [Barton, Phillip T.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Saines, Paul J.] Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford OX1 3QR, England. [Jain, Prashant] Los Alamos Natl Lab, NHMFL PFF, Los Alamos, NM 87544 USA. [Jain, Prashant] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87544 USA. [Howard, Christopher J.] Univ Newcastle, Sch Engn, Callaghan, NSW 2308, Australia. RP Carpenter, MA (reprint author), Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England. EM mc43@esc.cam.ac.uk; akc30@cam.ac.uk RI Howard, Christopher/B-5138-2009; Jain, Prashant/C-8135-2009; Li, Wei/D-1101-2011; Barton, Phillip/H-3847-2011; Carpenter, Michael/D-4860-2015; OI Saines, Paul/0000-0002-4207-2112 FU ERC; NSF; University of Cambridge Institute of Continuing Education; EPSRC; U.S. Department of Energy through the LANL/LDRD Program; Natural Environment Research Council [NE/B505738/1, NE/F017081/1]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX W.L., E.G.B. and A.K.C. thank the ERC for funding. P.T.B. acknowledges support by the NSF Graduate Research Fellowship Program. E.G.B. also thanks the University of Cambridge Institute of Continuing Education for their support. P.J.S. thanks EPSRC for financial support. P.J. gratefully acknowledges the support of the U.S. Department of Energy through the LANL/LDRD Program for part of this work. The RUS facilities were supported by grants from the Natural Environment Research Council to MAC (Grant Numbers NE/B505738/1 and NE/F017081/1). Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. W.L. thanks Dr. A. Thirumuragan, Mr. Shuai Cao and Mr. Hamish H.M. Yeung for scientific discussions. We also acknowledge Dr. Vivien S. Zapf's help for heat capacity measurements. NR 55 TC 34 Z9 34 U1 15 U2 131 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD AUG PY 2013 VL 61 IS 13 BP 4928 EP 4938 DI 10.1016/j.actamat.2013.04.054 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 180NH UT WOS:000321601400022 ER PT J AU Mu, J Zhu, ZW Su, R Wang, YD Zhang, HF Ren, Y AF Mu, Juan Zhu, Zhengwang Su, Ru Wang, Yandong Zhang, Haifeng Ren, Yang TI In situ high-energy X-ray diffraction studies of deformation-induced phase transformation in Ti-based amorphous alloy composites containing ductile dendrites SO ACTA MATERIALIA LA English DT Article DE Amorphous alloy; Composite; Deformation; Martensitic phase transformation; X-ray synchrotron radiation ID METALLIC-GLASS COMPOSITES; SHAPE-MEMORY ALLOYS; MATRIX COMPOSITES; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; YOUNGS MODULUS; BEHAVIOR; MICROSTRUCTURE; PLASTICITY; SUPERELASTICITY AB The deformed-induced microstructure evolution and phase transformation behavior of Ti-based amorphous alloy composites (AACs) containing ductile dendrites in situ formed during solidification were investigated using ex situ transmission electron microscopy (TEM) and in situ high-energy X-ray diffraction (HE-XRD). In situ synchrotron-based HEARD experiments provide clear evidence on the deformation-induced phase transformation from beta to alpha '' martensite initiated already in the linear elastic stage of the macroscopic stress strain curve. Detailed analyses from the diffraction experiments show that the grains that were aligned with [0 0 1]beta along the loading direction (LD) were then easily transformed into alpha '' martensite, whereas the martensitic variants oriented with [1 0 0](alpha)(n), along LD were preferentially formed under compression. The current study provides quantitative information about changes in various microstresses between the crystal phase and the amorphous matrix during deformation. Enhancement of the macroscopic plasticity of the AACs was mainly attributed to the strain relaxation in the beta phase and to the formation of multiple shear bands in the amorphous matrix triggered by the deformation-induced phase transformation inside beta, knowledge of which greatly deepens understanding of the complex micromechanical behaviors in advanced AACs. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Mu, Juan; Wang, Yandong] Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China. [Zhu, Zhengwang; Zhang, Haifeng] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. [Su, Ru] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Wang, Yandong] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Wang, YD (reprint author), Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China. EM ydwang@mail.neu.edu.cn; hfzhang@imr.ac.cn RI wang, yandong/G-9404-2013; Zhu, Zheng-Wang/D-2799-2017 FU National Basic Research Program of China [2011CB606301]; National Natural Science Foundation of China [10976100, 51231002]; China Postdoctoral Science Foundation [2012M520638]; Fundamental Research Funds for the Central Universities [N090202001]; US Department of Energy, Office of Science, Office of Basic Energy Science [DE-ACO2-06CH11357] FX The authors gratefully acknowledge financial support from the National Basic Research Program of China (No. 2011CB606301), the National Natural Science Foundation of China (Nos. 10976100 and 51231002) and the China Postdoctoral Science Foundation (Grant No. 2012M520638). This work is also supported by the Fundamental Research Funds for the Central Universities (Grant No. N090202001). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-ACO2-06CH11357. NR 44 TC 16 Z9 16 U1 6 U2 110 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2013 VL 61 IS 13 BP 5008 EP 5017 DI 10.1016/j.actamat.2013.04.045 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 180NH UT WOS:000321601400029 ER PT J AU Gautam, A Ophus, C Lancon, F Radmilovic, V Dahmen, U AF Gautam, A. Ophus, C. Lancon, F. Radmilovic, V. Dahmen, U. TI Atomic structure characterization of an incommensurate grain boundary SO ACTA MATERIALIA LA English DT Article DE Interface; Grain boundaries; HRTEM; Atomistic simulations; Hypofriction ID TRANSMISSION ELECTRON-MICROSCOPY; IRRATIONAL INTERFACES; TILT BOUNDARY; GROUND-STATES; SEGREGATION; PERIODICITY; SIMULATION; FRICTION; ALUMINUM; COPPER AB The structure of an incommensurate 90 degrees (1 1 0) tilt grain boundary in gold was characterized by atomic resolution aberration-corrected electron microscopy and compared with atomistic simulations. Based on a periodic hyperspace description, the non-periodic structure can be described by the Aubry hull function, which plots atomic relaxations at the core of the boundary relative to an unrelaxed structure, folded into a single repeat unit of the neighboring grain. By measuring the hull functions from atomic resolution images, we were able to make quantitative comparisons of experimental observations with molecular statics simulations of this boundary. The results show good agreement in the pattern of atomic relaxations, replicate features of the hull functions that are characteristic of a boundary with superglide behavior and demonstrate the experimental feasibility of this approach for analysis of interfaces. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Gautam, A.; Ophus, C.; Dahmen, U.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Lancon, F.] CEA UJF, INAC, SP2M, Lab Simulat Atomist L Sim, F-38054 Grenoble, France. [Radmilovic, V.] Univ Belgrade, Fac Technol & Met, Nanotechnol & Funct Mat Ctr, Belgrade 11000, Serbia. RP Gautam, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM argautam@lbl.gov; udahmen@lbl.gov RI Lancon, Frederic/B-2577-2009; Foundry, Molecular/G-9968-2014; OI Lancon, Frederic/0000-0002-6367-4462; Ophus, Colin/0000-0003-2348-8558 FU US Department of Energy [DE-ACO20-5CH11231]; European FP7 [245916]; Ministry of Education and Science of Republic of Serbia [172054]; Structure Federative de Recherche CEA-UJF [4177]; French Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA) FX The National Center for Electron Microscopy, Lawrence Berkeley National Lab, is supported by the US Department of Energy under Contract # DE-ACO20-5CH11231. VRR also acknowledges support of Nanotechnology and Functional Materials Center, funded by the European FP7 project No. 245916 and of the Ministry of Education and Science of Republic of Serbia, under contract No 172054. FL acknowledges support by the Structure Federative de Recherche CEA-UJF (mac; # FED 4177) of the French Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA). NR 42 TC 3 Z9 3 U1 3 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD AUG PY 2013 VL 61 IS 13 BP 5078 EP 5086 DI 10.1016/j.actamat.2013.04.028 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 180NH UT WOS:000321601400035 ER PT J AU Yang, WQ Liu, HG Gao, M Bai, Y Zhao, JT Xu, XD Wu, B Zheng, WC Liu, GK Lin, Y AF Yang, Wei-Qing Liu, Hong-Gang Gao, Min Bai, Yang Zhao, Jiang-Tao Xu, Xiao-Dong Wu, Bo Zheng, Wen-Chen Liu, Guo-Kui Lin, Yuan TI Dual-luminescence-center single-component white-light Sr2V2O7:Eu3+ phosphors for white LEDs SO ACTA MATERIALIA LA English DT Article DE Dual-luminescence centers; Single-component phosphors; Complete diagonalization method; Sr2V2O7:Eu3+ ID SPIN-HAMILTONIAN PARAMETERS; ISOLATED VO4 TETRAHEDRA; CRYSTAL-STRUCTURE; EMITTING-DIODES; RED PHOSPHORS; THEORETICAL CALCULATIONS; STRUCTURAL-PROPERTIES; POWDER PHOSPHORS; PHOTOLUMINESCENCE; VANADATE AB Single-component white-light phosphors can overcome many of the problems associated with multiple emitting components, such as intrinsic color balance, device complications and high cost. Here, we demonstrate a novel type of single-component white-light Sr2-xV2-O-7:Eu-x phosphor with dual-luminescence centers (x = 0-0.24) for white light-emitting diodes (LEDs). Due to the charge transfer absorption (V5+O42- -> V4+O42-), the white light spectra they emit consist of both a broad photoluminescence band centered at about 518 nm, which would be from VO4 groups with approximate C-3v symmetry, and a sharp characteristic spectrum (D-5(0) -> F-7(2)) at about 611 nm from the doped Eu3+ ion at the Sr2+ sites in the Sr2V2O7 crystal. Moreover, to explain the broad emission spectra of these phosphors, a 10 x 10 energy matrix was successfully established based on an effective operator Hamiltonian, including free ion and crystal field interactions. For the first time, the broad emission spectra for VO4 groups with the approximate C-3v symmetry were calculated using a complete diagonalization (of energy matrix) method. The fitting and experimental values are close to each other, powerfully demonstrating the nature of this broad emission and the feasibility of using the complete diagonalization method to study the phosphors for white LEDs. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Yang, Wei-Qing; Gao, Min; Wu, Bo; Lin, Yuan] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China. [Yang, Wei-Qing; Bai, Yang; Zhao, Jiang-Tao; Xu, Xiao-Dong] Chengdu Univ Informat Technol, Dept Photoelect Technol, Chengdu 610225, Peoples R China. [Liu, Hong-Gang; Zheng, Wen-Chen] Sichuan Univ, Dept Mat Sci, Chengdu 610064, Peoples R China. [Liu, Guo-Kui] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Yang, WQ (reprint author), Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China. EM cdywq12@163.com; linyuan@uestc.e-du.cn RI Liu, Hong-Gang/F-7337-2011; Yang, Weiqing/F-6454-2015; lin, yuan/B-9955-2013; gao, min/F-4825-2015 FU National Basic Research Program of China (973 Program) [2011CB301705]; National Natural Science Foundation of China [51202023]; Postdoctoral National Natural Science Foundation of China [2012M511917]; Scientific Research Foundation of CUIT [KYTZ201208]; Guangdong Innovative Research Team Program [201001D0104713329] FX This work is supported by the National Basic Research Program of China (973 Program) under Grant No. 2011CB301705, National Natural Science Foundation of China (No. 51202023), the Postdoctoral National Natural Science Foundation of China (No. 2012M511917), the Scientific Research Foundation of CUIT (No. KYTZ201208) and the Guangdong Innovative Research Team Program (No. 201001D0104713329). NR 53 TC 21 Z9 21 U1 5 U2 63 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2013 VL 61 IS 13 BP 5096 EP 5104 DI 10.1016/j.actamat.2013.03.036 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 180NH UT WOS:000321601400037 ER PT J AU Middleton, RS Eccles, JK AF Middleton, Richard S. Eccles, Jordan K. TI The complex future of CO2 capture and storage: Variable electricity generation and fossil fuel power SO APPLIED ENERGY LA English DT Article DE Carbon price; Shale and natural gas; Hydraulic fracturing; Electricity generation; CO2 capture and storage (CCS); CO2 emissions ID INFRASTRUCTURE; OPTIMIZATION; DEPLOYMENT; TRANSPORT; CARBON; COST AB Fossil fuels are an integral part of the US energy portfolio, playing a prominent role for current and future domestic energy security. A sustainable, low-carbon future will require CO2 to be captured from major coal and natural gas power plants. However, fossil fuel electricity generation CO2 emissions are typically highly variable throughout each day with daily generation profiles varying greatly between plants. We demonstrate that understanding this variability is absolutely critical for setting a suitable carbon price as well as identifying if and how much CO2 a power plant will capture. For example, we show that a CO2 emissions price (or tax) of anywhere between $85/tCO(2) and $135/tCO(2) will be required to incentivize a gas power plant to manage all its capturable CO2; this range is solely due to differences in CO2 emissions profile. Further, we show that the setting a carbon price is very sensitive to system-wide costs including the CO2 value for enhanced oil recovery and, in particular, the costs for CO2 transport and storage. We also find that, even though coal-fired plants are more CO2-intensive and thus incur greater CO2 management costs, coal plants require a significantly lower carbon price ($15/tCO(2) lower) in order to encourage CO2 capture. We conclude that integrating fossil fuel power, particularly natural gas, into a large-scale CO2 capture and storage system is a complex problem that will require detailed research and modeling. Published by Elsevier Ltd. C1 [Middleton, Richard S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Eccles, Jordan K.] Duke Univ, Nicholas Sch Environm, Durham, NC 27705 USA. RP Middleton, RS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rsm@lanl.gov OI Middleton, Richard/0000-0002-8039-6601 FU US-China Advanced Coal Technology Consortium (under management of West Virginia University); US Department of Energy [DE-FE0001934] FX This work was in part funded by the US-China Advanced Coal Technology Consortium (under management of West Virginia University) and the US Department of Energy under award number DE-FE0001934. NR 26 TC 40 Z9 40 U1 5 U2 68 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD AUG PY 2013 VL 108 BP 66 EP 73 DI 10.1016/j.apenergy.2013.03.065 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 165LH UT WOS:000320484900007 ER PT J AU Barreto, S Clausen, CH Perrault, CM Fletcher, DA Lacroix, D AF Barreto, Sara Clausen, Casper H. Perrault, Cecile M. Fletcher, Daniel A. Lacroix, Damien TI A multi-structural single cell model of force-induced interactions of cytoskeletal components SO BIOMATERIALS LA English DT Article DE Cytoskeleton; Finite element modeling; Actin cortex; Actin bundles; Microtubules; AFM (atomic force microscopy) ID FINITE-ELEMENT MODEL; SMOOTH-MUSCLE-CELLS; MECHANICAL-PROPERTIES; LIVING CELLS; ENDOTHELIAL-CELLS; INTERMEDIATE-FILAMENTS; TENSILE PROPERTIES; ELASTIC-MODULUS; ADHERENT CELLS; MICROTUBULES AB Several computational models based on experimental techniques and theories have been proposed to describe cytoskeleton (CSK) mechanics. Tensegrity is a prominent model for force generation, but it cannot predict mechanics of individual CSI( components, nor explain the discrepancies from the different single cell stimulating techniques studies combined with cytoskeleton-disruptors. A new numerical concept that defines a multi-structural 3D finite element (FE) model of a single-adherent cell is proposed to investigate the biophysical and biochemical differences of the mechanical role of each cytoskeleton component under loading. The model includes prestressed actin bundles and microtubule within cytoplasm and nucleus surrounded by the actin cortex. We performed numerical simulations of atomic force microscopy (AFM) experiments by subjecting the cell model to compressive loads. The numerical role of the CSK components was corroborated with AFM force measurements on U2OS-osteosarcoma cells and NIH-3T3 fibroblasts exposed to different cytoskeleton-disrupting drugs. Computational simulation showed that actin cortex and microtubules are the major components targeted in resisting compression. This is a new numerical tool that explains the specific role of the cortex and overcomes the difficulty of isolating this component from other networks in vitro. This illustrates that a combination of cytoskeletal structures with their own properties is necessary for a complete description of cellular mechanics. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Barreto, Sara; Perrault, Cecile M.; Lacroix, Damien] Univ Sheffield, Dept Mech Engn, Sheffield S1 3JD, S Yorkshire, England. [Barreto, Sara; Perrault, Cecile M.; Lacroix, Damien] Baldiri Reixac, Inst Bioengn Catalonia, Barcelona 08028, Spain. [Clausen, Casper H.; Fletcher, Daniel A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Barreto, Sara; Clausen, Casper H.; Fletcher, Daniel A.] Univ Calif Berkeley, Bioengn Dept, Berkeley, CA 94720 USA. [Clausen, Casper H.; Fletcher, Daniel A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Lacroix, D (reprint author), Univ Sheffield, Dept Mech Engn, Mappin St, Sheffield S1 3JD, S Yorkshire, England. EM d.lacroix@sheffield.ac.uk RI Lacroix, Damien/G-3230-2010; Perrault, Cecile/A-2982-2011 OI Lacroix, Damien/0000-0002-5482-6006; Perrault, Cecile/0000-0003-2230-6994 FU Fundacao para a Ciencia e Tecnologia (FCT) of Portuguese Ministry of Science and Technology [SFRH/BD/47264/2008]; European Research Council (ERC) [258321]; Villum Kann Rasmussen foundation [495289] FX This study was supported by Fundacao para a Ciencia e Tecnologia (FCT) of Portuguese Ministry of Science and Technology (SFRH/BD/47264/2008), the European Research Council (ERC grant agreement No. 258321) and Villum Kann Rasmussen foundation (Grant no. 495289). We thank to W. P. Ng and Dr. K. Webster for helpful suggestions and discussion, and to Dr. H. Khayyeri for critical reading of the manuscript. NR 48 TC 14 Z9 15 U1 3 U2 85 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 J9 BIOMATERIALS JI Biomaterials PD AUG PY 2013 VL 34 IS 26 BP 6119 EP 6126 DI 10.1016/j.biomaterials.2013.04.022 PG 8 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 173KY UT WOS:000321079600003 PM 23702149 ER PT J AU Ren, F Mattus, CH Wang, JJA DiPaolo, BP AF Ren, Fei Mattus, Catherine H. Wang, John Jy-An DiPaolo, Beverly P. TI Effect of projectile impact and penetration on the phase composition and microstructure of high performance concretes SO CEMENT & CONCRETE COMPOSITES LA English DT Article DE High performance concrete; Microstructure; SEM; X-ray diffraction ID REACTIVE POWDER CONCRETE; HIGH-STRENGTH CONCRETE; MECHANICAL-PROPERTIES; MINERAL ADMIXTURES; FIBER; POLYPROPYLENE; RESISTANCE AB As a result of increased concerns regarding public safety in recent years, the impact and penetration resistance of infrastructure has become an emerging research focus in the cement and concrete industry. Ultra-high performance concretes (UHPCs) with fiber reinforcement usually possess compressive strengths greater than 200 MPa and are promising candidates for penetration-resistant building materials. In the current project, two UHPC materials, ERDC-M (a modified composition developed at U.S. Army Engineer Research and Development Center) and Ductal (R), were subjected to projectile penetration testing. The microstructural evolution due to projectile impact and penetration was examined via scanning electron microscopy and X-ray diffraction. Possible phase changes were observed in the affected material volume, which can be interpreted as resulting from the high temperature and high pressure induced by the impact and penetration. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Ren, Fei; Wang, John Jy-An] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Mattus, Catherine H.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [DiPaolo, Beverly P.] USA, Corps Engineers, Engn Res & Dev Ctr, Vicksburg, MS 39180 USA. RP Wang, JJA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM wangja@ornl.gov RI Mattus, Catherine/E-5591-2017; OI Mattus, Catherine/0000-0002-4574-1588; Wang, Jy-An/0000-0003-2402-3832 FU Oak Ridge National Laboratory [DE-AC05-00OR22725]; UT-Battelle, LLC; Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection and Disaster Management Division; Geotechnical and Structures Laboratory, ERDC FX This research was carried out at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle, LLC. This work was sponsored by the Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection and Disaster Management Division: Dr. John Fortune and Ms. Mila Kennett, Program Managers. The authors wish to extend our appreciation to the Concrete and Materials Branch - ERDC personnel for their diligent efforts in specimen preparation and quasi-static, unconfined compression testing and to Drs. William D. Reinhart and Tom F. Thornhill at the Sandia National Laboratories for the impact and penetration tested specimen panels. Permission to publish was granted by the Director, Geotechnical and Structures Laboratory, ERDC. Approved for public release; distribution is unlimited. NR 23 TC 2 Z9 2 U1 0 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0958-9465 J9 CEMENT CONCRETE COMP JI Cem. Concr. Compos. PD AUG PY 2013 VL 41 BP 1 EP 8 DI 10.1016/j.cemconcomp.2013.04.007 PG 8 WC Construction & Building Technology; Materials Science, Composites SC Construction & Building Technology; Materials Science GA 177XM UT WOS:000321408700001 ER PT J AU Pau, GSH Zhang, YQ Finsterle, S AF Pau, George Shu Heng Zhang, Yingqi Finsterle, Stefan TI Reduced order models for many-query subsurface flow applications SO COMPUTATIONAL GEOSCIENCES LA English DT Article DE Surrogate models; Gaussian process regression; Hydrogeology; Uncertainty quantification ID PARTIAL-DIFFERENTIAL-EQUATIONS; GLOBAL SENSITIVITY-ANALYSIS; APPROXIMATION CONCEPTS; ENGINEERING DESIGN; GAUSSIAN-PROCESSES; INVERSE PROBLEMS; OUTPUT; SIMULATION; REGRESSION; PARAMETER AB Inverse modeling involves repeated evaluations of forward models, which can be computationally prohibitive for large numerical models. To reduce the overall computational burden of these simulations, we study the use of reduced order models (ROMs) as numerical surrogates. These ROMs usually involve using solutions to high-fidelity models at different sample points within the parameter space to construct an approximate solution at any point within the parameter space. This paper examines an input-output relational approach based on Gaussian process regression (GPR). We show that these ROMs are more accurate than the linear lookup tables with the same number of high-fidelity simulations. We describe an adaptive sampling procedure that automatically selects optimal sample points and demonstrate the use of GPR to a smooth response surface and a response surface with abrupt changes. We also describe how GPR can be used to construct ROMs for models with heterogeneous material properties. Finally, we demonstrate how the use of a GPR-based ROM in two many-query applications-uncertainty quantification and global sensitivity analysis-significantly reduces the total computational effort. C1 [Pau, George Shu Heng; Zhang, Yingqi; Finsterle, Stefan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Pau, GSH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,Mail Stop 74-0120, Berkeley, CA 94720 USA. EM gpau@lbl.gov; yqzhang@lbl.gov; safinsterle@lbl.gov RI Finsterle, Stefan/A-8360-2009; Zhang, Yingqi/D-1203-2015; Pau, George Shu Heng/F-2363-2015 OI Finsterle, Stefan/0000-0002-4446-9906; Pau, George Shu Heng/0000-0002-9198-6164 FU Office of Sequestration, Hydrogen, and Clean Coal Fuels, of the U.S. Department of Energy [DE-AC02-05CH11231, TOUGH2] FX This work was conducted as part of the Berkeley Lab's National Risk Assessment Partnership effort, supported by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231 and TOUGH2 development grant. NR 46 TC 6 Z9 6 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1420-0597 J9 COMPUTAT GEOSCI JI Comput. Geosci. PD AUG PY 2013 VL 17 IS 4 BP 705 EP 721 DI 10.1007/s10596-013-9349-z PG 17 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 180ZE UT WOS:000321637000007 ER PT J AU Buss, HL Brantley, SL Scatena, FN Bazilievskaya, EA Blum, A Schulz, M Jimenez, R White, AF Rother, G Cole, D AF Buss, H. L. Brantley, S. L. Scatena, F. N. Bazilievskaya, E. A. Blum, A. Schulz, M. Jimenez, R. White, A. F. Rother, G. Cole, D. TI Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico SO EARTH SURFACE PROCESSES AND LANDFORMS LA English DT Article DE critical zone; drilling; corestones; regolith; weathering ID WEATHERING RIND FORMATION; ANGLE NEUTRON-SCATTERING; URANIUM-SERIES ISOTOPES; LONG-TERM; RATES; MOUNTAINS; SOIL; CHEMISTRY; EVOLUTION; ROCKS AB Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world's oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g. soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to similar to 1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared with the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Buss, H. L.] Univ Bristol, Sch Earth Sci, Bristol BS8 1RJ, Avon, England. [Brantley, S. L.; Bazilievskaya, E. A.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Scatena, F. N.; Jimenez, R.] Univ Penn, Dept Earth & Environm Sci, Philadelphia, PA 19104 USA. [Blum, A.] US Geol Survey, Boulder, CO 80303 USA. [Schulz, M.; White, A. F.] US Geol Survey, Menlo Pk, CA 94025 USA. [Rother, G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Cole, D.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. RP Buss, HL (reprint author), Univ Bristol, Sch Earth Sci, Wills Mem Bldg, Bristol BS8 1RJ, Avon, England. EM h.buss@bristol.ac.uk RI Rother, Gernot/B-7281-2008; Buss, Heather/M-1693-2013; OI Rother, Gernot/0000-0003-4921-6294; Schulz, Marjorie/0000-0001-5597-6447 FU US Geological Survey's Global Change Program; National Research Program (NRP); Water Energy and Biogeochemical Budgets Program (WEBB); NSF-Luquillo Critical Zone Observatory [NSF EAR-0722476]; National Science Foundation [DMR-0944772]; OBES [DE-FG02-05ER15675]; Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (OBES), US Department of Energy (DOE) FX We acknowledge funding and support from the US Geological Survey's Global Change Program, the National Research Program (NRP), and the Water Energy and Biogeochemical Budgets Program (WEBB) as well as from the NSF-Luquillo Critical Zone Observatory (NSF EAR-0722476). We acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providing the neutron research facilities used in this work. Neutron scattering measurements utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772 and SLB acknowledges DOE funding from OBES (DE-FG02-05ER15675) for the neutron scattering work. We also thank Peter Sak from Dickinson College for providing the hand-held drill; Andy Kurtz for helping us drill; the U.S. Forest Service for site access; and Carole Johnson, Pedro Diaz, Jesus Rodriguez, Sigfredo Torres-Gonzalez and Manuel Rosario-Torres from the US Geological Survey. This manuscript was much improved by the editorial work of Stuart N. Lane and the comments of two anonymous reviewers and Sheila Murphy of the USGS. DRC was supported by the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. GR was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (OBES), US Department of Energy (DOE). We are grateful to David Mildner for the help with USANS measurements. NR 64 TC 19 Z9 19 U1 8 U2 85 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0197-9337 J9 EARTH SURF PROC LAND JI Earth Surf. Process. Landf. PD AUG PY 2013 VL 38 IS 10 BP 1170 EP 1186 DI 10.1002/esp.3409 PG 17 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 184CR UT WOS:000321864700009 ER PT J AU Bentley, LP Stegen, JC Savage, VM Smith, DD von Allmen, EI Sperry, JS Reich, PB Enquist, BJ AF Bentley, Lisa Patrick Stegen, James C. Savage, Van M. Smith, Duncan D. von Allmen, Erica I. Sperry, John S. Reich, Peter B. Enquist, Brian J. TI An empirical assessment of tree branching networks and implications for plant allometric scaling models SO ECOLOGY LETTERS LA English DT Article DE Allometry; hierarchical Bayesian; metabolic scaling theory; network topology; plant traits; WBE model ID GENERAL QUANTITATIVE THEORY; SPECIES-LEVEL MODEL; MECHANICAL DESIGN; FOREST STRUCTURE; CORNERS RULES; GROWTH; SIZE; DYNAMICS; PATTERNS; CARBON AB Several theories predict whole-tree function on the basis of allometric scaling relationships assumed to emerge from traits of branching networks. To test this key assumption, and more generally, to explore patterns of external architecture within and across trees, we measure branch traits (radii/lengths) and calculate scaling exponents from five functionally divergent species. Consistent with leading theories, including metabolic scaling theory, branching is area preserving and statistically self-similar within trees. However, differences among scaling exponents calculated at node- and whole-tree levels challenge the assumption of an optimised, symmetrically branching tree. Furthermore, scaling exponents estimated for branch length change across branching orders, and exponents for scaling metabolic rate with plant size (or number of terminal tips) significantly differ from theoretical predictions. These findings, along with variability in the scaling of branch radii being less than for branch lengths, suggest extending current scaling theories to include asymmetrical branching and differential selective pressures in plant architectures. C1 [Bentley, Lisa Patrick; Enquist, Brian J.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Stegen, James C.] Pacif NW Natl Lab, Fundamental & Computat Sci, Biol Sci, Richland, WA 99352 USA. [Savage, Van M.] Univ Calif Los Angeles, Dept Biomathemat, David Geffen Sch Med, Los Angeles, CA 90095 USA. [Savage, Van M.; Enquist, Brian J.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Savage, Van M.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. [Smith, Duncan D.; von Allmen, Erica I.; Sperry, John S.] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA. [Reich, Peter B.] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA. [Reich, Peter B.] Univ Western Sydney, Hawkesbury Inst Environm, Locked Bag 1797, Penrith, NSW 2751, Australia. RP Bentley, LP (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. EM lpatrick@email.arizona.edu RI Stegen, James/Q-3078-2016; OI Stegen, James/0000-0001-9135-7424; Smith, Duncan/0000-0002-7294-3812; Enquist, Brian/0000-0002-6124-7096 FU NSF ATB [0742800]; NSF Postdoctoral Fellowships in Bioinformatics [DBI-0906005, DBI-0905868]; NSF-IBN-0743148 FX We are grateful to William Driscoll, Ashley Wiede, Philippe Gregoire, Vanessa Buzzard, Brad Boyle, Catherine Hulshof, Charles Price, Nathan Swenson, Scott Stark, Evan Sommer, Henry Adams, Maggie Heard, Travis Huxman and B2Earthscience for help with data collection. We appreciate insightful comments of five anonymous referees. We acknowledge hospitality and accommodations of the Santa Fe Institute and Biosphere 2. VMS and JSS acknowledge ARC-NZ Research Network for Vegetation Function (working group 2, vascular design: comparison of theory strands) for their meeting and for initiating their collaboration. L.P.B., V.M.S., B.J.E., D.D.S., E.I.V., J.S.S. and P.B.R. were supported by an NSF ATB Award (0742800). J.C.S. and L.P.B. were supported by NSF Postdoctoral Fellowships in Bioinformatics (DBI-0906005, DBI-0905868). J.S.S. and D.D.S. and E.I.V. were supported by NSF-IBN-0743148. NR 51 TC 24 Z9 25 U1 12 U2 83 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1461-023X J9 ECOL LETT JI Ecol. Lett. PD AUG PY 2013 VL 16 IS 8 BP 1069 EP 1078 DI 10.1111/ele.12127 PG 10 WC Ecology SC Environmental Sciences & Ecology GA 181VA UT WOS:000321696300014 PM 23800188 ER PT J AU Barbose, GL Goldman, CA Hoffman, IM Billingsley, M AF Barbose, Galen L. Goldman, Charles A. Hoffman, Ian M. Billingsley, Megan TI The future of utility customer-funded energy efficiency programs in the USA: projected spending and savings to 2025 SO ENERGY EFFICIENCY LA English DT Article DE Energy efficiency programs; Utility; Ratepayer; Targets; Natural gas; Energy efficiency resource standards ID EXPERIENCE AB We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the USA, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments). Key findings from the analysis are as follows: By 2025, spending on electric and gas efficiency programs (excluding load management programs) is projected to double from 2010 levels to $9.5 billion in the medium case, compared to $15.6 billion in the high case and $6.5 billion in the low case. Compliance with statewide legislative or regulatory savings or spending targets is the primary driver for the increase in electric program spending through 2025, though a significant share of the increase is also driven by utility DSM planning activity and integrated resource planning. Our analysis suggests that electric efficiency program spending may approach a more even geographic distribution over time in terms of absolute dollars spent, with the Northeastern and Western states declining from over 70 % of total USA spending in 2010 to slightly more than 50 % in 2025, and the South and Midwest splitting the remainder roughly evenly. Under our medium case scenario, annual incremental savings from customer-funded electric energy efficiency programs increase from 18.4 TWh in 2010 in the USA (which is about 0.5 % of electric utility retail sales) to 28.8 TWh in 2025 (0.8 % of retail sales). These savings would offset the majority of load growth in the Energy Information Administration's most recent reference case forecast, given specific assumptions about the extent to which future energy efficiency program savings are captured in that forecast. The pathway that customer-funded efficiency programs ultimately take will depend on a series of key challenges and uncertainties associated both with the broader market and policy context and with the implementation and regulatory oversight of the energy efficiency programs themselves. C1 [Barbose, Galen L.; Goldman, Charles A.; Hoffman, Ian M.; Billingsley, Megan] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Barbose, GL (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM glbarbose@lbl.gov FU National Electricity Division of the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability under Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The work described in this study was funded by the National Electricity Division of the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability under Lawrence Berkeley National Laboratory Contract No. DE-AC02-05CH11231. NR 23 TC 0 Z9 0 U1 1 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD AUG PY 2013 VL 6 IS 3 BP 475 EP 493 DI 10.1007/s12053-012-9187-1 PG 19 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 178HL UT WOS:000321437000004 ER PT J AU Park, WY Phadke, A Shah, N AF Park, Won Young Phadke, Amol Shah, Nihar TI Efficiency improvement opportunities for personal computer monitors: implications for market transformation programs SO ENERGY EFFICIENCY LA English DT Article DE PC monitor energy efficiency; Cost-effectiveness; Market transformation AB Displays account for a significant portion of electricity consumed in personal computer (PC) use, and global PC monitor shipments are expected to continue to increase. We assess the market trends in the energy efficiency of PC monitors that are likely to occur without any additional policy intervention and estimate that PC monitor efficiency will likely improve by over 40 % by 2015 with saving potential of 4.5 TWh per year in 2015, compared to today's technology. We discuss various energy-efficiency improvement options and evaluate the cost-effectiveness of three of them, at least one of which improves efficiency by at least 20 % cost effectively beyond the ongoing market trends. We assess the potential for further improving efficiency taking into account the recent development of universal serial bus-powered liquid crystal display monitors and find that the current technology available and deployed in them has the potential to deeply and cost effectively reduce energy consumption by as much as 50 %. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to further capture global energy saving potential from PC monitors which we estimate to be 9.2 TWh per year in 2015. C1 [Park, Won Young; Phadke, Amol; Shah, Nihar] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Park, WY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM WYPark@lbl.gov FU Bureau of Oceans and International Environmental and Scientific Affairs, US Department of State; Super-efficient Equipment and Appliance Deployment (SEAD) initiative through the US Department of Energy [DE-AC02-05CH11231]; [LBNL5533-E] FX We wish to thank the reviewers of this article as well as the report, "Efficiency Improvement Opportunities for Personal Computer Monitors: Implications for Market Transformation Programs" (LBNL5533-E), on which this paper is based. This work was funded by the Bureau of Oceans and International Environmental and Scientific Affairs, US Department of State, and administered by the US Department of Energy in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative through the US Department of Energy under Contract No. DE-AC02-05CH11231. Any errors or omissions are the authors' own. NR 45 TC 2 Z9 2 U1 1 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD AUG PY 2013 VL 6 IS 3 BP 545 EP 569 DI 10.1007/s12053-013-9191-0 PG 25 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 178HL UT WOS:000321437000008 ER PT J AU McNeil, MA Letschert, VE du Can, SD Ke, J AF McNeil, Michael A. Letschert, Virginie E. du Can, Stephane de la Rue Ke, Jing TI Bottom-Up Energy Analysis System (BUENAS)-an international appliance efficiency policy tool (vol 6, pg 191, 2013) SO ENERGY EFFICIENCY LA English DT Correction C1 [McNeil, Michael A.; Letschert, Virginie E.; du Can, Stephane de la Rue; Ke, Jing] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP McNeil, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MAMcNeil@lbl.gov; VLetschert@lbl.gov; SADelaRueduCan@lbl.gov; JKe@lbl.gov NR 1 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD AUG PY 2013 VL 6 IS 3 BP 617 EP 617 DI 10.1007/s12053-013-9213-y PG 1 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 178HL UT WOS:000321437000013 ER PT J AU Zhang, XS Beeson, P Link, R Manowitz, D Izaurralde, RC Sadeghi, A Thomson, AM Sahajpal, R Srinivasan, R Arnold, JG AF Zhang, Xuesong Beeson, Peter Link, Robert Manowitz, David Izaurralde, Roberto C. Sadeghi, Ali Thomson, Allison M. Sahajpal, Ritvik Srinivasan, Raghavan Arnold, Jeffrey G. TI Efficient multi-objective calibration of a computationally intensive hydrologic model with parallel computing software in Python SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Parallel processing; Evolutionary multi-objective optimization; High performance computer; Soil and water assessment tool; Parameter calibration ID EFFECTS ASSESSMENT PROJECT; WATER ASSESSMENT-TOOL; SWAT MODEL; AUTOMATIC CALIBRATION; GLOBAL OPTIMIZATION; ALGORITHM; CONSERVATION; SIMULATIONS; SOIL; STRATEGIES AB With enhanced data availability, distributed watershed models for large areas with high spatial and temporal resolution are increasingly used to understand water budgets and examine effects of human activities and climate change/variability on water resources. Developing parallel computing software to improve calibration efficiency has received growing attention of the watershed modeling community as it is very time demanding to run iteratively complex models for calibration. In this research, we introduce a Python-based parallel computing package, PP-SWAT, for efficient calibration of the Soil and Water Assessment Tool (SWAT) model. This software employs Python, MPI for Python (mpi4py) and OpenMPI to parallelize A Multi-method Genetically Adaptive Multi-objective Optimization Algorithm (AMALGAM), allowing for simultaneously addressing multiple objectives in calibrating SWAT. Test results on a Linux computer cluster showed that PP-SWAT can achieve a speedup of 45-109 depending on model complexity. Increasing the processor count beyond a certain threshold does not necessarily improve efficiency, because intensified resource competition may result in an I/O bottleneck. The efficiency achieved by PP-SWAT also makes it practical to implement multiple parameter adjustment schemes operating at different scales in affordable time, which helps provide SWAT users with a wider range of options of parameter sets to choose from for model(s) selection. PP-SWAT was not designed to address errors associated with other sources (e.g. model structure) and cautious supervision of its power should be exercised in order to attain physically meaningful calibration results. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Zhang, Xuesong; Link, Robert; Manowitz, David; Izaurralde, Roberto C.; Thomson, Allison M.] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Beeson, Peter; Sadeghi, Ali] ARS, USDA, Beltsville, MD 20705 USA. [Sahajpal, Ritvik] Univ Maryland, Dept Geog Sci, College Pk, MD 20740 USA. [Srinivasan, Raghavan] Texas A&M Univ, Spatial Sci Lab, Dept Ecosyst Sci & Management, College Stn, TX 77845 USA. [Arnold, Jeffrey G.] USDA ARS, Grassland Soil & Water Res Lab, Temple, TX 76502 USA. RP Zhang, XS (reprint author), Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM xuesongzhang2004@gmail.com RI zhang, xuesong/B-7907-2009; Thomson, Allison/B-1254-2010; sahajpal, ritvik/N-4565-2013; Srinivasan, R/D-3937-2009 OI sahajpal, ritvik/0000-0002-6418-289X; FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494, KP1601050, DOE EERE OBP 20469-19145]; NASA [NNH08ZDA001N, NNH12AU03I] FX We sincerely appreciate the valuable comments provided by the four anonymous reviewers, which substantially improved the quality of this paper. This work was partially funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494, DOE BER Office of Science KP1601050, DOE EERE OBP 20469-19145), and NASA (NNH08ZDA001N and NNH12AU03I). NR 58 TC 22 Z9 22 U1 4 U2 55 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD AUG PY 2013 VL 46 BP 208 EP 218 DI 10.1016/j.envsoft.2013.03.013 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 173OJ UT WOS:000321088500019 ER PT J AU Goodall, JL Saint, KD Ercan, MB Briley, LJ Murphy, S You, HH DeLuca, C Rood, RB AF Goodall, Jonathan L. Saint, Kathleen D. Ercan, Mehmet B. Briley, Laura J. Murphy, Sylvia You, Haihang DeLuca, Cecelia Rood, Richard B. TI Coupling climate and hydrological models: Interoperability through Web Services SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Modeling frameworks; Service-oriented architectures; Hydrology; Climate; Modeling ID INTERFACE; FRAMEWORK; WEATHER; FUTURE; OPENMI; SYSTEM; SWAT AB Understanding regional-scale water resource systems requires understanding coupled hydrologic and climate interactions. The traditional approach in the hydrologic sciences and engineering fields has been to either treat the atmosphere as a forcing condition on the hydrologic model, or to adopt a specific hydrologic model design in order to be interoperable with a climate model. We propose here a different approach that follows a service-oriented architecture and uses standard interfaces and tools: the Earth System Modeling Framework (ESMF) from the weather and climate community and the Open Modeling Interface (OpenMI) from the hydrologic community. A novel technical challenge of this work is that the climate model runs on a high performance computer and the hydrologic model runs on a personal computer. In order to complete a two-way coupling, issues with security and job scheduling had to be overcome. The resulting application demonstrates interoperability across disciplinary boundaries and has the potential to address emerging questions about climate impacts on local water resource systems. The approach also has the potential to be adapted for other climate impacts applications that involve different communities, multiple frameworks, and models running on different computing platforms. We present along with the results of our coupled modeling system a scaling analysis that indicates how the system will behave as geographic extents and model resolutions are changed to address regional-scale water resources management problems. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Goodall, Jonathan L.; Ercan, Mehmet B.] Univ S Carolina, Dept Civil & Environm Engn, Columbia, SC 29208 USA. [Saint, Kathleen D.] SGI, Cape Coral, FL 33909 USA. [Briley, Laura J.; Rood, Richard B.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Murphy, Sylvia; DeLuca, Cecelia] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [You, Haihang] Univ Tennessee, Natl Inst Computat Sci, Oak Ridge, TN 37831 USA. [You, Haihang] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Goodall, JL (reprint author), Univ S Carolina, Dept Civil & Environm Engn, 300 Main St, Columbia, SC 29208 USA. EM goodall@cec.sc.edu; ksaint@sgi.com; ercanm@email.sc.edu; auraell@umich.edu; sylvia.murphy@noaa.gov; hyou@utk.edu; cecelia.deluca@noaa.gov; rbrood@umich.edu RI Goodall, Jonathan/B-3663-2009; Ercan, Mehmet /E-9141-2010; Rood, Richard/C-5611-2008 OI Goodall, Jonathan/0000-0002-1112-4522; Rood, Richard/0000-0002-2310-4262 FU NOAA Global Interoperability Program; NOAA Environmental Software Infrastructure and Interoperability Group; National Science Foundation [OCI-1053575] FX This work was supported by the NOAA Global Interoperability Program and the NOAA Environmental Software Infrastructure and Interoperability Group. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. NR 32 TC 15 Z9 16 U1 3 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD AUG PY 2013 VL 46 BP 250 EP 259 DI 10.1016/j.envsoft.2013.03.019 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 173OJ UT WOS:000321088500023 ER PT J AU Preston, BL AF Preston, Benjamin L. TI Local path dependence of US socioeconomic exposure to climate extremes and the vulnerability commitment SO GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS LA English DT Article DE Vulnerability; Adaptation; Socioeconomic development; Path dependence; Natural hazards; Climate change ID UNITED-STATES; ADAPTIVE CAPACITY; ENVIRONMENTAL HAZARDS; ECONOMIC-IMPACTS; WEATHER EXTREMES; ADAPTATION; DAMAGE; INDICATORS; LOSSES; MANAGEMENT AB Despite improvements in disaster risk management in the United States, a trend toward increasing economic losses from extreme weather events has been observed. This trend has been attributed to growth in socioeconomic exposure to extremes, a process characterized by strong path dependence. To understand the influence of path dependence on past and future losses, an index of potential socioeconomic exposure was developed at the U.S. county level based upon population size and inflation-adjusted wealth proxies. Since 1960, exposure has increased preferentially in the U.S. Southeast (particularly coastal and urban counties) and Southwest relative to the Great Plains and Northeast. Projected changes in exposure from 2009 to 2054 based upon scenarios of future demographic and economic change suggest a long-term commitment to increasing, but spatially heterogeneous, exposure to extremes, independent of climate change. The implications of this path dependence are examined in the context of several natural hazards. Using methods previously reported in the literature, annualized county-level losses from 1960 to 2008 for five climate-related natural hazards were normalized to 2009 values and then scaled based upon projected changes in exposure and two different estimates of the exposure elasticity of losses. Results indicate that losses from extreme events will grow by a factor of 1.3-1.7 and 1.8-3.9 by 2025 and 2050, respectively, with the exposure elasticity representing a major source of uncertainty. The implications of increasing physical vulnerability to extreme weather events for investments in disaster risk management are ultimately contingent upon the normative values of societal actors. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Preston, Benjamin L.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Preston, Benjamin L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Preston, BL (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Bldg 2040,Room E239,MS-6301,POB 2008,1 Bethel Val, Oak Ridge, TN 37831 USA. EM prestonbl@ornl.gov RI Preston, Benjamin/B-9001-2012; Brooks, Katya/J-4975-2014 OI Preston, Benjamin/0000-0002-7966-2386; FU Oak Ridge National Laboratory's Laboratory Directed Research and Development Program; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored through Oak Ridge National Laboratory's Laboratory Directed Research and Development Program. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The author also acknowledges the helpful comments of Esther Parish, Anthony King, and two anonymous reviewers. NR 102 TC 15 Z9 16 U1 2 U2 50 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-3780 EI 1872-9495 J9 GLOBAL ENVIRON CHANG JI Glob. Environ. Change-Human Policy Dimens. PD AUG PY 2013 VL 23 IS 4 BP 719 EP 732 DI 10.1016/j.gloenvcha.2013.02.009 PG 14 WC Environmental Sciences; Environmental Studies; Geography SC Environmental Sciences & Ecology; Geography GA 174LS UT WOS:000321157600003 ER PT J AU Singh, D Soykal, II Tian, J von Deak, D King, J Miller, JT Ozkan, US AF Singh, Deepika Soykal, I. Ilgaz Tian, Juan von Deak, Dieter King, Jesaiah Miller, Jeffrey T. Ozkan, Unlit S. TI In situ characterization of the growth of CNx carbon nano-structures as oxygen reduction reaction catalysts SO JOURNAL OF CATALYSIS LA English DT Article DE XANES; EXAFS; ORR; CNx; RRDE; Carbon growth; Stacked-cups; TEM; XPS; XRD ID NITROGEN-CONTAINING CARBON; ELECTROLYTE FUEL-CELLS; PYROLYZED COBALT PHTHALOCYANINE; SUPPORTED METAL PARTICLES; FE-BASED ELECTROCATALYSTS; NANOFIBER ELECTRODES; FE/N/C CATALYSTS; HEAT-TREATMENT; SULFURIC-ACID; ACTIVE-SITES AB The growth process of nitrogen-doped carbon nano-structures (CNx) was characterized using in situ (XANES, EXAFS, XRD) and ex situ (XPS, TEM) techniques. CNx nano-structures were grown on two different Co-doped substrates: Vulcan carbon and MgO. CNx formation was achieved by pyrolyzing a C- and N-containing compound, CH3CN, at high temperatures. The Co phase was seen to go through different transformations during the pyrolysis process, depending on the growth substrate used. The Co species, which started in an acetate matrix prior to pyrolysis, became partially reduced with heating and with CH3CN treatment. CNx fibers that formed were washed with acid. XRD, XAFS, and XPS analyses showed the Co phase left behind to be primarily metallic, regardless of the growth substrate used. TEM imaging showed CNx to be in the form of stacked-cup nano-structures, with metallic cobalt particles visibly encased in carbon. The structure of CNx obtained as well as the nitrogen content was significantly different on the two substrates, which led to activity differences as shown by RRDE. (C) 2013 Elsevier Inc. All rights reserved. C1 [Singh, Deepika; Soykal, I. Ilgaz; Tian, Juan; von Deak, Dieter; King, Jesaiah; Ozkan, Unlit S.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Ozkan, US (reprint author), Ohio State Univ, Dept Chem & Biomol Engn, 140 W 19th Ave, Columbus, OH 43210 USA. EM ozkan.1@osu.edu FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-FG02-07ER15896]; E.I. DuPont de Nemours Co.; Dow Chemical Company; Northwestern University; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-FG02-07ER15896.; Portions of this work were performed at the DuPont-North-western-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company and Northwestern University. Use of the APS, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 79 TC 13 Z9 13 U1 3 U2 153 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD AUG PY 2013 VL 304 BP 100 EP 111 DI 10.1016/j.jcat.2013.04.008 PG 12 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 174JX UT WOS:000321152600010 ER PT J AU Weingarten, R Kim, YT Tompsett, GA Fernandez, A Han, KS Hagaman, EW Conner, WC Dumesic, JA Huber, GW AF Weingarten, Ronen Kim, Yong Tae Tompsett, Geoffrey A. Fernandez, Alejandro Han, Kee Sung Hagaman, Edward W. Conner, Wm Curt, Jr. Dumesic, James A. Huber, George W. TI Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts SO JOURNAL OF CATALYSIS LA English DT Article DE Metal(IV) phosphate; Solid acid catalyst; Glucose; Levulinic acid; Bronsted; Lewis; Dehydration; Aqueous phase ID ZIRCONIUM-PHOSPHATE; SULFATED ZIRCONIA; OXYGENATED HYDROCARBONS; TRANSPORTATION FUELS; GAMMA-VALEROLACTONE; SURFACE-AREA; HETEROGENEOUS ZIRCONIUM; FRUCTOSE DEHYDRATION; CELLULOSIC BIOMASS; LINE H-1-NMR AB We have prepared a series of well-characterized solid acid metal(IV) phosphate catalysts and tested them for the two-step dehydration/rehydration reaction to produce levulinic acid from glucose. The catalysts include zirconium (ZrP) and tin (SnP) phosphates with varying ratios of phosphorus to metal(IV). The structural, surface and bulk properties have been investigated using XRD, BET, XPS and P-31 solid-state MAS NMR spectroscopy. ZrP is distinguished by a high concentration of polyphosphate species in the bulk phase, as well as increased hydroxyl groups on the surface. ZrP also shows a higher concentration of total acid sites and Bronsted acid sites compared to SnP, as determined by TPD measurements using gas-phase NH3 and isopropylamine. The catalyst selectivity is a function of the Bronsted to Lewis acid site ratio using either heterogeneous or homogeneous catalysts. Catalytic activity increases with increased Lewis acid sites. The Lewis sites mainly produce fructose via isomerization reactions and undesired degradation products (humins). HMF is produced on both Bronsted and Lewis sites, whereas levulinic acid is exclusively produced on Bronsted sites. Zirconium phosphate with a P/Zr molar ratio of 2 is favorable for levulinic acid production due to its inherently high surface area and enhanced Bronsted acidity. This study lays the grounds for further design of improved solid acid catalysts for aqueous phase production of HMF and levulinic from carbohydrates. (C) 2013 Elsevier Inc. All rights reserved. C1 [Weingarten, Ronen; Kim, Yong Tae; Dumesic, James A.; Huber, George W.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Tompsett, Geoffrey A.; Fernandez, Alejandro; Conner, Wm Curt, Jr.] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. [Han, Kee Sung; Hagaman, Edward W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Huber, GW (reprint author), 4631 Engn Hall,1415 Engn Dr, Madison, WI 53706 USA. EM rweingarten@wisc.edu; exkimyt@gmail.com; tompsett@ecs.umass.edu; jandro.fs@hotmail.com; hanks@ornl.gov; hagamanew@ornl.gov; wconner@ecs.umass.edu; dumesic@engr.wisc.edu; huber@engr.wisc.edu OI Han, Kee Sung/0000-0002-3535-1818 FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences; NSF-CBET [0756663]; NSF MRI [0722802] FX This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors would also like to gratefully acknowledge financial support from NSF-CBET (Grant # 0756663) and NSF MRI (Grant # 0722802). We also sincerely thank Jacob Hirsch from the Department of Polymer Science and Engineering at the University of Massachusetts-Amherst for performing the XPS measurements and the data analysis. NR 100 TC 49 Z9 52 U1 16 U2 262 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD AUG PY 2013 VL 304 BP 123 EP 134 DI 10.1016/j.jcat.2013.03.023 PG 12 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 174JX UT WOS:000321152600012 ER PT J AU Yu, Y Gutierrez, OY Haller, GL Colby, R Kabius, B van Veen, JAR Jentys, A Lercher, JA AF Yu, Yanzhe Gutierrez, Oliver Y. Haller, Gary L. Colby, Robert Kabius, Bernd van Veen, J. A. Rob Jentys, Andreas Lercher, Johannes A. TI Tailoring silica-alumina-supported Pt-Pd as poison-tolerant catalyst for aromatics hydrogenation SO JOURNAL OF CATALYSIS LA English DT Article DE Pt-Pd catalysts; Aromatics hydrogenation; Sulfur poisoning; Nitrogen poisoning ID PLATINUM TETRAMMINE HYDROXIDE; NAPHTHALENE HYDROGENATION; PT/SIO2 CATALYST; METAL CATALYSTS; CARBON-MONOXIDE; H2S ADSORPTION; GAMMA-ALUMINA; O-XYLENE; PALLADIUM; DECOMPOSITION AB The tailoring of the physicochemical and catalytic properties of mono- and bimetallic Pt-Pd catalysts supported on amorphous silica alumina was studied. Electron-energy-loss spectroscopy and extended X-ray absorption fine structure analyses indicated that bimetallic Pt-Pd and relatively large monometallic Pd particles were formed, whereas the X-ray absorption near edge structure provided direct evidence for the electronic deficiency of the Pt atoms. The heterogeneous distribution of metal particles was also shown by high-resolution transmission electron microscopy. The average structure of the bimetallic particles (Pt-rich core and Pd-rich shell) and the presence of Pd particles led to surface Pd enrichment, which was independently shown by IR spectra of adsorbed CO. The specific metal distribution, average size, and surface composition of the Pt Pd particles depend to a large extent on the metal precursors. In the presence of NH3 ligands, Pt Pd particles with a fairly homogeneous bulk and surface metal distribution were formed. Also, high Lewis acid site concentration of the carrier leads to more homogeneous bimetallic particles. All catalysts were active for the hydrogenation of tetralin in the absence and presence of quinoline and dibenzothiophene (DBT). Monometallic Pt catalysts had the highest hydrogenation activity in poison-free and quinoline-containing feed. When DBT was present, bimetallic Pt Pd catalysts with the most homogenous metal distribution showed the highest activity. The higher resistance of bimetallic catalysts toward sulfur poisoning compared to their monometallic Pt counterparts results from the weakened metal sulfur bond on the electron-deficient Pt atoms. Thus, increasing the fraction of electron-deficient Pt on the surface of the bimetallic clusters increases the efficiency of the catalyst in the presence of sulfur-containing compounds. (C) 2013 Elsevier Inc. All rights reserved. C1 [Yu, Yanzhe; Gutierrez, Oliver Y.; Haller, Gary L.; Jentys, Andreas; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, D-84747 Garching, Germany. [Yu, Yanzhe; Gutierrez, Oliver Y.; Haller, Gary L.; Jentys, Andreas; Lercher, Johannes A.] Catalysis Res Ctr, D-84747 Garching, Germany. [Colby, Robert; Kabius, Bernd] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Colby, Robert; Kabius, Bernd] Environm Mol Sci Lab, Richland, WA USA. [van Veen, J. A. Rob] Shell Int Chem BV, NL-1031 CM Amsterdam, Netherlands. RP Lercher, JA (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-84747 Garching, Germany. EM Johannes.Lercher@ch.tum.de RI Jentys, Andreas/D-4622-2009; OI Jentys, Andreas/0000-0001-5877-5042; Gutierrez Tinoco, Oliver/0000-0001-9163-4786 FU Department of Energy's Office of Biological and Environmental Research; EMSL FX Parts of this research were carried out at the light source facility DORIS III at DESY, a member of the Helmholtz Association (HGF). The authors are grateful to the HASYLAB staff for their kind assistance during the experiments at the beamline X1. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research, and with the support of the EMSL William R. Wiley postdoctoral fellowship. NR 66 TC 16 Z9 16 U1 6 U2 108 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD AUG PY 2013 VL 304 BP 135 EP 148 DI 10.1016/j.jcat.2013.04.009 PG 14 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 174JX UT WOS:000321152600013 ER PT J AU Nguyen, BN Simmons, KL AF Nguyen, Ba Nghiep Simmons, Kevin L. TI A multiscale modeling approach to analyze filament-wound composite pressure vessels SO JOURNAL OF COMPOSITE MATERIALS LA English DT Article DE Filament-wound composite; pressure vessel; multiscale modeling; elastic-plastic; micromechanical modeling; burst pressure; failure ID BURST STRENGTH EVALUATION; STRESS; LINER; TANK AB A multiscale modeling approach to analyze filament-wound composite pressure vessels is developed in this article. The approach, which extends the Nguyen etal. [Prediction of the elastic-plastic stress/strain response for injection-molded long-fiber thermoplastics. J Compos Mater 2009; 43: 217-246.] model developed for discontinuous fiber composites to continuous fiber ones, spans three modeling scales. The microscale considers the unidirectional elastic fibers embedded in an elastic-plastic matrix obeying the Ramberg-Osgood relation and J(2) deformation theory of plasticity. The mesoscale behavior representing the composite lamina is obtained through an incremental Mori-Tanaka [Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 1973; 21: 571-574.] type model and the Eshelby [The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond, Ser A 1957; 241: 376-396.] equivalent inclusion method. The implementation of the micro-meso constitutive relations in the ABAQUS (R) finite element package (via user subroutines) allows the analysis of a filament-wound composite pressure vessel (macroscale) to be performed. Failure of the composite lamina is predicted by a criterion that accounts for the strengths of the fibers and of the matrix as well as of their interface. The developed approach is validated in the analysis of an aluminum liner - T300 carbon/epoxy pressure vessel to predict the burst pressure. The predictions compare favorably with the numerical and experimental results by Lifshitz and Dayan [Filament-wound pressure vessel with thick metal liner. Compos Struct 1995; 32: 313-323]. The approach will be further demonstrated in the study of the effects of the lamina thickness, helical angle, and fiber-matrix material combination on the burst pressure. C1 [Nguyen, Ba Nghiep; Simmons, Kevin L.] Battelle Mem Inst, Pacific NW Natl Lab, Columbus, OH 43201 USA. RP Nguyen, BN (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM ba.nguyen@pnl.gov FU United States Department of Energy's (US DOE) Office of Vehicle Technologies FX The development of EMTA-NLA was funded by the United States Department of Energy's (US DOE) Office of Vehicle Technologies (Dr Carol Schutte, Team Lead for Materials Technology). The application of EMTA-NLA to filament-wound composite pressure vessels has been supported by the US DOE's Office of Fuel Cells Technologies (Dr Ned Stetson, Technology Development Manager). NR 22 TC 1 Z9 1 U1 3 U2 36 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-9983 J9 J COMPOS MATER JI J. Compos Mater. PD AUG PY 2013 VL 47 IS 17 BP 2113 EP 2123 DI 10.1177/0021998312454508 PG 11 WC Materials Science, Composites SC Materials Science GA 181MO UT WOS:000321671900006 ER PT J AU Byun, TS Li, MM Snead, LL Katoh, Y Burchell, TD McDuffee, JL AF Byun, Thak Sang Li, Meimei Snead, Lance L. Katoh, Yutai Burchell, Timothy D. McDuffee, Joel L. TI Principles and practice of a bellows-loaded compact irradiation vehicle SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STAINLESS-STEEL; CREEP; REACTOR; BEHAVIOR; 304L; PCA; DPA AB This article describes the key design principles and application of a mini-bellows loaded irradiation creep frame technology developed for use in the high flux isotope reactor (HFIR). For this irradiation vehicle, the bellows, frame, sample, and temperature monitor are contained within a hydraulic or fixed "rabbit" capsule of a few inches in length. Of critical importance and key to this technology is the viability and stability of the metallic bellows under the elevated temperature irradiation environment. Conceptual design and supporting analysis have been performed for tension and compression specimens. Benchtop verification has substantiated the modeling regarding the ability of the bellows to produce sufficient stress to induce irradiation creep in subsize specimens. Discussion focuses on the possible stress ranges in specimens induced by the miniature gas-pressurized bellows and the limitations imposed by the size and structure of thin-walled bellows. A brief discussion of pre- and post-irradiation measurement of the integrity of load frames irradiated to 4.4 x 10(25) n/m(2) (E > 0.1 MeV) is presented. Following this protocol, the pre-irradiation loading to a sample is determined and post-irradiation loading inferred. Published by Elsevier B.V. C1 [Byun, Thak Sang; Snead, Lance L.; Katoh, Yutai; Burchell, Timothy D.; McDuffee, Joel L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Li, Meimei] Argonne Natl Lab, Argonne, IL 60439 USA. RP Byun, TS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM byunts@ornl.gov RI Burchell, Tim/E-6566-2017 OI Burchell, Tim/0000-0003-1436-1192 FU Offices of Fusion Energy Sciences and Nuclear Energy, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX This development has been sponsored by the Offices of Fusion Energy Sciences and Nuclear Energy, U.S. Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors would like to express special thanks to Dr. M.N. Gussev and Ms. M.A. Fechter of ORNL for his technical review and thoughtful comments. NR 22 TC 3 Z9 3 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD AUG PY 2013 VL 439 IS 1-3 BP 108 EP 116 DI 10.1016/j.jnucmat.2013.03.096 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 173LK UT WOS:000321080800015 ER PT J AU Millett, PC Tonks, MR Chockalingam, K Zhang, YF Biner, SB AF Millett, Paul C. Tonks, Michael R. Chockalingam, K. Zhang, Yongfeng Biner, S. B. TI Three dimensional calculations of the effective Kapitza resistance of UO2 grain boundaries containing intergranular bubbles SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID POROSITY CORRECTION FACTOR; THERMAL-CONDUCTIVITY; NUCLEAR-FUELS; OXIDE FUEL; FRAMEWORK AB A parametric study has been performed that quantifies the effective change in grain boundary Kapitza resistance due to the presence of intergranular bubbles. The steady-state heat conduction equation was solved in three-dimensional space using INL's MOOSE finite element software, with which spacial mesh adaptivity was used to resolve interfacial widths down to several nanometers while investigating bubble sizes up to a micrometer. Three critical parameters were systematically varied: the intergranular bubble radius, the fractional grain boundary bubble coverage, and the Kapitza resistance of the intact grain boundary. Using the simulation results, a mathematical model dependent on each of these parameters was developed to describe the effective Kapitza resistance. Furthermore, we illustrate how this model can be implemented in a fuel performance code to predict the temperature profile of a cylindrical fuel pellet. Published by Elsevier B.V. C1 [Millett, Paul C.; Tonks, Michael R.; Chockalingam, K.; Zhang, Yongfeng; Biner, S. B.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Millett, PC (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Paul.Millett@inl.gov FU Nuclear Energy Modeling and Simulation (NEAMS) program within the US Department of Energy FX The authors gratefully acknowledge financial support from the Nuclear Energy Modeling and Simulation (NEAMS) program within the US Department of Energy. NR 18 TC 9 Z9 9 U1 5 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD AUG PY 2013 VL 439 IS 1-3 BP 117 EP 122 DI 10.1016/j.jnucmat.2013.02.039 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 173LK UT WOS:000321080800016 ER PT J AU Icenhower, JP Steefel, CI AF Icenhower, Jonathan P. Steefel, Carl I. TI Experimentally determined dissolution kinetics of SON68 glass at 90 degrees C over a silica saturation interval: Evidence against a linear rate law SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FLOW-THROUGH EXPERIMENTS; SIMULATED WASTE GLASS; NUCLEAR GLASS; ALTERATION MECHANISMS; BOROSILICATE GLASS; ALKALINE MEDIA; STATE; WATER; 40-DEGREES-C AB Flow-through dissolution experiments were carried out on the SON68 glass-the inactive analog of the French high-level waste glass-at 90 degrees C and pH = 9 over a silica saturation interval [0-150 ppm Si(aq)]. Two types of specimens were subjected to dissolution studies: powders (249-150, 149-75 or 74-45 mu m diameter size fractions) or monoliths (similar to 1 cm x 1 cm x 4 mm). At each Si concentration interval individual coupon and glass powder experiments were run at the same flow-to-surface area (q/S) conditions. Under dilute solution conditions, the dissolution rate becomes independent of q/S and define the forward rate of reaction of 0.30 g/(m(2) d). Dissolution rates of powders normalized on either a geometric or a B.E.T. surface area basis were compared to rates determined on monoliths. In every case, the geometric surface area normalized rates matched those of the monoliths, conclusively showing that B.E.T. normalized rates are too low by a factor of 3 x. In Si-free solutions changes in flow rates resulted in differences in Al released to solution (similar to 50 to 3140 ppb), correlating inversely with dissolution rates. Si was added to input solutions and kept constant ("direct"), but in select experiments Si concentrations were above target concentrations, and then dropped to their target values ("indirect"). Both "direct" and "indirect" Si addition experiments yielded identical dissolution rates within experimental uncertainty. Progressive addition of Si to the input solution caused a decrease in rates from 0.30 to 0.0020 g/(m(2) d), or a factor of similar to 150x, but the decrease is strongly non-linear with respect to Si. These data are inconsistent with simple models relating glass dissolution to the chemical affinity of reaction. (C) 2013 Elsevier B.V. All rights reserved. C1 [Icenhower, Jonathan P.; Steefel, Carl I.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Icenhower, JP (reprint author), 1 Cyclotron Rd, Berkeley, CA USA. EM jpicenhower@lbl.gov RI Steefel, Carl/B-7758-2010 FU Separations and Waste Form Campaign, Office of Nuclear Energy of the U.S. Department of Energy [DE-AC02-05CH11231]; Berkeley Lab. FX We thank Joern Larsen and April Van Hise for providing ICP-MS analyses and Li Yang and Giuseppe Saldi for B.E.T. analyses. We also thank Joe Ryan and Bill Ebert for supplying the SON68 glass. A thorough review by an anonymous reviewer is sincerely appreciated. Funding for this work was provided by the Separations and Waste Form Campaign, Office of Nuclear Energy of the U.S. Department of Energy under Contract Number DE-AC02-05CH11231 with Berkeley Lab. NR 27 TC 13 Z9 13 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD AUG PY 2013 VL 439 IS 1-3 BP 137 EP 147 DI 10.1016/j.jnucmat.2013.04.008 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 173LK UT WOS:000321080800019 ER PT J AU Schwen, D Martinez, E Caro, A AF Schwen, D. Martinez, E. Caro, A. TI On the analytic calculation of critical size for alpha prime precipitation in FeCr SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CR ALLOYS; DECOMPOSITION; NUCLEATION; CHROMIUM; IRON AB We present a calculation of the critical sizes and nucleation rates for the nucleation of alpha' precipitates in an FeCr alloy. Our work combines the calculation of the FeCr free energy surface using molecular dynamics simulations with recently published data [1] for the interfacial free energies between the alpha and alpha' phases in FeCr to obtain thermodynamic and kinetic data on the nucleation in this system. The results are made available as a set of fitting functions and their parameters. (C) 2013 Elsevier B.V. All rights reserved. C1 [Schwen, D.; Martinez, E.; Caro, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Schwen, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dschwen@lanl.gov OI Martinez Saez, Enrique/0000-0002-2690-2622; Schwen, Daniel/0000-0002-8958-4748 FU US Department of Energy Nuclear Energy Advanced Modeling and Simulation (NEAMS) program under the Fundamental Models and Methods (FMM) project FX We acknowledge funding from the US Department of Energy Nuclear Energy Advanced Modeling and Simulation (NEAMS) program under the Fundamental Models and Methods (FMM) project. NR 20 TC 6 Z9 6 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD AUG PY 2013 VL 439 IS 1-3 BP 180 EP 184 DI 10.1016/j.jnucmat.2013.03.057 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 173LK UT WOS:000321080800024 ER PT J AU Li, N Hattar, K Misra, A AF Li, N. Hattar, K. Misra, A. TI In situ probing of the evolution of irradiation-induced defects in copper SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; AUSTENITIC STAINLESS-STEELS; STACKING-FAULT TETRAHEDRA; RADIATION-DAMAGE; DISPLACEMENT CASCADES; GRAIN-BOUNDARIES; FCC METALS; TEMPERATURE-DEPENDENCE; MOLECULAR-DYNAMICS; COLLISION CASCADES AB Through in situ Cu3+ ion irradiation at room temperature in a transmission electron microscope (TEM), we have investigated the evolution of defect clusters as a function of the radiation dose at different distances from the 3 {112} incoherent twin boundary (ITB) in Cu. Post in situ ion irradiation, high resolution TEM was used to explore the types of defects, which are composed of a high-density of vacancy stacking fault tetrahedra (SFT) and sparsely distributed interstitial Frank loops. During irradiation, defect clusters evolve through four stages: (i) incubation, (ii) non-interaction, (iii) interaction and (iv) saturation; and the corresponding density was observed to initially increase with irradiation dose and then approach saturation. No obvious denuded zone is observed along the 3 {112} ITB and the configuration of defects at the boundary displays as truncated SFTs. Several defect evolution models have been proposed to explain the observed phenomena. Published by Elsevier B.V. C1 [Li, N.; Misra, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hattar, K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Li, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM nanli@lanl.gov RI Misra, Amit/H-1087-2012; Li, Nan /F-8459-2010 OI Li, Nan /0000-0002-8248-9027 FU Center for Materials at Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center (EFRC) by the DOE, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors also thank J.P. Hirth, R.G. Hoagland, B.P. Bberuaga, J. Wang and M. Demkowicz for their valuable discussions and J.K. Baldwin for help with film deposition. This work is supported by the Center for Materials at Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center (EFRC) under Award No. 2008LANL1026 by the DOE, Office of Science, Office of Basic Energy Sciences. K. Hattar acknowledges the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 68 TC 11 Z9 11 U1 1 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD AUG PY 2013 VL 439 IS 1-3 BP 185 EP 191 DI 10.1016/j.jnucmat.2013.04.013 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 173LK UT WOS:000321080800025 ER PT J AU Shih, CH Katoh, Y Snead, LL Steinbeck, J AF Shih, Chunghao Katoh, Yutai Snead, Lance L. Steinbeck, John TI The effect of neutron irradiation on the mechanical properties of C/SiC composites SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SILICON-CARBIDE COMPOSITES; CARBON-CARBON COMPOSITES; CHEMICAL-VAPOR INFILTRATION; SIC/SIC COMPOSITES; ELEVATED-TEMPERATURES; FUSION APPLICATIONS; FIBER COMPOSITE; GRAPHITE FIBER; BEHAVIOR; MICROSTRUCTURE AB The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 degrees C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (-54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material. Published by Elsevier B.V. C1 [Shih, Chunghao; Katoh, Yutai; Snead, Lance L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Steinbeck, John] Phys Sci Inc, Andover, MA 01810 USA. RP Shih, CH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM shihc@ornl.gov; katohy@ornl.gov; sneadl-l@ornl.gov; jws@psicorp.com FU [NFE-09-02366] FX The authors would like to thank Marie A. Williams, William D. Lewis and Patricia S. Tedder for their assistant in post irradiation examination. The authors would also like to thank Dr. Timothy D. Burchell for reviewing the manuscript. This work was sponsored under Contract NFE-09-02366. Irradiations were carried out in the Basic Energy Science sponsored High Flux Isotope Reactor. Work was carried out at the Oak Ridge national Laboratory for US Department of Energy under DE-AC05-00OR22725 with UT-Battelle, LLC. NR 45 TC 0 Z9 0 U1 1 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD AUG PY 2013 VL 439 IS 1-3 BP 192 EP 201 DI 10.1016/j.jnucmat.2013.03.089 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 173LK UT WOS:000321080800026 ER PT J AU Hajnal, A Thanos, PK Volkow, ND AF Hajnal, Andras Thanos, Panayotis K. Volkow, Nora D. TI Notes on "Roux en Y Gastric Bypass Increases Ethanol Intake in the Rat" by Davis et al. SO OBESITY SURGERY LA English DT Letter ID BARIATRIC SURGERY; CONSUMPTION; PREVALENCE; ABUSE C1 [Hajnal, Andras] Penn State Univ, Dept Neural & Behav Sci, Coll Med, Hershey, PA 17033 USA. [Hajnal, Andras] Penn State Univ, Dept Surg, Coll Med, Hershey, PA 17033 USA. [Thanos, Panayotis K.; Volkow, Nora D.] NIAAA, Lab Neuroimaging, Intramural Program, NIH, Bethesda, MD USA. [Thanos, Panayotis K.] Brookhaven Natl Lab, Behav Neuropharmacol & Neuroimaging Lab, Upton, NY 11973 USA. RP Hajnal, A (reprint author), Penn State Univ, Dept Neural & Behav Sci, Coll Med, 500 Univ Dr,Mail Code H181, Hershey, PA 17033 USA. EM ahajnal@psu.edu OI Hajnal, Andras/0000-0001-7297-7134 FU NIDDK NIH HHS [R01 DK080899] NR 9 TC 1 Z9 1 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0960-8923 J9 OBES SURG JI Obes. Surg. PD AUG PY 2013 VL 23 IS 8 BP 1317 EP 1317 DI 10.1007/s11695-013-0961-8 PG 1 WC Surgery SC Surgery GA 177QC UT WOS:000321389200809 PM 23649870 ER PT J AU Lin, SZ Koshelev, AE AF Lin, Shi-Zeng Koshelev, Alexei E. TI Synchronization of Josephson oscillations in a mesa array of Bi2Sr2CaCu2O8+delta through the Josephson plasma waves in the base crystal SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 8th International Symposium on Intrinsic Josephson Effects and Plasma Oscillations in High-Tc Superconductors (PLASMA) CY JUN 10-13, 2012 CL Cesme, TURKEY SP Sci & Tech Council Turkey (TUBITAK), Izmir Inst Technol (IZTECH) DE Intrinsic Josephson junctions; Terahertz radiation; Synchronization; Mesa array ID JUNCTION ARRAYS; COLLECTIVE MODE; THZ RADIATION; EMISSION; SUPERCONDUCTORS; FLOW AB Using mesa array fabricated at the top of Bi2Sr2CaCu2O8 single crystal was demonstrated recently as a promising route to enhance the radiation power generated by the Josephson oscillations in mesas. We study the synchronization in such an array via the plasma waves in the base crystal. First, we analyze plasma oscillations inside the base crystal generated by the synchronized mesa array and the associated dissipation. We then solve the dynamic equation for the superconducting phase numerically to find conditions for synchronization and to check the stability of the synchronized state. We find that the mesas are synchronized when the cavity resonance of mesas matches with that of the base crystal. An optimal configuration of the mesa arrays is also obtained. (C) 2012 Elsevier B.V. All rights reserved. C1 [Lin, Shi-Zeng] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Koshelev, Alexei E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Lin, SZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM szl@lanl.gov; koshelev@anl.gov RI Lin, Shi-Zeng/B-2906-2008; Koshelev, Alexei/K-3971-2013 OI Lin, Shi-Zeng/0000-0002-4368-5244; Koshelev, Alexei/0000-0002-1167-5906 NR 46 TC 6 Z9 7 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD AUG PY 2013 VL 491 BP 24 EP 29 DI 10.1016/j.physc.2012.11.008 PG 6 WC Physics, Applied SC Physics GA 166YS UT WOS:000320597700007 ER PT J AU Al-Karaghouli, A Kazmerski, LL AF Al-Karaghouli, Ali Kazmerski, Lawrence L. TI Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Letter DE Water desalination; Distillation processes; Membrane processes; Renewable energy ID MEMBRANE DISTILLATION SYSTEMS; SEAWATER RO DESALINATION; NUCLEAR HEATING REACTOR; ECONOMIC-EVALUATION; PLANTS; MSF; TECHNOLOGIES; SOLAR; RECOVERY AB Desalination technologies improve water quality, greatly reduce water shortage problems, and improve quality of life and economic status. Two main technologies are currently used in water desalination: thermal (phase-change) processes and membrane processes. The primary thermal distillation processes include multistage flash distillation (MSF), multi-effect distillation (MED), and vapor compression (VC). The VC process encompasses two types: mechanical (MVC) and thermal (TVC). The common membrane desalination processes include reverse osmosis (RO) and electrodialysis (ED and EDR). Energy cost, operational and maintenance cost, and capital investment are the main contributors to the water production cost of any of these processes. The energy cost is responsible for about 50% of the produced water cost. For thermal distillation processes (MSF, MED, and TVC), two energy forms are required for the operation: (I) low-temperature heat, which represents the main portion of the energy input and is usually supplied to the system by a number of external sources (e.g., fossil fuel, waste energy, nuclear, solar) and (2) electricity, which is used to drive the system's pumps and other electrical components. For the MVC thermal distillation process, only electricity is needed. For membrane processes (RO and ED), only electricity is required as an energy input. Renewable energy systems such as solar thermal, solar photovoltaic, wind, and geothermal technologies are currently used as energy suppliers for desalination systems. These renewable resources are now a proven technology and remain economically promising for remote regions, where connection to the public electric grid is either not cost effective or feasible, and where water scarcity is severe. As the technologies continue to improve, and as fresh water becomes scarce and fossil fuel energy prices rise, renewable energy desalination becomes more viable economically. The technical features, energy consumption, environmental considerations, and potential of renewable energy use in driving the main desalination processes are reviewed and analyzed in this paper. The current and projected costs of water produced from conventional and renewable-energy-driven processes are discussed and compared. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Al-Karaghouli, Ali; Kazmerski, Lawrence L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Al-Karaghouli, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM ali.al-qaraghuli@nrel.gov NR 77 TC 81 Z9 82 U1 19 U2 172 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD AUG PY 2013 VL 24 BP 343 EP 356 DI 10.1016/j.rser.2012.12.064 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 165NA UT WOS:000320489400029 ER PT J AU Hasanbeigi, A Lobscheid, A Lu, HY Price, L Dai, Y AF Hasanbeigi, Ali Lobscheid, Agnes Lu, Hongyou Price, Lynn Dai, Yue TI Quantifying the co-benefits of energy-efficiency policies: A case study of the cement industry in Shandong Province, China SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Energy efficiency; Particulate matter; Sulfur dioxide; Carbon dioxide; Energy policy ID PARTICULATE AIR-POLLUTION; RESPIRATORY HEALTH; ECONOMIC-ASSESSMENT; ASTHMATIC-CHILDREN; TIME-SERIES; SHANGHAI; MORTALITY AB In 2010, China's cement industry accounted for more than half of the world's total cement production. The cement industry is one of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries, and thus a key industrial contributor to air pollution in China. For example, it is the largest source of particulate matter (PM) emissions in China, accounting for 40% of industrial PM emissions and 27% of total national PM emissions. In this study, we quantify the co-benefits of PM10 and sulfur dioxide (SO2) emission reductions that result from energy-saving measures in the cement industry in Shandong Province, China. We use a modified form of the cost of conserved energy (CCE) equation to incorporate the value of these co-benefits. The results show that more than 40% of the PM and SO2 emission reduction potential of the electricity-saving measures is cost effective even without taking into account the co-benefits for the electricity-saving measures. The results also show that including health benefits from PM10 and/or SO2 emission reductions reduces the CCE of the fuel-saving measures. Two measures that entail changing products (production of blended cement and limestone Portland cement) result in the largest reduction in CCE when co-benefits were included, since these measures can reduce both PM13 and SO2 emissions, whereas the other fuel-saving measures do not reduce PM10. Published by Elsevier B.V. C1 [Hasanbeigi, Ali; Lobscheid, Agnes; Lu, Hongyou; Price, Lynn; Dai, Yue] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Hasanbeigi, A (reprint author), 1 Cyclotron Rd MS 90R2002, Berkeley, CA 94720 USA. EM AHasanbeigi@lbl.gov FU China Sustainable Energy Program of the Energy Foundation; Dow Chemical Company through the Department of Energy [DE-AC02-05CH11231] FX This work was supported by the China Sustainable Energy Program of the Energy Foundation and Dow Chemical Company (through a charitable contribution) through the Department of Energy under contract No. DE-AC02-05CH11231. We would like to thank Zhao Lijian and Cai Jingjing of the China Sustainable Energy Program of the Energy Foundation and Zhou Nan, Thomas McKone, and Christopher Williams of LBNL for their contributions to this study. We also appreciate the help and support of the individuals and organizations who participated in the first phase of this study, which was published in 2009, particularly, Wang Lan of the China Building Material Academy, Liu Feng of the World Bank Director Zhao Xudong of the Shandong Provincial Government Energy Conservation Office, and Diao Lizhang of the Shandong Energy Conservation Association. We are thankful to Thomas McKone and Dev Millstein from LBNL for their valuable comments on the earlier version of the report We also would like to thank Nan Wishner for editing the report. NR 50 TC 18 Z9 20 U1 1 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD AUG 1 PY 2013 VL 458 BP 624 EP 636 DI 10.1016/j.scitotenv.2013.04.031 PG 13 WC Environmental Sciences SC Environmental Sciences & Ecology GA 171CC UT WOS:000320901700067 PM 23707868 ER PT J AU Guo, XQ Wu, W Wu, PD Qiao, H An, K Liaw, PK AF Guo, X. Q. Wu, W. Wu, P. D. Qiao, H. An, K. Liaw, P. K. TI On the Swift effect and twinning in a rolled magnesium alloy under free-end torsion SO SCRIPTA MATERIALIA LA English DT Article DE Twinning; Slip; Texture; Torsion; Magnesium alloys ID DEFORMATION-BEHAVIOR; DETWINNING BEHAVIOR; SIMPLE SHEAR; AZ31B SHEET; TWINS; DUCTILITY; EVOLUTION; TEXTURE; STRAINS; VULCAN AB We experimentally and numerically study the large-strain free-end torsion of a rolled magnesium alloy. It is found that a torsion sample with its axial direction parallel to the normal direction elongates axially, while a sample with its axial direction along the rolling direction contracts axially. It is shown that this Swift effect, i.e., the second-order axial effect under free-end torsion, is mainly due to extension twinning. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Guo, X. Q.] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Jiangsu, Peoples R China. [Guo, X. Q.; Wu, P. D.; Qiao, H.] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. [Wu, W.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [An, K.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Wu, W (reprint author), McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. EM peidong@mcmaster.ca RI An, Ke/G-5226-2011; Wu, Wei/G-3204-2014; Wu, Peidong/A-7009-2008 OI An, Ke/0000-0002-6093-429X; Wu, Wei/0000-0002-8596-9253; FU National Basic Research Program of China [2007CB209400]; 111 Project of China [B07028]; Natural Sciences and Engineering Research Council of Canada (NSERC); Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; US National Science Foundation [DMR-0909037, CMMI-0900271, CMMI-1100080]; Department of Energy (DOE), Office of Nuclear Energy's Nuclear Energy University Program (NEUP) [00119262]; DOE, Office of Fossil Energy, National Energy Technology Laboratory [DE-FE-0008855] FX X.Q. Guo was supported by the National Basic Research Program of China (2007CB209400) and the 111 Project of China (B07028). P.D. Wu and H. Qiao were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. P.K. Liaw very much appreciates the financial support from the US National Science Foundation (DMR-0909037, CMMI-0900271, and CMMI-1100080), the Department of Energy (DOE), Office of Nuclear Energy's Nuclear Energy University Program (NEUP) 00119262, and the DOE, Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855) with C. Huber, C.V. Cooper, D. Finotello, A. Ardell, E. Taleff, V. Cedro, R.O. Jensen, L. Tan, and S. Lesica as contract monitors. NR 31 TC 34 Z9 34 U1 5 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD AUG PY 2013 VL 69 IS 4 BP 319 EP 322 DI 10.1016/j.scriptamat.2013.05.010 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 178CP UT WOS:000321422000010 ER PT J AU Jensen, DS Kanyal, SS Madaan, N Hancock, JM Dadson, AE Vail, MA Vanfleet, R Shutthanandan, V Zhu, ZH Engelhard, MH Linford, MR AF Jensen, David S. Kanyal, Supriya S. Madaan, Nitesh Hancock, Jared M. Dadson, Andrew E. Vail, Michael A. Vanfleet, Richard Shutthanandan, V. Zhu, Zihua Engelhard, Mark H. Linford, Matthew R. TI Multi-instrument characterization of the surfaces and materials in microfabricated, carbon nanotube-templated thin layer chromatography plates. An analogy to "The Blind Men and the Elephant' SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE XPS; ToF-SIMS; RBS; chromatography; helium ion microscopy; carbon nanotube ID CHEMICAL-VAPOR-DEPOSITION; RAY PHOTOELECTRON-SPECTROSCOPY; TERMINATED SI(111) SURFACES; VALENCE-BAND SPECTRA; TOF-SIMS; SCRIBED SILICON; ALKYL MONOLAYERS; POROUS SILICON; SIO2/SI INTERFACES; MIXED MONOLAYERS AB We apply a suite of analytical tools to characterize materials created in the production of microfabricated thin layer chromatography plates. Techniques used include X-ray photoelectron spectroscopy (XPS), valence band spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS) in both positive and negative ion modes, Rutherford backscattering spectroscopy (RBS), and helium ion microscopy. Materials characterized include: the Si(100) substrate with native oxide: Si/SiO2, alumina (35nm) deposited as a diffusion barrier on the Si/SiO2: Si/SiO2/Al2O3, iron (6nm) thermally evaporated on the Al2O3: Si/SiO2/Al2O3/Fe, the iron film annealed in H-2 to make Fe catalyst nanoparticles: Si/SiO2/Al2O3/Fe(NP), and carbon nanotubes (CNTs) grown from the Fe nanoparticles: Si/SiO2/Al2O3/Fe(NP)/CNT. The Fe films and nanoparticles appear in an oxidized state. Some of the analyses of the CNTs/CNT forests appear to be unique: (i) the CNT forest appears to exhibit an interesting channeling' phenomenon by RBS, (ii) we observe an odd-even effect in the SIMS spectra of C-n(-) species for n=1 - 6, with the n6 ions showing a steady decrease in intensity, and (iii) valence band characterization of CNTs using X-radiation is reported. Initial analysis of the CNT forest by XPS shows that it is 100at.% carbon. After one year, only ca. 0.25at.% oxygen is observed. The information obtained from the combination of the different analytical tools provides a more complete understanding of our materials than a single technique, which is analogous to the story of The Blind Men and the Elephant'. The raw XPS and ToF-SIMS spectra from this study will be submitted to Surface Science Spectra for archiving. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Hancock, Jared M.; Linford, Matthew R.] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. [Dadson, Andrew E.; Vail, Michael A.] Diamond Analyt, Orem, UT 84058 USA. [Vanfleet, Richard] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. [Shutthanandan, V.; Zhu, Zihua; Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Linford, MR (reprint author), Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. EM mrlinford@chem.byu.edu RI Zhu, Zihua/K-7652-2012; OI Engelhard, Mark/0000-0002-5543-0812 FU Diamond Analytics, a US Synthetic company (Orem, UT); Department of Energy's Office of Biological and Environmental Research FX We thank Diamond Analytics, a US Synthetic company (Orem, UT), for funding this study. Part of this research was performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 88 TC 23 Z9 23 U1 0 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD AUG PY 2013 VL 45 IS 8 BP 1273 EP 1282 DI 10.1002/sia.5268 PG 10 WC Chemistry, Physical SC Chemistry GA 178KE UT WOS:000321445800014 ER PT J AU Lewis, KC Karra, S Kelkar, S AF Lewis, K. C. Karra, Satish Kelkar, Sharad TI A Model for Tracking Fronts of Stress-Induced Permeability Enhancement SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Permeability enhancement; Subsurface fracturing; Injection flow rate; Analytic fluid flow; Damage front ID FRACTURES AB Using an analogy to the classical Stefan problem, we construct evolution equations for the fluid pore pressure on both sides of a propagating stress-induced damage front. Closed form expressions are derived for the position of the damage front as a function of time for the cases of thermally-induced damage as well as damage induced by over-pressure. We derive expressions for the flow rate during constant pressure fluid injection from the surface corresponding to a spherically shaped subsurface damage front. Finally, our model results suggest an interpretation of field data obtained during constant pressure fluid injection over the course of 16 days at an injection site near Desert Peak, NV. C1 [Lewis, K. C.; Karra, Satish; Kelkar, Sharad] Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. RP Lewis, KC (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. EM kaylal@lanl.gov; satkarra@lanl.gov; kelkar@lanl.gov OI Karra, Satish/0000-0001-7847-6293 FU Department of Energy's Fossil Energy Program through the National Energy Technology Laboratory; US DOE Office of Geothermal Technologies [GT-100036-12_Revision 1]; EERE [25316]; U.S. Department of Energy [DE-EE0002766] FX This work was supported in part by the Department of Energy's Fossil Energy Program through the National Energy Technology Laboratory, and by the US DOE Office of Geothermal Technologies under Work Authorization No. GT-100036-12_Revision 1, EERE Agreement No. 25316. This support is greatly appreciated. Satish Karra thanks U.S. Department of Energy for the support through the geothermal Project DE-EE0002766. The authors would also like to acknowledge insightful review and comments by David Dempsey that led to significant improvements. NR 18 TC 2 Z9 2 U1 1 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD AUG PY 2013 VL 99 IS 1 BP 17 EP 35 DI 10.1007/s11242-013-0171-9 PG 19 WC Engineering, Chemical SC Engineering GA 181IQ UT WOS:000321661600002 ER PT J AU Impellitteri, CA Harmon, S Silva, RG Miller, BW Scheckel, KG Luxton, TP Schupp, D Panguluri, S AF Impellitteri, Christopher A. Harmon, Stephen Silva, R. Gune Miller, Bradley W. Scheckel, Kirk G. Luxton, Todd P. Schupp, Donald Panguluri, Srinivas TI Transformation of silver nanoparticles in fresh, aged, and incinerated biosolids SO WATER RESEARCH LA English DT Article DE Silver; Nanoparticles; Biosolids; Incineration; Wastewater treatment ID SURFACE-CHARGE; DAPHNIA-MAGNA; TOXICITY; NANOSILVER; EFFLUENT; AGGREGATION; SPECIATION; REDUCTION; PRODUCTS; STRENGTH AB The purpose of this research was to assess the chemical transformation of silver nanoparticles (AgNPs) in aged, fresh, and incinerated biosolids in order to provide information for AgNP life cycle analyses. Silver nanoparticles were introduced to the influent of a pilot-scale wastewater (WW) treatment system consisting of a primary clarifier (PC), aeration basin, and secondary clarifier. The partitioning of the AgNPs between, the aqueous and solid phases in the system was monitored. Less than 3% of the total AgNPs introduced into the PC were measured at the overflow of the PC. Biosolids were collected from the pilot-scale system for silver analyses, including Ag concentration and speciation. Additionally, biosolids were collected from a publically owned treatment works (POTW). The POTW biosolids were spiked with AgNPs, AgNO3, and Ag2S. One set of the spiked POTW biosolids was aged for one month, and another set was analyzed within 24 h via X-ray absorption spectroscopy (CAS) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX) in order to determine Ag chemical speciation and elemental associations. Replicates of the aged and 24-h samples were also incinerated at 850 degrees C for 4 h. The residual ash was analyzed by XAS and SEM-EDX. The results show that AgNPs are converted to Ag-sulfur (as sulfide and sulfhydryl) species in fresh and aged biosolids, which is in agreement with other studies on AgNPs in biosolids. Results from linear combination fitting of the XAS data for incinerated biosolids show that a significant proportion of the spiked silver (30-50%) is converted to elemental Ag in the incineration process. In addition to elemental Ag, the results suggest the presence of additional Ag S complexes such as Ag2SO4 (up to 25%), and silver associated with sulfhydryl groups (26-50%) in the incinerated biosolids. Incinerated biosolids spiked with AgNO3 and Ag2S exhibited similar transformations. These transformations of AgNPs should be accounted for in life-cycle analyses of AgNPs and in management decisions regarding the disposal of incinerated biosolids. Published by Elsevier Ltd. C1 [Impellitteri, Christopher A.; Harmon, Stephen; Scheckel, Kirk G.; Luxton, Todd P.] US EPA, Off Res & Dev, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA. [Silva, R. Gune; Schupp, Donald; Panguluri, Srinivas] Shaw Environm Inc, US EPA, Test & Evaluat Facil, Cincinnati, OH 45204 USA. [Miller, Bradley W.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP Impellitteri, CA (reprint author), US EPA, Off Res & Dev, Natl Risk Management Res Lab, 26 West Martin Luther King Dr, Cincinnati, OH 45268 USA. EM impellitteri.christopher@epa.gov RI ID, MRCAT/G-7586-2011; Scheckel, Kirk/C-3082-2009 OI Scheckel, Kirk/0000-0001-9326-9241 NR 36 TC 24 Z9 25 U1 8 U2 107 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD AUG 1 PY 2013 VL 47 IS 12 SI SI BP 3878 EP 3886 DI 10.1016/j.watres.2012.12.041 PG 9 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 173MQ UT WOS:000321084000003 PM 23561507 ER PT J AU Sinha, A Jebrail, MJ Kim, H Patel, KD Branda, SS AF Sinha, Anupama Jebrail, Mais J. Kim, Hanyoup Patel, Kamlesh D. Branda, Steven S. TI A Versatile Automated Platform for Micro-scale Cell Stimulation Experiments SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Bioengineering; Issue 78; Biomedical Engineering; Cellular Biology; Molecular Biology; Microbiology; Biophysics; Biochemistry; Nanotechnology; Miniaturization; Microtechnology; Cell culture techniques; Microfluidics; Host-pathogen interactions; Automated cell culture; Cell stimulation; Cell response; Cell-cell interactions; Digital microfluidics; Microsystems integration; cell culture AB Study of cells in culture (in vitro analysis) has provided important insight into complex biological systems. Conventional methods and equipment for in vitro analysis are well suited to study of large numbers of cells (>= 10(5)) in milliliter-scale volumes (>= 0.1 ml). However, there are many instances in which it is necessary or desirable to scale down culture size to reduce consumption of the cells of interest and/or reagents required for their culture, stimulation, or processing. Unfortunately, conventional approaches do not support precise and reproducible manipulation of micro-scale cultures, and the microfluidics-based automated systems currently available are too complex and specialized for routine use by most laboratories. To address this problem, we have developed a simple and versatile technology platform for automated culture, stimulation, and recovery of small populations of cells (100 - 2,000 cells) in micro-scale volumes (1 - 20 mu l). The platform consists of a set of fibronectin-coated microcapillaries ("cell perfusion chambers"), within which micro-scale cultures are established, maintained, and stimulated; a digital microfluidics (DMF) device outfitted with "transfer" microcapillaries ("central hub"), which routes cells and reagents to and from the perfusion chambers; a high-precision syringe pump, which powers transport of materials between the perfusion chambers and the central hub; and an electronic interface that provides control over transport of materials, which is coordinated and automated via pre-determined scripts. As an example, we used the platform to facilitate study of transcriptional responses elicited in immune cells upon challenge with bacteria. Use of the platform enabled us to reduce consumption of cells and reagents, minimize experiment-to-experiment variability, and re-direct hands-on labor. Given the advantages that it confers, as well as its accessibility and versatility, our platform should find use in a wide variety of laboratories and applications, and prove especially useful in facilitating analysis of cells and stimuli that are available in only limited quantities. C1 [Sinha, Anupama] Sandia Natl Labs, Dept Syst Biol, Livermore, CA 94550 USA. [Jebrail, Mais J.; Kim, Hanyoup; Branda, Steven S.] Sandia Natl Labs, Dept Biotechnol & Bioengn, Livermore, CA 94550 USA. [Kim, Hanyoup] Canon US Life Sci, Rockville, MD USA. [Patel, Kamlesh D.] Sandia Natl Labs, Dept Adv Syst Engn & Deployment, Livermore, CA 94550 USA. RP Branda, SS (reprint author), Sandia Natl Labs, Dept Biotechnol & Bioengn, Livermore, CA 94550 USA. EM sbranda@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Ronald F. Renzi and Michael S. Bartsch for their contributions to the design and development of DMF devices and the DMF hub. This research was fully supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 40 TC 2 Z9 2 U1 3 U2 7 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD AUG PY 2013 IS 78 AR UNSP e50597 DI 10.3791/50597 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V36RH UT WOS:000209228000043 ER PT J AU Leishear, RA AF Leishear, Robert A. TI PIPELINE EXPLOSIONS: A NEW THEORY SO MECHANICAL ENGINEERING LA English DT Editorial Material C1 Savannah River Natl Lab, Aiken, SC 29803 USA. RP Leishear, RA (reprint author), Savannah River Natl Lab, Aiken, SC 29803 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0025-6501 EI 1943-5649 J9 MECH ENG JI Mech. Eng. PD AUG PY 2013 VL 135 IS 8 BP 8 EP 9 PG 2 WC Engineering, Mechanical SC Engineering GA AQ0PJ UT WOS:000342484900003 ER PT J AU Leamer, NK Clemmons, NS Jordan, NN Pacha, LA AF Leamer, Nicole K. Clemmons, Nakia S. Jordan, Nikki N. Pacha, Laura A. TI Update: Community-Acquired Methicillin-Resistant Staphylococcus aureus Skin and Soft Tissue Infection Surveillance Among Active Duty Military Personnel at Fort Benning GA, 2008-2010 SO MILITARY MEDICINE LA English DT Article ID RISK-FACTORS; CLONE; USA300; OUTBREAK; DISEASE AB Background: Increasing numbers of Staphylococcus aureus infections demonstrate antibiotic resistance. Military populations experiencing crowding are at increased risk of community-acquired methicillin-resistant S. aureus (CA-MRSA) infection. High prevalence of CA-MRSA infection among Army personnel was previously documented at Fort Benning, GA from 2002 to 2007. Purpose: To ascertain recent CA-MRSA trends at Fort Berming regarding antibiotic susceptibility, infection rates, and treatment regimens among Army personnel. Methods: Incident CA-MRSA cases among active duty members/trainees from January 2008 to December 2010 were identified using active surveillance and laboratory data. Results: In total, 2,171 infections were identified, representing 5,794 CA-MRSA-related clinic visits. Annual rates decreased from 33 to 27 infections per 1,000 soldiers from 2008 to 2010. Approximately 78% of isolates were from training units. Approximately 4% of infections required hospitalization. Most infections (97%) were treated with antibiotics (36% received antibiotics and wound drainage). Antibiotic susceptibility patterns remained comparable to previous assessments. Conclusion: The observed decline in CA-MRSA rates and associated hospitalizations, coupled with stable antibiotic susceptibility patterns, is encouraging. Passive surveillance using laboratory records proved useful in identifying infection and could enhance detection across training sites. Given the continued high CA-MRSA prevalence among trainees, providers/public health personnel should remain vigilant to bolster prevention, detection, and treatment efforts. C1 [Leamer, Nicole K.; Clemmons, Nakia S.; Jordan, Nikki N.; Pacha, Laura A.] US Army Publ Hlth Command, Dis Epidemiol Program, Aberdeen Proving Ground, MD 21010 USA. [Leamer, Nicole K.] Oak Ridge Inst Sci & Educ, Belcamp, MD 21017 USA. RP Leamer, NK (reprint author), US Army Publ Hlth Command, Dis Epidemiol Program, 5158 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. FU Student Research Participation Program at the U.S. Army Public Health Command administered by the Oak Ridge Institute for Science and Education; U.S. Department of Energy; U.S. Army Public Health Command FX This manuscript is in honor of the late James Patrick, who initiated this surveillance project for the good of Soldiers. We thank Linda Brannan, Paul Pietrusiak, Uzo Chukwuma, Matt Inscore, Tanja Reed, and Dr. Tina Daniels for their assistance, and LTC Michael Ellis and Stephanie Morrison-Rodriguez for their review of the manuscript. This research was supported in part by an appointment to the Student Research Participation Program at the U.S. Army Public Health Command administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and U.S. Army Public Health Command. NR 28 TC 7 Z9 11 U1 1 U2 8 PU ASSOC MILITARY SURG US PI BETHESDA PA 9320 OLD GEORGETOWN RD, BETHESDA, MD 20814 USA SN 0026-4075 EI 1930-613X J9 MIL MED JI Milit. Med. PD AUG PY 2013 VL 178 IS 8 BP 914 EP 920 DI 10.7205/MILMED-D-13-00082 PG 7 WC Medicine, General & Internal SC General & Internal Medicine GA AN7UB UT WOS:000340805400016 PM 23929055 ER PT J AU Pan, W Tartakovsky, AM AF Pan, W. Tartakovsky, A. M. TI Dissipative particle dynamics model for colloid transport in porous media SO ADVANCES IN WATER RESOURCES LA English DT Article DE Pore-scale model; Porous media flow; Dissipative particle dynamics; Colloidal transport ID COLLECTOR EFFICIENCY; BED FILTRATION; SIMULATIONS; SUSPENSIONS; FLOW; EQUATION; FLUIDS; DPD AB We use a dissipative particle dynamics (DPD) model to study colloid transport in porous media. Unlike many existing numerical models, the DPD model directly couples dynamics of the fluid and colloidal particles. In the model, fluid, colloids, and soil grains are all represented by DPD particles. The interaction between particles is modeled by central and non-central DPD forces, which conserve both linear and angular momentums exactly. Additional van der Waals forces are applied between colloids and collectors. Other transport processes, including gravitational sedimentation, interception of colloids by soil grains (acting as colloid collectors) due to a finite size of colloids, and the Brownian diffusion of colloids are also included in the DPD model. We use the DPD model to study the contact efficiency in colloid filtration in saturated porous media and compare our results with empirical models based on filtration theory. Results of the DPD model agree well with the empirical models for low-concentration suspensions and colloids being small relative to the collector size. For colloid suspensions with larger colloids (relative to the collector size) and/or higher concentration, the agreement between the DPD model and the empirical models deteriorates. In the transport of a concentrated suspension of large colloids, the fluid flow is strongly affected by the linear and angular motions of the colloids, which are mainly disregarded in filtration theory. On the other hand, the DPD model fully couples the fluid flow and colloid transport and, thus, is expected to be accurate for a wide range of colloid sizes and concentrations. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Pan, W.; Tartakovsky, A. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tartakovsky, AM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM alexandre.tartakovsky@pnl.gov FU Advanced Scientific Computing Research Program; Scientific Discovery through the Advanced Computing Program of the Office of Science, U.S. Department of Energy at the Pacific Northwest National Laboratory; U.S. Department of Energy [DE-AC06-76RL01830] FX This research was supported by the Advanced Scientific Computing Research Program and the Scientific Discovery through the Advanced Computing Program of the Office of Science, U.S. Department of Energy at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC06-76RL01830. NR 33 TC 6 Z9 6 U1 0 U2 54 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD AUG PY 2013 VL 58 BP 41 EP 48 DI 10.1016/j.advwatres.2013.04.004 PG 8 WC Water Resources SC Water Resources GA 165SK UT WOS:000320503700004 ER PT J AU Miller, JJ Hui, SK Jackson, GS Clark, SP Einstein, J Weaver, CM Bhattacharyya, MH AF Miller, James J. Hui, Susanta K. Jackson, George S. Clark, Sara P. Einstein, Jane Weaver, Connie M. Bhattacharyya, Maryka H. TI Calcium isolation from large-volume human urine samples for Ca-41 analysis by accelerator mass spectrometry SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Ca-41 analysis; Accelerator mass spectrometry; Biological samples; Calcium oxalate; Human urine ID POSTMENOPAUSAL WOMEN; BONE-RESORPTION; METABOLISM; TRACER; SERUM AB Calcium oxalate precipitation is the first step in preparation of biological samples for Ca-41 analysis by accelerator mass spectrometry. A simplified protocol for large-volume human urine samples was characterized, with statistically significant increases in ion current and decreases in interference. This large-volume assay minimizes cost and effort and maximizes time after Ca-41 administration during which human samples, collected over a lifetime, provide Ca-41:Ca ratios that are significantly above background. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Miller, James J.; Bhattacharyya, Maryka H.] Argonne Natl Lab, Lemont, IL 60439 USA. [Hui, Susanta K.] Univ Minnesota, Minneapolis, MN 55455 USA. [Jackson, George S.; Einstein, Jane; Weaver, Connie M.] Purdue Rare Isotope Measurement Lab, W Lafayette, IN 47907 USA. [Clark, Sara P.; Bhattacharyya, Maryka H.] Georgia Regents Univ, Augusta, GA 30912 USA. RP Bhattacharyya, MH (reprint author), Georgia Regents Univ, Med Coll Georgia, Dept Med, 1467 Harper St,HB 5025, Augusta, GA 30912 USA. EM mbhattacharyya@gru.edu FU GHSU start-up funds (Departments of Orthopedic Surgery and Medicine); Phillip Morris USA, Inc.; Phillip Morris International; National Institutes of Health [P50-AT00477]; National Institute of Child Health and Human Development [1K12-HD055887-01]; National Institute of Arthritis and Musculoskeletal Disease [RO3 AR055333-02]; Cancer Center Support Grant [P30 CA77398] FX We would like to acknowledge Mr. Tom Kubley, Purdue University, for organizing operation of the AMS during these measurements; Ms. Anna Kempa-Steczko, Purdue University, for preparing the oxalate precipitates; and Dr. Manju Sharma, University of Minnesota, for helping with urine chemistries. Research for MHB, JJM, and SPC was funded by GHSU start-up funds (Departments of Orthopedic Surgery and Medicine) and Phillip Morris USA, Inc. and Phillip Morris International. Research at Purdue University (GSJ, CMW, JE) was funded by Grant P50-AT00477 from the National Institutes of Health. Research at University of Minnesota (SKH) was funded by the National Institute of Child Health and Human Development (1K12-HD055887-01), the National Institute of Arthritis and Musculoskeletal Disease (RO3 AR055333-02), and Cancer Center Support Grant P30 CA77398. NR 21 TC 2 Z9 2 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD AUG PY 2013 VL 78 BP 57 EP 61 DI 10.1016/j.apradiso.2013.04.012 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 170HT UT WOS:000320841700010 PM 23672965 ER PT J AU Love, E Rider, WJ AF Love, E. Rider, W. J. TI On the convergence of finite difference methods for PDE under temporal refinement SO COMPUTERS & MATHEMATICS WITH APPLICATIONS LA English DT Article DE Verification; Advection; Lax-Wendroff time-differencing; Method-of-lines ID HYPERBOLIC CONSERVATION-LAWS; COMPUTATIONAL FLUID-DYNAMICS; TIME-INTEGRATION METHODS; BOUNDARY-VALUE PROBLEMS; RADIATION-DIFFUSION; MODIFIED EQUATION; SCHEMES; STABILITY; ACCURACY; DISCRETIZATIONS AB In this note we present an issue in the verification of order of convergence for finite difference approximations to partial differential equations discretized in time and space. When one refines both space and time together, the convergence rate for a correct implementation will match that expected from an analysis of the asymptotic convergence rate (or local truncation error) of the method. Sometimes, however, only the time-step size is reduced, while the spatial mesh is held fixed. The observed rate of convergence in this case may then differ from the formal order of accuracy of the method in space-time. In particular, one class of methods, second-order Lax-Wendroff time-differencing, produces only first-order when the time step is refined at fixed spatial mesh resolution because the time and space differencing are intrinsically linked. Our method to arrive at this result is through analyzing the error at a defined point in time associated with many time steps. We demonstrate our results computationally. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Love, E.; Rider, W. J.] Sandia Natl Labs, Computat Shock & Multiphys Dept, Albuquerque, NM 87185 USA. RP Rider, WJ (reprint author), Sandia Natl Labs, Computat Shock & Multiphys Dept, MS 0378,POB 5800, Albuquerque, NM 87185 USA. EM wjrider@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 45 TC 0 Z9 0 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0898-1221 EI 1873-7668 J9 COMPUT MATH APPL JI Comput. Math. Appl. PD AUG PY 2013 VL 66 IS 1 BP 33 EP 40 DI 10.1016/j.camwa.2013.04.019 PG 8 WC Mathematics, Applied SC Mathematics GA 174TA UT WOS:000321177100004 ER PT J AU Krishnan, S Strasburg, C Lutz, RR Goseva-Popstojanova, K Dorman, KS AF Krishnan, Sandeep Strasburg, Chris Lutz, Robyn R. Goseva-Popstojanova, Katerina Dorman, Karin S. TI Predicting failure-proneness in an evolving software product line SO INFORMATION AND SOFTWARE TECHNOLOGY LA English DT Article DE Software product lines; Change metrics; Reuse; Prediction; Post-release defects; Failure-prone files ID DEFECT-DENSITY; FAULTS; MODELS AB Context: Previous work by researchers on 3 years of early data for an Eclipse product has identified some predictors of failure-prone files that work well. Eclipse has also been used previously by researchers to study characteristics of product line software. Objective: The work reported here investigates whether classification-based prediction of failure-prone files improves as the product line evolves. Method: This investigation first repeats, to the extent possible, the previous study and then extends it by including four more recent years of data, comparing the prominent predictors with the previous results. The research then looks at the data for three additional Eclipse products as they evolve over time. The analysis compares results from three different types of datasets with alternative data collection and prediction periods. Results: Our experiments with a variety of learners show that the difference between the performance of J48, used in this work, and the other top learners is not statistically significant. Furthermore, new results show that the effectiveness of classification significantly depends on the data collection period and prediction period. The study identifies change metrics that are prominent predictors across all four releases of all four products in the product line for the three different types of datasets. From the product line perspective, prediction of failure-prone files for the four products studied in the Eclipse product line shows statistically significant improvement in accuracy but not in recall across releases. Conclusion: As the product line matures, the learner performance improves significantly for two of the three datasets, but not for prediction of post-release failure-prone files using only pre-release change data. This suggests that it may be difficult to detect failure-prone files in the evolving product line. At least in part, this may be due to the continuous change, even for commonalities and high-reuse variation components, which we previously have shown to exist. (C) 2012 Elsevier B.V. All rights reserved. C1 [Krishnan, Sandeep; Strasburg, Chris; Lutz, Robyn R.] Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA. [Strasburg, Chris] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Goseva-Popstojanova, Katerina] W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA. [Dorman, Karin S.] Iowa State Univ, Dept Stat, Ames, IA 50011 USA. RP Krishnan, S (reprint author), Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA. EM sandeepk@iastate.edu; cstras@iastate.edu; rlutz@iastate.edu; Katerina.Goseva@mail.wvu.edu; kdorman@iastate.edu OI Dorman, Karin/0000-0003-3650-0018 FU National Science Foundation [0916275, 0916284]; American Recovery and Reinvestment Act FX We thank the reviewers for several helpful suggestions that improved this work. This work was supported by National Science Foundation grants 0916275 and 0916284 with funds from the American Recovery and Reinvestment Act of 2009. Part of this work was performed while the third author was visiting the California Institute of Technology and the Open University, UK. NR 56 TC 5 Z9 5 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0950-5849 EI 1873-6025 J9 INFORM SOFTWARE TECH JI Inf. Softw. Technol. PD AUG PY 2013 VL 55 IS 8 BP 1479 EP 1495 DI 10.1016/j.infsof.2012.11.008 PG 17 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 168DF UT WOS:000320685200009 ER PT J AU Huang, K Park, Y Keiser, DD Sohn, YH AF Huang, K. Park, Y. Keiser, D. D., Jr. Sohn, Y. H. TI Interdiffusion Between Potential Diffusion Barrier Mo and U-Mo Metallic Fuel Alloy for RERTR Applications SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article DE binary diffusion; Boltzmann/Matano analysis; diffusion couples; diffusivity measurements ID URANIUM-MOLYBDENUM ALLOY; DISPERSION FUEL; HIGH-DENSITY; AL; MATRIX AB U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor Program. Previous investigation has shown that the interdiffusion between U and Mo in gamma(bcc)-U solid solution is very slow. This investigation explored interdiffusional behavior, especially in regions with high Mo concentration, and the potential application of Mo as a barrier material to reduce the interaction between U-Mo fuel and Al alloys matrix. Solid-to-solid U-10wt.%Mo versus Mo diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 A degrees C for 960, 720, 480, 240, 96 h, respectively. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 22 to 32 at.%, the interdiffusion coefficient decreased while the activation energy increased. The growth rate constant of the interdiffusion zone between U-10wt.%Mo versus Mo was also determined and compared to be 10(4)-10(5) times lower than those of U-10wt.%Mo versus Al and U-10wt.%Mo versus Al-Si systems. Other desirable physical properties of Mo as a barrier material, such as neutron adsorption rate, melting point and thermal conductivity, are also highlighted. C1 [Huang, K.; Park, Y.; Sohn, Y. H.] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Keiser, D. D., Jr.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. RP Sohn, YH (reprint author), Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. EM Yongho.Sohn@ucf.edu RI Sohn, Yongho/A-8517-2010 OI Sohn, Yongho/0000-0003-3723-4743 FU U.S. Department of Energy, Office of Nuclear Materials Threat Reduction, National Nuclear Security Administration, under DOE-NE Idaho Operations Office [NA-212, DE-AC07-05ID14517] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes. Authors also acknowledge the editorial review and revision contribution from Ms. Megan A. Boye. NR 22 TC 3 Z9 3 U1 3 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1547-7037 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD AUG PY 2013 VL 34 IS 4 BP 307 EP 312 DI 10.1007/s11669-013-0236-z PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 175UY UT WOS:000321260300006 ER PT J AU Terentyev, D Gao, F AF Terentyev, D. Gao, F. TI Blunting of a brittle crack at grain boundaries: An atomistic study in BCC Iron SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Metal; Crack; Grain boundary; Fracture; Twinning deformation ID MOLECULAR-DYNAMICS SIMULATION; SCREW DISLOCATIONS; ALPHA-IRON; LATTICE DISLOCATIONS; EDGE DISLOCATIONS; FCC METALS; CLEAVAGE; FE; NUCLEATION; RESISTANCE AB We investigated the interaction of a brittle crack with low and high angle grain boundaries in BCC Iron by means of atomistic simulations at finite temperatures. It is demonstrated that both low and high angle grain boundaries exhibit resistance to brittle crack propagation. The resistance is controlled by the ability of a grain boundary interface to structurally transform, which can involve grain boundary sliding or the emission of misfit dislocations. Here, we observed deformation mechanisms which generally correspond to those reported in experiments for Fe Si polycrystals. We show that low and high angle grain boundaries exhibit different intensities of plastic deformation upon interaction with a brittle crack, thereby offering different resistance to its propagation. (C) 2013 Elsevier B.V. All rights reserved. C1 [Terentyev, D.] CEN SCK, Nucl Mat Sci Inst, B-2400 Mol, Belgium. [Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Terentyev, D (reprint author), CEN SCK, Nucl Mat Sci Inst, Boeretang 200, B-2400 Mol, Belgium. EM dterenty@sckcen.be FU DOMOPLEX project; US Department of Energy/Office of Fusion Energy Science [DE-AC06-76RLO 1830] FX DT acknowledges the support of DOMOPLEX project. Part of the calculations has been performed using HPC in Juelich in the frame of 'SORT' project. FG is grateful for support by the US Department of Energy/Office of Fusion Energy Science under Contract DE-AC06-76RLO 1830. NR 35 TC 10 Z9 10 U1 3 U2 48 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD AUG 1 PY 2013 VL 576 BP 231 EP 238 DI 10.1016/j.msea.2013.04.012 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 164RW UT WOS:000320428200031 ER PT J AU Carroll, MC Carroll, LJ AF Carroll, M. C. Carroll, L. J. TI Developing Dislocation Subgrain Structures and Cyclic Softening During High-Temperature Creep-Fatigue of a Nickel Alloy SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID ELEVATED-TEMPERATURE; ROOM-TEMPERATURE; STAINLESS-STEEL; FERRITIC STEEL; BEHAVIOR; SUBSTRUCTURE; DEFORMATION; SUPERALLOY; INCONEL-617; CRYSTALS AB The complex cyclic deformation response of Alloy 617 under creep-fatigue conditions is of practical interest both in terms of the observed detriment in failure life and the considerable cyclic softening that occurs. At the low strain ranges investigated, the inelastic strain is the sole predictor of the failure life without taking into consideration a potentially significant environmental influence. The tensile-hold creep-fatigue peak stress response can be directly correlated to the evolving dislocation substructure, which consists of a relatively homogenous distribution of subgrains. Progressive high-temperature cycling with a static hold allows for the rearrangement of loose tangles of dislocations into well-ordered hexagonal dislocation networks. The cyclic softening during tensile-hold creep-fatigue deformation is attributable to two factors: the rearrangement of dislocation substructures into lower-energy configurations, which includes a decreasing dislocation density in subgrain interiors through integration into the subgrain boundaries, and the formation of surface grain boundary cracks and cavity formation or separation at interior grain boundaries, which occurs perpendicular to the stress axis. Effects attributable to the tensile character of the hold cycle are further analyzed through variations in the creep-fatigue waveform and illuminate the effects of the hold-time character on the overall creep-fatigue behavior and evolution of the dislocation substructure. C1 [Carroll, M. C.; Carroll, L. J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Carroll, MC (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM mark.carroll@inl.gov FU NSF MRI [DMR-0521315]; U.S. Department of Energy-Nuclear Energy FX The authors would like to thank Richard Wright for thoughtful guidance and discussions regarding this subject matter. The authors would also like to acknowledge Joel Simpson and Randy Lloyd for conducting the extensive creep-fatigue testing and Tammy Trowbridge and Todd Morris for the considerable metallurgical work required for this study. TEM work carried out at the Boise State Center for Materials Characterization has been supported by NSF MRI Grant DMR-0521315. The current study was supported by the U.S. Department of Energy-Nuclear Energy. NR 40 TC 8 Z9 8 U1 2 U2 52 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD AUG PY 2013 VL 44A IS 8 BP 3592 EP 3607 DI 10.1007/s11661-013-1737-4 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 165DC UT WOS:000320462100018 ER PT J AU Wang, LY Barabash, R Bieler, T Liu, WJ Eisenlohr, P AF Wang, Leyun Barabash, Rozaliya Bieler, Thomas Liu, Wenjun Eisenlohr, Philip TI Study of Twinning in alpha-Ti by EBSD and Laue Microdiffraction SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID GRAIN-BOUNDARIES; HCP METALS; SINGLE-CRYSTALS; 1121 TWINS; DEFORMATION; SLIP; DISLOCATIONS; DIFFRACTION; NUCLEATION; MAGNESIUM AB Activity of the extension twinning (T2) mode was analyzed in a commercial purity Ti sample after 2 pct tensile strain imposed by four-point bending. The sample had a moderate c-axis fiber texture parallel to the tensile axis. Compared with the many extension (T1) twins that formed in 6 pct of the grains, T2 twins were identified in 0.25 pct of the grains by scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) maps. Most of the T2 twins exhibited irregular twin boundaries (TBs) on one side of the twin. High-resolution EBSD revealed both intermediate orientations at some matrix/twin interfaces and substantial lattice rotation within some T2 twins. Interactions between matrix aOE (c) c + a > dislocations and a T2 twin were investigated by combining SEM/EBSD slip trace characterization and Laue microdiffraction peak streak analysis. aOE (c) c + a > dislocations that originally glided on a pyramidal plane in the matrix were found on other planes in both the matrix and the twin, which was attributed to extensive cross-slip of the screw component, whose Burgers vector was parallel to the twinning plane. On the other hand, thickening of the twin could engulf some pile-up edge components in front of the TB. During this process, these aOE (c) c + a > dislocations transmuted from a pyramidal plane in the matrix to a prismatic plane in the twin lattice. Finally, possible mechanisms for the nucleation and growth of T2 twins will be discussed. C1 [Wang, Leyun] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Barabash, Rozaliya] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Bieler, Thomas] Michigan State Univ, E Lansing, MI 48824 USA. [Liu, Wenjun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Eisenlohr, Philip] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany. RP Wang, LY (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM leyunwang@anl.gov RI Eisenlohr, Philip/E-6866-2010 OI Eisenlohr, Philip/0000-0002-8220-5995 FU Materials World Network from NSF [DMR-0710570]; DFG [EI 681/2-1]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This research was supported by a grant from Materials World Network from NSF (DMR-0710570) and DFG (EI 681/2-1). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. RIB was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Discussions with Jian Wang at Los Alamos National Laboratory have contributed to our understanding, and facilitated development of ideas presented in the current article. NR 58 TC 18 Z9 18 U1 3 U2 42 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD AUG PY 2013 VL 44A IS 8 BP 3664 EP 3674 DI 10.1007/s11661-013-1714-y PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 165DC UT WOS:000320462100023 ER PT J AU Onorato, G AF Onorato, Giovanni CA Mu2e Collaboration TI The Mu2e experiment at fermilab: mu N--> e(-)N SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th Pisa Meeting on Advanced Detectors CY MAY 20-26, 2012 CL ITALY SP Ist Nazl Fisica Nucleare (INFN), Univ Pisa, Univ Siena, Soc Italiana Fisica (SIF), European Phys Soc (EPS) DE Tracking detectors; Calorimetry; Muon electron conversion AB Mu2e will search for coherent, neutrino-less conversion of muons into electrons in the field of a nucleus to a few parts in 10(-17), a sensitivity improvement of a factor of 10,000 over existing limits. Muon-Electron conversion provides unique windows into new physics inaccessible to other lepton flavor violation searches and probes up to mass scales similar to 10(4) TeV, far beyond the reach of present or planned high energy colliders. We present the design of the muon beamline and spectrometer, how the experiment fits in the current Fermilab complex, and discusses potential upgrades at Fermilab's Project X. Published by Elsevier B.V. C1 [Onorato, Giovanni] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Onorato, Giovanni] Univ Guglielmo Marconi, Rome, Italy. [Onorato, Giovanni] Ist Nazl Fis Nucl, I-73100 Lecce, Italy. RP Onorato, G (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM giovanni.onorato@gmail.com NR 2 TC 1 Z9 1 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2013 VL 718 BP 102 EP 103 DI 10.1016/j.nima.2012.11.073 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YK UT WOS:000320596900029 ER PT J AU Anastasio, A Ambrosino, F Basta, D Bonechi, L Brianzi, M Bross, A Callier, S Cassese, F Castellini, G Ciaranfi, R Cimmino, L D'Alessandro, R De Fazio, B de La Taille, C Garufi, F Iacobucci, G Martini, M Masone, V Mattone, C Miyamoto, S Montesi, MC Nishiyama, R Noli, P Orazi, M Parascandolo, L Passeggio, G Peluso, R Pla-Dalmau, A Raux, L Rocco, R Rubinov, P Saracino, G Scarlini, E Scarpato, G Sekhniaidze, G Starodubtsev, O Strolin, P Taketa, A Tanaka, HKM Tanaka, M Uchida, T AF Anastasio, A. Ambrosino, F. Basta, D. Bonechi, L. Brianzi, M. Bross, A. Callier, S. Cassese, F. Castellini, G. Ciaranfi, R. Cimmino, L. D'Alessandro, R. De Fazio, B. de La Taille, C. Garufi, F. Iacobucci, G. Martini, M. Masone, V. Mattone, C. Miyamoto, S. Montesi, M. C. Nishiyama, R. Noli, P. Orazi, M. Parascandolo, L. Passeggio, G. Peluso, R. Pla-Dalmau, A. Raux, L. Rocco, R. Rubinov, P. Saracino, G. Scarlini, E. Scarpato, G. Sekhniaidze, G. Starodubtsev, O. Strolin, P. Taketa, A. Tanaka, H. K. M. Tanaka, M. Uchida, T. TI The MU-RAY experiment. An application of SiPM technology to the understanding of volcanic phenomena SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th Pisa Meeting on Advanced Detectors CY MAY 20-26, 2012 CL ITALY SP Ist Nazl Fisica Nucleare (INFN), Univ Pisa, Univ Siena, Soc Italiana Fisica (SIF), European Phys Soc (EPS) DE Muon detector; SiPM; Muon radiography; Volcanoes AB The purpose of the MU-RAY project is to develop an innovative approach to the study of volcanoes and their monitoring based on a particle physics approach. The test site is Vesuvio: one of the higher risk volcanoes in the world. In this context, muon radiography is an innovative method of enormous impact. This is an imaging technique which relies on the measurement, by means of a cosmic ray telescope, of the absorption in the volcano of muons with near-horizontal trajectories, produced by the interactions of cosmic rays with the atmosphere. Since 2003 this technique has been successfully used on volcanoes in Japan, providing pictures of their vertices with resolutions much better than those obtained with the traditional techniques based on gravimeters. Researchers from Naples and Florence are currently involved in the construction and testing of a prototype telescope based on the use of bars of plastic scintillator with a triangular section whose scintillation light is collected by special fibres (wave length shifters) and transported to SiPM (Silicon photomultipliers). A complete prototype telescope, consisting of three xy scintillation planes and 1 m(2) active area has been assembled and is now under test. (C) 2012 Elsevier B.V. All rights reserved. C1 [Anastasio, A.; Ambrosino, F.; Basta, D.; Cassese, F.; Iacobucci, G.; Masone, V.; Mattone, C.; Noli, P.; Parascandolo, L.; Passeggio, G.; Rocco, R.; Saracino, G.; Sekhniaidze, G.; Strolin, P.] INFN Napoli, Naples, Italy. [Ambrosino, F.; Cimmino, L.; De Fazio, B.; Garufi, F.; Mattone, C.; Montesi, M. C.; Noli, P.; Saracino, G.; Strolin, P.] Univ Naples Federico II, Naples, Italy. [Bonechi, L.; Ciaranfi, R.; D'Alessandro, R.; Scarlini, E.; Starodubtsev, O.] INFN Firenze, Florence, Italy. [Bonechi, L.; Brianzi, M.; D'Alessandro, R.; Scarlini, E.; Starodubtsev, O.] Univ Florence, Florence, Italy. [Bross, A.; Pla-Dalmau, A.; Rubinov, P.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Callier, S.; de La Taille, C.; Raux, L.] LAL, Orsay, France. [Castellini, G.] CNR IFAC, Florence, Italy. [Martini, M.; Orazi, M.; Peluso, R.; Scarpato, G.] INGV Osservatorio Vesuviano, Naples, Italy. [Miyamoto, S.; Nishiyama, R.; Taketa, A.; Tanaka, H. K. M.; Tanaka, M.] Univ Tokyo, Earthquake Res Inst, Tokyo 1138654, Japan. [Uchida, T.] Univ Tokyo, Dept Phys, Tokyo 1138654, Japan. RP D'Alessandro, R (reprint author), Univ Florence, Florence, Italy. EM candi@fi.infn.it; taille@lal.in2p3.fr RI D'Alessandro, Raffaello/F-5897-2015; Garufi, Fabio/K-3263-2015; Peluso, Rosario/L-2463-2015; Orazi, Massimo/P-7308-2015; OI D'Alessandro, Raffaello/0000-0001-7997-0306; Garufi, Fabio/0000-0003-1391-6168; Peluso, Rosario/0000-0001-6276-5832; Orazi, Massimo/0000-0003-2772-2989; Starodubtsev, Oleksandr/0000-0002-5321-4884; Castellini, Guido/0000-0002-0177-0643 NR 2 TC 11 Z9 11 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2013 VL 718 BP 134 EP 137 DI 10.1016/j.nima.2012.08.065 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YK UT WOS:000320596900039 ER PT J AU Weisenberger, AG Kross, B Lee, SJ McKisson, J McKisson, JE Xi, W Zorn, C Howell, CR Crowell, AS Reid, CD Smith, M AF Weisenberger, A. G. Kross, B. Lee, S. J. McKisson, J. McKisson, J. E. Xi, W. Zorn, C. Howell, C. R. Crowell, A. S. Reid, C. D. Smith, M. TI Nuclear physics detector technology applied to plant biology research SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th Pisa Meeting on Advanced Detectors CY MAY 20-26, 2012 CL ITALY SP Ist Nazl Fisica Nucleare (INFN), Univ Pisa, Univ Siena, Soc Italiana Fisica (SIF), European Phys Soc (EPS) DE Particle physics detectors; Scintillators; Positron emission tomography; Plant biology ID METABOLITES AB The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: C-11 has been utilized as a (CO2)-C-11 tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the (CO2)-C-11 radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using (CO2)-C-11. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for (CO2)-C-11 tracer studies in plants will be briefly outlined. (C) 2012 Elsevier B.V. All rights reserved. C1 [Weisenberger, A. G.; Kross, B.; Lee, S. J.; McKisson, J.; McKisson, J. E.; Xi, W.; Zorn, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Howell, C. R.; Crowell, A. S.; Reid, C. D.] Duke Univ, Durham, NC USA. [Howell, C. R.; Crowell, A. S.; Reid, C. D.] Triangle Univ Nucl Lab, Durham, NC 27706 USA. [Smith, M.] Univ Maryland, Baltimore, MD 21201 USA. RP Weisenberger, AG (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM drew@jlab.org RI Lee, Seung Joon/M-8163-2013 NR 7 TC 3 Z9 3 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2013 VL 718 BP 157 EP 159 DI 10.1016/j.nima.2012.08.097 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YK UT WOS:000320596900047 ER PT J AU Cappelli, L Creti, P Grancagnolo, F Pepino, A Tassielli, G AF Cappelli, L. Creti, P. Grancagnolo, F. Pepino, A. Tassielli, G. TI A fast readout algorithm for Cluster Counting/Timing drift chambers on a FPGA board SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th Pisa Meeting on Advanced Detectors CY MAY 20-26, 2012 CL ITALY SP Ist Nazl Fisica Nucleare (INFN), Univ Pisa, Univ Siena, Soc Italiana Fisica (SIF), European Phys Soc (EPS) DE Drift chambers; Front-end electronics; Cluster Counting/Timing; fADC; FPGA AB A fast readout algorithm for Cluster Counting and Timing purposes has been implemented and tested on a Virtex 6 core FPGA board. The algorithm analyses and stores data coming from a Helium based drift tube instrumented by 1 GSPS fADC and represents the outcome of balancing between cluster identification efficiency and high speed performance. The algorithm can be implemented in electronics boards serving multiple fADC channels as an online preprocessing stage for drift chamber signals. (C) 2012 Elsevier B.V. All rights reserved. C1 [Creti, P.; Grancagnolo, F.; Pepino, A.; Tassielli, G.] Ist Nazl Fis Nucl, I-73100 Lecce, Italy. [Cappelli, L.] Univ Cassino & Lazio Merid, Cassino, Italy. [Tassielli, G.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Tassielli, G.] Univ Marconi, Rome, Italy. RP Pepino, A (reprint author), Ist Nazl Fis Nucl, I-73100 Lecce, Italy. EM franco.grancagnolo@le.infn.it; Aurora.Pepino@le.infn.it RI Tassielli, Giovanni Francesco/K-2929-2015; Grancagnolo, Francesco/K-2857-2015 OI Tassielli, Giovanni Francesco/0000-0003-3410-6754; Cappelli, Luigi/0000-0001-5904-1403; Grancagnolo, Francesco/0000-0002-9367-3380 NR 2 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2013 VL 718 BP 226 EP 228 DI 10.1016/j.nima.2012.10.087 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YK UT WOS:000320596900069 ER PT J AU Anderson, J Andreani, A Andreazza, A Annovi, A Atkinson, M Auerbach, B Beretta, M Bevacqua, V Blair, R Blazey, G Bogdan, M Boveia, A Canelli, F Castegnaro, A Cavaliere, V Cervigni, F Chang, P Cheng, Y Citterio, M Crescioli, F Dell'Orso, M Drake, G Dunford, M Fabbri, L Favareto, A Franchini, M Geer, S Giannetti, P Giannuzzi, F Giorgi, F Gruenendahl, S Li, HL Hoff, J Iizawa, T Kapliy, A Kasten, M Kim, YK Kimura, N Lanza, A Lasagni, F Liberali, V Liu, T Magalotti, D McCarn, A Melachrinos, C Meroni, C Mitani, T Murat, P Negri, A Neubauer, M Okumura, Y Olsen, J Penning, B Piendibene, M Proudfoot, J Roda, C Sacco, I Sakurai, Y Sbarra, C Shochet, M Stabile, A Tang, J Tang, F Tompkins, L Tripiccione, R Tuggle, J Valentinetti, S Vercesi, V Verzocchi, M Villa, M Volpi, G Webster, J Yorita, K Zhang, J Zoccoli, A AF Anderson, J. Andreani, A. Andreazza, A. Annovi, A. Atkinson, M. Auerbach, B. Beretta, M. Bevacqua, V. Blair, R. Blazey, G. Bogdan, M. Boveia, A. Canelli, F. Castegnaro, A. Cavaliere, V. Cervigni, F. Chang, P. Cheng, Y. Citterio, M. Crescioli, F. Dell'Orso, M. Drake, G. Dunford, M. Fabbri, L. Favareto, A. Franchini, M. Geer, S. Giannetti, P. Giannuzzi, F. Giorgi, F. Gruenendahl, S. Li, H. L. Hoff, J. Iizawa, T. Kapliy, A. Kasten, M. Kim, Y. K. Kimura, N. Lanza, A. Lasagni, F. Liberali, V. Liu, T. Magalotti, D. McCarn, A. Melachrinos, C. Meroni, C. Mitani, T. Murat, P. Negri, A. Neubauer, M. Okumura, Y. Olsen, J. Penning, B. Piendibene, M. Proudfoot, J. Roda, C. Sacco, I. Sakurai, Y. Sbarra, C. Shochet, M. Stabile, A. Tang, J. Tang, F. Tompkins, L. Tripiccione, R. Tuggle, J. Valentinetti, S. Vercesi, V. Verzocchi, M. Villa, M. Volpi, G. Webster, J. Yorita, K. Zhang, J. Zoccoli, A. CA ATLAS Collaboration TI A fast hardware tracker for the ATLAS trigger system SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th Pisa Meeting on Advanced Detectors CY MAY 20-26, 2012 CL ITALY SP Ist Nazl Fisica Nucleare (INFN), Univ Pisa, Univ Siena, Soc Italiana Fisica (SIF), European Phys Soc (EPS) DE Tracking detectors; FTK; VLSI; FPGA AB The Fast Tracker (FTK) processor is an approved ATLAS upgrade that will reconstruct tracks using the full silicon tracker at Level-1 rate (up to 100 KHz). FTK uses a completely parallel approach to read the silicon tracker information, execute the pattern matching and reconstruct the tracks. This approach, according to detailed simulation results, allows full tracking with nearly offline resolution within an execution time of 100 mu s. A central component of the system is the associative memories (AM); these special devices reduce the pattern matching combinatoric problem, providing identification of coarse resolution track candidates. The system consists of a pipeline of several components with the goal to organize and filter the data for the AM, then to reconstruct and filter the final tracks. This document presents an overview of the system and reports the status of the different elements of the system. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Bevacqua, V.; Crescioli, F.; Dell'Orso, M.; Giannetti, P.; Piendibene, M.; Roda, C.; Sacco, I.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beretta, M.; Castegnaro, A.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl, Frascati, Italy. [Bevacqua, V.; Cheng, Y.; Crescioli, F.; Dell'Orso, M.; Kasten, M.; Piendibene, M.; Roda, C.; Sacco, I.] Univ Pisa, Dept Phys, I-56100 Pisa, Italy. [Bogdan, M.; Boveia, A.; Canelli, F.; Dunford, M.; Li, H. L.; Kapliy, A.; Kim, Y. K.; Melachrinos, C.; Okumura, Y.; Penning, B.; Shochet, M.; Tang, J.; Tang, F.; Tompkins, L.; Tuggle, J.; Volpi, G.; Webster, J.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Bogdan, M.; Boveia, A.; Canelli, F.; Dunford, M.; Li, H. L.; Kapliy, A.; Kim, Y. K.; Melachrinos, C.; Okumura, Y.; Penning, B.; Shochet, M.; Tang, J.; Tang, F.; Tompkins, L.; Tuggle, J.; Volpi, G.; Webster, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Atkinson, M.; Cavaliere, V.; Chang, P.; McCarn, A.; Neubauer, M.] Univ Illinois, Dept Phys, Urbana, IL USA. [Anderson, J.; Auerbach, B.; Blair, R.; Drake, G.; Proudfoot, J.; Zhang, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Tripiccione, R.] Univ Ferrara, Dept Phys, I-44100 Ferrara, Italy. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Dept Phys, Waseda, Japan. [Zoccoli, A.] Harvard Univ, Dept Phys, Harvard, MA USA. [Canelli, F.; Geer, S.; Gruenendahl, S.; Hoff, J.; Kim, Y. K.; Liu, T.; Murat, P.; Okumura, Y.; Olsen, J.; Penning, B.; Verzocchi, M.] Fermilab Natl Accelerator Lab, Fermi Natl Accelerator Lab, Batavia, IL USA. [Lanza, A.; Negri, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Franchini, M.; Negri, A.] Univ Pavia, Dept Phys, I-27100 Pavia, Italy. [Andreani, A.; Andreazza, A.; Citterio, M.; Favareto, A.; Liberali, V.; Meroni, C.; Stabile, A.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreani, A.; Andreazza, A.; Favareto, A.; Liberali, V.; Stabile, A.] Univ Milan, Dept Phys, Milan, Italy. [Cervigni, F.; Fabbri, L.; Franchini, M.; Giannuzzi, F.; Giorgi, F.; Lasagni, F.; Magalotti, D.; Sbarra, C.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Cervigni, F.; Fabbri, L.; Giannuzzi, F.; Lasagni, F.; Magalotti, D.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dept Phys, I-40126 Bologna, Italy. [Blazey, G.] No Illinois Univ, De Kalb, IL 60115 USA. [Zoccoli, A.] Univ Perugia, Dept Phys, I-06100 Perugia, Italy. RP Volpi, G (reprint author), Ist Nazl Fis Nucl, Lab Nazl, Frascati, Italy. EM guido.volpi@lnf.infn.it RI Andreazza, Attilio/E-5642-2011; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Stabile, Alberto/L-3419-2016; OI Andreazza, Attilio/0000-0001-5161-5759; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Stabile, Alberto/0000-0002-6868-8329; Blazey, Gerald/0000-0002-7435-5758; tripiccione, raffaele/0000-0002-8516-2492; Volpi, Guido/0000-0003-1058-8883; Giorgi, Filippo Maria/0000-0003-1589-2163; Liberali, Valentino/0000-0003-1333-6876; Canelli, Florencia/0000-0001-6361-2117 NR 3 TC 0 Z9 0 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2013 VL 718 BP 258 EP 259 DI 10.1016/j.nima.2012.11.133 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YK UT WOS:000320596900081 ER PT J AU Li, Z Chen, W Eremin, V Harkonen, J Luukka, P Tuominen, E Tuovinen, E Verbitskaya, E AF Li, Zheng Chen, W. Eremin, V. Harkonen, J. Luukka, P. Tuominen, E. Tuovinen, E. Verbitskaya, E. TI Recent results of CERN RD39 collaboration on development of radiation hard Si detectors operated at low to cryogenic temperatures SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th Pisa Meeting on Advanced Detectors CY MAY 20-26, 2012 CL ITALY SP Ist Nazl Fisica Nucleare (INFN), Univ Pisa, Univ Siena, Soc Italiana Fisica (SIF), European Phys Soc (EPS) DE Si detectors; CID detectors; Charge injection; Trapping; Detrapping; Filling of trapps; CCE; Collected charge; Cryogenic detectors; Beam-loss-monitor ID 3D AB Recent results of CERN RD39 collaboration on the development of radiation hard Si detectors operated at low to cryogenic temperatures will be presented in this paper. It has been found, in comparisons of results of simulation and charge collection data of pad and strip detectors, the charge-injected-diode (CID) operation mode of Si detectors reduces the free carrier trapping, resulting in a much higher charge collection at the SLHC fluence than that in a standard Si detector. The reduction in free carrier trapping by almost a factor of 3 is due to the fact that the CID mode pre-fills the traps, making them neutral and not active in trapping of particle-induced free carriers (signal). It has been found that, electron traps can be pre-filled by injection of electrons from the n(+) contact. The CID mode of detector operation can be achieved by a modestly low temperature of <= -40 degrees C and a operation bias of <600 V. Results of one CID detector application as LHC beam-loss-monitor (BLM) will be presented. Non-irradiated Si detectors has been shown, with tests by laser using our cryogenic transient-current-technique (TCT), to work quite well at LHe temperature (4 K), which are very stable with no polarization and good charge collection efficiency. (C) 2012 Elsevier B.V. All rights reserved. C1 [Li, Zheng; Chen, W.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Eremin, V.; Verbitskaya, E.] AF Ioffe Phys Tech Inst, St Petersburg, Russia. [Harkonen, J.; Luukka, P.; Tuominen, E.; Tuovinen, E.] Helsinki Inst Phys, Helsinki, Finland. RP Li, Z (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zhengl@bnl.gov RI Verbitskaya, Elena/D-1521-2014; Tuominen, Eija/A-5288-2017; OI Tuominen, Eija/0000-0002-7073-7767; Luukka, Panja/0000-0003-2340-4641 NR 12 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2013 VL 718 BP 266 EP 269 DI 10.1016/j.nima.2012.11.012 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YK UT WOS:000320596900084 ER PT J AU Cooke, M AF Cooke, M. CA ATLAS Collabration TI Monitoring the radiation damage of the ATLAS pixel detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th Pisa Meeting on Advanced Detectors CY MAY 20-26, 2012 CL ITALY SP Ist Nazl Fisica Nucleare (INFN), Univ Pisa, Univ Siena, Soc Italiana Fisica (SIF), European Phys Soc (EPS) DE Tracking detectors; Pixel detectors; Radiation damage AB The pixel detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5 x 10(33) cm(-2) s(-1), results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Cooke, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Cooke, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mscooke@lbl.gov NR 4 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2013 VL 718 BP 299 EP 301 DI 10.1016/j.nima.2012.10.029 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YK UT WOS:000320596900093 ER PT J AU Obertino, M Solano, A Pereira, AV Alagoz, E Andresen, J Arndt, K Bolla, G Bortoletto, D Boscardin, M Brosius, R Bubna, M Dalla Betta, GF Jensen, F Krzywda, A Kumar, A Kwan, S Lei, CM Menasce, D Moroni, L Ngadiuba, J Osipenkov, I Perera, L Povoli, M Prosser, A Rivera, R Shipsey, I Tan, P Terzo, S Uplegger, L Wagner, S Dinardo, M AF Obertino, M. Solano, A. Pereira, A. Vilela Alagoz, E. Andresen, J. Arndt, K. Bolla, G. Bortoletto, D. Boscardin, M. Brosius, R. Bubna, M. Dalla Betta, G. -F. Jensen, F. Krzywda, A. Kumar, A. Kwan, S. Lei, C. M. Menasce, D. Moroni, L. Ngadiuba, J. Osipenkov, I. Perera, L. Povoli, M. Prosser, A. Rivera, R. Shipsey, I. Tan, P. Terzo, S. Uplegger, L. Wagner, S. Dinardo, M. TI 3D-FBK pixel sensors with CMS readout: First test results SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th Pisa Meeting on Advanced Detectors CY MAY 20-26, 2012 CL ITALY SP Ist Nazl Fisica Nucleare (INFN), Univ Pisa, Univ Siena, Soc Italiana Fisica (SIF), European Phys Soc (EPS) DE Tracking detectors; 3D silicon pixel sensors; Radiation hardness; CMS; LHC upgrade ID DESIGN; 3D AB Silicon 3D detectors consist of an array of columnar electrodes of both doping types which penetrate entirely in the detector bulk, perpendicularly to the surface. They are emerging as one of the most promising technologies for innermost layers of tracking devices for the foreseen upgrades of the LHC. Until recently, properties of 3D sensors have been investigated mostly with ATLAS readout electronics. 3D pixel sensors compatible with the CMS readout were first fabricated at SINTEF (Oslo, Norway), and more recently at FBK (Trento, Italy) and CNM (Barcelona, Spain). Several sensors with different electrode configurations, bump-bonded with the CMS pixel PSI46 readout chip, were characterized in laboratory and tested at Fermilab with a proton beam of 120 GeV/c. Preliminary results of the data analysis are presented. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved. C1 [Obertino, M.] Univ Piemonte Orientale, Novara, Italy. [Obertino, M.] INFN, Turin, Italy. [Solano, A.] Univ Turin, Turin, Italy. [Solano, A.; Pereira, A. Vilela] INFN, Turin, Italy. [Alagoz, E.; Arndt, K.; Bolla, G.; Bortoletto, D.; Bubna, M.; Krzywda, A.; Shipsey, I.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Andresen, J.; Jensen, F.; Lei, C. M.; Wagner, S.; Dinardo, M.] Univ Colorado, Colorado Springs, CO 80907 USA. [Boscardin, M.] Ctr Mat & Microsist Fdn Bruno Kessler FBK, Povo, TN, Italy. [Kumar, A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Dalla Betta, G. -F.] INFN Padova, Grp Collegato Trento, Povo, TN, Italy. [Dalla Betta, G. -F.] Univ Trent, Povo, TN, Italy. [Prosser, A.; Rivera, R.; Tan, P.; Uplegger, L.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Menasce, D.; Moroni, L.] INFN Milano Bicocca, Milan, Italy. [Kwan, S.; Ngadiuba, J.; Terzo, S.] Univ Milano Bicocca, Milan, Italy. [Osipenkov, I.] Texas A&M Univ, College Stn, TX 77843 USA. [Perera, L.] Univ Mississippi, University, MS 38677 USA. RP Obertino, M (reprint author), Univ Piemonte Orientale, Novara, Italy. EM margherita.obertino@cern.ch RI Boscardin, Maurizio/A-4420-2014; Dalla Betta, Gian-Franco/I-1783-2012; Vilela Pereira, Antonio/L-4142-2016; Menasce, Dario Livio/A-2168-2016; OI Dalla Betta, Gian-Franco/0000-0001-5516-9282; Vilela Pereira, Antonio/0000-0003-3177-4626; Terzo, Stefano/0000-0003-3388-3906; Menasce, Dario Livio/0000-0002-9918-1686; Arndt, Kirk/0000-0002-6826-8340 NR 6 TC 1 Z9 1 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2013 VL 718 BP 342 EP 344 DI 10.1016/j.nima.2012.11.076 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YK UT WOS:000320596900110 ER PT J AU Uplegger, L Ngadiuba, J Alagoz, E Andresen, J Arndt, K Bolla, G Bortoletto, D Brom, JM Brosius, R Bubna, M Chramowicz, J Cumalat, J Jensen, F Krzywda, A Kumar, A Kwan, S Lei, CM Menasce, D Moroni, L Obertino, M Osipenkov, I Perera, L Prosser, A Rivera, R Solano, A Tan, P Terzo, S Tran, N Wagner, SR AF Uplegger, Lorenzo Ngadiuba, Jennifer Alagoz, Enver Andresen, Jeff Arndt, Kirk Bolla, Gino Bortoletto, Daniela Brom, Jean Marie Brosius, Richard Bubna, Mayur Chramowicz, John Cumalat, John Jensen, Frank Krzywda, Alex Kumar, Ashish Kwan, Simon Lei, C. M. Menasce, Dario Moroni, Luigi Obertino, Margherita Osipenkov, Ilya Perera, Lalith Prosser, Alan Rivera, Ryan Solano, Ada Tan, Ping Terzo, Stefano Tran, Nhan Wagner, Stephen Robert TI Test-beam studies of diamond sensors for SLHC SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th Pisa Meeting on Advanced Detectors CY MAY 20-26, 2012 CL ITALY SP Ist Nazl Fisica Nucleare (INFN), Univ Pisa, Univ Siena, Soc Italiana Fisica (SIF), European Phys Soc (EPS) DE Tracking detectors; Diamond detectors; Solid state detectors; Test-beam AB Diamond sensors are studied as an alternative to silicon sensors to withstand the high radiation doses that are expected in future upgrades of the pixel detectors for the SLHC. Diamond pixel sensors are intrinsically radiation hard and are considered as a possible solution for the innermost tracker layers close to the interaction point where current silicon sensors cannot cope with the harsh radiation environment. An effort to study possible candidates for the upgrades is undergoing using the Fermilab test-beam facility (FTBF), where diamonds and 3D silicon sensors have been studied. Using a CMS pixel-based telescope built and installed at the FTBF, we are studying charge collection efficiencies for un-irradiated and irradiated devices bump-bonded to the CMS PSI46 pixel readout chip. A description of the test-beam effort and preliminary results on diamond sensors will be presented. Published by Elsevier B.V. C1 [Uplegger, Lorenzo; Andresen, Jeff; Chramowicz, John; Kwan, Simon; Lei, C. M.; Prosser, Alan; Rivera, Ryan; Tan, Ping; Tran, Nhan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ngadiuba, Jennifer; Menasce, Dario; Moroni, Luigi; Terzo, Stefano] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [Alagoz, Enver; Arndt, Kirk; Bolla, Gino; Bortoletto, Daniela; Bubna, Mayur; Krzywda, Alex] Purdue Univ, W Lafayette, IN 47907 USA. [Brom, Jean Marie] Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Brosius, Richard; Kumar, Ashish] SUNY Buffalo, Buffalo, NY 14260 USA. [Cumalat, John; Jensen, Frank; Wagner, Stephen Robert] Univ Colorado Boulder, Boulder, CO USA. [Obertino, Margherita; Solano, Ada] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Osipenkov, Ilya] Texas A&M, College Stn, TX 77843 USA. [Perera, Lalith] Univ Mississippi, University, MS 38677 USA. RP Uplegger, L (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM uplegger@fnal.gov RI Menasce, Dario Livio/A-2168-2016; OI Terzo, Stefano/0000-0003-3388-3906; Menasce, Dario Livio/0000-0002-9918-1686; Arndt, Kirk/0000-0002-6826-8340 NR 4 TC 6 Z9 6 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2013 VL 718 BP 376 EP 379 DI 10.1016/j.nima.2012.10.011 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YK UT WOS:000320596900123 ER PT J AU Cascella, M Grancagnolo, F Miccoli, A Panareo, M Tassielli, G AF Cascella, M. Grancagnolo, F. Miccoli, A. Panareo, M. Tassielli, G. TI Ultra-light gas mixtures for drift chambers SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th Pisa Meeting on Advanced Detectors CY MAY 20-26, 2012 CL ITALY SP Ist Nazl Fisica Nucleare (INFN), Univ Pisa, Univ Siena, Soc Italiana Fisica (SIF), European Phys Soc (EPS) DE Drift chambers; Gain measurement; Diethorn formula AB We present results on the measurements of gas gain for gas mixtures at absolute pressure below the atmospheric pressure, down to 100 mbar, and their relative stability. Besides the obvious advantage of further limiting the contribution to the momentum measurement due to multiple scattering, the operation at low pressure allows for a fine tuning of the working parameters of a drift chamber like drift velocity, diffusion and specific ionization. Furthermore, such a possibility is of particular interest for experiments like the direct muon to electron conversion experiment Mu2e at Fermilab, where the tracking detector needs to operate in vacuum. Plans for extending the measurements to transport parameters, like drift velocity and diffusion, will also be presented. (C) 2012 Elsevier B.V. All rights reserved. C1 [Cascella, M.; Grancagnolo, F.; Miccoli, A.; Panareo, M.; Tassielli, G.] Ist Nazl Fis Nucl, I-73100 Lecce, Italy. [Cascella, M.; Panareo, M.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Tassielli, G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Tassielli, G.] Univ Marconi, Rome, Italy. RP Cascella, M (reprint author), Ist Nazl Fis Nucl, I-73100 Lecce, Italy. EM Michele.Cascella@le.infn.it RI Tassielli, Giovanni Francesco/K-2929-2015; Panareo, Marco/Q-4563-2016; Grancagnolo, Francesco/K-2857-2015; Cascella, Michele/B-6156-2013 OI Tassielli, Giovanni Francesco/0000-0003-3410-6754; Panareo, Marco/0000-0002-7757-5553; Grancagnolo, Francesco/0000-0002-9367-3380; Cascella, Michele/0000-0003-2091-2501 NR 6 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2013 VL 718 BP 409 EP 411 DI 10.1016/j.nima.2012.10.005 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YK UT WOS:000320596900132 ER PT J AU Assiro, R Cappelli, L Cascella, M De Lorenzis, L Grancagnolo, F Ignatov, F L'Erario, A Maffezzoli, A Miccoli, A Onorato, G Perillo, M Piacentino, G Rella, S Rossetti, F Spedicato, M Tassielli, G Zavarise, G AF Assiro, R. Cappelli, L. Cascella, M. De Lorenzis, L. Grancagnolo, F. Ignatov, F. L'Erario, A. Maffezzoli, A. Miccoli, A. Onorato, G. Perillo, M. Piacentino, G. Rella, S. Rossetti, F. Spedicato, M. Tassielli, G. Zavarise, G. TI Ultra-low mass drift chambers SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 12th Pisa Meeting on Advanced Detectors CY MAY 20-26, 2012 CL ITALY SP Ist Nazl Fisica Nucleare (INFN), Univ Pisa, Univ Siena, Soc Italiana Fisica (SIF), European Phys Soc (EPS) DE Drift chambers; Composite materials; Momentum resolution; Feed-through-less wiring AB We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100-200 keV/c) for particle momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce. Published by Elsevier BY. C1 [Assiro, R.; Cascella, M.; De Lorenzis, L.; Grancagnolo, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Onorato, G.; Piacentino, G.; Rella, S.; Spedicato, M.; Tassielli, G.; Zavarise, G.] Ist Nazl Fis Nucl, I-73100 Lecce, Italy. [Cappelli, L.] Univ Cassino & Lazio Meridionale, Cassino, Italy. [Cascella, M.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [De Lorenzis, L.; L'Erario, A.; Maffezzoli, A.; Rella, S.; Zavarise, G.] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy. [Onorato, G.; Piacentino, G.; Tassielli, G.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Ignatov, F.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Onorato, G.; Piacentino, G.; Tassielli, G.] Univ G Marconi, Rome, Italy. [Perillo, M.; Rossetti, F.] EnginSoft Spa, Trento, Italy. RP Tassielli, G (reprint author), Ist Nazl Fis Nucl, I-73100 Lecce, Italy. EM michele.cascella@le.infn.it; franco.grancagnolo@le.infn.it; giovanni.onorato@gmail.com; piacentino@unicas.it; giovanni.tassielli@le.infn.it RI Cascella, Michele/B-6156-2013; Ignatov, Fedor/A-6926-2014; Piacentino, Giovanni/K-3269-2015; maffezzoli, alfonso/L-7217-2015; Grancagnolo, Francesco/K-2857-2015; Rella, Simona/E-2247-2015; Tassielli, Giovanni Francesco/K-2929-2015 OI Cascella, Michele/0000-0003-2091-2501; De Lorenzis, Laura/0000-0003-2748-3287; Piacentino, Giovanni/0000-0001-9884-2924; maffezzoli, alfonso/0000-0002-6371-4030; Zavarise, Giorgio/0000-0002-6340-0015; Cappelli, Luigi/0000-0001-5904-1403; Grancagnolo, Francesco/0000-0002-9367-3380; Rella, Simona/0000-0003-2255-4664; Tassielli, Giovanni Francesco/0000-0003-3410-6754 NR 4 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2013 VL 718 BP 443 EP 445 DI 10.1016/j.nima.2012.10.047 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YK UT WOS:000320596900145 ER PT J AU Ettinger, B Burr, DB Ritchie, RO AF Ettinger, B. Burr, D. B. Ritchie, R. O. TI Proposed pathogenesis for atypical femoral fractures: Lessons from materials research SO BONE LA English DT Editorial Material DE Atypical femoral fractures; Bisphosphonates; Bone turnover; Aging; Bone quality; Bone biomechanics ID SUPPRESSED BONE TURNOVER; HUMAN CORTICAL BONE; POSTMENOPAUSAL WOMEN; NONENZYMATIC GLYCATION; MINERAL DENSITY; MICRODAMAGE ACCUMULATION; BISPHOSPHONATE TREATMENT; ALENDRONATE THERAPY; OSTEOPOROSIS; RISEDRONATE AB Atypical femoral fractures (AFFs) have been well defined clinically and epidemiologically. Less clear are the underlying mechanisms responsible. This commentary points out the likely sources of decreased resistance to fracture using lessons from bone material studies and biomechanics. We hypothesize that the key element in the cascade of events leading to failure of the largest and strongest bone in the human body is long-term suppression of normal bone turnover caused by exposure to potent anti-remodeling agents, most notably the bisphosphonates (BPs). Suppressed bone turnover produces changes in bone that alter its material quality and these changes could lead to adverse effects on its mechanical function. At the submicroscopic [<1 mu m] level of collagen fibrils, suppression of bone turnover allows continued addition of non-enzymatic cross links that can reduce collagen's plasticity and this in turn contributes to reduced bone toughness. Further, adverse changes in hydroxyapatite crystalline structure and composition can occur, perhaps increasing collagen's brittleness. At the microscopic level [similar to 1-500 mu m] of the bone-matrix structure, suppressed bone turnover allows full mineralization of cortical bone osteons and results in a microstructure of bone that is more homogeneous. Both brittleness and loss of heterogeneity allow greater progression of microscopic cracks that can occur with usual physical activity; in crack mechanical terms, normal mechanisms that dissipate crack tip growth energy are greatly reduced and crack progression is less impeded. Further, the targeted repair of cracks by newly activated BMUs appears to be preferentially suppressed by BPs. We further hypothesize that it is not necessary to have accumulation of many cracks to produce an AFF, just one that progresses - one that is not stopped by bone's several protective mechanisms and is allowed to penetrate through a homogeneous environment. The remarkable straight transverse fracture line is an indicator of the slow progression of a "mother crack" and the failure of usual mechanisms to bridge or deflect the crack. Research in AFF mechanisms has been focused at the organ level, describing the clinical presentation and radiologic appearance Although today we have not yet connected all the dots in the pathophysiology of BP-induced AFF, recent advances in measuring bone mechanical qualities at the submicroscopic and tissue levels allow us to explain how spontaneous catastrophic failure of the femur can occur. (C) 2013 Elsevier Inc. All rights reserved. C1 [Ettinger, B.] Univ Calif San Francisco, Med Ctr, Dept Med, San Francisco, CA 94111 USA. [Burr, D. B.] Indiana Univ Sch Med, Dept Anat & Cell Biol, Indianapolis, IN 46202 USA. [Ritchie, R. O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ritchie, R. O.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Ritchie, R. O.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. RP Ettinger, B (reprint author), 156 Lombard St 13, San Francisco, CA 94111 USA. EM doc.ettinger@gmail.com; dburr@iupui.edu; roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 NR 32 TC 46 Z9 46 U1 2 U2 28 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 8756-3282 J9 BONE JI Bone PD AUG PY 2013 VL 55 IS 2 BP 495 EP 500 DI 10.1016/j.bone.2013.02.004 PG 6 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 171AK UT WOS:000320896600032 PM 23419776 ER PT J AU Kane, JJ Karthik, C Ubic, R Windes, WE Butt, DP AF Kane, Joshua J. Karthik, Chinnathambi Ubic, Rick Windes, William E. Butt, Darryl P. TI An oxygen transfer model for high purity graphite oxidation SO CARBON LA English DT Article ID HETEROGENEOUS CO2 EVOLUTION; NUCLEAR GRAPHITE; SURFACE COMPLEXES; CARBONACEOUS SURFACE; PYROLYTIC-GRAPHITE; SOLID REACTIONS; PRODUCT RATIO; BASAL-PLANE; KINETICS; GASIFICATION AB An intrinsic mathematical model is developed for the investigation of the gas-solid reaction kinetics of high-purity graphite and oxygen. This model is based upon the oxygen transfer mechanism and uses physically meaningful parameters that are directly comparable to the experimental and theoretical literature of the carbon-oxygen reaction system. The model was used to extract reaction parameters for NBG-18 polycrystalline graphite for oxygen/nitrogen mixtures with a total pressure of 100 kPa. Experimental temperatures ranged from 500 to 850 degrees C for oxygen partial pressures of 1, 5, 10, 20, and 40 kPa. The optimized model parameters are in good agreement with previously reported literature values. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kane, Joshua J.; Karthik, Chinnathambi; Ubic, Rick; Butt, Darryl P.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Ubic, Rick; Windes, William E.; Butt, Darryl P.] Ctr Adv Energy Studies, Idaho Falls, ID 83415 USA. [Windes, William E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Butt, DP (reprint author), Boise State Univ, Dept Mat Sci & Engn, 1910 Univ Dr, Boise, ID 83725 USA. EM darrylbutt@boisestate.edu FU Department of Energy [National Nuclear Security Administration] [00041394/00026, DE-NE0000140, DE-NE0000338]; National Science Foundation Major Research Instrumentation Program [0521315]; Nuclear Regulatory Commission under the Nuclear Materials Fellowship Program [NRC-38-08-955] FX This material is based upon work supported by the Department of Energy [National Nuclear Security Administration] under Award Nos. 00041394/00026 and DE-NE0000140. SEM and TEM studies were carried out at the Boise State Center for Materials Characterization (BSCMC) and were supported by the Department of Energy [National Nuclear Security Administration] under Award Number DE-NE0000338 and the National Science Foundation Major Research Instrumentation Program, Award No. 0521315, respectively. Furthermore, J. Kane acknowledges the funding of the Nuclear Regulatory Commission under the Nuclear Materials Fellowship Program (NRC-38-08-955). NR 86 TC 5 Z9 6 U1 4 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD AUG PY 2013 VL 59 BP 49 EP 64 DI 10.1016/j.carbon.2013.02.053 PG 16 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 165MZ UT WOS:000320489300005 ER PT J AU Berman, D Erdemir, A Sumant, AV AF Berman, Diana Erdemir, Ali Sumant, Anirudha V. TI Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen SO CARBON LA English DT Article ID RAMAN-SPECTROSCOPY; TRIBOLOGICAL PROPERTIES; ELASTIC PROPERTIES; LUBRICANT; GRAPHITE; COATINGS; SHEETS; OXIDES; IRON AB We report on the friction and wear behavior of graphene-lubricated 440C steel test pairs in dry nitrogen under different loads. Tribological test results have revealed that a few-layer graphene is able to drastically reduce the wear and the coefficient of friction (COP) of 440C steel during the initial sliding regime and under low load conditions. Specifically, the COP has been reduced from approximate to 1 for bare steel to 0.15 for steel covered by a low concentration of graphene flakes. Such low COFs have persisted for thousands of sliding passes, even though the graphene layers formed on sliding surfaces have not been continuous or continuously replenished; they were made of a few sheets of graphene. The wear rates of the steel test pairs have been also reduced (by as much as two orders of magnitude), again despite the very sporadic and thin nature of the grapheme layers. A possible explanation for the low friction and wear reduction is that graphene as a two-dimensional material shears easily at the sliding contact interface and, hence, provides low friction. (C) 2013 Published by Elsevier Ltd. C1 [Berman, Diana; Sumant, Anirudha V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Sumant, AV (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sumant@anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 39 TC 82 Z9 83 U1 14 U2 167 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD AUG PY 2013 VL 59 BP 167 EP 175 DI 10.1016/j.carbon.2013.03.006 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 165MZ UT WOS:000320489300016 ER PT J AU Phelps, JH El-Rahman, AIA Kunc, V Tucker, CL AF Phelps, Jay H. El-Rahman, Ahmed I. Abd Kunc, Vlastimil Tucker, Charles L., III TI A model for fiber length attrition in injection-molded long-fiber composites SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Discontinuous reinforcement; Microstructures; Computational modeling; Injection moulding ID REINFORCED THERMOPLASTICS; ORIENTATION; SUSPENSIONS; BEHAVIOR; MOLDINGS; POLYPROPYLENE; POLYAMIDE; BREAKAGE; FRACTURE; MOTION AB Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10-13 mm long. When an LFT is injection molded, flow during mold filling degrades the fiber length. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution at each spatial node. A conservation equation for total fiber length is combined with a breakage rate that is based on buckling of fibers due to hydrodynamic forces. The model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glass-fiber/PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Phelps, Jay H.; El-Rahman, Ahmed I. Abd; Tucker, Charles L., III] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Kunc, Vlastimil] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Tucker, CL (reprint author), Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. EM ctucker@illinois.edu RI Tucker, Charles/A-8734-2014; Abd El-Rahman, Ahmed/N-4590-2014; Kunc, Vlastimil/E-8270-2017 OI Tucker, Charles/0000-0002-8995-6740; Abd El-Rahman, Ahmed/0000-0002-5217-1093; Kunc, Vlastimil/0000-0003-4405-7917 FU US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, as part of the Lightweight Materials Program [DE-AC05-00OR22725]; UT-Battelle, LLC. FX This research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, as part of the Lightweight Materials Program under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Comments and suggestions from Drs. Mark T. Smith, Ba Nghiep Nguyen, and James D. Holbery of Pacific Northwest National Laboratory, and from the industrial advisory board of the project, are gratefully acknowledged. We also thank Drs. Xiaoshi Jin and Jin Wang of Autodesk Moldflow for their helpful insights and suggestions. NR 43 TC 19 Z9 21 U1 1 U2 57 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD AUG PY 2013 VL 51 BP 11 EP 21 DI 10.1016/j.compositesa.2013.04.002 PG 11 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 173QR UT WOS:000321094500002 ER PT J AU Bhatia, H Norgard, G Pascucci, V Bremer, PT AF Bhatia, Harsh Norgard, Gregory Pascucci, Valerio Bremer, Peer-Timo TI The Helmholtz-Hodge Decomposition-A Survey SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Vector fields; incompressibility; boundary conditions; Helmholtz-Hodge decomposition ID NAVIER-STOKES EQUATIONS; SMOOTHED PARTICLE HYDRODYNAMICS; VISCOUS INCOMPRESSIBLE-FLOW; 2ND-ORDER PROJECTION METHOD; CURL-FREE WAVELETS; VECTOR-FIELDS; TOMOGRAPHIC RECONSTRUCTION; DIVERGENCE-FREE; ELECTROMAGNETISM; THEOREM AB The Helmholtz-Hodge Decomposition (HHD) describes the decomposition of a flow field into its divergence-free and curl-free components. Many researchers in various communities like weather modeling, oceanology, geophysics, and computer graphics are interested in understanding the properties of flow representing physical phenomena such as incompressibility and vorticity. The HHD has proven to be an important tool in the analysis of fluids, making it one of the fundamental theorems in fluid dynamics. The recent advances in the area of flow analysis have led to the application of the HHD in a number of research communities such as flow visualization, topological analysis, imaging, and robotics. However, because the initial body of work, primarily in the physics communities, research on the topic has become fragmented with different communities working largely in isolation often repeating and sometimes contradicting each others results. Additionally, different nomenclature has evolved which further obscures the fundamental connections between fields making the transfer of knowledge difficult. This survey attempts to address these problems by collecting a comprehensive list of relevant references and examining them using a common terminology. A particular focus is the discussion of boundary conditions when computing the HHD. The goal is to promote further research in the field by creating a common repository of techniques to compute the HHD as well as a large collection of example applications in a broad range of areas. C1 [Bhatia, Harsh; Bremer, Peer-Timo] Univ Utah, Sci Comp & Imaging Inst SCI, Livermore, CA 94551 USA. [Bhatia, Harsh; Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Norgard, Gregory] Numerica, Ft Collins, CO 80525 USA. [Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst SCI, Salt Lake City, UT 84112 USA. RP Bhatia, H (reprint author), Univ Utah, Sci Comp & Imaging Inst SCI, Livermore, CA 94551 USA. EM hbhatia@sci.utah.edu; gregnorgard@gmail.com; pascucci@sci.utah.edu; ptbremer@sci.utah.edu FU US Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344. LLNL-JRNL-522732] FX The authors would like to acknowledge Joshua Levine, Bei Wang, and Guoning Chen for reviewing the earlier drafts of this survey. Special acknowledgments go to Konrad Polthier, Tudor Ratiu, Jos Stam, and Qinghong Guo for their insightful feedback. This work was performed under the auspices of the US Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) under contract DE-AC52-07NA27344. LLNL-JRNL-522732. NR 100 TC 18 Z9 19 U1 2 U2 16 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD AUG PY 2013 VL 19 IS 8 BP 1386 EP 1404 DI 10.1109/TVCG.2012.316 PG 19 WC Computer Science, Software Engineering SC Computer Science GA 167TT UT WOS:000320658600013 PM 23744268 ER PT J AU Schaef, HT McGrail, BP Owen, AT Arey, BW AF Schaef, H. T. McGrail, B. P. Owen, A. T. Arey, B. W. TI Mineralization of basalts in the CO2-H2O-H2S system SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Basalt; Mineralization; Co-sequestration; H2S ID CARBON-DIOXIDE; GEOLOGICAL SEQUESTRATION; CO-SEQUESTRATION; PILOT PROJECT; SULFUR; DISSOLUTION; DISPOSAL; MINERALS; SULFATE; H2S AB Basalt samples representing five different formations were immersed in water equilibrated with supercritical carbon dioxide containing 1% hydrogen sulfide (H2S) at reservoir conditions (100 bar, 90 degrees C) for up to 3.5 years. Surface coatings in the form of pyrite and metal cation substituted carbonates were identified as reaction products associated with all five basalts. In some cases, high pressure tests contained excess H2S, which produced the most corroded basalts and largest amount of secondary products. In comparison, tests containing limited amounts of H2S appeared least reacted with significantly less concentrations of reaction products. In all cases, pyrite appeared to precede carbonation, and in some instances, was observed in the absence of carbonation such as in cracks, fractures, and within the porous glassy mesostasis. Armoring reactions from pyrite surface coatings observed in earlier shorter duration tests were found to be temporary with carbonate mineralization observed with all the basalts tested in these long duration experiments. Geochemical simulations conducted with the geochemical code EQ3/6 accurately predicted early pyrite precipitation followed by formation of carbonates. Reactivity with H2S was correlated with measured Fe(II)/Fe(III) ratios in the basalts with more facile pyrite formation occurring with basalts containing more Fe(III) phases. These experimental and modeling results confirm potential for long term sequestration of acid gas mixtures in continental flood basalt formations. Published by Elsevier B.V. C1 [Schaef, H. T.; McGrail, B. P.; Owen, A. T.; Arey, B. W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Schaef, HT (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM todd.schaef@pnl.gov FU U.S. Department of Energy, Office of Fossil Energy; DOE [DE-AC06-76RLO-1830] FX This work was supported by the U.S. Department of Energy, Office of Fossil Energy. Part of this work was performed at EMSL, a national scientific user facility at PNNL that is managed by the DOE's office of Biological and Environmental Research. PNNL is operated for DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO-1830. NR 24 TC 12 Z9 12 U1 4 U2 47 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD AUG PY 2013 VL 16 BP 187 EP 196 DI 10.1016/j.ijggc.2013.03.020 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 165PF UT WOS:000320495100018 ER PT J AU Bamgbade, BA Wu, Y Baled, HO Enick, RM Burgess, WA Tapriyal, D McHugh, MA AF Bamgbade, Babatunde A. Wu, Yue Baled, Hseen O. Enick, Robert M. Burgess, Ward A. Tapriyal, Deepak McHugh, Mark A. TI Experimental density measurements of bis(2-ethylhexyl) phthalate at elevated temperatures and pressures SO JOURNAL OF CHEMICAL THERMODYNAMICS LA English DT Article DE Phthalate; High pressure; Density; Peng-Robinson; PC-SAFT ID EQUATION-OF-STATE; DIISODECYL PHTHALATE; MODERATE VISCOSITY; POTENTIAL STANDARD; POLYMER SYSTEMS; SAFT; MPA; FLUID AB Experimental high-temperature, high-pressure (HTHP) density data for bis(2-ethylhexyl) phthalate (DEHP) are reported in this study. DEHP is a popular choice as a reference fluid for viscosity calibrations in the HTHP region. However, reliable HTHP density values are needed for accurate viscosity calculations for certain viscometers (e. g. rolling ball). HTHP densities are determined at T = (373, 424, 476, 492, and 524) K and P to 270 MPa using a variable-volume, high-pressure view cell. The experimental density data are satisfactorily correlated by the modified Tait equation with a mean absolute percent deviation (delta) of 0.15. The experimental data are modeled with the Peng-Robinson (PREoS), volume-translated PREoS (VT-PREoS), and perturbed chain statistical associating fluid theory (PC-SAFT EoS) models. The required parameters for the two PREoS and the PC-SAFT EoS models are determined using group contribution methods. The PC-SAFT EoS performs the best of the three models with a delta of 2.12. The PC-SAFT EoS is also fit to the experimental data to obtain a new set of pure component parameters that yield a d of 0.20 for these HTHP conditions. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Bamgbade, Babatunde A.; Wu, Yue; Baled, Hseen O.; Enick, Robert M.; Burgess, Ward A.; Tapriyal, Deepak; McHugh, Mark A.] US DOE, Off Res & Dev, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Bamgbade, Babatunde A.; Wu, Yue; McHugh, Mark A.] Virginia Commonwealth Univ, Chem & Life Sci Engn Dept, Richmond, VA 23284 USA. [Baled, Hseen O.; Enick, Robert M.] Univ Pittsburgh, Swanson Sch Engn, Chem & Petr Engn Dept, Pittsburgh, PA 15261 USA. [Tapriyal, Deepak] URS, Pittsburgh, PA USA. RP Bamgbade, BA (reprint author), Virginia Commonwealth Univ, Chem & Life Sci Engn Dept, 601 West Main St, Richmond, VA 23284 USA. EM bamgbadeba@vcu.edu FU National Energy Technology Laboratory's Office of Research and Development [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's Office of Research and Development support of the strategic Center for Natural Gas and Oil under RES contract DE-FE0004000. NR 32 TC 5 Z9 6 U1 0 U2 20 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0021-9614 J9 J CHEM THERMODYN JI J. Chem. Thermodyn. PD AUG PY 2013 VL 63 BP 102 EP 107 DI 10.1016/j.jct.2013.04.010 PG 6 WC Thermodynamics; Chemistry, Physical SC Thermodynamics; Chemistry GA 166XR UT WOS:000320594200017 ER PT J AU Bochev, P Ridzal, D Shashkov, M AF Bochev, Pavel Ridzal, Denis Shashkov, Mikhail TI Fast optimization-based conservative remap of scalar fields through aggregate mass transfer SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Constrained interpolation; Remap; Flux-corrected remap; FCT; Optimization-based remap; Quadratic programing ID LAGRANGIAN-EULERIAN METHODS; ALGORITHMS; GRIDS; FLOW AB We develop a fast, efficient and accurate optimization-based algorithm for the high-order conservative and local-bound preserving remap (constrained interpolation) of a scalar conserved quantity between two close meshes with the same connectivity. The new formulation is as robust and accurate as the flux-variable flux-target optimization-based remap (FVFT-OBR) [1,2] yet has the computational efficiency of an explicit remapper. The coupled system of linear inequality constraints, resulting from the flux form of remap, is the main efficiency bottleneck in FVFT-OBR. While advection-based remappers use the flux form to directly enforce mass conservation, the optimization setting allows us to treat mass conservation as one of the constraints. To take advantage of this fact, we consider an alternative mass-variable mass-target (MVMT-OBR) formulation in which the optimization variables are the net mass updates per cell and a single linear constraint enforces the conservation of mass. In so doing we change the structure of the OBR problem from a global linear-inequality constrained QP to a singly linearly constrained QP with simple bounds. Using the structure of the MVMT-OBR problem, and the fact that in remap the old and new grids are close, we are able to develop a simple, efficient and easily parallelizable optimization algorithm for the primal MVMT-OBR QP. Numerical studies on a variety of affine and non-affine grids confirm that MVMT-OBR is as accurate and robust as FVFT-OBR, but has the same computational cost as the explicit, state-of-the-art FCR. (C) 2013 Elsevier Inc. All rights reserved. C1 [Bochev, Pavel; Ridzal, Denis] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Shashkov, Mikhail] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bochev, P (reprint author), Sandia Natl Labs, MS 1320, Albuquerque, NM 87185 USA. EM pbboche@sandia.gov; dridzal@sandia.gov; shashkov@lanl.gov FU DOE Office of Science Advanced Scientific Computing Research (ASCR) Program; Advanced Simulation & Computing (ASC) Program FX All authors acknowledge funding by the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program. D. Ridzal and M. Shashkov also acknowledge funding by the Advanced Simulation & Computing (ASC) Program. NR 16 TC 11 Z9 11 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 1 PY 2013 VL 246 BP 37 EP 57 DI 10.1016/j.jcp.2013.03.040 PG 21 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 167BA UT WOS:000320604000004 ER PT J AU Vikas, V Hauck, CD Wang, ZJ Fox, RO AF Vikas, V. Hauck, C. D. Wang, Z. J. Fox, R. O. TI Radiation transport modeling using extended quadrature method of moments SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Radiation transport; EQMOM; Realizability; Finite-volume scheme AB The radiative transfer equation describes the propagation of radiation through a material medium. While it provides a highly accurate description of the radiation field, the large phase space on which the equation is defined makes it numerically challenging. As a consequence, significant effort has gone into the development of accurate approximation methods. Recently, an extended quadrature method of moments (EQMOM) has been developed to solve univariate population balance equations, which also have a large phase space and thus face similar computational challenges. The distinct advantage of the EQMOM approach over other moment methods is that it generates moment equations that are consistent with a positive phase space density and has a moment inversion algorithm that is fast and efficient. The goal of the current paper is to present the EQMOM method in the context of radiation transport, to discuss advantages and disadvantages, and to demonstrate its performance on a set of standard one-dimensional benchmark problems that encompass optically thin, thick, and transition regimes. Special attention is given in the implementation to the issue of realizability-that is, consistency with a positive phase space density. Numerical results in one dimension are promising and lay the foundation for extending the same framework to multiple dimensions. (C) 2013 Elsevier Inc. All rights reserved. C1 [Vikas, V.] Iowa State Univ, Dept Aerosp Engn, Ames, IA 50011 USA. [Hauck, C. D.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Wang, Z. J.] Univ Kansas, Dept Aerosp Engn, Lawrence, KS 66045 USA. [Fox, R. O.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. RP Vikas, V (reprint author), Iowa State Univ, Dept Aerosp Engn, 2271 Howe Hall, Ames, IA 50011 USA. EM vvikas@iastate.edu; hauckc@ornl.gov; zjw@ku.edu; rofox@iastate.edu RI Wang, Z.J./A-9628-2010 OI Wang, Z.J./0000-0002-6203-6303 FU Office of Advanced Scientific Computing Research; US Department of Energy; [De-AC05-00OR22725] FX This author's research is sponsored by the Office of Advanced Scientific Computing Research; US Department of Energy. The work was performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725. NR 84 TC 7 Z9 7 U1 1 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 1 PY 2013 VL 246 BP 221 EP 241 DI 10.1016/j.jcp.2013.03.028 PG 21 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 167BA UT WOS:000320604000014 ER PT J AU Yuan, Y Smith, J Goenaga, G Liu, DJ Zhou, B Liu, JB AF Yuan, Yuan Smith, Joshua Goenaga, Gabriel Liu, Di-Jia Zhou, Bo Liu, Jingbo TI Performance improvement of fuel cells using platinum-functionalised aligned carbon nanotubes SO JOURNAL OF EXPERIMENTAL NANOSCIENCE LA English DT Article DE carbon nanotubes; chemical vapour deposition; nanocharacterisation; electrochemistry ID VEHICLES; TECHNOLOGY; HYDROGEN; SYSTEMS; HYBRID AB The focus of this research was towards the improvement of the performance of proton exchange membrane fuel cells. The overarching goals were: (1) providing guidelines for design of new catalysts; (2) promoting nanocatalyst applications towards alternative energy applications; and (3) integrating advanced instrumentation into nanocharacterisation and fuel cell (FC) electrochemical behaviour. In tandem with these goals, the cathode catalysts were extensively refined to improve FC performance and minimise noble metal usage. In this study, the major accomplishment was producing aligned carbon nanotubes (ACNT), which were then modified by platinum (Pt) nanoparticles via a post-synthesis colloidal chemistry approach. The Pt-ACNTs demonstrated improved cathodic catalytic activity, as a result of incorporation of the nanotubes with the additional advantage of decreased Pt loading. It was also determined that surface mechanical properties, such as elastic modulus and hardness were increased. Collectively, these enhancements provided an improved FC performance. C1 [Yuan, Yuan] Texas A&M Univ Kingsville, Dept Environm Engn, Kingsville, TX USA. [Smith, Joshua; Liu, Jingbo] Texas A&M Univ Kingsville, Dept Chem, Kingsville, TX USA. [Goenaga, Gabriel] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN USA. [Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn CSE Div, Argonne, IL 60439 USA. [Zhou, Bo] CSM Instruments Inc, Needham, MA USA. [Liu, Jingbo] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Liu, Jingbo] Lanzhou Univ Technol, Sch Mat Sci & Engn, Lanzhou, Gansu, Peoples R China. RP Liu, DJ (reprint author), Argonne Natl Lab, Chem Sci & Engn CSE Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kfjll00@tamuk.edu; djliu@anl.gov; jingbo.liu@chem.tamu.edu FU United State Department of Energy, the Office of Science; United State Department of Energy, the Office of Science, Division of Educational Programs; United State Department of Energy, the Office of Science, Division of Chemical Science and Engineering FX The authors are grateful to the National Science Foundation Center of Research Education in Science and Technology (HRD-0734850) at the Texas A&M University-Kingsville and the support from United State Department of Energy, the Office of Science and the Divisions of Educational Programs and Chemical Science and Engineering is also duly acknowledged. They are also thankful to the assistance and support from the fuel cell group members at Argonne National Laboratory. The use of TAMU Materials Characterisation Facility and Dr Liang and Dr Young's suggestion and discussion are acknowledged. Dr Linda Washington (the former program coordinator of Faculty and Student Team (FaST) from the Argonne National Laboratory) is specifically acknowledged for her dedication to promote faculty and students to engage in the Science, Technology, Engineering and Mathematics. This study for a special issue is dedicated to the Nanotech 2010. Finally, Dr Thomas Hays (TAMUK) is acknowledged for his discussion regarding the manuscript and copy-editing assistance. NR 17 TC 1 Z9 1 U1 2 U2 28 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1745-8080 EI 1745-8099 J9 J EXP NANOSCI JI J. Exp. Nanosci. PD AUG 1 PY 2013 VL 8 IS 6 BP 633 EP 643 DI 10.1080/17458080.2011.608728 PG 11 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 166RF UT WOS:000320574100002 ER PT J AU Zhu, B Cheng, WX AF Zhu, Biao Cheng, Weixin TI Impacts of drying-wetting cycles on rhizosphere respiration and soil organic matter decomposition SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Drying-wetting; Rhizosphere respiration; C mineralization; Net N mineralization; Rhizosphere priming effect; Rhizodeposition ID MICROBIAL COMMUNITY DYNAMICS; CARBON-DIOXIDE; HETEROTROPHIC RESPIRATION; N-MINERALIZATION; NITROGEN; BIOMASS; PLANT; WATER; ECOSYSTEM; TRANSFORMATIONS AB Drying wetting cycles influence both soil organic matter (SOM) decomposition and rhizosphere processes. Rhizosphere processes also affect SOM decomposition through rhizosphere priming. However, little is known about how drying-wetting cycles regulate SOM decomposition with rhizosphere priming, because most previous studies incubated root-free soils and omitted the rhizosphere effect. To investigate the effect of drying-wetting cycles on SOM decomposition in the presence of plants, we grew sunflower (Helianthus annuus) and soybean (Glycine max) in a sandy loam soil under the treatments of either constant moisture or 12 drying-wetting cycles, and used a continuous C-13-labeling method to partition soil respiration into rhizosphere respiration and SOM decomposition. We found that compared to the constantly-moist treatment, the severe drying-wetting cycles in soils planted with sunflower significantly reduced shoot biomass (32%), root biomass (52%), rhizosphere respiration (29%), and SOM decomposition (22%), while the moderate drying-wetting cycles in soils planted with soybean did not significantly affect these variables. Moreover, SOM decomposition rates in the planted treatment subjected to constantly-moist or drying-wetting conditions were significantly higher compared with the constantly-moist unplanted treatment, indicating a positive rhizosphere priming effect under both soil moisture regimes. However, drying-wetting reduced the rhizosphere priming of sunflower (69% versus 33%) likely due to lower plant biomass and rhizodeposition, but produced similar rhizosphere priming of soybean (82% versus 85%). Overall, drying-wetting cycles significantly modulated rhizosphere respiration and SOM decomposition, with the magnitude depending on soil drying intensity and plant growth performance. Published by Elsevier Ltd. C1 [Zhu, Biao; Cheng, Weixin] Univ Calif Santa Cruz, Dept Environm Studies, Santa Cruz, CA 95064 USA. [Zhu, Biao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Cheng, Weixin] Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110164, Peoples R China. RP Zhu, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM biaozhu@gmail.com RI Cheng, Weixin/F-4968-2011; Zhu, Biao/F-8712-2010 OI Cheng, Weixin/0000-0003-2964-2376; Zhu, Biao/0000-0001-9858-7943 FU National Research Initiative of the U.S. Department of Agriculture's Cooperative State Research, Education and Extension Service; U.S. Department of Energy's Office of Science through the Midwestern Regional Center of the National Institute for Climatic Change Research at Michigan Technological University; Kearney Foundation of Soil Science; Department of Environmental Studies, University of California, Santa Cruz FX We thank Ching-Yu Huang, Amy Concilio and Linda Luong for laboratory assistance, Joy Matthews and Dyke Andreasen for isotope analysis, and two anonymous reviewers and Caitlin Prices for insightful comments that significantly improved this manuscript. This study was supported by grants from the National Research Initiative of the U.S. Department of Agriculture's Cooperative State Research, Education and Extension Service, the U.S. Department of Energy's Office of Science through the Midwestern Regional Center of the National Institute for Climatic Change Research at Michigan Technological University, and the Kearney Foundation of Soil Science, and summer research awards from the Department of Environmental Studies, University of California, Santa Cruz. NR 48 TC 10 Z9 11 U1 16 U2 180 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD AUG PY 2013 VL 63 BP 89 EP 96 DI 10.1016/j.soilbio.2013.03.027 PG 8 WC Soil Science SC Agriculture GA 167NS UT WOS:000320639300012 ER PT J AU Woodhouse, M Goodrich, A Margolis, R James, T Dhere, R Gessert, T Barnes, T Eggert, R Albin, D AF Woodhouse, Michael Goodrich, Alan Margolis, Robert James, Ted Dhere, Ramesh Gessert, Tim Barnes, Teresa Eggert, Roderick Albin, David TI Perspectives on the pathways for cadmium telluride photovoltaic module manufacturers to address expected increases in the price for tellurium SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Thin-film photovoltaics; Energy critical elements; Solar PV module manufacturing; Tellurium; PV economics ID FILM SOLAR-CELLS; TRANSPARENT CONDUCTING OXIDES; MATERIALS AVAILABILITY; EFFICIENCY; CDS/CDTE; LAYERS; CDS; PV; TE; DEPLOYMENT AB Since the days of the technology's conception, concerns have been voiced over potential supply constraints of Tellurium that could limit the large-scale deployment of the Cadmium Telluride (CdTe) solar photovoltaic technology. Because any potential supply-demand imbalance created by a Tellurium constraint would manifest itself in the form of a price increase (a trend that was already seen prior to the 2012 downturn in PV manufacturing), we have rigorously examined the sensitivity of total CdTe module manufacturing prices to the price of this minor metal. We found that module manufacturers could conceivably absorb a gradual increase in Te prices up to an order of magnitude higher than what was typical for 2011 without significantly compromising their near to mid-term competitive position within the PV industry (viewed here to be a $0.70/W module price)-if the pace of improvements in module power conversion efficiencies and reductions in the CdTe layer thickness is rapid enough. Realizing gains in module-area efficiencies while, at the same time, also reducing the CdTe thickness is certainly technically challenging and merits its own line of research. However, in order to accommodate up to an order of magnitude increase in Te prices while still keeping the cost of the active layer to a reasonable $0.15/W range, we find that the cost benefits gained by reducing the absorber layer thickness are expected to be as significant as those provided by efficiency gains alone. Realizing the optimistic target of 18% efficient modules with 1.0 mu m of CdTe could reduce the Te material intensity from today's requirement of around 74 metric tonnes (MT) per GW to 17 MT/GW; even so, we estimate that CdTe PV is likely to be material constrained to around 10 GW of annual production by 2020 unless new sources of Tellurium-beyond traditional copper byproduct sources at the current 55% recovery rate-come online. The economics of this mineral are such that a higher price offering is a necessary precondition in order to motivate enhanced recovery rates from copper mining, and for future direct mining projects. (C) 2012 Elsevier B.V. All rights reserved. C1 [Woodhouse, Michael; Goodrich, Alan; Margolis, Robert; James, Ted] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. [Eggert, Roderick] Colorado Sch Mines, Golden, CO 80401 USA. [Dhere, Ramesh; Gessert, Tim; Barnes, Teresa; Albin, David] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. RP Woodhouse, M (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM Michael.Woodhouse@nrel.gov; Alan.Goodrich@nrel.gov; David.Albin@nrel.gov FU United States Department of Energy's Solar Energy Technologies Program FX We would like to gratefully acknowledge Funsho Ojebuoboh (First Solar) for invaluable perspectives on the value proposition of Tellurium recovery to copper mining, as well as the economics of motivating future direct mining operations. The authors would also like to thank Michael George and Daniel Edelstein (United States Geological Survey) for informative discussions on the structure of the current Tellurium supply chain and for projections of the expected growth in supplies from copper mining. Finally, the United States Department of Energy's Solar Energy Technologies Program is acknowledged as the funding source that made this analysis possible. NR 101 TC 33 Z9 33 U1 2 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD AUG PY 2013 VL 115 BP 199 EP 212 DI 10.1016/j.solmat.2012.03.023 PG 14 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 168BW UT WOS:000320681700028 ER PT J AU Hecht, ES Shaddix, CR Lighty, JS AF Hecht, Ethan S. Shaddix, Christopher R. Lighty, JoAnn S. TI Analysis of the errors associated with typical pulverized coal char combustion modeling assumptions for oxy-fuel combustion SO COMBUSTION AND FLAME LA English DT Article DE Coal combustion; Gasification; Oxy-fuel ID ENTRAINED FLOW REACTOR; SUB-BITUMINOUS COAL; IRREGULAR PARTICLES; STEAM GASIFICATION; REACTION-KINETICS; CARBON PARTICLE; SHAPE FACTORS; CO2; REACTIVITY; OXIDATION AB In CFD models of pulverized coal combustion, which often have complex, turbulent flows with millions of coal particles reacting, the char combustion sub-model needs to be computationally efficient. There are several common assumptions that are made in char combustion models that allow for a compact, computationally efficient model. In this work, oft used single- and double-film simplified models are described, and the temperature and carbon combustion rates predicted from these models are compared against a more accurate continuous-film model. Both the single- and double-film models include a description of the heterogeneous reactions of carbon with O-2, CO2, and H2O, along with a Thiele based description of reactant penetration. As compared to the continuous-film model, the double-film model predicts higher temperatures and carbon consumption rates, while the single-film model gives more accurate results. A single-film model is therefore preferred to a double-film model for a simplified, yet fairly accurate description of char combustion. For particles from 65 to 135 mu m, in O-2 concentrations ranging from 12 to 60 vol.%, with either CO2 or N-2 as a diluent, particle temperatures from the single-film model are expected to be accurate within 270 K, and carbon consumption rate predictions should be within 16%, with greater accuracies for a CO2 diluent and at lower bulk oxygen concentrations. A single-film model that accounts for reactant penetration and both oxidation and gasification reactions is suggested as a computationally efficient sub-model for coal char combustion that is reasonably accurate over a wide range of gas environments. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Hecht, Ethan S.; Lighty, JoAnn S.] Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA. [Hecht, Ethan S.; Shaddix, Christopher R.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Hecht, ES (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. EM ehecht@sandia.gov FU Department of Energy [DE-NT0005015]; National Energy Technology Laboratory's Power Systems Advanced Research Program; Sandia's Doctoral Study Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This material is based upon work supported by the Department of Energy under Award Number DE-NT0005015, managed by David Lang and part of the University of Utah, Institute for Clean and Secure Energy Clean Coal program. The authors are grateful for additional funding provided by the National Energy Technology Laboratory's Power Systems Advanced Research Program, managed by Dr. Robert Romanosky, through Sandia. Support from Sandia's Doctoral Study Program is also appreciated. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 36 TC 18 Z9 19 U1 2 U2 48 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD AUG PY 2013 VL 160 IS 8 BP 1499 EP 1509 DI 10.1016/j.combustflame.2013.02.015 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 158EJ UT WOS:000319951900017 ER PT J AU Ermanoski, I Kellogg, GL AF Ermanoski, Ivan Kellogg, G. L. TI Real-time observations of ultra-thin iron oxide film growth on oxygen-deficient YSZ(001) SO SURFACE SCIENCE LA English DT Article DE Thin film growth; Oxide surfaces; Low energy electron microscopy; Low energy electron diffraction ID ENERGY-ELECTRON DIFFRACTION; SURFACE-STRUCTURE; STABILIZED ZIRCONIA; EPITAXIAL-GROWTH; PT(111); PT(100); MONOLAYER; FEO; NUCLEATION; LATTICE AB We use low energy electron microscopy (LEEM) and low energy electron diffraction (LEED) to characterize the initial stages of iron oxide film growth on oxygen-deficient YSZ(001). The films are grown by Fe deposition in a background of 10(-6) to 10(-5) Torr O-2. The first layer grows as FeO(111) with four non-equivalent domains arising from two rotational orientations and two stacking sequences. Uniform spreading of 2-D islands is observed by initiating growth at similar to 1000 degrees C and raising the temperature to 1110-1145 degrees C during Fe deposition. The growth is anisotropic with the fast growth direction depending strongly on both the rotational and stacking domain structure, most likely the result of preferred O-2 dissociation at specific island edge configurations. The Fe0(111) film has a distinct LEEM-IV spectrum with three well-defined maxima and is easily distinguished from the YSZ(001) substrate. The coarsening of small islands (<10 nm diameter) at temperatures above 1160 degrees C rotates the film orientation by 15 degrees with respect to the substrate and reduces the coverage by about one half suggesting a dewetting process. After completion of the first layer, islands with a surface lattice constant corresponding to Fe3O4/gamma-Fe2O3 appear with a LEEM-N fingerprint different from both FeO(111) and the YSZ(001) substrate. (C) 2013 Elsevier B.V. All rights reserved. C1 [Ermanoski, Ivan; Kellogg, G. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kellogg, GL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM glkello@sandia.gov FU LDRD program at Sandia National Laboratories; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering FX The authors acknowledge many fruitful discussions with Norman Bartelt of Sandia National Laboratories. This work was supported, in part, by the LDRD program at Sandia National Laboratories, in the form of a Grand Challenge project entitled Reimagining Liquid Transportation Fuels: Sunshine to Petrol and, in part, by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 39 TC 5 Z9 5 U1 3 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD AUG PY 2013 VL 614 BP 1 EP 11 DI 10.1016/j.susc.2013.03.023 PG 11 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 160BL UT WOS:000320091100001 ER PT J AU Gali, A George, EP AF Gali, A. George, E. P. TI Tensile properties of high- and medium-entropy alloys SO INTERMETALLICS LA English DT Article DE Yield stress; Solid-solution hardening; Brittleness and ductility; Work-hardening; Microstructure; Mechanical testing ID RESOLVED SHEAR-STRESS; MULTIPRINCIPAL ELEMENTS; SINGLE-CRYSTALS; PHASE-STABILITY; MICROSTRUCTURE; SYSTEM AB Equiatomic, face-centered-cubic, high- and medium-entropy alloys were arc melted, hot-rolled to produce recrystallized sheets, and tensile tested. The alloys having the compositions CrMnFeCoNi and CrFeCoNi exhibited a strong temperature-dependent decrease in strength with increasing temperature from -196 degrees C to 1000 degrees C, and a relatively weak strain-rate dependence (at 10(-3) and 10(-1) s(-1)). Ductility did not vary inversely with yield strength; rather, when strength doubled as the test temperature was decreased from room temperature to -196 degrees C, elongation to fracture increased by a factor of 1.5 to >60%. A high degree of work hardening, possibly due to deformation-induced nanotwinning, postpones the onset of necking and may be the reason for the ductility increase. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Gali, A.; George, E. P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Gali, A.; George, E. P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP George, EP (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM georgeep@ornl.gov RI George, Easo/L-5434-2014 FU U. S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX This research was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 33 TC 97 Z9 98 U1 24 U2 183 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0966-9795 J9 INTERMETALLICS JI Intermetallics PD AUG PY 2013 VL 39 BP 74 EP 78 DI 10.1016/j.intermet.2013.03.018 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 149HJ UT WOS:000319309300011 ER PT J AU Lu, Y Baker, I Blau, PJ Kennedy, FE Munroe, PR AF Lu, Yuan Baker, Ian Blau, Peter J. Kennedy, Francis E. Munroe, Paul R. TI A comparison of dry sliding wear of Fe30Ni20Mn25Al25 at room temperature and elevated temperature SO INTERMETALLICS LA English DT Article DE Intermetallics; miscellaneous; Tribological properties; Mechanical properties at high temperatures; Electron microscopy; transmission ID MECHANISM MAPS; ALLOY; MICROSTRUCTURE; COATINGS; STEEL AB Dry sliding pin-on-disk wear tests were conducted in air on the nanostructured alloy Fe(30)Ni(20)Mh(25)Al(25), which consists of alternating b.c.c. and B2 phases with interfaces aligned along < 100 > directions. The tests were run at both room temperature (298 K) and elevated temperature (673 K) against a 347 stainless steel counterface. The surfaces of the worn pins were examined using a combination of scanning electron microscopy, energy-dispersive X-ray spectroscopy, focused ion beam milling and transmission electron microscopy. The wear tracks on the disks were analyzed using both optical microscopy and optical profilometry. It was found that the pins showed lower wear rates at elevated temperature compared to room temperature. Debris collected during the wear tests consisted of materials from both the pin and the disk. The pins undergoing elevated temperature wear tests showed a porous sublayer due to debris compaction consisting of Fe, Cr, Mn, Al and Ni, that is from both the pin and the disk. By comparison, the surfaces of the worn pins undergoing room-temperature wear tests had a heavily deformed sublayer and there were obvious voids between the sublayer and the original homogeneous pin material beneath. Wear occurred by both two-body and three-body abrasion at both temperatures. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Lu, Yuan; Baker, Ian; Kennedy, Francis E.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Blau, Peter J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Munroe, Paul R.] Univ New S Wales, Electron Microscope Unit, Sydney, NSW 2052, Australia. RP Baker, I (reprint author), Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. EM Ian.Baker@Dartmouth.edu RI Munroe, Paul/I-9313-2016 OI Munroe, Paul/0000-0002-5091-2513 FU U.S. National Foundation (NSF) [CMMI-1063732]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX This research was supported by U.S. National Foundation (NSF) grant CMMI-1063732. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing official policies, either expressed or implied of the NSF or the U.S. government. The authors would like to acknowledge the assistance from Oak Ridge National Lab. This research at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored in part by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. NR 31 TC 4 Z9 5 U1 0 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0966-9795 J9 INTERMETALLICS JI Intermetallics PD AUG PY 2013 VL 39 BP 94 EP 103 DI 10.1016/j.intermet.2013.03.019 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 149HJ UT WOS:000319309300015 ER PT J AU Chen, X Wang, F Lu, YM Lee, DH AF Chen, Xie Wang, Fa Lu, Yuan-Ming Lee, Dung-Hai TI Critical theories of phase transition between symmetry protected topological states and their relation to the gapless boundary theories SO NUCLEAR PHYSICS B LA English DT Article DE Symmetry protected topological states; Critical theory; Gapless edge state ID SPIN; CHAIN AB Symmetry protected topological states (SPTs) have the same symmetry and the phase transition between them are beyond Landau's symmetry breaking formalism. In this paper we study (1) the critical theory of phase transition between trivial and non-trivial SPTs, and (2) the relation between such critical theory and the gapless boundary theory of SPTs. Based on examples of SO(3) and SU(2) SPTs, we propose that under appropriate boundary condition the critical theory contains the delocalized version of the boundary excitations. In addition, we prove that the boundary theory is the critical theory spatially confined between two SPTs. We expect these conclusions to hold in general and, in particular, for discrete symmetry groups as well. (C) 2013 Elsevier B.V. All rights reserved. C1 [Chen, Xie; Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wang, Fa] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Wang, Fa] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Lu, Yuan-Ming; Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Chen, X (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM xiechen@berkeley.edu RI Wang, Fa/D-3817-2015; Lu, Yuan-Ming/D-7554-2017 OI Wang, Fa/0000-0002-6220-5349; Lu, Yuan-Ming/0000-0001-6275-739X FU DOE [DE-AC02-05CH11231] FX We are in debt to Guang-Ming Zhang and Tao Xiang for stimulating discussions at the initial stage of this work. D.-H.L. acknowledges the support by the DOE grant number DE-AC02-05CH11231. NR 25 TC 19 Z9 19 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD AUG 1 PY 2013 VL 873 IS 1 BP 248 EP 259 DI 10.1016/j.nuclphysb.2013.04.015 PG 12 WC Physics, Particles & Fields SC Physics GA 156BC UT WOS:000319794000008 ER PT J AU Bochev, P Peterson, K AF Bochev, Pavel Peterson, Kara TI A parameter-free stabilized finite element method for scalar advection-diffusion problems SO CENTRAL EUROPEAN JOURNAL OF MATHEMATICS LA English DT Article DE Advection-diffusion; Upwind stabilization; Exponentially fitted flux; Finite element method; Edge elements ID PETROV-GALERKIN FORMULATIONS; CONTINUITY EQUATIONS; BUBBLE FUNCTIONS; SUPG; MODEL AB We formulate and study numerically a new, parameter-free stabilized finite element method for advection-diffusion problems. Using properties of compatible finite element spaces we establish connection between nodal diffusive fluxes and one-dimensional diffusion equations on the edges of the mesh. To define the stabilized method we extend this relationship to the advection-diffusion case by solving simplified one-dimensional versions of the governing equations on the edges. Then we use H(curl)-conforming edge elements to expand the resulting edge fluxes into an exponentially fitted flux field inside each element. Substitution of the nodal flux by this new flux completes the formulation of the method. Utilization of edge elements to define the numerical flux and the lack of stabilization parameters differentiate our approach from other stabilized methods. Numerical studies with representative advection-diffusion test problems confirm the excellent stability and robustness of the new method. In particular, the results show minimal overshoots and undershoots for both internal and boundary layers on uniform and non-uniform grids. C1 [Bochev, Pavel; Peterson, Kara] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bochev, P (reprint author), Sandia Natl Labs, Mail Stop 1320, Albuquerque, NM 87185 USA. EM pbboche@sandia.gov; kjpeter@sandia.gov FU Advanced Scientific Computing Research program of the DoE Office of Science; ASC program of the NNSA FX The authors would like to thank the Advanced Scientific Computing Research program of the DoE Office of Science and the ASC program of the NNSA for support of this research. We also benefitted from numerous discussions with our colleagues X. Gao, G. Hennigan, L. Musso, and T. Smith. NR 25 TC 3 Z9 3 U1 0 U2 7 PU VERSITA PI WARSAW PA SOLIPSKA 14A-1, 02-482 WARSAW, POLAND SN 1895-1074 J9 CENT EUR J MATH JI Cent. Eur. J. Math. PD AUG PY 2013 VL 11 IS 8 BP 1458 EP 1477 DI 10.2478/s11533-013-0250-8 PG 20 WC Mathematics SC Mathematics GA 149AI UT WOS:000319290000008 ER PT J AU Levin, EM AF Levin, E. M. TI Magnetic phase transitions and electrical switching in Gd-5(Sn0.3Ge3.7) induced by magnetic field SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Gadolinium-based alloy; Magnetic phase transition; Electrical switching; Magnetic diagram AB Temperature and magnetic field dependences of the magnetization and electrical resistivity of zero-fieldcooled (ZFC) Gd-5(Sn0.3Ge3.7) with a distinctly layered crystal structure have been studied. The unit cell of Gd5Ge4-based compounds is formed by 2D-like fragments, so-called slabs. Between 4.2 and 17 K, ZFC Gd-5(Sn0.3Ge3.7) shows an antiferromagnetic state [AFM(I)], which can be irreversibly transformed by a magnetic field to the ferromagnetic (FM) state. The critical magnetic field required for the irreversible AFM(I) -> FM transition in Gd-5(Sn0.3Ge3.7) at 4.2 K is 38 kOe, which is 2-fold larger than observed in Ge5Ge4, 19 kOe. Additionally, ZFC Gd-5(Sn0.3Ge3.7) above similar to 30 K shows another antiferromagnetic state [AFM(II)], which can be reversibly transformed by a magnetic field to the FM state. The difference between AFM(I) and AFM(II) states (phases) in Gd-5(Sn0.3Ge3.7) can be attributed to the orientation of Gd magnetic moments, i.e., their orientation perpendicular or parallel to the slabs. In the temperature range of 17 K <= T <= 30 K, both AFM(I) and AFM(II) states (phases) may coexist in the alloy and can be irreversibly or reversibly transformed to the FM state. Magnetic phase transitions in Gd-5(Sn0.3Ge3.7) are accompanied with reversible or irreversible switching between the low- [AFM(I) and AFM(II)] and high-resistivity (FM) states. Published by Elsevier B.V. C1 [Levin, E. M.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Levin, E. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Levin, EM (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. EM levin@iastate.edu FU US Department of Energy, Office of Basic Energy Sciences; Division of Materials Sciences and Engineering; US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX The author thanks K.A. Gschneidner, Jr. (Ames Laboratory US DOE and Iowa State University) for his interest to this work. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, and Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under Contract no DE-AC02-07CH11358. NR 23 TC 2 Z9 2 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD AUG PY 2013 VL 340 BP 113 EP 119 DI 10.1016/j.jmmm.2013.04.002 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 149PO UT WOS:000319333500022 ER PT J AU Caballero, FG Allain, S Cornide, J Velasquez, JDP Garcia-Mateo, C Miller, MK AF Caballero, F. G. Allain, S. Cornide, J. Puerta Velasquez, J. D. Garcia-Mateo, C. Miller, M. K. TI Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application SO MATERIALS & DESIGN LA English DT Article DE Carbide-free bainite; Steel; Annealing; Automotive components; Ductility; Formability ID LOW-ALLOY STEELS; COMPOSITION PROPERTY APPROACH; SHEET STEELS; STRETCH-FLANGEABILITY; RETAINED AUSTENITE; INDUCED PLASTICITY; SILICON STEELS; STRENGTH; TRANSFORMATION; MICROSTRUCTURE AB Advanced high strength steels for automotive applications were designed to achieve a carbide-free bainitic microstructure after conventional thermo-mechanical processing and a continuous annealing treatment. The microstructure obtained consists of ferrite laths interwoven with thin films of untransformed retained austenite. The sufficiently tough matrix and the control of the heterogeneity in the microstructure will allow an optimum combination of strength, ductility, and formability to be achieved. The designed steels reached far higher uniform elongations than that in commercial dual phase steels and martensitic steels with the same range of ultimate tensile strengths. Their formability was found to be appropriate for the production of final parts after cold-stamping or cold-forming. On the other hand, the yield strength/ultimate tensile strengths ratio was found to remain roughly constant (similar to 0.7). The reduction of area value did not seem to change as a function of overaging temperature, but the V-bending angle and the hole expansion ratio (cut-edge stretching ability) decreased significantly at the bainite holding temperature increases. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Caballero, F. G.; Cornide, J.; Garcia-Mateo, C.] Spanish Natl Ctr Met Res CENIM CSIC, E-28040 Madrid, Spain. [Allain, S.; Puerta Velasquez, J. D.] ArcelorMittal Maizieres Res SA, F-57283 Voie Romaine, Maizieres Les M, France. [Miller, M. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Caballero, FG (reprint author), Spanish Natl Ctr Met Res CENIM CSIC, Avda Gregorio del Amo 8, E-28040 Madrid, Spain. EM fgc@cenim.csic.es; sebastien.allain@arcelor-mittal.com; jca@cenim.csic.es; juan-david.puerta-velasque-z@arcelormittal.com; cgm@cenim.csic.es; millermk@ornl.gov RI CABALLERO, FRANCISCA/A-4292-2008; Garcia-Mateo, Carlos/A-7752-2008; OI Garcia-Mateo, Carlos/0000-0002-4773-5077; Caballero, Francisca/0000-0002-5548-7659 FU Research Fund for Coal and Steel; Spanish Ministry of Science and Innovation [RFSR-CT-2008-00021, MAT2010-15330]; Office of Basic Energy Sciences, US Department of Energy FX The authors gratefully acknowledge the support of the Research Fund for Coal and Steel and the Spanish Ministry of Science and Innovation for funding this research under the contracts RFSR-CT-2008-00021 and MAT2010-15330, respectively. J. Cornide acknowledges the Spanish Ministry of Science and Innovation for financial support in the form of a PhD research grant (FPI). Atom probe tomography research is supported by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. NR 46 TC 27 Z9 28 U1 11 U2 58 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0261-3069 J9 MATER DESIGN JI Mater. Des. PD AUG PY 2013 VL 49 BP 667 EP 680 DI 10.1016/j.matdes.2013.02.046 PG 14 WC Materials Science, Multidisciplinary SC Materials Science GA 138YE UT WOS:000318547000080 ER PT J AU Yoon, S Bridges, CA Unocic, RR Paranthaman, MP AF Yoon, Sukeun Bridges, Craig A. Unocic, Raymond R. Paranthaman, M. Parans TI Mesoporous TiO2 spheres with a nitridated conducting layer for lithium-ion batteries SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID ROOM-TEMPERATURE; TITANIUM-DIOXIDE; ANATASE TIO2; PERFORMANCE; INSERTION; RUTILE; ANODE; NETWORKS; POWDERS; STORAGE AB Nitridated TiO2 mesoporous spheres have been synthesized by hydrothermal processing followed by post-nitridation with NH3. Characterization data reveal a nitridated conducting layer, in addition to a mesoporous and nanosized building-block morphology resulting in a large surface area. The sample has an average pore size and surface area of, respectively, 10 nm and 87 m(2)/g. The nitridated TiO2 mesoporous spheres exhibit a high capacity of > 200 mAh/g with good cyclability and high rate capability, as the nitridated conducting layer and favorable morphology of nanosized spheres provides good electrical contact, accommodates cycling induced strain smoothly, and facilitates lithium-ion diffusion. C1 [Yoon, Sukeun; Bridges, Craig A.; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Unocic, Raymond R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Yoon, S (reprint author), Korea Inst Energy Res, New & Renewable Energy Div, Taejon 305343, South Korea. EM chemilove@gmail.com; bridgesca@ornl.gov; paranthamanm@ornl.gov RI Paranthaman, Mariappan/N-3866-2015; OI Paranthaman, Mariappan/0000-0003-3009-8531; Unocic, Raymond/0000-0002-1777-8228 FU Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Basic Energy Sciences, U.S. Department of Energy; ORISE postdoctoral fellowship FX This work was sponsored by the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. Microscopy and XPS work were conducted at the ORNL SHaRE user facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. We acknowledge Harry Meyer III for assistance with XPS data analysis. S. Yoon acknowledges the support of the ORISE postdoctoral fellowship. NR 32 TC 9 Z9 11 U1 2 U2 133 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD AUG PY 2013 VL 48 IS 15 BP 5125 EP 5131 DI 10.1007/s10853-012-7098-3 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 145GN UT WOS:000319003300003 ER PT J AU Shih, CH Katoh, Y Leonard, KJ Bei, HB Lara-Curzio, E AF Shih, Chunghao Katoh, Yutai Leonard, Keith J. Bei, Hongbin Lara-Curzio, Edgar TI Determination of interfacial mechanical properties of ceramic composites by the compression of micro-pillar test specimens SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID FIBER-REINFORCED COMPOSITES; PULL-OUT STRESSES; NEUTRON-IRRADIATION; SIC/SIC COMPOSITES; MATRIX COMPOSITES; ELASTIC-MODULUS; MICROPILLARS; INDENTATION; METHODOLOGY; PLASTICITY AB A novel method to determine the fiber-matrix interfacial properties of ceramic matrix composites is proposed and evaluated; where micro-pillar samples containing inclined fiber/matrix interfaces were prepared from a SiC fiber-reinforced SiC matrix composites and then compression-tested using the nano-indentation technique. This new test method employs a simple geometry and mitigates the uncertainties associated with complex stress state in the conventional single-filament push-out method or tensile unloading-reloading hysteresis loop analysis method for the determination of interfacial properties. Based on the test results using samples with different interface orientations, the interfacial debond shear strength and the internal friction coefficient are explicitly determined and compared with values obtained by other test methods. SEM observation showed that micro compression caused an adhesive type of debonding between the fiber and the pyrolytic carbon interface. The results suggest that the debonding/failure behavior of the micro-pillars followed the Coulomb fracture criterion. The determined interfacial debond shear strength is similar to 100 MPa, which appears to be smaller than that determined from fiber push-out test for similar composite systems. The difference can be explained by the effect of normal stress (clamping stress) on the apparent interfacial debond shear strength. C1 [Shih, Chunghao; Katoh, Yutai; Leonard, Keith J.; Bei, Hongbin; Lara-Curzio, Edgar] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Shih, CH (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd,MS 6138,POB 2008, Oak Ridge, TN 37831 USA. EM shihc@ornl.gov; katohy@ornl.gov; leonardk@ornl.gov; beih@ornl.gov; laracurzioe@ornl.gov OI Bei, Hongbin/0000-0003-0283-7990 FU Office of Fusion Energy Science, US Department of Energy with UT-Battelle, LLC [DE-AC05-00OR22725] FX This work was sponsored by the Office of Fusion Energy Science, US Department of Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors would like to thank Mr. Wallace Porter for useful discussions and help on sample preparation. The authors would also like to thank Dr. Peter J. Blau for reviewing the manuscript. NR 21 TC 3 Z9 3 U1 2 U2 50 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD AUG PY 2013 VL 48 IS 15 BP 5219 EP 5224 DI 10.1007/s10853-013-7311-z PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 145GN UT WOS:000319003300015 ER PT J AU VanderZee, E Hirani, AN Guoy, D Zharnitsky, V Ramos, EA AF VanderZee, Evan Hirani, Anil N. Guoy, Damrong Zharnitsky, Vadim Ramos, Edgar A. TI Geometric and combinatorial properties of well-centered triangulations in three and higher dimensions SO COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS LA English DT Article DE Mesh generation; Acute triangulations; Finite element method; Circumcentric dual; Discrete exterior calculus AB An n-simplex is said to be n-well-centered if its circumcenter lies in its interior. We introduce several other geometric conditions and an algebraic condition that can be used to determine whether a simplex is n-well-centered. These conditions, together with some other observations, are used to describe restrictions on the local combinatorial structure of simplicial meshes in which every simplex is well-centered. In particular, it is shown that in a 3-well-centered (2-well-centered) tetrahedral mesh there are at least 7 (9) edges incident to each interior vertex, and these bounds are sharp. Moreover, it is shown that, in stark contrast to the 2-dimensional analog, where there are exactly two vertex links that prevent a well-centered triangle mesh in R-2, there are infinitely many vertex links that prohibit a well-centered tetrahedral mesh in R-3. (C) 2012 Elsevier B.V. All rights reserved. C1 [VanderZee, Evan] Argonne Natl Lab, Lemont, IL USA. [Hirani, Anil N.] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. [Guoy, Damrong] Synopsys Inc, Mountain View, CA USA. [Zharnitsky, Vadim] Univ Illinois, Dept Math, Urbana, IL 61801 USA. [Ramos, Edgar A.] Univ Nacl Colombia, Escuela Matemat, Medellin, Colombia. RP Hirani, AN (reprint author), Univ Illinois, Dept Comp Sci, 201 N Goodwin Ave, Urbana, IL 61801 USA. EM hirani@illinois.edu FU NSF [DMS-0645604, DMS 08-07897]; Computational Science and Engineering Program; Applied Mathematics Program of the University of Illinois at Urbana-Champaign FX The authors thank Doug West for a helpful discussion. The work of Anil N. Hirani and Evan VanderZee was supported by an NSF Grant No. DMS-0645604. Evan VanderZee was also partially supported by a fellowship jointly funded by the Computational Science and Engineering Program and the Applied Mathematics Program of the University of Illinois at Urbana-Champaign. Vadim Zharnitsky was partially supported by NSF grant DMS 08-07897. NR 21 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-7721 J9 COMP GEOM-THEOR APPL JI Comput. Geom.-Theory Appl. PD AUG PY 2013 VL 46 IS 6 BP 700 EP 724 DI 10.1016/j.comgeo.2012.11.003 PG 25 WC Mathematics, Applied; Mathematics SC Mathematics GA 120EN UT WOS:000317153700009 ER PT J AU Genet, M Houmard, M Eslava, S Saiz, E Tomsia, AP AF Genet, Martin Houmard, Manuel Eslava, Salvador Saiz, Eduardo Tomsia, Antoni P. TI A two-scale Weibull approach to the failure of porous ceramic structures made by robocasting: Possibilities and limits (vol 33, pg 679, 2013) SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Correction C1 [Genet, Martin; Houmard, Manuel; Tomsia, Antoni P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Eslava, Salvador; Saiz, Eduardo] Univ London Imperial Coll Sci Technol & Med, Ctr Adv Struct Ceram, Dept Mat, London SW7 2AZ, England. RP Genet, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd MS62-0237, Berkeley, CA 94720 USA. EM mgenet@lbl.gov RI Genet, Martin/H-4247-2015 OI Genet, Martin/0000-0003-2204-201X NR 1 TC 0 Z9 0 U1 2 U2 36 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD AUG PY 2013 VL 33 IS 8 BP 1393 EP 1393 DI 10.1016/j.jeurceramsoc.2013.01.014 PG 1 WC Materials Science, Ceramics SC Materials Science GA 111LJ UT WOS:000316522500001 ER PT J AU Zhou, CS Fang, ZGZ Lu, J Zhang, XY AF Zhou, Chengshang Fang, Zhigang Zak Lu, Jun Zhang, Xiaoyi TI Thermodynamic and Kinetic Destabilization of Magnesium Hydride Using Mg-In Solid Solution Alloys SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROGEN STORAGE PROPERTIES; NIOBIUM; METALS; SYSTEM AB Efforts to thermodynamically destabilize magnesium hydride (MgH2), so that it can be used for practical hydrogen storage applications, have been a difficult challenge that has eluded scientists for decades. This letter reports that MgH2 can indeed be destabilized by forming solid solution alloys of magnesium with group III and IVB elements, such as indium. Results of this research showed that the equilibrium hydrogen pressure of a Mg-0.1In alloy is 70% higher than that of pure MgH2. The temperature at 1 bar hydrogen pressure (T-1bar) of Mg-0.1In alloy was reduced to 262.9 degrees C from 278.9 degrees C, which is the T-1bar of pure MgH2. Furthermore, the kinetic rates of dehydrogenation of Mg-0.1In alloy hydride doped with a titanium intermetallic (TiMn2) catalyst were also significantly improved compared with those of MgH2. C1 [Zhou, Chengshang; Fang, Zhigang Zak] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA. [Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Zhang, Xiaoyi] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Fang, ZGZ (reprint author), Univ Utah, Dept Met Engn, 135 South 1460 East,Room 412, Salt Lake City, UT 84112 USA. EM zak.fang@utah.edu RI Zhou, Chengshang/L-5850-2015 OI Zhou, Chengshang/0000-0001-9016-6618 FU National Science Foundation [0933778]; U.S. Department of Energy (DOE) [DE-AR0000173]; Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under DOE [DE-AC05-06OR23100]; DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was supported by the National Science Foundation (Grant No. 0933778) and the U.S. Department of Energy (DOE) under contract number DE-AR0000173. The authors also thank Dr. Mark Koopman for proofreading the manuscript and constructive suggestions. J. Lu was supported by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under DOE contract number DE-AC05-06OR23100. Use of the Advanced Photon Source (APS) was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 19 TC 33 Z9 34 U1 5 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 31 PY 2013 VL 135 IS 30 BP 10982 EP 10985 DI 10.1021/ja4058794 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 196DF UT WOS:000322752900026 PM 23855837 ER PT J AU Akkerman, HB Mannsfeld, SCB Kaushik, AP Verploegen, E Burnier, L Zoombelt, AP Saathoff, JD Hong, S Atahan-Evrenk, S Liu, XL Aspuru-Guzik, A Toney, MF Clancy, P Bao, ZN AF Akkerman, Hylke B. Mannsfeld, Stefan C. B. Kaushik, Ananth P. Verploegen, Eric Burnier, Luc Zoombelt, Arjan P. Saathoff, Jonathan D. Hong, Sanghyun Atahan-Evrenk, Sule Liu, Xueliang Aspuru-Guzik, Alan Toney, Michael F. Clancy, Paulette Bao, Zhenan TI Effects of Odd-Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; FIELD-EFFECT TRANSISTORS; MOLECULAR-ORBITAL METHODS; ORGANIC SEMICONDUCTORS; CHARGE-TRANSPORT; HIGH-PERFORMANCE; EFFECT MOBILITY; THIOPHENE OLIGOMERS; GATE DIELECTRICS; PENTACENE AB Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5'bis(4-alkylphenyl)-2,2'-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding oddeven effect in the strength of the intermolecular electronic coupling. C1 [Akkerman, Hylke B.; Verploegen, Eric; Zoombelt, Arjan P.; Hong, Sanghyun; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Mannsfeld, Stefan C. B.; Verploegen, Eric; Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Kaushik, Ananth P.; Burnier, Luc; Saathoff, Jonathan D.; Clancy, Paulette] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA. [Atahan-Evrenk, Sule; Liu, Xueliang; Aspuru-Guzik, Alan] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. RP Bao, ZN (reprint author), Stanford Univ, Dept Chem Engn, Stauffer III,381 North South Mall, Stanford, CA 94305 USA. EM zbao@stanford.edu RI Atahan-Evrenk, Sule /D-4736-2012 OI Atahan-Evrenk, Sule /0000-0002-4905-3491 FU Netherlands Organisation for Scientific Research (NWO); National Science Foundation Solid State Chemistry [DMR 0705687-002]; Air Force Office of Scientific Research [FA 9550-12-1-0190]; King Abdullah University of Science and Technology (KAUST) [KUS-C1-018-02]; Stanford Global Climate and Energy Project; National Science Foundation [DMR-0820484]; Department of Energy [DE-SC0008733]; Corning Foundation FX We thank R Stoltenberg and M. LeMieux for assistance with AFM analysis. H.BA and A.P.Z. acknowledge The Netherlands Organisation for Scientific Research (NWO) for support. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Z.B. acknowledges support provided by the National Science Foundation Solid State Chemistry (DMR 0705687-002) and Air Force Office of Scientific Research (FA 9550-12-1-0190). A.P.K. acknowledges support provided by Award No. KUS-C1-018-02, made by the King Abdullah University of Science and Technology (KAUST) to Cornell's KAUST-CU energy center. Intel Corpo. and Harvard FAS Research Computing are thanked for the provision of computing resources. S.A. and A.A.G. thank the Stanford Global Climate and Energy Project and the National Science Foundation (DMR-0820484) and Department of Energy (DE-SC0008733) as well as the Corning Foundation for their generous support. NR 61 TC 33 Z9 33 U1 6 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 31 PY 2013 VL 135 IS 30 BP 11006 EP 11014 DI 10.1021/ja400015e PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 196DF UT WOS:000322752900031 PM 23822850 ER PT J AU Heideman, CL Tepfer, S Lin, QY Rostek, R Zschack, P Anderson, MD Anderson, IM Johnson, DC AF Heideman, Colby L. Tepfer, Sara Lin, Qiyin Rostek, Raimar Zschack, Paul Anderson, Michael D. Anderson, Ian M. Johnson, David C. TI Designed Synthesis, Structure, and Properties of a Family of Ferecrystalline Compounds [(PbSe)(1.00)](m)(MoSe2)(n) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MISFIT LAYER COMPOUND; TRANSPORT-PROPERTIES; CRYSTAL-STRUCTURE; SULFIDE; STATE; MICROANALYSIS; SYSTEM; FILMS AB The targeted synthesis of multiple compounds with specific controlled nanostructures and identical composition is a grand challenge in materials chemistry. We report the synthesis of the new metastable compounds [(PbSe)(1.00)](m)(MoSe2)(n) using precursors each designed to self-assemble into a specific compound. To form a compound with specific values for m and n, the number of atoms within each deposited elemental layer was carefully controlled to provide the correct absolute number of atoms to form complete layers of each component structural unit. On low-temperature annealing, these structures self-assemble with a specific crystallographic orientation between the component structural units with atomically abrupt interfaces. There is rotational disorder between the component structural units and between MoSe2 basal plane units within the MoSe2 layers themselves. The lead selenide constituent has a distorted rock salt structure exactly m bilayers thick leading to peaks in the off-axis diffraction pattern as a result of the finite size of and rotational disorder between the crystallites. The in-plane lattice parameters of the PbSe and MoSe2 components are independent of the value of m and n, suggesting little or no strain caused by the interface between them. These compounds are small band gap semiconductors with carrier properties dominated by defects and exhibit extremely low thermal conductivity as a result of the rotational disorder. The thermal conductivity can be tuned by varying the ratio of the number of ordered PbSe rock salt layers relative to the number of rotationally disordered MoSe2 layers. This approach, based on controlling the local composition of the precursor and low temperature to limit diffusion rates, provides a general route to the synthesis of new compounds containing alternating layers of constituents with designed nanoarchitecture. C1 [Heideman, Colby L.] Eastern Oregon Univ, Dept Chem, La Grande, OR 97850 USA. [Tepfer, Sara; Rostek, Raimar; Anderson, Michael D.; Johnson, David C.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA. [Lin, Qiyin] Univ Calif Irvine, Calif Inst Telecommun & Informat Technol, Irvine, CA 92697 USA. [Zschack, Paul] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Anderson, Michael D.; Anderson, Ian M.] NIST, Surface & Microanal Sci Div, Gaithersburg, MD 20899 USA. RP Johnson, DC (reprint author), Univ Oregon, Dept Chem, Eugene, OR 97403 USA. EM davej@uoregon.edu FU National Science Foundation [DMR 0907049, MRI 0923577]; National Science Foundation through CCI [CHE-1102637]; University of Oregon's National Science Foundation IGERT Fellowship Program [DGE-0549503]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank C. Chintescu and D. G. Cahill for thermal conductivity measurements and Jenia Karapetrova for assistance in synchrotron XRD data collection. The authors acknowledge support from the National Science Foundation under grant DMR 0907049 and MRI 0923577. D.C.J. acknowledges support from the National Science Foundation through CCI grant no. CHE-1102637 and C.L.H. and M.D.A. acknowledge support from the University of Oregon's National Science Foundation IGERT Fellowship Program under grant no. DGE-0549503. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 33 TC 30 Z9 30 U1 2 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 31 PY 2013 VL 135 IS 30 BP 11055 EP 11062 DI 10.1021/ja402819q PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 196DF UT WOS:000322752900037 PM 23819532 ER PT J AU Lomont, JP Nguyen, SC Harris, CB AF Lomont, Justin P. Nguyen, Son C. Harris, Charles B. TI Reactivity of TEMPO toward 16- and 17-Electron Organometallic Reaction Intermediates: A Time-Resolved IR Study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FREE-RADICAL POLYMERIZATION; CATALYZED AEROBIC OXIDATION; GENERALIZED GRADIENT APPROXIMATION; GAUSSIAN-BASIS SETS; PRIMARY ALCOHOLS; PHOTOCHEMICAL DISPROPORTIONATION; SELECTIVE OXIDATION; CORRELATION-ENERGY; NITROXYL RADICALS; SPIN LABELS AB The (2,2,6,6-tetramethylpiperidin-1-yl)oxyl radical (TEMPO) has been employed for an extensive range of chemical applications, ranging from organometallic catalysis to serving as a structural probe in biological systems. As a ligand in an organometallic complex, TEMPO can exhibit several distinct coordination modes. Here we use ultrafast time-resolved infrared spectroscopy to study the reactivity of TEMPO toward coordinatively unsaturated 16- and 17-electron organometallic reaction intermediates. TEMPO coordinates to the metal centers of the 16-electron species CpCo(CO) and Fe(CO)(4), and to the 17-electron species CpFe(CO)(2) and Mn(CO)(5), via an associative mechanism with concomitant oxidation of the metal center. In these adducts, TEMPO thus behaves as an anionic ligand, characterized by a pyramidal geometry about the nitrogen center. Density functional theory calculations are used to facilitate interpretation of the spectra and to further explore the structures of the TEMPO adducts. To our knowledge, this study represents the first direct characterization of the mechanism of the reaction of TEMPO with coordinatively unsaturated organometallic complexes, providing valuable insight into its reactions with commonly encountered reaction intermediates. The similar reactivity of TEMPO toward each of the species studied suggests that these results can be considered representative of TEMPO's reactivity toward all low-valent transition metal complexes. C1 [Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu FU NSF [CHE-1213135]; Molecular Graphcis and Computation Facility at UC-Berkeley [CHE-0840505, CHE-0233882]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; VIED fellowship FX This work was supported by NSF Grant CHE-1213135. We acknowledge use of the Molecular Graphcis and Computation Facility at UC-Berkeley (Grants CHE-0840505, CHE-0233882). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. S.C.N. acknowledges support through a VIED fellowship. J.P.L. acknowledges support through an NSF graduate research fellowship. NR 99 TC 9 Z9 9 U1 6 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 31 PY 2013 VL 135 IS 30 BP 11266 EP 11273 DI 10.1021/ja404476m PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 196DF UT WOS:000322752900059 PM 23819559 ER PT J AU Rettie, AJE Lee, HC Marshall, LG Lin, JF Capan, C Lindemuth, J McCloy, JS Zhou, JS Bard, AJ Mullins, CB AF Rettie, Alexander J. E. Lee, Heung Chan Marshall, Luke G. Lin, Jung-Fu Capan, Cigdem Lindemuth, Jeffrey McCloy, John S. Zhou, Jianshi Bard, Allen J. Mullins, C. Buddie TI Combined Charge Carrier Transport and Photoelectrochemical Characterization of BiVO4 Single Crystals: Intrinsic Behavior of a Complex Metal Oxide SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SCANNING ELECTROCHEMICAL MICROSCOPY; SOLAR WATER OXIDATION; MO-DOPED BIVO4; SCHEELITE STRUCTURE; HYDROGEN-PRODUCTION; BISMUTH VANADATE; SMALL-POLARON; PHOTOCATALYTIC PROPERTIES; ELECTRICAL-CONDUCTIVITY; PHOTOANODES AB Bismuth vanadate (BiVO4) is a promising photoelectrode material for the oxidation of water, but fundamental studies of this material are lacking. To address this, we report electrical and photoelectrochemical (PEC) properties of BiVO4 single crystals (undoped, 0.6% Mo, and 0.3% W:BiVO4) grown using the floating zone technique. We demonstrate that a small polaron hopping conduction mechanism dominates from 250 to 400 K, undergoing a transition to a variable-range hopping mechanism at lower temperatures. An anisotropy ratio of similar to 3 was observed along the c axis, attributed to the layered structure of BiVO4. Measurements of the ac field Hall effect yielded an electron mobility of similar to 0.2 cm(2) V-1 s(-1) for Mo and W:BiVO4 at 300 K. By application of the Gartner model, a hole diffusion length of similar to 100 nm was estimated. As a result of low carrier mobility, attempts to measure the dc Hall effect were unsuccessful. Analyses of the Raman spectra showed that Mo and W substituted for V and acted as donor impurities. Mott-Schottky analysis of electrodes with the (001) face exposed yielded a flat band potential of 0.03-0.08 V versus the reversible H-2 electrode, while incident photon conversion efficiency tests showed that the dark coloration of the doped single crystals did not result in additional photocurrent. Comparison of these intrinsic properties to those of other metal oxides for PEC applications gives valuable insight into this material as a photoanode. C1 [Rettie, Alexander J. E.; Mullins, C. Buddie] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA. [Lee, Heung Chan; Bard, Allen J.; Mullins, C. Buddie] Univ Texas Austin, Dept Chem & Biochem, Ctr Electrochem, Austin, TX 78712 USA. [Marshall, Luke G.; Zhou, Jianshi; Mullins, C. Buddie] Univ Texas Austin, Dept Mech Engn, Texas Mat Inst, Mat Sci & Engn Program, Austin, TX 78712 USA. [Lin, Jung-Fu] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA. [Capan, Cigdem] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [Lindemuth, Jeffrey] Lake Shore Cryotron, Westerville, OH 43081 USA. [McCloy, John S.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Mullins, CB (reprint author), Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA. EM mullins@che.utexas.edu RI McCloy, John/D-3630-2013; Lin, Jung-Fu/B-4917-2011; Marshall, Luke/L-5116-2014 OI McCloy, John/0000-0001-7476-7771; Marshall, Luke/0000-0003-1100-1474 FU U.S. Department of Energy (DOE) [DE-FG02-09ER16119]; Welch Foundation [F-1436, F-0021]; EFree; Energy Frontier Research Center; DOE Office of Science, Office of Basic Energy Sciences [DE-SC0001057] FX We gratefully acknowledge the U.S. Department of Energy (DOE) Grant DE-FG02-09ER16119 and the Welch Foundation (Grants F-1436 to C.B.M. and F-0021 to A.J.B.). Resistivity and dc Hall effect measurements were taken in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Office of Biological and Environmental Research of the DOE and located at Pacific Northwest National Laboratory. We are indebted to T. C. Droubay and S. A. Chambers for their help with the PPMS. Additionally, A.J.E.R. thanks W. D. Chemelewski for help with anisotropic vdP data analysis and useful discussions as well as the Thrust 2000 Graduate Fellowship in Engineering (Harry P. Whitworth endowed and Wayne Nance Family endowed). J.-F.L. was supported as part of EFree, an Energy Frontier Research Center funded by the DOE Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001057. We gratefully acknowledge C. J. Stolle and B. A. Korgel for their help with diffuse reflectance UV-vis spectroscopy measurements. NR 74 TC 107 Z9 109 U1 28 U2 338 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 31 PY 2013 VL 135 IS 30 BP 11389 EP 11396 DI 10.1021/ja405550k PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 196DF UT WOS:000322752900073 PM 23869474 ER PT J AU Modekurti, S Bhattacharyya, D Zitney, SE AF Modekurti, Srinivasarao Bhattacharyya, Debangsu Zitney, Stephen E. TI Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO2 Capture SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID AMINE SORBENT; COST; OPTIMIZATION; PERFORMANCE; ADSORPTION; OPERATION; STABILITY; SYSTEMS AB A one-dimensional, nonisothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO2) capture using Aspen Custom Modeler (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom of the bed. The models of all auxiliary equipment such as valves and gas distributors have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO2 capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flow rate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO2 capture rate at a desired level in the face of typical disturbances. C1 [Modekurti, Srinivasarao; Bhattacharyya, Debangsu] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.] US DOE, AVESTAR Ctr, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Bhattacharyya, D (reprint author), W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. EM Debangsu.Bhattacharyya@mail.mvu.edu FU RES [DE-FE0004000] FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000. NR 36 TC 12 Z9 12 U1 1 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUL 31 PY 2013 VL 52 IS 30 BP 10250 EP 10260 DI 10.1021/ie400852k PG 11 WC Engineering, Chemical SC Engineering GA 196DA UT WOS:000322752400025 ER PT J AU Fischer, R Bretschneider, CO London, P Budker, D Gershoni, D Frydman, L AF Fischer, Ran Bretschneider, Christian O. London, Paz Budker, Dmitry Gershoni, David Frydman, Lucio TI Bulk Nuclear Polarization Enhanced at Room Temperature by Optical Pumping SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIQUID-STATE NMR; COHERENT DYNAMICS; SOLID-STATE; SINGLE SPIN; DNP NMR; DIAMOND; SPECTROSCOPY; SENSITIVITY; QUBITS AB Bulk C-13 polarization can be strongly enhanced in diamond at room temperature based on the optical pumping of nitrogen-vacancy color centers. This effect was confirmed by irradiating single crystals at a similar to 50 mT field promoting anticrossings between electronic excited-state levels, followed by shuttling of the sample into an NMR setup and by subsequent C-13 detection. A nuclear polarization of similar to 0.5%-equivalent to the C-13 polarization achievable by thermal polarization at room temperature at fields of similar to 2000 T-was measured, and its bulk nature determined based on line shape and relaxation measurements. Positive and negative enhanced polarizations were obtained, with a generally complex but predictable dependence on the magnetic field during optical pumping. Owing to its simplicity, this C-13 room temperature polarizing strategy provides a promising new addition to existing nuclear hyper-polarization techniques. C1 [Fischer, Ran; London, Paz; Gershoni, David] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Bretschneider, Christian O.; Frydman, Lucio] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel. [Budker, Dmitry] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, Dmitry] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Fischer, R (reprint author), Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. EM lucio.frydman@weizmann.ac.il RI Budker, Dmitry/F-7580-2016; OI Budker, Dmitry/0000-0002-7356-4814; Gershoni, David/0000-0002-3039-9919 FU DIP Project (Ministry of Education and Research, Germany) [710907]; EU (through ERC Advanced Grant) [246754]; Helen and Kimmel Award for Innovative Investigation; IMOD; National Science Foundation; Perlman Family Foundation FX The authors are grateful to S. Vega and F. Jelezko for the fruitful discussions. This research was supported by the DIP Project 710907 (Ministry of Education and Research, Germany), the EU (through ERC Advanced Grant No. 246754), a Helen and Kimmel Award for Innovative Investigation, the IMOD, the National Science Foundation (D. B.) and the generosity of the Perlman Family Foundation. R. Fischer and C. O. Bretschneider contributed equally to this work. NR 34 TC 26 Z9 26 U1 5 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2013 VL 111 IS 5 AR 057601 DI 10.1103/PhysRevLett.111.057601 PG 5 WC Physics, Multidisciplinary SC Physics GA 195UG UT WOS:000322728500016 PM 23952444 ER PT J AU Rubin, BER Gibbons, SM Kennedy, S Hampton-Marcell, J Owens, S Gilbert, JA AF Rubin, Benjamin E. R. Gibbons, Sean M. Kennedy, Suzanne Hampton-Marcell, Jarrad Owens, Sarah Gilbert, Jack A. TI Investigating the Impact of Storage Conditions on Microbial Community Composition in Soil Samples SO PLOS ONE LA English DT Article ID FECAL SAMPLES; DNA; METAGENOMICS; EXTRACTION; DIVERSITY; COMPLEX; POPULATIONS; GENERATION; PATTERNS AB Recent advances in DNA sequencing technologies have allowed scientists to probe increasingly complex biological systems, including the diversity of bacteria in the environment. However, despite a multitude of recent studies incorporating these methods, many questions regarding how environmental samples should be collected and stored still persist. Here, we assess the impact of different soil storage conditions on microbial community composition using Illumina-based 16S rRNA V4 amplicon sequencing. Both storage time and temperature affected bacterial community composition and structure. Frozen samples maintained the highest alpha diversity and differed least in beta diversity, suggesting the utility of cold storage for maintaining consistent communities. Samples stored for intermediate times (three and seven days) had both the highest alpha diversity and the largest differences in overall beta diversity, showing the degree of community change after sample collection. These divergences notwithstanding, differences in neither storage time nor storage temperature substantially altered overall communities relative to more than 500 previously examined soil samples. These results systematically support previous studies and stress the importance of methodological consistency for accurate characterization and comparison of soil microbiological assemblages. C1 [Rubin, Benjamin E. R.] Univ Chicago, Comm Evolutionary Biol, Chicago, IL 60637 USA. [Rubin, Benjamin E. R.] Field Museum Nat Hist, Dept Zool, Chicago, IL 60605 USA. [Gibbons, Sean M.; Hampton-Marcell, Jarrad; Owens, Sarah; Gilbert, Jack A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gibbons, Sean M.] Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA. [Kennedy, Suzanne] MO BIO Labs Inc, Carlsbad, CA USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. RP Rubin, BER (reprint author), Univ Chicago, Comm Evolutionary Biol, Chicago, IL 60637 USA. EM brubin@fieldmuseum.org OI Gibbons, Sean/0000-0002-8724-7916 FU U.S. National Science Foundation; U.S. Environmental Protection Agency STAR Graduate Fellowship FX BERR was supported by a U.S. National Science Foundation Graduate Research Fellowship. SMG was supported by a U.S. Environmental Protection Agency STAR Graduate Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 33 TC 28 Z9 28 U1 3 U2 136 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 31 PY 2013 VL 8 IS 7 AR UNSP e70460 DI 10.1371/journal.pone.0070460 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 194LB UT WOS:000322633700074 PM 23936206 ER PT J AU Wlazlowski, G Magierski, P Bulgac, A Roche, KJ AF Wlazlowski, Gabriel Magierski, Piotr Bulgac, Aurel Roche, Kenneth J. TI Temperature evolution of the shear viscosity in a unitary Fermi gas SO PHYSICAL REVIEW A LA English DT Article AB We present an ab initio determination of the shear viscosity for the unitary Fermi gas based on finite temperature quantum Monte Carlo (QMC) calculations and the Kubo linear-response formalism. The results are confronted with the bound for the shear viscosity originating from hydrodynamic fluctuations. Assuming smoothness of the frequency dependent shear viscosity eta(omega), we show that the bound is violated in the low temperature regime and the violation occurs simultaneously with the onset of the Cooper pairing in the system. In order to preserve the hydrodynamic bound in QMC eta(omega) has to possess a sharp structure located in the vicinity of zero frequency which is not resolved by an analytic continuation procedure. C1 [Wlazlowski, Gabriel; Magierski, Piotr] Warsaw Univ Technol, Fac Phys, PL-00662 Warsaw, Poland. [Wlazlowski, Gabriel; Magierski, Piotr; Bulgac, Aurel; Roche, Kenneth J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Roche, Kenneth J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wlazlowski, G (reprint author), Warsaw Univ Technol, Fac Phys, Ulica Koszykowa 75, PL-00662 Warsaw, Poland. FU US DOE [DE-FG02-97ER41014, DE-FC02-07ER41457]; Polish Ministry of Science [N N202 128439, 628/MOB/2011/0]; NSF MRI [PHY-0922770]; Office of Science of the Department of Energy [DE-AC05-00OR22725] FX We thank P. Romatschke for making the results of Ref. [29] available to us. We acknowledge support under US DOE Grants No. DE-FG02-97ER41014 and No. DE-FC02-07ER41457, and Contract No. N N202 128439 of the Polish Ministry of Science. One of the authors (G.W.) acknowledges the Polish Ministry of Science for support within the program "Mobility Plus - I edition" under Contract No. 628/MOB/2011/0. Calculations reported here have been performed at the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) at Warsaw University and on the University of Washington Hyak cluster funded by the NSF MRI Grant No. PHY-0922770. This research also used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract No. DE-AC05-00OR22725. NR 34 TC 11 Z9 11 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 31 PY 2013 VL 88 IS 1 AR 013639 DI 10.1103/PhysRevA.88.013639 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 195AV UT WOS:000322674700007 ER PT J AU Kamath, G Deshmukh, SA Sankaranarayanan, SKRS AF Kamath, Ganesh Deshmukh, Sanket A. Sankaranarayanan, Subramanian K. R. S. TI Comparison of select polarizable and non-polarizable water models in predicting solvation dynamics of water confined between MgO slabs SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID NEUTRON-SCATTERING EXPERIMENTS; MONTE-CARLO SIMULATIONS; MOLECULAR-DYNAMICS; LIQUID WATER; FORCE-FIELDS; POTENTIAL FUNCTIONS; MGO(100) SURFACE; MGO(001); ORDER; TRANSITION AB We present a molecular dynamics simulation study in which we compare and contrast the performance of a polarizable shell water potential model and non-polarizable water force field-extended simple point charge (SPC/EF) model in predicting the solvation dynamics of confined water molecules sandwiched between MgO(100) slabs. Structural features based on radial distribution functions, atomic density profiles, adsorption patterns, orientational ordering and dynamical correlations such as diffusional characteristics, hydrogen bonding lifetimes and residence probabilities are used as metrics for comparison. The simulations yield significant ordering of water molecules in the two layers adjacent to the oxide interface and the extent of ordering decreases with increasing distance from the oxide-water interface. These results elucidate that the dependence of local ordering and solvation dynamics on the molecular geometry and charge distribution, observed for typical three-and four-site water models, is generally lost for confined water if polarization is explicitly included. While the interfacial water structure predicted by the polarizable and non-polarizable models are similar, the confinement and interface proximity effects on the solvation dynamics are seen to be more pronounced for polarizable water models in comparison to non-polarizable ones. The study also shows that the polarizable water model over predicts the orientational order and under predicts the transport properties of confined water. In addition, analysis of the orientational preferences and hydrogen bonding characteristics of water near oxide interfaces suggests a higher degree of tetrahedral disorder in the polarizable shell compared to the non-polarizable SPC/E flexible model. The origin of the differences in solvation behavior of confined water between oxide slabs is analyzed based on the energetic contributions of the dispersive and electrostatic terms in the two force fields. Our findings suggest some new considerations regarding the role of polarization terms in predicting confinement and interface proximity effects that may guide future development of reliable polarizable water models for confined liquids. C1 [Kamath, Ganesh] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Deshmukh, Sanket A.; Sankaranarayanan, Subramanian K. R. S.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kamath, G (reprint author), Univ Missouri, Dept Chem, Columbia, MO 65211 USA. EM skrssank@anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06 CH11357] FX Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06 CH11357. NR 78 TC 4 Z9 4 U1 1 U2 36 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 31 PY 2013 VL 25 IS 30 AR 305003 DI 10.1088/0953-8984/25/30/305003 PG 16 WC Physics, Condensed Matter SC Physics GA 182OG UT WOS:000321752800003 PM 23819970 ER PT J AU Park, JS Kim, YB An, J Shim, JH Gur, TM Prinz, FB AF Park, Joong Sun Kim, Young-Beom An, Jihwan Shim, Joon Hyung Guer, Turgut M. Prinz, Fritz B. TI Effect of cation non-stoichiometry and crystallinity on the ionic conductivity of atomic layer deposited Y:BaZrO3 films SO THIN SOLID FILMS LA English DT Article DE Yttrium-doped barium zirconate; Atomic layer deposition; Proton conducting ceramic; Fuel Cells; Cation crystallinity; Ionic conductivity ID DOPED BARIUM CERATE; FUEL-CELLS; PROTON CONDUCTIVITY; CONDUCTORS; BACEO3; PHASE AB The effects of A-site non-stoichiometry and crystallinity on the proton conductivity of anhydrous proton conducting yttria-doped barium zirconate (BYZ) thin film were investigated. The membranes were fabricated by atomic layer deposition (ALD) as it allows tailoring and varying the concentration of barium. Electrochemical impedance spectroscopy was conducted to investigate the ionic conductivity according to the stoichiometry and crystallinity of the ALD BYZ thin films. (C) 2013 Elsevier B.V. All rights reserved. C1 [Park, Joong Sun; Kim, Young-Beom; An, Jihwan; Prinz, Fritz B.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Park, Joong Sun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm & Energy Technol Div, Berkeley, CA 94720 USA. [Kim, Young-Beom] Hanyang Univ, Dept Mech Engn, Seoul 133791, South Korea. [Shim, Joon Hyung] Korea Univ, Dept Mech Engn, Seoul, South Korea. [Guer, Turgut M.; Prinz, Fritz B.] Stanford Univ, Dept Mat & Sci Engn, Stanford, CA 94305 USA. RP Kim, YB (reprint author), Hanyang Univ, Dept Mech Engn, 222 Wangshimni Ro, Seoul 133791, South Korea. EM ybkim@hanyang.ac.kr FU Korean National Research Foundation (NRF) of the Korean Ministry of Education, Science, and Technology (MEST) [2012014689]; NRF of the Korean Ministry of Education, Science, and Technology (MEST) [2012047871] FX Y.B.K acknowledges the financial support from the Korean National Research Foundation (NRF) of the Korean Ministry of Education, Science, and Technology (MEST, Grant No. 2012014689). Also, J.H.S. is grateful to the NRF of the Korean Ministry of Education, Science, and Technology (MEST, Grant No. 2012047871) for their financial support. NR 18 TC 6 Z9 6 U1 2 U2 39 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 31 PY 2013 VL 539 BP 166 EP 169 DI 10.1016/j.tsf.2013.05.092 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 173VZ UT WOS:000321111100029 ER PT J AU Ohodnicki, PR Wang, CJ Andio, M AF Ohodnicki, Paul R., Jr. Wang, Congjun Andio, Mark TI Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications SO THIN SOLID FILMS LA English DT Article DE Conducting metal oxide; Optical gas sensing; High temperature; Surface plasmon; Nanoparticle ID ZNO THIN-FILMS; HIGH-TEMPERATURE; GAS-SENSORS; SENSITIVITY; RESONANCE; LAYERS; TIO2; CO AB The ability to monitor gas species selectively, sensitively, and reliably in extreme temperatures and harsh conditions is critically important for more efficient energy production using conventional fossil energy based production technologies, enabling advanced technologies for fossil based power plants of the future, and improving efficiency in domestic manufacturing industries. Optical waveguide based sensing platforms have become increasingly important but a need exists for materials that exhibit useful changes in optical properties in response to changing gas atmospheres at high temperatures. In this manuscript, the onset of a near-IR absorption associated with an increase in free carrier density in doped metal oxide nanoparticles to form so-called conducting metal oxides is discussed in the context of results obtained for undoped and Al-doped ZnO nanoparticle based films. Detailed film characterization results are presented along with measured changes in optical absorption resulting from various high temperature treatments in a range of gas atmospheres. Optical property changes are also discussed in the context of a simple model for optical absorption in conducting metal oxide nanoparticles and thin films. The combination of experimental results and theoretical modeling presented here suggests that such materials have potential for high temperature optical gas sensing applications. Simulated sensing experiments were performed at 500 degrees C and a useful, rapid, and reproducible near-IR optical sensing response to H-2 confirms that this class of materials shows great promise for optical gas sensing. Published by Elsevier B. V. C1 [Ohodnicki, Paul R., Jr.; Wang, Congjun; Andio, Mark] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Ohodnicki, Paul R., Jr.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Wang, Congjun] URS Corp, Pittsburgh, PA 15219 USA. RP Ohodnicki, PR (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM Paul.Ohodnicki@NETL.DOE.GOV FU U.S. DOE Advanced Research/Crosscutting Technologies program at the National Energy Technology Laboratory; United States Government FX This work was funded by the U.S. DOE Advanced Research/Crosscutting Technologies program at the National Energy Technology Laboratory. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 52 TC 24 Z9 24 U1 2 U2 84 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 31 PY 2013 VL 539 BP 327 EP 336 DI 10.1016/j.tsf.2013.04.145 PG 10 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 173VZ UT WOS:000321111100054 ER PT J AU Antolin, GDC Dhere, RG de Avillez, RR Cruz, LR AF Antolin, G. D. C. Dhere, R. G. de Avillez, R. R. Cruz, L. R. TI Rietveld analysis of CdS/CdTe thin film junctions submitted to a CdCl2 heat treatment SO THIN SOLID FILMS LA English DT Article DE Cadmium telluride; Cadmium chloride; Rietveld analysis; Heat treatment; Chemical treatment ID PREFERRED ORIENTATION; CDTE; DIFFUSION AB In this work we investigate the effects of a CdCl2 heat treatment on the interface of CdTe/CdS heterojunction solar cells using Rietveld analysis of X-ray diffraction patterns. Although the Rietveld method is an important tool for the study of materials by X-ray diffraction, there have been few reports of its use in thin film analysis. The results showed the occurrence of interdiffusion in the CdS-CdTe boundary, with substitution of tellurium by sulfur in the CdTe lattice that resulted in a CdSxTe1-x alloy. The sulfur content of the alloy was greater than in previous studies. This is attributed to the low oxygen concentration during processing and the strong (111) texture of the CdTe films. (C) 2013 Elsevier B.V. All rights reserved. C1 [Antolin, G. D. C.; Cruz, L. R.] Inst Mil Engn, BR-22290270 Rio De Janeiro, RJ, Brazil. [Dhere, R. G.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [de Avillez, R. R.] Pontificia Univ Catolica Rio de Janeiro, BR-22451900 Rio De Janeiro, RJ, Brazil. RP Antolin, GDC (reprint author), Inst Mil Engn, Praca Gen Tiburcio 80, BR-22290270 Rio De Janeiro, RJ, Brazil. EM giselecaboclo@yahoo.com.br RI de Avillez, Roberto/A-2592-2010 OI de Avillez, Roberto/0000-0002-2192-1082 NR 23 TC 5 Z9 5 U1 1 U2 26 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 31 PY 2013 VL 539 BP 356 EP 359 DI 10.1016/j.tsf.2013.05.048 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 173VZ UT WOS:000321111100059 ER PT J AU Iwig, JS Vercoulen, Y Das, R Barros, T Limnander, A Che, Y Pelton, JG Wemmer, DE Roose, JP Kuriyan, J AF Iwig, Jeffrey S. Vercoulen, Yvonne Das, Rahul Barros, Tiago Limnander, Andre Che, Yan Pelton, Jeffrey G. Wemmer, David E. Roose, Jeroen P. Kuriyan, John TI Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1 SO ELIFE LA English DT Article ID NUCLEOTIDE-RELEASING PROTEIN; DIACYLGLYCEROL-BINDING MOTIFS; T-CELL DEVELOPMENT; EF-HAND MOTIFS; ACTIVATOR SON; NEGATIVE SELECTION; CRYSTAL-STRUCTURE; SIGNAL-TRANSDUCTION; DIPOLAR COUPLINGS; CALCIUM-BINDING AB RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. C1 [Iwig, Jeffrey S.; Das, Rahul; Barros, Tiago; Che, Yan; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Iwig, Jeffrey S.; Das, Rahul; Barros, Tiago; Che, Yan; Pelton, Jeffrey G.; Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Vercoulen, Yvonne; Limnander, Andre; Roose, Jeroen P.] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA. [Barros, Tiago; Kuriyan, John] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA USA. [Wemmer, David E.; Kuriyan, John] Univ Calif San Francisco, Dept Chem, San Francisco, CA 94143 USA. [Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Roose, JP (reprint author), Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA. EM jeroen.roose@ucsf.edu; kuriyan@berkeley.edu OI Barros, Tiago/0000-0002-9807-7625 FU National Institutes of Health [P01 AI091580, 5F32GM095149-03, R56-AI095292, R03AR062783]; Howard Hughes Medical Institute; National Cancer Institute [U54CA143874]; Gabrielle's Angel Foundation FX National Institutes of Health P01 AI091580 Jeroen P Roose, John Kuriyan; Howard Hughes Medical Institute John Kuriyan, Tiago Barros; National Cancer Institute U54CA143874 Jeroen P Roose; National Institutes of Health 5F32GM095149-03 Jeffrey S Iwig; National Institutes of Health R56-AI095292 Jeroen P Roose; National Institutes of Health R03AR062783 Andre Limnander; Gabrielle's Angel Foundation Jeroen P Roose NR 105 TC 20 Z9 21 U1 0 U2 12 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD JUL 30 PY 2013 VL 2 AR e00813 DI 10.7554/eLife.00813 PG 28 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 274QX UT WOS:000328622300004 PM 23908768 ER PT J AU Gonzalez, AG Diez, JA Wu, YY Fowlkes, JD Rack, PD Kondic, L AF Gonzalez, Alejandro G. Diez, Javier A. Wu, Yueying Fowlkes, Jason D. Rack, Philip D. Kondic, Lou TI Instability of Liquid Cu Films on a SiO2 Substrate SO LANGMUIR LA English DT Article ID ELECTRON DYNAMICS; METAL-FILMS; NANOPARTICLES; SIMULATION; STABILITY; ENERGY AB We study the instability of nanometric Cu thin films on SiO2 substrates. The metal is melted by means of laser pulses for some tens of nanoseconds, and during the liquid lifetime, the free surface destabilizes, leading to the formation of holes at first and then in later stages of the instability to metal drops on the substrate. By analyzing the Fourier transforms of the SEM (scanning electron microscope) images obtained at different stages of the metal film evolution, we determine the emerging length scales at relevant stages of the instability development. The results are then discussed within the framework of a long-wave model. We find that the results may differ whether early or final stages of the instability are considered. On the basis of the interpretation of the experimental results, we discuss the influence of the parameters describing the interaction of the liquid metal with the solid substrate. By considering both the dependence of dominant length scales on the film thickness and the measured contact angle, we isolate a model which predicts well the trends found in the experimental data. C1 [Gonzalez, Alejandro G.; Diez, Javier A.] Univ Nacl Ctr Prov Buenos Aires, Inst Fis Arroyo Seco, Tandil, Argentina. [Gonzalez, Alejandro G.; Diez, Javier A.] CIFICEN CONICET, Tandil, Argentina. [Wu, Yueying; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Fowlkes, Jason D.; Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. [Kondic, Lou] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA. RP Gonzalez, AG (reprint author), Univ Nacl Ctr Prov Buenos Aires, Inst Fis Arroyo Seco, Tandil, Argentina. EM aggonzal@exa.unicen.edu.ar OI Rack, Philip/0000-0002-9964-3254; Gonzalez, Alejandro G./0000-0002-4710-6414 FU NSF [CBET 1235651, 1235710]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina (CONICET, Argentina) [PIP 844/2011] FX P.D.R. and L.K. acknowledge partial support by the NSF Grants No. CBET 1235651 and 1235710, respectively. A portion of this work was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. A.G.G. and J.A.D. acknowledge support from Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina (CONICET, Argentina) with Grant PIP 844/2011 and visits to ORNL with a joint CONICET-NSF international cooperation project. NR 42 TC 12 Z9 12 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 30 PY 2013 VL 29 IS 30 BP 9378 EP 9387 DI 10.1021/la4009784 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 195IH UT WOS:000322695000011 PM 23805951 ER PT J AU Choi, D Rowley, JG Spitler, M Parkinson, BA AF Choi, DaeJin Rowley, John G. Spitler, Mark Parkinson, B. A. TI Dye Sensitization of Four Low Index TiO2 Single Crystal Photoelectrodes with a Series of Dicarboxylated Cyanine Dyes SO LANGMUIR LA English DT Article ID SOLAR-CELL APPLICATIONS; SPECTRAL SENSITIZATION; ORGANIC SENSITIZERS; ADSORPTION; EFFICIENT; ANATASE; ELECTROLYTE; SURFACES; ENERGY; SEMICONDUCTOR AB Four dicarboxylated cyanine dyes were used to sensitize single-crystal anatase (001), anatase (101), rutile (001), and rutile (100) surfaces. Incident photon to current efficiencies (IPCE) spectra and isotherms were gathered for the different combination of dyes and surfaces. The maximum coverage of the surface-bound dyes on the TiO2 crystal surfaces was determined by photochronocoulometric measurements. The IPCE spectra of the surface-bound dyes revealed that both the dye monomers an H-aggregates were both present and generated photocurrent. The relative abundance of dye monomers and H-aggregates was found to be strongly dependent on the crystallographic face used as the substrate for sensitization. The ratio of dye monomer to H-aggregate was quantified by fitting the IPCE spectra with a sum of the dye monomer and H-aggregate solution spectra. The trends in surface coverage were explained using a simple "lattice matching" model where the distance between the coordinatively unsaturated Ti binding sites on the various TiO2 crystallographic surfaces was compared with the distance between the carboxylate groups on the dyes. The rutile (100) surface had the highest coverage for all the dyes in agreement with the predictions of the lattice-matching model. Absorbed photon-to-current-efficiencies (APCEs) were calculated from the incident photon current efficiencies, the extinction coefficients and the measured surface coverages. The factors that affect the APCE values such as the relative injection yield for monomers and aggregate, the relative surface coverage values for monomers and aggregates, and semiconductor doping levels are discussed. C1 [Choi, DaeJin; Rowley, John G.; Parkinson, B. A.] Univ Wyoming, Dept Chem, Laramie, WY 82071 USA. [Choi, DaeJin; Rowley, John G.; Parkinson, B. A.] Univ Wyoming, Sch Energy Resources, Laramie, WY 82071 USA. [Spitler, Mark] US DOE, Div Chem Sci Geosci & Biosci, GTN Off Basic Energy Sci 22 13, Washington, DC 20585 USA. RP Parkinson, BA (reprint author), Univ Wyoming, Dept Chem, Laramie, WY 82071 USA. EM bparkin1@uwyo.edu FU U.S. Department of Energy, Basic Energy Sciences [DE-FG03-96ER14625] FX We thank Dr. Dean Roddick for help in calculating the distances between the two carboxylate groups and valuable discussions and the U.S. Department of Energy, Basic Energy Sciences Grant No. DE-FG03-96ER14625 for funding. D.J.C. thanks the School of Energy Resources at the University of Wyoming for a Graduate Assistantship. NR 31 TC 11 Z9 11 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 30 PY 2013 VL 29 IS 30 BP 9410 EP 9419 DI 10.1021/la401156d PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 195IH UT WOS:000322695000014 PM 23822175 ER PT J AU Boreyko, JB Srijanto, BR Nguyen, TD Vega, C Fuentes-Cabrera, M Collier, CP AF Boreyko, Jonathan B. Srijanto, Bernadeta R. Trung Dac Nguyen Vega, Carlos Fuentes-Cabrera, Miguel Collier, C. Patrick TI Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces SO LANGMUIR LA English DT Article ID SOURCE HEAT-PUMP; MOLECULAR-DYNAMICS; WATER CONDENSATION; SOLID-SURFACES; LIQUID-DROPS; ICE; PERFORMANCE; FABRICATION; REPELLENT; GROWTH AB Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here, we report that nanostructured superhydrophobic surfaces. Promote the growth of frost in a suspended Cassie state, enabling its dynamic removal upon partial melting at low tilt angles (<15 degrees). The dynamic removal of the melting frost occurred in two stages: spontaneous dewetting followed by gravitational mobilization. This dynamic defrosting phenomenon is driven by the low contact angle hysteresis of the defrosted meltwater relative to frost on microstructured superhydrophobic surfaces, which forms in the impaled Wenzel state. Dynamic defrosting on nanostructured superhydrophobic surfaces minimizes the time, heat, and gravitational energy required to remove frost from the surface, and is of interest for a variety of systems in cold and humid environments. C1 [Boreyko, Jonathan B.; Srijanto, Bernadeta R.; Fuentes-Cabrera, Miguel; Collier, C. Patrick] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Trung Dac Nguyen] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Vega, Carlos] Univ Complutense, Fac Ciencias Quim, Dept Quim Fis, E-28040 Madrid, Spain. [Srijanto, Bernadeta R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Collier, CP (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM colliercp@ornl.gov RI Vega , Carlos /C-5455-2009; Fuentes-Cabrera, Miguel/Q-2437-2015; Srijanto, Bernadeta/D-4213-2016; Collier, Charles/C-9206-2016; Nguyen, Trung/H-7008-2012 OI Vega , Carlos /0000-0002-2417-9645; Fuentes-Cabrera, Miguel/0000-0001-7912-7079; Srijanto, Bernadeta/0000-0002-1188-1267; Collier, Charles/0000-0002-8198-793X; Nguyen, Trung/0000-0002-5076-264X NR 61 TC 41 Z9 42 U1 5 U2 117 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 30 PY 2013 VL 29 IS 30 BP 9516 EP 9524 DI 10.1021/la401282c PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 195IH UT WOS:000322695000026 PM 23822157 ER PT J AU Close, HG Shah, SR Ingalls, AE Diefendorf, AF Brodie, EL Hansman, RL Freeman, KH Aluwihare, LI Pearson, A AF Close, Hilary G. Shah, Sunita R. Ingalls, Anitra E. Diefendorf, Aaron F. Brodie, Eoin L. Hansman, Roberta L. Freeman, Katherine H. Aluwihare, Lihini I. Pearson, Ann TI Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biogeochemistry; biomarkers; oceanography; carbon isotopes ID CATALYZED REPORTER DEPOSITION; PACIFIC SUBTROPICAL GYRE; IN-SITU HYBRIDIZATION; OCEANS TWILIGHT ZONE; MICROBIAL FOOD-WEB; CARBON EXPORT; TIME-SERIES; SMALL PHYTOPLANKTON; EQUATORIAL PACIFIC; SINKING PARTICLES AB Sixty percent of the world ocean by area is contained in oligotrophic gyres [Longhurst A (1995) Prog Oceanog 36:77-16], the biomass of which is dominated by picophytoplankton, including cyanobacteria and picoeukaryotic algae, as well as picoheterotrophs. Despite their recognized importance in carbon cycling in the surface ocean, the role of small cells and their detrital remains in the transfer of particulate organic matter (POM) to the deep ocean remains disputed. Because oligotrophic marine conditions are projected to expand under current climate trends, a better understanding of the role of small particles in the global carbon cycle is a timely goal. Here we use the lipid profiles, radiocarbon, and stable carbon isotopic signatures of lipids from the North Pacific Subtropical Gyre to show that in the surface ocean, lipids from submicron POM (here called extra-small POM) are distinct from larger classes of suspended POM. Remarkably, this distinct extra-small POM signature dominates the total lipids collected at mesopelagic depth, suggesting that the lipid component of mesopelagic POM primarily contains the exported remains of small particles. Transfer of submicron material to mesopelagic depths in this location is consistent with model results that claim the biological origin of exported carbon should be proportional to the distribution of cell types in the surface community, irrespective of cell size [Richardson TL, Jackson GA (2007) Science 315:838-840]. Our data suggest that the submicron component of exported POM is an important contributor to the global biological pump, especially in oligotrophic waters. C1 [Close, Hilary G.; Shah, Sunita R.; Ingalls, Anitra E.; Pearson, Ann] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Diefendorf, Aaron F.; Freeman, Katherine H.] Penn State Univ, Dept Geosci, State Coll, PA 16801 USA. [Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hansman, Roberta L.; Aluwihare, Lihini I.] Univ Calif San Diego, Scripps Inst Oceanog, Geosci Res Div, La Jolla, CA 92093 USA. RP Pearson, A (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM pearson@eps.harvard.edu RI Close, Hilary/M-4904-2013; Shah Walter, Sunita/D-4981-2013; Brodie, Eoin/A-7853-2008; Freeman, Katherine/H-5140-2011; OI Close, Hilary/0000-0002-9892-8928; Shah Walter, Sunita/0000-0003-2206-9052; Brodie, Eoin/0000-0002-8453-8435; Freeman, Katherine/0000-0002-3350-7671; Hansman, Roberta/0000-0003-1525-8509 FU University of California Department of Energy [DE-AC02-05CH11231]; National Science Foundation [OCE-0241363, OCE-0927290, OCE-0242160]; National Aeronautics and Space Administration Astrobiology Institute; ExxonMobil Geoscience grant FX We thank Tom Daniel, Barbara Lee, Jan War, and the staff of the Natural Energy Laboratory of Hawaii Authority for access to the sampling facility; Susan Carter and Katherine Goldfarb for laboratory assistance; Sheila Griffin for assistance with accelerator-mass spectrometry (AMS) preparation and analysis; Li Xu for assistance with preparative capillary gas chromatography; and John Southon, Tom Guilderson, Ann McNichol, and all of the staff members of the Keck Carbon Cycle AMS facility at the University of California, Irvine, Lawrence Livermore National Laboratories, and National Ocean Sciences Accelerator Mass Spectrometry accelerator facilities. Part of this work was performed at Lawrence Berkeley National Laboratory under the auspices of the University of California Department of Energy Contract DE-AC02-05CH11231. This work was supported by National Science Foundation Grants OCE-0241363 and OCE-0927290 (to A. P.) and OCE-0242160 (to L. I. A.) and by the National Aeronautics and Space Administration Astrobiology Institute and an ExxonMobil Geoscience grant (to H.G.C.). NR 49 TC 15 Z9 15 U1 3 U2 69 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 30 PY 2013 VL 110 IS 31 BP 12565 EP 12570 DI 10.1073/pnas.1217514110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 191VH UT WOS:000322441500029 PM 23858459 ER PT J AU Holmfeldt, K Solonenko, N Shah, M Corrier, K Riemann, L VerBerkmoes, NC Sullivan, MB AF Holmfeldt, Karin Solonenko, Natalie Shah, Manesh Corrier, Kristen Riemann, Lasse VerBerkmoes, Nathan C. Sullivan, Matthew B. TI Twelve previously unknown phage genera are ubiquitous in global oceans SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE model systems; phage genomics; phage taxonomy; queuosine biosynthesis; prophage ID GENOME SEQUENCE; VIRAL METAGENOMES; TRANSFER-RNAS; MARINE; DIVERSITY; VIRUSES; CYANOPHAGES; GRADIENTS; BACTERIA; HOSTS AB Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in "unknowns" dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an under-represented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four well-known viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria. Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage-host systems for experimental hypothesis testing. C1 [Holmfeldt, Karin; Solonenko, Natalie; Sullivan, Matthew B.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Shah, Manesh; Corrier, Kristen; VerBerkmoes, Nathan C.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Riemann, Lasse] Univ Copenhagen, Dept Biol, DK-3000 Helsingor, Denmark. RP Holmfeldt, K (reprint author), Linnaeus Univ, Sch Nat Sci, S-39182 Kalmar, Sweden. EM k.holmfeldt@gmail.com; mbsulli@e-mail.arizona.edu RI Riemann, Lasse/J-7091-2014; Sullivan, Matthew/H-3256-2011 OI Riemann, Lasse/0000-0001-9207-2543; Sullivan, Matthew/0000-0003-4040-9831 FU Gordon and Betty Moore Foundation; Sweden-America Foundation; Swedish Research Council FX We thank J. Cesar Ignacio-Espinoza and Melissa Duhaime for help with phage genome analyses; Jarl Haggerty and Kenth Holmfeldt for development of in-house bioinformatics programs; and Forest Rohwer for launching M. B. S. and K. H. in phage genomics and supporting preliminary genome sequencing of isolates phi 4:1, phi 13:1, and phi 39:1. This study was supported by the Gordon and Betty Moore Foundation (M. B. S.) and postdoctoral fellowships from the Sweden-America Foundation and the Swedish Research Council (to K.H.). NR 54 TC 50 Z9 53 U1 5 U2 44 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 30 PY 2013 VL 110 IS 31 BP 12798 EP 12803 DI 10.1073/pnas.1305956110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 191VH UT WOS:000322441500068 PM 23858439 ER PT J AU Kline, KL Singh, N Dale, VH AF Kline, Keith L. Singh, Nagendra Dale, Virginia H. TI Cultivated hay and fallow/idle cropland confound analysis of grassland conversion in the Western Corn Belt SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter C1 [Kline, Keith L.; Singh, Nagendra; Dale, Virginia H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kline, KL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM klinekl@ornl.gov OI Kline, Keith/0000-0003-2294-1170 NR 5 TC 7 Z9 7 U1 0 U2 17 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 30 PY 2013 VL 110 IS 31 BP E2863 EP E2863 DI 10.1073/pnas.1306646110 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 191VH UT WOS:000322441500005 PM 23754365 ER PT J AU Oda, T Zhang, YW Weber, WJ AF Oda, Takuji Zhang, Yanwen Weber, William J. TI Optimization of a hybrid exchange-correlation functional for silicon carbides SO CHEMICAL PHYSICS LETTERS LA English DT Article ID VALENCE-BAND PHOTOEMISSION; SIC POLYTYPES; ELECTRONIC-STRUCTURE; RAMAN-SCATTERING; REFLECTIVITY; DEFECTS; GAAS; 21R; 3C AB A hybrid exchange-correlation functional is optimized in order to accurately describe the nature of silicon carbides (SiC) in the framework of ab initio calculations based on density functional theory (DFT), especially with an aim toward future applications in defect studies. It is shown that the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional with the screening parameter of 0.15 angstrom(-1) outperforms conventional exchange-correlation functionals and other popular hybrid functionals regarding description of band structures in SiC. High transferability is proven through assessment over various SiC polytypes, silicon and diamond. Excellent performance is also confirmed for other fundamental material properties including elastic constants and phonon frequency. (C) 2013 Elsevier B.V. All rights reserved. C1 [Oda, Takuji; Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Oda, T (reprint author), TANDEC, 1321 White Ave, Knoxville, TN 37996 USA. EM takuji.oda@utk.edu RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU Joint Institute for Advanced Materials; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This Letter was supported by the Joint Institute for Advanced Materials (T.O.) and by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (Y.Z. and W.J.W.). The theoretical calculations were performed using the supercomputer resources at the National Energy Research Scientific Computing Center located at the Lawrence Berkeley National Laboratory. NR 50 TC 3 Z9 3 U1 6 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 30 PY 2013 VL 579 BP 58 EP 63 DI 10.1016/j.cplett.2013.06.030 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 193KH UT WOS:000322558200010 ER PT J AU Schmeltzer, D Saxena, A AF Schmeltzer, D. Saxena, Avadh TI Interference effects for T-2 =-1 time reversal invariant topological insulators: Surface optical and Raman conductivity SO PHYSICAL REVIEW B LA English DT Article ID BACKSCATTERING; LOCALIZATION; ELECTRONS AB The surface conductivity for conduction electrons with a fixed chirality in a topological insulator with elastic scattering is calculated. The surface excitations are described by the Weyl Hamiltonian. For a zero chemical potential, time reversal symmetry ensures that the integrated Berry phase curvature over the entire Brillouin zone vanishes. When the chemical potential is nonzero, mu > 0, the multiple scattering amplitude (for the conduction electrons) changes sign under the time reversal symmetry, T((k) over right arrow, - (k) over right arrow) = -T(-(k) over right arrow,(k) over right arrow); therefore antilocalization emerges. This result is consistent with the integrated Fermi surface Berry curvature of p. Using this model we compute conductivity as a function of frequency and phase coherence. We compare our results with the Raman line shift measurements for Bi2Se3. When the time reversal symmetry is broken the Berry phase curvature as well as the Fermi surface Berry phase are finite and modify the optical and Raman spectra. C1 [Schmeltzer, D.] CUNY City Coll, Dept Phys, New York, NY 10031 USA. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Schmeltzer, D (reprint author), CUNY City Coll, Dept Phys, New York, NY 10031 USA. NR 33 TC 4 Z9 4 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 30 PY 2013 VL 88 IS 3 AR 035140 DI 10.1103/PhysRevB.88.035140 PG 16 WC Physics, Condensed Matter SC Physics GA 193UR UT WOS:000322587500001 ER PT J AU Behnke, E Benjamin, T Brice, SJ Broemmelsiek, D Collar, JI Cooper, PS Crisler, M Dahl, CE Fustin, D Hall, J Harnish, C Levine, I Lippincott, WH Moan, T Nania, T Neilson, R Ramberg, E Robinson, AE Ruschman, M Sonnenschein, A Vazquez-Jauregui, E Rivera, RA Uplegger, L AF Behnke, E. Benjamin, T. Brice, S. J. Broemmelsiek, D. Collar, J. I. Cooper, P. S. Crisler, M. Dahl, C. E. Fustin, D. Hall, J. Harnish, C. Levine, I. Lippincott, W. H. Moan, T. Nania, T. Neilson, R. Ramberg, E. Robinson, A. E. Ruschman, M. Sonnenschein, A. Vazquez-Jauregui, E. Rivera, R. A. Uplegger, L. CA COUPP Collaboration TI Direct measurement of the bubble-nucleation energy threshold in a CF3I bubble chamber SO PHYSICAL REVIEW D LA English DT Article AB We have directly measured the energy threshold and efficiency for bubble nucleation fromiodine recoils in a CF3I bubble chamber in the energy range of interest for a dark matter search. These interactions cannot be probed by standard neutron calibration methods, so we develop a new technique by observing the elastic scattering of 12 GeV/c negative pions. The pions are tracked with a silicon pixel telescope and the reconstructed scattering angle provides a measure of the nuclear recoil kinetic energy. The bubble chamber was operated with a nominal threshold of (13.6 +/- 0.6) keV. Interpretation of the results depends on the response to fluorine and carbon recoils, but in general we find agreement with the predictions of the classical bubble-nucleation theory. This measurement confirms the applicability of CF3I as a target for spin-independent dark matter interactions and represents a novel technique for calibration of superheated fluid detectors. C1 [Behnke, E.; Benjamin, T.; Harnish, C.; Levine, I.; Moan, T.; Nania, T.] Indiana Univ, South Bend, IN 46634 USA. [Brice, S. J.; Broemmelsiek, D.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Lippincott, W. H.; Ramberg, E.; Ruschman, M.; Sonnenschein, A.; Rivera, R. A.; Uplegger, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Collar, J. I.; Fustin, D.; Neilson, R.; Robinson, A. E.] Univ Chicago, Enrico Fermi Inst, KICP, Chicago, IL 60637 USA. [Collar, J. I.; Fustin, D.; Neilson, R.; Robinson, A. E.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Dahl, C. E.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Hall, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Vazquez-Jauregui, E.] SNOLAB, Lively, ON P3Y 1N2, Canada. RP Behnke, E (reprint author), Indiana Univ, South Bend, IN 46634 USA. EM hugh@fnal.gov; rneilson@uchicago.edu FU Fermi National Accelerator Laboratory; Department of Energy; National Science Foundation; [PHY-0856273]; [PHY-1205987]; [PHY-0937500]; [PHY-0919526] FX The COUPP Collaboration would like to thank Fermi National Accelerator Laboratory, the Department of Energy and the National Science Foundation for their support including Grants No. PHY-0856273, No. PHY-1205987, No. PHY-0937500 and No. PHY-0919526. We acknowledge technical assistance from Fermilab's Accelerator, Computing, and Particle Physics Divisions, and from A. Behnke at IUSB. NR 15 TC 8 Z9 8 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 30 PY 2013 VL 88 IS 2 AR 021101 DI 10.1103/PhysRevD.88.021101 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 193VO UT WOS:000322589800001 ER PT J AU Dennis, GR Hudson, SR Terranova, D Franz, P Dewar, RL Hole, MJ AF Dennis, G. R. Hudson, S. R. Terranova, D. Franz, P. Dewar, R. L. Hole, M. J. TI Minimally Constrained Model of Self-Organized Helical States in Reversed-Field Pinches SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMAS; EQUILIBRIA; RELAXATION AB We show that the self-organized single-helical-axis (SHAx) and double-axis (DAx) states in reversed field pinches can be reproduced in a minimally constrained equilibrium model using only five parameters. This is a significant reduction on previous representations of the SHAx which have required an infinite number of constraints. The DAx state, which has a nontrivial topology, has not previously been reproduced using an equilibrium model that preserves this topological structure. We show that both states are a consequence of transport barrier formation in the plasma core, in agreement with experimental results. We take the limit of zero pressure in this work, although the model is also valid for finite pressure. C1 [Dennis, G. R.; Dewar, R. L.; Hole, M. J.] Australian Natl Univ, Res Sch Phys, Canberra, ACT 0200, Australia. [Hudson, S. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Terranova, D.; Franz, P.] Assoc Euratom ENEA Fus, Consorzio RFX, I-35127 Padua, Italy. RP Dennis, GR (reprint author), Australian Natl Univ, Res Sch Phys, GPO Box 4, Canberra, ACT 0200, Australia. EM graham.dennis@anu.edu.au RI Hudson, Stuart/H-7186-2013; Dewar, Robert/B-1300-2008 OI Hudson, Stuart/0000-0003-1530-2733; Dewar, Robert/0000-0002-9518-7087 FU U.S. Department of Energy; Australian Research Council [DP0452728, FT0991899, DP110102881] FX The authors gratefully acknowledge support of the U.S. Department of Energy and the Australian Research Council, through Grants No. DP0452728, No. FT0991899, and No. DP110102881. We acknowledge the use of VMEC [21] from S. P. Hirshman, and we thank D. Escande for his helpful comments. NR 17 TC 9 Z9 9 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 30 PY 2013 VL 111 IS 5 AR 055003 DI 10.1103/PhysRevLett.111.055003 PG 5 WC Physics, Multidisciplinary SC Physics GA 193XR UT WOS:000322595300007 PM 23952412 ER PT J AU Qiang, J Mitchell, CE Venturini, M AF Qiang, Ji Mitchell, Chad E. Venturini, Marco TI Suppression of Microbunching Instability Using Bending Magnets in Free-Electron-Laser Linacs SO PHYSICAL REVIEW LETTERS LA English DT Article ID SIMULATION AB The microbunching instability driven by collective effects of the beam inside an accelerator can significantly degrade the final electron beam quality for free electron laser (FEL) radiation. In this Letter, we propose an inexpensive scheme to suppress such an instability in accelerators for next generation FEL light sources. Instead of using an expensive device such as a laser heater or RF deflecting cavities, this scheme uses longitudinal mixing associated with the transverse spread of the beam through bending magnets inside the accelerator transport system to suppress the instability. The final uncorrelated energy spread increases roughly by the current compression factor, which is important in seeded FEL schemes in order to achieve high harmonic short-wavelength x-ray radiation. C1 [Qiang, Ji; Mitchell, Chad E.; Venturini, Marco] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Qiang, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank Dr. J. Corlett, Dr. P. Emma, and Dr. J. Wu for useful discussions. This research used computer resources at the NERSC and was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 14 TC 10 Z9 10 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 30 PY 2013 VL 111 IS 5 AR 054801 DI 10.1103/PhysRevLett.111.054801 PG 5 WC Physics, Multidisciplinary SC Physics GA 193XR UT WOS:000322595300005 PM 23952409 ER PT J AU Kim, JS Choi, JS Lee, MJ Park, BH Bukhvalov, D Son, YW Yoon, D Cheong, H Yun, JN Jung, Y Park, JY Salmeron, M AF Kim, Jin-Soo Choi, Jin Sik Lee, Mi Jung Park, Bae Ho Bukhvalov, Danil Son, Young-Woo Yoon, Duhee Cheong, Hyeonsik Yun, Jun-Nyeong Jung, Yousung Park, Jeong Young Salmeron, Miquel TI Between Scylla and Charybdis: Hydrophobic Graphene-Guided Water Diffusion on Hydrophilic Substrates SO SCIENTIFIC REPORTS LA English DT Article ID FORCE; NANOTUBES; DYNAMICS; FRICTION; FILM; MICA; ICE AB The structure of water confined in nanometer-sized cavities is important because, at this scale, a large fraction of hydrogen bonds can be perturbed by interaction with the confining walls. Unusual fluidity properties can thus be expected in the narrow pores, leading to new phenomena like the enhanced fluidity reported in carbon nanotubes. Crystalline mica and amorphous silicon dioxide are hydrophilic substrates that strongly adsorb water. Graphene, on the other hand, interacts weakly with water. This presents the question as to what determines the structure and diffusivity of water when intercalated between hydrophilic substrates and hydrophobic graphene. Using atomic force microscopy, we have found that while the hydrophilic substrates determine the structure of water near its surface, graphene guides its diffusion, favouring growth of intercalated water domains along the C-C bond zigzag direction. Molecular dynamics and density functional calculations are provided to help understand the highly anisotropic water stripe patterns observed. C1 [Kim, Jin-Soo; Choi, Jin Sik; Lee, Mi Jung; Park, Bae Ho] Konkuk Univ, Dept Phys, Div Quantum Phases & Devices, Seoul 143701, South Korea. [Kim, Jin-Soo; Choi, Jin Sik] Elect & Telecommun Res Inst, Creat Res Ctr Graphene Elect, Taejon 305700, South Korea. [Bukhvalov, Danil; Son, Young-Woo] Korea Inst Adv Study, Seoul 130722, South Korea. [Yoon, Duhee] Univ Cambridge, Elect Engn Div, Cambridge CB3 0FA, England. [Cheong, Hyeonsik] Sogang Univ, Dept Phys, Seoul 121742, South Korea. [Yun, Jun-Nyeong; Jung, Yousung; Park, Jeong Young] Korea Adv Inst Sci & Technol, NanoCentury KI, Grad Sch EEWS, Taejon 305701, South Korea. [Park, Jeong Young] Inst for Basic Sci Korea, Ctr Nanomat & Chem React, Taejon 305701, South Korea. [Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Park, BH (reprint author), Konkuk Univ, Dept Phys, Div Quantum Phases & Devices, Seoul 143701, South Korea. EM baehpark@konkuk.ac.kr; jeongypark@kaist.ac.kr RI Jung, Yousung/D-1676-2010; Park, Jeong Young/A-2999-2008; son, Young-Woo/B-2566-2010; Cheong, Hyeonsik/D-7424-2012; Park, Bae Ho/D-4840-2011 OI Jung, Yousung/0000-0003-2615-8394; Cheong, Hyeonsik/0000-0002-2347-4044; FU National Research Foundation of Korea (NRF) [2013R1A3A2042120, R31-2008-000-10057-0, R31-2008-000-10055-0, 2011-0017605, KRF-2008-314-C00111, 2010-0015035, 2010-0023018, 2012R1A2A1A01009249, 2011-0030228, 2011-0031630, 2011-0031640, 2011-0031660]; QMMRC [2008-0061893]; Institute for Basic Science; Korea government (MSIP); Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the US DOE [DE-AC02-05CH11231]; Seoul Scholarship Foundation; EEWS Initiative; CAC of KIAS; KISTI supercomputing center FX This work was supported by the National Research Foundation of Korea (NRF) grants (No. 2013R1A3A2042120, R31-2008-000-10057-0, R31-2008-000-10055-0, 2011-0017605, KRF-2008-314-C00111, 2010-0015035, 2010-0023018, 2012R1A2A1A01009249, 2011-0030228, 2011-0031630, 2011-0031640, 2011-0031660, and QMMRC(2008-0061893)) and the Institute for Basic Science funded by the Korea government (MSIP). MBS was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the US DOE under Contract No. DE-AC02-05CH11231. J.-S.K. was supported by a Hi Seoul Science/Humanities Fellowship from the Seoul Scholarship Foundation. Y.J. acknowledges the support from EEWS Initiative. Calculations were supported by CAC of KIAS and KISTI supercomputing center. NR 33 TC 24 Z9 24 U1 4 U2 88 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 30 PY 2013 VL 3 AR 2309 DI 10.1038/srep02309 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 191ST UT WOS:000322433600001 PM 23896759 ER PT J AU Alkass, K Saitoh, H Buchholz, BA Bernard, S Holmlund, G Senn, DR Spalding, KL Druid, H AF Alkass, Kanar Saitoh, Hisako Buchholz, Bruce A. Bernard, Samuel Holmlund, Gunilla Senn, David R. Spalding, Kirsty L. Druid, Henrik TI Analysis of Radiocarbon, Stable Isotopes and DNA in Teeth to Facilitate Identification of Unknown Decedents SO PLOS ONE LA English DT Article ID ASPARTIC-ACID RACEMIZATION; BOMB C-14 DATA; AGE ESTIMATION; SAMPLE PREPARATION; NUCLEAR TESTS; ION-SOURCE; AMS; HYDROGEN; RATIOS; CARBON AB The characterization of unidentified bodies or suspected human remains is a frequent and important task for forensic investigators. However, any identification method requires clues to the person's identity to allow for comparisons with missing persons. If such clues are lacking, information about the year of birth, sex and geographic origin of the victim, is particularly helpful to aid in the identification casework and limit the search for possible matches. We present here results of stable isotope analysis of C-13 and O-18, and bomb-pulse C-14 analyses that can help in the casework. The C-14 analysis of enamel provided information of the year of birth with an average absolute error of 1.8 +/- 1.3 years. We also found that analysis of enamel and root from the same tooth can be used to determine if the C-14 values match the rising or falling part of the bomb-curve. Enamel laydown times can be used to estimate the date of birth of individuals, but here we show that this detour is unnecessary when using a large set of crude C-14 data of tooth enamel as a reference. The levels of C-13 in tooth enamel were higher in North America than in teeth from Europe and Asia, and Mexican teeth showed even higher levels than those from USA. DNA analysis was performed on 28 teeth, and provided individual-specific profiles in most cases and sex determination in all cases. In conclusion, these analyses can dramatically limit the number of possible matches and hence facilitate person identification work. C1 [Alkass, Kanar; Druid, Henrik] Karolinska Inst, Div Forens Med, Dept Oncol Pathol, Stockholm, Sweden. [Saitoh, Hisako] Chiba Univ, Grad Sch Med, Dept Legal Med, Chiba, Japan. [Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Bernard, Samuel] Univ Lyon, CNRS UMR 5208, Inst Camille Jordan, Villeurbanne, France. [Holmlund, Gunilla] Natl Board Forens Med, Dept Forens Genet & Forens Toxicol, Linkoping, Sweden. [Senn, David R.] Univ Texas Hlth Sci Ctr San Antonio, Ctr Educ & Res Forens, San Antonio, TX 78229 USA. [Spalding, Kirsty L.] Karolinska Inst, Dept Cell & Mol Biol, Stockholm, Sweden. RP Alkass, K (reprint author), Karolinska Inst, Div Forens Med, Dept Oncol Pathol, Stockholm, Sweden. EM kanar.alkass@ki.se RI Bernard, Samuel/A-5623-2009; OI Bernard, Samuel/0000-0002-8442-9968; Druid, Henrik/0000-0002-9198-023X FU National Center for Research Resources [5P41RR013461]; National Institute of General Medical Sciences [8P41 GM103483-14]; National Institutes of Health; Swedish Strategic Research Council (SSF) FX Support was provided by grants from the National Center for Research Resources (5P41RR013461), the National Institute of General Medical Sciences (8P41 GM103483-14), the National Institutes of Health and the Swedish Strategic Research Council (SSF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 42 TC 4 Z9 4 U1 1 U2 23 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 29 PY 2013 VL 8 IS 7 AR e69597 DI 10.1371/journal.pone.0069597 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 204MP UT WOS:000323369700052 PM 23922751 ER PT J AU Andersson, J Ni, P Anders, A AF Andersson, Joakim Ni, Pavel Anders, Andre TI Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas SO APPLIED PHYSICS LETTERS LA English DT Article ID DISCHARGE AB Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side-on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation. (C) 2013 AIP Publishing LLC. C1 [Andersson, Joakim; Ni, Pavel; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Andersson, Joakim] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore. RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Andersson, Joakim/A-3017-2009; Anders, Andre/B-8580-2009 OI Andersson, Joakim/0000-0003-2991-1927; Anders, Andre/0000-0002-5313-6505 FU Office of Building Technology, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank the LBNL Fusion Group for lending the fast camera and providing support to P.N. J.A. acknowledges support from the National Research Foundation and the Ministry of Education, Singapore. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 17 TC 25 Z9 25 U1 1 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 29 PY 2013 VL 103 IS 5 AR 054104 DI 10.1063/1.4817257 PG 4 WC Physics, Applied SC Physics GA 195SD UT WOS:000322723000126 ER PT J AU Hayton, DJ Khudchencko, A Pavelyev, DG Hovenier, JN Baryshev, A Gao, JR Kao, TY Hu, Q Reno, JL Vaks, V AF Hayton, D. J. Khudchencko, A. Pavelyev, D. G. Hovenier, J. N. Baryshev, A. Gao, J. R. Kao, T. Y. Hu, Q. Reno, J. L. Vaks, V. TI Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer SO APPLIED PHYSICS LETTERS LA English DT Article ID WIRE LASER; FREQUENCY; COMB AB We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60 dB is observed in the intermediate frequency signal between the 18th harmonic of a 190.7 GHz reference source and the 3433 GHz QCL. A phase-lock loop with 7MHz bandwidth results in QCL emission that is 96% locked to the reference source. We characterize the QCL temperature and electrical tuning mechanisms and show that frequency dependence of these mechanisms can prevent phase-locking under certain QCL bias conditions. (C) 2013 AIP Publishing LLC. C1 [Hayton, D. J.; Khudchencko, A.; Baryshev, A.; Gao, J. R.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [Pavelyev, D. G.] Lobachevskii State Univ Nizhny Novgorod, Nizhnii Novgorod 603950, Russia. [Hovenier, J. N.; Gao, J. R.] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Kao, T. Y.; Hu, Q.] MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, Cambridge, MA 02139 USA. [Reno, J. L.] Sandia Natl Labs, CINT, Albuquerque, NM 87185 USA. [Vaks, V.] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia. RP Hayton, DJ (reprint author), Univ Groningen, SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. EM d.j.hayton@sron.nl; j.r.gao@tudelft.nl FU NWO; Teradec; AETHER; NATO SFP; NASA; NSF; U.S. Department of Energy National Nuclear Security Administration [DE-AC04-94AL85000]; Russian Foundation of Basic Research [N11-02-12124-oab-v] FX We acknowledge Y Ren for his extensive past work in characterizing this QCL and W. Horinga and B. Kramer for their technical support. The work in the Netherlands was supported by NWO, Teradec, the AETHER of RadioNet under FP7, and NATO SFP. The work at MIT is supported by NASA and NSF. The work at Sandia was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000. The work in Russia has been supported by the Russian Foundation of Basic Research (Grant No. N11-02-12124-oab-v). NR 20 TC 16 Z9 16 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 29 PY 2013 VL 103 IS 5 AR 051115 DI 10.1063/1.4817319 PG 5 WC Physics, Applied SC Physics GA 195SD UT WOS:000322723000015 ER PT J AU Morace, A Bellei, C Bartal, T Willingale, L Kim, J Maksimchuk, A Krushelnick, K Wei, MS Patel, PK Batani, D Piovella, N Stephens, RB Beg, FN AF Morace, A. Bellei, C. Bartal, T. Willingale, L. Kim, J. Maksimchuk, A. Krushelnick, K. Wei, M. S. Patel, P. K. Batani, D. Piovella, N. Stephens, R. B. Beg, F. N. TI Improved laser-to-proton conversion efficiency in isolated reduced mass targets SO APPLIED PHYSICS LETTERS LA English DT Article ID SOLID TARGETS; BEAMS; PLASMA; ELECTRON; PULSES AB We present experimental results of laser-to-proton conversion efficiency as a function of lateral confinement of the refluxing electrons. Experiments were carried out using the T-Cubed laser at the Center for Ultrafast Optical Science, University of Michigan. We demonstrate that the laser-to-proton conversion efficiency increases by 50% with increased confinement of the target from surroundings with respect to a flat target of the same thickness. Three-dimensional hybrid particle-in-cell simulations using LSP code agree with the experimental data. The adopted target design is suitable for high repetition rate operation as well as for Inertial Confinement Fusion applications. (C) 2013 AIP Publishing LLC. C1 [Morace, A.; Bartal, T.; Kim, J.; Wei, M. S.; Beg, F. N.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Morace, A.; Piovella, N.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bellei, C.; Patel, P. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Willingale, L.; Maksimchuk, A.; Krushelnick, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Wei, M. S.; Stephens, R. B.] Gen Atom, San Diego, CA 92121 USA. [Batani, D.] Univ Bordeaux, CNRS, CEA, CELIA Ctr Lasers Intenses & Applicat,UMR 5107, F-33405 Talence, France. RP Morace, A (reprint author), Univ Calif San Diego, Energy Res Ctr, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM morace@ile.osaka-u.ac.jp RI Patel, Pravesh/E-1400-2011; Morace, Alessio/C-1048-2016; OI Morace, Alessio/0000-0001-8795-834X; Stephens, Richard/0000-0002-7034-6141 FU U.S. Department of Energy [DE-SC0001265]; Italian MIUR [PRIN 2009FCC9MS] FX The authors gratefully thank Dr. M. Foord and Dr. A. J. Link for the support and the fruitful comments on 3D PIC hybrid simulations with LSP code. This work was performed under the auspices of the U.S. Department of Energy under contract DE-SC0001265. This work was partially supported by the Italian MIUR project PRIN 2009FCC9MS. NR 19 TC 2 Z9 2 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 29 PY 2013 VL 103 IS 5 AR 054102 DI 10.1063/1.4816595 PG 5 WC Physics, Applied SC Physics GA 195SD UT WOS:000322723000124 ER PT J AU Olson, BV Shaner, EA Kim, JK Klem, JF Hawkins, SD Flatte, ME Boggess, TF AF Olson, B. V. Shaner, E. A. Kim, J. K. Klem, J. F. Hawkins, S. D. Flatte, M. E. Boggess, T. F. TI Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID LIFETIME; HETEROSTRUCTURES; SEMICONDUCTORS; ABSORPTION AB Minority carrier lifetimes in doped and undoped mid-wave infrared InAs/InAsSb type-II superlattices (T2SLs) and InAsSb alloys were measured from 77-300 K. The lifetimes were analyzed using Shockley-Read-Hall (SRH), radiative, and Auger recombination, allowing the contributions of the various recombination mechanisms to be distinguished and the dominant mechanisms identified. For the T2SLs, SRH recombination is the dominant mechanism. Defect levels with energies of 130 meV and 70 meV are determined for the undoped and doped T2SLs, respectively. The alloy lifetimes are limited by radiative and Auger recombination through the entire temperature range, with SRH not making a significant contribution. (C) 2013 AIP Publishing LLC. C1 [Olson, B. V.; Shaner, E. A.; Kim, J. K.; Klem, J. F.; Hawkins, S. D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Flatte, M. E.; Boggess, T. F.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Flatte, M. E.; Boggess, T. F.] Univ Iowa, Opt Sci & Technol Ctr, Iowa City, IA 52242 USA. RP Olson, BV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM benolso@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Government FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was funded by the U.S. Government. NR 24 TC 29 Z9 29 U1 5 U2 51 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 29 PY 2013 VL 103 IS 5 AR 052106 DI 10.1063/1.4817400 PG 4 WC Physics, Applied SC Physics GA 195SD UT WOS:000322723000042 ER PT J AU Tu, J Zhang, XY Wang, J Sun, Q Liu, Q Tome, CN AF Tu, Jian Zhang, Xiyan Wang, Jian Sun, Q. Liu, Qing Tome, Carlos N. TI Structural characterization of {10(1)over-bar2} twin boundaries in cobalt SO APPLIED PHYSICS LETTERS LA English DT Article ID DEFORMED POLYCRYSTALLINE COBALT; RESOLUTION ELECTRON-MICROSCOPY; CYCLIC TENSION-COMPRESSION; CLOSE-PACKED CRYSTALS; INTERFACE DEFECTS; MAGNESIUM; DEFORMATION; NUCLEATION; METALS; MODEL AB Using high-resolution transmission electron microscopy, we characterized the structures of {10 (1) over bar2} deformation twin boundaries (TBs) in cobalt and found that TBs consist of {10 (1) over bar2} coherent twinning boundaries and basal-prismatic interfaces (BPs or PBs). According to these structural features, the propagation of {10 (1) over bar2} twins cannot be simply accomplished through the glide-shuffle mechanism of twinning dislocations. Correspondingly, two migration mechanisms of such TBs are proposed based on dislocation theory. In addition, abundant basal stacking faults are observed experimentally to connect with TBs, and this phenomenon is ascribed to the release of residual dislocations resulting from the migration of the BPs and PBs. (C) 2013 AIP Publishing LLC. C1 [Tu, Jian; Zhang, Xiyan; Sun, Q.; Liu, Qing] Chongqing Univ, Sch Mat Sci & Engn, Chongqing 400044, Peoples R China. [Wang, Jian; Tome, Carlos N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zhang, XY (reprint author), Chongqing Univ, Sch Mat Sci & Engn, Chongqing 400044, Peoples R China. EM kehen888@163.com; wangj6@lanl.gov RI Tome, Carlos/D-5058-2013; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU National Natural Science Foundation of China [51271208, 51071183, 50890170]; Basic Research of China [2010CB631004]; Office of Basic Energy Sciences under US DOE [FWP 06SCPE401, W-7405-ENG-36] FX J. Tu and X. Zhang are fully supported by the National Natural Science Foundation of China (Grant Nos. 51271208, 51071183, 50890170) and the Basic Research of China (Grant No. 2010CB631004). J. Wang and C. N. Tome are fully supported by Office of Basic Energy Sciences, Project FWP 06SCPE401, under US DOE Contract No. W-7405-ENG-36. The authors are grateful to Professor John P. Hirth for helpful discussions. NR 27 TC 25 Z9 26 U1 4 U2 44 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 29 PY 2013 VL 103 IS 5 AR 051903 DI 10.1063/1.4817180 PG 4 WC Physics, Applied SC Physics GA 195SD UT WOS:000322723000029 ER PT J AU Drachenberg, D Messerly, M Pax, P Sridharan, A Tassano, J Dawson, J AF Drachenberg, Derrek Messerly, Mike Pax, Paul Sridharan, Arun Tassano, John Dawson, Jay TI First multi-watt ribbon fiber oscillator in a high order mode SO OPTICS EXPRESS LA English DT Article ID OPTICAL-FIBERS; LASER ARRAY; POWER; BEAM; KW; EXCITATION; AMPLIFIERS AB Optical fibers in the ribbon geometry have the potential to reach powers well above the maximum anticipated power of a circular core fiber. In this paper we report the first doped silica high order mode ribbon fiber oscillator, with multimode power above 40 W with 71% slope efficiency and power in a single high order mode above 5 W with 44% slope efficiency. (C) 2013 Optical Society of America C1 [Drachenberg, Derrek; Messerly, Mike; Pax, Paul; Sridharan, Arun; Tassano, John; Dawson, Jay] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Drachenberg, D (reprint author), Lawrence Livermore Natl Lab, L-491,POB 808, Livermore, CA 94551 USA. EM drachenberg1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. (IM release # LLNL-JRNL-635640). NR 25 TC 9 Z9 10 U1 0 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 29 PY 2013 VL 21 IS 15 BP 18089 EP 18096 DI 10.1364/OE.21.018089 PG 8 WC Optics SC Optics GA 190UJ UT WOS:000322366300069 PM 23938680 ER PT J AU Crisafulli, O Tezak, N Soh, DBS Armen, MA Mabuchi, H AF Crisafulli, Orion Tezak, Nikolas Soh, Daniel B. S. Armen, Michael A. Mabuchi, Hideo TI Squeezed light in an optical parametric oscillator network with coherent feedback quantum control SO OPTICS EXPRESS LA English DT Article ID STATES; SYSTEMS; DETECTORS; HOMODYNE; OUTPUT; PHASE; NOISE; FIELD AB We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output. (C) 2013 Optical Society of America C1 [Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B. S.; Armen, Michael A.; Mabuchi, Hideo] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA. [Soh, Daniel B. S.] Sandia Natl Labs, Livermore, CA 94566 USA. RP Tezak, N (reprint author), Stanford Univ, Ginzton Lab, 348 Via Pueblo Mall, Stanford, CA 94305 USA. EM ntezak@stanford.edu FU AFOSR [FA9550-11-1-0238]; DARPA [N66001-11-1-4106]; National Defense Science and Engineering Graduate Fellowship; National Science Foundation Graduate Fellowship programs; Stanford Graduate Fellowship; Simons Foundation Math+X Fellowship; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work has been supported by AFOSR (FA9550-11-1-0238) and DARPA (N66001-11-1-4106). Orion Crisafulli would like to acknowledge support from the National Defense Science and Engineering Graduate Fellowship and National Science Foundation Graduate Fellowship programs while a graduate student at Stanford University, where this work was done, before joining MIT Lincoln Laboratory, where he is presently employed. Nikolas Tezak is supported by a Stanford Graduate Fellowship and a Simons Foundation Math+X Fellowship.; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 36 TC 22 Z9 22 U1 3 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 29 PY 2013 VL 21 IS 15 BP 18371 EP 18386 DI 10.1364/OE.21.018371 PG 16 WC Optics SC Optics GA 190UJ UT WOS:000322366300098 PM 23938709 ER PT J AU Kang, J Glatzmaier, GC Wei, SH AF Kang, Joongoo Glatzmaier, Greg C. Wei, Su-Huai TI Origin of the Bismuth-Induced Decohesion of Nickel and Copper Grain Boundaries SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIQUID-METAL EMBRITTLEMENT; PENETRATION; PHASE; SEGREGATION; INTERFACES AB Ductile metals such as Ni and Cu can become brittle when certain impurities (e.g., Bi) diffuse and segregate into their grain boundaries (GBs). Using first-principles calculations, we investigate the microscopic origin of the Bi-induced loss of cohesion of Ni and Cu GBs. We find that the Bi bilayer interfacial phase is the most stable impurity phase under the Bi-rich condition, while the Bi monolayer phase is a metastable phase regardless of the value of the Bi chemical potential. Our finding is consistent with the recent experimental observation for Ni GBs [Luo et al. Science 333, 1730 (2011)]. The electric polarization effect of the Bi bilayer substantially enhances the strength of the Bi-metal interfacial bonds, stabilizing the bilayer phase over other phases. The Bi-Bi interlayer bonding is significantly weakened in the GBs, leading to a factor of 20 to 50 decrease in the GB cohesion, which has strong implications for the understanding of Bi-induced intergranular fracture of Ni and Cu polycrystals. C1 [Kang, Joongoo; Glatzmaier, Greg C.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kang, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM joongoo.kang@nrel.gov FU U.S. Department of Energy's EERE CSP Program [DE-AC36-08GO28308] FX This work was funded by the U.S. Department of Energy's EERE CSP Program (DE-AC36-08GO28308). This research used the capabilities of the NREL CSC (DE-AC36-08GO28308) and the NERSC (DE-AC02-05CH11231). NR 24 TC 12 Z9 12 U1 2 U2 52 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 29 PY 2013 VL 111 IS 5 AR 055502 DI 10.1103/PhysRevLett.111.055502 PG 5 WC Physics, Multidisciplinary SC Physics GA 193RL UT WOS:000322579100011 PM 23952417 ER PT J AU Tchitchek, N Eisfeld, AJ Tisoncik-Go, J Josset, L Gralinski, LE Becavin, C Tilton, SC Webb-Robertson, BJ Ferris, MT Totura, AL Li, CJ Neumann, G Metz, TO Smith, RD Waters, KM Baric, R Kawaoka, Y Katze, MG AF Tchitchek, Nicolas Eisfeld, Amie J. Tisoncik-Go, Jennifer Josset, Laurence Gralinski, Lisa E. Becavin, Christophe Tilton, Susan C. Webb-Robertson, Bobbie-Jo Ferris, Martin T. Totura, Allison L. Li, Chengjun Neumann, Gabriele Metz, Thomas O. Smith, Richard D. Waters, Katrina M. Baric, Ralph Kawaoka, Yoshihiro Katze, Michael G. TI Specific mutations in H5N1 mainly impact the magnitude and velocity of the host response in mice SO BMC SYSTEMS BIOLOGY LA English DT Article DE Influenza; Host; Response; Kinetics; Magnitude; Velocity; Transcriptomics; Proteomics; Multidimensional; Scaling ID INFLUENZA-A VIRUS; SINGULAR-VALUE DECOMPOSITION; MS PROTEOMICS EXPERIMENTS; CDNA MICROARRAY DATA; NS1 PROTEIN; MASS-SPECTROMETRY; SOFTWARE PACKAGE; IDENTIFICATION; HEMAGGLUTININ; EXPRESSION AB Background: Influenza infection causes respiratory disease that can lead to death. The complex interplay between virus-encoded and host-specific pathogenicity regulators - and the relative contributions of each toward viral pathogenicity - is not well-understood. Results: By analyzing a collection of lung samples from mice infected by A/Vietnam/1203/2004 (H5N1; VN1203), we characterized a signature of transcripts and proteins associated with the kinetics of the host response. Using a new geometrical representation method and two criteria, we show that inoculation concentrations and four specific mutations in VN1203 mainly impact the magnitude and velocity of the host response kinetics, rather than specific sets of up- and down-regulated genes. We observed analogous kinetic effects using lung samples from mice infected with A/California/04/2009 (H1N1), and we show that these effects correlate with morbidity and viral titer. Conclusions: We have demonstrated the importance of the kinetics of the host response to H5N1 pathogenesis and its relationship with clinical disease severity and virus replication. These kinetic properties imply that time-matched comparisons of 'omics profiles to viral infections give limited views to differentiate host-responses. Moreover, these results demonstrate that a fast activation of the host-response at the earliest time points post-infection is critical for protective mechanisms against fast replicating viruses. C1 [Tchitchek, Nicolas; Tisoncik-Go, Jennifer; Josset, Laurence; Katze, Michael G.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Eisfeld, Amie J.; Li, Chengjun; Neumann, Gabriele; Kawaoka, Yoshihiro] Univ Wisconsin, Sch Vet Med, Dept Pathobiol Sci, Influenza Res Inst, Madison, WI 53706 USA. [Gralinski, Lisa E.; Ferris, Martin T.; Totura, Allison L.; Baric, Ralph] Univ N Carolina, Sch Med, Dept Microbiol & Immunol, Chapel Hill, NC 27599 USA. [Becavin, Christophe] Inst Pasteur, Unite Interact Bacteries Cellules, F-75015 Paris, France. [Tilton, Susan C.; Webb-Robertson, Bobbie-Jo; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Katze, Michael G.] Univ Washington, Washington Natl Primate Res Ctr, Seattle, WA 98195 USA. RP Katze, MG (reprint author), Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. EM honey@u.washington.edu RI Smith, Richard/J-3664-2012; Josset, Laurence/A-7960-2015; OI Smith, Richard/0000-0002-2381-2349; Josset, Laurence/0000-0002-7158-1186; Metz, Tom/0000-0001-6049-3968; Tchitchek, Nicolas/0000-0003-3307-0446 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200800060C]; National Institute of General Medical Sciences, National Institutes of Health [8 P41 GM103493-10]; Department of Energy's Office (DOE) of Biological and Environmental Research; DOE [DE-AC05-76RLO1830] FX This project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272200800060C. The authors thank Maria L. Luna, Athena A. Schepmoes, Robert A. Heegel, and Anil K. Shukla of Pacific Northwest National Laboratory (PNNL) for preparing and analyzing proteomics samples. Proteomics data were obtained using capabilities developed under the support of the National Institute of General Medical Sciences (8 P41 GM103493-10), National Institutes of Health, and analyses were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office (DOE) of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle Memorial Institute for the DOE under contract number DE-AC05-76RLO1830. The authors thank Jean Chang for processing the RNA samples and performed microarray and PCR assays, and Lynn Law and Marcus J. Korth for valuable feedback on the manuscript. NR 69 TC 9 Z9 9 U1 1 U2 10 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1752-0509 J9 BMC SYST BIOL JI BMC Syst. Biol. PD JUL 29 PY 2013 VL 7 AR 69 DI 10.1186/1752-0509-7-69 PG 23 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA 198IU UT WOS:000322916900001 PM 23895213 ER PT J AU Giera, B Henson, N Kober, EM Squires, TM Shell, MS AF Giera, Brian Henson, Neil Kober, Edward M. Squires, Todd M. Shell, M. Scott TI Model-free test of local-density mean-field behavior in electric double layers SO PHYSICAL REVIEW E LA English DT Article ID POISSON-BOLTZMANN THEORY; MOLECULAR-DYNAMICS; IONIC LIQUID; SIMULATION; SIZE; CAPACITANCE AB We derive a self-similarity criterion that must hold if a planar electric double layer (EDL) can be captured by a local-density approximation (LDA), without specifying any specific LDA. Our procedure generates a similarity coordinate from EDL profiles (measured or computed), and all LDA EDL profiles for a given electrolyte must collapse onto a master curve when plotted against this similarity coordinate. Noncollapsing profiles imply the inability of any LDA theory to capture EDLs in that electrolyte. We demonstrate our approach with molecular simulations, which reveal dilute electrolytes to collapse onto a single curve, and semidilute ions to collapse onto curves specific to each electrolyte, except where size-induced correlations arise. C1 [Giera, Brian; Squires, Todd M.; Shell, M. Scott] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Henson, Neil; Kober, Edward M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Giera, B (reprint author), Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. OI Henson, Neil/0000-0002-1842-7884 NR 60 TC 5 Z9 5 U1 2 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 29 PY 2013 VL 88 IS 1 AR 011301 DI 10.1103/PhysRevE.88.011301 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 193RC UT WOS:000322578100002 PM 23944407 ER PT J AU Hill, DP Adams, N Bada, M Batchelor, C Berardini, TZ Dietze, H Drabkin, HJ Ennis, M Foulger, RE Harris, MA Hastings, J Kale, NS de Matos, P Mungall, CJ Owen, G Roncaglia, P Steinbeck, C Turner, S Lomax, J AF Hill, David P. Adams, Nico Bada, Mike Batchelor, Colin Berardini, Tanya Z. Dietze, Heiko Drabkin, Harold J. Ennis, Marcus Foulger, Rebecca E. Harris, Midori A. Hastings, Janna Kale, Namrata S. de Matos, Paula Mungall, Christopher J. Owen, Gareth Roncaglia, Paola Steinbeck, Christoph Turner, Steve Lomax, Jane TI Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology SO BMC GENOMICS LA English DT Article ID FUNCTIONAL ANNOTATION; OBO FOUNDRY; IDENTIFICATION; SYSTEMS; GO AB Background: The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. Results: We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. Conclusions: The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl. C1 [Hill, David P.; Drabkin, Harold J.; Harris, Midori A.] Jackson Lab, Mouse Genome Informat, Bar Harbor, ME 04609 USA. [Hill, David P.; Berardini, Tanya Z.; Dietze, Heiko; Drabkin, Harold J.; Foulger, Rebecca E.; Harris, Midori A.; Mungall, Christopher J.; Roncaglia, Paola; Lomax, Jane] Gene Ontol Consortium, Bar Harbor, ME USA. [Adams, Nico] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. [Bada, Mike] Univ Colorado, Aurora, CO USA. [Batchelor, Colin] Royal Soc Chem, Cambridge CB4 0WF, England. [Berardini, Tanya Z.] Carnegie Inst Sci, Arabidopsis Informat Resource, Stanford, CA 94305 USA. [Adams, Nico; Ennis, Marcus; Foulger, Rebecca E.; Hastings, Janna; Kale, Namrata S.; de Matos, Paula; Owen, Gareth; Roncaglia, Paola; Steinbeck, Christoph; Turner, Steve; Lomax, Jane] European Bioinformat Inst, European Mol Biol Lab, Cambridge CB10 1SD, England. [Dietze, Heiko; Mungall, Christopher J.] Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA USA. RP Hill, DP (reprint author), Jackson Lab, Mouse Genome Informat, 600 Main St, Bar Harbor, ME 04609 USA. EM david.hill@jax.org RI Adams, Nico/E-2480-2011; OI Adams, Nico/0000-0003-3136-1338; Kale, Namrata/0000-0002-4255-8104; Foulger, Rebecca/0000-0001-8682-8754; Lomax, Jane/0000-0001-8865-4321; Roncaglia, Paola/0000-0002-2825-0621; Hastings, Janna/0000-0002-3469-4923; Steinbeck, Christoph/0000-0001-6966-0814 FU NHGRI of the NIH [HG002273]; EC under SLING [226073]; BBSRC [BB/G022747/1]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NIH [5R01LM008111]; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute Outstation (EMBL-EBI) core funds FX We thank Dr. Terrence Meehan and Dr. Judith Blake for their critical reading of the manuscript. The Gene Ontology Consortium is supported by grant HG002273 from NHGRI of the NIH and awarded to M. Ashburner, J. A. Blake, J.M. Cherry, S. Lewis, P. Sternberg, and P. Thomas. ChEBI is funded by the EC under SLING, grant agreement number 226073, and by the BBSRC, grant agreement number BB/G022747/1 within the "Bioinformatics and biological resources" fund, awarded to C. Steinbeck and M. Ashburner. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M. Bada is supported by grant 5R01LM008111 from the NIH. JL is funded by the European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute Outstation (EMBL-EBI) core funds. NR 37 TC 13 Z9 13 U1 1 U2 7 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JUL 29 PY 2013 VL 14 AR 513 DI 10.1186/1471-2164-14-513 PG 10 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 194VI UT WOS:000322660400001 PM 23895341 ER PT J AU Bi, X He, P Hankiewicz, EM Winkler, R Vignale, G Culcer, D AF Bi, Xintao He, Peiru Hankiewicz, E. M. Winkler, R. Vignale, Giovanni Culcer, Dimitrie TI Anomalous spin precession and spin Hall effect in semiconductor quantum wells SO PHYSICAL REVIEW B LA English DT Article ID 2-DIMENSIONAL ELECTRON-GAS; ROOM-TEMPERATURE; SPINTRONICS; FERROMAGNETS; DYNAMICS AB Spin-orbit (SO) interactions give a spin-dependent correction (r) over cap (so) to the position operator, referred to as the anomalous position operator. We study the contributions of (r) over cap (so) to the spin Hall effect (SHE) in quasi-two-dimensional (2D) semiconductor quantum wells with strong band-structure SO interactions that cause spin precession. The skew scattering and side-jump scattering terms in the SHE vanish, but we identify two additional terms in the SHE, due to (r) over cap (so), which have not been considered in the literature so far. One term reflects the modification of spin precession due to the action of the external electric field (the field drives the current in the quantum well), which produces, via (r) over cap (so), an effective magnetic field perpendicular to the plane of the quantum well. The other term reflects a similar modification of spin precession due to the action of the electric field created by random impurities, and appears in a careful formulation of the Born approximation. We refer to these two effects collectively as anomalous spin precession and we note that they contribute to the SHE to the first order in the SO coupling constant even though they formally appear to be of second order. In electron systems with weak momentum scattering, the contribution of the anomalous spin precession due to the external electric field equals 1/2 the usual side-jump SHE, while the additional impurity-dependent contribution depends on the form of the band-structure SO coupling. For band-structure SO coupling linear in wave vector, the two anomalous spin precession contributions cancel. For band-structure SO coupling cubic in wave vector, however, they do not cancel, and the anomalous spin precession contribution to the SHE can be detected in a high-mobility 2D electron gas with strong SO coupling. In 2D hole systems, both anomalous spin precession contributions vanish identically. C1 [Bi, Xintao; He, Peiru; Culcer, Dimitrie] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, ICQD, Hefei 230026, Anhui, Peoples R China. [Hankiewicz, E. M.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Winkler, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Winkler, R.] No Illinois Univ, De Kalb, IL 60115 USA. [Vignale, Giovanni] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Culcer, Dimitrie] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. RP Bi, X (reprint author), Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, ICQD, Hefei 230026, Anhui, Peoples R China. FU Chinese Academy of Sciences; German Science Foundation DFG [HA 5893/1-2, SPP 128]; NSF [DMR-1104788]; DOE BES [DE-AC02-06CH11357] FX We acknowledge insightful discussions with S. Das Sarma, O. P. Sushkov, Peter Schwab, Roberto Raimondi, Cosimo Gorini, and W. K. Tse. D. C. was in part supported by the Chinese Academy of Sciences. E. M. H. was financially supported by the German Science Foundation DFG Grant HA 5893/1-2 within the SPP 128. G. V. acknowledges support from NSF Grant No. DMR-1104788. Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357. NR 75 TC 4 Z9 4 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 29 PY 2013 VL 88 IS 3 AR 035316 DI 10.1103/PhysRevB.88.035316 PG 13 WC Physics, Condensed Matter SC Physics GA 193QE UT WOS:000322575100004 ER PT J AU Das, T AF Das, Tanmoy TI Weyl semimetal and superconductor designed in an orbital-selective superlattice SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITION; TOPOLOGICAL INSULATOR; SR2RUO4; STATE; MODEL; HALL AB We propose two complementary design principles for engineering three-dimensional (3D) Weyl semimetals and superconductors in a layer-by-layer setup which includes even-and odd-parity orbitals in alternating layers-dubbed an orbital selective superlattice. Such a structure breaks mirror symmetry along the superlattice growth axis which, with the help of either a basal plane spin-orbit coupling or spinless p + ip superconductivity, stabilizes a 3D Dirac node. To explore this idea, we develop a 3D generalization of the Haldane model and a Bogoliubov-de Gennes Hamiltonian for the two cases, respectively, and show that tunable single or multiple Weyl nodes with linear dispersion in all spatial directions can be engineered desirably in a widespread parameter space. We also demonstrate that a single helical Weyl band can be created at the Gamma point at the Fermi level in the superconducting case via gapping out either of the orbital states by violating its particle-hole symmetry but not any other symmetries. Finally, implications of our results for the realization of an anomalous Hall effect and Majorana bound state are discussed. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Das, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU US DOE through the Office of Science (BES); LDRD Program FX The author thanks A. V. Balatsky, Z. Huang, and D. Arovas for valuable discussions. The work is supported by the US DOE through the Office of Science (BES) and the LDRD Program and facilited by NERSC computing allocation. NR 43 TC 27 Z9 27 U1 5 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 29 PY 2013 VL 88 IS 3 AR 035444 DI 10.1103/PhysRevB.88.035444 PG 5 WC Physics, Condensed Matter SC Physics GA 193QE UT WOS:000322575100009 ER PT J AU Kisielowski, C Wang, LW Specht, P Calderon, HA Barton, B Jiang, B Kang, JH Cieslinski, R AF Kisielowski, Christian Wang, Lin-Wang Specht, Petra Calderon, Hector A. Barton, Bastian Jiang, Bin Kang, Joo H. Cieslinski, Robert TI Real-time sub-Angstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene SO PHYSICAL REVIEW B LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; SINGLE-ATOM SENSITIVITY; RADIATION-DAMAGE; DOSE-RATE; RESOLUTION; TEM; CARBON; MONOCHROMATOR; ILLUMINATION; MOLECULES AB The dynamic responses of a rhodium catalyst and a graphene sheet are investigated upon random excitation with 80 kV electrons. An extraordinary electron microscope stability and resolution allow studying temporary atom displacements from their equilibrium lattice sites into metastable sites across projected distances as short as 60 pm. In the rhodium catalyst, directed and reversible atom displacements emerge from excitations into metastable interstitial sites and surface states that can be explained by single atom trajectories. Calculated energy barriers of 0.13 eV and 1.05 eV allow capturing single atom trapping events at video rates that are stabilized by the Rh [110] surface corrugation. Molecular dynamics simulations reveal that randomly delivered electrons can also reversibly enhance the sp(3) and the sp(1) characters of the sp(2)-bonded carbon atoms in graphene. The underlying collective atom motion can dynamically stabilize characteristic atom displacements that are unpredictable by single atom trajectories. We detect three specific displacements and use two of them to propose a path for the irreversible phase transformation of a graphene nanoribbon into carbene. Collectively stabilized atom displacements greatly exceed the thermal vibration amplitudes described by Debye-Waller factors and their measured dose rate dependence is attributed to tunable phonon contributions to the internal energy of the systems. Our experiments suggest operating electron microscopes with beam currents as small as zepto-amperes/nm(2) in a weak-excitation approach to improve on sample integrity and allow for time-resolved studies of conformational object changes that probe for functional behavior of catalytic surfaces or molecules. C1 [Kisielowski, Christian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Kisielowski, Christian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Specht, Petra] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Calderon, Hector A.] ESFM IPN, Dept Fis, Mexico City 07300, DF, Mexico. [Barton, Bastian] FEI Co, Eindhoven, Netherlands. [Jiang, Bin] FEI Co, Hillsboro, OR 97124 USA. [Kang, Joo H.; Cieslinski, Robert] Dow Chem Co USA, Midland, MI 48667 USA. RP Kisielowski, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cfkisielowski@lbl.gov RI Foundry, Molecular/G-9968-2014; Barton, Bastian/H-9268-2016 FU Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231, DE-AC05-000R22775]; CONACYT [129207-FOINS75/2012]; Office of Science of the US Department of Energy [DE-SC0004993]; Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division (MSE) of the US Department of Energy [DE-AC02-05CH11231] FX C.K. acknowledges fruitful discussions with P. Schwander and A. Ourmazd about their weak excitation approach, which they call "divide and conquer," and with S. Helveg about beam-sample interactions in electron microscopy and the relevance of these findings to chemical reaction pathways. Moreover, C. K. is grateful to N. Alem and Y. Li for the fabrication of electron-transparent samples of graphene and STO, respectively. Electron microscopy was performed at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. The Dow Chemical Company supported P. Specht for the investigations of the rhodium catalysts. B. B. and H. A. C. were supported by Helios SERC project to develop and apply low dose rate microscopy. H. A. C. also acknowledges support through CONACYT (Grant No. 129207-FOINS75/2012). The work on collective excitations in carbon materials was performed for the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under Award No. DE-SC0004993. Calculations were supported by the Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division (MSE) of the US Department of Energy under Contract No. DE-AC02-05CH11231. The investigation uses resources of the National Energy Research Scientific Computer Center (NERSC) and resources of the Oak Ridge Leadership Computing Facility located at the National Center for Computational Science, which is supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC05-000R22775. Computer time was allocated by DOE's Innovative and Novel Computational Impact on Theory and Experiment (INCITE) Program. NR 60 TC 22 Z9 22 U1 9 U2 78 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 29 PY 2013 VL 88 IS 2 AR 024305 DI 10.1103/PhysRevB.88.024305 PG 12 WC Physics, Condensed Matter SC Physics GA 193QB UT WOS:000322574600004 ER PT J AU Krogel, JT Yu, M Kim, J Ceperley, DM AF Krogel, Jaron T. Yu, Min Kim, Jeongnim Ceperley, David M. TI Quantum energy density: Improved efficiency for quantum Monte Carlo calculations SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; RANDOM-WALK; BASIS-SET; SIMULATION; GERMANIUM; EQUATION; METALS AB We establish a physically meaningful representation of a quantum energy density for use in quantum Monte Carlo calculations. The energy density operator, defined in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon "gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total-energy differences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more efficiently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total-energy calculation. C1 [Krogel, Jaron T.; Ceperley, David M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Yu, Min] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Kim, Jeongnim] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kim, Jeongnim] Oak Ridge Natl Lab, Computat Chem & Mat Div, Oak Ridge, TN 37831 USA. RP Krogel, JT (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RI Foundry, Molecular/G-9968-2014; OI Krogel, Jaron/0000-0002-1859-181X FU National Science Foundation (NSF) [OCI-0904572]; DOE-BES Materials Sciences and Engineering Division; Office of Science, Office of Basic Energy Sciences, of the US DOE [DE-AC0205CH11231] FX The authors are indebted to R. Martin and D. Trinkle for many thoughtful discussions providing useful perspective on the quantum energy density. This work was supported by the National Science Foundation (NSF) under Contract No. OCI-0904572 and by the DOE-BES Materials Sciences and Engineering Division. QMC code development was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC. Portions of the work made use of the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the US DOE under Contract No. DE-AC0205CH11231. Computer time was provided by the DOE-INCITE and NSF-Teragrid programs. NR 31 TC 2 Z9 2 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 29 PY 2013 VL 88 IS 3 AR 035137 DI 10.1103/PhysRevB.88.035137 PG 10 WC Physics, Condensed Matter SC Physics GA 193QE UT WOS:000322575100001 ER PT J AU Bedoor, S Wuosmaa, AH Lighthall, JC Alcorta, M Back, BB Bertone, PF Brown, BA Deibel, CM Hoffman, CR Marley, ST Pardo, RC Rehm, KE Rogers, AM Schiffer, JP Shetty, DV AF Bedoor, S. Wuosmaa, A. H. Lighthall, J. C. Alcorta, M. Back, B. B. Bertone, P. F. Brown, B. A. Deibel, C. M. Hoffman, C. R. Marley, S. T. Pardo, R. C. Rehm, K. E. Rogers, A. M. Schiffer, J. P. Shetty, D. V. TI Structure of B-14 and the evolution of N=9 single-neutron isotones SO PHYSICAL REVIEW C LA English DT Article ID HALO STRUCTURE; SHELL CLOSURE; NUCLEI; STATE; BE-12; SCATTERING; LIGHT; F-14; C-14 AB We have used the B-13(d, p)B-14 reaction in inverse kinematics to study the properties of states in B-14, the lightest particle-bound N = 9 isotone. The spectroscopic information, including spins, parities, and spectroscopic factors for the states observed in B-14 are used to deduce the wave functions for the low-lying negative parity nu(sd) levels, as well as provide information about the evolution of the effective neutron 1s(1/2) - 0d(5/2) single-particle energies. The data confirm that the ground and first-excited states are predominantly s wave in character and are single-neutron halo states. The effective single-particle energies are found to match the trends set by other N = 9 isotones. C1 [Bedoor, S.; Wuosmaa, A. H.; Lighthall, J. C.; Marley, S. T.; Shetty, D. V.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Alcorta, M.; Back, B. B.; Bertone, P. F.; Hoffman, C. R.; Marley, S. T.; Pardo, R. C.; Rehm, K. E.; Rogers, A. M.; Schiffer, J. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Brown, B. A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Deibel, C. M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Wuosmaa, AH (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM alan.wuosmaa@wmich.edu RI Alcorta, Martin/G-7107-2011; Hoffman, Calem/H-4325-2016 OI Alcorta, Martin/0000-0002-6217-5004; Hoffman, Calem/0000-0001-7141-9827 FU US Department of Energy, Office of Nuclear Physics [DE-FG02-04ER41320, DE-AC02-06CH11357]; US National Science Foundation [PHY-1068217] FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contracts No. DE-FG02-04ER41320 and No. DE-AC02-06CH11357, and the US National Science Foundation under Grant No. PHY-1068217. NR 40 TC 11 Z9 11 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 29 PY 2013 VL 88 IS 1 AR 011304 DI 10.1103/PhysRevC.88.011304 PG 5 WC Physics, Nuclear SC Physics GA 193QN UT WOS:000322576400001 ER PT J AU Stephanov, M Yee, HU AF Stephanov, Mikhail Yee, Ho-Ung TI Charged elliptic flow at zero charge asymmetry SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; EVENT AB The difference between the flow ellipticities of oppositely charged pions Delta nu(2) equivalent to nu(2)[pi(-)] -nu(2)[pi(+)], measured recently by the STAR Collaboration at the Brookhaven National Laboratory Relativistic Heavy Ion Collider (RHIC) shows a linear dependence on the event charge asymmetry A(+/-) = (N+ - N-)/(N+ + N-): Delta nu(2)(A(+/-)) = Delta nu(2)(0) + rA(+/-) with a slope r > 0 and a nonzero intercept Delta nu(2)(0) > 0 on the order of 10-4. We discuss two novel mechanisms, which could explain the nonzero value of the charged elliptic flow Delta nu(2) at zero charge asymmetry A(+/-) = 0, i.e., the nonzero positive intercept Delta nu(2)(0). Both effects are due to the electric fields created by the colliding ions. These fields have quadrupole asymmetry of the magnitude and the sign needed to account for the nonzero intercept Delta nu(2)(0) > 0 in the RHIC data. One of the mechanisms also involves the chiral magnetic effect. This mechanism, although negligible at RHIC energies, may become important at the CERN Large Hadron Collider energies. C1 [Stephanov, Mikhail; Yee, Ho-Ung] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Yee, Ho-Ung] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Stephanov, M (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. EM misha@uic.edu; hyee@uic.edu FU DOE [DE-FG02-01ER41195] FX We thank A. Bzdak, O. Evdokimov, J. Liao, T. Springer, and Y. Yin for helpful discussions. The work of M.S. was supported by the DOE Grant No. DE-FG02-01ER41195. NR 18 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 29 PY 2013 VL 88 IS 1 AR 014908 DI 10.1103/PhysRevC.88.014908 PG 5 WC Physics, Nuclear SC Physics GA 193QN UT WOS:000322576400008 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Gonzalez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, P Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Holzbauer, J Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Simak, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Holzbauer, J. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for anomalous quartic WW gamma gamma couplings in dielectron and missing energy final states in p(p)over-bar collisions at root s 1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID GAUGE-BOSON COUPLINGS; PP COLLISIONS; ATLAS DETECTOR; TRIPLE; LIMITS; MODEL; LEP; WZ AB We present a search for anomalous components of the quartic gauge boson coupling WW gamma gamma in events with an electron, a positron and missing transverse energy. The analyzed data correspond to 9.7 fb(-1) of integrated luminosity collected by the D0 detector in p (p) over bar collisions at root s 1.96 TeV. The presence of anomalous quartic gauge couplings would manifest itself as an excess of boosted WW events. No such excess is found in the data, and we set the most stringent limits to date on the anomalous coupling parameters a(0)(W) and a(C)(W). When a form factor with Lambda(cutoff) = 0.5 TeV is used, the observed upper limits at 95% C. L. are vertical bar a(0)(W)/Lambda(2)vertical bar < 0.0025 GeV-2 and vertical bar a(C)(W)/Lambda(2)vertical bar < 0.0092 GeV-2. C1 [Maciel, A. K. A.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, LPC, IN2P3, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, IN2P3,LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, CPPM, IN2P3, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Mansour, J.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] ICREA, Barcelona, Spain. [Juste, A.] IFAE, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Agnew, J. P.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, LA 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Santos, Angelo/K-5552-2012; Shabalina, Elizaveta/M-2227-2013; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Lei, Xiaowen/O-4348-2014; Gutierrez, Phillip/C-1161-2011; Merkin, Mikhail/D-6809-2012; Li, Liang/O-1107-2015 OI Dudko, Lev/0000-0002-4462-3192; Sharyy, Viatcheslav/0000-0002-7161-2616; Lei, Xiaowen/0000-0002-2564-8351; Li, Liang/0000-0001-6411-6107 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); MON; NRC KI; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 43 TC 21 Z9 21 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 29 PY 2013 VL 88 IS 1 AR 012005 DI 10.1103/PhysRevD.88.012005 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 193QR UT WOS:000322576900001 ER PT J AU Cholis, I Hooper, D AF Cholis, Ilias Hooper, Dan TI Dark matter and pulsar origins of the rising cosmic ray positron fraction in light of new data from the AMS SO PHYSICAL REVIEW D LA English DT Article ID PAMELA; GAPS; PROPAGATION; CONSTRAINTS; RADIATION; FERMI AB The rise of the cosmic ray positron fraction with energy, as first observed with high confidence by PAMELA, implies that a large flux of high energy positrons has been recently (or is being currently) injected into the local volume of the Milky Way. With the new and much more precise measurement of the positron fraction recently provided by the Alpha Magnetic Spectrometer (AMS), we revisit the question of the origin of these high energy positrons. We find that while some dark matter models (annihilating directly to electrons or muons) no longer appear to be capable of accommodating these data, other models in which similar to 1-3 TeV dark matter particles annihilate to unstable intermediate states could still be responsible for the observed signal. Nearby pulsars also remain capable of explaining the observed positron fraction. Future measurements of the positron fraction by the AMS Collaboration (using a larger data set) combined with their anticipated measurements of various cosmic ray secondary-to-primary ratios may enable us to further discriminate between these remaining scenarios. C1 [Cholis, Ilias; Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Cholis, I (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM cholis@fnal.gov; dhooper@fnal.gov OI Cholis, Ilias/0000-0002-3805-6478 FU U.S. Department of Energy FX This work has been supported by the U.S. Department of Energy. NR 74 TC 65 Z9 65 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 29 PY 2013 VL 88 IS 2 AR 023013 DI 10.1103/PhysRevD.88.023013 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 193QU UT WOS:000322577300002 ER PT J AU Lidz, A Baxter, EJ Adshead, P Dodelson, S AF Lidz, Adam Baxter, Eric J. Adshead, Peter Dodelson, Scott TI Primordial non-Gaussianity and reionization SO PHYSICAL REVIEW D LA English DT Article ID HALO MASS FUNCTION; EXCURSION SET APPROACH; CM POWER SPECTRUM; HIGH-REDSHIFT; HYDROGEN REIONIZATION; INITIAL CONDITIONS; FLUCTUATIONS; EPOCH; BIAS; STATISTICS AB The statistical properties of the primordial perturbations contain clues about their origins. Although the Planck collaboration has recently obtained tight constraints on primordial non-Gaussianity from cosmic microwave background measurements, it is still worthwhile to mine upcoming data sets in an effort to place independent or competitive limits. The ionized bubbles that formed at redshift z similar to 6-20 during the epoch of reionization were seeded by primordial overdensities, and so the statistics of the ionization field at high redshift are related to the statistics of the primordial field. Here we model the effect of primordial non-Gaussianity on the reionization field. The epoch and duration of reionization are affected, as are the sizes of the ionized bubbles, but these changes are degenerate with variations in the properties of the ionizing sources and the surrounding intergalactic medium. A more promising signature is the power spectrum of the spatial fluctuations in the ionization field, which may be probed by upcoming 21 cm surveys. This has the expected 1/k(2) dependence on large scales, characteristic of a biased tracer of the matter field. We project how well upcoming 21 cm observations will be able to disentangle this signal from foreground contamination. Although foreground cleaning inevitably removes the large-scale modes most impacted by primordial non-Gaussianity, we find that primordial non-Gaussianity can be separated from foreground contamination for a narrow range of length scales. In principle, futuristic redshifted 21 cm surveys may allow constraints competitive with Planck. C1 [Lidz, Adam] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Baxter, Eric J.; Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Adshead, Peter; Dodelson, Scott] Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Dodelson, Scott] Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Lidz, A (reprint author), Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. EM alidz@sas.upenn.edu FU NSF [AST-1109156]; Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-1125897]; National Science Foundation [AST-090872, NSF PHY-1125915]; U.S. Department of Energy [DE-FG02-95ER40896] FX A. L. was supported in part by the NSF through Grant No. AST-1109156. This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through Grant No. NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. S. D. and E. B. were supported in part by National Science Foundation under Grant No. AST-090872. S. D. is supported by the U.S. Department of Energy, including Grant No. DE-FG02-95ER40896. P. A. thanks the Kavli Institute for Theoretical Physics for hospitality and support through National Science Foundation Grant No. NSF PHY-1125915 as this work was nearing completion. NR 53 TC 10 Z9 10 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 29 PY 2013 VL 88 IS 2 AR 023534 DI 10.1103/PhysRevD.88.023534 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 193QU UT WOS:000322577300004 ER PT J AU Liu, J Krishna, KS Losovyj, YB Chattopadhyay, S Lozova, N Miller, JT Spivey, JJ Kumar, CSSR AF Liu, Jing Krishna, Katla Sai Losovyj, Yaroslav B. Chattopadhyay, Soma Lozova, Natalia Miller, Jeffrey T. Spivey, James J. Kumar, Challa S. S. R. TI Ligand-Stabilized and Atomically Precise Gold Nanocluster Catalysis: A Case Study for Correlating Fundamental Electronic Properties with Catalysis SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE cluster compounds; gold; nanostructures; ultraviolet photoemission spectra; X-ray absorption fine structure ID ABSORPTION FINE-STRUCTURE; SUPPORTED AU CATALYSTS; PARTICLE-SIZE; NANOPARTICLE CATALYSTS; AEROBIC OXIDATION; CRYSTAL-STRUCTURE; CO OXIDATION; CLUSTERS; REACTIVITY; PHOTOEMISSION AB We present results from our investigations into correlating the styrene-oxidation catalysis of atomically precise mixed-ligand biicosahedral-structure [Au-25(PPh3)(10)(SC12H25)(5)Cl-2](2+) (Au-25-bi) and thiol-stabilized icosahedral core-shell-structure [Au-25(SCH2CH2Ph)(18)](-) (Au-25-i) clusters with their electronic and atomic structure by using a combination of synchrotron radiation-based X-ray absorption fine-structure spectroscopy (XAFS) and ultraviolet photoemission spectroscopy (UPS). Compared to bulk Au, XAFS revealed low Au-Au coordination, AuAu bond contraction and higher d-band vacancies in both the ligand-stabilized Au clusters. The ligands were found not only to act as colloidal stabilizers, but also as d-band electron acceptor for Au atoms. Au-25-bi clusters have a higher first-shell Au coordination number than Au-25-i, whereas Au-25-bi and Au-25-i clusters have the same number of Au atoms. The UPS revealed a trend of narrower d-band width, with apparent d-band spin-orbit splitting and higher binding energy of d-band center position for Au-25-bi and Au-25-i. We propose that the differences in their d-band unoccupied state population are likely to be responsible for differences in their catalytic activity and selectivity. The findings reported herein help to understand the catalysis of atomically precise ligand-stabilized metal clusters by correlating their atomic or electronic properties with catalytic activity. C1 [Liu, Jing; Krishna, Katla Sai; Losovyj, Yaroslav B.; Lozova, Natalia; Kumar, Challa S. S. R.] Louisiana State Univ, CAMD, Baton Rouge, LA 70806 USA. [Liu, Jing; Krishna, Katla Sai; Losovyj, Yaroslav B.; Spivey, James J.; Kumar, Challa S. S. R.] Louisiana State Univ, Ctr Atom Level Catalyst Design, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. [Chattopadhyay, Soma] Argonne Natl Lab, CSRRI IIT, MRCAT, Sect 10, Argonne, IL 60439 USA. [Chattopadhyay, Soma] IIT, Dept Phys, Chicago, IL 60616 USA. [Miller, Jeffrey T.] Argonne Natl Lab, CSE Div, Argonne, IL 60439 USA. RP Kumar, CSSR (reprint author), Louisiana State Univ, CAMD, Baton Rouge, LA 70806 USA. EM ckumar1@lsu.edu RI ID, MRCAT/G-7586-2011; Katla, Sai Krishna/F-8145-2010; Liu, Jing/E-7184-2016 FU Center for Atomic Level Catalyst Design, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001058, DE-AC02-06CH11357]; Department of Energy; MRCAT; Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Re-search Center FX This material is based upon work supported as part of the Center for Atomic Level Catalyst Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001058. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The use of the advanced photon source at ANL was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. Financial support for J.T.M. was provided as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Re-search Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. We are grateful to Dr. Tianpin Wu and Dr. Tomohiro Shibata of MRCAT-10ID beam line for their help during EXAFS measurements of Au L3-edge. Acknowledgements are also due to Dr. Vladislav Zyryanov for designing the sample cells used for loading the samples. NR 68 TC 31 Z9 31 U1 6 U2 125 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD JUL 29 PY 2013 VL 19 IS 31 BP 10201 EP 10208 DI 10.1002/chem.201300600 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 185QA UT WOS:000321983700022 PM 23788381 ER PT J AU Thorne, RM Li, W Ni, B Ma, Q Bortnik, J Baker, DN Spence, HE Reeves, GD Henderson, MG Kletzing, CA Kurth, WS Hospodarsky, GB Turner, D Angelopoulos, V AF Thorne, R. M. Li, W. Ni, B. Ma, Q. Bortnik, J. Baker, D. N. Spence, H. E. Reeves, G. D. Henderson, M. G. Kletzing, C. A. Kurth, W. S. Hospodarsky, G. B. Turner, D. Angelopoulos, V. TI Evolution and slow decay of an unusual narrow ring of relativistic electrons near L similar to 3.2 following the September 2012 magnetic storm SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE relativistic electrons; plasmaspheric hiss ID PRECIPITATION; ACCELERATION; CHORUS; BELT AB A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 R-E, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L>3.5, and this remnant belt of relativistic electrons persisted at energies above 2MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on 1 October. This long-term stability of the relativistic electron ring was associated with the rapid outward migration and maintenance of the plasmapause to distances greater than L=4. The remnant ring was thus immune from the dynamic process, which caused rapid rebuilding of the outer radiation belt at L>4, and was only subject to slow decay due to pitch angle scattering by plasmaspheric hiss on timescales exceeding 10-20days for electron energies above 3MeV. At lower energies, the decay is much more rapid, consistent with the absence of a long-duration electron ring at energies below 2MeV. C1 [Thorne, R. M.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Baker, D. N.] Univ Colorado, Lab Atmospher & Space Res, Boulder, CO 80309 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Reeves, G. D.; Henderson, M. G.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Dept Phys, Iowa City, IA USA. [Turner, D.; Angelopoulos, V.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. RP Thorne, RM (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, 405 Hilgard Ave, Los Angeles, CA 90095 USA. EM rmt@atmos.ucla.edu RI Turner, Drew/G-3224-2012; Li, Wen/F-3722-2011; Reeves, Geoffrey/E-8101-2011; Henderson, Michael/A-3948-2011; OI Reeves, Geoffrey/0000-0002-7985-8098; Henderson, Michael/0000-0003-4975-9029; Kletzing, Craig/0000-0002-4136-3348; Spence, Harlan/0000-0002-2526-2205; Kurth, William/0000-0002-5471-6202; Hospodarsky, George/0000-0001-9200-9878 FU JHU/APL under NASA [967399, 921647, NAS5-01072]; EMFISIS sub-award [1001057397:01]; ECT sub-award [13-041]; NASA [NAS5-02099] FX This work was supported by JHU/APL contracts 967399 and 921647 under NASA's prime contract NAS5-01072. The analysis at UCLA was supported by EMFISIS sub-award 1001057397:01 and by ECT sub-award 13-041. The authors acknowledge NASA contract NAS5-02099 and A. Roux and O. LeContel for use of the SCM data. We thank OMNIweb for providing the geomagnetic indices and solar wind parameters used in this study and the NOAA POES team for providing the POES electron data. NR 20 TC 64 Z9 64 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2013 VL 40 IS 14 BP 3507 EP 3511 DI 10.1002/grl.50627 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 204TP UT WOS:000323392700004 ER PT J AU Grise, KM Polvani, LM Tselioudis, G Wu, YT Zelinka, MD AF Grise, Kevin M. Polvani, Lorenzo M. Tselioudis, George Wu, Yutian Zelinka, Mark D. TI The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE ozone hole; cloud-radiative processes ID CLIMATE; MODEL; ISCCP AB This study quantifies the response of the clouds and the radiative budget of the Southern Hemisphere (SH) to the poleward shift in the tropospheric circulation induced by the development of the Antarctic ozone hole. Single forcing climate model integrations, in which only stratospheric ozone depletion is specified, indicate that (1) high-level and midlevel clouds closely follow the poleward shift in the SH midlatitude jet and that (2) low-level clouds decrease across most of the Southern Ocean. Similar cloud anomalies are found in satellite observations during periods when the jet is anomalously poleward. The hemispheric annual mean radiation response to the cloud anomalies is calculated to be approximately +0.25 W m(-2), arising largely from the reduction of the total cloud fraction at SH midlatitudes during austral summer. While these dynamically induced cloud and radiation anomalies are considerable and are supported by observational evidence, quantitative uncertainties remain from model biases in mean-state cloud-radiative processes. C1 [Grise, Kevin M.; Polvani, Lorenzo M.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Polvani, Lorenzo M.; Tselioudis, George] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Polvani, Lorenzo M.; Tselioudis, George] Columbia Univ, Dept Earth & Environm Sci, New York, NY USA. [Tselioudis, George] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Wu, Yutian] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USA. [Zelinka, Mark D.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. RP Grise, KM (reprint author), Columbia Univ, Lamont Doherty Earth Observ, POB 1000,61 Rt 9W, Palisades, NY 10964 USA. EM kgrise@ldeo.columbia.edu RI Grise, Kevin/B-6939-2013; Zelinka, Mark/C-4627-2011 OI Grise, Kevin/0000-0003-0934-8129; Zelinka, Mark/0000-0002-6570-5445 FU National Science Foundation; U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. DOE's Office of Science FX We thank two anonymous reviewers for their helpful comments and G.J.P. Correa for assistance with the model experiments. K. M. G. and L. M. P. were supported by a National Science Foundation grant to Columbia University. M.D.Z.'s contribution was performed under the auspices of U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported by the Regional and Global Climate and Earth System Modeling programs of the U.S. DOE's Office of Science. NR 16 TC 23 Z9 23 U1 1 U2 37 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2013 VL 40 IS 14 BP 3688 EP 3692 DI 10.1002/grl.50675 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 204TP UT WOS:000323392700036 ER PT J AU Yang, F Ovchinnikov, M Shaw, RA AF Yang, Fan Ovchinnikov, Mikhail Shaw, Raymond A. TI Minimalist model of ice microphysics in mixed-phase stratiform clouds SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE mixed-phase clouds; stochastic ice nucleation; ice water content; ice number concentration AB The question of whether persistent ice crystal precipitation from supercooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (w(i)) has a 2.5 power-law relationship with ice number concentration (n(i)). w(i) and n(i) from a LES cloud model with stochastic ice nucleation confirm the 2.5 power-law relationship, and initial indications of the scaling law are observed in data from the Indirect and Semi-Direct Aerosol Campaign. The prefactor of the power law is proportional to the ice nucleation rate and therefore provides a quantitative link to observations of ice microphysical properties. C1 [Yang, Fan; Shaw, Raymond A.] Michigan Technol Univ, Atmospher Sci Program, Houghton, MI 49931 USA. [Ovchinnikov, Mikhail] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shaw, RA (reprint author), Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. EM rashaw@mtu.edu FU DOE Office of Science as part of the Atmospheric System Research program [DE-SC0006949] FX This research was supported by the DOE Office of Science as part of the Atmospheric System Research program, including through grant DE-SC0006949, and used data from the Atmospheric Radiation Measurement Climate Research Facility. We thank A. Korolev for providing the processed ice data from ISDAC. Simulations were performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. NR 20 TC 11 Z9 11 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2013 VL 40 IS 14 BP 3756 EP 3760 DI 10.1002/grl.50700 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 204TP UT WOS:000323392700048 ER PT J AU Bayati, MR Molaei, R Budai, JD Narayan, RJ Narayan, J AF Bayati, M. R. Molaei, R. Budai, J. D. Narayan, R. J. Narayan, J. TI Role of substrate crystallographic characteristics on structure and properties of rutile TiO2 epilayers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TITANIUM-DIOXIDE; DISLOCATION NUCLEATION; SURFACE; HETEROSTRUCTURES; TRANSFORMATION; CRYSTALS; ANATASE; EPITAXY AB To investigate heterostructures of interest for catalytic applications, we integrated rutile TiO2 epitaxial thin films with Al2O3(0001), Al2O3(10 (1) over bar0), and Al2O3(01 (1) over bar2) substrates and studied structure and properties of the epilayers as a function of the crystallographic characteristics of the substrate. The epitaxial relationship across the film/substrate interfaces was established as (100)(rutile)parallel to(0001)(c-sapphire) and [001](rutile)parallel to[10 (1) over bar0](c-sapphire), (001)(rutile)parallel to[10 (1) over bar0)(m-sapphire), and [100](rutile)parallel to[0001](m-sapphire), (101)(rutile)parallel to(01 (1) over bar2)(r-sapphire) and [010](rutile)parallel to(01 (1) over bar2)(r-sapphire.) The origin and the relaxation mechanism of stress and strain for each heterostructure were studied in detail. It was revealed that large lattice misfit strains relax easily even if the primary slip system is not active due to the epitaxial alignment between the film and substrate and orientation of the in-plane stresses. We also showed that even small misfit strains can relax provided that the primary slip system is active. The origin of the residual strains in the epilayers was found to be primarily due to thermal misfit and defect/impurity strains. In addition, the decomposition rate of 4-chlorophenol by the rutile/sapphire heterostructures under ultraviolet illumination was measured. The (001)-plane was found to be the most photoactive face of rutile TiO2, while the (100)-plane showed the lowest photocatalytic activity. The difference in the photochemical characteristics was attributed to the atomic arrangement on different crystallographic surface planes. (C) 2013 AIP Publishing LLC. C1 [Bayati, M. R.; Molaei, R.; Narayan, R. J.; Narayan, J.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Budai, J. D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Narayan, R. J.] Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. [Narayan, J.] North Carolina State Univ EB3, Raleigh, NC 27695 USA. RP Bayati, MR (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, EB 1, Raleigh, NC 27695 USA. EM mbayati@ncsu.edu RI Budai, John/R-9276-2016 OI Budai, John/0000-0002-7444-1306 FU National Science Foundation of the USA; U.S. DOE, Basic Energy Sciences, Materials Sciences and Engineering Division FX Authors appreciate financial support from National Science Foundation of the USA. Research by J.D.B was supported by the U.S. DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 24 TC 3 Z9 3 U1 0 U2 48 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 28 PY 2013 VL 114 IS 4 AR 044314 DI 10.1063/1.4816470 PG 13 WC Physics, Applied SC Physics GA 193DZ UT WOS:000322539300091 ER PT J AU Fratanduono, DE Eggert, JH Akin, MC Chau, R Holmes, NC AF Fratanduono, D. E. Eggert, J. H. Akin, M. C. Chau, R. Holmes, N. C. TI A novel approach to Hugoniot measurements utilizing transparent crystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EQUATION-OF-STATE; LIGHT-GAS GUN; SHOCK-WAVE; ELASTIC-CONSTANTS; YIELD STRENGTH; FUSED-SILICA; 200 GPA; MGO; COMPRESSION; SAPPHIRE AB A new absolute equation of state measurement technique is described and demonstrated measuring the shock state and the refractive index of MgO up to 226 GPa. This technique utilizes steady shock waves and the high-pressure transparency of MgO under dynamic shock compression and release. Hugoniot measurements performed using this technique are consistent with the previous measurements. A linear dependence of the shocked refractive index and density is observed up to 226 GPa, over a magnitude greater in pressure that previous studies. The transparency of MgO along the principal Hugoniot is higher than any other material reported to date. We observe a significant change in the refractive index of MgO as the Hugoniot elastic limit is exceeded due to the transition from uniaxial to hydrostatic strain. Measurements of the elastic-plastic two-wave structure in MgO indicate a nucleation time for plastic deformation. (C) 2013 AIP Publishing LLC. C1 [Fratanduono, D. E.; Eggert, J. H.; Akin, M. C.; Chau, R.; Holmes, N. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Fratanduono, DE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 46 TC 10 Z9 10 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 28 PY 2013 VL 114 IS 4 AR 043518 DI 10.1063/1.4813871 PG 10 WC Physics, Applied SC Physics GA 193DZ UT WOS:000322539300028 ER PT J AU Kashinath, A Wang, P Majewski, J Baldwin, JK Wang, YQ Demkowicz, MJ AF Kashinath, A. Wang, P. Majewski, J. Baldwin, J. K. Wang, Y. Q. Demkowicz, M. J. TI Detection of helium bubble formation at fcc-bcc interfaces using neutron reflectometry SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID AUSTENITIC STAINLESS-STEELS; METALS; GROWTH; IRRADIATION; HE; NANOCOMPOSITES; MULTILAYERS; COMPOSITES AB We use neutron reflectometry to find the critical helium (He) fluence required to form He bubbles at interfaces between fcc and bcc metals. Our findings are in agreement with previous experimental as well as modeling results and provide evidence for the presence of stable He platelets at fcc-bcc interfaces prior to bubble formation. The stable storage of He in interfacial platelets may provide the basis for the design of materials with increased resistance to He-induced degradation. (C) 2013 AIP Publishing LLC. C1 [Kashinath, A.; Demkowicz, M. J.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Wang, P.; Majewski, J.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Baldwin, J. K.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Wang, Y. Q.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Kashinath, A (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. FU Center for Materials in Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; DOE Office of Basic Energy Sciences; Los Alamos National Laboratory under DOE [DE-AC52-06NA25396] FX This work was supported by the Center for Materials in Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. 2008LANL1026. This work also benefited from the use of the Lujan Neutron Scattering Center at LANSCE, funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. NR 44 TC 7 Z9 7 U1 0 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 28 PY 2013 VL 114 IS 4 AR 043505 DI 10.1063/1.4813780 PG 8 WC Physics, Applied SC Physics GA 193DZ UT WOS:000322539300015 ER PT J AU Shaw, BH van Tilborg, J Sokollik, T Schroeder, CB McKinney, WR Artemiev, NA Yashchuk, VV Gullikson, EM Leemans, WP AF Shaw, B. H. van Tilborg, J. Sokollik, T. Schroeder, C. B. McKinney, W. R. Artemiev, N. A. Yashchuk, V. V. Gullikson, E. M. Leemans, W. P. TI High-peak-power surface high-harmonic generation at extreme ultra-violet wavelengths from a tape SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SOLID TARGETS; LASER-DRIVEN; PLASMA MIRRORS; ELECTRON-BEAMS; RADIATION; ACCELERATOR; INTENSE; PULSE; REFLECTION; CONTRAST AB Solid-based surface high-harmonic generation from a tape is experimentally studied. By operating at mildly relativistic normalized laser strengths a(0) less than or similar to 0.2, harmonics up to the 17th order are efficiently produced in the coherent wake emission (CWE) regime. CWE pulse properties, such as divergence, energy, conversion efficiency, and spectrum, are investigated for various tape materials and drive laser conditions. A clear correlation between surface roughness and harmonic beam divergence is found. At the measured pulse properties for the 15th harmonic (conversion efficiency similar to 6.5 x 10 (7), divergence similar to 7 - 15 mrad), the 100-mJ-level drive laser produces several MWs of extreme ultra-violet pulses. The spooling tape configuration enables multi-Hz operation over thousands of shots, making this source attractive as a seed to the few-Hz laser-plasma-accelerator-driven free-electron laser (FEL). Models indicate that these CWE pulses with MW level powers are sufficient for seed-induced bunching and FEL gain. (C) 2013 AIP Publishing LLC. C1 [Shaw, B. H.; van Tilborg, J.; Sokollik, T.; Schroeder, C. B.; McKinney, W. R.; Artemiev, N. A.; Yashchuk, V. V.; Gullikson, E. M.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Shaw, B. H.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Leemans, W. P.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Leemans, WP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM WPLeemans@lbl.gov RI McKinney, Wayne/F-2027-2014; Sokollik, Thomas/P-2584-2015; OI McKinney, Wayne/0000-0003-2586-3139; Schroeder, Carl/0000-0002-9610-0166 FU National Science Foundation (NSF) [0917687, 0935197]; United States Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Lab's Laboratory Directed Research and Development (LDRD) FX This work was supported by the National Science Foundation (NSF) under Contract Nos. 0917687 and 0935197, the United States Department of Energy under Contract No. DE-AC02-05CH11231, and the Lawrence Berkeley National Lab's Laboratory Directed Research and Development (LDRD) support. NR 47 TC 11 Z9 11 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 28 PY 2013 VL 114 IS 4 AR 043106 DI 10.1063/1.4816574 PG 10 WC Physics, Applied SC Physics GA 193DZ UT WOS:000322539300006 ER PT J AU Tao, R Romanenko, A Cooley, LD Klie, RF AF Tao, R. Romanenko, A. Cooley, L. D. Klie, R. F. TI Low temperature study of structural phase transitions in niobium hydrides SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HYDROGEN SYSTEM; ELECTRON-MICROSCOPE; CAVITIES; ACCELERATORS AB Niobium (Nb) and its hydrides have been the focus of many studies due to applications as a hydrogen storage material, as a dielectric coating in semiconductor devices and in superconducting radio-frequency cavities. In this paper, we will present the atomic-scale characterization of Nb hydrides using scanning transmission electron microscopy and electron energy loss spectroscopy (EELS) at room and liquid nitrogen temperatures. Although such cavities are formed from ultrahigh purity Nb, using electron beam diffraction, we found that at LN2 temperature, the grains near the surface of cold-worked Nb sheets contain regions exhibiting three different superlattice features, which are identified as beta, epsilon, and zeta-NbHx phases. Z-contrast imaging and EELS at LN2 temperature are utilized to qualify their atomic and electronic structures. (C) 2013 AIP Publishing LLC. C1 [Tao, R.; Klie, R. F.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Romanenko, A.; Cooley, L. D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Tao, R (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. EM rtao2@uic.edu RI Cooley, Lance/E-7377-2015 OI Cooley, Lance/0000-0003-3488-2980 FU Fermi Lab; National Science Foundation [DMR-0959470] FX The authors would like to acknowledge the URA award by Fermi Lab, the Research Resource Center of UIC for providing instrumentation support, and Y.J. Kim and D. Seidman from Northwestern University. The UIC JEOL JEM-ARM 200CF was supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470). NR 33 TC 4 Z9 4 U1 3 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 28 PY 2013 VL 114 IS 4 AR 044306 DI 10.1063/1.4816274 PG 7 WC Physics, Applied SC Physics GA 193DZ UT WOS:000322539300083 ER PT J AU Tringe, JW Kercher, JR Springer, HK Glascoe, EA Levie, HW Hsu, P Willey, TM Molitoris, JD AF Tringe, J. W. Kercher, J. R. Springer, H. K. Glascoe, E. A. Levie, H. W. Hsu, P. Willey, T. M. Molitoris, J. D. TI Numerical and experimental study of thermal explosions in LX-10 and PBX 9501: Influence of thermal damage on deflagration processes SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PLASTIC BONDED EXPLOSIVES; GAS PERMEATION; HMX; TRANSITION; MODEL; IGNITION AB We employ in-situ flash x-ray imaging, together with a detailed multiphase convective burn model, to demonstrate how explosives' binder characteristics influence the burning processes in thermal explosions. Our study focuses on the HMX-based explosives LX-10 and PBX 9501. While the HMX (cyclotetramethylene-tetranitramine) crystallite size distributions for these two explosives are nearly identical before heating, our experiments and simulations indicate that after heating, variations result due to differences in binder composition. Post-ignition flash x-ray images reveal that the average density decreases at late times more rapidly in PBX 9501 than LX-10, suggesting a faster conductive burning rate in PBX-9501. Heated permeability measurements in LX-10 and PBX 9501 demonstrate that the binder system characteristics influence the evolution of connected porosity. Once ignited, connected porosity provides pathways for product gas heating ahead of the reaction front and additional surface area for burning, facilitating the transition from conductive to convective burning modes. A multiphase convective burn model implemented in the ALE3D code is used to better understand the influence on burn rates of material properties such as porosity and effective thermally damaged particle size. In this context, particles are defined as gas-impermeable binder-coated crystallites and agglomerations with a set of effective radii r(eff). Model results demonstrate quantitative agreement with containment wall velocity for confined PBX 9501 and LX-10, and qualitative agreement with density as a function of position in the burning explosive. The model predicts a decrease in post-ignition containment wall velocity with larger radii in r(eff). These experimental data and model results together provide insight into the initiation and propagation of the reaction wave that defines the convective burn front in HMX-based explosives, a necessary step toward predicting violence under a broad range of conditions. (C) 2013 AIP Publishing LLC. C1 [Tringe, J. W.; Kercher, J. R.; Springer, H. K.; Glascoe, E. A.; Levie, H. W.; Hsu, P.; Willey, T. M.; Molitoris, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Tringe, JW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Willey, Trevor/A-8778-2011 OI Willey, Trevor/0000-0002-9667-8830 FU DoD-DOE Munitions Technology Development Program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Ron Chambers, Dan Greenwood, Jan Batteux, Sally Weber, and Noel Tan for support of flash x-ray experiments. We gratefully acknowledge helpful discussions with Laura Smilowitz and Bryan Henson at Los Alamos National Laboratory, New Mexico. This research was supported by the Joint DoD-DOE Munitions Technology Development Program. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 47 TC 5 Z9 6 U1 1 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 28 PY 2013 VL 114 IS 4 AR 043504 DI 10.1063/1.4813518 PG 11 WC Physics, Applied SC Physics GA 193DZ UT WOS:000322539300014 ER PT J AU Baczewski, AD Bond, SD AF Baczewski, Andrew D. Bond, Stephen D. TI Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS; BROWNIAN-MOTION; ANOMALOUS DIFFUSION; COMPLEX FLUIDS; SOFT MATTER; SIMULATION; PARTICLES; ALGORITHM; TRANSPORT; SOLVENT AB Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging from structured fluids that exhibit a viscoelastic mechanical response, to biological systems, and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD) simulations that include GLD in conjunction with external and/or pairwise forces require the development of numerical integrators that are efficient, stable, and have known convergence properties. In this article, we derive a family of extended variable integrators for the Generalized Langevin equation with a positive Prony series memory kernel. Using stability and error analysis, we identify a superlative choice of parameters and implement the corresponding numerical algorithm in the LAMMPS MD software package. Salient features of the algorithm include exact conservation of the first and second moments of the equilibrium velocity distribution in some important cases, stable behavior in the limit of conventional Langevin dynamics, and the use of a convolution-free formalism that obviates the need for explicit storage of the time history of particle velocities. Capability is demonstrated with respect to accuracy in numerous canonical examples, stability in certain limits, and an exemplary application in which the effect of a harmonic confining potential is mapped onto a memory kernel. (C) 2013 AIP Publishing LLC. C1 [Baczewski, Andrew D.; Bond, Stephen D.] Sandia Natl Labs, Multiphys Simulat Technol Dept, Albuquerque, NM 87185 USA. [Baczewski, Andrew D.] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. [Baczewski, Andrew D.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Baczewski, AD (reprint author), Sandia Natl Labs, Multiphys Simulat Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM adbacze@sandia.gov FU U.S. Department of Energys National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge Jason Bernstein, Paul Crozier, John Fricks, Jeremy Lechman, Rich Lehoucq, Scott McKinley, and Steve Plimpton for numerous fruitful discussions and feedback. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 46 TC 10 Z9 10 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2013 VL 139 IS 4 AR 044107 DI 10.1063/1.4815917 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 198VA UT WOS:000322949300010 PM 23901960 ER PT J AU Conte, R Fu, BN Kamarchik, E Bowman, JM AF Conte, Riccardo Fu, Bina Kamarchik, Eugene Bowman, Joel M. TI A novel Gaussian Binning (1GB) analysis of vibrational state distributions in highly excited H2O from reactive quenching of OH* by H-2 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CLASSICAL TRAJECTORY METHOD; REACTION DYNAMICS; S-MATRIX; SEMICLASSICAL EIGENVALUES; NONSEPARABLE SYSTEMS; MOLECULAR-HYDROGEN; CHEMICAL-REACTIONS; CHLORINE ATOM; COLLISIONS; (2)SIGMA(+)) AB As shown in experiments by Lester and co-workers [J. Chem. Phys. 110, 11117 (1999)], the reactive quenching of OH* by H-2 produces highly excited H2O. Previous limited analysis of quasiclassical trajectory calculations using standard Histogram Binning (HB) was reported [B. Fu, E. Kamarchik, and J. M. Bowman, J. Chem. Phys. 133, 164306 (2010)]. Here, we examine the quantized internal state distributions of H2O in more detail, using two versions of Gaussian Binning (denoted 1GB). In addition to the standard version of 1GB, which relies on the harmonic energies of the states (1GB-H), we propose a new and more accurate technique based on exact quantum vibrational energies (1GB-EQ). Data from about 42 000 trajectories from previous calculations that give excited water molecules are used in the two versions of 1GB as well as HB. For the vibrationally hot molecules considered in this study, the classical internal energy distribution serves as a benchmark to estimate the accuracy of the different binning methods analyzed. The 1GB discretization methods, especially the one using exact quantum energies, reconstruct the classical distribution much more accurately than HB and also the original, more elaborate Gaussian Binning method. Detailed quantum state distributions are presented for pure overtone excitations as well as several antisymmetric stretch distributions. The latter are focused on because the antisymmetric stretch has the largest emission oscillator strength of the three water modes. (C) 2013 AIP Publishing LLC. C1 [Conte, Riccardo; Bowman, Joel M.] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Conte, Riccardo; Bowman, Joel M.] Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA. [Fu, Bina] Chinese Acad Sci, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China. [Fu, Bina] Chinese Acad Sci, Dalian Inst Chem Phys, Ctr Theoret & Computat Chem, Dalian 116023, Peoples R China. [Kamarchik, Eugene] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Conte, R (reprint author), Emory Univ, Dept Chem, 1515 Pierce Dr, Atlanta, GA 30322 USA. EM riccardo.conte@emory.edu; jmbowma@emory.edu FU Department of Energy [DE-FG02-97ER14782]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC04-94-AL85000]; Dalian Institute of Chemical Physics, Chinese Academy of Sciences FX Dr. Gabor Czako is thanked for very useful discussions. R.C. and J.M.B. thank the Department of Energy (Grant No. DE-FG02-97ER14782) for support, E.K. thanks the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (Grant No. DE-AC04-94-AL85000) for support, and B.F. thanks Dalian Institute of Chemical Physics, Chinese Academy of Sciences for start-up funds. NR 42 TC 6 Z9 6 U1 1 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2013 VL 139 IS 4 AR 044104 DI 10.1063/1.4816277 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 198VA UT WOS:000322949300007 PM 23901957 ER PT J AU Hou, GL Wu, MM Wen, H Sun, Q Wang, XB Zheng, WJ AF Hou, Gao-Lei Wu, Miao Miao Wen, Hui Sun, Qiang Wang, Xue-Bin Zheng, Wei-Jun TI Photoelectron spectroscopy and theoretical study of M(IO3)(2)(-) (M = H, Li, Na, K): Structural evolution, optical isomers, and hyperhalogen behavior SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRON PROPAGATOR CALCULATIONS; CRYSTAL-STRUCTURE; IONIZATION-POTENTIALS; SEMIDIRECT ALGORITHMS; BINDING ENERGIES; COMPLEX ANIONS; X-RAY; SUPERHALOGENS; AFFINITIES; SPARKLE/PM3 AB H(IO3)(2)(-) and M(IO3)(2)(-) (M = Li, Na, K) anions were successfully produced via electrospray ionization of their corresponding bulk salt solutions, and were characterized by combining negative ion photoelectron spectroscopy and quantum chemical calculations. The experimental vertical detachment energies (VDEs) of M(IO3)(2)(-) (M = H, Li, Na, K) are 6.25, 6.57, 6.60, and 6.51 eV, respectively, and they are much higher than that of IO3- (4.77 eV). The theoretical calculations show that each of these anions has two energetically degenerate optical isomers. It is found that the structure of H(IO3)(2)(-) can be written as IO3- (HIO3), in which the H atom is tightly bound to one of the IO3- groups and forms an iodic acid (HIO3) molecule; while the structures of M(IO3)(2)(-) can be written as (IO3-)M+(IO3-), in which the alkali metal atoms interact with the two IO3- groups almost equally and bridge the two IO3- groups via two O atoms of each IO3- with the two MOOI planes nearly perpendicular to each other. In addition, the high VDEs of M(IO3)(2-) (M = Li, Na, K) can be explained by the hyperhalogen behavior of their neutral counterparts. (C) 2013 AIP Publishing LLC. C1 [Hou, Gao-Lei; Zheng, Wei-Jun] Chinese Acad Sci, Beijing Natl Lab Mol Sci, State Key Lab Mol React Dynam, Inst Chem, Beijing 100190, Peoples R China. [Hou, Gao-Lei; Wen, Hui; Wang, Xue-Bin] Pacific NW Natl Lab, Phys Sci Div, Richland, WA 99352 USA. [Wu, Miao Miao] China Univ Min & Technol Beijing, Dept Mat Sci & Engn, Beijing 100083, Peoples R China. [Sun, Qiang] Peking Univ, Dept Mat Sci & Engn, Beijing 100871, Peoples R China. [Sun, Qiang] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China. [Wen, Hui] Chinese Acad Sci, Hefei Inst Phys Sci, Lab Atmospher Phys Chem, Hefei 230031, Anhui, Peoples R China. RP Hou, GL (reprint author), Chinese Acad Sci, Beijing Natl Lab Mol Sci, State Key Lab Mol React Dynam, Inst Chem, Beijing 100190, Peoples R China. EM sunqiang@pku.edu.cn; xuebin.wang@pnnl.gov; zhengwj@iccas.ac.cn RI Sun, Qiang/C-3574-2012; Wu, Miao Miao/E-5723-2015 OI Wu, Miao Miao/0000-0002-1955-7701 FU Division of Chemical Sciences, Geosciences, and Bio-sciences, Office of Basic Energy Sciences, U. S. Department of Energy (DOE); DOE's Office of Biological and Environmental Research; Natural Science Foundation of China [NSFC-21173007] FX The experimental work done at Richland was supported by the Division of Chemical Sciences, Geosciences, and Bio-sciences, Office of Basic Energy Sciences, U. S. Department of Energy (DOE), and was performed using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the DOE. The theoretical work was partially supported by grants from the Natural Science Foundation of China (Grant No. NSFC-21173007). G.-L. H. thanks Dr. V. G. Zakrzewski (Auburn University) for valuable help on the OVGF calculations. Q. S. and M. M. W. thank the crew of the Center for Computational Materials Science, the Institute for Materials Research, Tohoku University, Japan for their continuous support. The theoretical work was conducted using the resource of the HITACH SR11000 supercomputing facility, as well as the ScGrid and Deepcomp7000 of the Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences. NR 52 TC 6 Z9 6 U1 2 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2013 VL 139 IS 4 AR 044312 DI 10.1063/1.4816525 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 198VA UT WOS:000322949300035 PM 23901985 ER PT J AU Imoto, S Xantheas, SS Saito, S AF Imoto, Sho Xantheas, Sotiris S. Saito, Shinji TI Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HYDROGEN-BOND NETWORK; SPECTROSCOPY; RELAXATION; H2O; REARRANGEMENT; SIMULATIONS; ECHO; D2O AB Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend. (C) 2013 AIP Publishing LLC. C1 [Imoto, Sho; Saito, Shinji] Grad Univ Adv Studies, Okazaki, Aichi 4448585, Japan. [Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Saito, Shinji] Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan. RP Saito, S (reprint author), Grad Univ Adv Studies, Okazaki, Aichi 4448585, Japan. EM shinji@ims.ac.jp RI Xantheas, Sotiris/L-1239-2015; OI Xantheas, Sotiris/0000-0002-6303-1037 FU MEXT [23655020, 22350013, 25288011]; Computational Material Science Initiative (CMSI); U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences FX The authors thank Dr. T. Yagasaki for helpful discussions. The present study was supported by the Grant-in-Aid for Challenging Exploratory Research (Grant No. 23655020), the Grant-in-Aid for Scientific Research (Grant Nos. 22350013 and 25288011), the Strategic Program for Innovation Research (SPIRE), MEXT, and the Computational Material Science Initiative (CMSI). S.S.X. acknowledges the support of the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The calculations were carried out using the computing resources at the Research Center for Computational Science in Okazaki. NR 46 TC 12 Z9 12 U1 0 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2013 VL 139 IS 4 AR 044503 DI 10.1063/1.4813071 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 198VA UT WOS:000322949300039 PM 23901989 ER PT J AU Kalyuzhnyi, YV Marshall, BD Chapman, WG Cummings, PT AF Kalyuzhnyi, Y. V. Marshall, B. D. Chapman, W. G. Cummings, P. T. TI Second-order resummed thermodynamic perturbation theory for central-force associating potential: Multi-patch colloidal models SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DIRECTIONAL ATTRACTIVE FORCES; MEAN SPHERICAL APPROXIMATION; INTEGRAL-EQUATION THEORY; MONTE-CARLO SIMULATIONS; DIMERIZING HARD-SPHERES; M-POINT MODEL; PRIMITIVE MODELS; CHEMICAL ASSOCIATION; BONDING SITES; FLUIDS AB We propose a second-order version of the resummed thermodynamic perturbation theory for patchy colloidal models with arbitrary number of multiply bondable patches. The model is represented by the hard-sphere fluid system with several attractive patches on the surface and resummation is carried out to account for blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. The theory represents an extension of the earlier proposed first order resummed thermodynamic perturbation theory for central force associating potential and takes into account formation of the rings of the particles. In the limiting case of singly bondable patches (total blockage), the theory reduces to Wertheim thermodynamic perturbation theory for associating fluids. Closed-form expressions for the Helmholtz free energy, pressure, internal energy, and chemical potential of the model with an arbitrary number of equivalent doubly bondable patches are derived. Predictions of the theory for the model with two patches appears to be in a very good agreement with predictions of new NVT and NPT Monte Carlo simulations, including the region of strong association. (C) 2013 AIP Publishing LLC. C1 [Kalyuzhnyi, Y. V.] Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine. [Marshall, B. D.; Chapman, W. G.] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA. [Cummings, P. T.] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Cummings, P. T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Kalyuzhnyi, YV (reprint author), Inst Condensed Matter Phys, Svientsitskoho 1, UA-79011 Lvov, Ukraine. EM yukal@icmp.lviv.ua RI Chapman, Walter/A-6334-2011; OI Chapman, Walter/0000-0002-8789-9041 NR 41 TC 11 Z9 11 U1 0 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2013 VL 139 IS 4 AR 044909 DI 10.1063/1.4816128 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 198VA UT WOS:000322949300071 PM 23902021 ER PT J AU Kang, J Kim, YH Glatzmaier, GC Wei, SH AF Kang, Joongoo Kim, Yong-Hyun Glatzmaier, Greg C. Wei, Su-Huai TI Origin of anomalous strain effects on the molecular adsorption on boron-doped graphene SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MASSLESS DIRAC FERMIONS; AUGMENTED-WAVE METHOD; SUSPENDED GRAPHENE; NITROGEN; GRAPHITE AB When compressive strain is applied to a single-layered material, the layer generally ripples along the third dimension to release the strain energy. In contrast, such a rippling effect is not favored when it is under tensile strain. Here, using first-principles density-functional calculations, we show that molecular adsorption on boron-doped graphene (BG) can be largely tuned by exploiting the rippling effect of the strained graphene. Under tensile strain, the adsorption energy of K2CO3, NO2, and NH3 on BG, for which the molecular adsorption is a chemisorption characterized by a covalent B-molecule bond, exhibits a superlinear dependence on the applied strain. In contrast, when microscopic ripples are present in the BG under compressive strain, the adsorption strength is significantly enhanced with increasing the strain. Such a nonlinear and asymmetric effect of strain on the molecular adsorption is a characteristic of two-dimensional systems, because a general elastic theory of molecular adsorption on three-dimensional systems gives a linear and symmetric strain effect on the adsorption strength. We provide the underlying mechanism of the anomalous strain effect on the chemical molecular adsorption on BG, in which the microscopic rippling of the graphene and the creation of the p-dangling bond state near the Dirac point play an important role. Our finding can be used to modify chemical reactivity of graphene with a wide range of application. (C) 2013 AIP Publishing LLC. C1 [Kang, Joongoo; Glatzmaier, Greg C.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kim, Yong-Hyun] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol, Taejon 305701, South Korea. RP Kang, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM joongoo.kang@nrel.gov RI Kim, Yong-Hyun/C-2045-2011 OI Kim, Yong-Hyun/0000-0003-4255-2068 FU NREL LDRD program [DE-AC36-08GO28308]; NREL CSC [DE-AC36-08GO28308]; NERSC [DE-AC02-05CH11231]; National Research Foundation of Korea (NRF) [2012-046191]; Center for Multiscale Energy Systems of Korea government (MSIP) [2011-0031566] FX We thank A.K. Starace for discussions. This work was funded by the NREL LDRD program (DE-AC36-08GO28308). This research used capabilities of the NREL CSC (DE-AC36-08GO28308) and the NERSC (DE-AC02-05CH11231). Y.-H.K. was supported by the National Research Foundation of Korea (NRF) grants (2012-046191) and the Global Frontier R&D Program by the Center for Multiscale Energy Systems (2011-0031566) of Korea government (MSIP). NR 46 TC 3 Z9 3 U1 4 U2 56 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2013 VL 139 IS 4 AR 044709 DI 10.1063/1.4816365 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 198VA UT WOS:000322949300055 PM 23902005 ER PT J AU Mudiyanselage, K Yang, YX Hoffmann, FM Furlong, OJ Hrbek, J White, MG Liu, P Stacchiola, DJ AF Mudiyanselage, Kumudu Yang, Yixiong Hoffmann, Friedrich M. Furlong, Octavio J. Hrbek, Jan White, Michael G. Liu, Ping Stacchiola, Dario J. TI Adsorption of hydrogen on the surface and sub-surface of Cu(111) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRON-ENERGY-LOSS; ATOMIC-HYDROGEN; LOSS SPECTROSCOPY; METAL-SURFACES; H-ATOMS; ABSORPTION; MOLECULES; DYNAMICS; CO; CHEMISORPTION AB The interaction of atomic hydrogen with the Cu(111) surface was studied by a combined experimental-theoretical approach, using infrared reflection absorption spectroscopy, temperature programmed desorption, and density functional theory (DFT). Adsorption of atomic hydrogen at 160 K is characterized by an anti-absorption mode at 754 cm(-1) and a broadband absorption in the IRRA spectra, related to adsorption of hydrogen on three-fold hollow surface sites and sub-surface sites, and the appearance of a sharp vibrational band at 1151 cm(-1) at high coverage, which is also associated with hydrogen adsorption on the surface. Annealing the hydrogen covered surface up to 200 K results in the disappearance of this vibrational band. Thermal desorption is characterized by a single feature at similar to 295 K, with the leading edge at similar to 250 K. The disappearance of the sharp Cu-H vibrational band suggests that with increasing temperature the surface hydrogen migrates to sub-surface sites prior to desorption from the surface. The presence of sub-surface hydrogen after annealing to 200 K is further demonstrated by using CO as a surface probe. Changes in the Cu-H vibration intensity are observed when cooling the adsorbed hydrogen at 180 K to 110 K, implying the migration of hydrogen. DFT calculations show that the most stable position for hydrogen adsorption on Cu(111) is on hollow surface sites, but that hydrogen can be trapped in the second sub-surface layer. (C) 2013 AIP Publishing LLC. C1 [Mudiyanselage, Kumudu; Hrbek, Jan; White, Michael G.; Liu, Ping; Stacchiola, Dario J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Yang, Yixiong; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Hoffmann, Friedrich M.] BMCC CUNY, Dept Sci, New York, NY 10007 USA. [Furlong, Octavio J.] Univ Nacl San Luis, INFAP CONICET, RA-5700 San Luis, Argentina. RP Stacchiola, DJ (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM djs@bnl.gov RI Stacchiola, Dario/B-1918-2009; Mudiyanselage, Kumudu/B-2277-2013 OI Stacchiola, Dario/0000-0001-5494-3205; Mudiyanselage, Kumudu/0000-0002-3539-632X FU US Department of Energy (DOE) (Chemical Sciences Division) [DE-AC02-98CH10886] FX The work carried out at the Brookhaven National Laboratory was supported by the US Department of Energy (DOE) (Chemical Sciences Division, DE-AC02-98CH10886). The DFT calculations were carried out using the computing facility at the Center for Functional Nanomaterials at Brookhaven National Laboratory. NR 55 TC 13 Z9 13 U1 5 U2 86 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2013 VL 139 IS 4 AR 044712 DI 10.1063/1.4816515 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 198VA UT WOS:000322949300058 PM 23902008 ER PT J AU Jin, L Loisy, A Brown, NJ AF Jin, Ling Loisy, Aurore Brown, Nancy J. TI Role of meteorological processes in ozone responses to emission controls in California's San Joaquin Valley SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE Air pollution meteorology; ozone control; sensitivity analysis; local vs upwind contributions; central California; photochemical modeling CMAQ ID AIR-QUALITY SIMULATIONS; SENSITIVITY-ANALYSIS; REGIONAL-SCALE; POLLUTION; CLIMATE; URBAN; MECHANISMS; TRANSPORT; CAMPAIGN; IMPACT AB We conducted a first-order sensitivity analysis to investigate ozone responses to precursor emissions and source contributions (local versus upwind) for California's San Joaquin Valley (SJV) under four distinct meteorology conditions of summer 2000 using a three-dimensional photochemical transport model. Ozone-limiting reagents, nitrogen oxides (NOx), or anthropogenic volatile organic compounds (VOCs) (AVOCs) and their transition regime were determined from ozone sensitivity coefficients and delineated spatially at high-ozone locations in the SJV. In general, AVOC-limited areas were located near urban centers, while NOx-limited areas were located farther downwind. However, the spatial extent of AVOC-limited areas varied with meteorology. Meteorological dependence of predominant ozone-limiting precursors was found to vary significantly among different subregions within the SJV. Specifically, weaker dependences were identified for regions of the southern SJV located farther away from emission sources, where ozone chemistry was mostly limited by NOx for the episodes considered. Stronger dependences were identified for the central and northern SJV, where ozone chemistry can be limited by NOx or AVOC depending on meteorology. Source contributions to ozone sensitivities in the SJV were also investigated. Local sources were important for the eastern side of the central SJV, while upwind sources were also important (from similar to 40% to more than 50% of the total ozone sensitivities) for the western side of the valley, except for the most stagnant episode. Different contributing source regions were identified for the same VOC-limited areas in the northern SJV, and these depended on the flow characteristics. The predominant ozone-limiting reagent was found to exhibit less dependence on meteorology in the central and southern SJV as the baseline NOx emissions were reduced, ultimately causing ozone formation to be limited by NOx. In contrast, the VOC-limited areas in the northern SJV continued to be influenced by meteorology for two of the episodes. C1 [Jin, Ling; Loisy, Aurore; Brown, Nancy J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Brown, NJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM njbrown@lbl.gov OI Loisy, Aurore/0000-0002-8089-8636 FU California Energy Commission's PIER Environmental Program FX The study summarized in this paper was performed with support from the California Energy Commission's PIER Environmental Program. It does not necessarily represent the views of the Energy Commission, its employees, or the state of California. We thank Marla Mueller in the California Energy Commission for managing the project. We also thank Robert A. Harley for the valuable technical advice and the three anonymous reviewers' help with improving the clarity of the manuscript. NR 42 TC 0 Z9 0 U1 3 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 27 PY 2013 VL 118 IS 14 BP 8010 EP 8022 DI 10.1002/jgrd.50559 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 201DL UT WOS:000323120800046 ER PT J AU Jin, MJ Sarks, C Gunawan, C Bice, BD Simonett, SP Narasimhan, RA Willis, LB Dale, BE Balan, V Sato, TK AF Jin, Mingjie Sarks, Cory Gunawan, Christa Bice, Benjamin D. Simonett, Shane P. Narasimhan, Ragothaman Avanasi Willis, Laura B. Dale, Bruce E. Balan, Venkatesh Sato, Trey K. TI Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX (TM) pretreated corn stover SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Thermo-tolerance; Xylose fermentation; S. cerevisiae; SSCF; AFEX; Degradation products; Ethanol ID CELLULOSIC ETHANOL-PRODUCTION; AMMONIA FIBER EXPANSION; YEAST PICHIA-STIPITIS; XYLITOL-DEHYDROGENASE; XYLOSE FERMENTATION; LIGNOCELLULOSIC BIOMASS; COMMERCIAL ENZYMES; HIGH-TEMPERATURE; 424A(LNH-ST); EXPRESSION AB Background: Simultaneous saccharification and co-fermentation (SSCF) process involves enzymatic hydrolysis of pretreated lignocellulosic biomass and fermentation of glucose and xylose in one bioreactor. The optimal temperatures for enzymatic hydrolysis are higher than the standard fermentation temperature of ethanologenic Saccharomyces cerevisiae. Moreover, degradation products resulting from biomass pretreatment impair fermentation of sugars, especially xylose, and can synergize with high temperature stress. One approach to resolve both concerns is to utilize a strain background with innate tolerance to both elevated temperatures and degradation products. Results: In this study, we screened a panel of 108 wild and domesticated Saccharomyces cerevisiae strains isolated from a wide range of environmental niches. One wild strain was selected based on its growth tolerance to simultaneous elevated temperature and AFEX (TM) (Ammonia Fiber Expansion) degradation products. After engineering the strain with two copies of the Scheffersomyces stipitis xylose reductase, xylitol dehydrogenase and xylulokinase genes, we compared the ability of this engineered strain to the benchmark 424A(LNH-ST) strain in ethanol production and xylose fermentation in standard lab medium and AFEX pretreated corn stover (ACS) hydrolysates, as well as in SSCF of ACS at different temperatures. In SSCF of 9% (w/w) glucan loading ACS at 35 degrees C, the engineered strain showed higher cell viabilities and produced a similar amount of ethanol (51.3 g/L) compared to the benchmark 424A(LNH-ST) strain. Conclusion: These results validate our approach in the selection of wild Saccharomyces cerevisiae strains with thermo-tolerance and degradation products tolerance properties for lignocellulosic biofuel production. The wild and domesticated yeast strains phenotyped in this work are publically available for others to use as genetic backgrounds for fermentation of their pretreated biomass at elevated temperatures. C1 [Jin, Mingjie; Sarks, Cory; Gunawan, Christa; Dale, Bruce E.; Balan, Venkatesh] Michigan State Univ, Dept Chem Engn & Mat Sci, BCRL, Lansing, MI 48910 USA. [Jin, Mingjie; Sarks, Cory; Gunawan, Christa; Dale, Bruce E.; Balan, Venkatesh] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Bice, Benjamin D.; Narasimhan, Ragothaman Avanasi; Willis, Laura B.; Sato, Trey K.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Simonett, Shane P.; Willis, Laura B.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Willis, Laura B.] USDA, Forest Prod Lab, Madison, WI 53726 USA. RP Jin, MJ (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, BCRL, 3900 Collins Rd, Lansing, MI 48910 USA. EM jinmingj@egr.msu.edu; balan@egr.msu.edu; tksato@glbrc.wisc.edu RI Jin, Mingjie/I-4616-2012; OI Jin, Mingjie/0000-0002-9493-305X FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). We would like to thank Novozymes and Genencor for supplying us commercial enzymes for this work, Drs. Cletus Kurtzman, Justin Fay, Audrey Gasch and Jeff Lewis for providing S. cerevisiae strains, Dr. Nancy Ho (Purdue University) for providing the 424A (LNH-ST) strain, Charles Donald, Jr for preparing AFEX-pretreated corn stover, Rebecca Breuer for technical support, and Dr. Thomas Jeffries for helpful suggestions. We would also like to thank the members of the Biomass Conversion Research Laboratory (BCRL) at Michigan State University for their valuable suggestions. NR 39 TC 25 Z9 26 U1 0 U2 32 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD JUL 27 PY 2013 VL 6 AR 108 DI 10.1186/1754-6834-6-108 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 193HH UT WOS:000322549200001 PM 23890073 ER PT J AU Bilodeau, RC Gibson, ND Walter, CW Esteves-Macaluso, DA Schippers, S Muller, A Phaneuf, RA Aguilar, A Hoener, M Rost, JM Berrah, N AF Bilodeau, R. C. Gibson, N. D. Walter, C. W. Esteves-Macaluso, D. A. Schippers, S. Mueller, A. Phaneuf, R. A. Aguilar, A. Hoener, M. Rost, J. M. Berrah, N. TI Single-Photon Multiple Detachment in Fullerene Negative Ions: Absolute Ionization Cross Sections and the Role of the Extra Electron SO PHYSICAL REVIEW LETTERS LA English DT Article ID C-60; C-70; PHOTODETACHMENT; DYNAMICS; ANIONS; IMPACT AB We have obtained experimental photo-double-and photo-triple-detachment cross sections for the fullerene negative ion using Advanced Light Source photons of 17-90 eV. The cross sections are 2 and 2.5 times larger than those for C-60 and appear to be compressed and shifted in photon energy as compared to C-60. Our analysis reveals that the additional electron in C-60(-) primarily produces screening which is responsible for the modification of the spectrum. Both screening effects, the shift and the compression, can be quantitatively accounted for by a linear transformation of the energy axis. Applying the transformation allows us to map the neutral and negative ion cross sections onto each other, pointing out the close relationship of correlated few-electron dynamics in neutral and negatively charged extended systems. In contrast, dynamics of neutral and negatively charged atoms or small molecules are typically not closely related. C1 [Bilodeau, R. C.; Hoener, M.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Bilodeau, R. C.; Esteves-Macaluso, D. A.; Aguilar, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gibson, N. D.; Walter, C. W.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Esteves-Macaluso, D. A.; Phaneuf, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Schippers, S.; Mueller, A.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. [Rost, J. M.] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. RP Bilodeau, RC (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM rcbilodeau@lbl.gov RI Muller, Alfred/A-3548-2009; Schippers, Stefan/A-7786-2008; OI Muller, Alfred/0000-0002-0030-6929; Schippers, Stefan/0000-0002-6166-7138; Rost, Jan M./0000-0002-8306-1743 FU NSF [0757976, 1068308]; DOE, Division of Chemical Sciences, Geosciences and Energy Biosciences [DE-FGO2-92ER14299.A002]; DOE, Scientific User Facilities Division FX This work was supported by the DOE, Division of Chemical Sciences, Geosciences and Energy Biosciences, Grant No. DE-FGO2-92ER14299.A002. The ALS is funded by DOE, Scientific User Facilities Division. We thank Z. D. Pesic for initial attempts to produce the anions and R. Wehlitz for helpful comments on our manuscript. N. D. G. and C. W. W. acknowledge support from NSF Grants No. 0757976 and No. 1068308. S. S. and A. M. acknowledge support from Deutsche Forschungsgemeinschaft. NR 33 TC 11 Z9 12 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 26 PY 2013 VL 111 IS 4 AR 043003 DI 10.1103/PhysRevLett.111.043003 PG 5 WC Physics, Multidisciplinary SC Physics GA 259OT UT WOS:000327536900005 PM 23931363 ER PT J AU Gainer, JS Lykken, J Matchev, KT Mrenna, S Park, M AF Gainer, James S. Lykken, Joseph Matchev, Konstantin T. Mrenna, Stephen Park, Myeonghun TI Spherical Parametrization of the Higgs Boson Candidate SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIKELIHOOD METHOD; MISSING MOMENTUM; TOP-QUARK; DECAY; RECONSTRUCTION; SPECTRA; EVENTS; MASS; SPIN; LHC AB The latest results from the ATLAS and CMS experiments at the CERN Large Hadron Collider unequivocally confirm the existence of a resonance X with mass near 125 GeV which could be the Higgs boson of the standard model. Measuring the properties (quantum numbers and couplings) of this resonance is of paramount importance. Initial analyses by the LHC Collaborations disfavor specific alternative benchmark hypotheses, e. g., pure pseudoscalars or gravitons. However, this is just the first step in a long-term program of detailed measurements. We consider the most general set of operators in the decay channels X -> ZZ, WW, Z gamma, gamma gamma, and derive the constraint implied by the measured rate. This allows us to provide a useful parametrization of the orthogonal independent Higgs coupling degrees of freedom as coordinates on a suitably defined sphere. C1 [Gainer, James S.; Matchev, Konstantin T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Lykken, Joseph] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Mrenna, Stephen] Fermilab Natl Accelerator Lab, Comp Div, SSE Grp, Batavia, IL 60510 USA. [Park, Myeonghun] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland. RP Gainer, JS (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. FU CERN-Korea fellowship through the National Research Foundation of Korea; U.S. Department of Energy [DE-FG02-97ER41029, DE-AC02-07CH11359] FX We thank A. Gritsan, A. Korytov, I. Low, and G. Mitselmakher for useful discussions. J. G., J. L., K. M., and S. M. thank their CMS colleagues. J. L. acknowledges the hospitality of the SLAC Theoretical Physics Group. M. P. is supported by the CERN-Korea fellowship through the National Research Foundation of Korea. Work supported in part by U.S. Department of Energy Grant No. DE-FG02-97ER41029. Fermilab is operated by the Fermi Research Alliance under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 52 TC 28 Z9 28 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 26 PY 2013 VL 111 IS 4 AR 041801 DI 10.1103/PhysRevLett.111.041801 PG 5 WC Physics, Multidisciplinary SC Physics GA 259OT UT WOS:000327536900004 PM 23931355 ER PT J AU Hartemann, FV Wu, SSQ AF Hartemann, Fred V. Wu, Sheldon S. Q. TI Nonlinear Brightness Optimization in Compton Scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID LASER; ELECTRON AB In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to intrinsic spectral broadening and brightness limitations. These effects are discussed, along with an optimization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force. C1 [Hartemann, Fred V.; Wu, Sheldon S. Q.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hartemann, FV (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, 12ERD057] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and under LLNL No. 12ERD057. F. V. Hartemann would also like to acknowledge useful conversations with D. T. Santa Maria. NR 19 TC 7 Z9 7 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 26 PY 2013 VL 111 IS 4 AR 044801 DI 10.1103/PhysRevLett.111.044801 PG 5 WC Physics, Multidisciplinary SC Physics GA 259OT UT WOS:000327536900009 PM 23931374 ER PT J AU Loverro, KL Mueske, NM Hamel, KA AF Loverro, Kari L. Mueske, Nicole M. Hamel, Kate A. TI Location of minimum foot clearance on the shoe and with respect to the obstacle changes with locomotor task SO JOURNAL OF BIOMECHANICS LA English DT Article DE Minimum foot clearance; Obstacles; Steps; Stairs; Tripping ID DWELLING OLDER-ADULTS; TOE CLEARANCE; AVOIDANCE STRATEGIES; BLURRING VISION; HEALTHY-YOUNG; ELDERLY MEN; FALLS; AGE; GAIT; WALKING AB Minimum foot clearance (MFC) as it relates to trips and falls has been extensively studied across many locomotor tasks, but examination of this body of research yields several studies with conflicting results and a wide range of MFCs within tasks. While there are several factors that may affect the MFC variability across studies (populations studied, environmental conditions, etc.), one aspect of the discrepancies in the literature may be the result of different placements of shoe markers and/or MFC calculation methods. A marker on the toe is often used, but may only quantify one aspect of how the foot actually clears the trip hazard. The purpose of this study was to determine the location on the shoe where MFC occurs during locomotor tasks with the highest risk of tripping. Ten young adults performed three trials of locomotor tasks which included overground walking, obstacle crossing, level change and stair negotiation. Clearance was calculated for 72 points on each shoe, including those most commonly used in past research. The location of the overall MFC on the shoe sole differed both between limbs and across locomotor tasks. Additionally, the region of the obstacle, step or stair over which the MFC occurred varied both within and across task. Use of this 3D MFC methodology provided further insight into which portions of the shoe may come closest to the tripping hazard. Future research should examine whether the location and value of the MFC changes between different populations, or with environmental modifications. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Loverro, Kari L.] US Army Natick Soldier Res Dev & Res Ctr, Natick, MA USA. [Loverro, Kari L.] ORISE, Belcamp, MD USA. [Loverro, Kari L.; Mueske, Nicole M.; Hamel, Kate A.] San Francisco State Univ, Dept Kinesiol, San Francisco, CA 94132 USA. RP Hamel, KA (reprint author), San Francisco State Univ, Dept Kinesiol, San Francisco, CA 94132 USA. EM hamelk@sfsu.edu FU NIH [1R21AG025865] FX Funded by NIH Grant #1R21AG025865. NR 34 TC 11 Z9 11 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 J9 J BIOMECH JI J. Biomech. PD JUL 26 PY 2013 VL 46 IS 11 BP 1842 EP 1850 DI 10.1016/j.jbiomech.2013.05.002 PG 9 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 200SS UT WOS:000323091700009 PM 23747230 ER PT J AU Weisberg, AH Aceves, SM Espinosa-Loza, F Ledesma-Orozco, E Myers, B Spencer, B AF Weisberg, Andrew H. Aceves, Salvador M. Espinosa-Loza, Francisco Ledesma-Orozco, Elias Myers, Blake Spencer, Brian TI Cold hydrogen delivery in glass fiber composite pressure vessels: Analysis, manufacture and testing SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen delivery; Cold hydrogen; Glass fiber; ROMP ID STORAGE; COST AB This paper describes Lawrence Livermore National Laboratory (LLNL) and Spencer Composites Corporation (SCC) efforts in demonstrating an innovative approach to hydrogen delivery. This approach minimizes hydrogen delivery cost through utilization of glass fiber pressure vessels at 200 K and 70 MPa to produce a synergistic combination of container characteristics and properties of hydrogen gas: (1) hydrogen cooled to 200 K is similar to 35% more compact for a small increase in theoretical storage energy (exergy); and (2) these cold temperatures (200 K) strengthen glass fibers by as much as 50%, expanding trailer capacity without the use of much more costly carbon fiber composite vessels. Analyses based on US Department of Energy H2A cost and efficiency parameters and economic methodology indicate the potential for hydrogen delivery costs below $1/kg H-2 (not including storage at the terminal, and cascade, compression, and chilling at the forecourt, but including compression and refrigeration at the terminal). Further savings are possible by integrating the delivery trailer into the station cascade to avoid chilling typically required for 700 bar hydrogen dispensing. The report also describes experimental work leading to demonstration of the potential for low cost delivery, starting with measurement of cold glass fiber strengthening, and continuing with subscale and full-scale pressure vessel development and testing, and concluding with successful development of an ASME X certifiable full-scale (60 cm diameter) glass fiber pressure vessel made of innovative materials with potential to meet the cost targets when integrated into an insulated tube trailer. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Weisberg, Andrew H.; Aceves, Salvador M.; Espinosa-Loza, Francisco; Ledesma-Orozco, Elias; Myers, Blake] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Aceves, SM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM acevesss@gmail.com FU The US Department of Energy, Office of Fuel Cell Technologies, Hydrogen Delivery Program, Erika Sutherland; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This project was funded by The US Department of Energy, Office of Fuel Cell Technologies, Hydrogen Delivery Program, Erika Sutherland, Technology Development Manager. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 22 TC 2 Z9 2 U1 0 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL 26 PY 2013 VL 38 IS 22 BP 9271 EP 9284 DI 10.1016/j.ijhydene.2013.05.068 PG 14 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 193MB UT WOS:000322562800025 ER PT J AU Ma, W Kong, Q Arondel, V Kilaru, A Bates, PD Thrower, NA Benning, C Ohlrogge, JB AF Ma, Wei Kong, Que Arondel, Vincent Kilaru, Aruna Bates, Philip D. Thrower, Nicholas A. Benning, Christoph Ohlrogge, John B. TI WRINKLED1, A Ubiquitous Regulator in Oil Accumulating Tissues from Arabidopsis Embryos to Oil Palm Mesocarp SO PLOS ONE LA English DT Article ID TRANSCRIPTION FACTORS; AP2 DOMAIN; BIOSYNTHESIS; METABOLISM; THALIANA; GENES; MAIZE; EXPRESSION; MATURATION; PROTEINS AB WRINKLED1 (AtWRI1) is a key transcription factor in the regulation of plant oil synthesis in seed and non-seed tissues. The structural features of WRI1 important for its function are not well understood. Comparison of WRI1 orthologs across many diverse plant species revealed a conserved 9 bp exon encoding the amino acids "VYL". Site-directed mutagenesis of amino acids within the 'VYL' exon of AtWRI1 failed to restore the full oil content of wri1-1 seeds, providing direct evidence for an essential role of this small exon in AtWRI1 function. Arabidopsis WRI1 is predicted to have three alternative splice forms. To understand expression of these splice forms we performed RNASeq of Arabidopsis developing seeds and queried other EST and RNASeq databases from several tissues and plant species. In all cases, only one splice form was detected and VYL was observed in transcripts of all WRI1 orthologs investigated. We also characterized a phylogenetically distant WRI1 ortholog (EgWRI1) as an example of a non-seed isoform that is highly expressed in the mesocarp tissue of oil palm. The C-terminal region of EgWRI1 is over 90 amino acids shorter than AtWRI1 and has surprisingly low sequence conservation. Nevertheless, the EgWRI1 protein can restore multiple phenotypes of the Arabidopsis wri1-1 loss-of-function mutant, including reduced seed oil, the "wrinkled" seed coat, reduced seed germination, and impaired seedling establishment. Taken together, this study provides an example of combining phylogenetic analysis with mutagenesis, deep-sequencing technology and computational analysis to examine key elements of the structure and function of the WRI1 plant transcription factor. C1 [Ma, Wei; Kilaru, Aruna; Ohlrogge, John B.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Ma, Wei; Kong, Que; Kilaru, Aruna; Thrower, Nicholas A.; Benning, Christoph; Ohlrogge, John B.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Kong, Que; Benning, Christoph] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Arondel, Vincent] Univ Bordeaux Segalen, Lab Biogenese Membranaire, Bordeaux, France. [Bates, Philip D.] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA. RP Ma, W (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM mawei@msu.edu RI Bates, Philip/I-7550-2013 OI Bates, Philip/0000-0002-1291-3363 FU Department of Energy-Great Lakes Bioenergy Research Center Cooperative Agreement [DE-FC02-07ER6449] FX This work was supported by Department of Energy-Great Lakes Bioenergy Research Center Cooperative Agreement DE-FC02-07ER6449 (J.B.O. and C.B.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 33 TC 26 Z9 28 U1 2 U2 55 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 26 PY 2013 VL 8 IS 7 AR UNSP e68887 DI 10.1371/journal.pone.0068887 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 197GU UT WOS:000322838900010 PM 23922666 ER PT J AU Couet, S Peelaers, H Trekels, M Houben, K Hu, MY Zhao, JY Bi, W Alp, EE Menendez, E Partoens, B Peeters, FM Van Bael, MJ Vantomme, A Temst, K AF Couet, S. Peelaers, H. Trekels, M. Houben, K. Hu, M. Y. Zhao, J. Y. Bi, W. Alp, E. E. Menendez, E. Partoens, B. Peeters, F. M. Van Bael, M. J. Vantomme, A. Temst, K. TI Interplay between lattice dynamics and superconductivity in Nb3Sn thin films SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE; SCATTERING; PHONONS AB We investigate the link between superconductivity and atomic vibrations in Nb3Sn films with a thickness ranging from 10 to 50 nm. The challenge of measuring the phonon density of states (PDOS) of these films has been tackled by employing the technique of nuclear inelastic scattering by Sn-119 isotopes to reveal the Sn-partial phonon density of states. With the support of ab initio calculations, we evaluate the effect of reduced film thickness on the PDOS. This approach allows us to estimate the changes in superconducting critical temperature T-c induced by phonon confinement, which turned out to be limited to a few tenths of K. The presented method is successful for the Nb3Sn system and paves the way for more systematic studies of the role of phonon confinement in Sn-containing superconductors. C1 [Couet, S.; Trekels, M.; Menendez, E.; Vantomme, A.; Temst, K.] Katholieke Univ Leuven, Inst Kern & Stralingsfys, B-3001 Louvain, Belgium. [Peelaers, H.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Peelaers, H.; Partoens, B.; Peeters, F. M.] Univ Antwerp, Dept Fys, B-2020 Antwerp, Belgium. [Houben, K.; Van Bael, M. J.] Katholieke Univ Leuven, Vaste Stof Fys & Magnetisme Lab, B-3001 Louvain, Belgium. [Hu, M. Y.; Zhao, J. Y.; Bi, W.; Alp, E. E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bi, W.] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. RP Couet, S (reprint author), Katholieke Univ Leuven, Inst Kern & Stralingsfys, Celestijnenlaan 200D, B-3001 Louvain, Belgium. EM sebastien.couet@fys.kuleuven.be RI Van Bael, Margriet/D-5382-2015; CMT, UAntwerpen Group/A-5523-2016; Menendez, Enric /E-2469-2016; Van Bael, Margriet/E-1528-2017 OI Menendez, Enric /0000-0003-3809-2863; Van Bael, Margriet/0000-0002-7687-4498 FU Flemish Science Foundation (FWO-Vl); FWO-Vl; Methusalem program of the Flemish government; Concerted Research Action program [GOA/09/006, GOA/14/007]; U.S. DOE [DE-AC02-06CH11357] FX The authors would like to cordially thank Dr. Rudolf Ruffer from the nuclear resonant scattering group of the ESRF for the support and gratefully acknowledge the ESRF for providing beamtime for the preliminary phonon study. S. C., K. H., and E. M. thank the Flemish Science Foundation (FWO-Vl) for their personal fellowship. This work was supported by FWO-Vl, the Methusalem program of the Flemish government, and the Concerted Research Action program (GOA/09/006) and (GOA/14/007). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 33 TC 1 Z9 1 U1 2 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 26 PY 2013 VL 88 IS 4 AR 045437 DI 10.1103/PhysRevB.88.045437 PG 7 WC Physics, Condensed Matter SC Physics GA 193AU UT WOS:000322529900004 ER PT J AU Podlesnyak, A Ehlers, G Cao, H Matsuda, M Frontzek, M Zaharko, O Kazantsev, VA Gubkin, AF Baranov, NV AF Podlesnyak, A. Ehlers, G. Cao, H. Matsuda, M. Frontzek, M. Zaharko, O. Kazantsev, V. A. Gubkin, A. F. Baranov, N. V. TI Temperature-driven phase transformation in Y3Co: Neutron scattering and first-principles studies SO PHYSICAL REVIEW B LA English DT Article ID CRYSTAL STRUCTURE; WAVE; SUPERCONDUCTIVITY; METALS; R3CO AB Contrary to previous studies that identified the ground state crystal structure of the entire R3Co series (R is a rare earth) as orthorhombic Pnma, we show that Y3Co undergoes a structural phase transition at T-t similar or equal to 160 K. Single crystal neutron diffraction data reveal that at Tt the trigonal prisms formed by a cobalt atom and its six nearest-neighbor yttrium atoms experience distortions accompanied by notable changes of the Y-Co distances. The formation of the low-temperature phase is accompanied by a pronounced lattice distortion and anomalies seen in heat capacity and resistivity measurements. Density functional theory calculations reveal a dynamical instability of the Pnma structure of Y3Co. In particular, a transversal acoustic phonon mode along the (00 xi) direction has imaginary frequencies at xi< 1/4. Employing inelastic neutron scattering measurements we find a strong damping of the (00 xi) phonon mode below a critical temperature T-t. The observed structural transformation causes the reduction of dimensionality of electronic bands and decreases the electronic density of states at the Fermi level that identifies Y3Co as a system with the charge density wave instability. C1 [Podlesnyak, A.; Ehlers, G.; Cao, H.; Matsuda, M.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Frontzek, M.; Zaharko, O.] Paul Scherrer Inst, Lab Neutron Scattering, CH-5232 Villigen, Switzerland. [Kazantsev, V. A.; Gubkin, A. F.; Baranov, N. V.] Inst Met Phys RAS, Ekaterinburg 620041, Russia. [Gubkin, A. F.; Baranov, N. V.] Ural Fed Univ, Inst Nat Sci, Ekaterinburg 620083, Russia. RP Podlesnyak, A (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM podlesnyakaa@ornl.gov RI Gubkin, Andrey/J-3240-2013; kazantsev, vadim/J-5186-2013; Instrument, CNCS/B-4599-2012; Baranov, Nikolai/J-5042-2013; Ehlers, Georg/B-5412-2008; Podlesnyak, Andrey/A-5593-2013; Cao, Huibo/A-6835-2016; Matsuda, Masaaki/A-6902-2016; Frontzek, Matthias/C-5146-2012 OI Gubkin, Andrey/0000-0002-4280-7561; kazantsev, vadim/0000-0003-2407-6280; Baranov, Nikolai/0000-0002-9720-5314; Ehlers, Georg/0000-0003-3513-508X; Podlesnyak, Andrey/0000-0001-9366-6319; Cao, Huibo/0000-0002-5970-4980; Matsuda, Masaaki/0000-0003-2209-9526; Frontzek, Matthias/0000-0001-8704-8928 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (DOE); Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Ural Branch of RAS [12-T-2-1012]; Ministry of Education and Science of the Russian Federation [14.518.11.7020] FX The research at Oak Ridge National Laboratory's High Flux Isotope Reactor and Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (DOE). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work was partly supported by the program of the Ural Branch of RAS (Project No. 12-T-2-1012) and by the Ministry of Education and Science of the Russian Federation (Contract No. 14.518.11.7020). NR 31 TC 2 Z9 2 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 26 PY 2013 VL 88 IS 2 AR 024117 DI 10.1103/PhysRevB.88.024117 PG 7 WC Physics, Condensed Matter SC Physics GA 193AH UT WOS:000322528600001 ER PT J AU Roy, D Li, Y Greilich, A Pershin, YV Saxena, A Sinitsyn, NA AF Roy, Dibyendu Li, Yan Greilich, Alex Pershin, Yuriy V. Saxena, Avadh Sinitsyn, Nikolai A. TI Spin noise spectroscopy of quantum dot molecules SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-ELECTRON SPIN; MAGNETIC-RESONANCE; FARADAY-ROTATION; DYNAMICS AB We discuss advantages and limitations of the spin noise spectroscopy for characterization of interacting quantum dot systems on specific examples of individual singly and doubly charged quantum dot molecules (QDMs). It is shown that all the relevant parameters of the QDMs, including tunneling amplitudes with spin-conserving and spin-nonconserving interactions, decoherence rates, Coulomb repulsions, anisotropic g factors and the distance between the dots, can be determined by measuring properties of the spin noise power spectrum. C1 [Roy, Dibyendu; Saxena, Avadh; Sinitsyn, Nikolai A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roy, Dibyendu] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Li, Yan] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Greilich, Alex] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Pershin, Yuriy V.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pershin, Yuriy V.] Univ S Carolina, USC Nanoctr, Columbia, SC 29208 USA. RP Roy, D (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Greilich, Alex/A-8927-2009; Roy, Dibyendu/D-3286-2013; Li, Yan/B-1001-2012; Dibyendu, Roy /E-6903-2017 OI Roy, Dibyendu/0000-0002-8966-8677; FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; [LDRD/20110189ER] FX We thank D. L. Smith and S. A. Crooker for useful discussions. Work at LANL was carried out under the auspices of Project No. LDRD/20110189ER and the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 36 TC 8 Z9 8 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 26 PY 2013 VL 88 IS 4 AR 045320 DI 10.1103/PhysRevB.88.045320 PG 7 WC Physics, Condensed Matter SC Physics GA 193AU UT WOS:000322529900003 ER PT J AU Cardall, CY Endeve, E Mezzacappa, A AF Cardall, Christian Y. Endeve, Eirik Mezzacappa, Anthony TI Conservative 3+1 general relativistic Boltzmann equation SO PHYSICAL REVIEW D LA English DT Article ID CORE-COLLAPSE SUPERNOVAE; SPHERICALLY SYMMETRIC FLOWS; COMOVING-FRAME EQUATION; COLLECTIVE NEUTRINO OSCILLATIONS; RADIATION HYDRODYNAMICS; FLUID FRAME; CODE TESTS; TRANSPORT; SIMULATIONS; MECHANISM AB We present a new derivation of the conservative form of the general relativistic Boltzmann equation and specialize it to the 3 + 1 metric. The resulting transport equation is intended for use in simulations involving numerical relativity, particularly in the absence of spherical symmetry. The independent variables are lab frame coordinate basis spacetime position components and comoving frame curvilinear momentum space coordinates. With an eye toward astrophysical applications-such as core-collapse supernovae and compact object mergers-in which the fluid includes nuclei and/or nuclear matter at finite temperature and in which the transported particles are neutrinos, we examine the relationship between lepton number and four-momentum exchange between neutrinos and the fluid. C1 [Cardall, Christian Y.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Cardall, Christian Y.; Mezzacappa, Anthony] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Endeve, Eirik] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Mezzacappa, Anthony] Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA. RP Cardall, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Mezzacappa, Anthony/B-3163-2017; OI Mezzacappa, Anthony/0000-0001-9816-9741; Endeve, Eirik/0000-0003-1251-9507 FU Office of Advanced Scientific Computing Research; Office of Nuclear Physics, U.S. Department of Energy FX This research was supported by the Office of Advanced Scientific Computing Research and the Office of Nuclear Physics, U.S. Department of Energy. NR 52 TC 15 Z9 15 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 26 PY 2013 VL 88 IS 2 AR 023011 DI 10.1103/PhysRevD.88.023011 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 193BT UT WOS:000322532600001 ER PT J AU Jones, MWM van Riessen, GA Abbey, B Putkunz, CT Junker, MD Balaur, E Vine, DJ McNulty, I Chen, B Arhatari, BD Frankland, S Nugent, KA Tilley, L Peele, AG AF Jones, Michael W. M. van Riessen, Grant A. Abbey, Brian Putkunz, Corey T. Junker, Mark D. Balaur, Eugeniu Vine, David J. McNulty, Ian Chen, Bo Arhatari, Benedicta D. Frankland, Sarah Nugent, Keith A. Tilley, Leann Peele, Andrew G. TI Whole-cell phase contrast imaging at the nanoscale using Fresnel Coherent Diffractive Imaging Tomography SO SCIENTIFIC REPORTS LA English DT Article ID X-RAY-DIFFRACTION; PLASMODIUM-FALCIPARUM; MICROSCOPY; RESOLUTION; RECONSTRUCTION; TRANSMISSION AB X-ray tomography can provide structural information of whole cells in close to their native state. Radiation-induced damage, however, imposes a practical limit to image resolution, and as such, a choice between damage, image contrast, and image resolution must be made. New coherent diffractive imaging techniques, such Fresnel Coherent Diffractive Imaging (FCDI), allows quantitative phase information with exceptional dose efficiency, high contrast, and nano-scale resolution. Here we present three-dimensional quantitative images of a whole eukaryotic cell by FCDI at a spatial resolution below 70 nm with sufficient phase contrast to distinguish major cellular components. From our data, we estimate that the minimum dose required for a similar resolution is close to that predicted by the Rose criterion, considerably below accepted estimates of the maximum dose a frozen-hydrated cell can tolerate. Based on the dose efficiency, contrast, and resolution achieved, we expect this technique will find immediate applications in tomographic cellular characterisation. C1 [Jones, Michael W. M.; van Riessen, Grant A.; Abbey, Brian; Junker, Mark D.; Balaur, Eugeniu; Arhatari, Benedicta D.; Peele, Andrew G.] La Trobe Univ, Dept Phys, ARC Ctr Excellence Coherent Xray Sci, Bundoora, Vic 3086, Australia. [Putkunz, Corey T.; Chen, Bo; Nugent, Keith A.] Univ Melbourne, Sch Phys, ARC Ctr Excellence Coherent Xray Sci, Melbourne, Vic 3010, Australia. [Vine, David J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [McNulty, Ian] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Frankland, Sarah; Tilley, Leann] Univ Melbourne, Dept Biochem & Mol Biol, ARC Ctr Excellence Coherent Xray Sci, Inst Bio21, Melbourne, Vic 3010, Australia. [Peele, Andrew G.] Australian Synchrotron, Clayton, Vic 3168, Australia. RP van Riessen, GA (reprint author), La Trobe Univ, Dept Phys, ARC Ctr Excellence Coherent Xray Sci, Bundoora, Vic 3086, Australia. EM G.vanRiessen@latrobe.edu.au RI Jones, Michael/M-6895-2013; Abbey, Brian/D-3274-2011; Administrator, CMSS/E-3491-2015; van Riessen, Grant/H-3840-2011; Nugent, Keith/I-4154-2016; Balaur, Eugeniu/J-5865-2016 OI Jones, Michael/0000-0002-0720-8715; Abbey, Brian/0000-0001-6504-0503; van Riessen, Grant/0000-0002-6240-7143; Nugent, Keith/0000-0002-4281-3478; Balaur, Eugeniu/0000-0003-4029-2055 FU Australian Research Council Centre of Excellence for Coherent X-ray Science; International Synchrotron Access Program (ISAP); Australian Government; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge support from the Australian Research Council Centre of Excellence for Coherent X-ray Science. We acknowledge travel funding provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron and funded by the Australian Government. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 45 TC 22 Z9 22 U1 1 U2 36 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 26 PY 2013 VL 3 AR 2288 DI 10.1038/srep02288 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 190AF UT WOS:000322308700002 PM 23887204 ER PT J AU Stamper-Kurn, DM Ueda, M AF Stamper-Kurn, Dan M. Ueda, Masahito TI Spinor Bose gases: Symmetries, magnetism, and quantum dynamics SO REVIEWS OF MODERN PHYSICS LA English DT Article ID POLARIZED ATOMIC-HYDROGEN; EINSTEIN CONDENSATE MIXTURES; ULTRACOLD DIPOLAR GASES; SUPERFLUID HE-3; OPTICAL LATTICES; LIQUID-CRYSTALS; NUCLEAR-SPIN; FERMI GAS; COSMOLOGICAL EXPERIMENTS; TRANSITION-TEMPERATURE AB Spinor Bose gases form a family of quantum fluids manifesting both magnetic order and superfluidity. This article reviews experimental and theoretical progress in understanding the static and dynamic properties of these fluids. The connection between system properties and the rotational symmetry properties of the atomic states and their interactions are investigated. Following a review of the experimental techniques used for characterizing spinor gases, their mean-field and many-body ground states, both in isolation and under the application of symmetry-breaking external fields, are discussed. These states serve as the starting point for understanding low-energy dynamics, spin textures, and topological defects, effects of magnetic-dipole interactions, and various nonequilibrium collective spin-mixing phenomena. The paper aims to form connections and establish coherence among the vast range of works on spinor Bose gases, so as to point to open questions and future research opportunities. C1 [Stamper-Kurn, Dan M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Stamper-Kurn, Dan M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ueda, Masahito] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. RP Stamper-Kurn, DM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM dmsk@berkeley.edu; ueda@phys.s.u-tokyo.ac.jp RI Ueda, Masahito/G-3046-2012; Stamper-Kurn, Dan/B-5442-2015 OI Stamper-Kurn, Dan/0000-0002-4845-5835 FU NSF; ARO; DARPA OLE program; Division of Materials Sciences and Engineering at the Office of Basic Energy Sciences (DOE); Sloan Foundation; Packard Foundation; Hellman Faculty Fund at the University of California; Miller Institute at the University of California; MEXT of Japan [22103005, 22340114] FX We are indebted to our close colleagues within our research groups with whom we have explored the physics of spinor Bose gases. At Berkeley, we acknowledge the experimental contributions of A. Chikkatur, J. Guzman, J. Higbie, S. Inouye, G.-B. Jo, S. Leslie, K. Murch, L. Sadler, V. Savalli, F. Serwane, C. Thomas, M. Vengalattore, A. Wenz, and also the theoretical inputs of J. Sau and M. Cohen. M. U. acknowledges his scientific collaborators including Y. Kawaguchi, M. Koashi, M. Kobayashi, M. Nitta, H. Saito, and S. Uchino. We are also grateful to A. Lamacraft, W. V. Liu, J. Moore, and E. Mueller for valuable discussions during the preparation of this work, and to C. Raman and Y. Liu for assistance with several figures. D. S.-K. thanks the NSF, the ARO with funds from the DARPA OLE program, the Division of Materials Sciences and Engineering at the Office of Basic Energy Sciences (DOE), the Sloan and Packard Foundations, and the Hellman Faculty Fund and the Miller Institute at the University of California for their support. M. U. acknowledges support by Grants-in-Aid for Scientific Research (Grants No. 22103005 and No. 22340114), a Global COE Program "the Physical Sciences Frontier," and the Photon Frontier Network Program from MEXT of Japan. NR 375 TC 210 Z9 210 U1 5 U2 72 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD JUL 26 PY 2013 VL 85 IS 3 BP 1191 EP 1244 DI 10.1103/RevModPhys.85.1191 PG 54 WC Physics, Multidisciplinary SC Physics GA 193CP UT WOS:000322535100001 ER PT J AU Cohen, G Halpern, E Nanayakkara, SU Luther, JM Held, C Bennewitz, R Boag, A Rosenwaks, Y AF Cohen, G. Halpern, E. Nanayakkara, S. U. Luther, J. M. Held, C. Bennewitz, R. Boag, A. Rosenwaks, Y. TI Reconstruction of surface potential from Kelvin probe force microscopy images SO NANOTECHNOLOGY LA English DT Article ID ELECTROSTATIC FORCES; RESOLUTION; SEMICONDUCTORS; CONTRAST AB We present an algorithm for reconstructing a sample surface potential from its Kelvin probe force microscopy (KPFM) image. The measured KPFM image is a weighted average of the surface potential underneath the tip apex due to the long-range electrostatic forces. We model the KPFM measurement by a linear shift-invariant system where the impulse response is the point spread function (PSF). By calculating the PSF of the KPFM probe (tip + cantilever) and using the measured noise statistics, we deconvolve the measured KPFM image to obtain the surface potential of the sample. The reconstruction algorithm is applied to measurements of CdS-PbS nanorods measured in amplitude modulation KPFM (AM-KPFM) and to graphene layers measured in frequency modulation KPFM (FM-KPFM). We show that in the AM-KPFM measurements the averaging effect is substantial, whereas in the FM-KPFM measurements the averaging effect is negligible. C1 [Cohen, G.; Halpern, E.; Boag, A.; Rosenwaks, Y.] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel. [Nanayakkara, S. U.; Luther, J. M.] Natl Renewable Energy Lab, Golden, CO USA. [Held, C.; Bennewitz, R.] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany. RP Cohen, G (reprint author), Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel. EM yossir@eng.tau.ac.il RI Bennewitz, Roland/P-9657-2016 OI Bennewitz, Roland/0000-0002-5464-8190 FU Israel Science Foundation [498/11] FX The research at Tel-Aviv University was supported by the Israel Science Foundation (grant number 498/11). NR 27 TC 20 Z9 20 U1 10 U2 107 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 26 PY 2013 VL 24 IS 29 AR 295702 DI 10.1088/0957-4484/24/29/295702 PG 13 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 176FL UT WOS:000321289000012 PM 23807266 ER PT J AU Mitchell, HD Eisfeld, AJ Sims, AC McDermott, JE Matzke, MM Webb-Robertson, BJM Tilton, SC Tchitchek, N Josset, L Li, CJ Ellis, AL Chang, JH Heegel, RA Luna, ML Schepmoes, AA Shukla, AK Metz, TO Neumann, G Benecke, AG Smith, RD Baric, RS Kawaoka, Y Katze, MG Waters, KM AF Mitchell, Hugh D. Eisfeld, Amie J. Sims, Amy C. McDermott, Jason E. Matzke, Melissa M. Webb-Robertson, Bobbi-Jo M. Tilton, Susan C. Tchitchek, Nicolas Josset, Laurence Li, Chengjun Ellis, Amy L. Chang, Jean H. Heegel, Robert A. Luna, Maria L. Schepmoes, Athena A. Shukla, Anil K. Metz, Thomas O. Neumann, Gabriele Benecke, Arndt G. Smith, Richard D. Baric, Ralph S. Kawaoka, Yoshihiro Katze, Michael G. Waters, Katrina M. TI A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses SO PLOS ONE LA English DT Article ID SYNDROME CORONAVIRUS INFECTION; PANCREATIC-ISLET PROTEOME; EXPRESSION PROFILES; IMMUNE-RESPONSES; SOFTWARE PACKAGE; GENE-EXPRESSION; CELL-CULTURES; HOST RESPONSE; MICE; REPLICATION AB Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel "crowd-based'' approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse 'omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models. C1 [Mitchell, Hugh D.; McDermott, Jason E.; Matzke, Melissa M.; Webb-Robertson, Bobbi-Jo M.; Tilton, Susan C.; Waters, Katrina M.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Eisfeld, Amie J.; Li, Chengjun; Ellis, Amy L.; Neumann, Gabriele; Kawaoka, Yoshihiro] Univ Wisconsin, Influenza Res Inst, Dept Pathobiol Sci, Madison, WI 53706 USA. [Sims, Amy C.; Baric, Ralph S.] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC USA. [Tchitchek, Nicolas; Josset, Laurence; Chang, Jean H.; Benecke, Arndt G.; Katze, Michael G.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Benecke, Arndt G.] Univ Paris 06, CNRS, UMR7224, Paris, France. [Heegel, Robert A.; Luna, Maria L.; Schepmoes, Athena A.; Shukla, Anil K.; Metz, Thomas O.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Kawaoka, Yoshihiro] Univ Tokyo, Inst Med Sci, Dept Microbiol & Immunol, Div Virol, Tokyo, Japan. [Kawaoka, Yoshihiro] Univ Tokyo, Int Res Ctr Infect Dis, Inst Med Sci, Div Virol, Tokyo, Japan. [Kawaoka, Yoshihiro] ERATO Infect Induced Host Responses Project, Saitama, Japan. [Waters, Katrina M.] Univ Washington, Washington Natl Primate Res Ctr, Seattle, WA 98195 USA. RP Mitchell, HD (reprint author), Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. EM hugh.mitchell@pnnl.gov RI Smith, Richard/J-3664-2012; Josset, Laurence/A-7960-2015 OI Metz, Tom/0000-0001-6049-3968; Tchitchek, Nicolas/0000-0003-3307-0446; Smith, Richard/0000-0002-2381-2349; Josset, Laurence/0000-0002-7158-1186 FU Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Department of Health and Human Services [HHSN272200800060C]; NIH [P41 GM103493] FX This project has been funded with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Department of Health and Human Services, under Contract No. HHSN272200800060C, and with NIH Grant P41 GM103493. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 69 TC 12 Z9 13 U1 0 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 25 PY 2013 VL 8 IS 7 AR e69374 DI 10.1371/journal.pone.0069374 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 191SQ UT WOS:000322433300037 PM 23935999 ER PT J AU Cooper, JK Grant, CD Zhang, JZ AF Cooper, Jason K. Grant, Christian D. Zhang, Jin Z. TI Experimental and TD-DFT Study of Optical Absorption of Six Explosive Molecules: RDX, HMX, PETN, TNT, TATP, and HMTD SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ION MOBILITY SPECTROMETRY; FLIGHT MASS-SPECTROMETRY; NITROAROMATIC EXPLOSIVES; FLUORESCENCE DETECTION; CHEMICAL SENSORS; TRACE ANALYSIS; PBE0 MODEL; IONIZATION; 2,4,6-TRINITROTOLUENE; POLYMERS AB Time dependent density function theory (TD-DFT) has been utilized to calculate the excitation energies and oscillator strengths of six common explosives: RDX (1,3,5-trinitroperhydro-1,3,5-triazine), beta-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), TATP (triacetone triperoxide), HMTD (hexamethylene triperoxide diamine), TNT (2,4,6-trinitrotoluene), and PETN (pentaerythritol tetranitrate). The results were compared to experimental UV-vis absorption spectra collected in acetonitrile. Four computational methods were tested including: B3LYP, CAM-B3LYP, omega B97XD, and PBE0. PBE0 outperforms the other methods tested. Basis set effects on the electronic energies and oscillator strengths were evaluated with 6-31G(d), 6-31+G(d), 6-31+G(d,p), and 6-311+G(d,p). The minimal basis set required was 6-31+G(d); however, additional calculations were performed with 6-311+G(d,p). For each molecule studied, the natural transition orbitals (NTOs) were reported for the most prominent singlet excitations. The TD-DFT results have been combined with the IPv calculated by CBS-QB3 to construct energy level diagrams for the six compounds. The results suggest optimization approaches for fluorescence based detection methods for these explosives by guiding materials selections for optimal band alignment between fluorescent probe and explosive analyte. Also, the role of the TNT Meisenheimer complex formation and the resulting electronic structure thereof on of the quenching mechanism of II-VI semiconductors is discussed. C1 [Cooper, Jason K.; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Grant, Christian D.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. RP Grant, CD (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave, Livermore, CA 94550 USA. EM grant29@llnl.gov; zhang@ucsc.edu FU U.S. DOE; NSF; UC Santa Cruz Graduate Student Dissertation Fellowship; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07 NA27344] FX We are grateful to the U.S. DOE, NSF, and UC Santa Cruz Graduate Student Dissertation Fellowship for financial support. Special thanks to Ilan Benjamin and UCSC campusrocks for computational time. We thank Dr. Phil Pagoria for supplying the HE for this study. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07 NA27344. NR 48 TC 16 Z9 16 U1 12 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 25 PY 2013 VL 117 IS 29 BP 6043 EP 6051 DI 10.1021/jp312492v PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 192RO UT WOS:000322503200020 PM 23432018 ER PT J AU Schulze, PA Dang, NC Bolme, CA Brown, KE McGrane, SD Moore, DS AF Schulze, Peter A. Dang, Nhan. C. Bolme, Cynthia A. Brown, Kathryn E. McGrane, Shawn D. Moore, David S. TI Shock Hugoniot Equations of State for Binary Ideal (Toluene/Fluorobenzene) and Nonideal (Ethanol/Water) Liquid Mixtures SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID WATER MIXTURES; COMPRESSION; WAVES; SPECTROSCOPY; VELOCITY; IR AB Laser shock Hugoniot data were obtained using ultrafast dynamic ellipsometry (UDE) for both nonideal (ethanol/water solutions with mole percent chi(ethanol) = 0%, 3.4%, 5.4%, 7.5%, 9.7%, 11%, 18%, 33%, 56%, 100%) and ideal liquid mixtures (toluene/fluorobenzene solutions with mole percent chi(toluene) = 0%, 26.0%, 49.1%, 74.9%, 100%). The shock and particle velocities obtained from the UDE data were compared to the universal liquid Hugoniot (ULH) and to literature shock (plate impact) data where available. It was found that the water UDE data fit to a ULH-form equation suggests an intercept of 1.32 km/s, lower than the literature ambient sound speed in water of 1.495 km/s (Mijakovic et al. J. Mol. Liq. 2011, 164, 66-73). Similarly, the ethanol UDE data fit to a ULH-form equation suggests an intercept of 1.45 km/s, which lies above the literature ambient sound speed in ethanol of 1.14 km/s. Both the literature plate impact and UDE Hugoniot data lie below the ULH for water. Likewise, the literature plate impact and UDE Hugoniot data lie above the ULH for ethanol. The UDE Hugoniot data for the mixtures of water and ethanol cross the predictions of the ULH near the same concentration where the sound speed reaches a maximum. In contrast, the LTDE data from the ideal liquids and their mixtures are well behaved and agree with ULH predictions across the concentration range. The deviations of the nonideal ethanol/water data from the ULH suggest that complex hydrogen bonding networks in ethanol/water mixtures alter the compressibility of the mixture. C1 [Schulze, Peter A.; Dang, Nhan. C.; Bolme, Cynthia A.; Brown, Kathryn E.; McGrane, Shawn D.; Moore, David S.] Los Alamos Natl Lab, Shock & Detonat Phys Grp, Los Alamos, NM 87545 USA. RP Moore, DS (reprint author), Los Alamos Natl Lab, Shock & Detonat Phys Grp, Los Alamos, NM 87545 USA. EM moored@lanl.gov OI Mcgrane, Shawn/0000-0002-2978-3980; Bolme, Cynthia/0000-0002-1880-271X FU National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. The authors gratefully acknowledge the support of this study by Rick Martineau through Science Campaign 2: HE Science. The authors also thank Dr. Joshua Coe and Dr. Charles Kiyanda in providing theoretical advice and consultations and Dr. Bryce Tappan and Maxwell Schulze for graciously assisting us in the use of their refractometer. NR 33 TC 4 Z9 4 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 25 PY 2013 VL 117 IS 29 BP 6158 EP 6163 DI 10.1021/jp400310k PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 192RO UT WOS:000322503200031 PM 23656314 ER PT J AU Gao, H Song, Y Chang, YC Shi, XY Yin, QZ Wiens, RC Jackson, WM Ng, CY AF Gao, Hong Song, Yu Chang, Yih-Chung Shi, Xiaoyu Yin, Qing-Zhu Wiens, Roger C. Jackson, William M. Ng, C. Y. TI Branching Ratio Measurements for Vacuum Ultraviolet Photodissociation of (CO)-C-12-O-16 SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CARBON-MONOXIDE; PREDISSOCIATION RATES; RYDBERG STATES; 115 NM; OSCILLATOR-STRENGTHS; PHOTO-IONIZATION; HIGH-RESOLUTION; IMAGING METHOD; CO; SPECTROSCOPY AB The branching ratios for the spin-forbidden photodissociation channels of (CO)-C-12-O-16 in the vacuum ultraviolet (VUV) photon energy region from 102 500 (12.709 eV) to 106 300 cm(-1) (13.180 eV) have been investigated using the VUV laser time-slice velocity-map imaging photoion technique. The excitations to three (1)Sigma(+) and six (1)Pi Rydberg-type states, including the progression of W(3s sigma) (1)Pi(nu' = 0, 1, and 2) vibrational levels of CO, have been identified and investigated. The branching ratios for the product channels C(P-3) + O(P-3), C(D-1) + O(P-3), and C(P-3) + O(D-1) of these predissociative states are found to depend on the electronic, vibrational, and rotational states of CO being excited. Rotation and e/f-symmetry dependences of the branching ratios into the spin-forbidden channels have been confirmed for several of the (1)Pi states, which can be explained using the heterogeneous interaction with the repulsive D'(1)Sigma(+) state. The percentage of the photodissociation into the spin-forbidden channels is found to increase with increasing the rotational quantum number for the K(4p sigma) E-1(+) (nu' = 0) state. This has been rationalized using a (1)Sigma(+) to (1)Pi to (3)Pi coupling scheme, where the final (3)Pi state is a repulsive valence state correlating to the spin-forbidden channel. C1 [Gao, Hong; Song, Yu; Chang, Yih-Chung; Shi, Xiaoyu; Jackson, William M.; Ng, C. Y.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Shi, Xiaoyu; Yin, Qing-Zhu] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Wiens, Roger C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jackson, WM (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM wmjackson@ucdavis.edu; cyng@ucdavis.edu RI Yin, Qing-Zhu/B-8198-2009; Chang, Yih/H-7445-2013; Shi, Xiaoyu/D-4682-2017 OI Yin, Qing-Zhu/0000-0002-4445-5096; Chang, Yih/0000-0002-3763-1864; Shi, Xiaoyu/0000-0002-9634-2659 FU National Science Foundation [CHE-0957872]; U.S. Department of Energy [DEFG02-02ER15306]; LANL-UC IGPP FX H.G., Y.S., and W.M.J. were supported by National Science Foundation under grant # CHE-0957872. H.G., Y.-C.C., and C.Y.N. were supported by U.S. Department of Energy on Contract # DEFG02-02ER15306. Y.-C.C., Q-Z.Y., C.Y.N., and R.C.W. acknowledge the support of a LANL-UC IGPP grant. We are also grateful to Prof. H. Lefebvre-Brion for helpful discussions. NR 38 TC 6 Z9 6 U1 7 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 25 PY 2013 VL 117 IS 29 BP 6185 EP 6195 DI 10.1021/jp400412n PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 192RO UT WOS:000322503200034 PM 23510317 ER PT J AU Larson, BW Whitaker, JB Wang, XB Popov, AA Rumbles, G Kopidakis, N Strauss, SH Boltalina, OV AF Larson, Bryon W. Whitaker, James B. Wang, Xue-Bin Popov, Alexey A. Rumbles, Garry Kopidakis, Nikos Strauss, Steven H. Boltalina, Olga V. TI Electron Affinity of Phenyl-C-61-Butyric Acid Methyl Ester (PCBM) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POLYMER SOLAR-CELLS; OPEN-CIRCUIT VOLTAGE; ENERGY-CONVERSION EFFICIENCY; FIELD-EFFECT TRANSISTORS; N-TYPE MATERIALS; ORGANIC PHOTOVOLTAICS; CONJUGATED POLYMERS; HIGHLY EFFICIENT; SMALL-MOLECULE; DESIGN RULES AB The gas-phase electron affinity (EA) of phenyl-C-61-butyric acid methyl ester (PCBM), one of the best-performing electron acceptors in organic photovoltaic devices, was measured by low-temperature photoelectron spectroscopy for the first time. The obtained value of 2.63(1) eV is only ca. 0.05 eV lower than that of C-60 (2.683(8) eV), compared to a 0.09 V difference in their E-1/2 values measured in this work by cyclic voltammetry. Literature E(LUMO) values for PCBM that are typically estimated from cyclic voltammetry and commonly used as a quantitative measure of acceptor properties are dispersed over a wide range between -4.38 and -3.62 eV; the reasons for such a huge discrepancy are analyzed here, and a protocol for reliable and consistent estimations of relative fullerene-based acceptor strength in solution is proposed. C1 [Larson, Bryon W.; Whitaker, James B.; Rumbles, Garry; Strauss, Steven H.; Boltalina, Olga V.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Wang, Xue-Bin] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Popov, Alexey A.] Liebniz Inst Solid State & Mat Res, Dept Electrochem & Conducting Polymers, D-01069 Dresden, Germany. [Rumbles, Garry; Kopidakis, Nikos] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Boltalina, OV (reprint author), Pacific NW Natl Lab, Div Phys Sci, 902 Battelle Blvd,POB 999,MS K8-88, Richland, WA 99352 USA. EM xuebin.wang@pnnl.gov; A.Popov@ifw-dresden.de; Garry.rumbles@nrel.gov; Nikos.kopidakis@nrel.gov; steven.strauss@colostate.edu; olga.boltalina@colostate.edu RI Popov, Alexey/A-9937-2011; Rumbles, Garry/A-3045-2014; Kopidakis, Nikos/N-4777-2015; OI Popov, Alexey/0000-0002-7596-0378; Rumbles, Garry/0000-0003-0776-1462 FU U.S. Department of Energy (DOE), Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences; DOE's Office of Biological and Environmental Research; DOE; Solar Photochemistry Program of the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC36-08G028308] FX We thank U.S. NSF (CHE-1012468) and the Colorado State University Research Foundation for generous support. The PES work was supported by the U.S. Department of Energy (DOE), Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, and was performed at the EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle. G.R., B.W.L., and N.K. acknowledge funding by the Solar Photochemistry Program of the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-AC36-08G028308 to NREL. NR 55 TC 41 Z9 41 U1 5 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 25 PY 2013 VL 117 IS 29 BP 14958 EP 14964 DI 10.1021/jp403312g PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 192RS UT WOS:000322503600010 ER PT J AU Ni, CB Yang, L Muckerman, JT Graetz, J AF Ni, Chengbao Yang, Liu Muckerman, James T. Graetz, Jason TI Aluminum Hydride Separation Using N-Alkylmorpholine SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-BASIS SETS; ENERGY APPLICATIONS; ORGANIC-MOLECULES; ALANE COMPLEXES; MIXED-DONOR; ADDUCTS; HYDROGEN; DIMETHYLETHYLAMINE; THERMOCHEMISTRY AB We describe experimental and theoretical studies of several amine center dot alane adducts for alane separation. First, N-allcylmorpholine center dot alane adducts (NMM center dot AlH3 and NEM center dot AlH3; NMM = N-methylmorpholine, NEM = N-ethylmorpholine) were synthesized and characterized by NMR, IR, and XRD studies. Because of the bifunctionality (or dual coordination mode) of N-alkylmorpholine, NMM center dot AlH3 and NEM center dot AIH(3) exhibit significantly improved thermal stability compared with the related amine center dot alane adducts. In the solid state, both NMM center dot AlH3 and NEM center dot AlH3 are polymers, which readily dissociate into monomers in donor solvents, as suggested by IR spectroscopy. In addition, the cost- and energy-effective transamination of (amine)(2)center dot AlH3 with NMM (or NEM) has been achieved. Because of the fast reaction kinetics, the transamination reaction could be combined with hydrogenation of Al metal to prepare NMM center dot AlH3 in a single step, further improving the efficiency of the process. Moreover, the thermal decomposition pathways of NMM center dot AlH3 and NEM center dot AlH3 have been elucidated. While NMM center dot AlH3 decomposes to Al metal directly, NEM center dot AlH3 can be selectively decomposed to give AlH3 under certain conditions. The dramatically different thermal properties of N-alkylmorpholine center dot AlH3 could be attributed to the different steric hindrance and basicity of N-alkylmorpholine compounds. Compared with the Et3N/Et3N center dot AlH3 process, our new approach using N-alkylmorpholine significantly improves the kinetics, selectivity, yields, and energy efficiency of AlH3 recovery. Lastly, theoretical calculations of molecular geometries, absolute free energies, Al-H vibrational frequencies, and thermodynamics of amine-alane adducts with different structures are in good agreement with experimental observations and provide further information for the interactions between amines and AlH3. C1 [Ni, Chengbao; Graetz, Jason] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Yang, Liu; Muckerman, James T.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Ni, CB (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. EM cni@bnl.gov RI Yang, Liu/F-7135-2012 FU BNL [DE-AC02-98CH10886]; U.S. Department of Energy; Office of Basic Energy Sciences FX We thank Yusuf Celebi, Weimin Zhou, John Johnson, James E. Wegrzyn, and James Reilly for discussions and the Chemistry Department at Brookhaven National Laboratory (BNL) for access to its NMR spectrometer. C.N. acknowledges financial support from the Goldhaber Distinguished Fellowship at BNL. This work was carried out at BNL under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences. Calculations were carried out in large part using the Computational Cluster at the BNL Center for Functional Nanomaterials under a user proposal by J.T.M. NR 48 TC 2 Z9 2 U1 4 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 25 PY 2013 VL 117 IS 29 BP 14983 EP 14991 DI 10.1021/jp404397v PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 192RS UT WOS:000322503600013 ER PT J AU Lopez-Bezanilla, A AF Lopez-Bezanilla, Alejandro TI Electronic Transport Properties of Chemically Modified Double-Walled Carbon Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SIDEWALL FUNCTIONALIZATION; COVALENT FUNCTIONALIZATION; DIAZONIUM; GRAPHENE; SYSTEMS AB We present a study on the quantum transport properties of chemically functionalized metallic double-walled carbon nanotubes (DWNTs) with lengths reaching the micrometer scale. First-principles calculations evidence that, for coaxial tubes separated by the typical graphitic van der Waals bond distance, the chemical modification of the outer wall with sp(3)-type defects affects the electronic structure of both the outer and the inner tube, which reduces significantly the charge transport capability of the DWNTs. For larger spacing between sidewalls, the conductivity of the outer wall decreases with increasing functional group coverage density, while charge transport in the inner tube is equivalent to that of a pristine nanotube. Additionally, [2 + 1] cycloaddition of CCl2 onto the outer DWNT sidewall barely affects the hyperconjugated pi-network of the double wall, and charge transport remains in the quasi-ballistic regime. These results indicate an efficient route for tailoring electronic transport in DWNTs provided inner shell geometry and grafted functional groups are properly chosen. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lopez-Bezanilla, A (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM alejandrolb@gmail.com RI Lopez-Bezanilla, Alejandro/B-9125-2015 OI Lopez-Bezanilla, Alejandro/0000-0002-4142-2360 FU Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; Center for Nanophase Materials Sciences (CNMS); Division of Scientific User Facilities, U.S. Department of Energy FX This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. I am also grateful for the support from the Center for Nanophase Materials Sciences (CNMS), sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 24 TC 4 Z9 4 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 25 PY 2013 VL 117 IS 29 BP 15266 EP 15271 DI 10.1021/jp402355x PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 192RS UT WOS:000322503600044 ER PT J AU Lopez-Bezanilla, A Huang, JS Kent, PRC Sumpter, BG AF Lopez-Bezanilla, Alejandro Huang, Jingsong Kent, Paul R. C. Sumpter, Bobby G. TI Tuning from Half-Metallic to Semiconducting Behavior in SiC Nanoribbons SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BORON-NITRIDE NANORIBBONS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; SILICON-CARBIDE; GRAPHENE NANORIBBONS; HYDROGEN EVOLUTION; CARBON NANOTUBES; EFFICIENCY AB Half-metallic nanoscale conductors, highly sought after for spintronic applications, are usually realized through metal elements, chemical doping, or external electric fields. By means of local and hybrid density functional theory calculations, we identify pristine zigzag silicon carbide nanoribbons (zSiC-NRs) with bare edges as a metal-free monolayered material that exhibits intrinsic half-metallic behavior without chemical doping or an external electric field. Ab initio molecular dynamics simulations indicate that the half-metallicity is robust at room temperature. We also demonstrate that edge termination with O and S atoms transforms the zSiC-NRs into a full metal or a semiconducting material, respectively, due to the presence of O dimerization only on the Si edge and of S trimerization on both Si and C edges, the latter being driven by an unusual Peierls-like distortion along the functionalizing S atoms. The rich electronic properties displayed by zSiC-NRs may open new perspectives for spintronic applications using layered, metal-free, and light atom material. C1 Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Lopez-Bezanilla, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. EM alejandrolb@gmail.com RI Kent, Paul/A-6756-2008; Lopez-Bezanilla, Alejandro/B-9125-2015; Sumpter, Bobby/C-9459-2013; Huang, Jingsong/A-2789-2008 OI Kent, Paul/0000-0001-5539-4017; Lopez-Bezanilla, Alejandro/0000-0002-4142-2360; Sumpter, Bobby/0000-0001-6341-0355; Huang, Jingsong/0000-0001-8993-2506 FU Office of Science of the U.S. Department of Energy [DE-AC05-00OR22750, DE-AC02-05CH11231]; Center for Nanophase Materials Sciences (CNMS); Division of Scientific User Facilities, U.S. Department of Energy FX This research used the resources of the National Center for Computational Sciences at Oak Ridge National Laboratory and of the National Energy Research Scientific Computing Center, which are supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22750 and Contract No. DE-AC02-05CH11231, respectively. We are also grateful for the support from the Center for Nanophase Materials Sciences (CNMS), sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 28 TC 16 Z9 16 U1 3 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 25 PY 2013 VL 117 IS 29 BP 15447 EP 15455 DI 10.1021/jp406547a PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 192RS UT WOS:000322503600067 ER PT J AU Wu, Y Bamgbade, BA Burgess, WA Tapriyal, D Baled, HO Enick, RM McHugh, MA AF Wu, Yue Bamgbade, Babatunde A. Burgess, Ward A. Tapriyal, Deepak Baled, Hseen O. Enick, Robert M. McHugh, Mark A. TI Effect of Isomeric Structures of Branched Cyclic Hydrocarbons on Densities and Equation of State Predictions at Elevated Temperatures and Pressures SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID PERTURBED-CHAIN SAFT; PENG-ROBINSON EQUATION; BINARY-LIQUID MIXTURES; AROMATIC-HYDROCARBONS; POLYMER SYSTEMS; VISCOSITY; MPA; METHYLCYCLOHEXANE; ALKANES; SPEED AB The cis and trans conformation of a branched cyclic hydrocarbon affects the packing and, hence, the density, exhibited by that compound. Reported here are density data for branched cyclohexane (C6) compounds including methylcyclo-hexane, ethylcyclohexane (ethylcC6), cis-1,2-dimethylcyclohexane (cis-1,2), cis-1,4-dimethylcyclohexane (cis-1,4), and trans-1,4-dimethylc-yclohexane (trans-1,4) determined at temperatures up to 525 K and pressures up to 275 MPa. Of the four branched C6 isomers, cis-1,2 exhibits the largest densities and the smallest densities are exhibited by trans-1,4. The densities are modeled with the Peng-Robinson (PR) equation of state (EoS), the high-temperature, high-pressure, volume-translated (HTHP VT) PREoS, and the perturbed chain, statistical associating fluid theory (PC-SAFT) EoS. Model calculations highlight the capability of these equations to account for the different densities observed for the four isomers investigated in this study. The HTHP VT-PREoS provides modest improvements over the PREoS, but neither cubic EoS is capable of accounting for the effect of isomer structural differences on the observed densities. The PC-SAFT EoS, with pure component parameters from the literature or from a group contribution method, provides improved density predictions relative to those obtained with the PREoS or HTHP VT-PREoS. However, the PC-SAFT EoS, with either set of parameters, also cannot fully account for the effect of the C6 isomer structure on the resultant density. C1 [Wu, Yue; Bamgbade, Babatunde A.; Burgess, Ward A.; Tapriyal, Deepak; McHugh, Mark A.] US DOE, Natl Energy Technol Lab, Off Res & Dev, Pittsburgh, PA 15236 USA. [Baled, Hseen O.; Enick, Robert M.] NETL RUA, Pittsburgh, PA 15236 USA. [Wu, Yue; Bamgbade, Babatunde A.; McHugh, Mark A.] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA. [Baled, Hseen O.; Enick, Robert M.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Tapriyal, Deepak] URS, Pittsburgh, PA 15236 USA. RP Wu, Y (reprint author), Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, 601 West Main St, Richmond, VA 23284 USA. EM wuy@vcu.edu FU National Energy Technology Laboratory's Office of Research and Development support of the Strategic Center for Natural Gas and Oil [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's Office of Research and Development support of the Strategic Center for Natural Gas and Oil under RES contract DE-FE0004000. We appreciate technical discussions and helpful suggestions by Isaac K. Gamwo of National Energy Technology Laboratory, Department of Energy, Pittsburgh, PA. NR 41 TC 4 Z9 4 U1 3 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 25 PY 2013 VL 117 IS 29 BP 8821 EP 8830 DI 10.1021/jp405795f PG 10 WC Chemistry, Physical SC Chemistry GA 192SI UT WOS:000322505200018 PM 23815675 ER PT J AU Pandey, A Quirinale, DG Jayasekara, W Sapkota, A Kim, MG Dhaka, RS Lee, Y Heitmann, TW Stephens, PW Ogloblichev, V Kreyssig, A McQueeney, RJ Goldman, AI Kaminski, A Harmon, BN Furukawa, Y Johnston, DC AF Pandey, Abhishek Quirinale, D. G. Jayasekara, W. Sapkota, A. Kim, M. G. Dhaka, R. S. Lee, Y. Heitmann, T. W. Stephens, P. W. Ogloblichev, V. Kreyssig, A. McQueeney, R. J. Goldman, A. I. Kaminski, Adam Harmon, B. N. Furukawa, Y. Johnston, D. C. TI Crystallographic, electronic, thermal, and magnetic properties of single-crystal SrCo2As2 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; FRUSTRATED MAGNETS; TERNARY ARSENIDES; STATE; LIV2O4; ANTIFERROMAGNET; METALS; FEAS; BA AB In tetragonal SrCo2As2 single crystals, inelastic neutron scattering measurements demonstrated that strong stripe-type antiferromagnetic (AFM) correlations occur at a temperature T = 5 K [Jayasekara et al., arXiv:1306.5174] that are the same as in the isostructural AFe(2)As(2) (A = Ca, Sr, Ba) parent compounds of high-T-c superconductors. This surprising discovery suggests that SrCo2As2 may also be a good parent compound for high-T-c superconductivity. Here structural and thermal expansion, electrical resistivity rho, angle-resolved photoemission spectroscopy (ARPES), heat capacity C-p, magnetic susceptibility chi, As-75 NMR, and neutron diffraction measurements of SrCo2As2 crystals are reported together with LDA band structure calculations that shed further light on this fascinating material. The c-axis thermal expansion coefficient alpha(c) is negative from 7 to 300 K, whereas alpha(a) (the a-axis thermal expansion coefficient) is positive over this T range. The rho(T) shows metallic character. The ARPES measurements and band theory confirm the metallic character and in addition show the presence of a flat band near the Fermi energy E-F. The band calculations exhibit an extremely sharp peak in the density of states D(E approximate to E-F) arising from a flat d(x2-y2) band, where the x and y axes are along the a and b axes of the Co square lattice, respectively. A comparison of the Sommerfeld coefficient of the electronic specific heat with chi(T -> 0) suggests the presence of strong ferromagnetic itinerant spin correlations, which on the basis of the Stoner criterion predicts that SrCo2As2 should be an itinerant ferromagnet, in conflict with the magnetization data. The chi(T) does have a large magnitude, but also exhibits a broad maximum at approximate to 115 K suggestive of dynamic short-range AFM spin correlations, in agreement with the neutron scattering data. The measurements show no evidence for any type of phase transition between 1.3 and 300 K and we suggest that metallic SrCo2As2 has a gapless quantum spin-liquid ground state. C1 [Pandey, Abhishek; Quirinale, D. G.; Jayasekara, W.; Sapkota, A.; Kim, M. G.; Dhaka, R. S.; Lee, Y.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.; Kaminski, Adam; Harmon, B. N.; Furukawa, Y.; Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Pandey, Abhishek; Quirinale, D. G.; Jayasekara, W.; Sapkota, A.; Kim, M. G.; Dhaka, R. S.; Lee, Y.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.; Kaminski, Adam; Harmon, B. N.; Furukawa, Y.; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kim, M. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Heitmann, T. W.] Univ Missouri, Columbia, MO 65211 USA. [Stephens, P. W.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ogloblichev, V.] Russian Acad Sci, Inst Met Phys, Ural Div, Ekaterinburg 620990, Russia. RP Pandey, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM apandey@ameslab.gov; johnston@ameslab.gov RI Dhaka, Rajendra/C-2486-2013; Kim, Min Gyu/B-8637-2012; Ogloblichev, Vasily/K-3399-2013; Pandey, Abhishek /M-5679-2015; McQueeney, Robert/A-2864-2016 OI Kim, Min Gyu/0000-0001-7676-454X; Ogloblichev, Vasily/0000-0003-0520-7521; Pandey, Abhishek /0000-0003-2839-1720; McQueeney, Robert/0000-0003-0718-5602 FU Russian Foundation for Basic Research [12-02-31814]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX We thank V. K. Anand for numerous helpful discussions and A. Bostwick and E. Rotenberg for excellent support at the Advanced Light Source. V.O. thanks the Ames Laboratory-USDOE for providing the opportunity to be a visiting scientist at the Laboratory and also thanks the Russian Foundation for Basic Research (No. 12-02-31814) for support. The research at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-98CH10886. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 97 TC 25 Z9 25 U1 10 U2 88 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 25 PY 2013 VL 88 IS 1 AR 014526 DI 10.1103/PhysRevB.88.014526 PG 22 WC Physics, Condensed Matter SC Physics GA 188VG UT WOS:000322223400003 ER PT J AU Ji, XD Xiong, XN Yuan, F AF Ji, Xiangdong Xiong, Xiaonu Yuan, Feng TI Probing parton orbital angular momentum in longitudinally polarized nucleon SO PHYSICAL REVIEW D LA English DT Article ID VIRTUAL COMPTON-SCATTERING; DEEP-INELASTIC SCATTERING; TRANSVERSE SPIN ASYMMETRY; DISTRIBUTIONS AB While the total orbital angular momentum (OAM) of a definite quark flavor in a longitudinally-polarized nucleon can be obtained through a sum rule involving twist-two generalized parton distribution (GPDs), its distribution as a function of parton momentum in light-front coordinates is more complicated to define and measure because it involves intrinsically twist-three effects. In this paper, we consider two different parton OAM distributions. The first is manifestly gauge invariant, and its moments are local operators and calculable in lattice QCD. We show that it can potentially be measured through twist-three GPDs. The second is the much debated canonical OAM distribution natural in free-field theory and light-cone gauge. We show the latter in light-cone gauge can also be related to twist-three GPDs as well as quantum phase-space Wigner distributions, both being measurable in high-energy experiments. C1 [Ji, Xiangdong] Shanghai Jiao Tong Univ, Dept Phys, INPAC, Shanghai 200240, Peoples R China. [Ji, Xiangdong] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200240, Peoples R China. [Ji, Xiangdong; Xiong, Xiaonu] Peking Univ, Ctr High Energy Phys, Beijing 100080, Peoples R China. [Ji, Xiangdong] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Xiong, Xiaonu; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Ji, XD (reprint author), Shanghai Jiao Tong Univ, Dept Phys, INPAC, Shanghai 200240, Peoples R China. RI Yuan, Feng/N-4175-2013 FU U. S. Department of Energy [DE-FG02-93ER-40762, DE-AC02-05CH11231]; National Science Foundation of China FX We thank Y. Hatta for the discussions and communications on their recent work [22]. This work was partially supported by the U. S. Department of Energy via Grants No. DE-FG02-93ER-40762 and No. DE-AC02-05CH11231 and a grant from National Science Foundation of China (X. J.). NR 41 TC 17 Z9 17 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 25 PY 2013 VL 88 IS 1 AR 014041 DI 10.1103/PhysRevD.88.014041 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 188VW UT WOS:000322225900004 ER PT J AU Aaltonen, T Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Bae, T Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bedeschi, F Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Bromberg, C Brucken, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Butti, P Buzatu, A Calamba, A Camarda, S Campanelli, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Ciocci, MA Clark, A Clarke, C Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R d'Ascenzo, N Datta, M De Barbaro, P Demortier, L Deninno, M d'Errico, M Devoto, F Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dorigo, M Driutti, A Ebina, K Edgar, R Elagin, A Erbacher, R Errede, S Esham, B Eusebi, R Farrington, S Ramos, JPF Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Frisch, H Funakoshi, Y Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Hahn, SR Han, JY Happacher, F Hara, K Hare, M Harr, RF Harrington-Taber, T Hatakeyama, K Hays, C Heinrich, J Herndon, M Hocker, A Hong, Z Hopkins, W Hou, S Hughes, RE Husemann, U Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kambeitz, M Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YJ Kim, YK Kimura, N Kirby, M Knoepfel, K Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Kruse, M Kuhr, T Kurata, M Laasanen, AT Lammel, S Lancaster, M Lannon, K Latino, G Lee, HS Lee, JS Leo, S Leone, S Lewis, JD Limosani, A Lipeles, E Lister, A Liu, H Liu, Q Liu, T Lockwitz, S Loginov, A Luca, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maestro, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, P Martinez, M Matera, K Mattson, ME Mazzacane, A Mazzanti, P McNulty, R Mehta, A Mehtala, P Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, MJ Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Nigmanov, T Nodulman, L Noh, SY Norniella, O Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Pagliarone, C Palencia, E Palni, P Papadimitriou, V Parker, W Pauletta, G Paulini, M Paus, C Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Pranko, A Prokoshin, F Ptohos, F Punzi, G Ranjan, N Fernandez, IR Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodriguez, T Rolli, S Ronzani, M Roser, R Rosner, JL Ruffini, F Ruiz, A Russ, J Rusu, V Sakumoto, WK Sakurai, Y Santi, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, EE Schwarz, T Scodellaro, L Scuri, F Seidel, S Seiya, Y Semenov, A Sforza, F Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simonenko, A Sinervo, P Sliwa, K Smith, JR Snider, FD Song, H Sorin, V Stancari, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thomson, E Thukral, V Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Ukegawa, F Uozumi, S Vazquez, F Velev, G Vellidis, C Vernieri, C Vidal, M Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wallny, R Wang, SM Warburton, A Waters, D Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamato, D Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Zanetti, AM Zeng, Y Zhou, C Zucchelli, S AF Aaltonen, T. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Bae, T. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Bromberg, C. Brucken, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Butti, P. Buzatu, A. Calamba, A. Camarda, S. Campanelli, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Ciocci, M. A. Clark, A. Clarke, C. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. d'Ascenzo, N. Datta, M. De Barbaro, P. Demortier, L. Deninno, M. d'Errico, M. Devoto, F. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dorigo, M. Driutti, A. Ebina, K. Edgar, R. Elagin, A. Erbacher, R. Errede, S. Esham, B. Eusebi, R. Farrington, S. Fernandez Ramos, J. P. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Frisch, H. Funakoshi, Y. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Hahn, S. R. Han, J. Y. Happacher, F. Hara, K. Hare, M. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hays, C. Heinrich, J. Herndon, M. Hocker, A. Hong, Z. Hopkins, W. Hou, S. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kambeitz, M. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. J. Kim, Y. K. Kimura, N. Kirby, M. Knoepfel, K. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kurata, M. Laasanen, A. T. Lammel, S. Lancaster, M. Lannon, K. Latino, G. Lee, H. S. Lee, J. S. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lipeles, E. Lister, A. Liu, H. Li, Q. Liu, T. Lockwitz, S. Loginov, A. Luca, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maestro, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, P. Martinez, M. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McNulty, R. Mehta, A. Mehtala, P. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Pagliarone, C. Palencia, E. Palni, P. Papadimitriou, V. Parker, W. Pauletta, G. Paulini, M. Paus, C. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Pranko, A. Prokoshin, F. Ptohos, F. Punzi, G. Ranjan, N. Redondo Fernandez, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodriguez, T. Rolli, S. Ronzani, M. Roser, R. Rosner, J. L. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Sakumoto, W. K. Sakurai, Y. Santi, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schwarz, T. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simonenko, A. Sinervo, P. Sliwa, K. Smith, J. R. Snider, F. D. Song, H. Sorin, V. Stancari, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thomson, E. Thukral, V. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Ukegawa, F. Uozumi, S. Vazquez, F. Velev, G. Vellidis, C. Vernieri, C. Vidal, M. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamato, D. Yang, T. Yang, U. K. Yang, Y. C. Yao, W-M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Zanetti, A. M. Zeng, Y. Zhou, C. Zucchelli, S. CA CDF Collaboration TI Measurement of the Cross Section for Direct-Photon Production in Association with a Heavy Quark in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report on a measurement of the cross section for direct-photon production in association with a heavy quark using the full data set of root s = 1.96 TeV proton-antiproton collisions corresponding to 9.1 fb(-1) of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron. The measurements are performed as a function of the photon transverse momentum, covering a photon transverse momentum between 30 and 300 GeV, photon rapidities vertical bar y(gamma)vertical bar < 1.0, a heavy-quark-jet transverse momentum p(T)(jet) > 20 GeV, and jet rapidities vertical bar y(jet)vertical bar < 1.5. The results are compared with several theoretical predictions. C1 [Casal, B.; Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander 39005, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Canelli, F.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Luca, A.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W-M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Lueck, J.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Cremonesi, M.; Di Canto, A.; Donati, S.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] INFN Pavia, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Li, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; De Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste Udine, I-34127 Trieste, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; maestro, paolo/E-3280-2010; Chiarelli, Giorgio/E-8953-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Grinstein, Sebastian/N-3988-2014; vilar, rocio/P-8480-2014; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012 OI Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; maestro, paolo/0000-0002-4193-1288; Chiarelli, Giorgio/0000-0001-9851-4816; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC); EU community Marie Curie Fellowship [302103] FX We are grateful to A. V. Lipatov, M. A. Malyshev, N. P. Zotov, F. Siegert, T. P. Stavreva, and J. F. Owens for providing theoretical predictions and for many useful discussions. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103. NR 13 TC 12 Z9 12 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 25 PY 2013 VL 111 IS 4 AR UNSP 042003 DI 10.1103/PhysRevLett.111.042003 PG 8 WC Physics, Multidisciplinary SC Physics GA 188WX UT WOS:000322229500002 PM 23931358 ER PT J AU Rinke, C Schwientek, P Sczyrba, A Ivanova, NN Anderson, IJ Cheng, JF Darling, A Malfatti, S Swan, BK Gies, EA Dodsworth, JA Hedlund, BP Tsiamis, G Sievert, SM Liu, WT Eisen, JA Hallam, SJ Kyrpides, NC Stepanauskas, R Rubin, EM Hugenholtz, P Woyke, T AF Rinke, Christian Schwientek, Patrick Sczyrba, Alexander Ivanova, Natalia N. Anderson, Iain J. Cheng, Jan-Fang Darling, Aaron Malfatti, Stephanie Swan, Brandon K. Gies, Esther A. Dodsworth, Jeremy A. Hedlund, Brian P. Tsiamis, George Sievert, Stefan M. Liu, Wen-Tso Eisen, Jonathan A. Hallam, Steven J. Kyrpides, Nikos C. Stepanauskas, Ramunas Rubin, Edward M. Hugenholtz, Philip Woyke, Tanja TI Insights into the phylogeny and coding potential of microbial dark matter SO NATURE LA English DT Article ID LATERAL GENE-TRANSFER; HYDROTHERMAL VENT; SP-NOV.; DIVERSITY; BACTERIA; ARCHAEA; DIVISION; EUKARYOTES; GENOME; METAGENOMICS AB Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called 'microbial dark matter'. With this additional genomic information, we are able to resolve many intra-and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet. C1 [Rinke, Christian; Schwientek, Patrick; Sczyrba, Alexander; Ivanova, Natalia N.; Anderson, Iain J.; Cheng, Jan-Fang; Malfatti, Stephanie; Kyrpides, Nikos C.; Rubin, Edward M.; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Sczyrba, Alexander] Univ Bielefeld, Ctr Biotechnol, D-33602 Bielefeld, Germany. [Darling, Aaron; Eisen, Jonathan A.] Univ Calif Davis, Dept Evolut & Ecol, Davis, CA 95616 USA. [Darling, Aaron] Univ Technol Sydney, Inst I3, Ultimo, NSW 2007, Australia. [Swan, Brandon K.; Stepanauskas, Ramunas] Bigelow Lab Ocean Sci, East Boothbay, ME 04544 USA. [Gies, Esther A.; Hallam, Steven J.] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z3, Canada. [Gies, Esther A.; Hallam, Steven J.] Univ British Columbia, Grad Program Bioinformat, Vancouver, BC V6T 1Z3, Canada. [Dodsworth, Jeremy A.; Hedlund, Brian P.] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA. [Tsiamis, George] Univ Patras, Dept Environm & Nat Resources Management, Agrinion 30100, TK, Greece. [Sievert, Stefan M.] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. [Liu, Wen-Tso] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61802 USA. [Hugenholtz, Philip] Univ Queensland, Sch Chem & Mol Biosci, Australian Ctr Ecogenom, St Lucia, Qld 4072, Australia. [Hugenholtz, Philip] Univ Queensland, Inst Mol Biosci, St Lucia, Qld 4072, Australia. RP Hugenholtz, P (reprint author), Univ Queensland, Sch Chem & Mol Biosci, Australian Ctr Ecogenom, St Lucia, Qld 4072, Australia. EM p.hugenholtz@uq.edu.au; twoyke@lbl.gov RI Hugenholtz, Philip/G-9608-2011; Liu, Wen-Tso/C-8788-2011; Kyrpides, Nikos/A-6305-2014; OI Liu, Wen-Tso/0000-0002-8700-9803; Kyrpides, Nikos/0000-0002-6131-0462; Rinke, Christian/0000-0003-4632-1187; Sievert, Stefan/0000-0002-9541-2707; Eisen, Jonathan A./0000-0002-0159-2197; Stepanauskas, Ramunas/0000-0003-4458-3108; Darling, Aaron/0000-0003-2397-7925 FU Office of Science of the US Department of Energy [DE-AC02-05CH11231]; BMBF [031A190]; NASA [EXO-NNX11AR78G]; NSF [OISE 096842, OCE-0452333, OCE-1136727, DEB-841933, EF-826924, OCE-1232982, OCE-821374, OCE-1136488]; WHOI's Andrew W. Mellon Fund for Innovative Research; Canadian Foundation for Innovation; British Columbia Knowledge Development Fund; National Sciences and Engineering Research Council (NSERC) of Canada; TULA foundation; Alfred P. Sloan Foundation; Australian Research Council [DP120103498] FX We thank the DOE JGI production sequencing, IMG and GOLD teams for their support; J. Lee and E. Ng for experimental assistance; H.-P. Klenk and D. Gleim for providing a DSMZ inventory database dump and I. Letunic ' for his knowledge and support to make iTOL work for this project. We are very grateful to B. Schink for invaluable etymological advice. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. We also thank the CeBiTec Bioinformatics Resource Facility, which is supported by BMBF grant 031A190. B. P. H. and J. A. D. were supported by the NASA Exobiology grant EXO-NNX11AR78G and NSF OISE 096842 and B. P. H. by a generous contribution from G. Fullmer through the UNLV Foundation. S. M. S was supported by NSF grants OCE-0452333 and OCE-1136727, and the WHOI's Andrew W. Mellon Fund for Innovative Research; and S. J. H. by the Canadian Foundation for Innovation, the British Columbia Knowledge Development Fund, the National Sciences and Engineering Research Council (NSERC) of Canada and the TULA foundation funded Centre for Microbial Diversity and Evolution (CMDE), and the Canadian Institute for Advanced Research (CIFAR). R. S. was supported by NSF grants DEB-841933, EF-826924, OCE-1232982, OCE-821374 and OCE-1136488, and the Deep Life I grant by the Alfred P. Sloan Foundation. P. H. was supported by a Discovery Outstanding Researcher Award (DORA) from the Australian Research Council, grant DP120103498. NR 50 TC 462 Z9 475 U1 52 U2 395 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 25 PY 2013 VL 499 IS 7459 BP 431 EP 437 DI 10.1038/nature12352 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 187YP UT WOS:000322157900031 PM 23851394 ER PT J AU Berkelbach, TC Hybertsen, MS Reichman, DR AF Berkelbach, Timothy C. Hybertsen, Mark S. Reichman, David R. TI Theory of neutral and charged excitons in monolayer transition metal dichalcogenides SO PHYSICAL REVIEW B LA English DT Article ID SEMICONDUCTOR QUANTUM-WELLS; 2-DIMENSIONAL ELECTRON-GAS; VALLEY POLARIZATION; OPTICAL-PROPERTIES; QUASI-PARTICLE; MOS2; ABSORPTION; PHOTOLUMINESCENCE; INSULATORS; CRYSTALS AB We present a microscopic theory of neutral excitons and charged excitons (trions) in monolayers of transition metal dichalcogenides, including molybdenum disulfide. Our theory is based on an effective mass model of excitons and trions, parameterized by ab initio calculations and incorporating a proper treatment of screening in two dimensions. The calculated exciton binding energies are in good agreement with high-level many-body computations based on the Bethe-Salpeter equation. Furthermore, our calculations for the more complex trion species compare very favorably with recent experimental measurements and provide atomistic insight into the microscopic features which determine the trion binding energy. C1 [Berkelbach, Timothy C.; Reichman, David R.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Reichman, DR (reprint author), Columbia Univ, Dept Chem, 3000 Broadway, New York, NY 10027 USA. EM drr2103@columbia.edu OI Hybertsen, Mark S/0000-0003-3596-9754 FU Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001085]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Department of Energy, Office of Science [DE-AC05-06OR23100] FX We thank Jens Kunstmann, Eran Rabani, Tony Heinz, and Louis Brus for invaluable discussions. This work was supported in part by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001085. This work was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886 (M. S. H). T. C. B. was supported in part by the Department of Energy, Office of Science under Contract No. DE-AC05-06OR23100. NR 43 TC 159 Z9 159 U1 25 U2 148 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 25 PY 2013 VL 88 IS 4 AR 045318 DI 10.1103/PhysRevB.88.045318 PG 6 WC Physics, Condensed Matter SC Physics GA 188VP UT WOS:000322224800004 ER PT J AU Maskova, S Havela, L Danis, S Llobet, A Nakotte, H Kothapalli, K Cerny, R Kolomiets, A AF Maskova, S. Havela, L. Danis, S. Llobet, A. Nakotte, H. Kothapalli, K. Cerny, R. Kolomiets, A. TI Impact of hydrogen absorption on crystal structure and magnetic properties of geometrically frustrated Nd2Ni2In SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Antiferromagnetism; Frustration; Hydrogen; Magnetocaloric effect ID INTERMETALLIC COMPOUNDS; HYDRIDES; U2PD2IN; CE; ND AB Nd2Ni2In orders antiferromagnetically at T-N = 8 K. A possible first-order type of the phase transition can be related to the frustrated lattice of the Shastry-Sutherland type. The transition does not shift in magnetic field but turns into a ferromagnetic transition in magnetic fields exceeding 0.3 T. Powder neutron diffraction determined the magnetic structure with Nd moments oriented mutually perpendicular along the directions of the < 110 > type. Large change of magnetic entropy in weak magnetic fields leads to a giant magnetocaloric effect. Reversible hydrogen absorption in pressures of several bar leads to the hydride Nd2Ni2InH approximate to 7 achieved through the sequence of intermediate hydrides. The highest hydride has an orthorhombic distortion and volume expansion exceeding 23%. It is antiferromagnetic below T-N approximate to 3 K. (C) 2013 Elsevier B. V. All rights reserved. C1 [Maskova, S.; Havela, L.; Danis, S.; Kolomiets, A.] Dept Condensed Matter Phys, Prague 12116 2, Czech Republic. [Llobet, A.] Los Alamos Natl Lab, LANSCE, Los Alamos, NM 87545 USA. [Nakotte, H.; Kothapalli, K.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Cerny, R.] Univ Geneva, Crystallog Lab, CH-1211 Geneva, Switzerland. [Kolomiets, A.] Lviv Polytech Natl Univ, Dept Phys, Lvov, Ukraine. RP Maskova, S (reprint author), Dept Condensed Matter Phys, Ke Karlovu 5, Prague 12116 2, Czech Republic. EM maskova@mag.mff.cuni.cz RI Llobet, Anna/B-1672-2010 FU Czech Grant Agency [P204/12/0285]; Charles University Grant Agency [436111]; program of Czech Research Infrastructures [LM2011025]; DOE-Basic Energy Sciences under FWP [2012LANLE389] FX This work was supported by the Czech Grant Agency under the Grant No. P204/12/0285 and by the Charles University Grant Agency (Project No. 436111). Experiments were performed at MLTL (http://mltl.eu/), which is supported within the program of Czech Research Infrastructures (Project No. LM2011025). The neutron diffraction experiment was performed on the HIPD instrument at the Lujan Center at Los Alamos National Laboratory supported by DOE-Basic Energy Sciences under FWP #2012LANLE389. NR 23 TC 7 Z9 7 U1 6 U2 54 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 25 PY 2013 VL 566 BP 22 EP 30 DI 10.1016/j.jallcom.2013.02.177 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 129CX UT WOS:000317817200005 ER PT J AU de Puig, H Rius, AC Flemister, D Baxamusa, SH Hamad-Schifferli, K AF de Puig, Helena Cifuentes Rius, Anna Flemister, Dorma Baxamusa, Salmaan H. Hamad-Schifferli, Kimberly TI Selective Light-Triggered Release of DNA from Gold Nanorods Switches Blood Clotting On and Off SO PLOS ONE LA English DT Article ID THROMBIN; NANOPARTICLES; APTAMER AB Blood clotting is a precise cascade engineered to form a clot with temporal and spatial control. Current control of blood clotting is achieved predominantly by anticoagulants and thus inherently one-sided. Here we use a pair of nanorods (NRs) to provide a two-way switch for the blood clotting cascade by utilizing their ability to selectively release species on their surface under two different laser excitations. We selectively trigger release of a thrombin binding aptamer from one nanorod, inhibiting blood clotting and resulting in increased clotting time. We then release the complementary DNA as an antidote from the other NR, reversing the effect of the aptamer and restoring blood clotting. Thus, the nanorod pair acts as an on/off switch. One challenge for nanobiotechnology is the bio-nano interface, where coronas of weakly adsorbed proteins can obscure biomolecular function. We exploit these adsorbed proteins to increase aptamer and antidote loading on the nanorods. C1 [de Puig, Helena; Hamad-Schifferli, Kimberly] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Cifuentes Rius, Anna; Baxamusa, Salmaan H.; Hamad-Schifferli, Kimberly] MIT, Dept Biol Engn, Cambridge, MA 02139 USA. [Flemister, Dorma] MIT, Dept Biol, Cambridge, MA 02139 USA. [Cifuentes Rius, Anna] Univ Ramon Llull, Inst Quim Sarria, Barcelona, Spain. RP Hamad-Schifferli, K (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM schiffer@mit.edu RI Cifuentes-Rius, Anna/E-1994-2015 OI Cifuentes-Rius, Anna/0000-0002-9478-2239 FU National Science Foundation [0906838]; La Caixa Foundation (Spain) FX This work was funded by the National Science Foundation grant# DMR #0906838. http://www.nsf.gov/.HdP was supported by a fellowship from La Caixa Foundation (Spain). http://obrasocial.lacaixa.es/laCaixaFoundation/home_en.html. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 16 TC 13 Z9 14 U1 2 U2 51 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 24 PY 2013 VL 8 IS 7 AR e68511 DI 10.1371/journal.pone.0068511 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 188BY UT WOS:000322167900013 PM 23894311 ER PT J AU Sahu, SN Lewis, J Patel, I Bozdag, S Lee, JH Sprando, R Cinar, HN AF Sahu, Surasri N. Lewis, Jada Patel, Isha Bozdag, Serdar Lee, Jeong H. Sprando, Robert Cinar, Hediye Nese TI Genomic Analysis of Stress Response against Arsenic in Caenorhabditis elegans SO PLOS ONE LA English DT Article ID FATE DETERMINATION FACTOR; DETERMINATION FACTOR DACH1; INDUCED OXIDATIVE STRESS; TRANSCRIPTION FACTOR; ENDOTHELIAL-CELLS; MYELOID-LEUKEMIA; GENE-EXPRESSION; REACTIVE OXYGEN; DNA-DAMAGE; END-POINTS AB Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA. C1 [Sahu, Surasri N.; Lee, Jeong H.; Cinar, Hediye Nese] US FDA, Div Virulence Assessment, Laurel, MD USA. [Lewis, Jada; Patel, Isha] US FDA, Div Mol Biol, Laurel, MD USA. [Bozdag, Serdar] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53233 USA. [Sahu, Surasri N.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Lee, Jeong H.] KNU, Taegu, South Korea. [Sprando, Robert] US FDA, Div Toxicol, Laurel, MD USA. RP Sprando, R (reprint author), US FDA, Div Toxicol, Laurel, MD USA. EM robert.sprando@fda.hhs.gov; hediye.cinar@fda.hhs.gov NR 90 TC 8 Z9 10 U1 1 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 24 PY 2013 VL 8 IS 7 AR e66431 DI 10.1371/journal.pone.0066431 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 188BY UT WOS:000322167900004 PM 23894281 ER PT J AU Zhao, GX Jin, ZM Allewell, NM Tuchman, M Shi, DS AF Zhao, Gengxiang Jin, Zhongmin Allewell, Norma M. Tuchman, Mendel Shi, Dashuang TI Crystal Structure of the N-Acetyltransferase Domain of Human N-Acetyl-L-Glutamate Synthase in Complex with N-Acetyl-L-Glutamate Provides Insights into Its Catalytic and Regulatory Mechanisms SO PLOS ONE LA English DT Article ID ACETYLGLUTAMATE SYNTHASE; ARGININE-BIOSYNTHESIS; PROTEIN; GENE; EXPRESSION; LIKELIHOOD; PEPTIDE; CLONING AB N-acetylglutamate synthase (NAGS) catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG), an obligate cofactor for carbamyl phosphate synthetase I (CPSI) in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT) domain with N-acetyl-L-glutamate bound at 2.1 angstrom resolution. Functional studies indicate that the hNAT domain retains catalytic activity in the absence of the amino acid kinase (AAK) domain. Instead, the major functions of the AAK domain appear to be providing a binding site for the allosteric activator, L-arginine, and an N-terminal proline-rich motif that is likely to function in signal transduction to CPS1. Crystalline hNAT forms a dimer similar to the NAT-NAT dimers that form in crystals of bifunctional N-acetylglutamate synthase/kinase (NAGS/K) from Maricaulis maris and also exists as a dimer in solution. The structure of the NAG binding site, in combination with mutagenesis studies, provide insights into the catalytic mechanism. We also show that native NAGS from human and mouse exists in tetrameric form, similar to those of bifunctional NAGS/K. C1 [Zhao, Gengxiang; Tuchman, Mendel; Shi, Dashuang] George Washington Univ, Childrens Natl Med Ctr, Med Genet Res Ctr, Washington, DC 20052 USA. [Zhao, Gengxiang; Tuchman, Mendel; Shi, Dashuang] George Washington Univ, Dept Integrat Syst Biol, Washington, DC USA. [Jin, Zhongmin] Argonne Natl Lab, Adv Photon Source, Southeast Reg Collaborat Access Team, Argonne, IL 60439 USA. [Allewell, Norma M.] Univ Maryland, Coll Comp Math & Nat Sci, Dept Cell Biol & Mol Genet, College Pk, MD 20742 USA. [Allewell, Norma M.] Univ Maryland, Coll Comp Math & Nat Sci, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Shi, DS (reprint author), George Washington Univ, Childrens Natl Med Ctr, Med Genet Res Ctr, Washington, DC 20052 USA. EM dshi@cnmcresearch.org FU Public Health Service grants from the National Institute of Diabetes, Digestive and Kidney Diseases [DK-DK064913]; U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences [W-31-109-Eng-38] FX This work was supported by Public Health Service grants DK-DK064913 (MT) from the National Institute of Diabetes, Digestive and Kidney Diseases. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 30 TC 4 Z9 4 U1 1 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 24 PY 2013 VL 8 IS 7 AR e70369 DI 10.1371/journal.pone.0070369 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 188BY UT WOS:000322167900120 PM 23894642 ER PT J AU Muller, EA Strader, ML Johns, JE Yang, A Caplins, BW Shearer, AJ Suich, DE Harris, CB AF Muller, Eric A. Strader, Matthew L. Johns, James E. Yang, Aram Caplins, Benjamin W. Shearer, Alex J. Suich, David E. Harris, Charles B. TI Femtosecond Electron Solvation at the Ionic Liquid/Metal Electrode Interface SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID 2-PHOTON PHOTOEMISSION; METAL INTERFACE; ORDER-DISORDER; LIQUIDS; DYNAMICS; SURFACE; SPECTROSCOPY; TRANSITION; RECONSTRUCTION; D2O/CU(111) AB Electron solvation is examined at the interface of a room temperature ionic liquid (RTIL) and an Ag(111) electrode. Femtosecond two-photon photoemission spectroscopy is used to inject an electron into an ultrathin film of RTIL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Bmpyr](+)[NTf2](-)). While much of current literature highlights slower nanosecond solvation mechanisms in bulk ionic liquids, we observe only a femtosecond response, supporting morphology dependent and interface specific electron solvation mechanisms. The injected excess electron is found to reside in an electron affinity level residing near the metal surface. Population of this state decays back to the metal with a time constant of 400 +/- 150 fs. Electron solvation is measured as a dynamic decrease in the energy with a time constant of 350 +/- 150 fs. We observe two distinct temperature regimes, with a critical temperature near 250 K. The low temperature regime is characterized by a higher work function of 4.41 eV, while the high temperature regime is characterized by a lower work function of 4.19 eV. The total reorganizational energy of solvation changes above and below the critical temperature. In the high temperature regime, the electron affinity level solvates by 540 meV at 350 K, and below the critical temperature, solvation decreases to 200 meV at 130 K. This study will provide valuable insight to interface specific solvation of room temperature ionic liquids. C1 [Muller, Eric A.; Yang, Aram; Caplins, Benjamin W.; Shearer, Alex J.; Suich, David E.; Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Muller, Eric A.; Strader, Matthew L.; Caplins, Benjamin W.; Shearer, Alex J.; Suich, David E.; Harris, Charles B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Johns, James E.] Northwestern Univ, Dept Mat Sci & Engn & Med, Evanston, IL 60208 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu RI Muller, Eric/J-2161-2012 OI Muller, Eric/0000-0002-9629-1767 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge NSF support for specialized equipment used in the experiments herein. NR 71 TC 11 Z9 11 U1 1 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 24 PY 2013 VL 135 IS 29 BP 10646 EP 10653 DI 10.1021/ja3108593 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 191SH UT WOS:000322432400017 PM 23790087 ER PT J AU Wang, YG Yoon, Y Glezakou, VA Li, J Rousseau, R AF Wang, Yang-Gang Yoon, Yeohoon Glezakou, Vassiliki-Alexandra Li, Jun Rousseau, Roger TI The Role of Reducible Oxide-Metal Cluster Charge Transfer in Catalytic Processes: New Insights on the Catalytic Mechanism of CO Oxidation on Au/TiO2 from ab Initio Molecular Dynamics SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TETRAHEDRAL AU-20 CLUSTER; DENSITY-FUNCTIONAL THEORY; RUTILE TIO2(110) SURFACE; SUPPORTED GOLD CATALYSTS; GAS SHIFT ACTIVITY; AU NANOPARTICLES; OXYGEN VACANCIES; CARBON-MONOXIDE; PLATINUM NANOPARTICLES; ELECTRONIC-PROPERTIES AB To probe metal particle/reducible oxide interactions density functional theory based ab initio molecular dynamics studies were performed on a prototypical metal cluster (Au-20) supported on reducible oxides (rutile TiO2(110)) to implicitly account for finite temperature effects and the role of excess surface charge in the metal oxide. It is found that the charge state of the Au particle is negative in a reducing chemical environment whereas in the presence of oxidizing species coadsorbed to the oxide surface the duster obtained a net positive charge. In the context of the well-known CO oxidation reaction, charge transfer facilitates the plasticization of Au-20, which allows for a strong adsorbate induced surface reconstruction upon addition of CO leading to the formation of mobile Au-CO species on the surface. The charging/discharging of the cluster during the catalytic cycle of CO oxidation enhances and controls the amount of O-2 adsorbed at oxide/cluster interface and strongly influences the energetics of all redox steps in catalytic conversions. A detailed comparison of the current findings with previous studies is presented, and generalities about the role of surface-adsorbate charge transfer for metal cluster/reducible oxide interactions are discussed. C1 [Wang, Yang-Gang; Li, Jun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Wang, Yang-Gang; Yoon, Yeohoon; Glezakou, Vassiliki-Alexandra; Li, Jun; Rousseau, Roger] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Li, J (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. EM junli@tsinghua.edu.cn; roger.rousseau@pnnl.gov RI Rousseau, Roger/C-3703-2014; Yoon, Yeohoon/D-4934-2014; Li, Jun/E-5334-2011; Wang, Yang-Gang/D-6480-2015 OI Li, Jun/0000-0002-8456-3980; Wang, Yang-Gang/0000-0002-0582-0855 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; NKBRSF [2011CB932400]; NSFC of China [91026003, 21101098]; China Scholarship Council; PNNL-ASF; Department of Energy's Office of Biological and Environmental Research located at PNNL; National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory FX We thank Robert Weber, Zdenek Dohnalek, Nick Petrik, and Greg Kimmel for insightful discussions. Part of this work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences, and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle. J. Li and Y.-G. Wang were also financially supported by NKBRSF (Grant 2011CB932400) and NSFC (Grant 91026003, 21101098) of China. Y.-G. Wang acknowledges the fellowship from China Scholarship Council and the PNNL-ASF fellowship program. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. NR 151 TC 86 Z9 88 U1 9 U2 206 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 EI 1520-5126 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 24 PY 2013 VL 135 IS 29 BP 10673 EP 10683 DI 10.1021/ja402063v PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 191SH UT WOS:000322432400020 PM 23782230 ER PT J AU Lukens, WW Edelstein, NM Magnani, N Hayton, TW Fortier, S Seaman, LA AF Lukens, Wayne W. Edelstein, Norman M. Magnani, Nicola Hayton, Trevor W. Fortier, Skye Seaman, Lani A. TI Quantifying the sigma and pi Interactions between U(V) f Orbitals and Halide, Alkyl, Alkoxide, Amide and Ketimide Ligands SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; DENSITY-FUNCTIONAL INVESTIGATIONS; TRANSITION-METAL IONS; ELECTRONIC-STRUCTURE; PARAMAGNETIC-RESONANCE; MAGNETIC-PROPERTIES; ACTINIDE COMPLEXES; SPIN-ORBIT; NEPTUNIUM HEXAFLUORIDE; PHOTOELECTRON-SPECTRA AB f Orbital bonding in actinide and lanthanide complexes is critical to their behavior in a variety of areas from separations to magnetic properties. Octahedral f(1) hexahalide complexes have been extensively used to study f orbital bonding due to their simple electronic structure and extensive spectroscopic characterization. The recent expansion of this family to include alkyl, alkoxide, amide, and ketimide ligands presents the opportunity to extend this study to a wider variety of ligands. To better understand f orbital bonding in these complexes, the existing molecular orbital (MO) model was refined to include the effect of covalency on spin orbit coupling in addition to its effect on orbital angular momentum (orbital reduction). The new MO model as well as the existing MO model and the crystal field (CF) model were applied to the octahedral f(1) complexes to determine the covalency and strengths of the a and it bonds formed by the f orbitals. When covalency is significant, MO models more precisely determined the strengths of the bonds derived from the f orbitals; however, when covalency was small, the CF model was better than either MO model. The covalency determined using the new MO model is in better agreement with both experiment and theory than that predicted by the existing MO model. The results emphasize the role played by the orbital energy in determining the strength and covalency of bonds formed by the f orbitals. C1 [Lukens, Wayne W.; Edelstein, Norman M.; Magnani, Nicola] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Hayton, Trevor W.; Fortier, Skye; Seaman, Lani A.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. RP Lukens, WW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM wwlukens@lbl.gov; hayton@chem.ucsb.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences [DE-FG02-09ER16067]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank Stefan Minasian, Richard Martin, Nikolas Kaltsoyannis, and Jorgen Ausbach for helpful discussions. Work at UCSB was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division under Contract No. DE-FG02-09ER16067. Portions of this work were supported by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and were performed at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 80 TC 36 Z9 36 U1 5 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 24 PY 2013 VL 135 IS 29 BP 10742 EP 10754 DI 10.1021/ja403815h PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA 191SH UT WOS:000322432400027 PM 23837946 ER PT J AU Pell, LG Cumby, N Clark, TE Tuite, A Battaile, KP Edwards, AM Chirgadze, NY Davidson, AR Maxwell, KL AF Pell, Lisa G. Cumby, Nichole Clark, Teresa E. Tuite, Ashleigh Battaile, Kevin P. Edwards, Aled M. Chirgadze, Nickolay Y. Davidson, Alan R. Maxwell, Karen L. TI A Conserved Spiral Structure for Highly Diverged Phage Tail Assembly Chaperones SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE phage morphogenesis; tail assembly; x-ray crystal structure; protein evolution; oligomerization mechanisms ID PROGRAMMED TRANSLATIONAL FRAMESHIFT; BACTERIOPHAGE-LAMBDA; BACILLUS-SUBTILIS; PROTEIN; ALIGNMENT; LOCATIONS; DATABASE; ELEMENT; TOOLS AB Tail assembly chaperones (TACs) are a family of proteins likely required for the morphogenesis of all long-tailed phages. In this study, we determined the crystal structure of gp13, the TAC of phage HK97. This structure is similar to that of the TAC from the Lactococcus phage p2 and two unannotated structures of likely TACs encoded in prophage-derived regions of Bacillus subtilis and Bacillus stearothermophilus. Despite the high sequence divergence of these proteins, gp13 forms a ring structure with similar dimensions to the spirals observed in the crystal lattices of these other proteins. Remarkably, these-similar quaternary structures are formed through very different interprotomer interactions. We present functional data supporting the biological relevance of these spiral structures and propose that spiral formation has been the primary requirement for these proteins during evolution. This study presents an unusual example of diverged protein sequences and oligomerization mechanisms in the presence of conserved quaternary structure. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved. C1 [Pell, Lisa G.; Cumby, Nichole; Tuite, Ashleigh; Edwards, Aled M.; Davidson, Alan R.; Maxwell, Karen L.] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 3E1, Canada. [Pell, Lisa G.; Cumby, Nichole; Tuite, Ashleigh; Edwards, Aled M.; Davidson, Alan R.; Maxwell, Karen L.] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON M5S 3E1, Canada. [Clark, Teresa E.; Chirgadze, Nickolay Y.] Univ Hlth Network, Princess Margaret Hosp, Ontario Canc Inst, Campbell Family Canc Res Inst, Toronto, ON M5G 2C4, Canada. [Battaile, Kevin P.] Argonne Natl Lab, Adv Photon Source, IMCA CAT, Hauptman Woodward Med Res Inst, Argonne, IL 60439 USA. [Chirgadze, Nickolay Y.] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON M5S 1A8, Canada. [Davidson, Alan R.] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada. RP Maxwell, KL (reprint author), Univ Toronto, Dept Mol Genet, Toronto, ON M5S 3E1, Canada. EM karen.maxwell@utoronto.ca OI Battaile, Kevin/0000-0003-0833-3259 FU Canadian Institutes of Health Research [MOP-62796, MOP-77680]; Natural Sciences and Engineering Research Council of Canada CGS-D scholarship; Ontario Research and Development Challenge Fund [99-SEP-0512]; Canada Research Program; U.S. Department of Energy, Office of Basic Energy Sciences [W-31-109-Eng-38]; Center for Advanced Radiation Sources at the University of Chicago FX The authors thank Paul Sadowski for critical reading of the manuscript and Diane Bona for technical assistance. This work was supported by Operating Grants from the Canadian Institutes of Health Research to K.L.M. and A.M.E. (Fund No. MOP-62796) and to A.R.D. (Fund No. MOP-77680). N.C. was supported by a Natural Sciences and Engineering Research Council of Canada CGS-D scholarship. T.E.C. and N.Y.C. were supported by the Ontario Research and Development Challenge Fund (99-SEP-0512) and the Canada Research Program (E.F.P.). K.P.B. and use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source were supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with the Center for Advanced Radiation Sources at the University of Chicago. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Basic Energy Sciences (Contract No. W-31-109-Eng-38). NR 31 TC 7 Z9 7 U1 3 U2 9 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JUL 24 PY 2013 VL 425 IS 14 BP 2436 EP 2449 DI 10.1016/j.jmb.2013.03.035 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 182DV UT WOS:000321722800006 PM 23542344 ER PT J AU Wang, WS Sa, QN Chen, JH Wang, Y Jung, HJ Yin, YD AF Wang, Wenshou Sa, Qina Chen, Jihua Wang, Yan Jung, Heejung Yin, Yadong TI Porous TiO2/C Nanocomposite Shells As a High-Performance Anode Material for Lithium-Ion Batteries SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE TiO2/C nanocomposite shells; porous; resorcinol-formaldehyde (RF) layer; carbon-coating; anode; lithium-ion battery ID RESORCINOL-FORMALDEHYDE RESIN; ANATASE; SPHERES; NANOSTRUCTURES; CARBON; PARTICLES; STORAGE; RUTILE AB Porous TiO2/C nanocomposite shells with high capacity, excellent cycle stability, and rate performance have been prepared. The synthesis involves coating colloidal TiO2 nanoshells with a resorcinol-formaldehyde (RE) layer with controllable thickness through a sol-gellike process, and calcining the composites at 700 degrees C in an inert atmosphere to induce crystallization from amorphous TiO2 to anatase and simultaneous carbonization from RE to carbon. The cross-linked RE polymer contributes to the high stability of the shell morphology and the porous nature of the shells. A strong dependence of the capacity on the amount of incorporated carbon has been revealed, allowing the optimization of the electrode structure for high-rate cell performance. C1 [Wang, Wenshou; Yin, Yadong] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Jung, Heejung] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA. [Sa, Qina; Wang, Yan] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA. [Chen, Jihua] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Yin, YD (reprint author), Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. EM yadong.yin@ucr.edu RI Chen, Jihua/F-1417-2011; Yin, Yadong/D-5987-2011; Wang, Wenshou/C-5579-2015 OI Chen, Jihua/0000-0001-6879-5936; Yin, Yadong/0000-0003-0218-3042; Wang, Wenshou/0000-0001-7313-4403 FU Winston Chung Global Energy Center at UCR; U.S. Department of Energy [DE-FG02-09ER16096]; Research Corporation for Science Advancement; DuPont; Oak Ridge National Laboratory by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy FX This project is financially supported in part by the Winston Chung Global Energy Center at UCR and the U.S. Department of Energy (DE-FG02-09ER16096). Yin also thanks the Research Corporation for Science Advancement for the Cottrell Scholar Award and DuPont for the Young Professor Grant. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. NR 23 TC 63 Z9 63 U1 14 U2 195 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL 24 PY 2013 VL 5 IS 14 BP 6478 EP 6483 DI 10.1021/am402350n PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 191SI UT WOS:000322432500008 PM 23829667 ER PT J AU Stavila, V Robinson, DB Hekmaty, MA Nishimoto, R Medlin, DL Zhu, S Tritt, TM Sharma, PA AF Stavila, V. Robinson, D. B. Hekmaty, M. A. Nishimoto, R. Medlin, D. L. Zhu, S. Tritt, T. M. Sharma, P. A. TI Wet-Chemical Synthesis and Consolidation of Stoichiometric Bismuth Telluride Nanoparticles for Improving the Thermoelectric Figure-of-Merit SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE nanoparticles; bismuth telluride; wet-chemical synthesis; surfactants; electrical properties; thermoelectrics ID BI2TE3 NANOPARTICLES; CONDUCTIVITY; PERFORMANCE; GROWTH; NANOTUBES; APPARATUS; CRYSTALS; POWDER AB Bismuth telluride nanoparticles (NPs) have been synthesized using a low-temperature wet-chemical approach from bismuth(III) oleate and tri-n-octylphosphine telluride. The size and shape of the NPs can be controlled by adjusting the temperature, reaction time, and nature of the surfactants and solvents. Aromatic hydrocarbons (toluene, xylenes) and ethers (phenyl- and benzyl-ether) favor the formation of stoichiometric Bi2Te3 NPs of platelike morphology, whereas the presence of oleylamine and 1-dodecanethiol yields Bi-rich Bi2Te3 spherical NPs. XRD, IR, SEM, TEM, and SAED techniques have been used to characterize the obtained products. We show that the surfactants can be efficiently removed from the surface of the NPs using a two-step process employing nitrosonium tetrafluoroborate and hydrazine hydrate. The surfactant-free NPs were further consolidated into high density pellets using cold-pressing and field-assisted sintering techniques. The sintered surfactant-free Bi2Te3 showed electrical and thermal properties comparable to Bi2Te3 materials processed through conventional solid state techniques, and greatly improved over other nanostructured Bi2Te3 materials synthesized by wet-chemical approaches. C1 [Stavila, V.; Robinson, D. B.; Hekmaty, M. A.; Nishimoto, R.; Medlin, D. L.] Sandia Natl Labs, Livermore, CA 94551 USA. [Zhu, S.; Tritt, T. M.] Clemson Univ, Clemson, SC 29634 USA. [Sharma, P. A.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Stavila, V (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM vnstavi@sandia.gov; pasharm@sandia.gov RI Sharma, Peter/G-1917-2011 OI Sharma, Peter/0000-0002-3071-7382 FU Sandia Laboratory-Directed Research and Development program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We gratefully acknowledge financial support from the Sandia Laboratory-Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 52 TC 10 Z9 10 U1 6 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL 24 PY 2013 VL 5 IS 14 BP 6678 EP 6686 DI 10.1021/am401444w PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 191SI UT WOS:000322432500035 PM 23806251 ER PT J AU Reiner, A Levitz, J Isacoff, E AF Reiner, Andreas Levitz, Joshua Isacoff, Ehud TI Bringing Optogenetics to the Synapse SO NEURON LA English DT Editorial Material ID OPTICAL CONTROL; CELLS; INACTIVATION; PROTEINS AB In this issue of Neuron, Lin et al. (2013) describe InSynC, an optogenetic approach that utilizes chromophore-assisted light inactivation (CALI) to inactivate presynaptic neurotransmitter release proteins VAMP2 and synaptophysin. InSynC selectively reduces synaptic transmission in illuminated regions in vitro and in vivo. C1 [Reiner, Andreas; Levitz, Joshua; Isacoff, Ehud] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Reiner, Andreas; Levitz, Joshua; Isacoff, Ehud] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Levitz, Joshua; Isacoff, Ehud] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Isacoff, Ehud] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Isacoff, E (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM ehud@berkeley.edu RI Reiner, Andreas/E-4897-2011 OI Reiner, Andreas/0000-0003-0802-7278 NR 15 TC 1 Z9 1 U1 1 U2 14 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0896-6273 J9 NEURON JI Neuron PD JUL 24 PY 2013 VL 79 IS 2 BP 209 EP 210 DI 10.1016/j.neuron.2013.07.009 PG 2 WC Neurosciences SC Neurosciences & Neurology GA 191PX UT WOS:000322426200001 PM 23889927 ER PT J AU Erhart, P Marian, J Sadigh, B AF Erhart, Paul Marian, Jaime Sadigh, Babak TI Thermodynamic and mechanical properties of copper precipitates in alpha-iron from atomistic simulations SO PHYSICAL REVIEW B LA English DT Article ID MONTE-CARLO SIMULATIONS; BCC-TO-9R MARTENSITIC-TRANSFORMATION; RESOLUTION ELECTRON-MICROSCOPY; FE-CU INTERACTIONS; COMPUTER-SIMULATION; INTERATOMIC POTENTIALS; 9R STRUCTURE; DISLOCATION; SYSTEM; ALLOYS AB Precipitate hardening is commonly used in materials science to control strength by acting on the number density, size distribution, and shape of solute precipitates in the hardened matrix. The Fe-Cu system has attracted much attention over the last several decades due to its technological importance as a model alloy for Cu steels. In spite of these efforts several aspects of its phase diagram remain unexplained. Here we use atomistic simulations to characterize the polymorphic phase diagram of Cu precipitates in body-centered cubic (BCC) Fe and establish a consistent link between their thermodynamic and mechanical properties in terms of thermal stability, shape, and strength. The size at which Cu precipitates transform from BCC to a close-packed 9R structure is found to be strongly temperature dependent, ranging from approximately 4 nm in diameter (similar to 2700 atoms) at 200 K to about 8 nm (similar to 22 800 atoms) at 700 K. These numbers are in very good agreement with the interpretation of experimental data given Monzen et al. [Philos. Mag. A 80, 711 (2000)]. The strong temperature dependence originates from the entropic stabilization of BCC Cu, which is mechanically unstable as a bulk phase. While at high temperatures the transition exhibits first-order characteristics, the hysteresis, and thus the nucleation barrier, vanish at temperatures below approximately 300 K. This behavior is explained in terms of the mutual cancellation of the energy differences between core and shell (wetting layer) regions of BCC and 9R nanoprecipitates, respectively. The proposed mechanism is not specific for the Fe-Cu system but could generally be observed in immiscible systems, whenever the minority component is unstable in the lattice structure of the host matrix. Finally, we also study the interaction of precipitates with screw dislocations as a function of both structure and orientation. The results provide a coherent picture of precipitate strength that unifies previous calculations and experimental observations. C1 [Erhart, Paul] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. [Erhart, Paul; Marian, Jaime; Sadigh, Babak] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA USA. RP Erhart, P (reprint author), Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. EM erhart@chalmers.se RI Erhart, Paul/G-6260-2011 OI Erhart, Paul/0000-0002-2516-6061 FU US Department of Energy by LLNL [DE-AC52-07NA27344]; Swedish Research Council; European Research Council via a Marie Curie Career Integration Grant; Area of Advance-Materials Science at Chalmers; DOE-NE NEAMS program FX Part of this work was performed under the auspices of the US Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. P.E. acknowledges funding from the Swedish Research Council in the form of a Young Researcher grant, the European Research Council via a Marie Curie Career Integration Grant, and the Area of Advance-Materials Science at Chalmers. B.S. acknowledges funding from the DOE-NE NEAMS program. Computer time allocations by the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory and by the Swedish National Infrastructure for Computing at C3SE (Gothenburg) and PDC (Stockholm) are gratefully acknowledged. NR 53 TC 10 Z9 10 U1 5 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 24 PY 2013 VL 88 IS 2 AR 024116 DI 10.1103/PhysRevB.88.024116 PG 14 WC Physics, Condensed Matter SC Physics GA 188TE UT WOS:000322215700002 ER PT J AU Zhou, CZ Su, JJ Graf, MJ Reichhardt, C Balatsky, AV Beyerlein, IJ AF Zhou, Caizhi Su, Jung-Jung Graf, Matthias J. Reichhardt, Charles Balatsky, Alexander V. Beyerlein, Irene J. TI Plastic response of dislocation glide in solid helium under dc strain-rate loading SO PHYSICAL REVIEW B LA English DT Article ID HCP HE-4; SHEAR MODULUS; DEFORMATION; TEMPERATURE; CRYSTALS; MOTION; SUPERSOLIDITY; KINETICS; SLIP; FLOW AB We develop a model for the gliding of dislocations and plasticity in solid He-4. This model takes into account the Peierls barrier, multiplication and interaction of dislocations, as well as classical thermally and mechanically activated processes leading to dislocation glide. We specifically examine the dc stress-strain curve and how it is affected by temperature, strain rate, and dislocation density. As a function of temperature and shear strain, we observe plastic deformation and discuss how this may be related to the experimental observation of elastic anomalies in solid hcp He-4 that have been discussed in connection with the possibility of supersolidity or giant plasticity. Our theory gives several predictions for the dc stress strain curves, for example, the yield point and the change in the work-hardening rate and plastic dissipation peak, that can be compared directly to constant strain-rate experiments and thus provide bounds on model parameters. C1 [Zhou, Caizhi; Graf, Matthias J.; Reichhardt, Charles; Balatsky, Alexander V.; Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhou, Caizhi] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Zhou, Caizhi] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. [Su, Jung-Jung] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 300, Taiwan. [Balatsky, Alexander V.] NORDITA, Stockholm, Sweden. RP Zhou, CZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM zhouc@mst.edu RI Beyerlein, Irene/A-4676-2011 FU US DOE at Los Alamos National Laboratory through the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC52-06NA25396]; Center for Nonlinear Studies through the LANL LDRD program; Materials Research Center at Missouri ST FX We acknowledge helpful discussions with C. J. Olson-Reichhardt, J. Toner, and Z. Nussinov. This work was supported by the US DOE at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 through the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. C.Z. acknowledges support by the Center for Nonlinear Studies through the LANL LDRD program and the Materials Research Center at Missouri S&T. NR 53 TC 6 Z9 6 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 24 PY 2013 VL 88 IS 2 AR 024513 DI 10.1103/PhysRevB.88.024513 PG 8 WC Physics, Condensed Matter SC Physics GA 188TE UT WOS:000322215700004 ER PT J AU Leguillon, R Petrache, CM Zerrouki, T Konstantinopoulos, T Hauschild, K Korichi, A Lopez-Martens, A Frauendorf, S Ragnarsson, I Greenlees, PT Jakobsson, U Jones, P Julin, R Juutinen, S Ketelhut, S Leino, M Nieminen, P Nyman, M Peura, P Rahkila, P Ruotsalainen, P Sandzelius, M Saren, J Scholey, C Sorri, J Uusitalo, J Hubel, H Neusser-Neffgen, A Al-Khatib, A Burger, A Nenoff, N Singh, AK Curien, D Hagemann, GB Herskind, B Sletten, G Fallon, P Gorgen, A Bednarczyk, P Cullen, DM AF Leguillon, R. Petrache, C. M. Zerrouki, T. Konstantinopoulos, T. Hauschild, K. Korichi, A. Lopez-Martens, A. Frauendorf, S. Ragnarsson, I. Greenlees, P. T. Jakobsson, U. Jones, P. Julin, R. Juutinen, S. Ketelhut, S. Leino, M. Nieminen, P. Nyman, M. Peura, P. Rahkila, P. Ruotsalainen, P. Sandzelius, M. Saren, J. Scholey, C. Sorri, J. Uusitalo, J. Huebel, H. Neusser-Neffgen, A. Al-Khatib, A. Buerger, A. Nenoff, N. Singh, A. K. Curien, D. Hagemann, G. B. Herskind, B. Sletten, G. Fallon, P. Goergen, A. Bednarczyk, P. Cullen, D. M. TI High-spin spectroscopy of Nd-140 SO PHYSICAL REVIEW C LA English DT Article ID COINCIDENCE DATA SETS; TOTAL DATA READOUT; ROTATIONAL BANDS; SPECTROMETER; COLLECTIVITY; EXCITATIONS; TERMINATION; NUCLEI; STATE AB The population of the high-spin states in Nd-140 was investigated using the reaction Zr-96(Ca-48,4n). The results from two experiments, one with the EUROBALL array and one with the JUROGAM II + RITU + GREAT setup employing the recoil decay tagging technique, have been combined to develop a very detailed level scheme for Nd-140. Twelve bands of quadrupole transitions and eleven bands of dipole transitions were identified and their connections to low-lying states were established. Calculations using the cranked Nilsson-Strutinsky and the tilted axis cranking models were used to interpret the observed structures. The overall good agreement between the experimental results and the calculations assuming a triaxial shape of the nucleus strongly support the existence of a stable triaxial shape at high spins in this mass region. C1 [Leguillon, R.; Petrache, C. M.; Zerrouki, T.; Konstantinopoulos, T.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.] Univ Paris 11, Ctr Sci Nucl & Sci Mat, F-91405 Orsay, France. [Leguillon, R.; Petrache, C. M.; Zerrouki, T.; Konstantinopoulos, T.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.] CNRS IN2P3, F-91405 Orsay, France. [Frauendorf, S.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Ragnarsson, I.] Lund Univ, LTH, Div Math Phys, SE-22100 Lund, Sweden. [Greenlees, P. T.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nieminen, P.; Nyman, M.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Saren, J.; Scholey, C.; Sorri, J.; Uusitalo, J.] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. [Huebel, H.; Neusser-Neffgen, A.; Al-Khatib, A.; Buerger, A.; Nenoff, N.; Singh, A. K.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Curien, D.] Inst Pluridisciplinaire Hubert Curien, Dept Rech Subatom, F-67037 Strasbourg, France. [Hagemann, G. B.; Herskind, B.; Sletten, G.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Fallon, P.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Goergen, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Bednarczyk, P.] Polish Acad Sci, Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Cullen, D. M.] Univ Manchester, Schuster Lab, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. RP Leguillon, R (reprint author), Univ Paris 11, Ctr Sci Nucl & Sci Mat, F-91405 Orsay, France. RI Scholey, Catherine/G-2720-2014; Petrache, Costel/E-9867-2012; Hauschild, Karl/A-6726-2009; OI Scholey, Catherine/0000-0002-8743-6071; Petrache, Costel/0000-0001-8419-1390; Gorgen, Andreas/0000-0003-1916-9941; Ruotsalainen, Panu/0000-0002-8335-452X; Jakobsson, Ulrika/0000-0001-9741-141X; Peura, Pauli/0000-0002-8541-0169 FU Swedish Natural Science Research Council; Japan Society for the Promotion of Science (JSPS) under the "JSPS Invitation Fellowship Program for Research in Japan"; DOE [DE-FG02-95ER4093, DE-AC03-76SF00098]; Academy of Finland under the Finnish Centre of Excellence Programme [131665]; BMBF, Germany [06 BN 07, 06 BN 109]; EU [HPRI-CT-1999-00078]; Italian National Institute of Nuclear Physics (INFN); Danish Science Foundation; Swedish Science Research Council FX This work was supported by Swedish Natural Science Research Council. C.P. acknowledges the Japan Society for the Promotion of Science (JSPS) under the "FY2011 JSPS Invitation Fellowship Program for Research in Japan." S.F. acknowledges DOE Grant No. DE-FG02-95ER4093. For the JUROGAM II experiment we acknowledge the EU-FP7 Integrating Activities Project ENSAR (No. 262010), the Academy of Finland under the Finnish Centre of Excellence Programme 2006-2011 (Contract No. 131665), and the European GAMMAPOOL network (EUROBALL owners committee) for providing the detectors of JUROGAM II. The authors thank the GABRIELA Collaboration for the loan of the TNT2D cards. The work of the Bonn group was supported by BMBF, Germany, under Contracts No. 06 BN 07 and No. 06 BN 109. The EUROBALL was supported by the EU under Contract No. HPRI-CT-1999-00078, by the Italian National Institute of Nuclear Physics (INFN), by the Danish Science Foundation, by the Swedish Science Research Council, and by the DOE under Contract No. DE-AC03-76SF00098. NR 36 TC 9 Z9 10 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 24 PY 2013 VL 88 IS 1 AR UNSP 014323 DI 10.1103/PhysRevC.88.014323 PG 20 WC Physics, Nuclear SC Physics GA 188TJ UT WOS:000322216300004 ER PT J AU Brinzari, TV Haraldsen, JT Chen, P Sun, QC Kim, Y Tung, LC Litvinchuk, AP Schlueter, JA Smirnov, D Manson, JL Singleton, J Musfeldt, JL AF Brinzari, T. V. Haraldsen, J. T. Chen, P. Sun, Q. -C. Kim, Y. Tung, L. -C. Litvinchuk, A. P. Schlueter, J. A. Smirnov, D. Manson, J. L. Singleton, J. Musfeldt, J. L. TI Electron-Phonon and Magnetoelastic Interactions in Ferromagnetic Co[N(CN)(2)](2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAMAN-SCATTERING; CO; NI AB We combined Raman and infrared vibrational spectroscopies with complementary lattice dynamics calculations and magnetization measurements to reveal the dynamic aspects of charge-lattice-spin coupling in Co[N(CN)(2)](2). Our work uncovers electron-phonon coupling as a magnetic field-driven avoided crossing of the low-lying Co2+ electronic excitation with two ligand phonons and a magnetoelastic effect that signals a flexible local CoN6 environment. Their simultaneous presence indicates the ease with which energy is transferred over multiple length and time scales in this system. C1 [Brinzari, T. V.; Chen, P.; Sun, Q. -C.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Haraldsen, J. T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Haraldsen, J. T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Kim, Y.; Tung, L. -C.; Smirnov, D.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Litvinchuk, A. P.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Litvinchuk, A. P.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Manson, J. L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. [Singleton, J.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Brinzari, TV (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RI Sun, Qi/A-2686-2009; Haraldsen, Jason/B-9809-2012; Litvinchuk, Alexander/K-6991-2012 OI Sun, Qi/0000-0001-7341-7470; Haraldsen, Jason/0000-0002-8641-5412; Litvinchuk, Alexander/0000-0002-5128-5232 FU National Science Foundation [DMR-1063880, DMR-1005825, DMR-0654118]; U.S. Department of Energy (NHMFL) [DE-AC52-06NA25396]; center for integrated nanotechnologies (an Office of Science User Facility) [DE-AC02-06CH11357]; state of Florida (NHMFL); state of Texas through the Texas Center for Superconductivity FX Research supported by the National Science Foundation under DMR-1063880 (J.L.M., UT), DMR-1005825 (J.L.M., EWU), DMR-0654118 (NHMFL), the U.S. Department of Energy (NHMFL), DE-AC52-06NA25396 and the center for integrated nanotechnologies (an Office of Science User Facility) (J.T.H.), DE-AC02-06CH11357 (J.A.S.), the state of Florida (NHMFL), and the state of Texas through the Texas Center for Superconductivity (A.P.L., UH). NR 32 TC 10 Z9 10 U1 4 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2013 VL 111 IS 4 AR 047202 DI 10.1103/PhysRevLett.111.047202 PG 5 WC Physics, Multidisciplinary SC Physics GA 188TV UT WOS:000322218000011 PM 23931402 ER PT J AU Hojjati, A Linder, EV Samsing, J AF Hojjati, Alireza Linder, Eric V. Samsing, Johan TI New Constraints on the Early Expansion History of the Universe SO PHYSICAL REVIEW LETTERS LA English DT Article AB Cosmic microwave background measurements have pushed to higher resolution, lower noise, and more sky coverage. These data enable a unique test of the early Universe's expansion rate and constituents such as effective number of relativistic degrees of freedom and dark energy. Using the most recent data from Planck and WMAP9, we constrain the expansion history in a model-independent manner from today back to redshift z = 10(5). The Hubble parameter is mapped to a few percent precision, limiting early dark energy and extra relativistic degrees of freedom within a model-independent approach to 2%-16% and 0.71 equivalent neutrino species, respectively (95% C.L.). Within dark radiation, barotropic ether, and Doran-Robbers models, the early dark energy constraints are 3.3%, 1.9%, and 1.2%, respectively. C1 [Hojjati, Alireza; Linder, Eric V.] Ewha Womans Univ, Inst Early Universe WCU, Seoul 120750, South Korea. [Linder, Eric V.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Linder, Eric V.] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA. [Samsing, Johan] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. RP Hojjati, A (reprint author), Ewha Womans Univ, Inst Early Universe WCU, Seoul 120750, South Korea. FU WCU Korea Grant [R32-2009-000-10130-0]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Danish National Research Foundation FX We thank Stephen Appleby, Scott Daniel, and Tristan Smith for helpful discussions. A. H. acknowledges the Berkeley Center for Cosmological Physics for hospitality. This work has been supported by WCU Korea Grant No. R32-2009-000-10130-0 and the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Dark Cosmology Centre is funded by the Danish National Research Foundation. NR 17 TC 7 Z9 7 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2013 VL 111 IS 4 AR 041301 DI 10.1103/PhysRevLett.111.041301 PG 5 WC Physics, Multidisciplinary SC Physics GA 188TV UT WOS:000322218000003 PM 23931352 ER PT J AU Kay, BP Schiffer, JP Freeman, SJ AF Kay, B. P. Schiffer, J. P. Freeman, S. J. TI Quenching of Cross Sections in Nucleon Transfer Reactions SO PHYSICAL REVIEW LETTERS LA English DT Article ID STATES AB Cross sections for proton knockout observed in (e,e' p) reactions are apparently quenched by a factor of similar to 0.5, an effect attributed to short-range correlations between nucleons. Here we demonstrate that such quenching is not restricted to proton knockout, but a more general phenomenon associated with any nucleon transfer. Measurements of absolute cross sections on a number of targets between O-16 and Pb-208 were analyzed in a consistent way, with the cross sections reduced to spectroscopic factors through the distorted-wave Born approximation with global optical potentials. Across the 124 cases analyzed here, induced by various proton- and neutron-transfer reactions and with angular momentum transfer l = 0-7, the results are consistent with a quenching factor of 0.55. This is an apparently uniform quenching of single-particle motion in the nuclear medium. The effect is seen not only in (d, p) reactions but also in reactions with A = 3 and 4 projectiles, when realistic wave functions are used for the projectiles. C1 [Kay, B. P.; Schiffer, J. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Kay, B. P.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Freeman, S. J.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. RP Kay, BP (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM kay@phy.anl.gov RI Kay, Benjamin/F-3291-2011; Freeman, Sean/B-1280-2010 OI Kay, Benjamin/0000-0002-7438-0208; Freeman, Sean/0000-0001-9773-4921 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; UK Science and Technology Facilities Council FX The authors would like to thank S. C. Pieper and L. Lapikas for helpful discussions, as well as our experimental collaborators. This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357, and the UK Science and Technology Facilities Council. NR 33 TC 15 Z9 15 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2013 VL 111 IS 4 AR 042502 DI 10.1103/PhysRevLett.111.042502 PG 5 WC Physics, Multidisciplinary SC Physics GA 188TV UT WOS:000322218000005 PM 23931360 ER PT J AU Laverock, J Chen, B Smith, KE Singh, RP Balakrishnan, G Gu, M Lu, JW Wolf, SA Qiao, RM Yang, W Adell, J AF Laverock, J. Chen, B. Smith, K. E. Singh, R. P. Balakrishnan, G. Gu, M. Lu, J. W. Wolf, S. A. Qiao, R. M. Yang, W. Adell, J. TI Resonant Soft-X-Ray Emission as a Bulk Probe of Correlated Electron Behavior in Metallic SrxCa1-xVO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGLE-RESOLVED PHOTOEMISSION; SPECTROSCOPY; PEROVSKITE; SURFACE; ENERGY AB The evolution of electron correlation in SrxCa1-xVO3 has been studied using a combination of bulk-sensitive resonant soft x-ray emission spectroscopy, surface-sensitive photoemission spectroscopy, and ab initio band structure calculations. We show that the effect of electron correlation is enhanced at the surface. Strong incoherent Hubbard subbands are found to lie similar to 20% closer in energy to the coherent quasiparticle features in surface-sensitive photoemission spectroscopy measurements compared with those from bulk-sensitive resonant soft x-ray emission spectroscopy, and a similar to 10% narrowing of the overall bandwidth at the surface is also observed. C1 [Laverock, J.; Chen, B.; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Singh, R. P.; Balakrishnan, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Gu, M.; Wolf, S. A.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Lu, J. W.; Wolf, S. A.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Qiao, R. M.; Yang, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Adell, J.] Lund Univ, MAX Lab, SE-22100 Lund, Sweden. RP Laverock, J (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. RI Laverock, Jude/G-4537-2010; Qiao, Ruimin/E-9023-2013; Yang, Wanli/D-7183-2011; Balakrishnan, Geetha/P-5977-2016; Chen, Bo/C-5428-2017 OI Laverock, Jude/0000-0003-3653-8171; Yang, Wanli/0000-0003-0666-8063; Balakrishnan, Geetha/0000-0002-5890-1149; Chen, Bo/0000-0002-9263-5171 FU Department of Energy [DE-FG02-98ER45680]; Boston University/University of Warwick; U.S. Department of Energy [DEAC02-05CH11231]; EPSRC Grant [EP/I007210/1]; Army Research Office through MURI Grant [W911-NF-09-1-0398] FX The authors would like to thank T. Balasubramanian for valuable discussions regarding the experiment. The Boston University program is supported in part by the Department of Energy under Grant No. DE-FG02-98ER45680 and by the Boston University/University of Warwick collaboration fund. The Advanced Light Source, Berkeley, is supported by the U.S. Department of Energy under Contract No. DEAC02-05CH11231. G. B. gratefully acknowledges financial support from EPSRC Grant No. EP/I007210/1. M. G., J. W. L., and S. A. W. gratefully acknowledge financial support from the Army Research Office through MURI Grant No. W911-NF-09-1-0398. NR 27 TC 4 Z9 4 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2013 VL 111 IS 4 AR 047402 DI 10.1103/PhysRevLett.111.047402 PG 5 WC Physics, Multidisciplinary SC Physics GA 188TV UT WOS:000322218000012 PM 23931404 ER PT J AU Liang, SH Moreo, A Dagotto, E AF Liang, Shuhua Moreo, Adriana Dagotto, Elbio TI Nematic State of Pnictides Stabilized by Interplay between Spin, Orbital, and Lattice Degrees of Freedom SO PHYSICAL REVIEW LETTERS LA English DT Article ID IRON ARSENIDE SUPERCONDUCTOR; TRANSITION; ANISOTROPY; MAGNETISM AB The nematic state of the iron-based superconductors is studied in the undoped limit of the three-orbital (xz, yz, xy) spin-fermion model via the introduction of lattice degrees of freedom. Monte Carlo simulations show that in order to stabilize the experimentally observed lattice distortion and nematic order, and to reproduce photoemission experiments, both the spin-lattice and orbital-lattice couplings are needed. The interplay between their respective coupling strengths regulates the separation between the structural and Neel transition temperatures. Experimental results for the temperature dependence of the resistivity anisotropy and the angle-resolved photoemission orbital spectral weight are reproduced by the present numerical simulations. C1 [Liang, Shuhua; Moreo, Adriana; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA. [Liang, Shuhua; Moreo, Adriana; Dagotto, Elbio] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Liang, SH (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 43 TC 61 Z9 61 U1 0 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2013 VL 111 IS 4 AR 047004 DI 10.1103/PhysRevLett.111.047004 PG 5 WC Physics, Multidisciplinary SC Physics GA 188TV UT WOS:000322218000010 PM 23931398 ER PT J AU Hou, D Qiu, JJ Xie, SJ Saxena, A AF Hou, Dong Qiu, Junjie Xie, Shijie Saxena, Avadh TI Charge-induced spin polarization in thiophene oligomers SO NEW JOURNAL OF PHYSICS LA English DT Article ID ROOM-TEMPERATURE; ORGANIC SEMICONDUCTORS; INJECTION; MAGNETORESISTANCE; POLYTHIOPHENE; POLARONS; DEFECTS AB Charge-induced spin polarization in small organic molecules is a key factor for spin transport and magnetic effects in related organic devices. In this work, we study spin polarization in charged thiophene oligomer molecules by calculating the magnetic moment with density functional theory. It is found that the emergence and variation of the net magnetic moment is related to both the amount of charge injected and the polymerization of the oligomer. In combination with model analysis, we conclude that the strong electron-electron interaction and electron-lattice interaction in organic materials are responsible for charge-induced spin polarization. C1 [Hou, Dong; Qiu, Junjie; Xie, Shijie] Shandong Univ, Sch Phys, Natl Key Lab Crystal Mat, Jinan 250100, Peoples R China. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Hou, D (reprint author), Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China. EM houdong@ustc.edu.cn; xsj@sdu.edu.cn OI Hou, Dong/0000-0003-3310-7675 FU National Basic Research Program of China [2009CB929204, 2010CB923402]; National Natural Science Foundation of China [11174181, 21161160445]; US Department of Energy FX Supports from the National Basic Research Program of China (grant numbers 2009CB929204 and 2010CB923402) and the National Natural Science Foundation of China (grant numbers 11174181 and 21161160445) are gratefully acknowledged. This work was supported in part by the US Department of Energy. NR 34 TC 8 Z9 8 U1 0 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 24 PY 2013 VL 15 AR 073044 DI 10.1088/1367-2630/15/7/073044 PG 10 WC Physics, Multidisciplinary SC Physics GA 188FD UT WOS:000322176800001 ER PT J AU Kapadia, R Yu, ZB Wang, HHH Zheng, M Battaglia, C Hettick, M Kiriya, D Takei, K Lobaccaro, P Beeman, JW Ager, JW Maboudian, R Chrzan, DC Javey, A AF Kapadia, Rehan Yu, Zhibin Wang, Hsin-Hua H. Zheng, Maxwell Battaglia, Corsin Hettick, Mark Kiriya, Daisuke Takei, Kuniharu Lobaccaro, Peter Beeman, Jeffrey W. Ager, Joel W. Maboudian, Roya Chrzan, Daryl C. Javey, Ali TI A direct thin-film path towards low-cost large-area III-V photovoltaics SO SCIENTIFIC REPORTS LA English DT Article ID SOLAR-CELLS; INP; EFFICIENCY; NANOWIRES; GROWTH; ARRAYS; LIMIT; GAAS; LUMINESCENCE; EPITAXY AB III-V photovoltaics (PVs) have demonstrated the highest power conversion efficiencies for both single- and multi-junction cells. However, expensive epitaxial growth substrates, low precursor utilization rates, long growth times, and large equipment investments restrict applications to concentrated and space photovoltaics (PVs). Here, we demonstrate the first vapor-liquid-solid (VLS) growth of high-quality III-V thin-films on metal foils as a promising platform for large-area terrestrial PVs overcoming the above obstacles. We demonstrate 1-3 mu m thick InP thin-films on Mo foils with ultra-large grain size up to 100 mu m, which is similar to 100 times larger than those obtained by conventional growth processes. The films exhibit electron mobilities as high as 500 cm(2)/V-s and minority carrier lifetimes as long as 2.5 ns. Furthermore, under 1-sun equivalent illumination, photoluminescence efficiency measurements indicate that an open circuit voltage of up to 930 mV can be achieved, only 40 mV lower than measured on a single crystal reference wafer. C1 [Kapadia, Rehan; Yu, Zhibin; Wang, Hsin-Hua H.; Zheng, Maxwell; Battaglia, Corsin; Hettick, Mark; Kiriya, Daisuke; Takei, Kuniharu; Lobaccaro, Peter; Maboudian, Roya; Chrzan, Daryl C.; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kapadia, Rehan; Yu, Zhibin; Wang, Hsin-Hua H.; Zheng, Maxwell; Battaglia, Corsin; Hettick, Mark; Kiriya, Daisuke; Takei, Kuniharu; Lobaccaro, Peter; Beeman, Jeffrey W.; Ager, Joel W.; Chrzan, Daryl C.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ajavey@berkeley.edu RI Battaglia, Corsin/B-2917-2010; Javey, Ali/B-4818-2013; OI Ager, Joel/0000-0001-9334-9751 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy through the Bay Area Photovoltaic Consortium [DE-EE0004946]; World Class University program at Sunchon National University FX We thank Eli Yablonovitch for insightful discussions. The growth modeling and optical characterization parts of this work were funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The process development and engineering aspects of this work were supported by the Department of Energy through the Bay Area Photovoltaic Consortium under Award Number DE-EE0004946. A.J. acknowledges support from the World Class University program at Sunchon National University. NR 27 TC 17 Z9 17 U1 4 U2 75 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 24 PY 2013 VL 3 AR 2275 DI 10.1038/srep02275 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 187XC UT WOS:000322153800003 PM 23881474 ER PT J AU Kalavathi, S Raju, SV Williams, Q Sahu, PC Sastry, VS Sahu, HK AF Kalavathi, S. Raju, Selva Vennila Williams, Quentin Sahu, P. Ch Sastry, V. S. Sahu, H. K. TI Pressure-induced frustration in charge ordered spinel AlV2O4 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TRANSITION; CUIR2S4 AB AlV2O4 is the only spinel compound so far known that exists in the charge ordered state at room temperature. It is known to transform to a charge frustrated cubic spinel structure above 427 degrees C. The presence of multivalent V ions in the pyrochlore lattice of the cubic spinel phase brings about the charge frustration that is relieved in the room temperature rhombohedral phase by the clustering of vanadium into a heptamer molecular unit along with a lone V atom. The present work is the first demonstration of pressure-induced frustration in the charge ordered state of AlV2O4. Synchrotron powder x-ray diffraction studies carried out at room temperature on AlV2O4 subjected to high pressure in a diamond anvil cell show that the charge ordered rhombohedral phase becomes unstable under the application of pressure and transforms to the frustrated cubic spinel structure. The frustration is found to be present even after pressure recovery. The possible role of pressure on vanadium t(2g) orbitals in understanding these observations is discussed. C1 [Kalavathi, S.; Sahu, P. Ch; Sastry, V. S.; Sahu, H. K.] Indira Gandhi Ctr Atom Res, Condensed Matter Phys Div, Mat Sci Grp, Kalpakkam 603102, Tamil Nadu, India. [Raju, Selva Vennila] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Raju, Selva Vennila] Florida Int Univ, CeSMEC, Miami, FL 33199 USA. [Williams, Quentin] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. RP Kalavathi, S (reprint author), Indira Gandhi Ctr Atom Res, Condensed Matter Phys Div, Mat Sci Grp, Kalpakkam 603102, Tamil Nadu, India. EM kala@igcar.gov.in FU NSF [EAR 11-57758]; ALS; Office of Science, Office of Basic Energy Sciences, of the US DoE [DE-AC02-05CH11231] FX The author SK thanks Dr A Arulraj for useful discussions and the Director, MSG, IGCAR, for support. The authors QW and SVR thank COMPRES, the Consortium for Materials Properties Research in Earth Sciences (funded through NSF EAR 11-57758), and ALS for the financial support for carrying out this work. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US DoE under Contract No. DE-AC02-05CH11231. NR 25 TC 3 Z9 3 U1 0 U2 42 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 24 PY 2013 VL 25 IS 29 AR 292201 DI 10.1088/0953-8984/25/29/292201 PG 6 WC Physics, Condensed Matter SC Physics GA 175GP UT WOS:000321219200001 PM 23803292 ER PT J AU Lin, L Chen, M Yang, C He, LX AF Lin, Lin Chen, Mohan Yang, Chao He, Lixin TI Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID DENSITY-FUNCTIONAL THEORY; FINITE-ELEMENT-METHOD; MOLECULAR-DYNAMICS; BASIS-SETS; ENERGY; MATRIX; PROJECTION; ALGORITHM; SYSTEMS AB We describe how to apply the recently developed pole expansion and selected inversion (PEXSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating the charge density, the total energy, the Helmholtz free energy and the atomic forces (including both the Hellmann-Feynman force and the Pulay force) without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham eigenvalues. The advantage of using PEXSI is that it has a computational complexity much lower than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEXSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEXSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEXSI are modest. This even makes it possible to perform Kohn-Sham DFT calculations for 10 000-atom nanotubes with a sequential implementation of the selected inversion algorithm. We also perform an accurate geometry optimization calculation on a truncated (8, 0) boron nitride nanotube system containing 1024 atoms. Numerical results indicate that the use of PEXSI does not lead to loss of the accuracy required in a practical DFT calculation. C1 [Lin, Lin; Yang, Chao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Chen, Mohan; He, Lixin] Univ Sci & Technol China, CAS, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China. RP Lin, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RI Chen, Mohan/F-4621-2017 OI Chen, Mohan/0000-0002-8071-5633 FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the US Department of Energy [DE-AC02-05CH11231]; Scientific Discovery through Advanced Computing (SciDAC) program; US Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences; Chinese National Natural Science Funds for Distinguished Young Scholars FX This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the US Department of Energy contract number DE-AC02-05CH11231 and by the Scientific Discovery through Advanced Computing (SciDAC) program funded by the US Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences (LL and CY), and by the Chinese National Natural Science Funds for Distinguished Young Scholars (LH). NR 44 TC 23 Z9 23 U1 0 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 24 PY 2013 VL 25 IS 29 AR 295501 DI 10.1088/0953-8984/25/29/295501 PG 14 WC Physics, Condensed Matter SC Physics GA 175GP UT WOS:000321219200006 PM 23803312 ER PT J AU Brodin, J Mild, M Hedskog, C Sherwood, E Leitner, T Andersson, B Albert, J AF Brodin, Johanna Mild, Mattias Hedskog, Charlotte Sherwood, Ellen Leitner, Thomas Andersson, Bjoern Albert, Jan TI PCR-Induced Transitions Are the Major Source of Error in Cleaned Ultra-Deep Pyrosequencing Data SO PLOS ONE LA English DT Article ID DRUG-RESISTANCE MUTATIONS; POLYMERASE CHAIN-REACTION; DNA-POLYMERASE; MINORITY VARIANTS; NAIVE PATIENTS; HIV-1; DIVERSITY; AMPLICONS; FIDELITY; THERAPY AB Background: Ultra-deep pyrosequencing (UDPS) is used to identify rare sequence variants. The sequence depth is influenced by several factors including the error frequency of PCR and UDPS. This study investigated the characteristics and source of errors in raw and cleaned UDPS data. Results: UDPS of a 167-nucleotide fragment of the HIV-1 SG3Denv plasmid was performed on the Roche/454 platform. The plasmid was diluted to one copy, PCR amplified and subjected to bidirectional UDPS on three occasions. The dataset consisted of 47,693 UDPS reads. Raw UDPS data had an average error frequency of 0.30% per nucleotide site. Most errors were insertions and deletions in homopolymeric regions. We used a cleaning strategy that removed almost all indel errors, but had little effect on substitution errors, which reduced the error frequency to 0.056% per nucleotide. In cleaned data the error frequency was similar in homopolymeric and non-homopolymeric regions, but varied considerably across sites. These site-specific error frequencies were moderately, but still significantly, correlated between runs (r = 0.15-0.65) and between forward and reverse sequencing directions within runs (r = 0.33-0.65). Furthermore, transition errors were 48-times more common than transversion errors (0.052% vs. 0.001%; p<0.0001). Collectively the results indicate that a considerable proportion of the sequencing errors that remained after data cleaning were generated during the PCR that preceded UDPS. Conclusions: A majority of the sequencing errors that remained after data cleaning were introduced by PCR prior to sequencing, which means that they will be independent of platform used for next-generation sequencing. The transition vs. transversion error bias in cleaned UDPS data will influence the detection limits of rare mutations and sequence variants. C1 [Brodin, Johanna; Mild, Mattias; Hedskog, Charlotte; Albert, Jan] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden. [Mild, Mattias] Swedish Inst Infect Dis Control, Dept Virol, Stockholm, Sweden. [Sherwood, Ellen] Sci Life Lab Stockholm, Solna, Sweden. [Leitner, Thomas] Los Alamos Natl Lab, Los Alamos, NM USA. [Andersson, Bjoern] Karolinska Inst, Dept Cell & Mol Biol, Stockholm, Sweden. RP Brodin, J (reprint author), Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden. EM johanna.brodin@ki.se RI Andersson, Bjorn/G-9832-2013 OI Andersson, Bjorn/0000-0002-4624-0259 FU Swedish Research Council [2007-1131-49460-36]; NIH [R01AI087520]; Swedish International Development Cooperation Agency [SWE-2006-018]; Swedish Parliament and Government; EU grants Europe HIV Resistance (EHR) [LSHP-CT-2006-518211]; CHAIN [223131]; The Swedish Research Council FX The research leading to these results has received funding from the Swedish Research Council (grant no. 2007-1131-49460-36); the NIH (grant no. R01AI087520); Swedish International Development Cooperation Agency (grant no. SWE-2006-018), a noncommercial organization working according to directives of the Swedish Parliament and Government (http://www.sida.se/English/); the EU grants Europe HIV Resistance (EHR) (LSHP-CT-2006-518211) and CHAIN (FP7/2007-2013) "Collaborative HIV and Anti-HIV Drug Resistance Network" grant agreement nu 223131. M. Mild was funded by a post doctoral fellowship grant from The Swedish Research Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 33 TC 26 Z9 27 U1 1 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 23 PY 2013 VL 8 IS 7 AR e70388 DI 10.1371/journal.pone.0070388 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 228SX UT WOS:000325211000207 PM 23894647 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amoroso, S Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Artamonov, A Artoni, G Arutinov, D Asai, S Ask, S Asman, B Asquith, L Assamagan, K Astalos, R Astbury, A Atkinson, M Auerbach, B Auge, E Augsten, K Aurousseau, M Avolio, G Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Harpaz, SB Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Bernlochner, FU Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, CW Black, JE Black, KM Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blocki, J Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Chow, BKB Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Courneyea, L Cowan, G Cox, BE Cranmer, K Crepe-Renaudin, S Crescioli, F Cristinziani, M Crosetti, G Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallaire, F Dallapiccola, C Dam, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De La Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Dohmae, T Doi, Y Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doyle, AT Dressnandt, N Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duerdoth, IP Duflot, L Dufour, MA Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Duxfield, R Dwuznik, M Ebenstein, WL Ebke, J Eckweiler, S Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facini, G Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, MJ Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadatsch, S Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gandrajula, RP Gao, YS Gaponenko, A Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gillman, AR Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gopfert, T Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hajduk, Z Hakobyan, H Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hard, AS Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jeng, GY Jen-La Plante, I Jennens, D Jenni, P Jeske, C Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Keller, JS Kenyon, M Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koenig, S Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Krejci, F Kretzschmar, J Kreutzfeldt, K Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, MK Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, D Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Lukas, W Luminari, L Lund, E Lundberg, B Lundberg, J Lundberg, O Lund-Jensen, B Lundquist, J Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madar, R Madaras, RJ Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Outschoorn, VM Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, A Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Herrera, CM Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, N Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Mueller, T Muenstermann, D Muller, TA Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Nguyen, DH Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nozaki, M Nozka, L Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Morales, IP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poblaguev, A Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quilty, D Raas, M Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Ritsch, E Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarrazin, B Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaelicke, A Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, A South, D Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Su, D Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Tuna, AN Turala, M Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Vacavant, L Vacek, V Vachon, B Vahsen, S Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Williams, S Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yasu, Y Yatsenko, E Ye, J Ye, S Yen, AL Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, D Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, L Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zibell, A Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Astbury, A. Atkinson, M. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Harpaz, S. Behar Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Bernlochner, F. U. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, C. W. Black, J. E. Black, K. M. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Chow, B. K. B. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Courneyea, L. Cowan, G. Cox, B. E. Cranmer, K. Crepe-Renaudin, S. Crescioli, F. Cristinziani, M. Crosetti, G. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallaire, F. Dallapiccola, C. Dam, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De La Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Dohmae, T. Doi, Y. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doyle, A. T. Dressnandt, N. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duerdoth, I. P. Duflot, L. Dufour, M-A. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Duxfield, R. Dwuznik, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facini, G. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, M. J. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadatsch, S. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gandrajula, R. P. Gao, Y. S. Gaponenko, A. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gillman, A. R. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Goepfert, T. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hajduk, Z. Hakobyan, H. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hard, A. S. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jeng, G. -Y. Jen-La Plante, I. Jennens, D. Jenni, P. Jeske, C. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Keller, J. S. Kenyon, M. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koenig, S. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Koeneke, K. Koenig, A. C. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Krejci, F. Kretzschmar, J. Kreutzfeldt, K. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, M. K. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, D. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Lukas, W. Luminari, L. Lund, E. Lundberg, B. Lundberg, J. Lundberg, O. Lund-Jensen, B. Lundquist, J. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madar, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Outschoorn, V. Martinez Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Maettig, P. Maettig, S. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Michal, S. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, A. Mitsui, S. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moeller, V. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moeser, N. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Muenstermann, D. Mueller, T. A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Nguyen, D. H. Nguyen Thi Hong, V. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nozaki, M. Nozka, L. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Morales, I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Cavalcanti, T. Perez Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poblaguev, A. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quilty, D. Raas, M. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Ritsch, E. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarrazin, B. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. South, D. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Su, D. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Tuna, A. N. Turala, M. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vu Anh, T. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Williams, S. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yasu, Y. Yatsenko, E. Ye, J. Ye, S. Yen, A. L. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, L. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for t(t)over-bar resonances in the lepton plus jets final state with ATLAS using 4.7 fb(-1) of pp collisions at root s=7 TeV SO PHYSICAL REVIEW D LA English DT Article ID PRODUCTION CROSS-SECTION; PARTON DISTRIBUTIONS; HADRON-COLLISIONS; PAIR PRODUCTION; LHC; ALGORITHMS; DETECTOR; CHANNEL AB A search for new particles that decay into top quark pairs (t (t) over bar) is performed with the ATLAS experiment at the LHC using an integrated luminosity of 4.7 fb(-1) of proton-proton (pp) collision data collected at a center-of-mass energy root s = 7 TeV. In the t (t) over bar) -> WbWb decay, the lepton plus jets final state is used, where one W boson decays leptonically and the other hadronically. The t (t) over bar) system is reconstructed using both small-radius and large-radius jets, the latter being supplemented by a jet substructure analysis. A search for local excesses in the number of data events compared to the Standard Model expectation in the t (t) over bar) invariant mass spectrum is performed. No evidence for a t (t) over bar) resonance is found and 95% credibility-level limits on the production rate are determined for massive states predicted in two benchmark models. The upper limits on the cross section times branching ratio of a narrow Z' resonance range from 5.1 pb for a boson mass of 0.5 TeV to 0.03 pb for a mass of 3 TeV. A narrow leptophobic topcolor Z' resonance with a mass below 1.74 TeV is excluded. Limits are also derived for a broad color-octet resonance with m 15.3%. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.07 TeV. C1 [Jackson, B.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Sbrizzi, A.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Grafstroem, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Milan, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.; Zambito, S.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSH, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Facini, G.; Farthouat, P.; Fassnacht, P.; Franchino, S.; Francis, D.; Franz, S.; Froidevaux, D.; Gabaldon, C.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Koeneke, K.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Meyer, J.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, J.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cottin, G.; Diaz, M. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, B.; Li, S.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Wu, Y.; Xu, C.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Meng, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Dodd, J.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Reale, V. Perez; Scherzer, M. I.; Spousta, M.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Loevschall-Jensen, A. E.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-1168 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Milan, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Namasivayam, H.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Peters, R. F. Y.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Peters, R. F. Y.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Grohs, J. P.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Finelli, K. D.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Walls, F. M. Garay; Harrington, R. D.; Korn, A.; Martin, V. J.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Amoroso, S.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Madar, R.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Vu Anh, T.; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Bucci, F.; Clark, A.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Graber, L.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Peters, R. F. Y.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Halladjian, G.; Limper, M.; Mallik, U.; Mandrysch, R.; Morange, N.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kazarinov, M. Y.; Kharchenko, D.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Nash, M.; Nurse, E.; Ochoa, M. I.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Meric, N.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Meric, N.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Meric, N.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Wielers, M.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De La Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Goeringer, C.; Handel, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Tomlinson, L.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Mantifel, R.; Mc Donald, J.; Robertson, S. H.; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Quebec City, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Qian, J.; Scheirich, D.; Searcy, J.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Ge, P.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, I-20122 Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Dallaire, F.; Davies, M.; Gauthier, L.; Giunta, M.; Leroy, C.; Martin, J. P.; Soueid, P.] Univ Montreal, Grp Particle Phys, Quebec City, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst Phys, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; Dao, V.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, S.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. S.; Bogdanchikov, A.; Kazanin, V. F.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J. S.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Colombo, T.; Conta, C.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Dressnandt, N.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Holy, T.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Torregrosa, E. Fullana; Kodys, P.; Leitner, R.; Novakova, J.; Pleskot, V.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Messina, A.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Milan, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Martinez, H.; Meyer, J-P.; Mijovic, L.; Mountricha, E.; Nguyen Thi Hong, V.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, DSM IRFU Inst Rech Lois Fondamentales Univers, F-91191 Gif Sur Yvette, France. [Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, T. M.; Carrillo-Montoya, G. D.; Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Petridis, A.; Plucinski, P.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Petridis, A.; Plucinski, P.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, L.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Di Mattia, A.; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Cheung, S. L.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Polifka, R.; Rezvani, R.; Rosenbaum, G. A.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Milan, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Irles Quiles, A.; Belenguer, M. Jimenez; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Fedorko, W.; Gay, C.; Gecse, Z.; Lister, A.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jeske, C.; Jones, G.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Hard, A. S.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fischer, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Toronto, ON, Canada. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dep Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; O'Shea, Val/G-1279-2010; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Kuday, Sinan/C-8528-2014; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Bosman, Martine/J-9917-2014; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Joergensen, Morten/E-6847-2015; Villa, Mauro/C-9883-2009; Carvalho, Joao/M-4060-2013; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Kepka, Oldrich/G-6375-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Lysak, Roman/H-2995-2014; Doyle, Anthony/C-5889-2009; Marti-Garcia, Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; De, Kaushik/N-1953-2013; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; Sukharev, Andrey/A-6470-2014; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012; Andreazza, Attilio/E-5642-2011; Boyko, Igor/J-3659-2013; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Ferrando, James/A-9192-2012; Brooks, William/C-8636-2013; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012 OI KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; O'Shea, Val/0000-0001-7183-1205; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Bosman, Martine/0000-0002-7290-643X; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Joergensen, Morten/0000-0002-6790-9361; Villa, Mauro/0000-0002-9181-8048; Carvalho, Joao/0000-0002-3015-7821; Mikestikova, Marcela/0000-0003-1277-2596; Doyle, Anthony/0000-0001-6322-6195; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; De, Kaushik/0000-0002-5647-4489; Warburton, Andreas/0000-0002-2298-7315; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Andreazza, Attilio/0000-0001-5161-5759; Boyko, Igor/0000-0002-3355-4662; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Ferrando, James/0000-0002-1007-7816; Brooks, William/0000-0001-6161-3570; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNSF, Georgia; DFG; HGF; MPG; AvH Foundation, Germany; GSRT; NSRF, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; BRF; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MIZS., Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society and Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS., Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide. NR 87 TC 13 Z9 13 U1 6 U2 146 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 23 PY 2013 VL 88 IS 1 AR 012004 DI 10.1103/PhysRevD.88.012004 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 187UG UT WOS:000322145600002 ER PT J AU Bai, P Kim, MI Xu, T AF Bai, Peter Kim, Myung Im Xu, Ting TI Thermally Controlled Morphologies in a Block Copolymer Supramolecule via Nonreversible Order-Order Transitions SO MACROMOLECULES LA English DT Article ID MAGNETIC-FIELD ALIGNMENT; POLYMER-SURFACTANT SYSTEMS; LIQUID-CRYSTALLINE PHASE; SIDE-CHAIN POLYMERS; MESOMORPHIC STRUCTURES; DIBLOCK COPOLYMERS; LENGTH SCALES; NANOCOMPOSITES; ASSEMBLIES; COMPLEXES AB Block copolymer (BCP)-based supramolecules represent a versatile platform to generate functional nanostructures without the need for complex synthesis. The noncovalent bonding between the BCP and small molecules further opens opportunities to access thermal responsive assemblies. A BCP supramolecule containing cholesteric liquid crystal (LC) small molecules is observed to undergo thermally induced, nonreversible order-order transitions (OOTs), resulting in several well-defined morphologies readily tunable by annealing temperature. The nonreversible OOTs highlight the importance of small molecule phase transitions and intermolecular interactions on the overall phase behavior of the supramolecule. The present system also provides a route to manipulate local nanostructures via heating. C1 [Bai, Peter; Kim, Myung Im; Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bai, Peter; Xu, Ting] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM tingxu@berkeley.edu RI Bai, Peter/J-9084-2014 FU National Science Foundation [DMR-1007002]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Clayton Mauldin and Prof. Jean Frechet for providing ChHP for initial studies. This work was supported by the National Science Foundation under Contract DMR-1007002. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 36 TC 15 Z9 15 U1 3 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD JUL 23 PY 2013 VL 46 IS 14 BP 5531 EP 5537 DI 10.1021/ma401033w PG 7 WC Polymer Science SC Polymer Science GA 191ML UT WOS:000322417100015 ER PT J AU Kim, S Dura, JA Page, KA Rowe, BW Yager, KG Lee, HJ Soles, CL AF Kim, Sangcheol Dura, Joseph A. Page, Kirt A. Rowe, Brandon W. Yager, Kevin G. Lee, Hae-Jeong Soles, Christopher L. TI Surface-Induced Nanostructure and Water Transport of Thin Proton-Conducting Polymer Films SO MACROMOLECULES LA English DT Article ID ANGLE NEUTRON-SCATTERING; FUEL-CELLS; NAFION MEMBRANES; INTERFACE; REFLECTIVITY; PERFORMANCE; ADSORPTION; DYNAMICS; VAPOR AB We quantify the interfacial nanostructure and corresponding water transport kinetics in thin films of Nafion which are known to show nonbulk like transport properties using neutron reflectivity (NR) and quartz-crystal microbalance (QCM) measurements integrated with in-situ, controlled relative humidity environments. Rigorous fitting of the NR data under humidified conditions reveals that a hydrophilic organosilicate substrate induces an interfacial layering of the water transport domains parallel to the substrate whereas the hydrophobic organosilicate analogue does not trigger this interfacial ordering. The interfacial layering on the hydrophilic substrate is accompanied by an excess in the total mass of water absorption as verified by QCM measurements. The excess water in the thin Nafion films is quantitatively consistent with the segregation amounts and length scales quantified by NR. However, we do not observe strong differences in the water transport kinetics in thin Nafion films where the volume fraction of the materials with the water transport oriented parallel substrate, orthogonal to the primary direction of transport, is on the order of approximate to 7 vol %; to a first approximation the majority of the transport kinetics are similar on the hydrophilic (oriented) and hydrophobic (disordered) surfaces. C1 [Kim, Sangcheol; Page, Kirt A.; Rowe, Brandon W.; Lee, Hae-Jeong; Soles, Christopher L.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Dura, Joseph A.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Kim, S (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. EM sangcheol.kim@nist.gov; kirt.page@nist.gov RI Yager, Kevin/F-9804-2011; Dura, Joseph/B-8452-2008 OI Yager, Kevin/0000-0001-7745-2513; Dura, Joseph/0000-0001-6877-959X FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors thank Prof. R. M. Laine (University of Michigan and Mayaterials Inc.) for providing the OSG precursors, Dr. H. W. Ro for helping sample preparation, and Dr. W. L. Wu for helpful discussions on reflectivity data analyses. Research was carried out in part at the Center for Functional Nanomaterials and the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. NR 35 TC 13 Z9 13 U1 5 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD JUL 23 PY 2013 VL 46 IS 14 BP 5630 EP 5637 DI 10.1021/ma400750f PG 8 WC Polymer Science SC Polymer Science GA 191ML UT WOS:000322417100025 ER PT J AU Knychala, P Dziecielski, M Banaszak, M Balsara, NP AF Knychala, P. Dziecielski, M. Banaszak, M. Balsara, N. P. TI Phase Behavior of Ionic Block Copolymers Studied by a Minimal Lattice Model with Short-Range Interactions SO MACROMOLECULES LA English DT Article ID MONTE-CARLO-SIMULATION; MICROPHASE SEPARATION; COMPUTER-SIMULATION; DIBLOCK COPOLYMER; ELECTROLYTE MEMBRANES; HUMID AIR; MELTS; POLYSTYRENE; ASYMMETRY; BLENDS AB We present the results of Monte Carlo lattice simulations of a model symmetric diblock copolymer wherein a fraction of segments of one block, p, corresponds to ionic species, and the other block does not contain ions. We use experimentally determined Flory-Huggins interaction parameters, chi, to quantify the interactions between ionic and nonionic monomers. Analysis of the experimental data indicate that chi between poly(styrenesulfonate) and polystyrene is about 5, a value that is orders of magnitude larger than that obtained in mixtures of nonionic polymers. Our model predicts that clustering of ionic monomers in the disordered state results in stabilization of the disordered phase and the product p(2)chi N is well above the mean-field value of 10.5 at the order-disorder transition (N is the total number of monomers per chain). Network morphologies and hexagonally packed cylinders are observed in the ordered state at large p values while more traditional lamellar phases are found at small values of p. C1 [Knychala, P.; Dziecielski, M.; Banaszak, M.] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland. [Balsara, N. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Balsara, N. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, N. P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Banaszak, M (reprint author), Adam Mickiewicz Univ, Fac Phys, Ul Umultowska 85, PL-61614 Poznan, Poland. EM mbanasz@amu.edu.pl RI Banaszak, Michal /A-9411-2010 OI Banaszak, Michal /0000-0003-0106-632X FU Polish NCN [DEC-2012/07/N/ST4/00293]; Supercomputing and Net-working Center (PCSS) in Poznan, Poland; Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231]; Electron Microscopy of Soft Matter Program FX P.K., M.D., and M.B. gratefully acknowledge the research grant from the Polish NCN No. DEC-2012/07/N/ST4/00293, and the computational grant from the Supercomputing and Net-working Center (PCSS) in Poznan, Poland. N.P.B.'s work was supported by the Electron Microscopy of Soft Matter Program supported by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 33 TC 12 Z9 12 U1 1 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUL 23 PY 2013 VL 46 IS 14 BP 5724 EP 5730 DI 10.1021/ma400078y PG 7 WC Polymer Science SC Polymer Science GA 191ML UT WOS:000322417100035 ER PT J AU Jalarvo, N Gourdon, O Bi, ZH Gout, D Ohl, M Paranthaman, MP AF Jalarvo, Niina Gourdon, Olivier Bi, Zhonghe Gout, Delphine Ohl, Michael Paranthaman, M. Parans TI Atomic-Scale Picture of the Ion Conduction Mechanism in a Tetrahedral Network of Lanthanum Barium Gallate SO CHEMISTRY OF MATERIALS LA English DT Article DE ion conduction mechanism; proton conductor; oxide ion conductor; impedance spectroscopy; neutron powder diffraction (NPD); quasielastic neutron scattering (QENS) ID TEMPERATURE PROTON CONDUCTOR; ELASTIC NEUTRON-SCATTERING; ELECTRICAL-CONDUCTIVITY; OXIDE; LA1-XBA1+XGAO4-X/2; DYNAMICS AB Combined experimental study of impedance spectroscopy, neutron powder diffraction, and quasielastic neutron scattering was performed to shed light onto the atomic-scale ion migration processes of protons and oxide ions in La(0.8)Ba(1.2)Gao(3.9). This material consists of tetrahedral GaO(4)units, which are rather flexible, and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along the c axis, involving a single elementary step, which occurs between adjacent tetrahedra (intertetrahedra jump). The proton conduction mechanism consists of intratetrahedron and intertetrahedra elementary processes. The intratetrahedron proton transport along the c axis is the rate-limiting process, with activation energy of 0.44 eV. The intertetrahedra proton transport has the activation energy of 0.068 eV. C1 [Jalarvo, Niina; Ohl, Michael] Oak Ridge Natl Lab, SNS, Outstn, Forschungszentrum Julich,JCNS, Oak Ridge, TN 37831 USA. [Gourdon, Olivier; Gout, Delphine] Oak Ridge Natl Lab, Spallat Neutron Source, Chem & Engn Mat Div, Oak Ridge, TN 37861 USA. [Gourdon, Olivier; Gout, Delphine] Int Ctr Diffract Data, Newtown Sq, PA 19073 USA. [Bi, Zhonghe; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jalarvo, N (reprint author), Oak Ridge Natl Lab, SNS, Outstn, Forschungszentrum Julich,JCNS, Oak Ridge, TN 37831 USA. EM n.jalarvo@fz-juelich.de; Gourdon@icdd.com RI Paranthaman, Mariappan/N-3866-2015; Jalarvo, Niina/Q-1320-2015 OI Paranthaman, Mariappan/0000-0003-3009-8531; Jalarvo, Niina/0000-0003-0644-6866 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Julich Centre for Neutron Science; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Praemium Academiae of Czech Academy of Sciences FX Neutron research at Spallation Neutron Science was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. N.J. is supported by the Julich Centre for Neutron Science. Materials characterization work (M.P.P. and Z.B.) was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. Development of the program Jana2006 is supported by Praemium Academiae of Czech Academy of Sciences. N.J. thanks Eugene Mamontov for the discussion about the QENS data analysis. NR 27 TC 6 Z9 6 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JUL 23 PY 2013 VL 25 IS 14 BP 2741 EP 2748 DI 10.1021/cm400452n PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 191ME UT WOS:000322416400001 ER PT J AU Kesava, SV Dhanker, R Kozub, DR Vakhshouri, K Choi, UH Colby, RH Wang, C Hexemer, A Giebink, NC Gomez, ED AF Kesava, Sameer Vajjala Dhanker, Rijul Kozub, Derek R. Vakhshouri, Kiarash Choi, U. Hyeok Colby, Ralph H. Wang, Cheng Hexemer, Alexander Giebink, Noel C. Gomez, Enrique D. TI Mesoscopic Structural Length Scales in P3HT/PCBM Mixtures Remain Invariant for Various Processing Conditions SO CHEMISTRY OF MATERIALS LA English DT Article DE morphology; GISAXS; EFTEM; optical modeling; organic solar cells; organic photovoltaics ID HETEROJUNCTION SOLAR-CELLS; POLYMER-FULLERENE BLENDS; FIELD-EFFECT MOBILITY; THIN-FILM TRANSISTORS; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); EXCITON DIFFUSION; ORGANIC PHOTOVOLTAICS; PHASE-SEPARATION; CHARGE-TRANSPORT; MOLECULAR-WEIGHT AB Mesoscopic structural length scales in the photoactive layer of organic solar cells affect exciton dissociation into charges and thus device performance. It is currently hypothesized that these length scales are largely affected by processing conditions such as annealing temperature, annealing time, and casting solvent. In our study, we utilized grazing incidence small-angle X-ray scattering and energy-filtered transmission electron microscopy to characterize the in-plane morphology of poly(3-hexylthiophene-2,5-diyl)/[6,6]-phenyl-C-61-butyric acid methyl ester mixtures and compared structural data with device performance. We found that the characteristic length scales of the mesostructures are dominated by the crystallization motif of the polymer and do not vary significantly for different processing conditions. For example, thermal annealing of films spun-cast from different solvents yielded similar in-plane morphologies; consequently, device performance was similar once thickness effects were accounted for through optical modeling. C1 [Kesava, Sameer Vajjala; Kozub, Derek R.; Vakhshouri, Kiarash; Gomez, Enrique D.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Dhanker, Rijul; Giebink, Noel C.] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. [Choi, U. Hyeok; Colby, Ralph H.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Wang, Cheng; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gomez, Enrique D.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. RP Gomez, ED (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. EM edg12@psu.edu RI Wang, Cheng/A-9815-2014; Foundry, Molecular/G-9968-2014 FU National Science Foundation [DMR-1056199]; U.S. Department of Energy [DE-AC02-05CH11231]; Advanced Light Source, Lawrence Berkeley National Laboratory; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-C02-05CH11231] FX Major funding for this work was provided by the National Science Foundation under Grant No. DMR-1056199. The authors gratefully acknowledge the Penn Regional Nanotechnology Facility, University of Pennsylvania, and the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 for TEM access. The authors also acknowledge support of the Advanced Light Source, Lawrence Berkeley National Laboratory, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-C02-05CH11231. The authors thank Dr. Susan Trolier-McKinstry for use of the spectroscopic ellipsometer and Dr. John Asbury at the Pennsylvania State University for use of the spectrophotometer. NR 67 TC 11 Z9 11 U1 1 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 23 PY 2013 VL 25 IS 14 BP 2812 EP 2818 DI 10.1021/cm4011426 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 191ME UT WOS:000322416400009 ER PT J AU Wang, XY Xie, SF Liu, J Kucheyev, SO Wang, YM AF Wang, Xianying Xie, Shufang Liu, Jian Kucheyev, Sergei O. Wang, Y. Morris TI Focused-ion-beam Assisted Growth, Patterning, and Narrowing the Size Distributions of ZnO Nanowires for Variable Optical Properties and Enhanced Nonmechanical Energy Conversion SO CHEMISTRY OF MATERIALS LA English DT Article DE ZnO nanowire; Au-Ga catalyst; focused-ion-beam; growth; activation energy; nanogenerator ID CHEMICAL-VAPOR-DEPOSITION; ZINC-OXIDE; ARRAYS; TEMPERATURE; NANOTUBES; FABRICATION; DIFFUSION; TRANSPORT; CATALYSTS; SAPPHIRE AB Despite extensive research and much progress, it remains critical and challenging to precisely grow nanowires structurally and dimensionally uniform. Here, we present a focused-ion-beam (FIB) assisted approach to controlling the ZnO nanowire growth with uniform diameters, height, and high crystalline quality. Vertical-alignment is also achieved on nonepitaxial substrates without the assistance of ZnO seeding layers (e.g., silicon and c-plane sapphire substrates). The programmable ability of FIB opens up new opportunities of creating complex patterns in our approach. A new alloy catalyst Au-Ga is developed for ZnO growth, with achievable narrow nanowire size distributions. Comparison studies of growth behavior in the temperature range 880-940 degrees C for Au and Au-Ga catalysts reveal different growth kinetics and rate-controlling mechanisms that are consistent with the vertical-alignment and drastically improved nanowire uniformity for FIB-assisted nanowire growth. Nanogenerators built with the improved nanowire platform exhibit a 2.5-fold increase in thermal energy conversion, demonstrating the promise of our approach for advanced functional devices. C1 [Wang, Xianying; Xie, Shufang; Liu, Jian] Shanghai Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 201800, Peoples R China. [Kucheyev, Sergei O.; Wang, Y. Morris] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Wang, YM (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM ymwang@llnl.gov RI Wang, Yinmin (Morris)/F-2249-2010 OI Wang, Yinmin (Morris)/0000-0002-7161-2034 FU National Natural Science Foundation of China (NSFC) [51072119]; Shanghai Project [10540500900]; Shanghai Municipal Education Commission [12ZZ139]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development (LDRD) Programs at LLNL [12-ERD-053, 12-FS-011] FX The authors would like to thank helpful discussions of Drs. Deng Pan (USST), Alex Chernov (LLNL), and Luis Zepeda-Ruiz (LLNL). The work at University of Shanghai for Science and Technology (USST) is supported by the National Natural Science Foundation of China (NSFC) (51072119), Shanghai Project No. 10540500900, and Innovation Program of Shanghai Municipal Education Commission (12ZZ139). The work at Lawrence Livermore National Laboratory (LLNL) was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Y.M.W is partially supported by the Laboratory Directed Research and Development (LDRD) Programs (12-ERD-053 and 12-FS-011) at LLNL. NR 57 TC 11 Z9 11 U1 1 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JUL 23 PY 2013 VL 25 IS 14 BP 2819 EP 2827 DI 10.1021/cm401195v PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 191ME UT WOS:000322416400010 ER PT J AU Lee, E Persson, KA AF Lee, Eunseok Persson, Kristin A. TI Solid-Solution Li Intercalation as a Function of Cation Order/Disorder in the High-Voltage LixNi0.5Mn1.5O4 Spinel SO CHEMISTRY OF MATERIALS LA English DT Article DE Ni-Mn spinel; rate capability; phase diagram; solid-solution; first-principles calculation ID CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; LITHIUM INSERTION; LINI0.5MN1.5O4; MORPHOLOGY; BATTERIES; NONSTOICHIOMETRY; CONDUCTIVITY; PERFORMANCE; ELECTRODES AB Many Li-ion cathode materials transform via two-phase reactions, which can lead to long-term structural damage and limited cyclability. To elucidate the coupling between favorable solid-solution Li intercalation and the underlying cation ordering, we take the high-voltage spinel, LixNi0.5Mn1.5O4 (0 <= x <= 1), as a case example. Through grand canonical Monte Carlo (MC) simulations based on the ab initio cluster expansion model, we show a striking dependence between the solid-solution phase domain and the Ni-Mn cation ordering. The perfectly ordered LixNi0.5Mn1.5O4 spinel resists solid solution until very high temperatures, but introducing various degrees of Ni-Mn cation disorder results in a dramatic increase in stability for a single-phase reaction, particularly at high Li contents. This opens up the possibility of designing single-phase reaction materials via targeted cation ordering, and to this end, we show that a uniformly distributed cation high-voltage spinel has access to solid solution throughout the entire Li composition range at room temperature. C1 [Lee, Eunseok; Persson, Kristin A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Lee, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM eunseoklee@lbl.gov FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX Work at the Lawrence Berkeley National Laboratory was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Furthermore, this research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We are also grateful to Cheonjoong Kim, Jordi Cabana, and Clare Grey for enlightening discussions on the high-voltage spinel. NR 34 TC 20 Z9 21 U1 4 U2 114 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 23 PY 2013 VL 25 IS 14 BP 2885 EP 2889 DI 10.1021/cm4014238 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 191ME UT WOS:000322416400017 ER PT J AU Friedland, A Shoemaker, IM AF Friedland, Alexander Shoemaker, Ian M. TI Integrating in dark matter astrophysics at direct detection experiments SO PHYSICS LETTERS B LA English DT Article ID CANDIDATES; PARTICLES AB We study the capabilities of the MAJORANA DEMONSTRATOR, a neutrinoless double-beta decay experiment currently under construction at the Sanford Underground Laboratory, as a light WIMP detector. For a cross section near the current experimental bound, the MAJORANA DEMONSTRATOR should collect hundreds or even thousands of recoil events. This opens up the possibility of simultaneously determining the physical properties of the dark matter and its local velocity distribution, directly from the data. We analyze this possibility and find that allowing the dark matter velocity distribution to float considerably worsens the WIMP mass determination. This result is traced to a previously unexplored degeneracy between the WIMP mass and the velocity dispersion. We simulate spectra using both isothermal and Via Lactea II velocity distributions and comment on the possible impact of streams. We conclude that knowledge of the dark matter velocity distribution will greatly facilitate the mass and cross section determination for a light WIMP. (C) 2013 Elsevier B.V. All rights reserved. C1 [Friedland, Alexander; Shoemaker, Ian M.] Los Alamos Natl Lab, Theoret Div T2, Los Alamos, NM 87545 USA. RP Friedland, A (reprint author), Los Alamos Natl Lab, Theoret Div T2, MS B285, Los Alamos, NM 87545 USA. EM friedland@lanl.gov; ianshoe@lanl.gov FU LANL LDRD program FX We would like to thank Elena Aprile, Michael Marino, Antonio J. Melgarejo, and Peter Sorenson for helpful correspondence. This work was supported by the LANL LDRD program. NR 81 TC 9 Z9 9 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 23 PY 2013 VL 724 IS 4-5 BP 183 EP 191 DI 10.1016/j.physletb.2013.06.012 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 190RS UT WOS:000322358500001 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Staykova, Z Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Kalogeropoulos, A Keaveney, J Maes, M Olbrechts, A Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Favart, L Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Dildick, S Garcia, G Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Selvaggi, M Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Asawatangtrakuldee, C Ban, Y Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Sierra, LFC Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Mahrous, A Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bluj, M Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Tschudi, Y Vander Donckt, M Verdier, P Viret, S Tsamalaidze, Z Autermann, C Beranek, S Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Horton, D Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Olzem, J Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Walsh, R Wissing, C Blobel, V Enderle, H Erfle, J Garutti, E Gebbert, U Gorner, M Gosselink, M Haller, J Heine, K Hoing, RS Kaussen, G Kirschenmann, H Klanner, R Kogler, R Lange, J Marchesini, I Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hartmann, F Hauth, T Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Kornmayer, A Pardo, PL Martschei, D Muller, T Niegel, M Nurnberg, A Oberst, O Ott, J Quast, G Rabbertz, K Ratnikov, F Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Radics, B Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Saxena, P Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Chatterjee, RM Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Dinardo, ME Fiorendi, S Gennai, S Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N De Cosa, A Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Galanti, M Gasparini, F Gasparini, U Giubilato, P Gonella, F Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Montecassiano, F Pazzini, J Pozzobon, N Ronchese, P Sgaravatto, M Simonetto, F Torassa, E Tosi, M Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Grippo, MT Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Casasso, S Costa, M De Remigis, P Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Zanetti, A Chang, S Kim, TY Nam, SK Kim, DH Kim, GN Kim, JE Kong, DJ Oh, YD Park, H Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Grigelionis, I Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Almeida, N Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, P Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Demiyanov, A Ershov, A Gribushin, A Kodolova, O Korotkikh, V Lokhtin, I Markina, A Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Vardanyan, I Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bendavid, J Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S d'Enterria, D Dabrowski, A David, A De Roeck, A De Visscher, S Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hartl, C Hinzmann, A Innocente, V Janot, P Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lee, YJ Lourenco, C Magini, N Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mulders, M Musella, P Nesvold, E Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Quertenmont, L Racz, A Reece, W Rolandi, G Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Stoye, M Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Mangano, B Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Amsler, C Chiochia, V Favaro, C Rikova, MI Kilminster, B Mejias, BM Otiougova, P Robmann, P Snoek, H Taroni, S Tupputi, S Verzetti, M Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Nelson, R Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Takasugi, E Traczyk, P Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Hanson, G Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P George, C Golf, F Incandela, J Justus, C Kalavase, P Kovalskyi, D Krutelyov, V Lowette, S Villalba, RM Mccoll, N Pavlunin, V Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Gutsche, O Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Ratnikova, N Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Lacroix, F Moon, DH O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Ogul, H Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Hu, G Maksimovic, P Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Kim, Y Klute, M Lai, YS Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Suarez, RG Keller, J Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Antonelli, L Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Williams, G Winer, BL Wolfe, H Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Jung, K Koybasi, O Kress, M Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Wang, F Xu, L Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Walker, M Cerizza, G Hollingsworth, M Rose, K Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Grothe, M Hall-Wilton, R Herndon, M Herve, A Kaadze, K Klabbers, P Klukas, J Lanaro, A Loveless, R Mohapatra, A Mozer, MU Ojalvo, I Pierro, GA Polese, G Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Staykova, Z. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Kalogeropoulos, A. Keaveney, J. Maes, M. Olbrechts, A. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Selvaggi, M. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zhang, L. Zou, W. Avila, C. Carrillo Montoya, C. A. Chaparro Sierra, L. F. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Mahrous, A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bluj, M. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Vander Donckt, M. Verdier, P. Viret, S. Tsamalaidze, Z. Autermann, C. Beranek, S. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. Oe Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Walsh, R. Wissing, C. Blobel, V. Enderle, H. Erfle, J. Garutti, E. Gebbert, U. Goerner, M. Gosselink, M. Haller, J. Heine, K. Hoeing, R. S. Kaussen, G. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Marchesini, I. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hartmann, F. Hauth, T. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Kornmayer, A. Pardo, P. Lobelle Martschei, D. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Radics, B. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Saxena, P. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Dinardo, M. E. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Cosa, A. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gonella, F. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Montecassiano, F. Pazzini, J. Pozzobon, N. Ronchese, P. Sgaravatto, M. Simonetto, F. Torassa, E. Tosi, M. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Casasso, S. Costa, M. De Remigis, P. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Zanetti, A. Chang, S. Kim, T. Y. Nam, S. K. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Oh, Y. D. Park, H. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Grigelionis, I. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Almeida, N. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Demiyanov, A. Ershov, A. Gribushin, A. Kodolova, O. Korotkikh, V. Lokhtin, I. Markina, A. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Vardanyan, I. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Campderros, J. Duarte Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bendavid, J. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Coarasa Perez, J. A. Colafranceschi, S. d'Enterria, D. Dabrowski, A. David, A. De Roeck, A. De Visscher, S. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Gomez-Reino Garrido, R. Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hartl, C. Hinzmann, A. Innocente, V. Janot, P. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lee, Y. -J. Lourenco, C. Magini, N. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mulders, M. Musella, P. Nesvold, E. Orsini, L. Palencia Cortezon, E. Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimia, M. Piparo, D. Plagge, M. Quertenmont, L. Racz, A. Reece, W. Rolandi, G. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Stoye, M. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Amsler, C. Chiochia, V. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Taroni, S. Tupputi, S. Verzetti, M. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Nelson, R. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Takasugi, E. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Kalavase, P. Kovalskyi, D. Krutelyov, V. Lowette, S. Villalba, R. Magana Mccoll, N. Pavlunin, V. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gutsche, O. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Ratnikova, N. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Lacroix, F. Moon, D. H. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Griffiths, S. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Ogul, H. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Hu, G. Maksimovic, P. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Kim, Y. Klute, M. Lai, Y. S. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Suarez, R. Gonzalez Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Antonelli, L. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Williams, G. Winer, B. L. Wolfe, H. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Jung, K. Koybasi, O. Kress, M. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Wang, F. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Walker, M. Cerizza, G. Hollingsworth, M. Rose, K. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Kaadze, K. Klabbers, P. Klukas, J. Lanaro, A. Loveless, R. Mohapatra, A. Mozer, M. U. Ojalvo, I. Pierro, G. A. Polese, G. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; Heavy ions ID RELATIVISTIC NUCLEAR COLLISIONS; ANGULAR-CORRELATIONS; ROOT-S(NN)=2.76 TEV; LONG-RANGE; FLOW; COLLABORATION; EXPANSION; SIDE AB Measurements of two- and four-particle angular correlations for charged particles emitted in pPb collisions are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 31 nb(-1), were collected during the 2013 LHC pPb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. The results are compared to 2.76 TeV semi-peripheral PbPb collision data, collected during the 2011 PbPb run, covering a similar range of particle multiplicities. The observed correlations are characterized by the near-side (vertical bar Delta phi vertical bar approximate to 0) associated pair yields and the azimuthal anisotropy Fourier harmonics (nu(n)). The second-order (nu(2)) and third-order (v(3)) anisotropy harmonics are extracted using the two-particle azimuthal correlation technique. A four-particle correlation method is also applied to obtain the value of nu(2) and further explore the multi-particle nature of the correlations. Both associated pair yields and anisotropy harmonics are studied as a function of particle multiplicity and transverse momentum. The associated pair yields, the four-particle nu(2), and the nu(3) become apparent at about the same multiplicity. A remarkable similarity in the nu(3) signal as a function of multiplicity is observed between the pPb and PbPb systems. Predictions based on the color glass condensate and hydrodynamic models are compared to the experimental results. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Wang, J.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Mahrous, A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] Inst Natl Phys Nucl & Phys Particules, CNRS, IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Vander Donckt, M.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. Oe; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.; Lange, J.] DESY, Hamburg, Germany. [Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Gebbert, U.; Goerner, M.; Gosselink, M.; Haller, J.; Heine, K.; Hoeing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Marchesini, I.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Pardo, P. Lobelle; Martschei, D.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Radics, B.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.] Tata Inst Fundamental Res EHEP, Mumbai, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dugad, S.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [De Guio, F.; Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Sgaravatto, M.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; D'Agnolo, R. T.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Rome, Rome, Italy. [Costa, S.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; De Remigis, P.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Casasso, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Chang, S.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Oh, Y. D.; Park, H.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Grigelionis, I.; Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Katkov, I.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Sharma, A.; Mohanty, A. K.; Masetti, G.; Giordano, F.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Meola, S.; Paolucci, P.; Galanti, M.; D'Agnolo, R. T.; Grassi, M.; Pelliccioni, M.; Cossutti, F.; Seixas, J.; Chamizo Llatas, M.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Colafranceschi, S.; d'Enterria, D.; Dabrowski, A.; David, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hinzmann, A.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y. -J.; Lourenco, C.; Magini, N.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimia, M.; Piparo, D.; Plagge, M.; Quertenmont, L.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Freudenreich, K.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Taroni, S.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Worm, S. D.; Newbold, D. M.; Basso, L.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Traczyk, P.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Suarez, R. Gonzalez; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Williams, G.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brown, R. M.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-navarro, A.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Wang, F.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Li, W.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Rose, K.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Kaadze, K.; Klabbers, P.; Klukas, J.; Lanaro, A.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Pierro, G. A.; Polese, G.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Mahrous, A.] Helwan Univ, Cairo, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Bluj, M.] Natl Ctr Nucl Res, Otwock, Poland. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, D-03044 Cottbus, Germany. [Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Grippo, M. T.; Martini, L.] Univ Siena, I-53100 Siena, Italy. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, TR-46050 Kahramanmaras, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. RP Alverson, G (reprint author), Northeastern Univ, Boston, MA 02115 USA. EM George.Alverson@cern.ch RI Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Popov, Andrey/E-1052-2012; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Marco, Jesus/B-8735-2008; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Demianov, Andrei/E-4565-2012; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Wolszczak, Weronika/N-3113-2013; da Cruz e Silva, Cristovao/K-7229-2013; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Bartalini, Paolo/E-2512-2014; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Ligabue, Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Montanari, Alessandro/J-2420-2012; Tinoco Mendes, Andre David/D-4314-2011; Ivanov, Andrew/A-7982-2013; Lokhtin, Igor/D-7004-2012; Petrushanko, Sergey/D-6880-2012; Hill, Christopher/B-5371-2012; Liu, Sheng/K-2815-2013; Zhukov, Valery/K-3615-2013; Venturi, Andrea/J-1877-2012; Manganote, Edmilson/K-8251-2013; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Dermenev, Alexander/M-4979-2013; OI Gallinaro, Michele/0000-0003-1261-2277; Ulrich, Ralf/0000-0002-2535-402X; Lenzi, Piergiulio/0000-0002-6927-8807; Lucchini, Marco Toliman/0000-0002-7497-7450; Gutsche, Oliver/0000-0002-8015-9622; Raval, Amita/0000-0003-0164-4337; Torassa, Ezio/0000-0003-2321-0599; Verdier, Patrice/0000-0003-3090-2948; CHANG, PAO-TI/0000-0003-4064-388X; Vidal Marono, Miguel/0000-0002-2590-5987; Faccioli, Pietro/0000-0003-1849-6692; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; Giubilato, Piero/0000-0003-4358-5355; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Toback, David/0000-0003-3457-4144; Martelli, Arabella/0000-0003-3530-2255; Abbiendi, Giovanni/0000-0003-4499-7562; Gonzi, Sandro/0000-0003-4754-645X; HSIUNG, YEE/0000-0003-4801-1238; Levchenko, Petr/0000-0003-4913-0538; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Staiano, Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; WANG, MIN-ZU/0000-0002-0979-8341; Popov, Andrey/0000-0002-1207-0984; da Cruz e silva, Cristovao/0000-0002-1231-3819; Casarsa, Massimo/0000-0002-1353-8964; Margaroli, Fabrizio/0000-0002-3869-0153; Diemoz, Marcella/0000-0002-3810-8530; Landsberg, Greg/0000-0002-4184-9380; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Tricomi, Alessia Rita/0000-0002-5071-5501; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Costa, Salvatore/0000-0001-9919-0569; Lloret Iglesias, Lara/0000-0002-0157-4765; Kasemann, Matthias/0000-0002-0429-2448; Tosi, Nicolo/0000-0002-0474-0247; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Marco, Jesus/0000-0001-7914-8494; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Rovelli, Tiziano/0000-0002-9746-4842; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; de Jesus Damiao, Dilson/0000-0002-3769-1680; Novaes, Sergio/0000-0003-0471-8549; Ligabue, Franco/0000-0002-1549-7107; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Montanari, Alessandro/0000-0003-2748-6373; Tinoco Mendes, Andre David/0000-0001-5854-7699; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Wimpenny, Stephen/0000-0003-0505-4908; Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641; Sogut, Kenan/0000-0002-9682-2855 FU BMWF (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MSTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter (Thailand); IPST (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; EU; Regional Development Fund; Thalis programme; Aristeia programme; EU-ESF; Greek NSRF; [SF0690030s09] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF. NR 61 TC 194 Z9 195 U1 18 U2 168 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 23 PY 2013 VL 724 IS 4-5 BP 213 EP 240 DI 10.1016/j.physletb.2013.06.028 PG 28 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 190RS UT WOS:000322358500005 ER PT J AU Baker, ML Hryc, CF Zhang, QF Wu, WM Jakana, J Haase-Pettingell, C Afonine, PV Adams, PD King, JA Jiang, W Chiu, W AF Baker, Matthew L. Hryc, Corey F. Zhang, Qinfen Wu, Weimin Jakana, Joanita Haase-Pettingell, Cameron Afonine, Pavel V. Adams, Paul D. King, Jonathan A. Jiang, Wen Chiu, Wah TI Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE validation; Pathwalker; PHENIX; EMAN; gold standard ID PARTICLE ELECTRON CRYOMICROSCOPY; DISULFIDE BONDS; MACROMOLECULAR ASSEMBLIES; CRYSTAL-STRUCTURE; COMMON ANCESTRY; DENSITY MAPS; PROTEIN; MATURATION; GENOME; VIRUS AB High-resolution structures of viruses have made important contributions to modern structural biology. Bacteriophages, the most diverse and abundant organisms on earth, replicate and infect all bacteria and archaea, making them excellent potential alternatives to antibiotics and therapies for multidrug-resistant bacteria. Here, we improved upon our previous electron cryomicroscopy structure of Salmonella bacteriophage epsilon15, achieving a resolution sufficient to determine the tertiary structures of both gp7 and gp10 protein subunits that form the T = 7 icosahedral lattice. This study utilizes recently established best practice for near-atomic to high-resolution (3-5 angstrom) electron cryomicroscopy data evaluation. The resolution and reliability of the density map were cross-validated by multiple reconstructions from truly independent data sets, whereas the models of the individual protein subunits were validated adopting the best practices from X-ray crystallography. Some sidechain densities are clearly resolved and show the subunit-subunit interactions within and across the capsomeres that are required to stabilize the virus. The presence of the canonical phage and jellyroll viral protein folds, gp7 and gp10, respectively, in the same virus suggests that epsilon15 may have emerged more recently relative to other bacteriophages. C1 [Baker, Matthew L.; Hryc, Corey F.; Zhang, Qinfen; Jakana, Joanita; Chiu, Wah] Baylor Coll Med, Natl Ctr Macromol Imaging, Verna & Marrs McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA. [Hryc, Corey F.; Chiu, Wah] Baylor Coll Med, Program Struct & Computat Biol & Mol Biophys, Houston, TX 77030 USA. [Zhang, Qinfen] Sun Yat Sen Univ, Sch Life Sci, State Key Lab Biocontrol, Guangzhou 510275, Guangdong, Peoples R China. [Wu, Weimin; Jiang, Wen] Purdue Univ, Dept Biol Sci, Markey Ctr Struct Biol, W Lafayette, IN 47907 USA. [Haase-Pettingell, Cameron; King, Jonathan A.] MIT, Dept Biol, Cambridge, MA 02139 USA. [Afonine, Pavel V.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Chiu, W (reprint author), Baylor Coll Med, Natl Ctr Macromol Imaging, Verna & Marrs McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA. EM wah@bcm.edu RI Adams, Paul/A-1977-2013; OI Adams, Paul/0000-0001-9333-8219; Hryc, Corey/0000-0002-7277-5249 FU National Institutes of Health (NIH) [R01GM079429, P41GM103832, PN2EY016525, R56AI075208]; Robert Welch Foundation [Q1242]; NIH Grant [GM063210]; US Department of Energy [DE-AC02-05CH11231] FX W.J. thanks the Purdue Rosen Center for Advanced Computing for providing the computational resource for the 3D reconstructions. This work has been supported by National Institutes of Health (NIH) Grants R01GM079429, P41GM103832, PN2EY016525, and R56AI075208 and the Robert Welch Foundation (Q1242). P.D.A. acknowledges support from NIH Grant GM063210 and the US Department of Energy under Contract DE-AC02-05CH11231. NR 60 TC 27 Z9 27 U1 2 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 23 PY 2013 VL 110 IS 30 BP 12301 EP 12306 DI 10.1073/pnas.1309947110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 187JA UT WOS:000322112300044 PM 23840063 ER PT J AU Kim, MG Soh, J Lang, J Dean, MPM Thaler, A Bud'ko, SL Canfield, PC Bourret-Courchesne, E Kreyssig, A Goldman, AI Birgeneau, RJ AF Kim, M. G. Soh, J. Lang, J. Dean, M. P. M. Thaler, A. Bud'ko, S. L. Canfield, P. C. Bourret-Courchesne, E. Kreyssig, A. Goldman, A. I. Birgeneau, R. J. TI Spin polarization of Ru in superconducting Ba(Fe0.795Ru0.205)(2)As-2 studied by x-ray resonant magnetic scattering SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION; DIFFRACTION; ORDER AB We have employed the x-ray resonant magnetic scattering (XRMS) technique at the Ru L-2 edge of the Ba(Fe1-xRux)(2)As-2 (x = 0.205) superconductor. We show that pronounced resonance enhancements at the Ru L-2 edge are observed at the wave vector which is consistent with the antiferromagnetic propagation vector of the Fe in the undoped BaFe2As2. We also demonstrate that the XRMS signals at the Ru L-2 edge follow the magnetic ordering of the Fe with a long correlation length, xi(ab) > 2850 +/- 400 angstrom. Our experimental observation shows that the Ru is spin polarized in Ba(Fe1-xRux)(2)As-2 compounds. C1 [Kim, M. G.; Bourret-Courchesne, E.; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Soh, J.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Soh, J.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lang, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Dean, M. P. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Birgeneau, R. J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Kim, MG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mgkim@lbl.gov RI Dean, Mark/B-4541-2011; Kim, Min Gyu/B-8637-2012; Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Dean, Mark/0000-0001-5139-3543; Kim, Min Gyu/0000-0001-7676-454X; Thaler, Alexander/0000-0001-5066-8904 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]; Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; US DOE [DE-AC02-98CH10886, DE-AC02-06CH11357]; Center for Emergent Superconductivity, an Energy Frontier Research Center; US DOE, Office of Basic Energy Sciences FX We would like to thank Y. Choi and J. W. Kim for valuable discussions and help in the experiment. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. The work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. The work at Brookhaven was supported in part by the US DOE under Contract No. DE-AC02-98CH10886 and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Basic Energy Sciences. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 37 TC 6 Z9 6 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 23 PY 2013 VL 88 IS 1 AR 014424 DI 10.1103/PhysRevB.88.014424 PG 5 WC Physics, Condensed Matter SC Physics GA 187TK UT WOS:000322142900001 ER PT J AU Prisk, TR Das, NC Diallo, SO Ehlers, G Podlesnyak, AA Wada, N Inagaki, S Sokol, PE AF Prisk, Timothy R. Das, Narayan C. Diallo, Souleymane O. Ehlers, Georg Podlesnyak, Andrey A. Wada, Nobuo Inagaki, Shinji Sokol, Paul E. TI Phases of superfluid helium in smooth cylindrical pores SO PHYSICAL REVIEW B LA English DT Article ID COLLECTIVE EXCITATIONS; 2-DIMENSIONAL HE-4; HIGH-RESOLUTION; NEUTRON-SCATTERING; LIQUID-HELIUM; FILMS; ROTON; TRANSITION; DYNAMICS; ENERGY AB This paper reports an inelastic neutron scattering study of superfluid helium confined with highly monodisperse, smooth, and unidimensional silica pores only a few nanometers in diameter, previously studied only by means of macroscopic, thermodynamic techniques. Helium gas sorption isotherms show that the adsorption of helium gas proceeds by film growth, providing quantitative information about the thickness of the adsorbed film and its two-dimensional compressibility. Two different microscopic phases were observed using inelastic neutron scattering. When the adsorbed superfluid helium forms a thin film only a few atomic layers thick, it supports a dramatically modified phonon-roton spectrum as well as a compressed layer roton. The energies of these modified phonon-roton modes are consistent with those of a dilute, low-density film, one in which the average interatomic spacing is greater than in the bulk liquid. In contrast, when the pores are saturated with liquid, the modified phonon-roton spectrum disappears, and instead bulklike modes coexist with the compressed layer mode. The qualitative difference between these two pore-filling regimes is reflected in the effective vibrational density of states. C1 [Prisk, Timothy R.; Das, Narayan C.; Sokol, Paul E.] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. [Diallo, Souleymane O.; Ehlers, Georg; Podlesnyak, Andrey A.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37381 USA. [Wada, Nobuo] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Inagaki, Shinji] Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan. RP Prisk, TR (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. RI Instrument, CNCS/B-4599-2012; Ehlers, Georg/B-5412-2008; Podlesnyak, Andrey/A-5593-2013; Diallo, Souleymane/B-3111-2016; OI Ehlers, Georg/0000-0003-3513-508X; Podlesnyak, Andrey/0000-0001-9366-6319; Diallo, Souleymane/0000-0002-3369-8391; Prisk, Timothy/0000-0002-7943-5175 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; National Institute of Standards and Technology, US Department of Commerce [70NANB5H1163] FX This research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. This report was prepared under Award 70NANB5H1163 from the National Institute of Standards and Technology, US Department of Commerce. The statements, findings, conclusions, and recommendations are those of the authors' and do not necessarily reflect the views of the National Institute of Standards and Technology or the US Department of Commerce. The authors wish to thank David Sprinkle for his invaluable expert assistance. NR 73 TC 1 Z9 1 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 23 PY 2013 VL 88 IS 1 AR 014521 DI 10.1103/PhysRevB.88.014521 PG 14 WC Physics, Condensed Matter SC Physics GA 187TK UT WOS:000322142900002 ER PT J AU Jia, JY Mohapatra, S AF Jia, Jiangyong Mohapatra, Soumya TI Disentangling flow and nonflow correlations via Bayesian unfolding of the event-by-event distributions of harmonic coefficients in ultrarelativistic heavy-ion collisions SO PHYSICAL REVIEW C LA English DT Article ID PB-PB COLLISIONS; ANGULAR-CORRELATIONS; ROOT-S(NN)=2.76 TEV; PLANE CORRELATIONS; LONG-RANGE; ANISOTROPY; SIDE AB The performance of the Bayesian unfolding method in extracting the event-by-event (EbyE) distributions of harmonic flow coefficients v(n) is investigated using a toy model simulation, as well as simulations based on the HIJING model and a multiphase transport (AMPT) model. The unfolding method is shown to recover the input v(2)-v(4) distributions for events with multiplicities similar to those observed in Pb + Pb collisions at the Large Hadron Collider. The effects of the nonflow are evaluated using the HIJING simulation with and without a flow afterburner. The probability distribution of v(n) from nonflow is nearly a Gaussian and can be largely suppressed with the data-driven unfolding method used by the ATLAS Collaboration. The residual nonflow effects have no appreciable impact on the v(3) distributions, but affect the tails of the v(2) and v(4) distributions; these effects manifest as a small simultaneous change in the mean and standard deviation of the v(n) distributions. For the AMPT model, which contains both flow fluctuations and nonflow effects, the reduced shape of the extracted v(n) distributions is found to be independent of p(T) in the low-p(T) region, similar to what is observed in the ATLAS data. The prospect of using the EbyE distribution of the harmonic spectrum aided by the unfolding technique as a general tool to study azimuthal correlations in high-energy collisions is also discussed. C1 [Jia, Jiangyong; Mohapatra, Soumya] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM jjia@bnl.gov FU NSF [PHY-1019387] FX We appreciate valuable comments from R. Lacey. This research is supported by the NSF under Grant No. PHY-1019387. NR 43 TC 8 Z9 8 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 23 PY 2013 VL 88 IS 1 AR UNSP 014907 DI 10.1103/PhysRevC.88.014907 PG 14 WC Physics, Nuclear SC Physics GA 187UD UT WOS:000322145200004 ER PT J AU Berger, EL Cao, QH Chen, CR Zhang, H AF Berger, Edmond L. Cao, Qing-Hong Chen, Chuan-Ren Zhang, Hao TI Interpretations and implications of the top quark rapidity asymmetries A(FB)(t) and A(FB)(l) SO PHYSICAL REVIEW D LA English DT Article ID CHARGE ASYMMETRY; T(T)OVER-BAR; TEVATRON; SEARCH; LHC; DISTRIBUTIONS; PHYSICS; MODELS AB Forward-backward asymmetries A(FB)(t) and A(FB)(l) are observed in the top-quark t rapidity distribution and in the rapidity distribution of charged leptons l from top-quark decay at the Tevatron proton-antiproton collider, and a charge asymmetry A(C) is seen in proton-proton collisions at the Large Hadron Collider (LHC). In this paper, we update our previous studies of the Tevatron asymmetries using the most recent data. We provide expectations for AC at the LHC based first on simple extrapolations from the Tevatron, and second based on new physics models that can explain the Tevatron asymmetries. We examine the relationship of the two asymmetries A(FB)(t) and A(FB)(l). We show their connection through the (V - A) spin correlation between the charged lepton and the top quark with different polarization states. We show that the ratio of the two asymmetries provides independent insight into the physics interpretation of the top-quark asymmetry. We emphasize the value of the measurement of both asymmetries, and we conclude that a model which produces more right-handed than left-handed top quarks is suggested by the present Tevatron data. C1 [Cao, Qing-Hong] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Cao, Qing-Hong] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Berger, Edmond L.; Chen, Chuan-Ren; Zhang, Hao] Argonne Natl Lab, High Energy Div, Argonne, IL 60439 USA. [Chen, Chuan-Ren] Natl Taiwan Normal Univ, Dept Phys, Taipei 116, Taiwan. [Zhang, Hao] IIT, Chicago, IL 60616 USA. RP Berger, EL (reprint author), Argonne Natl Lab, High Energy Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI ZHANG, Hao/G-6430-2015 FU U.S. DOE [DE-AC02-06CH11357]; DOE [DE-FG02-94ER40840]; National Natural Science Foundation of China [11245003] FX We thank Dr. Jiang-Hao Yu for his collaboration and contributions during the early stages of this research. The work of E.L.B., C.-R.C. and H.Z. at Argonne is supported in part by the U.S. DOE under Grant No. DE-AC02-06CH11357. H.Z. is also supported by DOE under Grant No. DE-FG02-94ER40840. Q.-H.C. is supported by the National Natural Science Foundation of China under Grant No. 11245003. NR 110 TC 7 Z9 7 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 23 PY 2013 VL 88 IS 1 AR 014033 DI 10.1103/PhysRevD.88.014033 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 187UG UT WOS:000322145600004 ER PT J AU Shen, CP Yuan, CZ Adachi, I Aihara, H Asner, DM Aulchenko, V Bakich, AM Bala, A Bhuyan, B Bischofberger, M Bozek, A Bracko, M Browder, TE Chekelian, V Chen, A Chen, P Cheon, BG Chilikin, K Cho, IS Cho, K Chobanova, V Choi, Y Cinabro, D Dalseno, J Danilov, M Dingfelder, J Dolezal, Z Drasal, Z Drutskoy, A Dutta, D Dutta, K Eidelman, S Epifanov, D Farhat, H Fast, JE Ferber, T Frey, A Gaur, V Gabyshev, N Ganguly, S Gillard, R Goh, YM Golob, B Haba, J Hara, T Hayasaka, K Hayashii, H Hoshi, Y Hou, WS Hyun, HJ Iijima, T Ishikawa, A Itoh, R Iwasaki, Y Julius, T Kah, DH Kang, JH Kato, E Kawasaki, T Kiesling, C Kim, DY Kim, HJ Kim, JB Kim, JH Kim, KT Kim, YJ Kinoshita, K Klucar, J Ko, BR Kodys, P Korpar, S Krizan, P Krokovny, P Kumita, T Kuzmin, A Kwon, YJ Lee, SH Leitner, R Li, J Li, Y Libby, J Liu, C Liu, Y Liu, ZQ Liventsev, D Lukin, P Matvienko, D Miyabayashi, K Miyata, H Mohanty, GB Moll, A Mori, T Muramatsu, N Mussa, R Nagasaka, Y Nakano, E Nakao, M Natkaniec, Z Nayak, M Nedelkovska, E Ng, C Nisar, NK Nishida, S Nitoh, O Ogawa, S Okuno, S Olsen, SL Ostrowicz, W Pakhlov, P Park, CW Park, H Park, HK Pedlar, TK Peng, T Pestotnik, R Petric, M Piilonen, LE Ritter, M Rohrken, M Rostomyan, A Ryu, S Sahoo, H Saito, T Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Savinov, V Schneider, O Schnell, G Schwanda, C Senyo, K Seon, O Shapkin, M Shebalin, V Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Simon, F Smerkol, P Sohn, YS Sokolov, A Solovieva, E Stanic, S Staric, M Steder, M Sumihama, M Sumiyoshi, T Tamponi, U Tanida, K Tatishvili, G Teramoto, Y Tsuboyama, T Uchida, M Uehara, S Unno, Y Uno, S Urquijo, P Vahsen, SE Van Hulse, C Vanhoefer, P Varner, G Vorobyev, V Wagner, MN Wang, CH Wang, P Wang, XL Watanabe, M Watanabe, Y Won, E Yamamoto, H Yamaoka, J Yamashita, Y Yashchenko, S Yook, Y Yusa, Y Zhang, CC Zhang, ZP Zhilich, V Zupanc, A AF Shen, C. P. Yuan, C. Z. Adachi, I. Aihara, H. Asner, D. M. Aulchenko, V. Bakich, A. M. Bala, A. Bhuyan, B. Bischofberger, M. Bozek, A. Bracko, M. Browder, T. E. Chekelian, V. Chen, A. Chen, P. Cheon, B. G. Chilikin, K. Cho, I. -S. Cho, K. Chobanova, V. Choi, Y. Cinabro, D. Dalseno, J. Danilov, M. Dingfelder, J. Dolezal, Z. Drasal, Z. Drutskoy, A. Dutta, D. Dutta, K. Eidelman, S. Epifanov, D. Farhat, H. Fast, J. E. Ferber, T. Frey, A. Gaur, V. Gabyshev, N. Ganguly, S. Gillard, R. Goh, Y. M. Golob, B. Haba, J. Hara, T. Hayasaka, K. Hayashii, H. Hoshi, Y. Hou, W. -S. Hyun, H. J. Iijima, T. Ishikawa, A. Itoh, R. Iwasaki, Y. Julius, T. Kah, D. H. Kang, J. H. Kato, E. Kawasaki, T. Kiesling, C. Kim, D. Y. Kim, H. J. Kim, J. B. Kim, J. H. Kim, K. T. Kim, Y. J. Kinoshita, K. Klucar, J. Ko, B. R. Kodys, P. Korpar, S. Krizan, P. Krokovny, P. Kumita, T. Kuzmin, A. Kwon, Y. -J. Lee, S. -H. Leitner, R. Li, J. Li, Y. Libby, J. Liu, C. Liu, Y. Liu, Z. Q. Liventsev, D. Lukin, P. Matvienko, D. Miyabayashi, K. Miyata, H. Mohanty, G. B. Moll, A. Mori, T. Muramatsu, N. Mussa, R. Nagasaka, Y. Nakano, E. Nakao, M. Natkaniec, Z. Nayak, M. Nedelkovska, E. Ng, C. Nisar, N. K. Nishida, S. Nitoh, O. Ogawa, S. Okuno, S. Olsen, S. L. Ostrowicz, W. Pakhlov, P. Park, C. W. Park, H. Park, H. K. Pedlar, T. K. Peng, T. Pestotnik, R. Petric, M. Piilonen, L. E. Ritter, M. Roehrken, M. Rostomyan, A. Ryu, S. Sahoo, H. Saito, T. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Senyo, K. Seon, O. Shapkin, M. Shebalin, V. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Simon, F. Smerkol, P. Sohn, Y. -S. Sokolov, A. Solovieva, E. Stanic, S. Staric, M. Steder, M. Sumihama, M. Sumiyoshi, T. Tamponi, U. Tanida, K. Tatishvili, G. Teramoto, Y. Tsuboyama, T. Uchida, M. Uehara, S. Unno, Y. Uno, S. Urquijo, P. Vahsen, S. E. Van Hulse, C. Vanhoefer, P. Varner, G. Vorobyev, V. Wagner, M. N. Wang, C. H. Wang, P. Wang, X. L. Watanabe, M. Watanabe, Y. Won, E. Yamamoto, H. Yamaoka, J. Yamashita, Y. Yashchenko, S. Yook, Y. Yusa, Y. Zhang, C. C. Zhang, Z. P. Zhilich, V. Zupanc, A. CA Belle Collaboration TI Measurement of exclusive Upsilon(1S) and Upsilon(2S) decays into vector-pseudoscalar final states SO PHYSICAL REVIEW D LA English DT Article ID BELLE; IDENTIFICATION; MESON; KEKB AB Using samples of 102 million Upsilon(1S) and 158 million Upsilon(2S) events collected with the Belle detector, we study exclusive hadronic decays of these two bottomonium resonances to (KSK+)-K-0 pi(-) and charge-conjugate (c.c.) states, pi(+) pi(-) pi(0) pi(0), and pi(+) pi(-) pi(0), and to the two-body Vector-Pseudoscalar (K*(892)0 (K) over bar (0) + c.c., K*(892)K--(+) + c.c., omega pi(0), and rho pi) final states. For the first time, signals are observed in the modes Upsilon(1S) -> K-S(0) K+ pi(-) + c.c., pi(+) pi(-) pi(0) pi(0), and Upsilon(2S) -> pi(+) pi(-) pi(0) pi(0), and evidence is found for the modes Upsilon(1S) -> pi(+) pi(-) pi(0), K-*(892)(0)(K) over bar (0) + c.c., and Upsilon(2S) -> K-S(0) K+ pi(-) + c.c. Branching fractions are measured for all the processes, while 90% confidence level upper limits on the branching fractions are also set for the modes with a statistical significance of less than 3 sigma. The ratios of the branching fractions of Upsilon(2S) and Upsilon(1S) decays into the same final state are used to test a perturbative QCD prediction for Okubo-Zweig-Iizuka- suppressed bottomonium decays. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country, UPV EHU, Bilbao 48080, Spain. [Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China. [Dingfelder, J.; Urquijo, P.] Univ Bonn, D-53115 Bonn, Germany. [Aulchenko, V.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Vorobyev, V.; Zhilich, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Aulchenko, V.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Vorobyev, V.; Zhilich, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Kinoshita, K.; Liu, Y.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Rostomyan, A.; Steder, M.; Yashchenko, S.] DESY, D-22607 Hamburg, Germany. [Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Sumihama, M.] Gifu Univ, Gifu 5011193, Japan. [Frey, A.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Sahoo, H.; Vahsen, S. E.; Varner, G.; Yamaoka, J.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, Y.; Tsuboyama, T.; Uehara, S.; Uno, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Hiroshima 7315193, Japan. [Schnell, G.] Ikerbasque, Bilbao 48011, Spain. [Bhuyan, B.; Dutta, D.; Dutta, K.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Libby, J.; Nayak, M.] Indian Inst Technol, Madras 600036, Tamil Nadu, India. [Yuan, C. Z.; Liu, Z. Q.; Wang, P.; Zhang, C. C.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Mussa, R.; Tamponi, U.] INFN, Sez Torino, I-10125 Turin, Italy. [Chilikin, K.; Danilov, M.; Drutskoy, A.; Pakhlov, P.; Solovieva, E.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Smerkol, P.; Staric, M.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Roehrken, M.; Zupanc, A.] Karlsruher Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Kim, K. T.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kah, D. H.; Kim, H. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chekelian, V.; Chobanova, V.; Dalseno, J.; Kiesling, C.; Moll, A.; Nedelkovska, E.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Danilov, M.; Drutskoy, A.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Shen, C. P.; Iijima, T.; Mori, T.; Seon, O.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Bischofberger, M.; Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Chen, P.; Hou, W. -S.; Shiu, J. -G.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Natkaniec, Z.; Ostrowicz, W.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Kawasaki, T.; Miyata, H.; Watanabe, M.; Yusa, Y.] Niigata Univ, Niigata 9502181, Japan. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Fast, J. E.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bala, A.] Panjab Univ, Chandigarh 160014, India. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Muramatsu, N.] Tohoku Univ, Res Ctr Electron Photon Sci, Sendai, Miyagi 9808578, Japan. [Liu, C.; Peng, T.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, J.; Olsen, S. L.; Ryu, S.; Tanida, K.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.; Park, C. W.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Kato, E.; Saito, T.; Sanuki, T.; Sato, Y.; Yamamoto, H.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.; Epifanov, D.; Ng, C.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo 1848588, Japan. [Tamponi, U.] Univ Turin, I-10124 Turin, Italy. [Li, Y.; Piilonen, L. E.; Wang, X. L.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Cho, I. -S.; Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.; Yook, Y.] Yonsei Univ, Seoul 120749, South Korea. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. RP Shen, CP (reprint author), Beihang Univ, Beijing 100191, Peoples R China. RI Aihara, Hiroaki/F-3854-2010; Chilikin, Kirill/B-4402-2014; Drutskoy, Alexey/C-8833-2016; Solovieva, Elena/B-2449-2014; Nitoh, Osamu/C-3522-2013; Ishikawa, Akimasa/G-6916-2012; Pakhlov, Pavel/K-2158-2013; Danilov, Mikhail/C-5380-2014; Krokovny, Pavel/G-4421-2016 OI Aihara, Hiroaki/0000-0002-1907-5964; Chilikin, Kirill/0000-0001-7620-2053; Drutskoy, Alexey/0000-0003-4524-0422; Solovieva, Elena/0000-0002-5735-4059; Pakhlov, Pavel/0000-0001-7426-4824; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667 FU MEXT, JSPS; Nagoya's TLPRC (Japan); ARC and DIISR (Australia); FWF (Austria); NSFC (China); MSMT (Czechia); CZF; DFG; VS (Germany); DST (India); INFN (Italy); MEST; NRF; GSDC of KISTI; WCU (Korea); MNiSW; NCN (Poland); MES; RFAAE (Russia); ARRS (Slovenia); IKERBASQUE; UPV/EHU (Spain); SNSF (Switzerland); NSC; MOE (Taiwan); DOE; NSF (USA) FX We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS and Nagoya's TLPRC (Japan); ARC and DIISR (Australia); FWF (Austria); NSFC (China); MSMT (Czechia); CZF, DFG, and VS (Germany); DST (India); INFN (Italy); MEST, NRF, GSDC of KISTI, and WCU (Korea); MNiSW and NCN (Poland); MES and RFAAE (Russia); ARRS (Slovenia); IKERBASQUE and UPV/EHU (Spain); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (USA). NR 34 TC 2 Z9 2 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 23 PY 2013 VL 88 IS 1 AR 011102 DI 10.1103/PhysRevD.88.011102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 187UG UT WOS:000322145600001 ER PT J AU Han, DS Vogel, A Jung, H Lee, KS Weigand, M Stoll, H Schutz, G Fischer, P Meier, G Kim, SK AF Han, Dong-Soo Vogel, Andreas Jung, Hyunsung Lee, Ki-Suk Weigand, Markus Stoll, Hermann Schuetz, Gisela Fischer, Peter Meier, Guido Kim, Sang-Koog TI Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals SO SCIENTIFIC REPORTS LA English DT Article ID SPIN-WAVES; REVERSAL; EXCITATIONS; DYNAMICS AB Lattice vibration modes are collective excitations in periodic arrays of atoms or molecules. These modes determine novel transport properties in solid crystals. Analogously, in periodical arrangements of magnetic vortex-state disks, collective vortex motions have been predicted. Here, we experimentally observe wave modes of collective vortex gyration in one-dimensional (1D) periodic arrays of magnetic disks using time-resolved scanning transmission x-ray microscopy. The observed modes are interpreted based on micromagnetic simulation and numerical calculation of coupled Thiele equations. Dispersion of the modes is found to be strongly affected by both vortex polarization and chirality ordering, as revealed by the explicit analytical form of 1D infinite arrays. A thorough understanding thereof is fundamental both for lattice vibrations and vortex dynamics, which we demonstrate for 1D magnonic crystals. Such magnetic disk arrays with vortex-state ordering, referred to as magnetic metastructure, offer potential implementation into information processing devices. C1 [Han, Dong-Soo; Jung, Hyunsung; Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Natl Creat Res Initiat Ctr Spin Dynam & Spin Wave, Nanospin Lab, Seoul 151744, South Korea. [Han, Dong-Soo; Jung, Hyunsung; Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 151744, South Korea. [Vogel, Andreas; Meier, Guido] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. [Vogel, Andreas; Meier, Guido] Univ Hamburg, Zentrum Mikrostrukturforsch, D-20355 Hamburg, Germany. [Weigand, Markus; Stoll, Hermann; Schuetz, Gisela] Max Planck Inst Intelligente Syst, D-70569 Stuttgart, Germany. [Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Kim, SK (reprint author), Seoul Natl Univ, Natl Creat Res Initiat Ctr Spin Dynam & Spin Wave, Nanospin Lab, Seoul 151744, South Korea. EM sangkoog@snu.ac.kr RI Fischer, Peter/A-3020-2010 OI Fischer, Peter/0000-0002-9824-9343 FU Basic Science Research Program through the National Research Foundation of Korea; Ministry of Science, ICT & Future Planning [2013003460]; BESSY II, Helmholtz-Zentrum Berlin; Deutsche Forschungsgemeinschaft [Sonderforschungsbereich 668, Graduiertenkolleg 1286]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05-CH11231] FX This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (grant no. 2013003460). We acknowledge the support of Michael Bechtel, Eberhard Goring, and BESSY II, Helmholtz-Zentrum Berlin. Financial support from the Deutsche Forschungsgemeinschaft via the Sonderforschungsbereich 668 and the Graduiertenkolleg 1286 is gratefully acknowledged. This work has been also supported by the excellence cluster 'The Hamburg Centre for Ultrafast Imaging - Structure, Dynamics, and Control of Matter at the Atomic Scale' of the Deutsche Forschungsgemeinschaft. P. F. acknowledges support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy (contract no. DE-AC02-05-CH11231). NR 50 TC 30 Z9 31 U1 2 U2 32 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 23 PY 2013 VL 3 AR 2262 DI 10.1038/srep02262 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 187HR UT WOS:000322108000003 PM 23877284 ER PT J AU Saint-Preux, F Bores, LR Tulloch, I Ladenheim, B Kim, R Thanos, PK Volkow, ND Cadet, JL AF Saint-Preux, F. Bores, L. R. Tulloch, I. Ladenheim, B. Kim, R. Thanos, P. K. Volkow, N. D. Cadet, J. L. TI CHRONIC CO-ADMINISTRATION OF NICOTINE AND METHAMPHETAMINE CAUSES DIFFERENTIAL EXPRESSION OF IMMEDIATE EARLY GENES IN THE DORSAL STRIATUM AND NUCLEUS ACCUMBENS OF RATS SO NEUROSCIENCE LA English DT Article DE nicotine; methamphetamine; striatum; nucleus accumbens; immediate early genes ID NEOSTRIATAL NEURONS; DOPAMINE RELEASE; MOLECULAR SWITCH; NERVOUS-SYSTEM; DELTA-FOSB; ADDICTION; BRAIN; RECEPTORS; COCAINE; NEUROBIOLOGY AB Nicotine and methamphetamine (METH) cause addiction by triggering neuroplastic changes in brain reward pathways though they each engage distinct molecular targets (nicotine receptors and dopamine transporters respectively). Addiction to both drugs is very prevalent, with the vast majority of METH users also being smokers of cigarettes. This co-morbid occurrence thus raised questions about potential synergistic rewarding effects of the drugs. However, few studies have investigated the chronic neurobiological changes associated with co-morbid nicotine and METH addiction. Here we investigated the effects of these two drugs alone and in combination on the expression of several immediate early genes (IEGs) that are sensitive to drug exposures. Chronic exposure to either nicotine or METH caused significant decreases in the expression of fosb, fra1, and fra2 in the nucleus accumbens (NAc) but not in the dorsal striatum whereas the drug combination increased fra2 expression in both structures. Except for junB mRNA levels that were decreased by the three drug treatments in the NAc, there were no significant changes in the Jun family members. Of the Egr family members, NAc egr2 expression was decreased after nicotine and the drug combination whereas NAc egr3 was decreased after METH and the drug combination. The drug combination also increased striatal egr3 expression. The Nr4a family member, nr4a2/nurr1, showed increased striatal expression after all three drug treatments, while striatal nr4a3/nor-1 expression was increased by the drug combination whereas NAc nr4a1/ nurr77 was decreased by nicotine and the drug combination. These observations suggest that, when given in combination, the two drugs exert distinct effects on the expression of IEGs in dopaminergic projection areas from those elicited by each drug alone. The significance of these changes in IEG expression and in other molecular markers in fostering co-morbid METH and nicotine abuse needs to be further evaluated. (C) 2013 IBRO. Published by Elsevier Ltd. All rights reserved. C1 [Saint-Preux, F.; Bores, L. R.; Tulloch, I.; Ladenheim, B.; Cadet, J. L.] NIDA IRP, Mol Neuropsychiat Res Branch, Baltimore, MD 21224 USA. [Kim, R.; Thanos, P. K.; Volkow, N. D.] NIAAA, Behav Neuropharmacol & Neuroimaging Lab, Intramural NIAAA Program, Brookhaven Natl Lab, Upton, NY 11973 USA. [Volkow, N. D.] NIDA, Bethesda, MD 20892 USA. RP Cadet, JL (reprint author), NIDA IRP, Mol Neuropsychiat Res Branch, 251 Bayview Blvd, Baltimore, MD 21224 USA. EM Jcadet@intra.nida.nih.gov FU Intramural Research Program of the DHHS/NIH/NIDA FX This research was supported by funds of the Intramural Research Program of the DHHS/NIH/NIDA. NR 40 TC 3 Z9 3 U1 0 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4522 J9 NEUROSCIENCE JI Neuroscience PD JUL 23 PY 2013 VL 243 BP 89 EP 96 DI 10.1016/j.neuroscience.2013.03.052 PG 8 WC Neurosciences SC Neurosciences & Neurology GA 156UK UT WOS:000319849200011 PM 23562942 ER PT J AU Sarkar, A Kerr, JB Cairns, EJ AF Sarkar, A. Kerr, J. B. Cairns, E. J. TI Electrochemical Oxygen Reduction Behavior of Selectively Deposited Platinum Atoms on Gold Nanoparticles SO CHEMPHYSCHEM LA English DT Article DE electrocatalysis; electrochemistry; fuel cells; nanostructures; oxygen reduction ID CORE-SHELL NANOPARTICLES; PT-FE ALLOYS; FUEL-CELLS; MONOLAYER ELECTROCATALYSTS; SILVER NANOPARTICLES; ELECTRONIC-STRUCTURE; METAL-SURFACES; O-2 REDUCTION; STABILITY; PT(111) AB Carbon-supported Pt@Au "core-shell" nanoparticles with varying surface concentration of platinum atoms have been synthesized using a novel redox-mediated synthesis approach. The synthesis technique allows for a selective deposition of platinum atoms on the surface of prefabricated gold nanoparticles. Energy dispersive spectroscopic analyses in a scanning electron microscope reveal that the platinum to gold atomic ratios are close to the nominal values, validating the synthesis scheme. X-ray diffraction data indicate an un-alloyed structure. The platinum to gold surface atomic ratio determined from cyclic voltammetry and copper under-potential deposition experiments reveal good agreement with the calculated values at low platinum concentration. However, there is an increase in non-uniformity in the deposition process upon increasing the platinum concentration. Koutecky-Levich analysis of the samples indicates a transition of the total number of electrons transferred (n) in the electrochemical oxygen reduction reaction from two to four electrons upon increasing the surface concentration of platinum atoms. Furthermore, the data indicate that isolated platinum atoms can reduce molecular oxygen but via a two-electron route. Moreover, successful four-electron reduction of molecular oxygen requires clusters of platinum atoms. C1 [Cairns, E. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sarkar, A.; Kerr, J. B.; Cairns, E. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Cairns, EJ (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM EJCairns@lbl.gov RI Cairns, Elton/E-8873-2012 OI Cairns, Elton/0000-0002-1179-7591 NR 84 TC 6 Z9 6 U1 6 U2 63 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1439-4235 EI 1439-7641 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUL 22 PY 2013 VL 14 IS 10 SI SI BP 2132 EP 2142 DI 10.1002/cphc.201200917 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 188ZN UT WOS:000322236400019 PM 23505224 ER PT J AU Zhong, RD Schneeloch, JA Shi, XY Xu, ZJ Zhang, C Tranquada, JM Li, Q Gu, GD AF Zhong, R. D. Schneeloch, J. A. Shi, X. Y. Xu, Z. J. Zhang, C. Tranquada, J. M. Li, Q. Gu, G. D. TI Optimizing the superconducting transition temperature and upper critical field of Sn1-xInxTe SO PHYSICAL REVIEW B LA English DT Article ID TOPOLOGICAL CRYSTALLINE INSULATOR; SNTE AB Sn1-xInxTe is a possible candidate for topological superconductivity. Previous work has shown that substitution of In for Sn in the topological crystalline insulator SnTe results in superconductivity, with the transition temperature, T-c, growing with In concentration. We have performed a systematic investigation of Sn1-xInxTe for a broad range of x, synthesizing single crystals (by a modified floating-zone method) as well as polycrystalline samples. The samples have been characterized by x-ray diffraction, resistivity, and magnetization. For the single crystals, the maximum T-c is obtained at x = 0.45 with a value of 4.5 K, as determined by the onset of diamagnetism. C1 [Zhong, R. D.; Schneeloch, J. A.; Shi, X. Y.; Xu, Z. J.; Zhang, C.; Tranquada, J. M.; Li, Q.; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Zhong, R. D.; Zhang, C.] SUNY Stony Brook, Mat Sci & Engn Dept, Stony Brook, NY 11794 USA. [Schneeloch, J. A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Zhong, RD (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Tranquada, John/A-9832-2009; xu, zhijun/A-3264-2013; Zhong, Ruidan/D-5296-2013; Zhang, Cheng/R-6593-2016; OI Tranquada, John/0000-0003-4984-8857; xu, zhijun/0000-0001-7486-2015; Zhong, Ruidan/0000-0003-1652-9454; Zhang, Cheng/0000-0001-6531-4703; Schneeloch, John/0000-0002-3577-9574 FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy [DE-AC02-98CH10886] FX Work at Brookhaven is supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy under Contract No. DE-AC02-98CH10886. The synthesis, magnetization, and x-ray diffraction measurements were supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center, while the resistivity measurements were supported by the Superconducting Materials project. NR 19 TC 27 Z9 27 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 22 PY 2013 VL 88 IS 2 AR 020505 DI 10.1103/PhysRevB.88.020505 PG 4 WC Physics, Condensed Matter SC Physics GA 187JD UT WOS:000322112700002 ER PT J AU Kim, H Jebrail, MJ Sinha, A Bent, ZW Solberg, OD Williams, KP Langevin, SA Renzi, RF Van De Vreugde, JL Meagher, RJ Schoeniger, JS Lane, TW Branda, SS Bartsch, MS Patel, KD AF Kim, Hanyoup Jebrail, Mais J. Sinha, Anupama Bent, Zachary W. Solberg, Owen D. Williams, Kelly P. Langevin, Stanley A. Renzi, Ronald F. Van De Vreugde, James L. Meagher, Robert J. Schoeniger, Joseph S. Lane, Todd W. Branda, Steven S. Bartsch, Michael S. Patel, Kamlesh D. TI A Microfluidic DNA Library Preparation Platform for Next-Generation Sequencing SO PLOS ONE LA English DT Article ID DIGITAL MICROFLUIDICS; PLURONIC ADDITIVES; SAMPLE PREPARATION; READ ALIGNMENT; CHEMISTRY; ACTUATION; DROPLETS AB Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories. C1 [Kim, Hanyoup; Jebrail, Mais J.; Meagher, Robert J.; Branda, Steven S.] Sandia Natl Labs, Dept Biotechnol & Bioengn, Livermore, CA USA. [Sinha, Anupama; Bent, Zachary W.; Solberg, Owen D.; Williams, Kelly P.; Langevin, Stanley A.; Schoeniger, Joseph S.; Lane, Todd W.] Sandia Natl Labs, Dept Syst Biol, Livermore, CA USA. [Renzi, Ronald F.; Van De Vreugde, James L.; Bartsch, Michael S.; Patel, Kamlesh D.] Sandia Natl Labs, Livermore, CA USA. RP Patel, KD (reprint author), Sandia Natl Labs, Livermore, CA USA. EM kdpatel@sandia.gov OI Lane, Todd/0000-0002-5816-2649 FU Sandia National Laboratories' Grand Challenge LDRD (Laboratory-Directed Research and Development) [142042]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by Sandia National Laboratories' Grand Challenge LDRD (Laboratory-Directed Research and Development, grant number 142042) program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 45 TC 18 Z9 20 U1 10 U2 62 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 22 PY 2013 VL 8 IS 7 AR e68988 DI 10.1371/journal.pone.0068988 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 187PW UT WOS:000322132100036 PM 23894387 ER PT J AU Lockett, MR Lange, H Breiten, B Heroux, A Sherman, W Rappoport, D Yau, PO Snyder, PW Whitesides, GM AF Lockett, Matthew R. Lange, Heiko Breiten, Benjamin Heroux, Annie Sherman, Woody Rappoport, Dmitrij Yau, Patricia O. Snyder, Philip W. Whitesides, George M. TI The Binding of Benzoarylsulfonamide Ligands to Human Carbonic Anhydrase is Insensitive to Formal Fluorination of the Ligand SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE biomolecular recognition; carbonic anhydrase; hydrophobic effect; protein-ligand binding; water ID PROTEINS; RECOGNITION; INHIBITORS; ENTHALPY C1 [Lockett, Matthew R.; Lange, Heiko; Breiten, Benjamin; Rappoport, Dmitrij; Yau, Patricia O.; Snyder, Philip W.; Whitesides, George M.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Heroux, Annie] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Sherman, Woody] Schrodinger Inc, New York, NY 10036 USA. [Whitesides, George M.] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA. RP Whitesides, GM (reprint author), Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA. EM gwhitesides@gmwgroup.harvard.edu RI Lockett, Matthew/A-6020-2015; Rappoport, Dmitrij/K-6198-2012; OI Lockett, Matthew/0000-0003-4851-7757; Rappoport, Dmitrij/0000-0002-5024-7998; Lange, Heiko/0000-0003-3845-7017 FU National Science Foundation [CHE-1152196]; Wyss Institute of Biologically Inspired Engineering; Deutsche Forschungsgemeinschaft (DFG) FX The authors thank Dr. Jasmin Mecinovic, Dr. Ramani Ranatunge, Dr. Demetri Moustakas, Dr. Manza Atkinson, Dr. Mohammad Al-Sayah, Dr. Shuji Fujita, and Mr. Jang Hoon Yoon for their technical contributions. This work was supported by the National Science Foundation (CHE-1152196) and the Wyss Institute of Biologically Inspired Engineering. H.L. thanks the Deutsche Forschungsgemeinschaft (DFG) for a postdoctoral stipend. NR 23 TC 19 Z9 19 U1 1 U2 35 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD JUL 22 PY 2013 VL 52 IS 30 BP 7714 EP 7717 DI 10.1002/anie.201301813 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 184NE UT WOS:000321896800020 PM 23788494 ER PT J AU Chatzakis, I Tassin, P Luo, L Shen, NH Zhang, L Wang, JG Koschny, T Soukoulis, CM AF Chatzakis, Ioannis Tassin, Philippe Luo, Liang Shen, Nian-Hai Zhang, Lei Wang, Jigang Koschny, Thomas Soukoulis, C. M. TI One-and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves SO APPLIED PHYSICS LETTERS LA English DT Article ID QUANTUM-CASCADE LASERS; METAMATERIALS; CRYSTALS; DEVICES; INDEX AB Emerging technology based on artificial materials containing metallic structures has raised the prospect for unprecedented control of terahertz waves. The functionality of these devices is static by the very nature of their metallic composition, although some degree of tunability can be achieved by incorporating electrically biased semiconductors. Here, we demonstrate a photonic structure by projecting the optical image of a metal mask onto a thin GaAs substrate using a femtosecond pulsed laser source. We show that the resulting high-contrast pattern of photo-excited carriers can create diffractive elements operating in transmission, potentially providing a route to terahertz components with reconfigurable functionality. (C) 2013 AIP Publishing LLC. C1 [Chatzakis, Ioannis; Tassin, Philippe; Luo, Liang; Shen, Nian-Hai; Zhang, Lei; Wang, Jigang; Koschny, Thomas; Soukoulis, C. M.] US DOE, Ames Lab, Ames, IA 50011 USA. [Chatzakis, Ioannis; Tassin, Philippe; Luo, Liang; Shen, Nian-Hai; Zhang, Lei; Wang, Jigang; Koschny, Thomas; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soukoulis, C. M.] FORTH, IESL, Iraklion 71110, Crete, Greece. RP Tassin, P (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM tassin@ameslab.gov; jgwang@iastate.edu; soukoulis@ameslab.gov RI Tassin, Philippe/B-7152-2008; Soukoulis, Costas/A-5295-2008 FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; U.S. Office of Naval Research [N00014-10-1-0925] FX Work at Ames Laboratory was partially supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358) (experiments) and by the U.S. Office of Naval Research, Award No. N00014-10-1-0925 (theory). NR 34 TC 22 Z9 22 U1 3 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 22 PY 2013 VL 103 IS 4 AR 043101 DI 10.1063/1.4813620 PG 4 WC Physics, Applied SC Physics GA 191IM UT WOS:000322406600079 ER PT J AU Chen, GB Yu, KM Reichertz, LA Walukiewicz, W AF Chen, Guibin Yu, K. M. Reichertz, L. A. Walukiewicz, W. TI Material properties of Cd1-xMgxO alloys synthesized by radio frequency sputtering SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSPARENT CONDUCTING OXIDES; SEMICONDUCTORS; FILMS; ELECTRODES AB We have studied structural, electrical, and optical properties of sputter deposited ternary CdMgO alloy thin films with total Mg concentration as high as 44%. We found that only a fraction (50%-60%) of Mg is incorporated as substitutional Mg contributing to the modification of the electronic structures of the alloys. The electrical and optical results of the Cd1-xMgxO alloys are analyzed in terms of a large upward shift of the conduction band edge with increasing Mg concentration. With the increase of the intrinsic bandgap, appropriately doped Cd-rich CdMgO alloys can be potentially useful as transparent conductors for photovoltaics. (C) 2013 AIP Publishing LLC. C1 [Chen, Guibin; Yu, K. M.; Reichertz, L. A.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Reichertz, L. A.] RoseSt Labs Energy, Phoenix, AZ 85034 USA. RP Chen, GB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM kmyu@lbl.gov OI Yu, Kin Man/0000-0003-1350-9642 FU Department of Energy through the Bay Area Photovoltaic Consortium [DE-EE0004946]; National Natural Science Foundation of China [11174101]; Natural Science Foundation of Jiangsu Province (NSFJS) [BK2010499, BK2011411, HAG2011006]; agency of the United States Government FX This material was based upon work supported by the Department of Energy through the Bay Area Photovoltaic Consortium under Award No. DE-EE0004946. G. B. C. acknowledges the support provided by the National Natural Science Foundation of China (No. 11174101), Natural Science Foundation of Jiangsu Province (NSFJS, Nos. BK2010499, BK2011411, and HAG2011006).; This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency hereof. NR 28 TC 8 Z9 9 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 22 PY 2013 VL 103 IS 4 AR 041902 DI 10.1063/1.4816326 PG 4 WC Physics, Applied SC Physics GA 191IM UT WOS:000322406600029 ER PT J AU Geisz, JF Steiner, MA Garcia, I Kurtz, SR Friedman, DJ AF Geisz, J. F. Steiner, M. A. Garcia, I. Kurtz, S. R. Friedman, D. J. TI Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells SO APPLIED PHYSICS LETTERS LA English DT Article ID P-N JUNCTION; CARRIER GENERATION; RECOMBINATION; LIMIT AB We demonstrate 1.81 eV GaInP solar cells approaching the Shockley-Queisser limit with 20.8% solar conversion efficiency, 8% external radiative efficiency, and 80-90% internal radiative efficiency at one-sun AM1.5 global conditions. Optically enhanced voltage through photon recycling that improves light extraction was achieved using a back metal reflector. This optical enhancement was realized at one-sun currents when the non-radiative Sah-Noyce-Shockley junction recombination current was reduced by placing the junction at the back of the cell in a higher band gap AlGaInP layer. Electroluminescence and dark current-voltage measurements show the separate effects of optical management and non-radiative dark current reduction. (C) 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816837] C1 [Geisz, J. F.; Steiner, M. A.; Garcia, I.; Kurtz, S. R.; Friedman, D. J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Garcia, I.] Univ Politecn Madrid, Inst Energia Solar, E-28040 Madrid, Spain. RP Geisz, JF (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Garcia, Ivan/L-1547-2014 OI Garcia, Ivan/0000-0002-9895-2020 FU People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme under REA [299878]; U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; Foundational Program to Advance Cell Efficiency (F-PACE) FX The authors acknowledge K. Emery and his team for solar cell measurements; S. Choi for spectral ellipsometry measurements; W. Olavarria, M. Young, A. Kibbler, and A. Duda for solar cell processing; and E. Yablonovich, R. King, and others from U. C. Berkeley and Spectrolab for helpful conversations. I. Garcia holds an IOF grant from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no 299878. Research was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory and funded by the Foundational Program to Advance Cell Efficiency (F-PACE). NR 24 TC 55 Z9 55 U1 4 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 22 PY 2013 VL 103 IS 4 AR 041118 DI 10.1063/1.4816837 PG 5 WC Physics, Applied SC Physics GA 191IM UT WOS:000322406600018 ER PT J AU Lu, L Wu, MZ Mallary, M Bertero, G Srinivasan, K Acharya, R Schultheiss, H Hoffmann, A AF Lu, Lei Wu, Mingzhong Mallary, Michael Bertero, Gerardo Srinivasan, Kumar Acharya, Ramamurthy Schultheiss, Helmut Hoffmann, Axel TI Observation of microwave-assisted magnetization reversal in perpendicular recording media SO APPLIED PHYSICS LETTERS LA English DT Article ID COBALT AB This letter reports microwave-assisted magnetization reversal (MAMR) in a 700-Gbit/in(2) perpendicular media sample. The microwave fields were applied by placing a coplanar waveguide on the media sample and feeding it with narrow microwave pulses. The switching states of the media grains were measured by magnetic force microscopy. For microwaves with a frequency close to the ferromagnetic resonance (FMR) frequency of the media, MAMR was observed for microwave power higher than a certain threshold. For microwaves with certain high power, MAMR was observed for a broad microwave frequency range which covers the FMR frequency and is centered below the FMR frequency. (C) 2013 AIP Publishing LLC. C1 [Lu, Lei; Wu, Mingzhong] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Mallary, Michael; Bertero, Gerardo; Srinivasan, Kumar; Acharya, Ramamurthy] Western Digital Technol, San Jose, CA 92630 USA. [Schultheiss, Helmut; Hoffmann, Axel] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Wu, MZ (reprint author), Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. EM mwu@lamar.colostate.edu RI Schultheiss, Helmut/I-2221-2013; Hoffmann, Axel/A-8152-2009 OI Schultheiss, Helmut/0000-0002-6727-5098; Hoffmann, Axel/0000-0002-1808-2767 FU U. S. National Institute of Standards and Technology [60NANB10D011]; Western Digital Technologies; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported in part by the U. S. National Institute of Standards and Technology (60NANB10D011) and Western Digital Technologies. Work at Argonne and use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Basic Energy Sciences (DE-AC02-06CH11357). NR 29 TC 11 Z9 11 U1 0 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 22 PY 2013 VL 103 IS 4 AR 042413 DI 10.1063/1.4816798 PG 5 WC Physics, Applied SC Physics GA 191IM UT WOS:000322406600062 ER PT J AU Sallis, S Scanlon, DO Chae, SC Quackenbush, NF Fischer, DA Woicik, JC Guo, JH Cheong, SW Piper, LFJ AF Sallis, S. Scanlon, D. O. Chae, S. C. Quackenbush, N. F. Fischer, D. A. Woicik, J. C. Guo, J. -H. Cheong, S. W. Piper, L. F. J. TI La-doped BaSnO3-Degenerate perovskite transparent conducting oxide: Evidence from synchrotron x-ray spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID PHOTOEMISSION; PARAMETERS; SPECTRA AB We report direct evidence of conduction band filling in 3% La-doped BaSnO3 using hard x-ray photoelectron spectroscopy. Direct comparisons with hybrid density functional theory calculations support a 3.2 eV indirect band gap. The use of hybrid DFT is verified by excellent agreement between our photoelectron spectra and O K-edge x-ray emission and absorption spectra. Our experimental and computational results demonstrate that the conduction band is primarily of Sn 5s orbital character with little O 2p contribution, which is a prerequisite for designing a perovskite-based transparent conducting oxide. (C) 2013 AIP Publishing LLC. C1 [Sallis, S.; Piper, L. F. J.] SUNY Binghamton, Binghamton, NY 13902 USA. [Scanlon, D. O.] UCL, Dept Chem, London WC1H 0AJ, England. [Chae, S. C.; Cheong, S. W.] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Chae, S. C.; Cheong, S. W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Quackenbush, N. F.; Piper, L. F. J.] SUNY Binghamton, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA. [Fischer, D. A.; Woicik, J. C.] NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. [Guo, J. -H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Sallis, S (reprint author), SUNY Binghamton, Binghamton, NY 13902 USA. EM d.scanlon@ucl.ac.uk; lpiper@binghamton.edu RI Scanlon, David/B-1516-2008; Sallis, Shawn/E-6258-2012; Piper, Louis/C-2960-2011 OI Scanlon, David/0000-0001-9174-8601; Sallis, Shawn/0000-0002-8443-4951; Piper, Louis/0000-0002-3421-3210 FU Binghamton University; Analytical and Diagnostics Laboratory Small Grant program at Binghamton University; Ramsay Memorial Trust; University College London; National Science Foundation [DMR-1104484]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DEAC02-98CH10886]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; EPSRC [EP/K000144/1, EP/K000136/1, EP/F067496] FX We would like to thank Jeremiah Dederick for Hall measurements of our samples. L.F.J.P. gratefully acknowledges startup funding from Binghamton University. Additional support for the XPS measurements was provided by the Analytical and Diagnostics Laboratory Small Grant program at Binghamton University. D.O.S. is grateful to the Ramsay Memorial Trust and University College London for the provision of a Ramsay Fellowship. Work at Rutgers was supported by National Science Foundation DMR-1104484. Use of the National Synchrotron Light Source Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-98CH10886. Beamline X24a is supported by the National Institute of Standards and Technology. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The calculations presented here made use of the UCL Legion HPC Facility, the IRIDIS cluster provided by the EPSRC funded Centre for Innovation (EP/K000144/1 and EP/K000136/1), and the HECToR supercomputer through membership of the UK's HPC Materials Chemistry Consortium, which is funded by EPSRC grant EP/F067496. NR 28 TC 22 Z9 22 U1 5 U2 81 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 22 PY 2013 VL 103 IS 4 AR 042105 DI 10.1063/1.4816511 PG 4 WC Physics, Applied SC Physics GA 191IM UT WOS:000322406600044 ER PT J AU Savukov, I Karaulanov, T AF Savukov, I. Karaulanov, T. TI Magnetic-resonance imaging of the human brain with an atomic magnetometer SO APPLIED PHYSICS LETTERS LA English DT Article ID MRI AB Magnetic resonance imaging (MRI) is conventionally performed in very high fields, and this leads to some restrictions in applications. To remove such restrictions, the ultra-low field MRI approach has been proposed. Because of the loss of sensitivity, the detection methods based on superconducting quantum interference devices (SQUIDs) in a shielded room were used. Atomic magnetometers have similar sensitivity as SQUIDs and can also be used for MRI, but there are some technical difficulties to overcome. We demonstrate that MRI of the human brain can be obtained with an atomic magnetometer with in-plane resolution of 3 mm in 13 min. (C) 2013 AIP Publishing LLC. C1 [Savukov, I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Karaulanov, T.] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. RP Savukov, I (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Savukov, Igor/0000-0003-4190-5335 FU NIH [5 R01 EB009355]; U. S. Department of Energy through the LANL/LDRD program FX This work was supported by NIH 5 R01 EB009355. The work of T. Karaulanov was partially supported by the U. S. Department of Energy through the LANL/LDRD program. NR 8 TC 12 Z9 13 U1 3 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 22 PY 2013 VL 103 IS 4 AR 043703 DI 10.1063/1.4816433 PG 3 WC Physics, Applied SC Physics GA 191IM UT WOS:000322406600126 PM 23964134 ER PT J AU Yu, XH Wang, YJ Zhang, JZ Xu, HW Zhao, YS AF Yu, Xiaohui Wang, Yuejian Zhang, Jianzhong Xu, Hongwu Zhao, Yusheng TI Compressive-tensile deformation of nanocrystalline nickel at high pressure and temperature conditions SO APPLIED PHYSICS LETTERS LA English DT Article ID CENTERED-CUBIC METALS; MECHANICAL-PROPERTIES; PLASTIC-DEFORMATION; MAXIMUM STRENGTH; COPPER; BOUNDARIES; STRESS AB We conducted uniaxial compressive and tensile deformation on nanocrystalline Ni at a confining pressure of 6 GPa and temperatures up to 900 degrees C. The determined compressive yield strength is 0.8 GPa, identical to the tensile yield strength obtained in the same deformation experiment, indicating that the Bauschinger effect is absent in nanocrystalline Ni. The yield strength obtained at 6 GPa is also comparable to that at ambient pressure, suggesting that the dislocation-mediated mechanisms are no longer activated during plastic deformation. Based on peak intensity and peak width analyses, grain rotation and grain growth are main factors underlying the plastic deformation. (C) 2013 AIP Publishing LLC. C1 [Yu, Xiaohui] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Yu, Xiaohui] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Yu, Xiaohui; Zhang, Jianzhong; Xu, Hongwu] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. [Wang, Yuejian] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. [Xu, Hongwu] Los Alamos Natl Lab, EES Div, Los Alamos, NM 87545 USA. [Zhao, Yusheng] Univ Nevada, HiPSEC, Las Vegas, NV 89154 USA. [Zhao, Yusheng] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. RP Yu, XH (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. EM yuxh-jl@hotmail.com; yusheng.zhao@unlv.edu OI Xu, Hongwu/0000-0002-0793-6923; Zhang, Jianzhong/0000-0001-5508-1782 FU DOE [DE-AC52-06NA25396] FX This research was supported by Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. The experimental work was carried out at beam line 13-BM-D at the Advanced Photon Source, Argonne National Laboratory. NR 40 TC 3 Z9 3 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 22 PY 2013 VL 103 IS 4 AR 043118 DI 10.1063/1.4816744 PG 4 WC Physics, Applied SC Physics GA 191IM UT WOS:000322406600096 ER PT J AU Zhang, W Wong, PKJ Yan, P Wu, J Morton, SA Wang, XR Hu, XF Xu, YB Scholl, A Young, A Barsukov, I Farle, M van der Laan, G AF Zhang, W. Wong, P. K. J. Yan, P. Wu, J. Morton, S. A. Wang, X. R. Hu, X. F. Xu, Y. B. Scholl, A. Young, A. Barsukov, I. Farle, M. van der Laan, G. TI Observation of current-driven oscillatory domain wall motion in Ni80Fe20/Co bilayer nanowire SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETIC NANOWIRES; PROPAGATION; MICROSCOPY; DYNAMICS AB Direct observation of current-driven oscillatory domain wall motion above the Walker breakdown by x-ray magnetic circular dichroism in photoemission electron microscopy is reported in Ni80Fe20/Co nanowire, showing micrometer-scale displacement at similar to 13 MHz. We identify two key factors that enhance the oscillatory motion: (i) increase of the hard-axis magnetic anisotropy field value vertical bar H-perpendicular to vertical bar and (ii) increase of the ratio between non-adiabatic spin-transfer parameter to the Gilbert damping coefficient, beta/alpha, which is required to be larger than 1. These findings point to an important route to tune the long-scale oscillatory domain wall motion using appropriate geometry and materials. (C) 2013 AIP Publishing LLC. C1 [Zhang, W.; Wong, P. K. J.; Hu, X. F.; Xu, Y. B.] Univ York, Dept Elect, Spintron & Nanodevices Lab, York YO10 5DD, N Yorkshire, England. [Zhang, W.; Wu, J.; Xu, Y. B.] Nanjing Univ, Nanjing York Int Joint Ctr Spintron, Nanjing 210093, Jiangsu, Peoples R China. [Yan, P.; Wang, X. R.] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Wu, J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Morton, S. A.; Scholl, A.; Young, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Barsukov, I.; Farle, M.] Univ Duisburg Essen, Fac Phys, D-47057 Duisburg, Germany. [Barsukov, I.; Farle, M.] Univ Duisburg Essen, Ctr Nanointegrat CeNIDE, D-47057 Duisburg, Germany. [van der Laan, G.] Magnet Spect Grp, Diamond Light Source, Didcot OX11 0DE, Oxon, England. RP Zhang, W (reprint author), Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China. EM ybxu@nju.edu.cn RI Wong, Johnny/G-1745-2010; Yan, Peng/L-1960-2014; Scholl, Andreas/K-4876-2012; van der Laan, Gerrit/Q-1662-2015; OI Wong, Johnny/0000-0003-4645-0384; van der Laan, Gerrit/0000-0001-6852-2495; Farle, Michael/0000-0002-1864-3261; Wang, Xiangrong/0000-0002-8600-3258 FU UK EPSRC; STFC; National Natural Science Foundation of China [61274102]; PAPD project; Hong Kong RGC [604109]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX The authors (W.Z., J.W., and Y.X.) acknowledge the financial support from UK EPSRC and STFC, and the National Natural Science Foundation of China (61274102) and the PAPD project. PY and XRW are supported by Hong Kong RGC Grants 604109. The Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 3 Z9 3 U1 4 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 22 PY 2013 VL 103 IS 4 AR 042403 DI 10.1063/1.4816359 PG 4 WC Physics, Applied SC Physics GA 191IM UT WOS:000322406600052 ER PT J AU Bostock, CJ Fontes, CJ Fursa, DV Zhang, HL Bray, I AF Bostock, C. J. Fontes, C. J. Fursa, D. V. Zhang, H. L. Bray, Igor TI Calculation of the relativistic rise in electron-impact-excitation cross sections for highly charged ions SO PHYSICAL REVIEW A LA English DT Article ID GENERALIZED BREIT INTERACTION; HYDROGENIC IONS; IONIZATION; PARTICLES; ATOMS; RADIATION; SCATTERING; COLLISIONS; MATTER AB Exact relativistic plane-wave Born (RPWB) matrix elements of the Moller interaction are incorporated in the "analytic Born subtraction technique" and employed in the relativistic convergent close-coupling method. Application to the calculation of high-energy electron-impact-excitation cross sections of highly charged hydrogenlike ions demonstrates the "Bethe rise," an effect that is manifest in Bethe's original 1932 work on relativistic high-energy, electron-impact excitation. The result represents an improvement over Bethe's relativistic high-energy theory developed in the 1930s in that (i) both target and projectile electrons are represented relativistically with Dirac spinor wave functions and (ii) the dipole approximation plus additional assumptions are not employed in the RPWB scattering amplitude of the Moller interaction. C1 [Bostock, C. J.; Fursa, D. V.; Bray, Igor] Curtin Univ, ARC Ctr Antimatter Matter Studies, Perth, WA 6845, Australia. [Fontes, C. J.; Zhang, H. L.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. RP Bostock, CJ (reprint author), Curtin Univ, ARC Ctr Antimatter Matter Studies, GPO Box U1987, Perth, WA 6845, Australia. EM c.bostock@curtin.edu.au; cjf@lanl.gov RI Bostock, Christopher/B-2413-2013; Bray, Igor/B-8586-2009; Fursa, Dmitry/C-2301-2009 OI Bostock, Christopher/0000-0001-7141-5252; Bray, Igor/0000-0001-7554-8044; Fursa, Dmitry/0000-0002-3951-9016 FU Curtin University; Australian Research Council; US Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX George Csanak is thanked for discussions and translations related to this work. We are very grateful for Klaus Bartschat's complete German to English translation of Bethe's original paper [13] and associated discussions providing important insight into Bethe's theory. We also thank Bennaceur Najjari for providing data in electronic form. C.J.B., D. V. F., and I. B. acknowledge support from Curtin University and the Australian Research Council. The work of C.J.F. and H.L.Z. was performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 44 TC 4 Z9 4 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 22 PY 2013 VL 88 IS 1 AR 012711 DI 10.1103/PhysRevA.88.012711 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 187IW UT WOS:000322111800007 ER PT J AU Haxton, DJ AF Haxton, Daniel J. TI Breakup of H-2(+) by photon impact SO PHYSICAL REVIEW A LA English DT Article ID PHOTOIONIZATION CROSS-SECTIONS; HYDROGEN MOLECULAR ION; ELECTRONIC STATES; SPECTROSCOPIC PROPERTIES; PHOTODISSOCIATION; IONIZATION; H2; APPROXIMATION; DISSOCIATION; HAMILTONIANS AB Total and partial cross sections for breakup of the ground rovibronic state of H-2(+) by photon impact are calculated using the exact nonadiabatic nonrelativistic Hamiltonian without approximation. The converged results span six orders of magnitude. The breakup cross section is divided into dissociative excitation and dissociative ionization. The dissociative excitation channels are divided into contributions from principal quantum numbers 1-4. For dissociative ionization, the fully differential cross section is calculated using a formally exact expression. These results are compared with approximate expressions. The Born-Oppenheimer expression for the dissociative ionization amplitude is shown to be deficient near onset. A Born-Oppenheimer approximation to the final state is shown to give accurate results for the sharing of kinetic energy between the electronic and the internuclear degrees of freedom-the doubly differential cross section. To accurately calculate the triply differential cross section, including the angular behavior, it is shown that nonadiabatic wave functions for both initial and final states are required at low electron energies. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Haxton, DJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences [DE-AC02-05CH11231] FX The author thanks T. N. Rescigno and C. W. McCurdy for enlightening discussions and comments on the manuscript. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences Contract No. DE-AC02-05CH11231. NR 65 TC 7 Z9 7 U1 4 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD JUL 22 PY 2013 VL 88 IS 1 AR 013415 DI 10.1103/PhysRevA.88.013415 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 187IW UT WOS:000322111800008 ER PT J AU Pandey, A Ueland, BG Yeninas, S Kreyssig, A Sapkota, A Zhao, Y Helton, JS Lynn, JW McQueeney, RJ Furukawa, Y Goldman, AI Johnston, DC AF Pandey, Abhishek Ueland, B. G. Yeninas, S. Kreyssig, A. Sapkota, A. Zhao, Yang Helton, J. S. Lynn, J. W. McQueeney, R. J. Furukawa, Y. Goldman, A. I. Johnston, D. C. TI Coexistence of Half-Metallic Itinerant Ferromagnetism with Local-Moment Antiferromagnetism in Ba0.60K0.40Mn2As2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; WEAK FERROMAGNETISM; IRON PNICTIDES AB Magnetization, nuclear magnetic resonance, high-resolution x-ray diffraction, and magnetic field-dependent neutron diffraction measurements reveal a novel magnetic ground state of Ba0.60K0.40Mn2As2 in which itinerant ferromagnetism (FM) below a Curie temperature T-C approximate to 100 K arising from the doped conduction holes coexists with collinear antiferromagnetism (AFM) of the Mn local moments that order below a Neel temperature T-N 480 K. The FM ordered moments are aligned in the tetragonal ab plane and are orthogonal to the AFM ordered Mn moments that are aligned along the c axis. The magnitude and nature of the low-T FM ordered moment correspond to complete polarization of the doped-hole spins (half-metallic itinerant FM) as deduced from magnetization and ab-plane electrical resistivity measurements. C1 [Pandey, Abhishek; Ueland, B. G.; Yeninas, S.; Kreyssig, A.; Sapkota, A.; McQueeney, R. J.; Furukawa, Y.; Goldman, A. I.; Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Pandey, Abhishek; Ueland, B. G.; Yeninas, S.; Kreyssig, A.; Sapkota, A.; McQueeney, R. J.; Furukawa, Y.; Goldman, A. I.; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhao, Yang; Helton, J. S.; Lynn, J. W.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Zhao, Yang] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Pandey, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM apandey@ameslab.gov; johnston@ameslab.gov RI Ueland, Benjamin/B-2312-2008; Pandey, Abhishek /M-5679-2015; McQueeney, Robert/A-2864-2016 OI Ueland, Benjamin/0000-0001-9784-6595; Pandey, Abhishek /0000-0003-2839-1720; McQueeney, Robert/0000-0003-0718-5602 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX The authors wish to thank J. Lamsal, G.S. Tucker, W. Jayasekara, M.G. Kim, T.W. Heitmann, and W. E. Straszheim for their assistance in the early stages of this project. We also thank V.P. Antropov, B.N. Harmon and A. Kaminski for useful discussions. The research at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 33 TC 15 Z9 15 U1 3 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 22 PY 2013 VL 111 IS 4 AR 047001 DI 10.1103/PhysRevLett.111.047001 PG 5 WC Physics, Multidisciplinary SC Physics GA 187KF UT WOS:000322116100014 PM 23931395 ER PT J AU Regan, SP Epstein, R Hammel, BA Suter, LJ Scott, HA Barrios, MA Bradley, DK Callahan, DA Cerjan, C Collins, GW Dixit, SN Doppner, T Edwards, MJ Farley, DR Fournier, KB Glenn, S Glenzer, SH Golovkin, IE Haan, SW Hamza, A Hicks, DG Izumi, N Jones, OS Kilkenny, JD Kline, JL Kyrala, GA Landen, OL Ma, T MacFarlane, JJ MacKinnon, AJ Mancini, RC McCrory, RL Meezan, NB Meyerhofer, DD Nikroo, A Park, HS Ralph, J Remington, BA Sangster, TC Smalyuk, VA Springer, PT Town, RPJ AF Regan, S. P. Epstein, R. Hammel, B. A. Suter, L. J. Scott, H. A. Barrios, M. A. Bradley, D. K. Callahan, D. A. Cerjan, C. Collins, G. W. Dixit, S. N. Doeppner, T. Edwards, M. J. Farley, D. R. Fournier, K. B. Glenn, S. Glenzer, S. H. Golovkin, I. E. Haan, S. W. Hamza, A. Hicks, D. G. Izumi, N. Jones, O. S. Kilkenny, J. D. Kline, J. L. Kyrala, G. A. Landen, O. L. Ma, T. MacFarlane, J. J. MacKinnon, A. J. Mancini, R. C. McCrory, R. L. Meezan, N. B. Meyerhofer, D. D. Nikroo, A. Park, H-S. Ralph, J. Remington, B. A. Sangster, T. C. Smalyuk, V. A. Springer, P. T. Town, R. P. J. TI Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets SO PHYSICAL REVIEW LETTERS LA English DT Article ID FACILITY; LAYER AB Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13, +50) ng and 4000(-2970, +17 160) ng are observed. C1 [Regan, S. P.; Epstein, R.; McCrory, R. L.; Meyerhofer, D. D.; Sangster, T. C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Doeppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Haan, S. W.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Kilkenny, J. D.; Landen, O. L.; Ma, T.; MacKinnon, A. J.; Meezan, N. B.; Park, H-S.; Ralph, J.; Remington, B. A.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Golovkin, I. E.; MacFarlane, J. J.] Prism Computat Sci, Madison, WI 53711 USA. [Kline, J. L.; Kyrala, G. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mancini, R. C.] Univ Nevada, Reno, NV 89557 USA. [Kilkenny, J. D.; Nikroo, A.] Gen Atom Co, San Diego, CA 92186 USA. [McCrory, R. L.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [McCrory, R. L.; Meyerhofer, D. D.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA. RP Regan, SP (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RI Ma, Tammy/F-3133-2013; MacKinnon, Andrew/P-7239-2014; Hicks, Damien/B-5042-2015; IZUMI, Nobuhiko/J-8487-2016; OI Ma, Tammy/0000-0002-6657-9604; MacKinnon, Andrew/0000-0002-4380-2906; Hicks, Damien/0000-0001-8322-9983; IZUMI, Nobuhiko/0000-0003-1114-597X; Kline, John/0000-0002-2271-9919 FU U.S. Department of Energy Office of Inertial Confinement Fusion [DE-FC52-08NA28302] FX The authors acknowledge the excellent operation of the National Ignition Facility and helpful suggestions from M. Key. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302. NR 26 TC 55 Z9 56 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 22 PY 2013 VL 111 IS 4 AR 045001 DI 10.1103/PhysRevLett.111.045001 PG 5 WC Physics, Multidisciplinary SC Physics GA 187KF UT WOS:000322116100007 PM 23931375 ER PT J AU Streltsov, A Zurek, WH AF Streltsov, Alexander Zurek, Wojciech H. TI Quantum Discord Cannot Be Shared SO PHYSICAL REVIEW LETTERS LA English DT Article ID INFORMATION-THEORY; STATE; ENTANGLEMENT; CHANNELS AB Bohr proposed that the outcome of a measurement becomes objective and real, and, hence, classical, when its results can be communicated by classical means. In this work we revisit Bohr's postulate using modern tools from quantum information theory. We find a full confirmation of Bohr's idea: if a measurement device is in a nonclassical state, the measurement results cannot be communicated perfectly by classical means. In this case some part of the information in the measurement apparatus is lost in the process of communication: the amount of this lost information turns out to be the quantum discord. The information loss occurs even when the apparatus is not entangled with the system of interest. The tools presented in this work allow us to generalize Bohr's postulate: we show that for pure system-apparatus states quantum communication does not provide any advantage when measurement results are communicated to more than one recipient. We further demonstrate the superiority of quantum communication to two recipients on a mixed system-apparatus state and show that this effect is fundamentally different from quantum state cloning. C1 [Streltsov, Alexander] Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany. [Streltsov, Alexander; Zurek, Wojciech H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zurek, Wojciech H.] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Streltsov, A (reprint author), Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany. EM streltsov@thphy.uni-duesseldorf.de FU DOE LDRD program at Los Alamos; John Templeton Foundation; Deutsche Forschungsgemeinschaft (DFG); ELES FX We acknowledge discussion with Gerardo Adesso, Dagmar Bruss, Otfried Guhne, Hermann Kampermann, Matthias Kleinmann, Tobias Moroder, Marco Piani, Volkher Scholz, and Michael Zwolak. This work was supported by DOE LDRD program at Los Alamos, and in part by John Templeton Foundation, Deutsche Forschungsgemeinschaft (DFG) and ELES. NR 46 TC 20 Z9 20 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 22 PY 2013 VL 111 IS 4 AR 040401 DI 10.1103/PhysRevLett.111.040401 PG 5 WC Physics, Multidisciplinary SC Physics GA 187KF UT WOS:000322116100001 PM 23931342 ER PT J AU Song, WJ Zhao, C Lercher, JA AF Song, Wenji Zhao, Chen Lercher, Johannes A. TI Importance of Size and Distribution of Ni Nanoparticles for the Hydrodeoxygenation of Microalgae Oil SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE biomass; decarbonylation; fatty acids; hydrogenation; nanoparticles; nickel ID MONODISPERSE NICKEL NANOPARTICLES; MAGNETIC-PROPERTIES; NI/SIO2 CATALYSTS; DEPOSITION-PRECIPITATION; CARBON-MONOXIDE; CO ADSORPTION; NI(II) PHASE; SILICA; ZEOLITES; METAL AB Improved synthetic approaches for preparing small-sized Ni nanoparticles (d=3nm) supported on HBEA zeolite have been explored and compared with the traditional impregnation method. The formation of surface nickel silicate/aluminate involved in the two precipitation processes are inferred to lead to the stronger interaction between the metal and the support. The lower BrOnsted acid concentrations of these two Ni/HBEA catalysts compared with the parent zeolite caused by the partial exchange of BrOnsted acid sites by Ni2+ cations do not influence the hydrodeoxygenation rates, but alter the product selectivity. Higher initial rates and higher stability have been achieved with these optimized catalysts for the hydrodeoxygenation of stearic acid and microalgae oil. Small metal particles facilitate high initial catalytic activity in the fresh sample and size uniformity ensures high catalyst stability. C1 [Song, Wenji; Zhao, Chen; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany. [Song, Wenji; Zhao, Chen; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Ctr, D-85747 Garching, Germany. [Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Zhao, C (reprint author), Tech Univ Munich, Dept Chem, D-85747 Garching, Germany. EM chenzhao@mytum.de; johannes.lercher@ch.tum.de FU graduate school (Faculty Graduate Center of Chemistry) of the Technische Universitat Munchen; Elitenetzwerk Bayern (graduate school NanoCat); EADS Algenflugkraft project FX W.S. gratefully acknowledges support from the graduate school (Faculty Graduate Center of Chemistry) of the Technische Universitat Munchen and the Elitenetzwerk Bayern (graduate school NanoCat). We also appreciate the financial support from the EADS Algenflugkraft project. NR 55 TC 39 Z9 41 U1 4 U2 152 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD JUL 22 PY 2013 VL 19 IS 30 BP 9833 EP 9842 DI 10.1002/chem.201301005 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 182TD UT WOS:000321766400020 PM 23794421 ER PT J AU Bradnam, KR Fass, JN Alexandrov, A Baranay, P Bechner, M Birol, I Boisvert, S Chapman, JA Chapuis, G Chikhi, R Chitsaz, H Chou, WC Corbeil, J Del Fabbro, C Docking, TR Durbin, R Earl, D Emrich, S Fedotov, P Fonseca, NA Ganapathy, G Gibbs, RA Gnerre, S Godzaridis, E Goldstein, S Haimel, M Hall, G Haussler, D Hiatt, JB Ho, IY Howard, J Hunt, M Jackman, SD Jaffe, DB Jarvis, ED Jiang, H Kazakov, S Kersey, PJ Kitzman, JO Knight, JR Koren, S Lam, TW Lavenier, D Laviolette, F Li, YR Li, ZY Liu, BH Liu, Y Luo, R MacCallum, I MacManes, MD Maillet, N Melnikov, S Naquin, D Ning, Z Otto, TD Paten, B Paulo, OS Phillippy, AM Pina-Martins, F Place, M Przybylski, D Qin, X Qu, C Ribeiro, FJ Richards, S Rokhsar, DS Ruby, JG Scalabrin, S Schatz, MC Schwartz, DC Sergushichev, A Sharpe, T Shaw, TI Shendure, J Shi, YJ Simpson, JT Song, H Tsarev, F Vezzi, F Vicedomini, R Vieira, BM Wang, J Worley, KC Yin, SY Yiu, SM Yuan, JY Zhang, GJ Zhang, H Zhou, S Korf, IF AF Bradnam, Keith R. Fass, Joseph N. Alexandrov, Anton Baranay, Paul Bechner, Michael Birol, Inanc Boisvert, Sebastien Chapman, Jarrod A. Chapuis, Guillaume Chikhi, Rayan Chitsaz, Hamidreza Chou, Wen-Chi Corbeil, Jacques Del Fabbro, Cristian Docking, T. Roderick Durbin, Richard Earl, Dent Emrich, Scott Fedotov, Pavel Fonseca, Nuno A. Ganapathy, Ganeshkumar Gibbs, Richard A. Gnerre, Sante Godzaridis, Elenie Goldstein, Steve Haimel, Matthias Hall, Giles Haussler, David Hiatt, Joseph B. Ho, Isaac Y. Howard, Jason Hunt, Martin Jackman, Shaun D. Jaffe, David B. Jarvis, Erich D. Jiang, Huaiyang Kazakov, Sergey Kersey, Paul J. Kitzman, Jacob O. Knight, James R. Koren, Sergey Lam, Tak-Wah Lavenier, Dominique Laviolette, Francois Li, Yingrui Li, Zhenyu Liu, Binghang Liu, Yue Luo, Ruibang MacCallum, Iain MacManes, Matthew D. Maillet, Nicolas Melnikov, Sergey Naquin, Delphine Ning, Zemin Otto, Thomas D. Paten, Benedict Paulo, Octavio S. Phillippy, Adam M. Pina-Martins, Francisco Place, Michael Przybylski, Dariusz Qin, Xiang Qu, Carson Ribeiro, Filipe J. Richards, Stephen Rokhsar, Daniel S. Ruby, J. Graham Scalabrin, Simone Schatz, Michael C. Schwartz, David C. Sergushichev, Alexey Sharpe, Ted Shaw, Timothy I. Shendure, Jay Shi, Yujian Simpson, Jared T. Song, Henry Tsarev, Fedor Vezzi, Francesco Vicedomini, Riccardo Vieira, Bruno M. Wang, Jun Worley, Kim C. Yin, Shuangye Yiu, Siu-Ming Yuan, Jianying Zhang, Guojie Zhang, Hao Zhou, Shiguo Korf, Ian F. TI Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species SO GIGASCIENCE LA English DT Article AB Background: The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. Results: In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. Conclusions: Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another. C1 [Bradnam, Keith R.; Fass, Joseph N.] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Baranay, Paul] Yale Univ, New Haven, CT USA. [Emrich, Scott] Univ Notre Dame, Dept Comp Sci & Engn, South Bend, IN 46556 USA. [Schatz, Michael C.] Cold Spring Harbor Lab, Simons Ctr Quantitat Biol, Cold Spring Harbor, NY 11724 USA. [MacManes, Matthew D.] Univ Calif Berkeley, Berkeley Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Chitsaz, Hamidreza] Wayne State Univ, Dept Comp Sci, Detroit, MI 48202 USA. [Chapuis, Guillaume; Chikhi, Rayan; Lavenier, Dominique] IRISA, ENS Cachan, Computer Sci Dept, F-35042 Rennes, France. [Lavenier, Dominique; Maillet, Nicolas; Naquin, Delphine] INRA, Rennes Bretagne Atlant, F-35042 Rennes, France. [Chapuis, Guillaume; Chikhi, Rayan; Lavenier, Dominique; Maillet, Nicolas; Naquin, Delphine] IRISA, CNRS, F-35042 Rennes, France. Univ Laval, Infect Dis Res Ctr, Quebec City, PQ G1V 4G2, Canada. [Boisvert, Sebastien; Godzaridis, Elenie] Univ Laval, Fac Med, Quebec City, PQ G1V 4G2, Canada. [Laviolette, Francois] Univ Laval, Fac Sci & Engn, Dept Comp Sci & Software Engn, Quebec City, PQ, Canada. [Corbeil, Jacques] Univ Laval, Fac Med, Dept Mol Med, Quebec City, PQ G1V 4G2, Canada. [Chou, Wen-Chi; Shaw, Timothy I.] Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA. [Shaw, Timothy I.] Univ Georgia, Coll Publ Hlth, Dept Epidemiol & Biostat, Athens, GA 30602 USA. [Chou, Wen-Chi] Hebrew SeniorLife, Inst Aging Res, Boston, MA 02131 USA. [Del Fabbro, Cristian; Scalabrin, Simone; Vicedomini, Riccardo] IGA, I-33100 Udine, Italy. [Vicedomini, Riccardo] Univ Udine, Dept Math & Comp Sci, I-33100 Udine, Italy. [Vezzi, Francesco] KTH Royal Inst Technol, Sci Life Lab, S-17121 Solna, Sweden. [Chapman, Jarrod A.; Ho, Isaac Y.; Rokhsar, Daniel S.] DOE Joint Genome Inst, Walnut Creek, CA USA. [Rokhsar, Daniel S.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Gnerre, Sante; Hall, Giles; Jaffe, David B.; MacCallum, Iain; Przybylski, Dariusz; Sharpe, Ted; Yin, Shuangye] Broad Inst, Cambridge, MA USA. [Ribeiro, Filipe J.] New York Genome Ctr, New York, NY 10022 USA. [Koren, Sergey; Phillippy, Adam M.] Nat Biodefense Anal & Countermeasures Ctr, Frederick, MD 21702 USA. [Koren, Sergey; Phillippy, Adam M.] Univ Maryland, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA. [Ruby, J. Graham] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA. [Ruby, J. Graham] Howard Hughes Med Inst, Bethesda, MD 20814 USA. [Li, Yingrui; Li, Zhenyu; Liu, Binghang; Luo, Ruibang; Shi, Yujian; Wang, Jun; Yuan, Jianying; Zhang, Guojie; Zhang, Hao] BGI Shenzhen, Shenzhen 518083, Guangdong, Peoples R China. [Lam, Tak-Wah; Li, Yingrui; Luo, Ruibang; Yiu, Siu-Ming] Univ Hong Kong, HKU BGI Bioinformat Algorithms & Core Technol Res, Hong Kong, Hong Kong, Peoples R China. [Fonseca, Nuno A.; Haimel, Matthias; Kersey, Paul J.] EMBL European Bioinformat Inst, Cambridge CB10 1SD, England. [Paulo, Octavio S.; Pina-Martins, Francisco; Vieira, Bruno M.] Univ Lisbon, Computat Biol & Populat Genom Grp, Ctr Environm Biol, Dept Anim Biol,Fac Sci, P-1749016 Lisbon, Portugal. [Gibbs, Richard A.; Jiang, Huaiyang; Liu, Yue; Qin, Xiang; Qu, Carson; Richards, Stephen; Song, Henry; Worley, Kim C.] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA. [Gibbs, Richard A.; Jiang, Huaiyang; Liu, Yue; Qin, Xiang; Qu, Carson; Richards, Stephen; Song, Henry; Worley, Kim C.] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. [Birol, Inanc; Docking, T. Roderick; Jackman, Shaun D.] British Columbia Canc Agcy, Genome Sci Ctr, Vancouver, BC V5Z 4E6, Canada. [Durbin, Richard; Hunt, Martin; Ning, Zemin; Otto, Thomas D.; Simpson, Jared T.] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England. [Fonseca, Nuno A.] CRACS INESC TEC, P-4200465 Oporto, Portugal. [Alexandrov, Anton; Fedotov, Pavel; Kazakov, Sergey; Melnikov, Sergey; Sergushichev, Alexey; Tsarev, Fedor] Univ ITMO, Nat Res Univ Informat Technol Mech & Opt, St Petersburg 197101, Russia. [Knight, James R.] Life Sci, Branford, CT 06405 USA. [Ganapathy, Ganeshkumar; Howard, Jason; Jarvis, Erich D.] Duke Univ, Med Ctr, Durham, NC 27710 USA. [Bechner, Michael; Goldstein, Steve; Place, Michael; Schwartz, David C.; Zhou, Shiguo] UW Biotechnol Ctr, Dept Chem & Genet, Lab Mol & Computat Gen, Madison, WI USA. [Earl, Dent; Haussler, David; Paten, Benedict] Univ Calif Santa Cruz, Howard Hughes Med Inst, Ctr Biomol Sci & Engn, Santa Cruz, CA 95064 USA. [Hiatt, Joseph B.; Kitzman, Jacob O.; Shendure, Jay] Univ Washington, Sch Med, Dept Gen Sci, Seattle, WA 98195 USA. RP Bradnam, KR (reprint author), Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. EM krbradnam@ucdavis.edu; ifkorf@ucdavis.edu RI Wang, Jun/B-9503-2016; Paulo, Octavio /D-9921-2011; MacManes, Matthew/B-8303-2011; Del Fabbro, Cristian/C-5523-2014; Zhang, Guojie/B-6188-2014; Sergushichev, Alexey/J-8756-2015; Kazakov, Sergey/K-1193-2015; Li, Yingrui/K-1064-2015; Alexandrov, Anton/K-3330-2015; Wang, Jun/C-8434-2016; Fonseca, Nuno/B-7801-2009; Jarvis, Erich/A-2319-2008; Birol, Inanc/G-5440-2011; OI liu, bh/0000-0002-4948-2835; Durbin, Richard/0000-0002-9130-1006; Bradnam, Keith/0000-0002-3881-294X; Vieira, Bruno/0000-0002-4878-6431; Pina Martins, Francisco/0000-0003-1836-397X; Wang, Jun/0000-0002-2113-5874; Schatz, Michael/0000-0002-4118-4446; Docking, Rod/0000-0003-3248-4081; Paulo, Octavio /0000-0001-5408-5212; Ribeiro, Filipe/0000-0003-3843-7702; MacManes, Matthew/0000-0002-2368-6960; Del Fabbro, Cristian/0000-0001-8189-6192; Zhang, Guojie/0000-0001-6860-1521; Sergushichev, Alexey/0000-0003-1159-7220; Alexandrov, Anton/0000-0002-0970-9353; Wang, Jun/0000-0002-8540-8931; Fonseca, Nuno/0000-0003-4832-578X; Jarvis, Erich/0000-0001-8931-5049; Birol, Inanc/0000-0003-0950-7839; Otto, Thomas/0000-0002-1246-7404; Kersey, Paul/0000-0002-7054-800X; Hunt, Martin/0000-0002-8060-4335; Shendure, Jay/0000-0002-1516-1865; Howard, Jason/0000-0003-3265-5127 FU NHGRI NIH HHS [R01 HG004348, R01 HG006677, U54 HG003273]; NIGMS NIH HHS [T32 GM007266] NR 0 TC 168 Z9 170 U1 2 U2 46 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2047-217X J9 GIGASCIENCE JI GigaScience PD JUL 22 PY 2013 VL 2 AR 10 DI 10.1186/2047-217X-2-10 PG 31 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 213OX UT WOS:000324068500001 PM 23870653 ER PT J AU Brake, MR AF Brake, M. R. TI The effect of the contact model on the impact-vibration response of continuous and discrete systems SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID PERFECTLY PLASTIC SPHERES; FINITE-ELEMENT; MECHANICAL OSCILLATOR; HARMONIC EXCITATION; DYNAMICAL-SYSTEMS; MULTIBODY SYSTEMS; RIGID FLAT; RESTITUTION; COEFFICIENT; STABILITY AB Impact is a phenomenon that is ubiquitous in mechanical design; however, the modeling of impacts in complex systems is often a simplified, imprecise process. In many high fidelity finite element simulations, an impractically large number of elements are required to model the constitutive properties of an impact event accurately. As a result, rigid body dynamics with approximate representations of the impact dynamics are commonly used. These approximations can include a constant coefficient of restitution, an artificially large penalty stiffness, or a single degree of freedom constitutive model for the impact dynamics that is specific to the type of materials involved (elastic, plastic, viscoelastic, etc.). In this paper, the effect of the contact model on the prediction of a system's dynamics is analyzed. In order to understand the effect of the impact model on the system's dynamics, simulations are conducted to investigate a single degree of freedom system, a two degrees of freedom system, and a continuous system, each with rigid stops limiting the amplitude of vibration. Five different contact models are considered; a coefficient of restitution method, a penalty stiffness method, two similar elastic-plastic constitutive models, and a dissimilar elastic-plastic constitutive model. Frequency sweeps and parametric studies show that simplified contact models can lead to incorrect assessments of the system's dynamics. In the worst case, periodic behavior can be predicted in a chaotic regime. Additionally, the choice of contact model can significantly affect the prediction of wear and damage in the system, as is evidenced by the prominence of chatter and high amplitude responses. Published by Elsevier Ltd. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brake, MR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mrbrake@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 75 TC 14 Z9 14 U1 0 U2 29 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD JUL 22 PY 2013 VL 332 IS 15 BP 3849 EP 3878 DI 10.1016/j.jsv.2013.02.003 PG 30 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 148HS UT WOS:000319236000016 ER PT J AU Chen, ZH Jiang, XW Li, JB Li, SS Wang, LW AF Chen, Zhanghui Jiang, Xiangwei Li, Jingbo Li, Shushen Wang, Linwang TI Electron energy and angle distribution of GaAs photocathodes SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MONTE-CARLO-SIMULATION; AFFINITY PHOTOCATHODES; ESCAPE PROBABILITY; INP(100) SURFACES; GALLIUM-ARSENIDE; BAND-STRUCTURE; PHOTOEMISSION; TRANSPORT; CHARGE; PHOTOVOLTAGE AB A precise Monte Carlo model is developed to investigate the electron energy and angle distribution of the transmission-mode GaAs (100) photocathode at room temperature. Both distributions are important for high-quality electron sources. The results show that the energy loss (0.1309 eV) and the angle-dependent energy distribution curves fit well with experimental data. It is found that 65.24% of the emission electrons come from Gamma valley, 33.62% from L valley, and 1.15% from X valley. The peak of the energy distribution curve is contributed by both Gamma and L-valley electrons, while the high-energy part is contributed by Gamma-valley electrons rather than L electrons, which is different from previous inference and can be attributed to the narrow energy range of L-valley electrons. However, L-valley electrons have a larger angular spread than Gamma-valley electrons and lead to the spread of the emission cone. The further simulation indicates that increasing the hole concentration or the thickness of the first activation layer can improve the angle distribution, but the energy distribution will turn to be slightly more dispersive. Temperature effect on the two distributions is also analyzed. The energy distribution curve moves towards the higher energy while the angle distribution curve moves towards the lower value when the temperature declines. (C) 2013 AIP Publishing LLC. C1 [Chen, Zhanghui; Jiang, Xiangwei; Li, Jingbo; Li, Shushen] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Wang, Linwang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Chen, ZH (reprint author), Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 100083, Peoples R China. EM jbli@semi.ac.cn FU National Science Fund for Distinguished Young Scholar [60925016]; National High Technology Research and Development program of China [2009AA034101]; National Natural Science Foundation of China [61106091]; Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division, of the U.S. Department of Energy (DOE) [DEAC02-05CH11231]; China Scholarship Council FX J. Li gratefully acknowledges National Science Fund for Distinguished Young Scholar (Grants No. 60925016). This work was supported by the National High Technology Research and Development program of China under Contract No. 2009AA034101. The work of X.W. Jiang was supported by the National Natural Science Foundation of China under Grant No. 61106091. The work of L.W. Wang was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division, of the U.S. Department of Energy (DOE) under Contract No. DEAC02-05CH11231. Z.H. Chen thanks the financial support of China Scholarship Council. The authors thank the discussions with Professor Y.H. Xiong, S.L. Jiang, and J.J. Jiang of Huazhong University of Science & Technology, and X. Huang, K. Zhou and P. Feng. We acknowledge the computing resources provided by the Supercomputing Center, CNIC, CAS. NR 53 TC 3 Z9 3 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 21 PY 2013 VL 114 IS 3 AR 033523 DI 10.1063/1.4816045 PG 9 WC Physics, Applied SC Physics GA 188OQ UT WOS:000322202700038 ER PT J AU Choi, SG Donohue, AL Marcano, G Rincon, C Gedvilas, LM Li, J Delgado, GE AF Choi, S. G. Donohue, A. L. Marcano, G. Rincon, C. Gedvilas, L. M. Li, J. Delgado, G. E. TI Optical properties of cubic-phase Cu2GeSe4 single crystal SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TEMPERATURE-DEPENDENCE; DIELECTRIC FUNCTION; THIN-FILMS; DIFFRACTION; PARAMETERS; GERMANIUM; GASB; SI AB We report optical properties of bulk Cu2GeSe4 single crystal. X-ray powder diffraction measurement shows that this ternary compound forms in the cubic crystal structure and its lattice parameter is 5.5815(3) angstrom. Spectroscopic ellipsometric measurements are performed from 1.0 to 8.5 eV with the crystal at room temperature. Dielectric function epsilon = epsilon(1)+i epsilon(2), complex refractive index N = n+ik, normal incidence reflectivity R, and absorption coefficients alpha of Cu2GeSe4 are obtained by modeling the ellipsometric data. The vibrational properties of Cu2GeSe4 are characterized by Raman scattering spectroscopy. The data show four major optical structures whose spectral positions are accurately determined by analyzing the spectra with multiple Gaussian-Lorentzian mixed line profiles. (C) 2013 AIP Publishing LLC. C1 [Choi, S. G.; Gedvilas, L. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Donohue, A. L.] JA Woollam Co Inc, Lincoln, NE 68508 USA. [Marcano, G.; Rincon, C.] Univ Los Andes, Fac Ciencias, Dept Fis, Ctr Estudios Semicond, Merida 5101, Venezuela. [Li, J.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Delgado, G. E.] Univ Los Andes, Fac Ciencias, Dept Quim, Lab Cristalog, Merida 5101, Venezuela. RP Choi, SG (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM sukgeun.choi@nrel.gov RI Choi, Sukgeun/J-2345-2014 FU U.S. Department of Energy [DE-AC36-08-GO28308]; Consejo de Descarrollo Cientifico, Humanistico y Artistico de la Universidad de Los Andes (CDCHTA-ULA) FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. The work done at Universidad de Los Andes was supported by the Consejo de Descarrollo Cientifico, Humanistico y Artistico de la Universidad de Los Andes (CDCHTA-ULA). SGC expresses his thanks to Su-Huai Wei of NREL for helpful discussion on the calculated electronic structure of Cu2SnSe3. NR 28 TC 2 Z9 3 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 21 PY 2013 VL 114 IS 3 AR 033531 DI 10.1063/1.4816051 PG 5 WC Physics, Applied SC Physics GA 188OQ UT WOS:000322202700046 ER PT J AU Shen, X Tuttle, BR Pantelides, ST AF Shen, Xiao Tuttle, Blair R. Pantelides, Sokrates T. TI Competing atomic and molecular mechanisms of thermal oxidation-SiC versus Si SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CRYSTAL SILICON-CARBIDE; SELF-DIFFUSION; OXYGEN; RESONANCE; GROWTH; COMPOSITES; ENERGETICS; MODEL; FILMS AB Oxidation is widely used to fabricate complex materials and structures, controlling the properties of both the oxide and its interfaces. It is commonly assumed that the majority diffusing species in the oxide is the dominant oxidant, as is for Si oxidation. It is not possible, however, to account for the experimental data of SiC oxidation using such an assumption. We report first-principles calculations of the pertinent atomic-scale processes, account for the observations, and demonstrate that, for Si-face SiC, interface bonding dictates that atomic oxygen, the minority diffusing species, is the dominant oxidant. (C) 2013 AIP Publishing LLC. C1 [Shen, Xiao; Tuttle, Blair R.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Shen, X (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. FU NSF [DMR-0907385]; DOE Basic Energy Sciences; McMinn Endowment at Vanderbilt University; NSF XSEDE [TG-DMR100022] FX The work was supported by NSF under Grant # DMR-0907385, by DOE Basic Energy Sciences, and by the McMinn Endowment at Vanderbilt University. Computational support was provided by the NSF XSEDE under Grant # TG-DMR100022. We thank Professor L.C. Feldman for helpful discussions. NR 49 TC 5 Z9 5 U1 0 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 21 PY 2013 VL 114 IS 3 AR 033522 DI 10.1063/1.4815962 PG 6 WC Physics, Applied SC Physics GA 188OQ UT WOS:000322202700037 ER PT J AU Weiland, C Rumaiz, AK Price, J Lysaght, P Woick, JC AF Weiland, C. Rumaiz, A. K. Price, J. Lysaght, P. Woick, J. C. TI Passivation of In0.53Ga0.47As/ZrO2 interfaces by AlN atomic layer deposition process SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SURFACE PASSIVATION; SEMICONDUCTORS; OXIDATION; DEVICES; AL2O3; GAAS; XPS AB Reducing defects at III-V/high-k interfaces is essential for optimizing devices built on these materials. Here, the role of an interfacial AlN process at In0.53Ga0.47As/ZrO2 interfaces is investigated by hard x-ray photoelectron spectroscopy (HAXPES) and capacitance/voltage (C-V) measurements. C-V measurements show a significant reduction in the density of interface traps with the interfacial AlN process and a capping TiN layer. To elucidate the specific role of the AlN process, blanket films with various deposition processes are compared. The AlN process alone (without subsequent dielectric deposition) reduces InGaAs oxide levels below the HAXPES detection limit, even though the AlN is ultimately found to be oxidized into AlOx with only trace N incorporation, yet AlN passivation provides a lower D-it (density of interface traps) when compared with an H2O-based Al2O3 deposition. The AlN process does not passivate against re-oxidation of the InGaAs during an O-3 based ZrO2 deposition process, but it does provide passivation against As-As development during subsequent TiN deposition. The role of chemical defects in the C-V characteristics is also discussed. (C) 2013 AIP Publishing LLC. C1 [Weiland, C.; Woick, J. C.] NIST, Gaithersburg, MD 20899 USA. [Rumaiz, A. K.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Price, J.; Lysaght, P.] SEMATECH, Albany, NY 12203 USA. RP Weiland, C (reprint author), NIST, Gaithersburg, MD 20899 USA. EM cweiland@bnl.gov RI Weiland, Conan/K-4840-2012 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 22 TC 7 Z9 7 U1 3 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 21 PY 2013 VL 114 IS 3 AR 034107 DI 10.1063/1.4815934 PG 8 WC Physics, Applied SC Physics GA 188OQ UT WOS:000322202700084 ER PT J AU Shih, O England, AH Dallinger, GC Smith, JW Duffey, KC Cohen, RC Prendergast, D Saykally, RJ AF Shih, Orion England, Alice H. Dallinger, Gregory C. Smith, Jacob W. Duffey, Kaitlin C. Cohen, Ronald C. Prendergast, David Saykally, Richard J. TI Cation-cation contact pairing in water: Guanidinium SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID X-RAY SPECTROSCOPY; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTIONS; LIQUID MICROJETS; ION-PAIR; PROTEINS; CRYSTALLIZATION; NITROANILINES; CHLORIDE; SPECTRA AB The formation of like-charge guanidinium-guanidinium contact ion pairs in water is evidenced and characterized by X-ray absorption spectroscopy and first-principles spectral simulations based on molecular dynamics sampling. Observed concentration-induced nitrogen K-edge resonance shifts result from pi* state mixing and the release of water molecules from each first solvation sphere as two solvated guanidinium ions associate into a stacked pair configuration. Possible biological implications of this counterintuitive cation-cation pairing are discussed. (C) 2013 AIP Publishing LLC. C1 [Shih, Orion; England, Alice H.; Dallinger, Gregory C.; Smith, Jacob W.; Duffey, Kaitlin C.; Cohen, Ronald C.; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [England, Alice H.; Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@berkeley.edu RI Cohen, Ronald/A-8842-2011; Foundry, Molecular/G-9968-2014; OI Cohen, Ronald/0000-0001-6617-7691; England, Alice/0000-0001-7698-8156 FU Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE) through the LBNL Chemical Sciences Division [DE-AC02-05CH11231]; Molecular Foundry; National Energy Research Scientific Computing Center and the Molecular Graphics and Computation Facility (College of Chemistry, University of California, Berkeley) under NSF [CHE-0840505] FX This work was supported by the Director, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, through the LBNL Chemical Sciences Division and as part of a user project at the Molecular Foundry. Computational resources were provided by the National Energy Research Scientific Computing Center and the Molecular Graphics and Computation Facility (College of Chemistry, University of California, Berkeley) under NSF grant CHE-0840505. The authors would also like to thank Wanli Yang and Jonathan Spear for beamline support at the Advanced Light Source. NR 37 TC 19 Z9 19 U1 12 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 21 PY 2013 VL 139 IS 3 AR 035104 DI 10.1063/1.4813281 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 188OT UT WOS:000322203000057 PM 23883058 ER PT J AU Tecmer, P Govind, N Kowalski, K de Jong, WA Visscher, L AF Tecmer, Pawel Govind, Niranjan Kowalski, Karol de Jong, Wibe A. Visscher, Lucas TI Reliable modeling of the electronic spectra of realistic uranium complexes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; COUPLED-CLUSTER METHODS; 2ND-ORDER PERTURBATION-THEORY; CHARGE-TRANSFER EXCITATIONS; BASIS-SETS; URANYL-ION; EXCITED-STATES; ACTINYL IONS; EQUATORIAL COORDINATION; INFRARED-SPECTROSCOPY AB We present an EOMCCSD (equation of motion coupled cluster with singles and doubles) study of excited states of the small [UO2](2+) and [UO2](+) model systems as well as the larger (UO2)-O-VI(saldien) complex. In addition, the triples contribution within the EOMCCSDT and CR-EOMCCSD(T) (completely renormalized EOMCCSD with non-iterative triples) approaches for the [UO2](2+) and [UO2](+) systems as well as the active-space variant of the CR-EOMCCSD(T) method-CR-EOMCCSd(t)-for the (UO2)-O-VI(saldien) molecule are investigated. The coupled cluster data were employed as benchmark to choose the "best" appropriate exchange-correlation functional for subsequent time-dependent density functional (TD-DFT) studies on the transition energies for closed-shell species. Furthermore, the influence of the saldien ligands on the electronic structure and excitation energies of the [UO2](+) molecule is discussed. The electronic excitations as well as their oscillator dipole strengths modeled with TD-DFT approach using the CAM-B3LYP exchange-correlation functional for the [(UO2)-O-V(saldien)]-with explicit inclusion of two dimethyl sulfoxide molecules are in good agreement with the experimental data of Takao et al. [Inorg. Chem. 49, 2349 (2010)]. (C) 2013 AIP Publishing LLC. C1 [Tecmer, Pawel; Visscher, Lucas] Vrije Univ Amsterdam, ACMM, NL-1081 HV Amsterdam, Netherlands. [Govind, Niranjan; Kowalski, Karol; de Jong, Wibe A.] Pacific NW Natl Lab, Battelle, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Tecmer, P (reprint author), ETH, Phys Chem Lab, Wolfgang Pauli Str 10, CH-8093 Zurich, Switzerland. RI DE JONG, WIBE/A-5443-2008; Tecmer, Pawel/B-4366-2015; Visscher, Lucas/A-3523-2010 OI DE JONG, WIBE/0000-0002-7114-8315; Tecmer, Pawel/0000-0001-6347-878X; Visscher, Lucas/0000-0002-7748-6243 FU U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry Program at PNNL [DE-AC05-76RL01830]; U.S. Department of Energy's Office of Biological and Environmental Research; Alternate Sponsored Fellowship (ASF); Netherlands Organization for Scientific Research (NWO) via the Vici program; Netherlands Organization for Scientific Research (NWO) via NCF program FX This research was sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry Program at PNNL under Contract No. DE-AC05-76RL01830. Part of this research was performed in part using the Molecular Science Computing capability at the EMSL, a National scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the PNNL, operated for the Department of Energy by Battelle. P.T. acknowledges the financial support from Alternate Sponsored Fellowship (ASF). P.T. and L.V. acknowledge the financial support from The Netherlands Organization for Scientific Research (NWO) via the Vici and NCF (supercomputer access) programs. P.T. thanks Dr. Eric Bylaska for his helpful discussion concerning effects of environment on the uranyl compounds. NR 126 TC 11 Z9 11 U1 3 U2 49 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 21 PY 2013 VL 139 IS 3 AR 034301 DI 10.1063/1.4812360 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 188OT UT WOS:000322203000020 PM 23883021 ER PT J AU Willey, TM Bagge-Hansen, M Lee, JRI Call, R Landt, L van Buuren, T Colesniuc, C Monton, C Valmianski, I Schuller, IK AF Willey, T. M. Bagge-Hansen, M. Lee, J. R. I. Call, R. Landt, L. van Buuren, T. Colesniuc, C. Monton, C. Valmianski, I. Schuller, Ivan K. TI Electronic structure differences between H-2-, Fe-, Co-, and Cu-phthalocyanine highly oriented thin films observed using NEXAFS spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID X-RAY-ABSORPTION; DENSITY-FUNCTIONAL THEORY; SUBSTITUTED PHTHALOCYANINES; COBALT PHTHALOCYANINE; METAL PHTHALOCYANINES; COPPER PHTHALOCYANINE; MOLECULAR-ORIENTATION; 1ST LAYERS; SURFACES; CHEMIRESISTORS AB Phthalocyanines, a class of macrocyclic, square planar molecules, are extensively studied as semiconductor materials for chemical sensors, dye-sensitized solar cells, and other applications. In this study, we use angular dependent near-edge x-ray absorption fine structure (NEXAFS) spectroscopy as a quantitative probe of the orientation and electronic structure of H-2-, Fe-, Co-, and Cu-phthalocyanine molecular thin films. NEXAFS measurements at both the carbon and nitrogen K-edges reveal that phthalocyanine films deposited on sapphire have upright molecular orientations, while films up to 50 nm thick deposited on gold substrates contain prostrate molecules. Although great similarity is observed in the carbon and nitrogen K-edge NEXAFS spectra recorded for the films composed of prostrate molecules, the H-2-phthalocyanine exhibits the cleanest angular dependence due to its purely out-of-plane pi* resonances at the absorption onset. In contrast, organometallic-phthalocyanine nitrogen K-edges have a small in-plane resonance superimposed on this pi* region that is due to a transition into molecular orbitals interacting with the 3d(x)(2)-(2)(y) empty state. NEXAFS spectra recorded at the metal L-edges for the prostrate films reveal dramatic variations in the angular dependence of specific resonances for the Cu-phthalocyanines compared with the Fe-, and Co-phthalocyanines. The Cu L-3,L-2 edge exhibits a strong in-plane resonance, attributed to its b(1g) empty state with d(x)(2)-(2)(y) character at the Cu center. Conversely, the Fe- and Co-phthalocyanine L-3,L-2 edges have strong out-of-plane resonances; these are attributed to transitions into not only b(1g) (d(z)(2)) but also e(g) states with d(xz) and d(yz) character at the metal center. (C) 2013 AIP Publishing LLC. C1 [Willey, T. M.; Bagge-Hansen, M.; Lee, J. R. I.; Call, R.; Landt, L.; van Buuren, T.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Call, R.] Utah State Univ, Dept Phys & Astron, Logan, UT 84322 USA. [Landt, L.] Tech Univ Berlin, Inst Opt & Atom Phys, Berlin, Germany. [Colesniuc, C.; Monton, C.; Valmianski, I.; Schuller, Ivan K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Willey, TM (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. EM willey1@llnl.gov RI Willey, Trevor/A-8778-2011 OI Willey, Trevor/0000-0002-9667-8830 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; University of California Office of the President (UCOP) FX Portions of this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. This work was supported by a University of California Office of the President (UCOP) Management Fee Grant, "Carbon Nanostructures." The authors acknowledge Juan Bartolome, Franz Himpsel, Xiaosong Liu, and Ioannis Zegkinoglou for useful discussions. C. M. and I. V. acknowledge AFOSR FA 9550-10-1-0409. NR 73 TC 8 Z9 8 U1 5 U2 101 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 21 PY 2013 VL 139 IS 3 AR 034701 DI 10.1063/1.4811487 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 188OT UT WOS:000322203000045 PM 23883046 ER PT J AU Gubitosi, G Mercati, F AF Gubitosi, Giulia Mercati, Flavio TI Relative locality in kappa-Poincare SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article ID ANTI-DE-SITTER; DOUBLY SPECIAL RELATIVITY; MINKOWSKI SPACE; FIELD-THEORY; DIFFERENTIAL-CALCULUS; ALGEBRA; DEFORMATION; PRINCIPLE; DESITTER; SCALE AB We show that the kappa-Poincare Hopf algebra can be interpreted in the framework of curved momentum space leading to relative locality. We study the geometric properties of the momentum space described by kappa-Poincare and derive the consequences for particle propagation and energy-momentum conservation laws in interaction vertices, obtaining for the first time a coherent and fully workable model of the deformed relativistic kinematics implied by kappa-Poincare. We describe the action of boost transformations on multi-particle systems, showing that the covariance of the composed momenta requires a dependence of the rapidity parameter on the particle momenta themselves. Finally, we show that this particular form of the boost transformations keeps the validity of the relativity principle, demonstrating the invariance of the equations of motion under boost transformations. C1 [Gubitosi, Giulia] Berkeley Lab, Berkeley, CA 94720 USA. [Gubitosi, Giulia] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Gubitosi, Giulia] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Gubitosi, Giulia] Univ Roma La Sapienza, Sez Roma1 INFN, I-00185 Rome, Italy. [Mercati, Flavio] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain. [Mercati, Flavio] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. RP Gubitosi, G (reprint author), Berkeley Lab, Berkeley, CA 94720 USA. EM giulia.gubitosi@roma1.infn.it; fmercati@perimeterinstitute.ca RI Mercati, Flavio/B-3324-2017; OI Mercati, Flavio/0000-0002-3981-1914; Gubitosi, Giulia/0000-0001-6107-639X NR 32 TC 22 Z9 22 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUL 21 PY 2013 VL 30 IS 14 AR 145002 DI 10.1088/0264-9381/30/14/145002 PG 21 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 180TN UT WOS:000321620300003 ER PT J AU Giorgi, EE Korber, BT Perelson, AS Bhattacharya, T AF Giorgi, Elena E. Korber, Bette T. Perelson, Alan S. Bhattacharya, Tanmoy TI Modeling sequence evolution in HIV-1 infection with recombination SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Article DE HIV; Population dynamics; Viral evolution ID IMMUNODEFICIENCY-VIRUS TYPE-1; IN-VIVO; RHESUS MACAQUES; DYNAMICS; GENOME; TIME; IDENTIFICATION; CLEARANCE; DIVERSITY; EMERGENCE AB Previously we proposed two simplified models of early HIV-1 evolution. Both showed that under a model of neutral evolution and exponential growth, the mean Hamming distance (HD) between genetic sequences grows linearly with time. In this paper we describe a more realistic continuous-time, age-dependent mathematical model of infection and viral replication, and show through simulations that even in this more complex description, the mean Hamming distance grows linearly with time. This remains unchanged when we introduce recombination, though the confidence intervals of the mean HD obtained ignoring recombination are overly conservative. Published by Elsevier Ltd. C1 [Giorgi, Elena E.; Korber, Bette T.; Perelson, Alan S.; Bhattacharya, Tanmoy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Giorgi, Elena E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Korber, Bette T.; Perelson, Alan S.; Bhattacharya, Tanmoy] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM asp@lanl.gov RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Korber, Bette/0000-0002-2026-5757 FU US Department of Energy through the LANL LDRD program; Center for HIV/AIDS Vaccine Immunology; NIH [U19-AI067854-07, UM1-AI100645-01, AI028433, OD011095] FX This work was supported by the US Department of Energy through the LANL LDRD program, the Center for HIV/AIDS Vaccine Immunology, and NIH grants U19-AI067854-07, UM1-AI100645-01, AI028433, and OD011095. NR 50 TC 0 Z9 0 U1 1 U2 23 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 J9 J THEOR BIOL JI J. Theor. Biol. PD JUL 21 PY 2013 VL 329 BP 82 EP 93 DI 10.1016/j.jtbi.2013.03.026 PG 12 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 155XI UT WOS:000319783300010 PM 23567647 ER PT J AU Karthikeyan, K Nam, KW Hu, EY Yang, XQ Lee, YS AF Karthikeyan, K. Nam, K. W. Hu, E. Y. Yang, X. Q. Lee, Y. S. TI Preparation and Cyclic Performance of Li-1.2(Fe0.16Mn0.32Ni0.32)O-2 Layered Cathode Material by the Mixed Hydroxide Method SO BULLETIN OF THE KOREAN CHEMICAL SOCIETY LA English DT Article DE Mixed hydroxide method; Lithium Mn oxide; XANES; Layered materials; Lithium batteries ID X-RAY-DIFFRACTION; IN-SITU; ELECTROCHEMICAL PROPERTIES; BATTERIES; ELECTRODES; OXIDES; CHARGE; CELLS AB Layered Li-1.2(Fe0.16Mn0.32Ni0.32)O-2 was prepared by the mixed hydroxide method at various temperatures. X-ray diffraction (XRD) pattern shows that this material has a alpha-NaFeO2 layered structure with R (3) over barm space group and that cation mixing is reduced with increasing synthesis temperature. Scanning electron microscopy (SEM) reveals that nano-sized Li-1.2(Fe0.16Mn0.32Ni0.32)O-2 powder has uniform particle size distribution. X-ray absorption near edge structure (XANES) analysis is used to study the local electronic structure changes around the Mn, Fe, and Ni atoms in this material. The sample prepared at 700 degrees C delivers the highest discharge capacity of 207 mAhg(-1) between 2-4.5 V at 0.1 mAcm(-2) with good capacity retention of 80% after 20 cycles. C1 [Karthikeyan, K.; Lee, Y. S.] Chonnam Natl Univ, Fac Appl Chem Engn, Kwangju 500757, South Korea. [Nam, K. W.; Hu, E. Y.; Yang, X. Q.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Lee, YS (reprint author), Chonnam Natl Univ, Fac Appl Chem Engn, Kwangju 500757, South Korea. EM leeys@chonnam.ac.kr RI Nam, Kyung-Wan/B-9029-2013; Nam, Kyung-Wan/E-9063-2015; Hu, Enyuan/D-7492-2016 OI Nam, Kyung-Wan/0000-0001-6278-6369; Nam, Kyung-Wan/0000-0001-6278-6369; Hu, Enyuan/0000-0002-1881-4534 FU Priority Research Centers Program through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2009-0094055]; Office of Vehicle Technologies, under the program of "Hybrid and Electric Systems", of the U. S. Department of Energy [DEAC02-98CH10886] FX This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094055). Also, the work at BNL was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program of "Hybrid and Electric Systems", of the U. S. Department of Energy under Contract Number DEAC02-98CH10886. NR 32 TC 4 Z9 5 U1 1 U2 23 PU KOREAN CHEMICAL SOC PI SEOUL PA 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA SN 0253-2964 J9 B KOREAN CHEM SOC JI Bull. Korean Chem. Soc. PD JUL 20 PY 2013 VL 34 IS 7 BP 1995 EP 2000 DI 10.5012/bkcs.2013.34.7.1995 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 194DY UT WOS:000322612400012 ER PT J AU Assef, RJ Stern, D Kochanek, CS Blain, AW Brodwin, M Brown, MJI Donoso, E Eisenhardt, PRM Jannuzi, BT Jarrett, TH Stanford, SA Tsai, CW Wu, J Yan, L AF Assef, R. J. Stern, D. Kochanek, C. S. Blain, A. W. Brodwin, M. Brown, M. J. I. Donoso, E. Eisenhardt, P. R. M. Jannuzi, B. T. Jarrett, T. H. Stanford, S. A. Tsai, C. -W. Wu, J. Yan, L. TI MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. II. PROPERTIES OF WISE-SELECTED ACTIVE GALACTIC NUCLEI IN THE NDWFS BOOTES FIELD SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; methods: statistical; quasars: general ID QUASAR LUMINOSITY FUNCTION; SPITZER-SPACE-TELESCOPE; IRAC SHALLOW SURVEY; SUPERMASSIVE BLACK-HOLES; ARRAY CAMERA IRAC; X-RAY SURVEY; SIMILAR-TO 4; UNIFIED SCHEMES; SKY SURVEY; PHOTOMETRIC REDSHIFTS AB Stern et al. presented a study of Wide-field Infrared Survey Explorer (WISE) selection of active galactic nuclei (AGNs) in the 2 deg(2) COSMOS field, finding that a simple criterion W1-W2 >= 0.8 provides a highly reliable and complete AGN sample for W2 < 15.05, where the W1 and W2 passbands are centered at 3.4 mu m and 4.6 mu m, respectively. Here we extend this study using the larger 9 deg(2) NOAO Deep Wide-Field Survey Bootes field which also has considerably deeper WISE observations than the COSMOS field, and find that this simple color cut significantly loses reliability at fainter fluxes. We define a modified selection criterion combining the W1-W2 color and the W2 magnitude to provide highly reliable or highly complete AGN samples for fainter WISE sources. In particular, we define a color-magnitude cut that finds 130 +/- 4 deg(-2) AGN candidates for W2 < 17.11 with 90% reliability. Using the extensive UV through mid-IR broadband photometry available in this field, we study the spectral energy distributions of WISE AGN candidates. We find that, as expected, the WISE AGN selection can identify highly obscured AGNs, but that it is biased toward objects where the AGN dominates the bolometric luminosity output. We study the distribution of reddening in the AGN sample and discuss a formalism to account for sample incompleteness based on the step-wise maximum-likelihood method of Efstathiou et al. The resulting dust obscuration distributions depend strongly on AGN luminosity, consistent with the trend expected for a receding torus. At L-AGN similar to 3 x 10(44) erg s(-1), 29% +/- 7% of AGNs are observed as Type 1, while at similar to 4 x 10(45) erg s(-1) the fraction is 64% +/- 13%. The distribution of obscuration values suggests that dust in the torus is present as both a diffuse medium and in optically thick clouds. C1 [Assef, R. J.; Stern, D.; Jannuzi, B. T.; Tsai, C. -W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kochanek, C. S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, C. S.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Blain, A. W.] Univ Leicester, Leicester LE1 7RH, Leics, England. [Brown, M. J. I.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Brown, M. J. I.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Donoso, E.; Jarrett, T. H.; Yan, L.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Donoso, E.] ICATE, RA-5400 San Juan, Argentina. [Jannuzi, B. T.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Jarrett, T. H.] Univ Cape Town, Dept Astron, ZA-7700 Rondebosch, South Africa. [Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Wu, J.] UCLA Astron, Los Angeles, CA 90095 USA. EM roberto.j.assef@jpl.nasa.gov RI Brown, Michael/B-1181-2015 OI Brown, Michael/0000-0002-1207-9137 FU NASA Postdoctoral Program at the Jet Propulsion Laboratory; NASA; W.M. Keck Foundation FX We thank M. Dickinson, A. H. Gonzalez, J. Kartaltepe, B. Mobasher, H. Nayyeri, K. Penner, and G. Zeimann for helping us obtain some of the Keck spectroscopic observations used in this work. We thank M. Elitzur for an insightful discussion about dust properties in AGNs. We thank the NDWFS, NEWFIRM, and MAGES survey teams for providing their respective data sets over the Bootes field. We thank the anonymous referee for suggestions that helped improve our work. R. J. A. and C.-W.T. are supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. NR 85 TC 106 Z9 106 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2013 VL 772 IS 1 AR 26 DI 10.1088/0004-637X/772/1/26 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 181NG UT WOS:000321673700026 ER PT J AU Dexter, J Kasen, D AF Dexter, Jason Kasen, Daniel TI SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; stars: massive; stars: neutron; supernovae: general; supernovae: individual (SN 2008es, SN 1998bw, SN 2010X) ID GAMMA-RAY BURSTS; RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS; ADVECTION-DOMINATED ACCRETION; CORE-COLLAPSE SUPERNOVAE; BLACK-HOLE; MASSIVE STARS; FAILED SUPERNOVAE; LUMINOUS SUPERNOVAE; II SUPERNOVAE; SAGITTARIUS-A AB Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time (greater than or similar to days) power potentially associated with the accretion of this "fallback" material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as (M) over dot proportional to t(-5/3) at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous (greater than or similar to 10(44) erg s(-1)) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae. C1 [Dexter, Jason; Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Dexter, Jason; Kasen, Daniel] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Dexter, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jdexter@berkeley.edu OI Dexter, Jason/0000-0003-3903-0373 FU Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy Office of Nuclear Physics Early Career Award FX We thank A. Heger for making a large number of pre-supernova stellar models publicly available, and the referee for detailed comments which improved this manuscript. J.D. thanks L. Bildsten, B. Metzger, C. Ott, T. Piro, E. Quataert, E. Ramirez-Ruiz, and S. Woosley for stimulating discussions related to this work. This work is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by a Department of Energy Office of Nuclear Physics Early Career Award. NR 74 TC 45 Z9 45 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2013 VL 772 IS 1 AR 30 DI 10.1088/0004-637X/772/1/30 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 181NG UT WOS:000321673700030 ER PT J AU Raskin, C Kasen, D AF Raskin, Cody Kasen, Daniel TI TIDAL TAIL EJECTION AS A SIGNATURE OF TYPE Ia SUPERNOVAE FROM WHITE DWARF MERGERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; nuclear reactions, nucleosynthesis, abundances; supernovae: general; white dwarfs ID ASTROPHYSICAL PLASMAS; SURFACE DETONATIONS; SODIUM-ABSORPTION; UPPER LIMITS; SN 2011FE; PROGENITORS; EVOLUTION; COLLISIONS; MODELS; EMISSION AB The merger of two white dwarfs may be preceded by the ejection of some mass in "tidal tails," creating a circumstellar medium around the system. We consider the variety of observational signatures from this material, which depend on the lag time between the start of the merger and the ultimate explosion (assuming one occurs) of the system in a Type Ia supernova (SN Ia). If the time lag is fairly short, then the interaction of the supernova ejecta with the tails could lead to detectable shock emission at radio, optical, and/or X-ray wavelengths. At somewhat later times, the tails produce relatively broad NaID absorption lines with velocity widths of the order of the white dwarf escape speed (similar to 1000 km s(-1)). That none of these signatures have been detected in normal SNe Ia constrains the lag time to be either very short (less than or similar to 100 s) or fairly long (greater than or similar to 100 yr). If the tails have expanded and cooled over timescales similar to 10(4) yr, then they could be observable through narrow NaID and Ca II H&K absorption lines in the spectra, which are seen in some fraction of SNe Ia. Using a combination of three-dimensional and one-dimensional hydrodynamical codes, we model the mass loss from tidal interactions in binary systems, and the subsequent interactions with the interstellar medium, which produce a slow-moving, dense shell of gas. We synthesize NaID line profiles by ray casting through this shell, and show that in some circumstances tidal tails could be responsible for narrow absorptions similar to those observed. C1 [Raskin, Cody; Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Raskin, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU NSF Astronomy and Astrophysics Grant [AST-1109896]; DOE SciDAC Program [DE-FC02-06ER41438]; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Ken Shen and Ryan Foley for their input on NaID line observations of SNe Ia, and William Gray and Evan Scannapieco for their input on methods to simulate the radiative cooling phase. We also thank our anonymous referees for their insightful comments and suggestions to improve this manuscript. This research was supported by an NSF Astronomy and Astrophysics Grant (AST-1109896) and by the DOE SciDAC Program (DE-FC02-06ER41438) and by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful for computer time supplied by the Advanced Computing Center at Arizona State University. NR 58 TC 29 Z9 29 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2013 VL 772 IS 1 AR 1 DI 10.1088/0004-637X/772/1/1 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 181NG UT WOS:000321673700001 ER PT J AU Sifon, C Menanteau, F Hasselfield, M Marriage, TA Hughes, JP Barrientos, LF Gonzalez, J Infante, L Addison, GE Baker, AJ Battaglia, N Bond, JR Crichton, D Das, S Devlin, MJ Dunkley, J Dunner, R Gralla, MB Hajian, A Hilton, M Hincks, AD Kosowsky, AB Marsden, D Moodley, K Niemack, MD Nolta, MR Page, LA Partridge, B Reese, ED Sehgal, N Sievers, J Spergel, DN Staggs, ST Thornton, RJ Trac, H Wollack, EJ AF Sifon, Cristobal Menanteau, Felipe Hasselfield, Matthew Marriage, Tobias A. Hughes, John P. Felipe Barrientos, L. Gonzalez, Jorge Infante, Leopoldo Addison, Graeme E. Baker, Andrew J. Battaglia, Nick Bond, J. Richard Crichton, Devin Das, Sudeep Devlin, Mark J. Dunkley, Joanna Duenner, Rolando Gralla, Megan B. Hajian, Amir Hilton, Matt Hincks, Adam D. Kosowsky, Arthur B. Marsden, Danica Moodley, Kavilan Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Partridge, Bruce Reese, Erik D. Sehgal, Neelima Sievers, Jon Spergel, David N. Staggs, Suzanne T. Thornton, Robert J. Trac, Hy Wollack, Edward J. TI THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV-ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; galaxies: distances and redshifts ID SOUTH-POLE TELESCOPE; X-RAY-PROPERTIES; DIGITAL SKY SURVEY; RICH CLUSTERS; VELOCITY DISPERSIONS; OBSERVED GROWTH; 148 GHZ; PHYSICAL-PROPERTIES; LINEAR-REGRESSION; ASTRONOMICAL DATA AB We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 deg(2) area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R similar to 700-800) spectra and redshifts for approximate to 60 member galaxies on average per cluster. The dynamical masses M-200c of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z = 0.50 and a median mass M-200c similar or equal to 12 x 10(14) h(70)(-1) M-circle dot with a lower limit M-200c similar or equal to 6 x 10(14)h(70)(-1) M-circle dot, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude (y) over tilde (0), the central Compton parameter y(0), and the integrated Compton signal Y-200c, which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter (less than or similar to 20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that similar to 50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations. C1 [Sifon, Cristobal; Felipe Barrientos, L.; Gonzalez, Jorge; Infante, Leopoldo; Duenner, Rolando] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Sifon, Cristobal] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Menanteau, Felipe; Hughes, John P.; Baker, Andrew J.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Addison, Graeme E.; Dunkley, Joanna] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Battaglia, Nick; Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Nolta, Michael R.; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Das, Sudeep] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, Mark J.; Reese, Erik D.; Thornton, Robert J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Kosowsky, Arthur B.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Marsden, Danica] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Moodley, Kavilan] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4041 Durban, South Africa. [Niemack, Michael D.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Thornton, Robert J.] W Chester Univ, Dept Phys, W Chester, PA 19383 USA. [Trac, Hy] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; Sifon, Cristobal/0000-0002-8149-1352 FU European Organisation for Astronomical Research in the Southern Hemisphere, Chile [084.A-0577, 086.A-0425]; Programa de Astronomia de la Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); U.S. National Science Foundation [AST-0408698, AST-0965625, PHY-0855887, PHY-1214379, AST-0707731, PIRE-0507768, OISE-0530095]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation (CFI); CFI; Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; Centro de Astrofisica FONDAP [15010003]; Centro BASAL-CATA; FONDECYT [1120676, 1085286]; ALMA-CONICYT [31090002, 31100003] FX Based in part on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programs 084.A-0577 and 086.A-0425.; ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of Programa de Astronomia de la Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). This work was supported by the U.S. National Science Foundation through awards AST-0408698 and AST-0965625 for the ACT project, and PHY-0855887, PHY-1214379, AST-0707731, and PIRE-0507768 (award No. OISE-0530095). Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund-Research Excellence; and the University of Toronto. This research is partially funded by "Centro de Astrofisica FONDAP" 15010003, Centro BASAL-CATA, by FONDECYT under projects 1120676 and 1085286 and by ALMA-CONICYT under projects 31090002 and 31100003. NR 126 TC 52 Z9 52 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2013 VL 772 IS 1 AR 25 DI 10.1088/0004-637X/772/1/25 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 181NG UT WOS:000321673700025 ER PT J AU Worpel, H Brown, MJI Jones, DH Floyd, DJE Beutler, F AF Worpel, Hauke Brown, Michael J. I. Jones, D. Heath Floyd, David J. E. Beutler, Florian TI THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: elliptical and lenticular, cD; radio continuum: galaxies ID DIGITAL SKY SURVEY; SIMILAR-TO 1; REDSHIFT SURVEY; HOST GALAXIES; LUMINOSITY FUNCTIONS; COOLING FLOWS; DATA RELEASE; 1.4 GHZ; X-RAY; QUASARS AB We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years. C1 [Worpel, Hauke] Monash Univ, Sch Math Sci, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Brown, Michael J. I.; Jones, D. Heath; Floyd, David J. E.] Monash Univ, Sch Phys, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Beutler, Florian] Univ Western Australia, ICRAR, Perth, WA 6009, Australia. [Beutler, Florian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Worpel, H (reprint author), Monash Univ, Sch Math Sci, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. RI Brown, Michael/B-1181-2015; OI Brown, Michael/0000-0002-1207-9137; Worpel, Hauke/0000-0002-5042-9070; Beutler, Florian/0000-0003-0467-5438 FU APA; Australian Government; ICRAR; AAO; Australian Research Council [DP110102174, FT100100280, DP-0208876]; National Aeronautics and Space Administration; National Science Foundation FX H.W. is supported by an APA postgraduate research scholarship. F.B. is supported by the Australian Government through the International Postgraduate Research Scholarship (IPRS) and by scholarships from ICRAR and the AAO. M.B. and D.F. acknowledge support from the Australian Research Council via Discovery Project grant DP110102174. M.B. acknowledges the support from the Australian Research Council via Future Fellowship grant FT100100280.; The 6dFGS was funded in part by an Australian Research Council Discovery-Projects Grant (DP-0208876), administered by the Australian National University. We acknowledge the use of the HyperLeda database (http://leda.univ-lyon1.fr). The National Radio Astronomy Observatory is operated by Associated Universities Inc., under cooperative agreement with the National Science Foundation.; This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 60 TC 6 Z9 6 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2013 VL 772 IS 1 AR 64 DI 10.1088/0004-637X/772/1/64 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 181NG UT WOS:000321673700064 ER PT J AU Waltz, J Canfield, TR Morgan, NR Risinger, LD Wohlbier, JG AF Waltz, J. Canfield, T. R. Morgan, N. R. Risinger, L. D. Wohlbier, J. G. TI Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions SO COMPUTERS & FLUIDS LA English DT Article DE Verification; Finite element method; Unstructured grids ID LAGRANGIAN HYDRODYNAMICS; VALIDATION; SIMULATION; STABILITY; SOLVERS; GRIDS; CODES AB We report on the verification of a three-dimensional unstructured finite element method applicable to compressible fluid dynamics and diffusion problems. Our verification methodology uses a combination of analytic and manufactured solutions to formally measure convergence rates in global error for both shock-dominated flows and smooth problems. In addition we measure the global error in vorticity, which should converge at reduced-order relative to the velocity solution. The numerical method under investigation is an edge-based Finite Element formulation on linear tetrahedra with a parabolic MUSCL reconstruction for the advective fluxes. The scheme is nominally second-order accurate on smooth flows. For diffusion problems the formulation also is nominally second-order accurate. Using global error analysis we measure convergence rates of 0.8-1.0 for shock-dominated problems and 1.5-2.4 for smooth problems. Calculations with Adaptive Mesh Refinement (AMR) are observed to produce errors comparable to finer mesh simulations but at significantly reduced computational cost. A convergence rate of 2.2 also is observed for a simplified diffusion problem. Examples of how these studies can inform simulation practices are provided. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Waltz, J.; Morgan, N. R.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. [Canfield, T. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Risinger, L. D.; Wohlbier, J. G.] Los Alamos Natl Lab, Computat & Comp Sci Div, Los Alamos, NM 87545 USA. RP Waltz, J (reprint author), Los Alamos Natl Lab, MS B259, Los Alamos, NM 87545 USA. EM jwaltz@lanl.gov FU U.S. Department of Energy through the LANL/LDRD Program FX This report was supported by the U.S. Department of Energy through the LANL/LDRD Program. LANL report no. LA-UR-12-25995. NR 28 TC 8 Z9 9 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD JUL 20 PY 2013 VL 81 BP 57 EP 67 DI 10.1016/j.compfluid.2013.03.025 PG 11 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 171AN UT WOS:000320897000006 ER PT J AU Shi, X Lin, G Zou, JF Fedosov, DA AF Shi, Xing Lin, Guang Zou, Jianfeng Fedosov, Dmitry A. TI A lattice Boltzmann fictitious domain method for modeling red blood cell deformation and multiple-cell hydrodynamic interactions in flow SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE erythrocyte; fictitious domain method; lattice Boltzmann method; fluid-structure interaction; parachute shape ID FINITE-ELEMENT-METHOD; FLUID-STRUCTURE INTERACTIONS; OPTICAL TWEEZERS; DLM/FD METHOD; SHEAR-FLOW; ERYTHROCYTE; CAPILLARIES; DYNAMICS; MECHANICS; MEMBRANE AB To model red blood cell (RBC) deformation and multiple-cell interactions in flow, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method is extended to employ the mesoscopic network model for simulations of RBCs in flow. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling RBC deformation. The fluid-RBC interactions are enforced by the Lagrange multiplier. To validate parameters of the RBC network model, stretching tests on both coarse and fine meshes are performed and compared with the corresponding experimental data. Furthermore, RBC deformation in pipe and shear flows is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows. Moreover, hydrodynamic interactions between two RBCs are studied in pipe flow. Numerical results illustrate that the leading cell always has a larger flow velocity and deformation, while the following cells move slower and deform less.Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Shi, Xing; Zou, Jianfeng] Zhejiang Univ, Sch Aeronaut & Aerosp, Hangzhou 310027, Peoples R China. [Lin, Guang] Pacific NW Natl Lab, Richland, WA 99352 USA. [Fedosov, Dmitry A.] Forschungszentrum Julich, Inst Complex Syst, D-52425 Julich, Germany. [Fedosov, Dmitry A.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. RP Lin, G (reprint author), 902 Battelle Blvd,POB 999,MSIN K7-90, Richland, WA 99352 USA. EM Guang.Lin@pnl.gov RI Fedosov, Dmitry/G-4110-2013 OI Fedosov, Dmitry/0000-0001-7469-9844 FU National Natural Science Foundation of China [10902098]; Fundamental Research Funds of the Central Universities [2010QNA40107]; U.S. Department of Energy (DOE) Office of Science; Alexander von Humboldt Foundation; DOE [DE-AC05-76RL01830] FX Xing Shi and Jianfeng Zou would like to acknowledge support from the National Natural Science Foundation of China (Grant No. 10902098) and the Fundamental Research Funds of the Central Universities (Program No. 2010QNA40107). Guang Lin also acknowledges support from the U.S. Department of Energy (DOE) Office of Science's Advanced Scientific Computing Research Applied Mathematics program. Dmitry A. Fedosov acknowledges funding by the Alexander von Humboldt Foundation. A portion of the computations were performed using PNNL Institutional Computing cluster systems, and computational resources from the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 45 TC 9 Z9 9 U1 2 U2 55 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD JUL 20 PY 2013 VL 72 IS 8 BP 895 EP 911 DI 10.1002/fld.3764 PG 17 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 157DJ UT WOS:000319875700005 ER PT J AU Jeen, H Choi, WS Freeland, JW Ohta, H Jung, CU Lee, HN AF Jeen, H. Choi, W. S. Freeland, J. W. Ohta, H. Jung, C. U. Lee, H. N. TI Topotactic Phase Transformation of the Brownmillerite SrCoO2.5 to the Perovskite SrCoO3-delta SO ADVANCED MATERIALS LA English DT Article DE pulsed laser epitaxy; brownmillerite; cobaltite; topotactic phase transformation ID MAGNETIC-PROPERTIES; REDOX REACTIONS; FUEL-CELLS; TEMPERATURES; PERFORMANCE; PRINCIPLES; REDUCTION; SR2CO2O5; OXIDES C1 [Jeen, H.; Choi, W. S.; Jung, C. U.; Lee, H. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Jung, C. U.] Hankuk Univ Foreign Studies, Dept Phys, Yongin 449791, South Korea. [Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ohta, H.] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010020, Japan. RP Lee, HN (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM hnlee@ornl.gov RI Ohta, Hiromichi/H-4468-2012; Lee, Ho Nyung/K-2820-2012; Choi, Woo Seok/G-8783-2014 OI Ohta, Hiromichi/0000-0001-7013-0343; Lee, Ho Nyung/0000-0002-2180-3975; FU U.S. Department of Energy, Basic Energy Sciences, Material Sciences and Engineering Division; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; MEXT [22360271] FX This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Material Sciences and Engineering Division. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. H.O. was supported by MEXT (22360271). NR 33 TC 37 Z9 37 U1 10 U2 114 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JUL 19 PY 2013 VL 25 IS 27 BP 3651 EP 3656 DI 10.1002/adma.201300531 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 261VH UT WOS:000327692200005 PM 23852832 ER PT J AU D'haeseleer, P Gladden, JM Allgaier, M Chain, PSG Tringe, SG Malfatti, SA Aldrich, JT Nicora, CD Robinson, EW Pasa-Tolic, L Hugenholtz, P Simmons, BA Singer, SW AF D'haeseleer, Patrik Gladden, John M. Allgaier, Martin Chain, Patrik S. G. Tringe, Susannah G. Malfatti, Stephanie A. Aldrich, Joshua T. Nicora, Carrie D. Robinson, Errol W. Pasa-Tolic, Ljiljana Hugenholtz, Philip Simmons, Blake A. Singer, Steven W. TI Proteogenomic Analysis of a Thermophilic Bacterial Consortium Adapted to Deconstruct Switchgrass SO PLOS ONE LA English DT Article ID COMPLETE GENOME SEQUENCE; EUBACTERIUM RHODOTHERMUS-MARINUS; COMPARATIVE-ANALYSIS SYSTEM; SAMPLE PREPARATION METHOD; RIBOSOMAL-RNA GENES; MS-BASED PROTEOMICS; THERMUS-THERMOPHILUS; GLYCOSIDE HYDROLASES; COMMUNITY PROTEOMICS; EXTREME THERMOPHILE AB Thermophilic bacteria are a potential source of enzymes for the deconstruction of lignocellulosic biomass. However, the complement of proteins used to deconstruct biomass and the specific roles of different microbial groups in thermophilic biomass deconstruction are not well-explored. Here we report on the metagenomic and proteogenomic analyses of a compost-derived bacterial consortium adapted to switchgrass at elevated temperature with high levels of glycoside hydrolase activities. Near-complete genomes were reconstructed for the most abundant populations, which included composite genomes for populations closely related to sequenced strains of Thermus thermophilus and Rhodothermus marinus, and for novel populations that are related to thermophilic Paenibacilli and an uncultivated subdivision of the little-studied Gemmatimonadetes phylum. Partial genomes were also reconstructed for a number of lower abundance thermophilic Chloroflexi populations. Identification of genes for lignocellulose processing and metabolic reconstructions suggested Rhodothermus, Paenibacillus and Gemmatimonadetes as key groups for deconstructing biomass, and Thermus as a group that may primarily metabolize low molecular weight compounds. Mass spectrometry-based proteomic analysis of the consortium was used to identify >3000 proteins in fractionated samples from the cultures, and confirmed the importance of Paenibacillus and Gemmatimonadetes to biomass deconstruction. These studies also indicate that there are unexplored proteins with important roles in bacterial lignocellulose deconstruction. C1 [D'haeseleer, Patrik; Gladden, John M.; Allgaier, Martin; Hugenholtz, Philip; Simmons, Blake A.; Singer, Steven W.] Joint BioEnergy Inst, Emeryville, CA USA. [D'haeseleer, Patrik; Gladden, John M.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Gladden, John M.; Simmons, Blake A.] Sandia Natl Labs, Biol & Mat Sci Ctr, Livermore, CA USA. [Allgaier, Martin; Chain, Patrik S. G.; Tringe, Susannah G.; Malfatti, Stephanie A.; Hugenholtz, Philip] Joint Genome Inst, Walnut Creek, CA USA. [Allgaier, Martin] Leibniz Inst Freshwater Ecol & Inland Fisheries, Berlin, Germany. [Chain, Patrik S. G.] Los Alamos Natl Lab, Metagenom Applicat Team, Genome Sci Grp, Los Alamos, NM USA. [Nicora, Carrie D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Aldrich, Joshua T.; Robinson, Errol W.; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Hugenholtz, Philip] Univ Queensland, Sch Chem & Mol Biosci, Australian Ctr Ecogenom, Brisbane, Qld, Australia. [Singer, Steven W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP D'haeseleer, P (reprint author), Joint BioEnergy Inst, Emeryville, CA USA. EM patrikd@llnl.gov RI Hugenholtz, Philip/G-9608-2011; OI Tringe, Susannah/0000-0001-6479-8427; Chain, Patrick/0000-0003-3949-3634 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX This work was performed as part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. Metagenomic sequencing was conducted by the DOE Joint Genome Institute which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A portion of the research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 75 TC 20 Z9 21 U1 1 U2 53 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 19 PY 2013 VL 8 IS 7 AR e68465 DI 10.1371/journal.pone.0068465 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 191CY UT WOS:000322391400007 PM 23894306 ER PT J AU Del Viva, MM Punzi, G Benedetti, D AF Del Viva, Maria M. Punzi, Giovanni Benedetti, Daniele TI Information and Perception of Meaningful Patterns SO PLOS ONE LA English DT Article ID HUMAN VISUAL-SYSTEM; RECEPTIVE-FIELDS; NATURAL IMAGES; HUMAN-VISION; ORIENTATION; CORTEX; RECOGNITION; REPRESENTATION; PERFORMANCE; STATISTICS AB The visual system needs to extract the most important elements of the external world from a large flux of information in a short time for survival purposes. It is widely believed that in performing this task, it operates a strong data reduction at an early stage, by creating a compact summary of relevant information that can be handled by further levels of processing. In this work we formulate a model of early vision based on a pattern-filtering architecture, partly inspired by high-speed digital data reduction in experimental high-energy physics (HEP). This allows a much stronger data reduction than models based just on redundancy reduction. We show that optimizing this model for best information preservation under tight constraints on computational resources yields surprisingly specific a-priori predictions for the shape of biologically plausible features, and for experimental observations on fast extraction of salient visual features by human observers. Interestingly, applying the same optimized model to HEP data acquisition systems based on pattern-filtering architectures leads to specific a-priori predictions for the relevant data patterns that these devices extract from their inputs. These results suggest that the limitedness of computing resources can play an important role in shaping the nature of perception, by determining what is perceived as "meaningful features" in the input data. C1 [Del Viva, Maria M.; Benedetti, Daniele] Univ Florence, Area Farmaco & Salute Bambino, Sez Psicol, NEUROFARBA Dipartimento Neurosci, Florence, Italy. [Del Viva, Maria M.] Univ Chicago, IMB, Chicago, IL 60637 USA. [Punzi, Giovanni; Benedetti, Daniele] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Punzi, Giovanni] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Del Viva, MM (reprint author), Univ Florence, Area Farmaco & Salute Bambino, Sez Psicol, NEUROFARBA Dipartimento Neurosci, Florence, Italy. EM Michela@in.cnr.it RI Punzi, Giovanni/J-4947-2012 OI Punzi, Giovanni/0000-0002-8346-9052 FU Italian Ministry of Research Grant; MIUR-PRIN [2007WMC8ZY_001, 20083N7YWS_004]; University of Chicago FX This work was supported by an Italian Ministry of Research Grant, MIUR-PRIN # 2007WMC8ZY_001 (http://www.istruzione.it), MIUR-PRIN # 20083N7YWS_004 (http://www.istruzione.it), and University of Chicago: Support for research on rapid recognition of meaningful patterns (http://imb.uchicago.edu). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 47 TC 3 Z9 3 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 19 PY 2013 VL 8 IS 7 AR e69154 DI 10.1371/journal.pone.0069154 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 191CY UT WOS:000322391400042 PM 23894422 ER PT J AU Guo, CJ Knox, BP Sanchez, JF Chiang, YM Bruno, KS Wang, CCC AF Guo, Chun-Jun Knox, Benjamin P. Sanchez, James F. Chiang, Yi-Ming Bruno, Kenneth S. Wang, Clay C. C. TI Application of an Efficient Gene Targeting System Linking Secondary Metabolites to their Biosynthetic Genes in Aspergillus terreus SO ORGANIC LETTERS LA English DT Article ID CLUSTER; IDENTIFICATION; PRODUCTS AB Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillus terreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP-related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP affecting melanin synthesis was also identified in this species. C1 [Bruno, Kenneth S.] Univ So Calif, Sch Pharm, Dept Pharmacol & Pharmaceut Sci, Los Angeles, CA 90089 USA. Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Energy & Environm Directorate, Richland, WA 99352 USA. Chia Nan Univ Pharm & Sci, Grad Inst Pharmaceut Sci, Tainan 71710, Taiwan. Univ So Calif, Dept Chem, Coll Letters Arts & Sci, Los Angeles, CA 90089 USA. RP Bruno, KS (reprint author), Univ So Calif, Sch Pharm, Dept Pharmacol & Pharmaceut Sci, 1985 Zonal Ave, Los Angeles, CA 90089 USA. EM bruno@pnnl.gov; clayw@usc.edu OI Chiang, Yi-Ming/0000-0001-9899-1364 FU National Institute of General Medical Sciences [PO1GM084077]; National Science Foundation- Emerging Frontiers in Research and Innovation-MIKS [1136903]; Department of Energy, Bioenergy Technologies Office FX The project described was supported in part by PO1GM084077 from the National Institute of General Medical Sciences and the National Science Foundation- Emerging Frontiers in Research and Innovation-MIKS (Grant 1136903) to C.C.C.W. Research conducted at the Pacific Northwest National Laboratory was supported by the Department of Energy, Bioenergy Technologies Office. NR 20 TC 12 Z9 12 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD JUL 19 PY 2013 VL 15 IS 14 BP 3562 EP 3565 DI 10.1021/ol401384v PG 4 WC Chemistry, Organic SC Chemistry GA 188RF UT WOS:000322210600020 PM 23841722 ER PT J AU Liu, J Paudyal, D Mudryk, Y Zou, JD Gschneidner, KA Pecharsky, VK AF Liu, J. Paudyal, D. Mudryk, Y. Zou, J. D. Gschneidner, K. A., Jr. Pecharsky, V. K. TI Unusual magnetic and structural transformations of DyFe4Ge2 SO PHYSICAL REVIEW B LA English DT Article ID REENTRANT MAGNETOELASTIC TRANSITION; ADIABATIC TEMPERATURE-CHANGE; NEUTRON-DIFFRACTION; PHASE-TRANSITIONS; ERFE4GE2; GD-5(SI2GE2); BEHAVIOR; FIELD; REFRIGERATION; GD5SI2GE2 AB Magnetization of DyFe4Ge2 measured as function of temperature in a 1 kOe magnetic field indicates antiferromagnetic (AFM) ordering at T-N = 62 K followed by two spin reorientation transitions at T-f1 = 52 and T-f2 = 32 K and one unusual anomaly at 15 K (T-f3). Three transitions (T-f1, T-f2, and T-N) are further confirmed by heat capacity measurement in a zero magnetic field. The two low-temperature magnetic transitions are broadened and gradually vanish when the applied magnetic field exceeds 30 kOe, and the AFM transition shifts toward low temperatures with an increasing magnetic field. The reentrant magnetic glassy state is observed below the freezing point of T-f3 = 15 K. Two field-induced metamagnetic phase transitions are observed between 2 and 50 K in fields below 140 kOe. A temperature-magnetic-field phase diagram has been constructed. The first-principles electronic structure calculations show that the paramagnetic tetragonal structure of DyFe4Ge2 is stable at high temperatures. The calculations with collinear Dy spins confirm ferrimagnetic orthorhombic DyFe4Ge2 as the ground-state structure. C1 [Liu, J.; Paudyal, D.; Mudryk, Y.; Zou, J. D.; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. [Liu, J.; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Liu, J (reprint author), Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. EM liujing@iastate.edu RI Zou, Junding/I-8180-2012 FU US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 56 TC 3 Z9 3 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 19 PY 2013 VL 88 IS 1 AR 014423 DI 10.1103/PhysRevB.88.014423 PG 11 WC Physics, Condensed Matter SC Physics GA 186ZB UT WOS:000322083400005 ER PT J AU Zimmermann, AS Sondermann, E Li, JY Vaknin, D Fiebig, M AF Zimmermann, Anne S. Sondermann, Elke Li, Jiying Vaknin, David Fiebig, Manfred TI Antiferromagnetic order in Li(Ni1-xFex)PO4 (x=0.06, 0.20) SO PHYSICAL REVIEW B LA English DT Article ID 2ND-HARMONIC GENERATION; WEAK FERROMAGNETISM; LICOPO4; LIMNPO4; LIFEPO4; LINIPO4; DOMAINS AB The investigation of Li(Ni1-xFex)PO4 by optical second harmonic generation yields the competition of the antiferromagnetic (AFM) structures and 180 degrees domain patterns found in the end compounds LiNiPO4 (point group mm'm, spins along z) and LiFePO4 (point group mmm', spins along y). While the AFM order and the distribution of the AFM domains of LiNiPO4 are unaffected by the ion substitution at x = 0.06, striking changes are observed at x = 0.20. Fe2+ is dominant in establishing the magnetic order. For x = 0.20 the magnetic order of the solid solution interpolates the magnetic order of its end compounds by exhibiting an orientation of the spins in the (100) plane which include an angle of 40 degrees +/- 3 degrees with respect to the y axis toward 0 K (point group m). The associated AFM domains form rods of a few millimeters length and similar to 10 mu m width occurring in neither of the end compounds. Mechanisms responsible for the magnetic order and domain pattern (180 degrees domains still being one of the least explored aspects of AFM materials in spite of their omnipresence) are discussed. C1 [Zimmermann, Anne S.; Sondermann, Elke] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Li, Jiying; Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Li, Jiying; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Fiebig, Manfred] ETH, Dept Mat, CH-8093 Zurich, Switzerland. RP Fiebig, M (reprint author), ETH, Dept Mat, Wolfgang Pauli Str 10, CH-8093 Zurich, Switzerland. EM manfred.fiebig@mat.ethz.ch RI Sondermann, Elke/J-4638-2015; Vaknin, David/B-3302-2009 OI Sondermann, Elke/0000-0001-5935-8945; Vaknin, David/0000-0002-0899-9248 FU DFG [SFB 608]; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358] FX The authors thank the SFB 608 of the DFG for financial support. Research at Ames Laboratory is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. NR 42 TC 1 Z9 1 U1 1 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 19 PY 2013 VL 88 IS 1 AR 014420 DI 10.1103/PhysRevB.88.014420 PG 7 WC Physics, Condensed Matter SC Physics GA 186ZB UT WOS:000322083400002 ER PT J AU Kim, D Marchetti, F Chen, ZX Zaric, S Wilson, RJ Hall, DA Gaster, RS Lee, JR Wang, JY Osterfeld, SJ Yu, H White, RM Blakely, WF Peterson, LE Bhatnagar, S Mannion, B Tseng, S Roth, K Coleman, M Snijders, AM Wyrobek, AJ Wang, SX AF Kim, Dokyoon Marchetti, Francesco Chen, Zuxiong Zaric, Sasa Wilson, Robert J. Hall, Drew A. Gaster, Richard S. Lee, Jung-Rok Wang, Junyi Osterfeld, Sebastian J. Yu, Heng White, Robert M. Blakely, William F. Peterson, Leif E. Bhatnagar, Sandhya Mannion, Brandon Tseng, Serena Roth, Kristen Coleman, Matthew Snijders, Antoine M. Wyrobek, Andrew J. Wang, Shan X. TI Nanosensor dosimetry of mouse blood proteins after exposure to ionizing radiation SO SCIENTIFIC REPORTS LA English DT Article ID WHOLE-BODY RADIATION; FLT3 LIGAND; BIOMARKERS; ASSAYS; RADIOSENSITIVITY; BIODOSIMETRY; DNA; IDENTIFICATION; BIOSENSORS; ARRAYS AB Giant magnetoresistive (GMR) nanosensors provide a novel approach for measuring protein concentrations in blood for medical diagnosis. Using an in vivo mouse radiation model, we developed protocols for measuring Flt3 ligand (Flt3lg) and serum amyloid A1 (Saa1) in small amounts of blood collected during the first week after X-ray exposures of sham, 0.1, 1, 2, 3, or 6 Gy. Flt3lg concentrations showed excellent dose discrimination at >= 1 Gy in the time window of 1 to 7 days after exposure except 1 Gy at day 7. Saa1 dose response was limited to the first two days after exposure. A multiplex assay with both proteins showed improved dose classification accuracy. Our magneto-nanosensor assay demonstrates the dose and time responses, low-dose sensitivity, small volume requirements, and rapid speed that have important advantages in radiation triage biodosimetry. C1 [Kim, Dokyoon; Chen, Zuxiong; Zaric, Sasa; Wilson, Robert J.; White, Robert M.; Wang, Shan X.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Hall, Drew A.; Wang, Junyi; Wang, Shan X.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Gaster, Richard S.] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA. [Lee, Jung-Rok] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Osterfeld, Sebastian J.; Yu, Heng] MagArray Inc, Sunnyvale, CA 94089 USA. [Blakely, William F.] Uniformed Serv Univ Hlth Sci, Armed Forces Radiobiol Res Inst, Bethesda, MD 20889 USA. [Peterson, Leif E.] Methodist Hosp, Ctr Biostat, Res Inst, Houston, TX 77030 USA. [Marchetti, Francesco; Bhatnagar, Sandhya; Mannion, Brandon; Tseng, Serena; Roth, Kristen; Coleman, Matthew; Snijders, Antoine M.; Wyrobek, Andrew J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Marchetti, Francesco] Hlth Canada, Environm Hlth Sci Res Bur, Ottawa, ON K1A 0K9, Canada. RP Wyrobek, AJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM ajwyrobek@lbl.gov; sxwang@stanford.edu OI Lee, Jung-Rok/0000-0002-3518-3965; Marchetti, Francesco/0000-0002-9435-4867; Coleman, Matthew/0000-0003-1389-4018; Peterson, Leif/0000-0002-1187-0883; Hall, Drew/0000-0003-0674-074X FU Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services [HHSO100201000006C]; U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory under DOE [DE-AC02-05CH11231]; National Cancer Institute grants Physical Science Oncology Center [U54CA143907]; Center for Cancer Nanotechnology Excellence [U54CA151459]; Innovative Molecular Analysis Technologies [R33CA138330]; Armed Forces Radiobiology Research Institute; [BAA-BARDA-09-36] FX This project has been funded in whole or in part by Federal funds from the Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, under Contract No. HHSO100201000006C. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory under DOE contract No. DE-AC02-05CH11231 and with funding support from BAA-BARDA-09-36. The Armed Forces Radiobiology Research Institute, under work units RAB4AP and RBB4AR, provided the support for one of the co-authors involved in this research (W.B.). The views expressed here are those of the authors; no endorsement by the U.S. Department of Defense or the U. S. government has been given or inferred. The work at Stanford also benefited from the National Cancer Institute grants Physical Science Oncology Center (U54CA143907), Center for Cancer Nanotechnology Excellence (U54CA151459), Innovative Molecular Analysis Technologies (R33CA138330). NR 48 TC 13 Z9 13 U1 1 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 19 PY 2013 VL 3 AR 2234 DI 10.1038/srep02234 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 185WN UT WOS:000322001200002 PM 23868657 ER PT J AU Carlo, JP Clancy, JP Fritsch, K Marjerrison, CA Granroth, GE Greedan, JE Dabkowska, HA Gaulin, BD AF Carlo, J. P. Clancy, J. P. Fritsch, K. Marjerrison, C. A. Granroth, G. E. Greedan, J. E. Dabkowska, H. A. Gaulin, B. D. TI Spin gap and the nature of the 4d(3) magnetic ground state in the frustrated fcc antiferromagnet Ba2YRuO6 SO PHYSICAL REVIEW B LA English DT Article ID LATTICE ANTIFERROMAGNET; FERROMAGNET; PEROVSKITES AB The geometrically frustrated double-perovskite Ba2YRuO6 has magnetic 4d(3) Ru5+ ions decorating an undistorted face-centered-cubic lattice. This material has been previously reported to exhibit commensurate long-range antiferromagnetic order below T-N similar to 36 K, a factor f similar to 15 times lower than its Curie-Weiss temperature Theta(CW) = -522 K, and purported short-range order to T* = 47 K. We report new time-of-flight neutron spectroscopy of Ba2YRuO6 which shows the development of a similar to 5 meV spin gap in the vicinity of the [100] magnetic ordering wave vector below T-N = 36 K, with the transition to long-range order occurring at T* = 47 K. We also report spin waves extending to similar to 14 meV, a surprisingly small bandwidth in light of the large Theta(CW). We compare the spin gap and bandwidth to relevant neutron studies of the isostructural 4d(1) material Ba2YMoO6, and discuss the results in the framework of relatively strong spin-orbit coupling expected in 4d magnetic systems. C1 [Carlo, J. P.] Villanova Univ, Dept Phys, Villanova, PA 19085 USA. [Clancy, J. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Fritsch, K.; Marjerrison, C. A.; Gaulin, B. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Granroth, G. E.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Greedan, J. E.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Greedan, J. E.; Dabkowska, H. A.; Gaulin, B. D.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Gaulin, B. D.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Carlo, JP (reprint author), Villanova Univ, Dept Phys, Villanova, PA 19085 USA. RI Granroth, Garrett/G-3576-2012 OI Granroth, Garrett/0000-0002-7583-8778 FU NSERC; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX Work at McMaster University was supported by NSERC. Work at Villanova University was sponsored by a Faculty Development Grant. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 33 TC 14 Z9 14 U1 4 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 19 PY 2013 VL 88 IS 2 AR 024418 DI 10.1103/PhysRevB.88.024418 PG 6 WC Physics, Condensed Matter SC Physics GA 186ZC UT WOS:000322083500003 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lynch, G Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Kirkby, D Lankford, AJ Mandelkern, M Atmacan, H Gary, JW Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Kroseberg, J Lockman, WS Martinez, AJ Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Huard, Z Meadows, BT Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Morii, M Adametz, A Uwer, U Lacker, HM Lueck, T Dauncey, PD Mallik, U Chen, C Cochran, J Meyer, WT Prell, S Rubin, AE Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Schune, MH Stocchi, A Wormser, G Lange, DJ Wright, DM Chavez, CA Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Prencipe, E Barlow, RJ Jackson, G Lafferty, GD Behn, E Cenci, R Hamilton, B Jawahery, A Roberts, DA Dallapiccola, C Cowan, R Dujmic, D Sciolla, G Cheaib, R Lindemann, D Patel, PM Robertson, SH Biassoni, P Neri, N Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Martinelli, M Raven, G Jessop, CP LoSecco, JM Wang, WF Honscheid, K Kass, R Brau, J Frey, R Sinev, NB Strom, D Torrence, E Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Sitt, S Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Oberhof, B Perez, A Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Anulli, F Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Bunger, C Grunberg, O Hartmann, T Leddig, T Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Aston, D Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Lewis, P Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wagner, AP Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Young, CC Ziegler, V Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Ruland, AM Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Zambito, S Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Villanueva-Perez, P Ahmed, H Albert, J Banerjee, S Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Kirkby, D. Lankford, A. J. Mandelkern, M. Atmacan, H. Gary, J. W. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Huard, Z. Meadows, B. T. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Morii, M. Adametz, A. Uwer, U. Lacker, H. M. Lueck, T. Dauncey, P. D. Mallik, U. Chen, C. Cochran, J. Meyer, W. T. Prell, S. Rubin, A. E. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Schune, M. H. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Prencipe, E. Barlow, R. J. Jackson, G. Lafferty, G. D. Behn, E. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Dallapiccola, C. Cowan, R. Dujmic, D. Sciolla, G. Cheaib, R. Lindemann, D. Patel, P. M. Robertson, S. H. Biassoni, P. Neri, N. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Martinelli, M. Raven, G. Jessop, C. P. LoSecco, J. M. Wang, W. F. Honscheid, K. Kass, R. Brau, J. Frey, R. Sinev, N. B. Strom, D. Torrence, E. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Sitt, S. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Anulli, F. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Buenger, C. Gruenberg, O. Hartmann, T. Leddig, T. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Aston, D. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wagner, A. P. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Young, C. C. Ziegler, V. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Ruland, A. M. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Zambito, S. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Villanueva-Perez, P. Ahmed, H. Albert, J. Banerjee, Sw. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. CA BABAR Collaboration TI Measurement of CP-violating asymmetries in B-0 -> (rho pi)(0) decays using a time-dependent Dalitz plot analysis SO PHYSICAL REVIEW D LA English DT Article ID SPECTRAL FUNCTIONS; TAU-DECAYS; MESON AB We present results for a time-dependent Dalitz plot measurement of CP-violating asymmetries in the mode B-0 -> pi(+)pi(-)pi(0). The data set is derived from the complete sample of 471 x 10(6) B (B) over bar meson pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at the SLAC National Accelerator Laboratory operating on the Upsilon(4S) resonance. We extract parameters describing the time-dependent B-0 -> rho pi decay probabilities and CP asymmetries, including C = 0.016 +/- 0.059 +/- 0.036, Delta C = 0.234 +/- 0.061 +/- 0.048, S = 0.053 +/- 0.081 +/- 0.034, and Delta S = 0.054 +/- 0.082 +/- 0.039, where the uncertainties are statistical and systematic, respectively. We perform a two-dimensional likelihood scan of the direct CP-violation asymmetry parameters for B-0 -> rho(+/-)pi(-/+) decays, finding the change in chi(2) between the minimum and the origin (corresponding to no direct CP violation) to be Delta chi(2) = 6.42. We present information on the CP-violating parameter alpha in a likelihood scan that incorporates B-+/- -> rho pi measurements. To aid in the interpretation of our results, statistical robustness studies are performed to assess the reliability with which the true values of the physics parameters can be extracted. Significantly, these studies indicate that alpha cannot be reliably extracted with our current sample size, though the other physics parameters are robustly extracted. C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.; Mattison, T. S.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Kirkby, D.; Lankford, A. J.; Mandelkern, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] INFN, Sez Ferrara, I-44100 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.; Lueck, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Jackson, G.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Sonnek, P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Lindemann, D.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Neri, N.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Martinelli, M.; Raven, G.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Perez, A.; Rizzo, G.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Perez, A.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Gruenberg, O.; Hartmann, T.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.] Ctr Saclay, CEA, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Aston, D.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Zambito, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Zambito, S.; Lanceri, L.; Vitale, L.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.] Univ Valencia, CSIC, IFIC, E-46017 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Band, H. R.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Lees, JP (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. RI Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Lusiani, Alberto/N-2976-2015; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Forti, Francesco/H-3035-2011; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012 OI Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Lusiani, Alberto/0000-0002-6876-3288; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Forti, Francesco/0000-0001-6535-7965; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480 FU SLAC; U.S. Department of Energy; National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Ciencia e Innovacion (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A. P. Sloan Foundation (USA) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA). NR 20 TC 9 Z9 9 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 19 PY 2013 VL 88 IS 1 AR 012003 DI 10.1103/PhysRevD.88.012003 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 186ZI UT WOS:000322084100001 ER PT J AU Seletskiy, S Podobedov, B Shen, Y Yang, X AF Seletskiy, S. Podobedov, B. Shen, Y. Yang, X. TI Seeding, Controlling, and Benefiting from the Microbunching Instability SO PHYSICAL REVIEW LETTERS LA English DT Article ID EMISSION; LASER AB Advanced light sources using relativistic electrons rely on coherent emission from high-density (compressed) beams. These beams, typically produced by photoinjected linear accelerators, can suffer from uncontrolled microbunching instabilities that are difficult to manage, since a complete understanding of their growth due to space charge and other wakefields is lacking. Here we present the first systematic measurements of microbunching instability using electron beams premodulated in a controlled fashion. By comparing beams having various modulation depths and wavelengths with unmodulated beams, we are able to benchmark, for the first time, the analytical calculations for the microbunching instability. In addition, our results give a proof of principle demonstration of a longitudinal space charge amplifier (LSCA), where a specific beam density pattern develops and grows. A potential application of this particular LSCA scheme is for controlling waveforms and enhancing the spectral content of linac-based sources of coherent terahertz radiation. C1 [Seletskiy, S.; Podobedov, B.; Shen, Y.; Yang, X.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Seletskiy, S (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM seletskiy@bnl.gov FU NSLS team; U.S. Department of Energy [DE-AC02-98CH1-886] FX We thank G. L. Carr and G. Rakowsky for critical reading of the manuscript. We are grateful for support from the NSLS team. This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC02-98CH1-886. NR 27 TC 6 Z9 6 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 19 PY 2013 VL 111 IS 3 AR 034803 DI 10.1103/PhysRevLett.111.034803 PG 5 WC Physics, Multidisciplinary SC Physics GA 186YQ UT WOS:000322082300006 PM 23909332 ER PT J AU White, S Maclean, E Tomas, R AF White, S. Maclean, E. Tomas, R. TI Direct amplitude detuning measurement with ac dipole SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In circular machines, nonlinear dynamics can impact parameters such as beam lifetime and could result in limitations on the performance reach of the accelerator. Assessing and understanding these effects in experiments is essential to confirm the accuracy of the magnetic model and improve the machine performance. A direct measurement of the machine nonlinearities can be obtained by characterizing the dependency of the tune as a function of the amplitude of oscillations (usually defined as amplitude detuning). The conventional technique is to excite the beam to large amplitudes with a single kick and derive the tune from turn-by-turn data acquired with beam position monitors. Although this provides a very precise tune measurement it has the significant disadvantage of being destructive. An alternative, nondestructive way of exciting large amplitude oscillations is to use an ac dipole. The perturbation Hamiltonian in the presence of an ac dipole excitation shows a distinct behavior compared to the free oscillations which should be correctly taken into account in the interpretation of experimental data. The use of an ac dipole for direct amplitude detuning measurement requires careful data processing allowing one to observe the natural tune of the machine; the feasibility of such a measurement is demonstrated using experimental data from the Large Hadron Collider. An experimental proof of the theoretical derivations based on measurements performed at injection energy is provided as well as an application of this technique at top energy using a large number of excitations on the same beam. C1 [White, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Maclean, E.; Tomas, R.] CERN, Geneva, Switzerland. RP White, S (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; LARP; U.S. Department of Energy FX The authors would like to thank the LHC operation and the participants to the machine development sessions for their support with the data acquisition. We would also like to thank M. Bai and M. Giovannozzi for carefully reading this paper and valuable discussions on nonlinear beam dynamics in the presence of ac dipole. This work was partially supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 and LARP with the U.S. Department of Energy. NR 16 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 19 PY 2013 VL 16 IS 7 AR 071002 DI 10.1103/PhysRevSTAB.16.071002 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 186ZT UT WOS:000322085200002 ER PT J AU Johnston-Peck, AC Senanayake, SD Plata, JJ Kundu, S Xu, WQ Barrio, L Graciani, J Sanz, JF Navarro, RM Fierro, JLG Stach, EA Rodriguez, JA AF Johnston-Peck, Aaron C. Senanayake, Sanjaya D. Plata, Jose J. Kundu, Shankhamala Xu, Wenqian Barrio, Laura Graciani, Jesus Fdez Sanz, Javier Navarro, Rufino M. Fierro, Jose L. G. Stach, Eric A. Rodriguez, Jose A. TI Nature of the Mixed-Oxide Interface in Ceria-Titania Catalysts: Clusters, Chains, and Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; LOW-INDEX SURFACES; ELECTRONIC-STRUCTURE; NANOMETER LEVEL; MODIFIED TIO2; METAL OXIDE; WATER; STABILITY; GOLD AB The ceria-titania mixed metal oxide is an important component of catalysts active for the production of hydrogen through the water-gas shift reaction (CO + H2O -> H-2 + CO2) and the photocatalytic splitting of water (H2O + hv -> H-2 + 0.5O(2)). We have found that ceria-titania catalysts prepared through wet chemical methods have a unique hierarchal architecture. Atomic resolution imaging by high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) reveals that ceria supported on titania exhibits a range of morphologies. One can clearly identify ceria structures involving clusters, chains, and nanoparticles, which are distributed inhomogeneously on the titania support. These structures are often below the sensitivity limit of techniques such as X-ray diffraction (XRD), which in this case identifies the average particle size of the ceria and titania nanoparticles (via the Debye-Scherer equation) to be 7.5 and 36 nm, respectively. The fluorite-structured ceria grows epitaxially on the anatase-structured titania, and this epitaxial growth influences the morphology of the nanoparticles. The presence of defects in the ceria-such as dislocations and surface steps-was routinely observed in HAADF STEM. Density functional theory (DFT) calculations indicate an energetic preference for the formation of O vacancies and the corresponding Ce3+ sites at the ceria-titania interface. Experimental corroboration by soft X-ray absorption spectroscopy (SXAS) does suggest the presence of Ce3+ sites at the interface. C1 [Johnston-Peck, Aaron C.; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Senanayake, Sanjaya D.; Kundu, Shankhamala; Xu, Wenqian; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Plata, Jose J.; Graciani, Jesus; Fdez Sanz, Javier] Univ Seville, Dept Phys Chem, E-41012 Seville, Spain. [Barrio, Laura; Navarro, Rufino M.; Fierro, Jose L. G.] CSIC Inst Catalysis & Petrochem, E-28049 Madrid, Spain. RP Stach, EA (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM estach@bnl.gov; rodrigez@bnl.gov RI Xu, Wenqian/M-5906-2013; Kundu, Shankhamala/C-4875-2012; Barrio, Laura/A-9509-2008; Stach, Eric/D-8545-2011; Plata Ramos, Jose Javier/D-4096-2011; Senanayake, Sanjaya/D-4769-2009; Navarro Yerga, Rufino/F-3478-2016; jose, fierro/C-4774-2014 OI Barrio, Laura/0000-0003-3496-4329; Stach, Eric/0000-0002-3366-2153; Plata Ramos, Jose Javier/0000-0002-0859-0450; Senanayake, Sanjaya/0000-0003-3991-4232; Navarro Yerga, Rufino/0000-0002-8625-9544; jose, fierro/0000-0002-6880-3737 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Ministry of Economy and Competitiveness (Spain) [MAT2012-31526, CSD2008-0023]; EU FEDER FX The research carried out at the Center for Functional Nanomaterials and the Chemistry Department of Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The theoretical studies were funded by the Ministry of Economy and Competitiveness (Spain, grants MAT2012-31526 and CSD2008-0023) and EU FEDER. Computational resources were provided by the Barcelona Supercomputing Center/Centro Nacional de Supercomputacion (Spain). NR 49 TC 30 Z9 30 U1 9 U2 104 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 18 PY 2013 VL 117 IS 28 BP 14463 EP 14471 DI 10.1021/jp3125268 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 187VR UT WOS:000322150100001 ER PT J AU Mullins, DR Albrecht, PM AF Mullins, D. R. Albrecht, P. M. TI Acetaldehyde Adsorption and Reaction on CeO2(100) Thin Films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ABSORPTION FINE-STRUCTURE; SINGLE-CRYSTALS; OXIDE SURFACES; CERIUM OXIDE; METHANOL; CEO2; CATALYSTS; DECOMPOSITION; SPECTROSCOPY; TIO2(110) AB This study reports and compares the adsorption and dissociation of acetaldehyde on oxidized and reduced CeOx(100) thin films. Acetaldehyde reacts and decomposes on fully oxidized CeO2(100), whereas it desorbs molecularly at low temperature on CeO2(111). The primary products are CO, CO2, and water along with trace amounts of crotonaldehyde and acetylene. The acetaldehyde adsorbs as the eta-acetaldehyde species, dioxyethylene. Decomposition proceeds by dehydrogenation through acetate and enolate intermediates. The reaction pathway is similar on the reduced CeO2-x(100) surface; however, the inability to react with surface O on the reduced surface results in H-2 rather than H2O desorption, and C is left on the surface rather than producing CO and CO2. C-O bond cleavage in the enolate intermediate followed by reaction with surface H results in ethylene desorption. C1 [Mullins, D. R.; Albrecht, P. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mullins, DR (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mullinsdr@ornl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy, under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. NR 46 TC 13 Z9 13 U1 6 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 EI 1932-7455 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 18 PY 2013 VL 117 IS 28 BP 14692 EP 14700 DI 10.1021/jp404752m PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 187VR UT WOS:000322150100027 ER PT J AU Lacayo, CI Hwang, MS Ding, SY Thelen, MP AF Lacayo, Catherine I. Hwang, Mona S. Ding, Shi-You Thelen, Michael P. TI Lignin Depletion Enhances the Digestibility of Cellulose in Cultured Xylem Cells SO PLOS ONE LA English DT Article ID TRACHEARY-ELEMENT DIFFERENTIATION; CARBOHYDRATE-BINDING MODULES; STEAM PRETREATED SOFTWOOD; CINNAMOYL-COA REDUCTASE; ZINNIA-ELEGANS L; ENZYMATIC-HYDROLYSIS; CORN STOVER; LIGNOCELLULOSE FRACTIONATION; SUSPENSION-CULTURES; MOLECULAR PROBES AB Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinnia elegans. Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis, but realistic enough to capture the natural complexity of lignocellulose in the plant cell wall. Consequently, these cells represent a suitable model for analyzing native lignocellulose degradation. C1 [Lacayo, Catherine I.; Hwang, Mona S.; Thelen, Michael P.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Ding, Shi-You] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO USA. RP Thelen, MP (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. EM mthelen@llnl.gov RI Thelen, Michael/C-6834-2008; Ding, Shi-You/O-1209-2013; Thelen, Michael/G-2032-2014 OI Thelen, Michael/0000-0002-2479-5480; Thelen, Michael/0000-0002-2479-5480 FU U.S. Department of Energy [DE-AC52-07NA27344, ER65258] FX This work was performed under the auspices of the U.S. Department of Energy under Contracts DE-AC52-07NA27344 (LLNL) and ER65258 (NREL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 58 TC 9 Z9 9 U1 1 U2 34 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 18 PY 2013 VL 8 IS 7 AR UNSP e68266 DI 10.1371/journal.pone.0068266 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 214PM UT WOS:000324146200015 PM 23874568 ER PT J AU Shkrob, IA Marin, TW Crowell, RA Wishart, JF AF Shkrob, Ilya A. Marin, Timothy W. Crowell, R. A. Wishart, James F. TI Photo- and Radiation-Chemistry of Halide Anions in Ionic Liquids SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID INDUCED REDOX REACTIONS; ELECTRON-SPIN-RESONANCE; BROMINE ATOM COMPLEXES; ULTRAFAST DYNAMICS; EXCESS ELECTRONS; RECOMBINATION DYNAMICS; FEMTOSECOND DYNAMICS; RELAXATION DYNAMICS; MOLECULAR-DYNAMICS; N-BROMOSUCCINIMIDE AB One- and two- photon excitation of halide anions (X-) in polar molecular solvents results in electron detachment from the dissociative charge-transfer-to-solvent state; this reaction yields a solvated halide atom and a solvated electron. How do such photoreactions proceed in ionic liquid (IL) solvents? Matrix isolation electron paramagnetic resonance (EPR) spectroscopy has been used to answer this question for photoreactions of bromide in aliphatic (1-butyl-1-methylpyrrolidinium) and aromatic (1-alkyl-3-methyl-imidazolium) ionic liquids. In both classes of ILs, the photoreaction (both 1- and 2-photon) yields bromine atoms that promptly abstract hydrogen from the alkyl chains of the IL cation; only in concentrated bromide solutions (containing >5-10 mol % bromide) does Br-2(-center dot) formation compete with this reaction. In two-photon excitation, the 2-imidazolyl radical generated via the charge transfer promptly eliminates the alkyl arm. These photolytic reactions can be contrasted with radiolysis of the same ILs, in which large yield of BrA(-center dot) radicals was observed (where A(-) is a matrix anion), suggesting that solvated Br-center dot atoms do not occur in the ILs, as such a species would form three-electron sigma(2)sigma*(1) bonds with anions present in the IL. It is suggested that chlorine and bromine atoms abstract hydrogen faster than they form such radicals, even at cryogenic temperatures, whereas iodine mainly forms such bound radicals. These XA(-center dot) radicals convert to X-2(center dot-) radicals in a reaction with the parent halide anion. Ramifications of these observations for photodegradation of ionic liquids are discussed. C1 [Shkrob, Ilya A.; Marin, Timothy W.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marin, Timothy W.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA. [Crowell, R. A.; Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov; crowell@bnl.gov; wishart@bnl.gov RI Wishart, James/L-6303-2013 OI Wishart, James/0000-0002-0488-7636 FU US-DOE Office of Science, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357, DE-AC02-98CH10886] FX I.A.S. thanks K. Quigley and R. Lowers for technical support. The work at Argonne and Brookhaven was supported by the US-DOE Office of Science, Division of Chemical Sciences, Geosciences, and Biosciences under contracts Nos. DE-AC02-06CH11357 and DE-AC02-98CH10886, respectively. Programmatic support via a DOE SISGR grant "An Integrated Basic Research Program for Advanced Nuclear Energy Separations Systems Based on Ionic Liquids" is gratefully acknowledged. NR 80 TC 12 Z9 12 U1 2 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 18 PY 2013 VL 117 IS 28 BP 5742 EP 5756 DI 10.1021/jp4042793 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 187VO UT WOS:000322149800004 PM 23819609 ER PT J AU Riccardi, D Guo, HB Parks, JM Gu, BH Summers, AO Miller, SM Liang, LY Smith, JC AF Riccardi, Demian Guo, Hao-Bo Parks, Jerry M. Gu, Baohua Summers, Anne O. Miller, Susan M. Liang, Liyuan Smith, Jeremy C. TI Why Mercury Prefers Soft Ligands SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SOLVATION FREE-ENERGY; CONSISTENT BASIS-SETS; CONVERGENT BASIS-SETS; ENVIRONMENT; CONTINUUM; METALS; PROTON; WATER; METHYLATION; PATHWAYS AB Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+-ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a dear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere. C1 [Riccardi, Demian; Guo, Hao-Bo; Parks, Jerry M.; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, UT ORNL, Oak Ridge, TN 37831 USA. [Riccardi, Demian; Guo, Hao-Bo; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Gu, Baohua; Liang, Liyuan] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Summers, Anne O.] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. [Miller, Susan M.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. RP Smith, JC (reprint author), Oak Ridge Natl Lab, Ctr Biophys Mol, UT ORNL, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM smithjc@ornl.gov RI Parks, Jerry/B-7488-2009; Liang, Liyuan/O-7213-2014; Gu, Baohua/B-9511-2012; smith, jeremy/B-7287-2012; Guo, Hao-Bo/B-7486-2009 OI Parks, Jerry/0000-0002-3103-9333; Summers, Anne/0000-0003-4258-9696; Liang, Liyuan/0000-0003-1338-0324; Gu, Baohua/0000-0002-7299-2956; smith, jeremy/0000-0002-2978-3227; Guo, Hao-Bo/0000-0003-1321-1758 FU U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research, Subsurface Biogeochemical Research Program [DE-SC0004895]; UT-Battelle, LLC for the U.S. DOE [DE-AC05-00OR22725]; Office of Science of the U.S. Department of Energy FX This work was conducted jointly at the University of Tennessee, Knoxville and Oak Ridge National Laboratory (ORNL) and was supported by the grant DE-SC0004895 from the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research, Subsurface Biogeochemical Research Program. ORNL is managed by UT-Battelle, LLC for the U.S. DOE under contract DE-AC05-00OR22725. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy. NR 48 TC 14 Z9 14 U1 2 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 18 PY 2013 VL 4 IS 14 BP 2317 EP 2322 DI 10.1021/jz401075b PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 187VQ UT WOS:000322150000013 ER PT J AU Reid, OG Rumbles, G AF Reid, Obadiah G. Rumbles, Garry TI Quantitative Transient Absorption Measurements of Polaron Yield and Absorption Coefficient in Neat Conjugated Polymers SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID RESOLVED MICROWAVE CONDUCTIVITY; HIGHLY MOBILE ELECTRONS; THIN-FILM TRANSISTORS; LIGHT-EMITTING-DIODES; CHARGE MOBILITIES; SINGLET EXCITONS; ISOLATED CHAINS; POLY(3-HEXYLTHIOPHENE); SPECTROSCOPY; VINYLENE) AB Transient absorption methods are crucial for probing photogenerated polaron dynamics in conjugated polymers but are usually limited to qualitative studies because the polaron absorption coefficient is unknown. Herein, we quantify polaron absorption coefficients by exploiting the parasitic exciton-polaron quenching process, which appears in transient absorption experiments as a decrease in polaron yield at high fluence. We modulate the charge density in neat polymer films and measure the exciton-polaron quenching rate constant and dopant density via time-resolved photoluminescence. Using these parameters, we fit relative yield-fluence curves obtained from transient absorption, quantifying the yield and absorption coefficient of the polarons. We use time-resolved microwave conductivity as the transient probe and present results for the GHz mobility and polaron yield in films of three common conjugated polymers that are consistent with previous reports where they exist. These experiments demonstrate a new, generally accessible spectroscopic method for quantitative study of polaron dynamics in conjugated polymers. C1 [Reid, Obadiah G.; Rumbles, Garry] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. [Rumbles, Garry] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Rumbles, G (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM garry.rumbles@nrel.gov RI Rumbles, Garry/A-3045-2014; OI Rumbles, Garry/0000-0003-0776-1462; REID, OBADIAH/0000-0003-0646-3981 FU Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory [06RF1002]; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX We thank Jao van de Lagemaat, Andrew Ferguson, Nikos Kopidakis, Ross Larson, and Matthew Bird for useful discussions. In addition, we are indebted to Prof. Paul Bum at the Center for Organic Photonics and Electronics at the University of Queensland for providing a generous supply of PCDTBT and to Dr. Martin Heeney at Imperial College London for our supply of PBTTT. The TRMC system described here was funded by the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. The experimental development for measuring carrier mobilities was supported by the Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory under task number 06RF1002. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 47 TC 19 Z9 19 U1 0 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 18 PY 2013 VL 4 IS 14 BP 2348 EP 2355 DI 10.1021/jz401142e PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 187VQ UT WOS:000322150000018 ER PT J AU Annapureddy, HVR Dang, LX AF Annapureddy, Harsha V. R. Dang, Liem X. TI Pairing Mechanism among Ionic Liquid Ions in Aqueous Solutions: A Molecular Dynamics Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CHEMICAL-REACTIONS; POLAR-SOLVENT; NA+-CL; WATER; MIXTURES; TETRAFLUOROBORATE; CRYSTALLIZATION; SIMULATIONS; HYDRATION; DENSITY AB In this study, we carried out molecular dynamics simulations to examine the molecular mechanism for ionic liquid pair association in aqueous solutions. We chose the commonly studied imidazolium-based ionic liquid pairs. We computed potentials of mean force (PMF) for four systems: 1,3-dimethlylimidazoliumchloride, 1,3-dimethlylimidazolium iodide, 1-methly-3-octylimidazolium chloride, and 1-methly-3-octylimidazolium iodide. Our PMF studies show a stronger interaction for the ion pairs of systems involving dimethlylimidazolium as the cation species compared with that of the systems containing octylimidazolium. This result indicates a decrease in ion-pair association as the cation alkyl tail length increases. We also studied the kinetics of ion-pair dissociation using different rate theories such as the Grote-Hynes and Kramer's theories. As expected, the computed rate results significantly deviated from results obtained from transition state theory because it does not account for dynamical solvent effects. Dissociative barrier curvatures are found to be very small for the systems investigated because the transmission coefficients computed using Grote-Hynes theory and Kramer's theory are approximately equal. Our analysis of the rotational dynamics of cations revealed that the time scales for molecular reorientation are longer for cations with longer alkyl tails. C1 [Annapureddy, Harsha V. R.; Dang, Liem X.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Dang, LX (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle. The calculations were carried out using computer resources provided by BES. NR 42 TC 11 Z9 11 U1 2 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 18 PY 2013 VL 117 IS 28 BP 8555 EP 8560 DI 10.1021/jp404839w PG 6 WC Chemistry, Physical SC Chemistry GA 187VP UT WOS:000322149900027 PM 23800046 ER PT J AU Koitzsch, A Kim, TK Treske, U Knupfer, M Buchner, B Richter, M Opahle, I Follath, R Bauer, ED Sarrao, JL AF Koitzsch, A. Kim, T. K. Treske, U. Knupfer, M. Buechner, B. Richter, M. Opahle, I. Follath, R. Bauer, E. D. Sarrao, J. L. TI Band-dependent emergence of heavy quasiparticles in CeCoIn5 SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY AB We investigate the low temperature (T < 2 K) electronic structure of the heavy fermion superconductor CeCoIn5 (T-c = 2.3 K) by angle- resolved photoemission spectroscopy (ARPES). The hybridization between conduction electrons and f electrons, which ultimately leads to the emergence of heavy quasiparticles responsible for the various unusual properties of such materials, is directly monitored and shown to be strongly band dependent. In particular the most two-dimensional band is found to be the least hybridized one. A simplified multiband version of the periodic Anderson model (PAM) is used to describe the data, resulting in semiquantitative agreement with previous bulk sensitive results from de Haas-van Alphen measurements. C1 [Koitzsch, A.; Kim, T. K.; Treske, U.; Knupfer, M.; Buechner, B.; Richter, M.; Opahle, I.] IFW Dresden, D-01171 Dresden, Germany. [Kim, T. K.] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Buechner, B.] Tech Univ Dresden, Inst Festkorperphys, D-01062 Dresden, Germany. [Opahle, I.] Ruhr Univ Bochum, ICAMS, D-44780 Bochum, Germany. [Follath, R.] Helmholtz Zentrum Berlin, D-12489 Berlin, Germany. [Bauer, E. D.; Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Koitzsch, A (reprint author), IFW Dresden, POB 270116, D-01171 Dresden, Germany. RI Buchner, Bernd/E-2437-2016; Richter, Manuel/F-2485-2016; OI Buchner, Bernd/0000-0002-3886-2680; Richter, Manuel/0000-0002-9999-8290; Bauer, Eric/0000-0003-0017-1937 FU Deutsche Forschungsgemeinschaft [KO 3831/1-1]; U.S. Department of Energy, Office of Science, Division of Materials Science and Engineering FX A.K. acknowledges financial support by the Deutsche Forschungsgemeinschaft (Grant No. KO 3831/1-1). Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Science, Division of Materials Science and Engineering. A. K. thanks S. V. Borisenko, A. Akbari, and P. Thalmeier for discussions. NR 31 TC 14 Z9 14 U1 7 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 18 PY 2013 VL 88 IS 3 AR 035124 DI 10.1103/PhysRevB.88.035124 PG 5 WC Physics, Condensed Matter SC Physics GA 186YG UT WOS:000322081300002 ER PT J AU Hall, NL Blunden, PG Melnitchouk, W Thomas, AW Young, RD AF Hall, N. L. Blunden, P. G. Melnitchouk, W. Thomas, A. W. Young, R. D. TI Constrained gamma Z interference corrections to parity-violating electron scattering SO PHYSICAL REVIEW D LA English DT Article ID GENERALIZED VECTOR DOMINANCE; DEEP-INELASTIC SCATTERING; RADIATIVE-CORRECTIONS; PARTON DISTRIBUTIONS; PROTON SCATTERING; NEUTRAL-CURRENT; LOW-X; PHYSICS; EXCITATION AB We present a comprehensive analysis of gamma Z interference corrections to the weak charge of the proton measured in parity-violating electron scattering, including a survey of existing models and a critical analysis of their uncertainties. Constraints from parton distributions in the deep-inelastic region, together with new data on parity-violating electron scattering in the resonance region, result in significantly smaller uncertainties on the corrections compared to previous estimates. At the kinematics of the Q(weak) experiment, we determine the gamma Z box correction to be Re square(V)(gamma Z) = (5.57 +/- 0.36) x 10(-3). The new constraints also allow precise predictions to be made for parity-violating deep-inelastic asymmetries on the deuteron. C1 [Hall, N. L.; Thomas, A. W.; Young, R. D.] Univ Adelaide, Sch Chem & Phys, ARC Ctr Excellence Particle Phys Terascale, Adelaide, SA 5005, Australia. [Hall, N. L.; Thomas, A. W.; Young, R. D.] Univ Adelaide, Sch Chem & Phys, CSSM, Adelaide, SA 5005, Australia. [Blunden, P. G.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. Jefferson Lab, Newport News, VA 23606 USA. RP Hall, NL (reprint author), Univ Adelaide, Sch Chem & Phys, ARC Ctr Excellence Particle Phys Terascale, Adelaide, SA 5005, Australia. RI Thomas, Anthony/G-4194-2012; Young, Ross/H-8207-2012 OI Thomas, Anthony/0000-0003-0026-499X; FU CSSM/CoEPP; NSERC (Canada); DOE [DE-AC05-06OR23177, DE-FG02-03ER41260]; Australian Research Council FX We thank S. Alekhin, R. Carlini, C. Carlson, M. Dalton, M. Gorshteyn, K. Meyers, R. Michaels and X. Zheng for helpful discussions and communications. N. H. and P. B. thank the Jefferson Lab Theory Center for support during visits where some of this work was performed. W. M. thanks the CSSM/CoEPP for support during a visit to the University of Adelaide. This work was supported by NSERC (Canada), DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab; DOE Contract No. DE-FG02-03ER41260; and the Australian Research Council through an Australian Laureate Fellowship. NR 52 TC 23 Z9 23 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 18 PY 2013 VL 88 IS 1 AR 013011 DI 10.1103/PhysRevD.88.013011 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 186YN UT WOS:000322082000002 ER PT J AU Lin, S Yee, HU AF Lin, Shu Yee, Ho-Ung TI Out-of-equilibrium chiral magnetic effect at strong coupling SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; ODD BUBBLES; MATTER AB We study the charge transports originating from triangle anomaly in out-of-equilibrium conditions in the framework of AdS/CFT correspondence at strong coupling, to gain useful insights on possible charge separation effects that may happen in the very early stages of heavy-ion collisions. We first construct a gravity background of a homogeneous mass shell with a finite (axial) charge density gravitationally collapsing to a charged black hole, which serves as a dual model for out-of-equilibrium charged plasma undergoing thermalization. We find that a finite charge density in the plasma slows down the thermalization. We then study the out-of-equilibrium properties of chiral magnetic effect and chiral magnetic wave in this background. As the medium thermalizes, the magnitude of chiral magnetic conductivity and the response time delay grow. We find a dynamical peak in the spectral function of retarded current correlator, which we identify as an out-of-equilibrium chiral magnetic wave. The group velocity of the out-of-equilibrium chiral magnetic wave is shown to receive a dominant contribution from a nonequilibrium effect, making the wave moving much faster than in the equilibrium, which may enhance the charge transports via triangle anomaly in the early stage of heavy-ion collisions. C1 [Lin, Shu; Yee, Ho-Ung] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Yee, Ho-Ung] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Lin, S (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM slin@quark.phy.bnl.gov; hyee@uic.edu FU RIKEN Foreign Postdoctoral Researchers Program FX We thank Xu-Guang Huang, Dima Kharzeev, Jinfeng Liao, Kiminad Mamo, Larry McLerran, Todd Springer, Misha Stephanov, Derek Teaney, Raju Venugopalan, Yi Yin for useful discussions. S. L. is supported by RIKEN Foreign Postdoctoral Researchers Program. NR 66 TC 13 Z9 13 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 18 PY 2013 VL 88 IS 2 AR 025030 DI 10.1103/PhysRevD.88.025030 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 186YP UT WOS:000322082200011 ER PT J AU Aaltonen, T Albin, E Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Bae, T Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bedeschi, F Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Bromberg, C Brucken, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Butti, P Buzatu, A Calamba, A Camarda, S Campanelli, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Ciocci, MA Clark, A Clarke, C Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R d'Ascenzo, N Datta, M De Barbaro, P Demortier, L Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dorigo, M Driutti, A Ebina, K Edgar, R Elagin, A Erbacher, R Errede, S Esham, B Eusebi, R Farrington, S Ramos, JPF Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Frisch, H Funakoshi, Y Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Hahn, SR Han, JY Happacher, F Hara, K Hare, M Harr, RF Harrington-Taber, T Hatakeyama, K Hays, C Heinrich, J Herndon, M Hocker, A Hong, Z Hopkins, W Hou, S Hughes, RE Husemann, U Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kambeitz, M Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kim, YJ Kimura, N Kirby, M Knoepfel, K Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Kruse, M Kuhr, T Kurata, M Laasanen, AT Lammel, S Lancaster, M Lannon, K Latino, G Lee, HS Lee, JS Leo, S Leone, S Lewis, JD Limosani, A Lipeles, E Liu, H Liu, Q Liu, T Lockwitz, S Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maestro, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, P Martinez, M Matera, K Mattson, ME Mazzacane, A Mazzanti, P McNulty, R Mehta, A Mehtala, P Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, MJ Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Nigmanov, T Nodulman, L Noh, SY Norniella, O Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Pagliarone, C Palencia, E Palni, P Papadimitriou, V Parker, W Pauletta, G Paulini, M Paus, C Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Prokoshin, F Pranko, A Ptohos, F Punzi, G Ranjan, N Fernandez, IR Renton, P Rescigno, M Riddick, T Rimondi, F Ristori, L Robson, A Rodriguez, T Rolli, S Ronzani, M Roser, R Rosner, JL Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, EE Schwarz, T Scodellaro, L Scuri, F Seidel, S Seiya, Y Semenov, A Sforza, F Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simonenko, A Sinervo, P Sliwa, K Smith, JR Snider, FD Sorin, V Song, H Stancari, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thomson, E Thukral, V Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Ukegawa, F Uozumi, S Vazquez, F Velev, G Vellidis, C Vernieri, C Vidal, M Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wallny, R Wang, SM Warburton, A Waters, D Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamato, D Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Zanetti, AM Zeng, Y Zhou, C Zucchelli, S AF Aaltonen, T. Albin, E. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Bae, T. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Bromberg, C. Brucken, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Butti, P. Buzatu, A. Calamba, A. Camarda, S. Campanelli, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Ciocci, M. A. Clark, A. Clarke, C. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. d'Ascenzo, N. Datta, M. De Barbaro, P. Demortier, L. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dorigo, M. Driutti, A. Ebina, K. Edgar, R. Elagin, A. Erbacher, R. Errede, S. Esham, B. Eusebi, R. Farrington, S. Fernandez Ramos, J. P. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Frisch, H. Funakoshi, Y. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Hahn, S. R. Han, J. Y. Happacher, F. Hara, K. Hare, M. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hays, C. Heinrich, J. Herndon, M. Hocker, A. Hong, Z. Hopkins, W. Hou, S. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kambeitz, M. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kim, Y. J. Kimura, N. Kirby, M. Knoepfel, K. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kurata, M. Laasanen, A. T. Lammel, S. Lancaster, M. Lannon, K. Latino, G. Lee, H. S. Lee, J. S. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lipeles, E. Liu, H. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maestro, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, P. Martinez, M. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McNulty, R. Mehta, A. Mehtala, P. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Mukherjee, A. Muller, Th Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Pagliarone, C. Palencia, E. Palni, P. Papadimitriou, V. Parker, W. Pauletta, G. Paulini, M. Paus, C. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Prokoshin, F. Pranko, A. Ptohos, F. Punzi, G. Ranjan, N. Redondo Fernandez, I. Renton, P. Rescigno, M. Riddick, T. Rimondi, F. Ristori, L. Robson, A. Rodriguez, T. Rolli, S. Ronzani, M. Roser, R. Rosner, J. L. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schwarz, T. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simonenko, A. Sinervo, P. Sliwa, K. Smith, J. R. Snider, F. D. Sorin, V. Song, H. Stancari, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thomson, E. Thukral, V. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Ukegawa, F. Uozumi, S. Vazquez, F. Velev, G. Vellidis, C. Vernieri, C. Vidal, M. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamato, D. Yang, T. Yang, U. K. Yang, Y. C. Yao, W-M Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Zanetti, A. M. Zeng, Y. Zhou, C. Zucchelli, S. CA CDF Collaboration TI Search for Pair Production of Strongly Interacting Particles Decaying to Pairs of Jets in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR AB We present a search for the pair production of a narrow nonstandard-model strongly interacting particle that decays to a pair of quarks or gluons, leading to a final state with four hadronic jets. We consider both nonresonant production via an intermediate gluon as well as resonant production via a distinct nonstandard-model intermediate strongly interacting particle. We use data collected by the CDF experiment in proton-antiproton collisions at root s = 1.96 TeV corresponding to an integrated luminosity of 6.6 fb(-1). We find the data to be consistent with nonresonant production. We report limits on sigma(p (p) over bar -> jjjj) as a function of the masses of the hypothetical intermediate particles. Upper limits on the production cross sections for nonstandard-model particles in several resonant and nonresonant processes are also derived. C1 [Carrillo, S.; Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, ICREA, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Gramellini, E.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Canelli, F.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W-M] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Riddick, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Cremonesi, M.; Di Canto, A.; Donati, S.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; De Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Safonov, A.; Thukral, V.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste Udine, I-34127 Trieste, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. [Albin, E.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI vilar, rocio/P-8480-2014; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; maestro, paolo/E-3280-2010; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Chiarelli, Giorgio/E-8953-2012 OI ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; maestro, paolo/0000-0002-4193-1288; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Chiarelli, Giorgio/0000-0001-9851-4816 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, U.K.; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion and Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC) FX We thank Martin Schmaltz, Gustavo Tavares, Can Kilic, Bogdan Dobrescu, Dirk Zerwas, and Felix Yu for useful suggestions and technical advice. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program and the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, U.K.; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC). NR 26 TC 18 Z9 18 U1 2 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 18 PY 2013 VL 111 IS 3 AR 031802 DI 10.1103/PhysRevLett.111.031802 PG 8 WC Physics, Multidisciplinary SC Physics GA 186YY UT WOS:000322083100004 ER PT J AU Gezerlis, A Tews, I Epelbaum, E Gandolfi, S Hebeler, K Nogga, A Schwenk, A AF Gezerlis, A. Tews, I. Epelbaum, E. Gandolfi, S. Hebeler, K. Nogga, A. Schwenk, A. TI Quantum Monte Carlo Calculations with Chiral Effective Field Theory Interactions SO PHYSICAL REVIEW LETTERS LA English DT Article ID TO-LEADING ORDER; NUCLEAR-FORCES; MATTER AB We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass. C1 [Gezerlis, A.; Tews, I.; Schwenk, A.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Gezerlis, A.; Tews, I.; Schwenk, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Epelbaum, E.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. [Gandolfi, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hebeler, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Nogga, A.] Forschungszentrum Julich, Inst Kernphys, Inst Adv Simulat, D-52425 Julich, Germany. [Nogga, A.] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany. RP Gezerlis, A (reprint author), Tech Univ Darmstadt, Inst Kernphys, Petersenstr 30, D-64289 Darmstadt, Germany. EM gezerlis@theorie.ikp.physik.tu-darmstadt.de RI Gezerlis, Alexandros/O-9426-2014; Nogga, Andreas/A-3354-2008; OI Gezerlis, Alexandros/0000-0003-2232-2484; Nogga, Andreas/0000-0003-2156-748X; Gandolfi, Stefano/0000-0002-0430-9035 FU ERC [307986, 259218]; Helmholtz Alliance Program of the Helmholtz Association [HA216/EMMI]; U.S. DOE SciDAC-3 NUCLEI project; LANL LDRD program; NSF [PHY-1002478] FX We thank M. Freunek for the NN interaction fits performed in Ref. [31] and J. Carlson, T. Kruger, J. Lynn, and K. Schmidt for stimulating discussions. This work was carried out within the ERC Grant No. 307986 STRONGINT, and also supported by the Helmholtz Alliance Program of the Helmholtz Association Contract No. HA216/EMMI "Extremes of Density and Temperature: Cosmic Matter in the Laboratory,'' the ERC Grant No. 259218 NuclearEFT, the U.S. DOE SciDAC-3 NUCLEI project, the LANL LDRD program, and by the NSF under Grant No. PHY-1002478. Computations were performed at the Julich Supercomputing Center and at NERSC. NR 58 TC 91 Z9 92 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 18 PY 2013 VL 111 IS 3 AR 032501 DI 10.1103/PhysRevLett.111.032501 PG 6 WC Physics, Multidisciplinary SC Physics GA 186YY UT WOS:000322083100006 PM 23909312 ER PT J AU Gilbert, LA Larson, MH Morsut, L Liu, ZR Brar, GA Torres, SE Stern-Ginossar, N Brandman, O Whitehead, EH Doudna, JA Lim, WA Weissman, JS Qi, LS AF Gilbert, Luke A. Larson, Matthew H. Morsut, Leonardo Liu, Zairan Brar, Gloria A. Torres, Sandra E. Stern-Ginossar, Noam Brandman, Onn Whitehead, Evan H. Doudna, Jennifer A. Lim, Wendell A. Weissman, Jonathan S. Qi, Lei S. TI CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes SO CELL LA English DT Article ID GENE-EXPRESSION; CAS SYSTEMS; PROTEIN-INTERACTION; HUMAN GENOME; DNA; REPRESSION; PROMOTERS; BACTERIA; ARCHAEA; CELLS AB The genetic interrogation and reprogramming of cells requires methods for robust and precise targeting of genes for expression or repression. The CRISPR-associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA targeting. Here, we show that fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in human and yeast cells, with the site of delivery determined solely by a coexpressed short guide (sg)RNA. Coupling of dCas9 to a transcriptional repressor domain can robustly silence expression of multiple endogenous genes. RNA-seq analysis indicates that CRISPR interference (CRISPRi)-mediated transcriptional repression is highly specific. Our results establish that the CRISPR system can be used as a modular and flexible DNA-binding platform for the recruitment of proteins to a target DNA sequence, revealing the potential of CRISPRi as a general tool for the precise regulation of gene expression in eukaryotic cells. C1 [Gilbert, Luke A.; Larson, Matthew H.; Morsut, Leonardo; Brar, Gloria A.; Torres, Sandra E.; Stern-Ginossar, Noam; Brandman, Onn; Whitehead, Evan H.; Lim, Wendell A.; Weissman, Jonathan S.; Qi, Lei S.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA. [Gilbert, Luke A.; Larson, Matthew H.; Morsut, Leonardo; Brar, Gloria A.; Torres, Sandra E.; Stern-Ginossar, Noam; Brandman, Onn; Doudna, Jennifer A.; Lim, Wendell A.; Weissman, Jonathan S.] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94158 USA. [Whitehead, Evan H.; Lim, Wendell A.; Weissman, Jonathan S.; Qi, Lei S.] Univ Calif San Francisco, UCSF Ctr Syst & Synthet Biol, San Francisco, CA 94158 USA. [Gilbert, Luke A.; Larson, Matthew H.; Brar, Gloria A.; Torres, Sandra E.; Stern-Ginossar, Noam; Brandman, Onn; Whitehead, Evan H.; Doudna, Jennifer A.; Lim, Wendell A.; Weissman, Jonathan S.; Qi, Lei S.] Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USA. [Gilbert, Luke A.; Larson, Matthew H.; Brar, Gloria A.; Torres, Sandra E.; Stern-Ginossar, Noam; Brandman, Onn; Doudna, Jennifer A.; Weissman, Jonathan S.] Univ Calif Berkeley, Ctr RNA Syst Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Liu, Zairan] Peking Univ, Beijing 100871, Peoples R China. RP Weissman, JS (reprint author), Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA. EM weissman@cmp.ucsf.edu RI Larson, Matthew/C-8289-2014; Yang, Sheng/G-1606-2010; OI Larson, Matthew/0000-0002-6778-2604; Yang, Sheng/0000-0003-3742-9989; Qi, Lei S/0000-0002-3965-3223 FU UCSF Center for Systems and Synthetic Biology; NIH [P50 GM102706, P50 GM081879, U01 CA168370]; Howard Hughes Medical Institute; NSF SynBERC [EEC-0540879]; NIGMS IMSD; Human Frontiers Scientific Program; Ruth L. Kirschstein National Research Service Award FX The authors thank Martin Jinek for discussion and distribution of the dCas9 gene. The authors also thank Jason Park, Martin Kampmann, Mike Bassik, and Xin Xiong for lentiviral vectors, technical advice, and helpful discussion. L.S.Q. acknowledges support from the UCSF Center for Systems and Synthetic Biology. This work was supported by NIH P50 GM102706 (J.S.W. and J.A.D.), NIH P50 GM081879 (L.S.Q., W.A.L., Z.L., and E.H.W.), NIH U01 CA168370 (J.S.W.), Howard Hughes Medical Institute (L.A.G., G.A.B., O.B., J.A.D., J.S.W., and W.A.L.), NSF SynBERC EEC-0540879 (W.A.L.), NIGMS IMSD (S.E.T.), the Human Frontiers Scientific Program (N.S. and L.M.), and a Ruth L. Kirschstein National Research Service Award (M.H.L.). NR 46 TC 528 Z9 580 U1 66 U2 389 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD JUL 18 PY 2013 VL 154 IS 2 BP 442 EP 451 DI 10.1016/j.cell.2013.06.044 PG 10 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 185FF UT WOS:000321950700019 PM 23849981 ER PT J AU McDermott, JE AF McDermott, Jason E. TI Two more red flags for suspect work SO NATURE LA English DT Letter C1 Pacific NW Natl Lab, Washington, DC USA. RP McDermott, JE (reprint author), Pacific NW Natl Lab, Washington, DC USA. EM jason.mcdermott@pnnl.gov NR 1 TC 1 Z9 1 U1 0 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 18 PY 2013 VL 499 IS 7458 BP 284 EP 284 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 184RJ UT WOS:000321910700018 PM 23868253 ER PT J AU Wong, SD Srnec, M Matthews, ML Liu, LV Kwak, Y Park, K Bell, CB Alp, EE Zhao, JY Yoda, Y Kitao, S Seto, M Krebs, C Bollinger, JM Solomon, EI AF Wong, Shaun D. Srnec, Martin Matthews, Megan L. Liu, Lei V. Kwak, Yeonju Park, Kiyoung Bell, Caleb B., III Alp, E. Ercan Zhao, Jiyong Yoda, Yoshitaka Kitao, Shinji Seto, Makoto Krebs, Carsten Bollinger, J. Martin, Jr. Solomon, Edward I. TI Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2 SO NATURE LA English DT Article ID APPROXIMATE COULOMB POTENTIALS; RESONANT SCATTERING BEAMLINE; NONHEME IRON ENZYMES; AUXILIARY BASIS-SETS; GAUSSIAN-BASIS SETS; CORRELATION-ENERGY; ROW ATOMS; SPECTROSCOPIC EVIDENCE; MOLECULAR CALCULATIONS; ALIPHATIC HALOGENASE AB Mononuclear non-haem iron (NHFe) enzymes catalyse a broad range of oxidative reactions, including halogenation, hydroxylation, ring closure, desaturation and aromatic ring cleavage reactions. They are involved in a number of biological processes, including phenylalanine metabolism, the production of neuro-transmitters, the hypoxic response and the biosynthesis of secondary metabolites(1-3). The reactive intermediate in the catalytic cycles of these enzymes is a high-spin S = 2 Fe(IV)=O species, which has been trapped for a number of NHFe enzymes(4-8), including the halogenase SyrB2 (syringomycin biosynthesis enzyme 2). Computational studies aimed at understanding the reactivity of this Fe(IV)=O intermediate(9-13) are limited in applicability owing to the paucity of experimental knowledge about its geometric and electronic structure. Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) is a sensitive and effective method that defines the dependence of the vibrational modes involving Fe on the nature of the Fe(IV)=O active site(14-16). Here we present NRVS structural characterization of the reactive Fe(IV)=O intermediate of a NHFe enzyme, namely the halogenase SyrB2 from the bacterium Pseudomonas syringae pv. syringae. This intermediate reacts via an initial hydrogen-atom abstraction step, performing subsequent halogenation of the native substrate or hydroxylation of non-native substrates(17). Acorrelation of the experimental NRVS data to electronic structure calculations indicates that the substrate directs the orientation of the Fe(IV)=O intermediate, presenting specific frontier molecular orbitals that can activate either selective halogenation or hydroxylation. C1 [Wong, Shaun D.; Srnec, Martin; Liu, Lei V.; Kwak, Yeonju; Park, Kiyoung; Bell, Caleb B., III; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Matthews, Megan L.; Krebs, Carsten; Bollinger, J. Martin, Jr.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Alp, E. Ercan; Zhao, Jiyong] Argonne Natl Lab, APS XFD, Argonne, IL 60439 USA. [Yoda, Yoshitaka] JASRI, SPring 8, Hyogo 6795198, Japan. [Kitao, Shinji; Seto, Makoto] Kyoto Univ, Inst Res Reactor, Osaka 5900494, Japan. [Krebs, Carsten; Bollinger, J. Martin, Jr.] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Solomon, Edward I.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Krebs, C (reprint author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. EM ckrebs@psu.edu; jmb21@psu.edu; edward.solomon@stanford.edu RI Srnec, Martin/F-5625-2014; Park, Kiyoung/J-3204-2014; Krebs, Carsten/D-4773-2009; Bollinger, Joseph /C-1425-2016 OI Krebs, Carsten/0000-0002-3302-7053; FU National Institutes of Health [GM-40392, GM-69657]; National Science Foundation [MCB-0919027, MCB-642058, CHE-724084]; Department of Energy, Office of Science [DE-AC-02-06CH11357] FX Funding for this work was provided by the National Institutes of Health (GM-40392 to E. I. S. and GM-69657 to J.M.B. and C. K.) and the National Science Foundation (MCB-0919027 to E. I. S., and MCB-642058 and CHE-724084 to J.M.B. and C. K.). Work at the Advanced Photon Source was supported by the Department of Energy, Office of Science, under contract DE-AC-02-06CH11357. Synchrotron experiments at SPring-8 were performed with the approval of the Japan Synchrotron Radiation Research Institute (JASRI; proposal no. 2010B1569). M. S. thanks the Rulisek group at the IOCB, Prague, for use of their computational resources. NR 55 TC 58 Z9 59 U1 6 U2 144 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 18 PY 2013 VL 499 IS 7458 BP 320 EP + DI 10.1038/nature12304 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 184RJ UT WOS:000321910700032 PM 23868262 ER PT J AU Apostol, MI Perry, K Surewicz, WK AF Apostol, Marcin I. Perry, Kay Surewicz, Witold K. TI Crystal Structure of a Human Prion Protein Fragment Reveals a Motif for Oligomer Formation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CROSS-BETA SPINE; MAMMALIAN PRIONS; MOLECULAR-BASIS; FIBRILS; POLYMORPHISM; AGGREGATION; MECHANISMS; TOXICITY; EXCHANGE; PARALLEL AB The structural transition of the prion protein from alpha-helical- to beta-sheet-rich underlies its conversion into infectious and disease-associated isoforms. Here we describe the crystal structure of a fragment from human prion protein consisting of the disulfide-bond-linked portions of helices 2 and 3. Instead of forming a pair-of-sheets steric zipper structure characteristic of amyloid fibers, this fragment crystallized into a beta-sheet-rich assembly of hexameric oligomers. This study reveals a never before observed structural motif for ordered protein aggregates and suggests a possible mechanism for self-propagation of misfolded conformations by such non-amyloid oligomers. C1 [Apostol, Marcin I.; Surewicz, Witold K.] Case Western Reserve Univ, Dept Physiol & Biophys, Cleveland, OH 44106 USA. [Perry, Kay] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, NE CAT, Argonne, IL 60439 USA. RP Apostol, MI (reprint author), Cleveland Clin, Lerner Res Inst, Dept Mol Cardiol, 9500 Euclid Ave, Cleveland, OH 44195 USA. EM marcinapostol@yahoo.com; witold.surewicz@case.edu OI Perry, Kay/0000-0002-4046-1704 FU U.S. National Institutes of Health [NS044158, NS074317]; NIH [5P41 RR015301-10, 8P41 GM103403-10]; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by U.S. National Institutes of Health Grants NS044158 and NS074317 to W.K.S. Research conducted at the Advanced Photon Source on NE-CAT beamlines was supported by NIH Grants 5P41 RR015301-10 and 8P41 GM103403-10 and U.S. Department of Energy Contract DE-AC02-06CH11357. NR 28 TC 27 Z9 27 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 17 PY 2013 VL 135 IS 28 BP 10202 EP 10205 DI 10.1021/ja403001q PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 187FT UT WOS:000322103000006 PM 23808589 ER PT J AU Jackson, NE Savoie, BM Kohlstedt, KL de la Cruz, MO Schatz, GC Chen, LX Ratner, MA AF Jackson, Nicholas E. Savoie, Brett M. Kohlstedt, Kevin L. de la Cruz, Monica Olvera Schatz, George C. Chen, Lin X. Ratner, Mark A. TI Controlling Conformations of Conjugated Polymers and Small Molecules: The Role of Nonbonding Interactions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CENTER-DOT-O; SOLAR-CELLS; HYDROGEN-BONDS; SUBSTITUTED BITHIOPHENES; INTERACTION ENERGIES; CONDUCTING POLYMERS; BUILDING-BLOCKS; FORCE-FIELD; ACCEPTOR; DENSITY AB The chemical variety present in the organic electronics literature has motivated us to investigate potential nonbonding interactions often incorporated into conformational "locking" schemes. We examine a variety of potential interactions, including oxygen-sulfur, nitrogen-sulfur, and fluorine-sulfur, using accurate quantum-chemical wave function methods and noncovalent interaction (NCI) analysis on a selection of high-performing conjugated polymers and small molecules found in the literature. In addition, we evaluate a set of nonbonding interactions occurring between various heterocyclic and pendant atoms taken from a group of representative pi-conjugated molecules. Together with our survey and set of interactions, it is determined that while many nonbonding interactions possess weak binding capabilities, nontraditional hydrogen-bonding interactions, oxygen-hydrogen (CH center dot center dot center dot O) and nitrogen-hydrogen (CH center dot center dot center dot N), are alone in inducing conformational control and enhanced planarity along a polymer or small molecule backbone at room temperature. C1 [Jackson, Nicholas E.; Savoie, Brett M.; Kohlstedt, Kevin L.; de la Cruz, Monica Olvera; Schatz, George C.; Chen, Lin X.; Ratner, Mark A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Jackson, NE (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM nicholasjackson2016@u.northwestern.edu; 1-chen@northwestern.edu; ratner@northwestern.edu FU U.S. DOE-BES Argonne-Northwestern Solar Energy Research Center (ANSER), an Energy Frontier Research Center [DE-SC0001059]; NSF [NSF DGE-0824162]; Northwestern U. MRSEC; MRSEC program of the NSF at the Materials Research Center of Northwestern University [DMR-1121262] FX We thank the U.S. DOE-BES Argonne-Northwestern Solar Energy Research Center (ANSER), an Energy Frontier Research Center (Award DE-SC0001059), for funding this project. N.E.J. thanks the NSF for the award of a Graduate Research Fellowship (NSF DGE-0824162). B.M.S. thanks the Northwestern U. MRSEC for a predoctoral fellowship. This work was supported by the MRSEC program of the NSF (DMR-1121262) at the Materials Research Center of Northwestern University. NR 66 TC 127 Z9 127 U1 9 U2 134 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 17 PY 2013 VL 135 IS 28 BP 10475 EP 10483 DI 10.1021/ja403667s PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 187FT UT WOS:000322103000058 PM 23800150 ER PT J AU McMillan, DGG Marritt, SJ Firer-Sherwood, MA Shi, L Richardson, DJ Evans, SD Elliott, SJ Butt, JN Jeuken, LJC AF McMillan, Duncan G. G. Marritt, Sophie J. Firer-Sherwood, Mackenzie A. Shi, Liang Richardson, David J. Evans, Stephen D. Elliott, Sean J. Butt, Julea N. Jeuken, Lars J. C. TI Protein-Protein Interaction Regulates the Direction of Catalysis and Electron Transfer in a Redox Enzyme Complex SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; CYTOCHROME-C-OXIDASE; KINETIC CHARACTERIZATION; RESPIRATORY FLEXIBILITY; INTERACTION DOMAIN; NITRITE REDUCTASE; ESCHERICHIA-COLI; SURFACE MUTANTS; IRON REDUCTION; CYMA AB Protein-protein interactions are well-known to regulate enzyme activity in cell signaling and metabolism. Here, we show that protein-protein interactions regulate the activity of a respiratory-chain enzyme, CymA, by changing the direction or bias of catalysis. CymA, a member of the widespread NapC/NirT superfamily, is a menaquinol-7 (MQ-7) dehydrogenase that donates electrons to several distinct terminal reductases in the versatile respiratory network of Shewanella oneidensis. We report the incorporation of CymA within solid-supported membranes that mimic the inner membrane architecture of S. oneidensis. Quartz-crystal microbalance with dissipation (QCM-D) resolved the formation of a stable complex between CymA and one of its native redox partners, flavocytochrome c(3) (Fcc(3)) fumarate reductase. Cyclic voltammetry revealed that CymA alone could only reduce MQ-7, while the CymA-Fcc(3) complex catalyzed the reaction required to support anaerobic respiration, the oxidation of MQ-7. We propose that MQ-7 oxidation in CymA is limited by electron transfer to the hemes and that complex formation with Fcc(3) facilitates the electron-transfer rate along the heme redox chain. These results reveal a yet unexplored mechanism by which bacteria can regulate multibranched respiratory networks through protein-protein interactions. C1 [McMillan, Duncan G. G.; Jeuken, Lars J. C.] Univ Leeds, Sch Biomed Sci, Leeds LS2 9JT, W Yorkshire, England. [McMillan, Duncan G. G.; Jeuken, Lars J. C.] Univ Leeds, Astbury Ctr Struct Mol Biol, Leeds LS2 9JT, W Yorkshire, England. [McMillan, Duncan G. G.; Evans, Stephen D.; Jeuken, Lars J. C.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Marritt, Sophie J.; Butt, Julea N.] Univ E Anglia, Ctr Mol & Struct Biochem, Norwich NR4 7TJ, Norfolk, England. [Marritt, Sophie J.; Butt, Julea N.] Univ E Anglia, Sch Chem, Norwich NR4 7TJ, Norfolk, England. [Richardson, David J.; Butt, Julea N.] Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England. [Firer-Sherwood, Mackenzie A.; Elliott, Sean J.] Boston Univ, Dept Chem & Mol Biol, Cell Biol & Biochem Program, Boston, MA 02215 USA. [Shi, Liang] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Butt, JN (reprint author), Univ E Anglia, Ctr Mol & Struct Biochem, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. EM j.butt@uea.ac.uk; l.j.c.jeuken@leeds.ac.uk RI Jeuken, Lars/A-6234-2008; Butt, Julea/E-2133-2011; OI Jeuken, Lars/0000-0001-7810-3964; Butt, Julea/0000-0002-9624-5226; Evans, Stephen/0000-0001-8342-5335; Elliott, Sean/0000-0003-0096-9551 FU Biotechnology and Biological Sciences Research Council [BB/G009228]; U.S. Department of Energy, Office of Biological and Environmental Research (BER) through the Subsurface Biogeochemical Research (SBR) Program; Research Corporation for the Advancement of Science FX This research was supported by the Biotechnology and Biological Sciences Research Council (BB/G009228), the U.S. Department of Energy, Office of Biological and Environmental Research (BER) through the Subsurface Biogeochemical Research (SBR) Program, and the Research Corporation for the Advancement of Science. The manuscript represents a contribution from the Pacific Northwest National Laboratory (PNNL) SBR SFA. PNNL is operated for the Department of Energy by Battelle. We thank Evan T. Judd of Boston University for help with shipping protein samples, Jim Fredrickson and John Zachara of PNNL for critical reading of the manuscript, and Frank Collart and colleagues of Argonne National Laboratories for the plasmid for the expression of CymAsol-MBP. We also thank Prof. Baldwin and Dr. Postis (University of Leeds) for their kind gift of TEV protease. NR 46 TC 17 Z9 17 U1 5 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 17 PY 2013 VL 135 IS 28 BP 10550 EP 10556 DI 10.1021/ja405072z PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 187FT UT WOS:000322103000067 PM 23799249 ER PT J AU Yelton, AP Comolli, LR Justice, NB Castelle, C Denef, VJ Thomas, BC Banfield, JF AF Yelton, Alexis P. Comolli, Luis R. Justice, Nicholas B. Castelle, Cindy Denef, Vincent J. Thomas, Brian C. Banfield, Jillian F. TI Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea SO BMC GENOMICS LA English DT Article DE Metagenomics; Acid mine drainage; Thermoplasmatales; Ferroplasma; Iron oxidation; Comparative genomics ID ENTNER-DOUDOROFF PATHWAY; S-LAYER GLYCOPROTEIN; OXIDIZING ACIDITHIOBACILLUS-FERROOXIDANS; CENTRAL CARBOHYDRATE-METABOLISM; FERROPLASMA-ACIDARMANUS FER1; BLUE COPPER PROTEINS; THIOBACILLUS-FERROOXIDANS; THERMOPLASMA-ACIDOPHILUM; SP-NOV.; PICROPHILUS-TORRIDUS AB Background: Metal sulfide mineral dissolution during bioleaching and acid mine drainage (AMD) formation creates an environment that is inhospitable to most life. Despite dominance by a small number of bacteria, AMD microbial biofilm communities contain a notable variety of coexisting and closely related Euryarchaea, most of which have defied cultivation efforts. For this reason, we used metagenomics to analyze variation in gene content that may contribute to niche differentiation among co-occurring AMD archaea. Our analyses targeted members of the Thermoplasmatales and related archaea. These results greatly expand genomic information available for this archaeal order. Results: We reconstructed near-complete genomes for uncultivated, relatively low abundance organisms A-, E-, and Gplasma, members of Thermoplasmatales order, and for a novel organism, Iplasma. Genomic analyses of these organisms, as well as Ferroplasma type I and II, reveal that all are facultative aerobic heterotrophs with the ability to use many of the same carbon substrates, including methanol. Most of the genomes share genes for toxic metal resistance and surface-layer production. Only Aplasma and Eplasma have a full suite of flagellar genes whereas all but the Ferroplasma spp. have genes for pili production. Cryogenic-electron microscopy (cryo-EM) and tomography (cryo-ET) strengthen these metagenomics-based ultrastructural predictions. Notably, only Aplasma, Gplasma and the Ferroplasma spp. have predicted iron oxidation genes and Eplasma and Iplasma lack most genes for cobalamin, valine, (iso)leucine and histidine synthesis. Conclusion: The Thermoplasmatales AMD archaea share a large number of metabolic capabilities. All of the uncultivated organisms studied here (A-, E-, G-, and Iplasma) are metabolically very similar to characterized Ferroplasma spp., differentiating themselves mainly in their genetic capabilities for biosynthesis, motility, and possibly iron oxidation. These results indicate that subtle, but important genomic differences, coupled with unknown differences in gene expression, distinguish these organisms enough to allow for co-existence. Overall this study reveals shared features of organisms from the Thermoplasmatales lineage and provides new insights into the functioning of AMD communities. C1 [Yelton, Alexis P.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Comolli, Luis R.; Castelle, Cindy] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Justice, Nicholas B.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Denef, Vincent J.; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Yelton, Alexis/I-7064-2013 OI Yelton, Alexis/0000-0002-5069-371X FU DOE Genomics: GTL project [DE-FG02-05ER64134]; NSF; Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Mr. Ted Arman (President, Iron Mountain Mines), Mr. Rudy Carver, and Mr. Richard Sugarek for site access and other assistance. This work was supported by DOE Genomics: GTL project Grant No. DE-FG02-05ER64134 (Office of Science). APY acknowledges NSF Graduate Research Fellowship Program support. LRC also acknowledges support by the Director, Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 119 TC 29 Z9 29 U1 4 U2 76 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JUL 17 PY 2013 VL 14 AR 485 DI 10.1186/1471-2164-14-485 PG 15 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 197VR UT WOS:000322880800001 PM 23865623 ER PT J AU Lee, DY Xun, ZY Platt, V Budworth, H Canaria, CA McMurray, CT AF Lee, Do Yup Xun, Zhiyin Platt, Virginia Budworth, Helen Canaria, Christie A. McMurray, Cynthia T. TI Distinct Pools of Non-Glycolytic Substrates Differentiate Brain Regions and Prime Region-Specific Responses of Mitochondria SO PLOS ONE LA English DT Article ID CEREBRAL GLUCOSE-UTILIZATION; HUNTINGTONS-DISEASE; ALZHEIMERS-DISEASE; ENERGY-METABOLISM; NEURODEGENERATIVE DISEASES; CHLAMYDOMONAS-REINHARDTII; OXIDATIVE STRESS; CLUSTER-ANALYSIS; TRANSGENIC MICE; MICROARRAY DATA AB Many hereditary diseases are characterized by region-specific toxicity, despite the fact that disease-linked proteins are generally ubiquitously expressed. The underlying basis of the region-specific vulnerability remains enigmatic. Here, we evaluate the fundamental features of mitochondrial and glucose metabolism in synaptosomes from four brain regions in basal and stressed states. Although the brain has an absolute need for glucose in vivo, we find that synaptosomes prefer to respire on non-glycolytic substrates, even when glucose is present. Moreover, glucose is metabolized differently in each brain region, resulting in region-specific "signature'' pools of non-glycolytic substrates. The use of non-glycolytic resources increases and dominates during energy crisis, and triggers a marked region-specific metabolic response. We envision that disease-linked proteins confer stress on all relevant brain cells, but region-specific susceptibility stems from metabolism of non-glycolytic substrates, which limits how and to what extent neurons respond to the stress. C1 [Lee, Do Yup; Xun, Zhiyin; Platt, Virginia; Budworth, Helen; Canaria, Christie A.; McMurray, Cynthia T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Lee, Do Yup] Kookmin Univ, Dept Adv Fermentat Fus Sci & Technol, Seuol, South Korea. [Platt, Virginia] Buck Inst Res Aging, Novato, CA USA. RP McMurray, CT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM ctmcmurray@lbl.gov FU National Institutes of Health [NS40738, GM066359, NS062384, NS069177, CA092584, T32 AG000266] FX The authors wish to acknowledge support from the National Institutes of Health NS40738 (to CTM), GM066359 (to CTM), NS062384 (to CTM), NS069177 (to CTM) and CA092584 (to CTM), and T32 AG000266 (VP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 62 TC 5 Z9 5 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 17 PY 2013 VL 8 IS 7 AR UNSP e68831 DI 10.1371/journal.pone.0068831 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 185WH UT WOS:000322000600031 PM 23874783 ER PT J AU Xu, P Chen, SY Huang, B Xiang, HJ Gong, XG Wei, SH AF Xu, Peng Chen, Shiyou Huang, Bing Xiang, H. J. Gong, Xin-Gao Wei, Su-Huai TI Stability and electronic structure of Cu2ZnSnS4 surfaces: First-principles study SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; THIN-FILMS; SOLAR-CELLS; HYBRID FUNCTIONALS; NANOCRYSTALS; SULFURIZATION; GAAS(001); GROWTH; ENERGY AB Currently little is known about the atomic and electronic structure of Cu2ZnSnS4 (CZTS) surfaces, although the efficiency of kesterite-based solar cells has been increased to over 11%. Through the first-principles calculations, we studied the possible surface structures of the frequently observed cation-terminated (112) and anion-terminated ((1) over bar(1) over bar(2) over bar) surfaces, and found that the polar surfaces are stabilized by the charge-compensating defects, such as vacancies (V-Cu, V-Zn), antisites (Zn-Cu, Zn-Sn, Sn-Zn), and defect clusters (Cu-Zn + Cu-Sn, 2Zn(Cu) + V-Sn). In stoichiometric single-phase CZTS samples, Cu-enriched defects are favored on (112) surfaces and Cu-depleted defects are favored on ((1) over bar(1) over bar(2) over bar) surfaces, while in non-stoichiometric samples grown under Cu poor and Zn rich conditions both surfaces favor the Cu-depleted defects, which explains the observed Cu deficiency on the surfaces of the synthesized CZTS thin films. The electronic structure analysis shows that Cu-enriched surfaces produce detrimental states in the band gap, while Cu-depleted surfaces produce no gap states and are thus benign to the solar cell performance. The calculated surface properties are consistent with experimental observation that Cu-poor and Zn-rich CZTS solar cells have higher efficiency. C1 [Xu, Peng; Chen, Shiyou; Xiang, H. J.; Gong, Xin-Gao] Fudan Univ, State Key Lab Surface Phys, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China. [Xu, Peng; Chen, Shiyou; Xiang, H. J.; Gong, Xin-Gao] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Chen, Shiyou] E China Normal Univ, Key Lab Polar Mat & Devices MOE, Shanghai 200241, Peoples R China. [Huang, Bing; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xu, P (reprint author), Fudan Univ, State Key Lab Surface Phys, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China. RI Huang, Bing/D-8941-2011; Xiang, Hongjun/I-4305-2016; gong, xingao/D-6532-2011 OI Huang, Bing/0000-0001-6735-4637; Xiang, Hongjun/0000-0002-9396-3214; FU Special Funds for Major State Basic Research; National Natural Science Foundation of China (NSFC); International collaboration project; Program for Professor of Special Appointment (Eastern Scholar); NSFC [61106087, 10934002, 91233121]; US Department of Energy (DOE) [DE-AC36-08GO28308] FX S. H. W. would like to thank Glenn Teeter and Ingrid Repins for helpful discussions. The work at Fudan University was partially supported by the Special Funds for Major State Basic Research, National Natural Science Foundation of China (NSFC), International collaboration project, and Program for Professor of Special Appointment (Eastern Scholar). Computation was performed in the Supercomputer Center of Fudan University. S. C. is supported by NSFC under Grants No. 61106087, No. 10934002, and No. 91233121. The work at NREL was funded by the US Department of Energy (DOE), under Contract No. DE-AC36-08GO28308. NR 48 TC 29 Z9 30 U1 4 U2 162 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL 17 PY 2013 VL 88 IS 4 AR 045427 DI 10.1103/PhysRevB.88.045427 PG 8 WC Physics, Condensed Matter SC Physics GA 185VR UT WOS:000321998900005 ER PT J AU Ahn, JK Akikawa, H Aoki, S Arai, K Bahk, SY Baik, KM Bassalleck, B Chung, JH Chung, MS Davis, DH Fukuda, T Hoshino, K Ichikawa, A Ieiri, M Imai, K Itonaga, K Iwata, YH Iwata, YS Kanda, H Kaneko, M Kawai, T Kawasaki, M Kim, CO Kim, JY Kim, SH Kim, SJ Kondo, Y Kouketsu, T Kyaw, HN Lee, YL McNabb, JWC Min, AA Mitsuhara, M Miwa, K Nakazawa, K Nagase, Y Nagoshi, C Nakanishi, Y Noumi, H Ogawa, S Okabe, H Oyama, K Park, BD Park, HM Park, IG Parker, J Ra, YS Rhee, JT Rusek, A Sawa, A Shibuya, H Sim, KS Saha, PK Seki, D Sekimoto, M Song, JS Takahashi, H Takahashi, T Takeutchi, F Tanaka, H Tanida, K Tint, KT Tojo, J Torii, H Torikai, S Tovee, DN Tsunemi, T Ukai, M Ushida, N Wint, T Yamamoto, K Yasuda, N Yang, JT Yoon, CJ Yoon, CS Yosoi, M Yoshida, T Zhu, L AF Ahn, J. K. Akikawa, H. Aoki, S. Arai, K. Bahk, S. Y. Baik, K. M. Bassalleck, B. Chung, J. H. Chung, M. S. Davis, D. H. Fukuda, T. Hoshino, K. Ichikawa, A. Ieiri, M. Imai, K. Itonaga, K. Iwata, Y. H. Iwata, Y. S. Kanda, H. Kaneko, M. Kawai, T. Kawasaki, M. Kim, C. O. Kim, J. Y. Kim, S. H. Kim, S. J. Kondo, Y. Kouketsu, T. Kyaw, H. N. Lee, Y. L. McNabb, J. W. C. Min, A. A. Mitsuhara, M. Miwa, K. Nakazawa, K. Nagase, Y. Nagoshi, C. Nakanishi, Y. Noumi, H. Ogawa, S. Okabe, H. Oyama, K. Park, B. D. Park, H. M. Park, I. G. Parker, J. Ra, Y. S. Rhee, J. T. Rusek, A. Sawa, A. Shibuya, H. Sim, K. S. Saha, P. K. Seki, D. Sekimoto, M. Song, J. S. Takahashi, H. Takahashi, T. Takeutchi, F. Tanaka, H. Tanida, K. Tint, K. T. Tojo, J. Torii, H. Torikai, S. Tovee, D. N. Tsunemi, T. Ukai, M. Ushida, N. Wint, T. Yamamoto, K. Yasuda, N. Yang, J. T. Yoon, C. J. Yoon, C. S. Yosoi, M. Yoshida, T. Zhu, L. CA E373 KEK-PS Collaboration TI Double-Lambda hypernuclei observed in a hybrid emulsion experiment SO PHYSICAL REVIEW C LA English DT Article ID PARTICLE; TARGETS; CAPTURE; MODEL; REST; SIZE AB A hybrid experiment with nuclear emulsion and scintillating-fiber detectors (KEK-E373) has been performed to search for double-strangeness systems. Among about 10(3) events of Xi(-) hyperons captured at rest by emulsion nuclei, we have observed four events which clearly show the topology of cascade weak decays of double-Lambda hypernuclei including the "Nagara" event. Regarding the Nagara event, values of the two-Lambda binding energy (B-Lambda Lambda) and the Lambda-Lambda interaction energy (Delta B-Lambda Lambda) of He-6(Lambda Lambda) have been revised to 6.91 +/- 0.16 and 0.67 +/- 0.17 MeV, respectively, due to the recent change of the Xi(-) mass value (Particle Data Group). For another three events, we have determined possible species of double-Lambda hypernuclei together with their binding energies. C1 [Ahn, J. K.; Akikawa, H.; Ichikawa, A.; Imai, K.; Kanda, H.; Kondo, Y.; Miwa, K.; Seki, D.; Takahashi, H.; Tojo, J.; Torii, H.; Tsunemi, T.; Yamamoto, K.; Yoon, C. J.; Yosoi, M.; Zhu, L.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Aoki, S.] Kobe Univ, Fac Human Dev, Kobe, Hyogo 6578501, Japan. [Arai, K.; Ogawa, S.; Oyama, K.; Shibuya, H.] Toho Univ, Dept Phys, Funabashi, Chiba 2748510, Japan. [Bahk, S. Y.] Wonkwang Univ, Iri 570749, Japan. [Baik, K. M.; Chung, M. S.; Kim, C. O.; Sim, K. S.; Yang, J. T.] Korea Univ, Dept Phys, Seoul 136701, South Korea. [Bassalleck, B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chung, J. H.; Itonaga, K.; Iwata, Y. H.; Iwata, Y. S.; Kaneko, M.; Kawasaki, M.; Kim, S. H.; Kouketsu, T.; Kyaw, H. N.; Min, A. A.; Mitsuhara, M.; Nakazawa, K.; Nagase, Y.; Nakanishi, Y.; Park, H. M.; Ra, Y. S.; Sawa, A.; Tint, K. T.; Torikai, S.; Ukai, M.; Wint, T.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Davis, D. H.; Tovee, D. N.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Fukuda, T.; Ieiri, M.; Noumi, H.; Saha, P. K.; Sekimoto, M.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan. [Hoshino, K.; Kawai, T.] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648601, Japan. [Kim, J. Y.; Kim, S. J.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Kim, S. H.; Park, B. D.; Park, I. G.; Song, J. S.; Yoon, C. S.] Gyeongsang Natl Univ, Dept Phys, Jinju 660701, South Korea. [Lee, Y. L.; Rhee, J. T.] Konkuk Univ, Inst Adv Phys, Seoul 143701, South Korea. [McNabb, J. W. C.; Parker, J.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Nagoshi, C.] Higashi Nippon Int Univ, Iwaki, Fukushima 9708023, Japan. [Okabe, H.] Osaka Prefectural Educ Ctr, Osaka 5580011, Japan. [Rusek, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Takahashi, T.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Takeutchi, F.] Kyoto Sangyo Univ, Fac Sci, Kyoto 6038555, Japan. [Tanaka, H.; Ushida, N.] Aichi Univ Educ, Kariya, Aichi 4488542, Japan. [Tanida, K.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Yasuda, N.] Natl Inst Radiol Sci, Chiba 2638555, Japan. [Yoshida, T.] Osaka City Univ, Dept Phys, Osaka 5588585, Japan. RP Nakazawa, K (reprint author), Gifu Univ, Dept Phys, Gifu 5011193, Japan. EM nakazawa@gifu-u.ac.jp RI Aoki, Shigeki/L-6044-2015 FU Saito Seijiro Science Foundation; JSPS [14340069, 23224006]; KRF [2008-313-C00201]; MEXT [08239103, 15001001] FX The authors thank the KEK staff for support of the experiment and Professor E. Hiyama for theoretical comments. This work was supported by the Saito Seijiro Science Foundation in 2007, by JSPS Grants No. 14340069 and No. 23224006, by KRF Grant No. 2008-313-C00201, and by MEXT Grants No. 08239103 and No. 15001001. NR 30 TC 20 Z9 20 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 17 PY 2013 VL 88 IS 1 AR 014003 DI 10.1103/PhysRevC.88.014003 PG 10 WC Physics, Nuclear SC Physics GA 185VT UT WOS:000321999100002 ER PT J AU Wu, JJ Lee, TSH AF Wu, Jia-Jun Lee, T-S. H. TI Production of J/Psi on the nucleon and on deuteron targets SO PHYSICAL REVIEW C LA English DT Article ID MESON PRODUCTION; PHOTOPRODUCTION; SCATTERING; MODEL; HERA AB A coupled-channel model with pi N, rho N, and J/Psi N channels is developed to predict the pi + N -> J/Psi + N cross sections. The J/Psi-N interaction is parameterized in a form related to what has been predicted by the effective field theory approach and lattice QCD. The other interactions within the model are constrained by the decay width of J/Psi -> rho + pi and the total cross-sectional data of pi N reactions. The calculated meson-baryon amplitudes are then used to predict the cross sections of the J/Psi production on the deuteron target by including the contributions from the impulse term and the one-loop calculations of the final N N and J/Psi N rescattering effects. Predictions of the dependence of the cross sections of pi(-) + p -> J/Psi + n, gamma + d -> J/Psi + n + p, and pi(+)d -> J/Psi + p + p on the J/Psi-N potentials are presented to examine the feasibility of experimental determinations of the J/Psi-N interaction. Within the vector meson dominance model, we have also applied the constructed coupled-channel model to predict the gamma + p -> J/Psi + p cross sections near the J/Psi production threshold. C1 [Wu, Jia-Jun; Lee, T-S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Wu, JJ (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. FU US Department of Energy, Office of Nuclear Physics Division [DE-AC02-06CH11357]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We thank R. Machleidt for providing us with the code for generating the N N amplitudes from the Bonn potential. This work is supported by the US Department of Energy, Office of Nuclear Physics Division, under Contract No. DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231, and resources provided on "Fusion," a 320-node computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 26 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUL 17 PY 2013 VL 88 IS 1 AR 015205 DI 10.1103/PhysRevC.88.015205 PG 13 WC Physics, Nuclear SC Physics GA 185VT UT WOS:000321999100008 ER PT J AU Yanez, R Loveland, W Barrett, JS Yao, L Back, BB Zhu, S Khoo, TL AF Yanez, R. Loveland, W. Barrett, J. S. Yao, L. Back, B. B. Zhu, S. Khoo, T. L. TI Measurement of the fusion probability, P-CN, for hot fusion reactions SO PHYSICAL REVIEW C LA English DT Article ID COMPOUND-NUCLEUS FORMATION; HEAVY-ION REACTIONS; QUASI-FISSION; ANGULAR-DISTRIBUTIONS; EXCITATION ENERGIES; CAPTURE REACTIONS; MASS-ASYMMETRY; CROSS-SECTIONS; COLLISIONS; DYNAMICS AB Background: The cross section for forming a heavy evaporation residue in fusion reactions depends on the capture cross section, the fusion probability, P-CN, i.e., the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than reseparating (quasifission), and the survival of the completely fused system against fission. P-CN is the least known of these quantities. Purpose: We want to determine P-CN for the reactions of 101.2 MeV O-18, 147.3 MeV Mg-26, 170.9 MeV Si-30, and 195.3 MeV S-36 with Au-197. Methods: We measured the fission fragment angular distributions for these reactions and used the formalism of Back to deduce the fusion-fission and quasifission cross sections. From these quantities we deduced P-CN for each reaction. Results: The values of P-CN for the reactions of 101.2 MeV O-18, 147.3 MeV Mg-26, 170.9 MeV Si-30, and 195.3 MeV S-36 with Au-197 are 0.66, 1.00, 0.06, and 0.13, respectively. Conclusions: The new measured values of P-CN agree roughly with the semiempirical systematic dependence of P-CN upon fissility for excited nuclei. C1 [Yanez, R.; Loveland, W.; Barrett, J. S.; Yao, L.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. [Back, B. B.; Zhu, S.; Khoo, T. L.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Yanez, R (reprint author), Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. FU Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy [DE-FG06-97ER41026, DE-AC02-06CH11357] FX This work was supported in part by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy, under Grant No. DE-FG06-97ER41026 and Contract No. DE-AC02-06CH11357. NR 68 TC 25 Z9 25 U1 4 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 17 PY 2013 VL 88 IS 1 AR UNSP 014606 DI 10.1103/PhysRevC.88.014606 PG 8 WC Physics, Nuclear SC Physics GA 185VT UT WOS:000321999100005 ER PT J AU Uysal, A Chu, MQ Stripe, B Timalsina, A Chattopadhyay, S Schleputz, CM Marks, TJ Dutta, P AF Uysal, Ahmet Chu, Miaoqi Stripe, Benjamin Timalsina, Amod Chattopadhyay, Sudeshna Schlepuetz, Christian M. Marks, Tobin J. Dutta, Pulak TI What x rays can tell us about the interfacial profile of water near hydrophobic surfaces SO PHYSICAL REVIEW B LA English DT Article ID LIQUID-VAPOR INTERFACE; REFLECTIVITY MEASUREMENTS; NEUTRON REFLECTIVITY; CAPILLARY WAVES; DENSITY; SCATTERING; MONOLAYERS; ROUGHNESS; DEPLETION; METALS AB The free surface of water and the interface between water and a hydrophobic surface both have positive interface energies. The water density near a free surface drops below the bulk density, and thus it is expected that water near a hydrophobic surface will also show a density depletion. However, efforts by multiple groups to detect and characterize the predicted gap at water-hydrophobic interfaces have produced contradictory results. We have studied the interface between water and fluoroalkylsilane self-assembled monolayers using specular x-ray reflectivity and analyzed the parameter-space landscapes of the merit functions being minimized by data fitting. This analysis yields a better understanding of confidence intervals than the customary process of reporting a unique best fit. We conclude that there are unambiguous gaps at water-hydrophobic interfaces when the hydrophobic monolayer is more densely packed. C1 [Uysal, Ahmet; Chu, Miaoqi; Stripe, Benjamin; Dutta, Pulak] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Timalsina, Amod; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Chattopadhyay, Sudeshna] Indian Inst Technol, Sch Basic Sci, Indore 452017, Madhya Pradesh, India. [Schlepuetz, Christian M.] Argonne Natl Lab, X Ray Sci Div, Argonne, IL 60439 USA. RP Uysal, A (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Schleputz, Christian/C-4696-2008; Uysal, Ahmet/E-7638-2010 OI Schleputz, Christian/0000-0002-0485-2708; Uysal, Ahmet/0000-0003-3278-5570 FU US National Science Foundation [DMR-1006432]; US DOE [DE-AC02-06CH11357] FX This work was supported by the US National Science Foundation under Grant No. DMR-1006432. We thank Evguenia A. Karapetrova for her help in synchrotron experiments and Jangdae Youn for his contribution to the early stages of this project. We used the X-Ray Opera-tions and Research Beamline 33-BM-C at the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 53 TC 21 Z9 21 U1 4 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 17 PY 2013 VL 88 IS 3 AR 035431 DI 10.1103/PhysRevB.88.035431 PG 8 WC Physics, Condensed Matter SC Physics GA 185VQ UT WOS:000321998800005 ER PT J AU Chatterji, T Jalarvo, N Kumar, CMN Xiao, Y Bruckel, T AF Chatterji, T. Jalarvo, N. Kumar, C. M. N. Xiao, Y. Brueckel, Th TI Direct observation of low energy nuclear spin excitations in HoCrO3 by high resolution neutron spectroscopy SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID RARE-EARTH; MAGNETIC-PROPERTIES; DIFFRACTION; ORTHOCHROMITES AB We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 +/- 0.04 mu eV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV. C1 [Chatterji, T.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Jalarvo, N.; Kumar, C. M. N.] Oak Ridge Natl Lab, Spallat Neutron Source, JCNS Outstn, Oak Ridge, TN 37831 USA. [Jalarvo, N.; Kumar, C. M. N.; Xiao, Y.; Brueckel, Th] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52425 Julich, Germany. RP Chatterji, T (reprint author), Inst Max Von Laue Paul Langevin, 6 Rue Joules Horowitz,BP 156, F-38042 Grenoble 9, France. EM chatterji@ill.fr RI Bruckel, Thomas/J-2968-2013; Xiao, Yinguo/N-9069-2015; Jalarvo, Niina/Q-1320-2015; OI Bruckel, Thomas/0000-0003-1378-0416; Jalarvo, Niina/0000-0003-0644-6866; Chogondahalli Muniraju, Naveen Kumar/0000-0002-8867-8291 NR 30 TC 3 Z9 3 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 17 PY 2013 VL 25 IS 28 AR 286003 DI 10.1088/0953-8984/25/28/286003 PG 6 WC Physics, Condensed Matter SC Physics GA 175GM UT WOS:000321218900013 PM 23779198 ER PT J AU Jiang, L Liu, C Leibly, D Landau, M Zhao, ML Hughes, MP Eisenberg, DS AF Jiang, Lin Liu, Cong Leibly, David Landau, Meytal Zhao, Minglei Hughes, Michael P. Eisenberg, David S. TI Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta SO ELIFE LA English DT Article ID SMALL-MOLECULE INHIBITORS; PROTEIN AGGREGATION; FIBRIL FORMATION; ALZHEIMERS-DISEASE; CONGO RED; IN-VIVO; OLIGOMERS; PEPTIDE; STRATEGIES; NEUROTOXICITY AB Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer's, Parkinson's, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (A beta) protein of Alzheimer's disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce A beta cytotoxicity against mammalian cells by up to 90%. Although these compounds bind to A beta fibers, they do not reduce fiber formation of A beta. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of A beta from oligomers to fibers. C1 [Eisenberg, David S.] Univ Calif Los Angeles, Howard Hughes Med Inst, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90024 USA. Univ Calif Los Angeles, Howard Hughes Med Inst, Dept Biol Chem, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90024 USA. RP Eisenberg, DS (reprint author), Univ Calif Los Angeles, Howard Hughes Med Inst, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90024 USA. EM david@mbi.ucla.edu RI landau, Meytal/J-3075-2012; Zhao, Minglei/J-4446-2015 OI Zhao, Minglei/0000-0001-5832-6060 FU National Institutes of Health [AG029430]; US Department of Energy [DE-FC02-02ER63421] FX National Institutes of Health AG029430 Lin Jiang, Cong Liu, David S Eisenberg; US Department of Energy DE-FC02-02ER63421 David S Eisenberg Howard Hughes Medical Institute Lin Jiang, David S Eisenberg NR 60 TC 42 Z9 43 U1 2 U2 29 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD JUL 16 PY 2013 VL 2 AR e00857 DI 10.7554/eLife.00857 PG 27 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 274QM UT WOS:000328621200006 PM 23878726 ER PT J AU Loots, GG Bergmann, A Hum, NR Oldenburg, CE Wills, AE Hu, N Ovcharenko, I Harland, RM AF Loots, Gabriela G. Bergmann, Anne Hum, Nicholas R. Oldenburg, Catherine E. Wills, Andrea E. Hu, Na Ovcharenko, Ivan Harland, Richard M. TI Interrogating Transcriptional Regulatory Sequences in Tol2-Mediated Xenopus Transgenics SO PLOS ONE LA English DT Article ID CONSERVED NONCODING SEQUENCES; TISSUE-SPECIFIC ENHANCERS; RED FLUORESCENT PROTEIN; SKELETAL-MUSCLE; GENE-EXPRESSION; HUMAN GENOME; IN-VIVO; TROPICALIS; ZEBRAFISH; PROMOTER AB Identifying gene regulatory elements and their target genes in vertebrates remains a significant challenge. It is now recognized that transcriptional regulatory sequences are critical in orchestrating dynamic controls of tissue-specific gene expression during vertebrate development and in adult tissues, and that these elements can be positioned at great distances in relation to the promoters of the genes they control. While significant progress has been made in mapping DNA binding regions by combining chromatin immunoprecipitation and next generation sequencing, functional validation remains a limiting step in improving our ability to correlate in silico predictions with biological function. We recently developed a computational method that synergistically combines genome-wide gene-expression profiling, vertebrate genome comparisons, and transcription factor binding-site analysis to predict tissue-specific enhancers in the human genome. We applied this method to 270 genes highly expressed in skeletal muscle and predicted 190 putative cis-regulatory modules. Furthermore, we optimized Tol2 transgenic constructs in Xenopus laevis to interrogate 20 of these elements for their ability to function as skeletal muscle-specific transcriptional enhancers during embryonic development. We found 45% of these elements expressed only in the fast muscle fibers that are oriented in highly organized chevrons in the Xenopus laevis tadpole. Transcription factor binding site analysis identified >2 Mef2/MyoD sites within similar to 200 bp regions in 6 of the validated enhancers, and systematic mutagenesis of these sites revealed that they are critical for the enhancer function. The data described herein introduces a new reporter system suitable for interrogating tissue-specific cis-regulatory elements which allows monitoring of enhancer activity in real time, throughout early stages of embryonic development, in Xenopus. C1 [Loots, Gabriela G.; Bergmann, Anne; Hum, Nicholas R.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA 94550 USA. [Loots, Gabriela G.] Univ Calif Merced, Sch Nat Sci, Merced, CA USA. [Ovcharenko, Ivan] Natl Lib Med, Computat Biol Branch, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD USA. [Oldenburg, Catherine E.; Wills, Andrea E.; Hu, Na; Harland, Richard M.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Loots, GG (reprint author), Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA 94550 USA. EM loots1@llnl.gov FU National Institutes of Health (NIH) [HG003963]; Intramural Research Program of the NIH, National Library of Medicine; United States Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX GGL, NH, and AB were supported by National Institutes of Health (NIH) grant HG003963. This research was supported in part by the Intramural Research Program of the NIH, National Library of Medicine to I.O. This work performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 46 TC 1 Z9 1 U1 0 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 16 PY 2013 VL 8 IS 7 AR e68548 DI 10.1371/journal.pone.0068548 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 186SF UT WOS:000322064300046 PM 23874664 ER PT J AU Yang, SH Pan, CL Tschaplinski, TJ Hurst, GB Engle, NL Zhou, W Dam, P Xu, Y Rodriguez, M Dice, L Johnson, CM Davison, BH Brown, SD AF Yang, Shihui Pan, Chongle Tschaplinski, Timothy J. Hurst, Gregory B. Engle, Nancy L. Zhou, Wen Dam, PhuongAn Xu, Ying Rodriguez, Miguel, Jr. Dice, Lezlee Johnson, Courtney M. Davison, Brian H. Brown, Steven D. TI Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses SO PLOS ONE LA English DT Article ID SACCHAROMYCES-CEREVISIAE; HOPANOID BIOSYNTHESIS; SHOTGUN PROTEOMICS; CLOSTRIDIUM-THERMOCELLUM; PROTEIN ABUNDANCE; GENOME SEQUENCE; MICROARRAY DATA; YEAST PROTEOME; SCALE ANALYSIS; FUEL ETHANOL AB Background: Zymomonas mobilis ZM4 is a capable ethanologenic bacterium with high ethanol productivity and ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of its ethanol stress response have not been elucidated fully. Methodology/Principal Findings: In this study, ethanol stress responses were investigated using systems biology approaches. Medium supplementation with an initial 47 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 55% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated that the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Transcriptomic data were used to update Z. mobilis ZM4 operon models. Furthermore, correlations among the transcriptomic, proteomic and metabolic data were examined. Among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. Conclusions: Our study has provided insights into the responses of Z. mobilis to ethanol stress through an integrated "omics'' approach for the first time. This systems biology study elucidated key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress. C1 [Yang, Shihui; Tschaplinski, Timothy J.; Engle, Nancy L.; Rodriguez, Miguel, Jr.; Dice, Lezlee; Johnson, Courtney M.; Davison, Brian H.; Brown, Steven D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Yang, Shihui; Pan, Chongle; Tschaplinski, Timothy J.; Engle, Nancy L.; Zhou, Wen; Dam, PhuongAn; Xu, Ying; Rodriguez, Miguel, Jr.; Dice, Lezlee; Johnson, Courtney M.; Davison, Brian H.; Brown, Steven D.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. [Pan, Chongle] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Hurst, Gregory B.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Zhou, Wen; Dam, PhuongAn; Xu, Ying] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Zhou, Wen; Dam, PhuongAn; Xu, Ying] Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA. RP Brown, SD (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM brownsd@ornl.gov RI Davison, Brian/D-7617-2013; Brown, Steven/A-6792-2011; OI Davison, Brian/0000-0002-7408-3609; Brown, Steven/0000-0002-9281-3898; Hurst, Gregory/0000-0002-7650-8009; Yang, Shihui/0000-0002-9394-9148; Tschaplinski, Timothy/0000-0002-9540-6622; Engle, Nancy/0000-0003-0290-7987 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; Office of Biological and Environmental Research in the Department of Energy Office of Science; United States Department of Energy [DE-AC05-00OR22725] FX This work is sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. The BioEnergy Science Center is a United States Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the United States Department of Energy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 73 TC 17 Z9 18 U1 6 U2 45 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 16 PY 2013 VL 8 IS 7 AR UNSP e68886 DI 10.1371/journal.pone.0068886 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 186SF UT WOS:000322064300076 PM 23874800 ER PT J AU Liao, P Yuan, SH Chen, MJ Tong, M Xie, WJ Zhang, P AF Liao, Peng Yuan, Songhu Chen, Mingjie Tong, Man Xie, Wenjing Zhang, Peng TI Regulation of Electrochemically Generated Ferrous Ions from an Iron Cathode for Pd-Catalytic Transformation of MTBE in Groundwater SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID TERT-BUTYL ETHER; ZERO-VALENT IRON; ANODIC FENTON TREATMENT; PACKED-BED REACTOR; AQUEOUS-SOLUTION; TCE DECHLORINATION; 2,4-D DEGRADATION; HYDROXYL RADICALS; OXIDATION; WATER AB A novel Pd-based electro-Fenton (E-Fenton) process has recently been developed to transform organic contaminants in groundwater. However, it only produces H2O2 and requires addition of Fe2+. In this study, an innovative approach is developed to effectively regulate the generation of Fe2+ from an iron cathode in a three-electrode system in addition to H2O2 production. The Fe2+ is then used for the Pd-catalytic transformation of methyl tert-butyl ether (MTBE) in groundwater. Results from batch experiments suggest Fe2+ accumulation follows pseudo-first-order kinetics with rate quantitatively regulated by current and pH, and MTBE can be completely transformed. In a specially configured three-electrode column using iron as the first cathode, the localized acidic conditions develop automatically in the iron cathode and Pd zone by partitioning the current between the two cathodes, leading to controllable generation of Fe2+ and H2O2. Effects of electrolyte concentrations and types as well as humic acid on MTBE transformation are slight. The stable transformation (similar to 70%) in a long-term study (20 days) suggests this improved Pd-based E-Fenton process is sustainable to produce Fe2+, H2O2, and appropriate pH conditions simultaneously for transforming organic contaminants. This study presents a new concept of generating Fe2+ from an iron cathode for the processes requiring Fe2+. C1 [Liao, Peng; Yuan, Songhu; Tong, Man; Xie, Wenjing; Zhang, Peng] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China. [Chen, Mingjie] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP Yuan, SH (reprint author), China Univ Geosci, State Key Lab Biogeol & Environm Geol, 388 Lumo Rd, Wuhan 430074, Peoples R China. EM yuansonghu622@hotmail.com FU Natural Science Foundation of China (NSFC) [41172220]; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences [GBL11204] FX This work was supported by the Natural Science Foundation of China (NSFC, No. 41172220) and the State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (No. GBL11204). NR 58 TC 17 Z9 17 U1 13 U2 122 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 16 PY 2013 VL 47 IS 14 BP 7918 EP 7926 DI 10.1021/es401730s PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 186QS UT WOS:000322059800044 PM 23768068 ER PT J AU Hazra, A Mukhopadhyay, P Taraphdar, S Chen, JP Cotton, WR AF Hazra, Anupam Mukhopadhyay, P. Taraphdar, S. Chen, J. -P. Cotton, William R. TI Impact of aerosols on tropical cyclones: An investigation using convection-permitting model simulation SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE tropical cyclone; aerosol; microphysics ID MIXED-PHASE CLOUDS; HYDROLOGICAL CYCLE; PART I; MICROPHYSICS; PRECIPITATION; STORMS; CLIMATE AB The role of aerosols' effect on two tropical cyclones over the Bay of Bengal is investigated using a convection-permitting model with a two-moment mixed-phase bulk cloud microphysics scheme. The simulation results show the role of aerosol on the microphysical and dynamical properties of the cloud and bring out the change in efficiency of the clouds in producing precipitation. The tracks of the tropical cyclones (TCs) are hardly affected by the changing aerosol concentrations, but the intensity exhibits significant sensitivity due to the change in aerosol concentration. It is also clearly seen from the analyses that higher heating in the middle troposphere within the cyclone center is in response to latent heat release as a consequence of greater graupel formation. Greater heating in the middle level is particularly noticeable for the clean aerosol regime which causes enhanced divergence in the upper level, which, in turn, forces lower level convergence. As a result, the cleaner aerosol perturbation is more unstable within the cyclone core and produces a more intense cyclone as compared to the other two aerosol perturbations. This study, along with previous simulations, shows the robustness of the concept of TC weakening by storm ingestion of high concentrations of cloud condensation nuclei (CCN). The consistency of these model results gives us confidence in stating that there is a high probability that ingestion of high CCN concentrations in a TC will lead to weakening of the storm but has little impact on storm direction. Moreover, as pollution is increasing over the Indian subcontinent, this study suggests that pollution may be weakening TCs over the Bay of Bengal. C1 [Hazra, Anupam; Mukhopadhyay, P.] Indian Inst Trop Meteorol, Pune 411008, Maharashtra, India. [Taraphdar, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chen, J. -P.] Natl Taiwan Univ, Dept Atmospher Sci, Taipei 10764, Taiwan. [Cotton, William R.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Mukhopadhyay, P (reprint author), Indian Inst Trop Meteorol, Pune 411008, Maharashtra, India. EM mpartha@tropmet.res.in RI Chen, Jen-Ping/F-2947-2010 OI Chen, Jen-Ping/0000-0003-4188-6189 FU Ministry of Earth Sciences, Government of India, New Delhi; U.S. Department of Energy Regional and Global Climate Modeling Program; U.S. DOE by Battelle Memorial Institute [DE-AC06-76RLO1830]; DoD Center for Geosciences/Atmospheric Research, Colorado State University [W911NF-06-2-0015]; Army Research Laboratory FX The Indian Institute of Tropical Meteorology (IITM), Pune, is fully funded by the Ministry of Earth Sciences, Government of India, New Delhi. The authors express their gratitude to C. T. Cheng for scientific discussions, particularly about the model. The authors also thank an anonymous reviewer for his valuable suggestion. S. T. acknowledges support from the U.S. Department of Energy Regional and Global Climate Modeling Program. The Pacific Northwest National Laboratory is operated for the U.S. DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830. W. R. Cotton acknowledges support from the DoD Center for Geosciences/Atmospheric Research, Colorado State University, under cooperative agreement W911NF-06-2-0015 with the Army Research Laboratory. The authors thank two anonymous reviewers and the Editor for their suggestions and comments which have helped improve the manuscript. NR 51 TC 6 Z9 6 U1 3 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2013 VL 118 IS 13 BP 7157 EP 7168 DI 10.1002/jgrd.50546 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 188KP UT WOS:000322192200018 ER PT J AU Tao, WK Wu, D Matsui, T Peters-Lidard, C Lang, S Hou, A Rienecker, M Petersen, W Jensen, M AF Tao, Wei-Kuo Wu, Di Matsui, Toshihisa Peters-Lidard, Christa Lang, Stephen Hou, Arthur Rienecker, Michele Petersen, Walter Jensen, Michael TI Precipitation intensity and variation during MC3E: A numerical modeling study SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE precipitation; numerical modeling; diurnal variation ID MESOSCALE CONVECTIVE SYSTEM; CLOUD-RESOLVING SIMULATIONS; TROPICAL OCEANIC CONVECTION; WARM-SEASON PRECIPITATION; CONTINENTAL UNITED-STATES; MIDLATITUDE SQUALL LINE; DIURNAL CYCLE; STRATIFORM PRECIPITATION; PREDICTION MODELS; DOPPLER RADAR AB Previous observational studies have identified three different types of diurnal precipitation variation over the conterminous U.S.: localized afternoon rainfall maxima over the Mississippi and Ohio valleys, propagating mesoscale convective systems (MCSs) from the Rocky Mountain region, and propagating MCSs over the Appalachian Mountains. This study focuses on the second type, which involves nocturnal rainfall maxima from eastward-propagating MCSs on the lee side of the Rocky Mountains. This study evaluates model simulations with regard to rainfall using observations and assesses the impact of microphysics, surface fluxes, radiation, and terrain on the simulated diurnal rainfall variation. A regional high-resolution model was used to conduct a series of real-time forecasts during the Midlatitude Continental Convective Clouds Experiment (MC3E) in 2011 over the Southern Great Plains. The model ably captured most heavy precipitation events. When all forecast days are composited, the mean forecast depicts accurate, propagating precipitation features and thus the overall diurnal variation. However, individual forecasts tend to overestimate the rainfall for light precipitation events, have location errors, and misrepresent convection in some cases. A post mission case study is performed on one multi-cell, eastward-propagating MCS event; the results suggest that cold-pool dynamics were an important physical process. Model results also indicate that terrain effects are important during the initial stages of MCS development. By increasing the terrain height by 10%, the simulated rainfall is increased and in better agreement with observations. On the other hand, surface fluxes, and radiation processes only have a secondary effect for short-term simulations. C1 [Tao, Wei-Kuo; Wu, Di; Matsui, Toshihisa; Lang, Stephen; Hou, Arthur] NASA, Mesoscale Atmospher Processes Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wu, Di; Lang, Stephen] Sci Syst & Applicat Inc, Lanham, MD USA. [Matsui, Toshihisa] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Peters-Lidard, Christa] NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rienecker, Michele] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Petersen, Walter] NASA, Wallops Flight Facil, Wallops Isl, VA USA. [Jensen, Michael] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Tao, WK (reprint author), NASA, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. EM Wei-Kuo.Tao-1@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Measurement, Global/C-4698-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; FU NASA Precipitation Measurement Mission (PMM); NASA Modeling Analysis Prediction (MAP); Office of Science (BER); U.S. Department of Energy/Atmospheric System Research (DOE/ASR) Interagency [DE-AI02-04ER63755] FX The authors appreciate the hard work and effort of all those who planned and participated in the MC3E field campaign. We thank R. Johnson and S. Rutledge at Colorado State University for discussions on stratiform rain amounts. We would also like to thank Anil Kumar at Goddard for providing the LIS spin-up data sets. Carrie Langston at the National Severe Storm Laboratory provided invaluable help in the NEXRAD NMQ data product. The authors acknowledge the NASA Ames Research Center and the NASA Goddard Space Flight Center for the computer time used in this research. We also thank three anonymous reviewers for their constructive comments that improved this paper significantly. This research was supported by NASA Precipitation Measurement Mission (PMM), NASA Modeling Analysis Prediction (MAP), and the Office of Science (BER), U.S. Department of Energy/Atmospheric System Research (DOE/ASR) Interagency Agreement DE-AI02-04ER63755. MC3E is a NASA-DOE joint field campaign. NR 69 TC 15 Z9 15 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2013 VL 118 IS 13 BP 7199 EP 7218 DI 10.1002/jgrd.50410 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 188KP UT WOS:000322192200021 ER PT J AU Kafle, DN Coulter, RL AF Kafle, D. N. Coulter, R. L. TI Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE Lidar; aerosols; extinction; aerosol optical depth; boundary layer; ARM program sites ID ATMOSPHERIC RADIATION MEASUREMENT; SPECTRAL-RESOLUTION LIDAR; GROUND-BASED MEASUREMENTS; TROPOSPHERIC AEROSOL; LAYER HEIGHT; WATER-VAPOR; RAMAN LIDAR; CLOUD; PROFILES; THICKNESS AB This paper focuses on climatology of the vertical distribution of aerosol optical depth (AOD (z)) from micropulse lidar (MPL) observations for climatically different locations worldwide. For this, a large data set obtained by MPL systems operating at 532 nm during the 4 year period 2007-2010 was used to derive vertical profiles of AOD (z) by combining the corresponding AOD data as an input from an independent measurement using nearly colocated multifilter rotating shadowband radiometer (MFRSR) systems at five different U. S. Department of Energy Atmospheric Radiation Measurement (ARM) Program sites-three permanent sites (SGP in north-central Oklahoma, at 36.6 degrees N, 97.5 degrees W, 320 m; TWP-Darwin in the tropical western Pacific, at 12.4 degrees S, 130.9 degrees E, 30m; and NSA at Barrow on the North Slope of Alaska, at 71.3 degrees N, 156.6 degrees W, 8 m) and two mobile facility sites (GRW at Graciosa Island in the Azores, at 39 degrees N, 28 degrees W, 15 m; and FKB in the Black Forest of Germany, at 48.5 degrees N, 8.4 degrees E, 511 m). Therefore, amount of data used in this study is constrained by the availability of the MFRSR data. The MPL raw data were averaged for 30 s in time and 30 m in altitude. The diurnally averaged AOD (z) profiles from 4 years were combined to obtain a multiyear vertical profile of AOD (z) climatology at various ARM sites, including diurnal, day-to-day, and seasonal variabilities. Most aerosols were found to be confined to 0-2 km (approximately the planetary boundary layer region) at all sites; however, all sites exhibited measurable aerosols well above the mixed layer, with different height maxima. The entire data set demonstrates large day-to-day variability at all sites. However, there is no significant diurnal variation in AOD (z) at all sites. Significant interannual variability was observed at the SGP site. Clear seasonal variations in AOD (z) profiles exist for all five sites, but seasonal behavior was distinct. Moreover, the different seasonal variability for the lower level (0 to similar to 2 km) versus the level above indicates a contribution of different types of air masses from different sources. The lower annual mean AOD (z) values (0.093 +/- 0.033 for daytime and 0.093 +/- 0.05 for nighttime) observed near the surface at GRW are not unexpected for maritime aerosols (mostly sea salt), and the corresponding higher values at SGP (0.118 +/- 0.038 for daytime and 0.11 +/- 0.05 for nighttime), FKB (0.124 +/- 0.042 for daytime and 0.127 +/- 0.047 for nighttime), and TWP (0.13 +/- 0.078 for daytime and 0.14 +/- 0.073 for nighttime) are usual for continental aerosols. The annual mean AOD (z) values observed near the surface during daytime and nighttime for NSA were 0.1 +/- 0.042 and 0.09 +/- 0.037, respectively. These results will aid the scientific community in understanding aerosol properties and boundary layer dynamics and in improving the incorporation of aerosol radiative effects into global climate models. C1 [Kafle, D. N.; Coulter, R. L.] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. RP Kafle, DN (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dnkafle@gmail.com FU U.S. Department of Energy (Office of Science, Office of Biological and Environmental Research) [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy (Office of Science, Office of Biological and Environmental Research) as part of the ARM Program, through contract DE-AC02-06CH11357. NR 80 TC 6 Z9 6 U1 1 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2013 VL 118 IS 13 BP 7293 EP 7308 DI 10.1002/jgrd.50536 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 188KP UT WOS:000322192200026 ER PT J AU Wang, Y Li, ZH Weber, TJ Hu, DH Lin, CT Li, JH Lin, YH AF Wang, Ying Li, Zhaohui Weber, Thomas J. Hu, Dehong Lin, Chiann-Tso Li, Jinghong Lin, Yuehe TI In Situ Live Cell Sensing of Multiple Nucleotides Exploiting DNA/RNA Aptamers and Graphene Oxide Nanosheets SO ANALYTICAL CHEMISTRY LA English DT Article ID SIGNAL-TRANSDUCTION; PHYSIOLOGICAL PH; ATP HYDROLYSIS; GTP HYDROLYSIS; DNA; ASSAY; RECOGNITION; RECEPTOR; COMPLEX; BINDING AB Nucleotides, for example, adenosine-5'-triphosphate (ATP) and guanosine-5'-triphosphate (GTP), are primary energy resources for numerous reactions in organisms including microtubule assembly, insulin secretion, ion channel regulation, and so on. In order to advance our understanding of the production and consumption of nucleoside triphosphates, a versatile sensing platform for simultaneous visualization of ATP, GTP, adenosine derivates, and guanosine derivates in living cells has been built up in the present work based on graphene oxide nanosheets (GO-nS) and DNA/RNA aptamers. Taking advantage of the robust fluorescence quenching ability, unique adsorption for single-strand DNA/RNA probes, and efficient intracellular transport capacity of GO-nS, selective and sensitive visualization of multiple nucleoside triphosphates in living cells is successfully realized with the designed aptamer/GO-nS sensing platform. Moreover, GO-nS displays good biocompatibility to living cells and high protecting ability for DNA/RNA probes from enzymatic cleavage. These results demonstrate that the aptamers/GO-nS-based sensing platform is capable of selective, simultaneous, and in situ detection of multiple nucleotides, which hold a great potential for analyzing other biomolecules in living cells. C1 [Wang, Ying; Li, Jinghong] Tsinghua Univ, Dept Chem, Beijing Key Lab Microanalyt Methods & Instrumenta, Beijing 100084, Peoples R China. [Wang, Ying; Li, Zhaohui; Weber, Thomas J.; Hu, Dehong; Lin, Chiann-Tso; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Li, Zhaohui] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Peoples R China. RP Li, JH (reprint author), Tsinghua Univ, Dept Chem, Beijing Key Lab Microanalyt Methods & Instrumenta, Beijing 100084, Peoples R China. EM jhli@mail.tsinghua.edu.cn; Yuehe.Lin@pnnl.gov RI Hu, Dehong/B-4650-2010; Lin, Yuehe/D-9762-2011; Li, Jinghong /D-4283-2012; OI Hu, Dehong/0000-0002-3974-2963; Lin, Yuehe/0000-0003-3791-7587; Li, Jinghong /0000-0002-0750-7352; Wang, Ying/0000-0002-9847-4655 FU National Basic Research Program of China [2011CB935704]; National Natural Science Foundation of China [21235004, 21128005]; Tsinghua University Initiative Scientific Research Program; laboratory-directed research and development program at Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830] FX This work was financially supported by the National Basic Research Program of China (no. 2011CB935704), the National Natural Science Foundation of China (nos. 21235004 and 21128005), and Tsinghua University Initiative Scientific Research Program. This work was supported by a laboratory-directed research and development program at Pacific Northwest National Laboratory (PNNL). Part of the research described in this paper was performed using EMSL. PNNL is operated for DOE by Battelle under contract DE-AC05-76RL01830. The authors are very grateful to Dr. Alan Scott Lea (PNNL), Professor Li Yu (Tsinghua University), Professor Dongsheng Liu (Tsinghua University), and Mr. Yunpeng Huang (Tsinghua University) for professional advice. NR 54 TC 59 Z9 60 U1 19 U2 211 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD JUL 16 PY 2013 VL 85 IS 14 BP 6775 EP 6782 DI 10.1021/ac400858g PG 8 WC Chemistry, Analytical SC Chemistry GA 186QQ UT WOS:000322059600033 PM 23758346 ER PT J AU Kim, JS Dai, ZY Aryal, UK Moore, RJ Camp, DG Baker, SE Smith, RD Qian, WJ AF Kim, Jong-Seo Dai, Ziyu Aryal, Uma K. Moore, Ronald J. Camp, David G., II Baker, Scott E. Smith, Richard D. Qian, Wei-Jun TI Resin-Assisted Enrichment of N-Terminal Peptides for Characterizing Proteolytic Processing SO ANALYTICAL CHEMISTRY LA English DT Article ID DESORPTION/IONIZATION MASS-SPECTROMETRY; IN-VIVO; SYSTEMATIC IDENTIFICATION; POSITIONAL PROTEOMICS; S-NITROSYLATION; CLEAVAGE SITES; PROTEIN; DERIVATIZATION; THROUGHPUT; APOPTOSIS AB A resin-assisted enrichment method has been developed for specific isolation of protein N-terminal peptides to facilitate LC-MS/MS characterization of proteolytic processing, a major form of posttranslational modifications. In this method, protein thiols are blocked by reduction and alkylation, and protein lysine residues are converted to homoarginines. Protein N-termini are selectively converted to reactive thiol groups, and the thiol-containing N-terminal peptides are then captured by a thiol-affinity resin with high specificity (>97%). The efficiencies of these sequential reactions were demonstrated to be nearly quantitative. The resin-assisted N-terminal peptide enrichment approach was initially applied to a cell lysate of the filamentous fungus Aspergillus niger. Subsequent C-MS/MS analyses resulted in the identification of 1672 unique protein N-termini or proteolytic cleavage sites from 690 unique proteins. C1 [Kim, Jong-Seo; Aryal, Uma K.; Moore, Ronald J.; Camp, David G., II; Smith, Richard D.; Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Dai, Ziyu; Baker, Scott E.] Pacific NW Natl Lab, Energy Proc & Mat Div, Richland, WA 99352 USA. RP Qian, WJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM weijun.qian@pnnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU U.S. Department of Energy (DOE) [DE-AC05-76RLO-1830]; NIH [DP2OD006668, P41GM103493]; DOE Office of Biological and Environmental Research Genome Sciences Program under the Pan-omics project FX Portions of this work were supported by the U.S. Department of Energy (DOE) Early Career Research Award, NIH grants DP2OD006668 and P41GM103493, and the DOE Office of Biological and Environmental Research Genome Sciences Program under the Pan-omics project. Experimental work was performed in the Environmental Molecular Sciences Laboratory, a DOE/BER national scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is operated by Battelle for the DOE under contract DE-AC05-76RLO-1830. NR 39 TC 12 Z9 14 U1 2 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 16 PY 2013 VL 85 IS 14 BP 6826 EP 6832 DI 10.1021/ac401000q PG 7 WC Chemistry, Analytical SC Chemistry GA 186QQ UT WOS:000322059600040 PM 23772796 ER PT J AU Shvartsburg, AA Smith, RD AF Shvartsburg, Alexandre A. Smith, Richard D. TI Separation of Protein Conformers by Differential Ion Mobility in Hydrogen-Rich Gases SO ANALYTICAL CHEMISTRY LA English DT Article ID ESI-FAIMS-MS; CYTOCHROME-C; UBIQUITIN CONFORMERS; MASS-SPECTROMETRY; LIQUID-CHROMATOGRAPHY; CROSS-SECTIONS; HISTONE TAILS; PHASE; FIELD; CONFORMATIONS AB Proteins in solution or the gas phase tend to exhibit multiple conformational families, each comprising distinct structures. Separation methods have generally failed to resolve these, with their convolution producing wide peaks. Here, we report full separation of > 10 conformers for most ubiquitin charge states by the new approach of differential ion mobility spectrometry (field asymmetric waveform ion mobility spectrometry, FAIMS) employing H-2/N-2 gas mixtures with up to 85% H-2. The resolving power (up to 400) is five times the highest previously achieved (using He/N-2 buffers), greatly increasing the separation specificity. The peak widths match the narrowest obtained by FAIMS for any species under the same conditions and scale with the protein charge state (z) and ion residence time (t) as z(-1/2) and t(-1/2), as prescribed for instrumental (diffusional) broadening. This suggests resolution of specific geometries rather than broader ensembles. C1 [Shvartsburg, Alexandre A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Shvartsburg, AA (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM alexandre.shvartsburg@pnnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH NIGMS [8 P41 GM103493-10]; US DOE OBER FX We thank Ron Moore and Rui Zhao for experimental help and Prof. David Clemmer for insightful discussions. This work was supported by NIH NIGMS (8 P41 GM103493-10) and US DOE OBER and carried out in the Environmental Molecular Sciences Laboratory, a DOE national scientific user facility at PNNL. NR 51 TC 12 Z9 12 U1 3 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 16 PY 2013 VL 85 IS 14 BP 6967 EP 6973 DI 10.1021/ac4015963 PG 7 WC Chemistry, Analytical SC Chemistry GA 186QQ UT WOS:000322059600060 PM 23855890 ER PT J AU Fang, H Bechtel, HA Plis, E Martin, MC Krishna, S Yablonovitch, E Javey, A AF Fang, Hui Bechtel, Hans A. Plis, Elena Martin, Michael C. Krishna, Sanjay Yablonovitch, Eli Javey, Ali TI Quantum of optical absorption in two-dimensional semiconductors SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID TRANSISTORS; WELLS; MOS2; HETEROSTRUCTURES; MEMBRANES; CRYSTALS; LAYERS AB The optical absorption properties of free-standing InAs nanomembranes of thicknesses ranging from 3 nm to 19 nm are investigated by Fourier transform infrared spectroscopy. Stepwise absorption at room temperature is observed, arising from the interband transitions between the subbands of 2D InAs nanomembranes. Interestingly, the absorptance associated with each step is measured to be similar to 1.6%, independent of thickness of the membranes. The experimental results are consistent with the theoretically predicted absorptance quantum, A(Q) = pi alpha/n(c) for each set of interband transitions in a 2D semiconductor, where alpha is the fine structure constant and n(c) is an optical local field correction factor. Absorptance quantization appears to be universal in 2D systems including III-V quantum wells and graphene. C1 [Fang, Hui; Yablonovitch, Eli; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Fang, Hui; Yablonovitch, Eli; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fang, Hui; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Bechtel, Hans A.; Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Plis, Elena; Krishna, Sanjay] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. RP Yablonovitch, E (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM eliy@eecs.berkeley.edu; ajavey@eecs.berkeley.edu RI Fang, Hui/I-8973-2014; Javey, Ali/B-4818-2013 OI Fang, Hui/0000-0002-4651-9786; FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation (NSF) Center for Energy Efficient Electronics Science (NSF) [0939514]; World Class University program at Sunchon National University FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under Contract DE-AC02-05CH11231. A.J. and E.Y. acknowledge funding from the National Science Foundation (NSF) Center for Energy Efficient Electronics Science (NSF Award 0939514). A.J. acknowledges support from the World Class University program at Sunchon National University. NR 31 TC 25 Z9 26 U1 3 U2 76 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 16 PY 2013 VL 110 IS 29 BP 11688 EP 11691 DI 10.1073/pnas.1309563110 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 187AB UT WOS:000322086100021 PM 23818622 ER PT J AU Thurmer, K Nie, S AF Thuermer, Konrad Nie, Shu TI Formation of hexagonal and cubic ice during low-temperature growth SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ice growth mechanisms; molecular surface steps; molecular-layer nucleation; scanning probe microscopy; spiral growth ID ATOMIC-FORCE MICROSCOPY; AMORPHOUS ICE; EARTHS ATMOSPHERE; HEAT-CAPACITY; WATER; TRANSFORMATIONS; PRESSURE; CRYSTALS; PT(111); SURFACE AB From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure-that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt (111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than similar to 20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice. C1 [Thuermer, Konrad; Nie, Shu] Sandia Natl Labs, Livermore, CA 94550 USA. RP Thurmer, K (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM kthurme@sandia.gov RI Thurmer, Konrad/L-4699-2013 OI Thurmer, Konrad/0000-0002-3078-7372 FU Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy (DOE) [DEAC04-94AL85000]; Laboratory Directed Research and Development Program at Sandia National Laboratories; US DOE's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Norman C. Bartelt for insightful discussions. This research was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy (DOE) under Contract DEAC04-94AL85000; and by the Laboratory Directed Research and Development Program at Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 48 TC 14 Z9 14 U1 15 U2 81 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 16 PY 2013 VL 110 IS 29 BP 11757 EP 11762 DI 10.1073/pnas.1303001110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 187AB UT WOS:000322086100034 PM 23818592 ER PT J AU Brooks, MD Sylak-Glassman, EJ Fleming, GR Niyogi, KK AF Brooks, Matthew D. Sylak-Glassman, Emily J. Fleming, Graham R. Niyogi, Krishna K. TI A thioredoxin-like/beta-propeller protein maintains the efficiency of light harvesting in Arabidopsis SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID CYTOCHROME B(6)F COMPLEX; PHOTOSYSTEM-II; ENERGY-DISSIPATION; XANTHOPHYLL CYCLE; CHLOROPHYLL FLUORESCENCE; BRADYRHIZOBIUM-JAPONICUM; HIGHER-PLANTS; IN-VIVO; PHOTOSYNTHESIS; CHLOROPLASTS AB The light-harvesting complexes of plants have evolved the ability to switch between efficient light harvesting and quenching forms to optimize photosynthesis in response to the environment. Several distinct mechanisms, collectively termed "nonphotochemical quenching" (NPQ), provide flexibility in this response. Here we report the isolation and characterization of a mutant, suppressor of quenching 1 (soq1), that has high NPQ even in the absence of photosystem II subunit S (PsbS), a protein that is necessary for the rapidly reversible component of NPQ. The formation of NPQ in soq1 was light intensity-dependent, and it exhibited slow relaxation kinetics and other characteristics that distinguish it from known NPQ components. Treatment with chemical inhibitors or an uncoupler, as well as crosses to mutants known to affect other NPQ components, showed that the NPQ in soq1 does not require a transthylakoid pH gradient, zeaxanthin formation, or the phosphorylation of light-harvesting complexes, and it appears to be unrelated to the photosystem II damage-and-repair cycle. Measurements of pigments and chlorophyll fluorescence lifetimes indicated that the additional NPQ in soq1 is the result of a decrease in chlorophyll excited-state lifetime and not pigment bleaching. The SOQ1 gene was isolated by map-based cloning, and it encodes a previously uncharacterized thylakoid membrane protein with thioredoxin-like and beta-propeller domains located in the lumen and a haloacid-dehalogenase domain exposed to the chloroplast stroma. We propose that the role of SOQ1 is to prevent formation of a slowly reversible form of antenna quenching, thereby maintaining the efficiency of light harvesting. C1 [Brooks, Matthew D.; Niyogi, Krishna K.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Brooks, Matthew D.; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Brooks, Matthew D.; Sylak-Glassman, Emily J.; Fleming, Graham R.; Niyogi, Krishna K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Sylak-Glassman, Emily J.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Niyogi, KK (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM niyogi@berkeley.edu FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, Office of Science, US Department of Energy; National Science Foundation Graduate Research Fellowship; Gordon and Betty Moore Foundation [GBMF3070] FX We thank Wallace Chan and Kevin Li for technical assistance; the Arabidopsis Biological Resource Center for T-DNA insertion lines; and Kapil Amarnath, Alex Hertle, Lauriebeth Leonelli, Alizee Malnoe, and Julia Zaks for critical reading of the manuscript. This research was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, Office of Science, US Department of Energy (Field Work Proposal 449B). E.J.S.-G. was supported by a National Science Foundation Graduate Research Fellowship. K.K.N. is an Investigator of The Howard Hughes Medical Institute and The Gordon and Betty Moore Foundation (through Grant GBMF3070). NR 54 TC 13 Z9 13 U1 2 U2 29 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 16 PY 2013 VL 110 IS 29 BP E2733 EP E2740 DI 10.1073/pnas.1305443110 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 187AB UT WOS:000322086100012 PM 23818601 ER PT J AU Chatterjee, R Coates, CS Milikisiyants, S Lee, CI Wagner, A Poluektov, OG Lakshmi, KV AF Chatterjee, Ruchira Coates, Christopher S. Milikisiyants, Sergey Lee, Cheng-I Wagner, Arlene Poluektov, Oleg G. Lakshmi, K. V. TI High-Frequency Electron Nuclear Double-Resonance Spectroscopy Studies of the Mechanism of Proton-Coupled Electron Transfer at the Tyrosine-D Residue of Photosystem II SO BIOCHEMISTRY LA English DT Article ID HIGH-FIELD EPR; PHOTOSYNTHETIC WATER OXIDATION; ATOMIC SCREENING CONSTANTS; OXYGEN-EVOLVING COMPLEX; RIBONUCLEOTIDE REDUCTASE; PARAMAGNETIC-RESONANCE; HYPERFINE INTERACTIONS; CRYSTAL-STRUCTURE; ANGSTROM RESOLUTION; SPIN-RESONANCE AB The solar water-splitting protein complex, photosystem II, catalyzes one of the most energetically demanding reactions in Nature by using light energy to drive the catalytic oxidation of water. Photosystem II contains two symmetrically placed tyrosine residues, Y-D and Y-Z, one on each subunit of the heterodimeric core. The Y-Z residue is kinetically competent and is proposed to be directly involved in the proton-coupled electron transfer reactions of water oxidation. In contrast, the Y-D proton-coupled electron transfer redox poises the catalytic tetranuclear manganese cluster and may electrostatically tune the adjacent monomeric redox-active chlorophyll and beta-carotene in the secondary electron transfer pathway of photosystem II. In this study, we apply pulsed high-frequency electron paramagnetic resonance (EPR) and electron nuclear double-resonance (ENDOR) spectroscopy to study the photochemical proton-coupled electron transfer (PCET) intermediates of Y-D. We detect the "unrelaxed" and "relaxed" photoinduced PCET intermediates of Y-D using high-frequency EPR spectroscopy and observe an increase of the g anisotropy upon temperature-induced relaxation of the unrelaxed intermediate to the relaxed state as previously observed by Faller et al. [(2002) Biochemistry 41, 12914-12920; (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 8732-8735]. This observation suggests the presence of structural differences between the two intermediates. We probe the possible structural differences by performing high-frequency H-2 ENDOR spectroscopy experiments. On the basis of numerical simulations of the experimental H-2 ENDOR spectra, we confirm that (i) there is a significant change in the H-bond length of the tyrosyl radical in the unrelaxed (1.49 angstrom) and relaxed (1.75 angstrom) PCET intermediates. This observation suggests that the D2-His189 residue is deprotonated prior to electron transfer at the Y-D residue and (ii) there are negligible changes in the conformation of the tyrosyl ring in the unrelaxed and relaxed PCET intermediates of Y-D. C1 [Chatterjee, Ruchira; Coates, Christopher S.; Milikisiyants, Sergey; Lakshmi, K. V.] Rensselaer Polytech Inst, Dept Chem & Chem Biol, Troy, NY 12180 USA. [Chatterjee, Ruchira; Coates, Christopher S.; Milikisiyants, Sergey; Lakshmi, K. V.] Rensselaer Polytech Inst, Baruch 60 Ctr Biochem Solar Energy Res, Troy, NY 12180 USA. [Wagner, Arlene; Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lee, Cheng-I] Natl Chung Cheng Univ, Dept Life Sci, Chiayi 621, Taiwan. RP Lakshmi, KV (reprint author), Rensselaer Polytech Inst, Dept Chem & Chem Biol, Troy, NY 12180 USA. EM lakshk@rpi.edu RI Lakshmi, K. V./A-9787-2017 OI Lakshmi, K. V./0000-0001-5443-9017 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Photosynthetic Systems Program [DE-FG02-07ER15903, DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the Photosynthetic Systems Program under Contracts DE-FG02-07ER15903 (K.V.L.) and DE-AC02-06CH11357 (O.G.P.). NR 69 TC 3 Z9 3 U1 5 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 16 PY 2013 VL 52 IS 28 BP 4781 EP 4790 DI 10.1021/bi3012093 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 186QO UT WOS:000322059400005 PM 23773007 ER PT J AU Davoudiasl, H Lee, HS Lewis, I Marciano, WJ AF Davoudiasl, Hooman Lee, Hye-Sung Lewis, Ian Marciano, William J. TI Higgs decays as a window into the dark sector SO PHYSICAL REVIEW D LA English DT Article ID Z-GAMMA PRODUCTION; HADRON COLLIDERS; RADIATIVE-CORRECTIONS; BOSON PRODUCTION; QCD CORRECTIONS; PAIRS; LHC; ZZ; COLLISIONS; ENERGIES AB A light vector boson, Z(d), associated with a "dark sector" U(1)(d) gauge group has been introduced to explain certain astrophysical observations as well as low energy laboratory anomalies. In such models, the Higgs boson may decay into X + Z(d), where X = Z, Z(d) or gamma. Here, we provide estimates of those decay rates as functions of the Z(d) coupling through either mass mixing (e.g., via an enlarged Higgs mechanism) or through heavy new fermion loops and examine the implied LHC phenomenology. Our studies focus on the higher m(Zd) case, greater than or similar to several GeV, where the rates are potentially measurable at the LHC, for interesting regions of parameter spaces, at a level complementary to low energy experimental searches for the Z(d). We also show how measurement of the Z(d) polarization (longitudinal vs transverse) can be used to distinguish the physics underlying these rare decays. C1 [Davoudiasl, Hooman; Lee, Hye-Sung; Lewis, Ian; Marciano, William J.] Brookhaven Natl Lab, Dept Phys, Brookhaven Natl Lab, Upton, NY 11973 USA. [Lee, Hye-Sung] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Lee, Hye-Sung] Ctr Theory, Jefferson Lab, Newport News, VA 23606 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Brookhaven Natl Lab, Upton, NY 11973 USA. RI Lee, Hye-Sung/B-2208-2009 OI Lee, Hye-Sung/0000-0002-7333-3741 FU United States DOE [DE-AC02-98CH10886, DE-AC05-06OR23177]; NSF [PHY-1068008]; Gutenberg Research College FX We would like to thank Jay Hubisz for useful discussions and Bogdan Wojtsekhowski for useful comments. This work was supported in part by the United States DOE under Grants No. DE-AC02-98CH10886 and No. DE-AC05-06OR23177 and by the NSF under Grant No. PHY-1068008. W.M. acknowledges partial support as a Fellow in the Gutenberg Research College. NR 97 TC 34 Z9 34 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 16 PY 2013 VL 88 IS 1 AR 015022 DI 10.1103/PhysRevD.88.015022 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 184AN UT WOS:000321858800011 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Akimoto, R Al-Bataineh, H Al-Ta'ani, H Alexander, J Angerami, A Aoki, K Apadula, N Aphecetche, L Aramaki, Y Armendariz, R Aronson, SH Asai, J Asano, H Aschenauer, EC Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Bannier, B Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Baumgart, S Bazilevsky, A Belikov, S Belmont, R Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Bing, X Blau, DS Boissevain, JG Bok, JS Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Castera, P Chang, BS Chang, WC Charvet, JL Chen, CH Chernichenko, S Chi, CY Chiba, J Chiu, M Choi, IJ Choi, JB Choi, S Choudhury, RK Christiansen, P Chujo, T Chung, P Churyn, A Chvala, O Cianciolo, V Citron, Z Cleven, CR Cole, BA Comets, MP Connors, M Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Danchev, I Das, K Datta, A Daugherity, MS David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dharmawardane, KV Dietzsch, O Ding, L Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durham, JM Durum, A Dutta, D Dzhordzhadze, V D'Orazio, L Edwards, S Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Gadrat, S Gainey, K Gal, C Garishvili, A Garishvili, I Glenn, A Gong, H Gong, X Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Guo, L Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hahn, KI Hamagaki, H Hamblen, J Han, R Hanks, J Harada, H Hartouni, EP Haruna, K Hashimoto, K Haslum, E Hayano, R He, X Heffner, M Hemmick, TK Hester, T Hiejima, H Hill, JC Hobbs, R Hohlmann, M Hollis, RS Holzmann, W Homma, K Hong, B Horaguchi, T Hori, Y Hornback, D Huang, S Ichihara, T Ichimiya, R Ide, J Iinuma, H Ikeda, Y Imai, K Imrek, J Inaba, M Inoue, Y Iordanova, A Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Javani, M Jia, J Jiang, X Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Jumper, DS Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kaneti, S Kang, BH Kang, JH Kang, JS Kanou, H Kapustinsky, J Karatsu, K Kasai, M Kawall, D Kawashima, M Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, C Kim, DH Kim, DJ Kim, E Kim, EJ Kim, HJ Kim, KB Kim, SH Kim, YJ Kim, YK Kinney, E Kiriluk, K Kiss, A Kistenev, E Kiyomichi, A Klatsky, J Klay, J Klein-Boesing, C Kleinjan, D Kline, P Kochenda, L Kochetkov, V Komatsu, Y Komkov, B Konno, M Koster, J Kotchetkov, D Kotov, D Kozlov, A Kral, A Kravitz, A Krizek, F Kubart, J Kunde, GJ Kurihara, N Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, B Lee, DM Lee, J Lee, K Lee, KB Lee, KS Lee, MK Lee, SH Lee, SR Lee, T Leitch, MJ Leite, MAL Leitgab, M Leitner, E Lenzi, B Lewis, B Li, X Liebing, P Lim, SH Levy, LAL Liska, T Litvinenko, A Liu, H Liu, MX Love, B Luechtenborg, R Lynch, D Maguire, CF Makdisi, YI Makek, M Malakhov, A Malik, MD Manion, A Manko, VI Mannel, E Mao, Y Masek, L Masui, H Masumoto, S Matathias, F McCumber, M McGaughey, PL McGlinchey, D McKinney, C Means, N Mendoza, M Meredith, B Miake, Y Mibe, T Mignerey, AC Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, DK Mishra, M Mitchell, JT Mitrovski, M Miyachi, Y Miyasaka, S Mohanty, AK Moon, HJ Morino, Y Morreale, A Morrison, DP Motschwiller, S Moukhanova, TV Mukhopadhyay, D Murakami, T Murata, J Nagae, T Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, KR Nakamura, T Nakano, K Nattrass, C Nederlof, A Newby, J Nguyen, M Nihashi, M Niida, T Norman, BE Nouicer, R Novitzky, N Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Oka, M Okada, K Omiwade, OO Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, BH Park, IH Park, J Park, SK Park, WJ Pate, SF Patel, L Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Petti, R Pinkenburg, C Pisani, RP Proissl, M Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Reynolds, R Riabov, V Riabov, Y Richardson, E Roach, D Roche, G Rolnick, SD Romana, A Rosati, M Rosen, CA Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Sakata, H Samsonov, V Sano, M Sano, S Sarsour, M Sato, S Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Sen, A Seto, R Sharma, D Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Skutnik, S Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Soumya, M Sourikova, IV Sparks, NA Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sun, J Sziklai, J Tabaru, T Takagi, S Takagui, EM Takahara, A Taketani, A Tanabe, R Tanaka, Y Taneja, S Tanida, K Tannenbaum, MJ Tarafdar, S Taranenko, A Tarjan, P Tennant, E Themann, H Thomas, TL Todoroki, T Togawa, M Toia, A Tojo, J Tomasek, L Tomasek, M Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tsuji, T Vale, C Valle, H van Hecke, HW Vargyas, M Vazquez-Zambrano, E Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vossen, A Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, D Watanabe, K Watanabe, Y Watanabe, YS Wei, F Wei, R Wessels, J White, SN Winter, D Wolin, S Wood, JP Woody, CL Wright, RM Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Yasin, Z Ying, J Yokkaichi, S You, Z Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zelenski, A Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Akimoto, R. Al-Bataineh, H. Al-Ta'ani, H. Alexander, J. Angerami, A. Aoki, K. Apadula, N. Aphecetche, L. Aramaki, Y. Armendariz, R. Aronson, S. H. Asai, J. Asano, H. Aschenauer, E. C. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Bannier, B. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Baumgart, S. Bazilevsky, A. Belikov, S. Belmont, R. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Bing, X. Blau, D. S. Boissevain, J. G. Bok, J. S. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Castera, P. Chang, B. S. Chang, W. C. Charvet, J. -L. Chen, C. -H. Chernichenko, S. Chi, C. Y. Chiba, J. Chiu, M. Choi, I. J. Choi, J. B. Choi, S. Choudhury, R. K. Christiansen, P. Chujo, T. Chung, P. Churyn, A. Chvala, O. Cianciolo, V. Citron, Z. Cleven, C. R. Cole, B. A. Comets, M. P. Connors, M. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Danchev, I. Das, K. Datta, A. Daugherity, M. S. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dharmawardane, K. V. Dietzsch, O. Ding, L. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durham, J. M. Durum, A. Dutta, D. Dzhordzhadze, V. D'Orazio, L. Edwards, S. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Gadrat, S. Gainey, K. Gal, C. Garishvili, A. Garishvili, I. Glenn, A. Gong, H. Gong, X. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Guo, L. Gustafsson, H. -A. Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hahn, K. I. Hamagaki, H. Hamblen, J. Han, R. Hanks, J. Harada, H. Hartouni, E. P. Haruna, K. Hashimoto, K. Haslum, E. Hayano, R. He, X. Heffner, M. Hemmick, T. K. Hester, T. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Hollis, R. S. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hori, Y. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Ide, J. Iinuma, H. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Inoue, Y. Iordanova, A. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Javani, M. Jia, J. Jiang, X. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Jumper, D. S. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kaneti, S. Kang, B. H. Kang, J. H. Kang, J. S. Kanou, H. Kapustinsky, J. Karatsu, K. Kasai, M. Kawall, D. Kawashima, M. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, C. Kim, D. H. Kim, D. J. Kim, E. Kim, E. -J. Kim, H. J. Kim, K. -B. Kim, S. H. Kim, Y. -J. Kim, Y. K. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Kiyomichi, A. Klatsky, J. Klay, J. Klein-Boesing, C. Kleinjan, D. Kline, P. Kochenda, L. Kochetkov, V. Komatsu, Y. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kotov, D. Kozlov, A. Kral, A. Kravitz, A. Krizek, F. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, B. Lee, D. M. Lee, J. Lee, K. Lee, K. B. Lee, K. S. Lee, M. K. Lee, S. H. Lee, S. R. Lee, T. Leitch, M. J. Leite, M. A. L. Leitgab, M. Leitner, E. Lenzi, B. Lewis, B. Li, X. Liebing, P. Lim, S. H. Levy, L. A. Linden Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Love, B. Luechtenborg, R. Lynch, D. Maguire, C. F. Makdisi, Y. I. Makek, M. Malakhov, A. Malik, M. D. Manion, A. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Masumoto, S. Matathias, F. McCumber, M. McGaughey, P. L. McGlinchey, D. McKinney, C. Means, N. Mendoza, M. Meredith, B. Miake, Y. Mibe, T. Mignerey, A. C. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, D. K. Mishra, M. Mitchell, J. T. Mitrovski, M. Miyachi, Y. Miyasaka, S. Mohanty, A. K. Moon, H. J. Morino, Y. Morreale, A. Morrison, D. P. Motschwiller, S. Moukhanova, T. V. Mukhopadhyay, D. Murakami, T. Murata, J. Nagae, T. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, K. R. Nakamura, T. Nakano, K. Nattrass, C. Nederlof, A. Newby, J. Nguyen, M. Nihashi, M. Niida, T. Norman, B. E. Nouicer, R. Novitzky, N. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Oka, M. Okada, K. Omiwade, O. O. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, B. H. Park, I. H. Park, J. Park, S. K. Park, W. J. Pate, S. F. Patel, L. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Petti, R. Pinkenburg, C. Pisani, R. P. Proissl, M. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Reynolds, R. Riabov, V. Riabov, Y. Richardson, E. Roach, D. Roche, G. Rolnick, S. D. Romana, A. Rosati, M. Rosen, C. A. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Sakata, H. Samsonov, V. Sano, M. Sano, S. Sarsour, M. Sato, S. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Sen, A. Seto, R. Sharma, D. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Soumya, M. Sourikova, I. V. Sparks, N. A. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sun, J. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Takahara, A. Taketani, A. Tanabe, R. Tanaka, Y. Taneja, S. Tanida, K. Tannenbaum, M. J. Tarafdar, S. Taranenko, A. Tarjan, P. Tennant, E. Themann, H. Thomas, T. L. Todoroki, T. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Tomasek, M. Tomita, Y. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Tsuji, T. Vale, C. Valle, H. van Hecke, H. W. Vargyas, M. Vazquez-Zambrano, E. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vossen, A. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, D. Watanabe, K. Watanabe, Y. Watanabe, Y. S. Wei, F. Wei, R. Wessels, J. White, S. N. Winter, D. Wolin, S. Wood, J. P. Woody, C. L. Wright, R. M. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. You, Z. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zelenski, A. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. CA PHENIX Collaboration TI Medium Modification of Jet Fragmentation in Au plus Au Collisions at root S-NN=200 GeV Measured in Direct Photon-Hadron Correlations SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUARK-GLUON PLASMA; PHENIX; COLLABORATION; PERSPECTIVE; DETECTOR; TEV AB The jet fragmentation function is measured with direct photon-hadron correlations in p + p and Au + Au collisions at root S-NN = 200 GeV. The P-T of the photon is an excellent approximation to the initial P-T of the jet and the ratio Z(T) = P-T(h)/P-T(gamma) is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au + Au collisions while a photon isolation cut is applied in p + p. I-AA, the ratio of hadron yield opposite the photon in Au + Au to that in p + p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high Z(T). The associated hadron yield at low Z(T) is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles. C1 [Basye, A. T.; Daugherity, M. S.; Deaton, M. B.; Gainey, K.; Isenhower, D.; Isenhower, L.; Jumper, D. S.; Omiwade, O. O.; Qu, H.; Sparks, N. A.; Towell, R. S.; Wood, J. P.; Wright, R. M.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Grau, N.] Augustana Coll, Dept Phys, Sioux Falls, SD 57197 USA. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.; Tarafdar, S.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mishra, D. K.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bathe, S.] CUNY Bernard M Baruch Coll, New York, NY 10010 USA. [Bai, M.; Drees, K. A.; Edwards, S.; Makdisi, Y. I.; Zelenski, A.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Aronson, S. H.; Aschenauer, E. C.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; Chiu, M.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Jia, J.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; Vale, C.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Chvala, O.; Dzhordzhadze, V.; Emam, W. S.; Eyser, K. O.; Hester, T.; Hollis, R. S.; Iordanova, A.; Kleinjan, D.; Kotchetkov, D.; Mendoza, M.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M.; Finger, M., Jr.; Kubart, J.; Masek, L.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Choi, J. B.; Kim, E. -J.; Kim, K. -B.; Lee, S. R.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Li, X.; Zhou, S.] China Inst Atom Energy, Sci & Technol Nucl Data Lab, Beijing 102413, Peoples R China. [Akimoto, R.; Aramaki, Y.; Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Hori, Y.; Isobe, T.; Kajihara, F.; Kametani, S.; Komatsu, Y.; Kurihara, N.; Masumoto, S.; Morino, Y.; Oda, S. X.; Ozawa, K.; Sano, S.; Takahara, A.; Tsuchimoto, Y.; Tsuji, T.; Watanabe, Y. S.; Yamaguchi, Y. L.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Levy, L. A. Linden; McCumber, M.; McGlinchey, D.; Nagle, J. L.; Rosen, C. A.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Aidala, C.; Angerami, A.; Chi, C. Y.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Veicht, A.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Aidala, C.; Angerami, A.; Chi, C. Y.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Veicht, A.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Tomasek, M.; Virius, M.; Vrba, V.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Debrecen Univ, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.; Vargyas, M.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Hahn, K. I.; Lee, J.; Park, I. H.] Ewha Womans Univ, Seoul 120750, South Korea. [Baksay, G.; Baksay, L.; Dehmelt, K.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Edwards, S.; Frawley, A. D.; Klatsky, J.; McGlinchey, D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Javani, M.; Patel, L.; Qu, H.; Sarsour, M.; Sen, A.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Kang, B. H.; Kang, J. S.; Kim, Y. K.; Lee, B.; Park, B. H.] Hanyang Univ, Seoul 133792, South Korea. [Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Horaguchi, T.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Nihashi, M.; Ouchida, M.; Sakata, H.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Watanabe, D.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Choi, I. J.; Perdekamp, M. Grosse; Hiejima, H.; Kim, Y. -J.; Koster, J.; Layton, D.; Leitgab, M.; McKinney, C.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Vossen, A.; Wolin, S.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Pantuev, V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kubart, J.; Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Tomasek, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Ding, L.; Dion, A.; Grau, N.; Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Silva, C. L.; Skutnik, S.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Imai, K.; Sato, S.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Afanasiev, S.; Finger, M.; Finger, M., Jr.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Slunecka, M.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Kim, D. J.; Krizek, F.; Novitzky, N.; Rak, J.] Helsinki Inst Phys, FI-40014 Jyvaskyla, Finland. [Kim, D. J.; Krizek, F.; Novitzky, N.; Rak, J.] Univ Jyvaskyla, FI-40014 Jyvaskyla, Finland. [Chiba, J.; Iinuma, H.; Mibe, T.; Nagamiya, S.; Nakamura, T.; Saito, N.; Sato, S.; Sawada, S.] High Energy Accelerator Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hong, B.; Kim, B. I.; Kim, C.; Kweon, M. J.; Lee, K. B.; Lee, K. S.; Park, S. K.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Blau, D. S.; Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow 123098, Russia. [Aoki, K.; Asano, H.; Dairaku, S.; Fukao, Y.; Iinuma, H.; Imai, K.; Karatsu, K.; Murakami, T.; Nagae, T.; Nakamura, K. R.; Saito, N.; Shoji, K.; Tanida, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Romana, A.; Tram, V-N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Younus, I.] Lahore Univ Management Sci, Dept Phys, Lahore 54792, Pakistan. [Enokizono, A.; Garishvili, I.; Glenn, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Aidala, C.; Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Durham, J. M.; Guo, L.; Jiang, X.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, H.; Liu, M. X.; McGaughey, P. L.; Norman, B. E.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.; You, Z.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Aubiere, France. [Christiansen, P.; Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [D'Orazio, L.; Mignerey, A. C.; Richardson, E.] Univ Maryland, College Pk, MD 20742 USA. [Aidala, C.; Datta, A.; Kawall, D.; Stepanov, M.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Aidala, C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Baumann, C.; Klein-Boesing, C.; Luechtenborg, R.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.; Ide, J.; Motschwiller, S.; Nederlof, A.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.; Moon, H. J.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Butsyk, S.; Fields, D. E.; Haegemann, C.; Hobbs, R.; Kotchetkov, D.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Al-Ta'ani, H.; Armendariz, R.; Dharmawardane, K. V.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Tennant, E.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Bing, X.; Frantz, J. E.; Kotchetkov, D.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Enokizono, A.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Jouan, D.; Suire, C.] Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. [Han, R.; Mao, Y.; You, Z.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Kotov, D.; Riabov, V.; Riabov, Y.; Samsonov, V.; Shevel, A.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, PNPI, Gatchina 188300, Leningrad Regio, Russia. [Akiba, Y.; Aoki, K.; Aramaki, Y.; Asai, J.; Asano, H.; Baumgart, S.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hashimoto, K.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inoue, Y.; Ishihara, M.; Isobe, T.; Kametani, S.; Kamihara, N.; Kanou, H.; Karatsu, K.; Kasai, M.; Kawashima, M.; Kiyomichi, A.; Kurita, K.; Kurosawa, M.; Mao, Y.; Miki, K.; Miyachi, Y.; Miyasaka, S.; Murakami, T.; Murata, J.; Nakagawa, I.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nihashi, M.; Ohnishi, H.; Onuki, Y.; Ouchida, M.; Rykov, V. L.; Saito, N.; Sakashita, K.; Seidl, R.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Todoroki, T.; Togawa, M.; Tojo, J.; Torii, H.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Asai, J.; Bathe, S.; Boyle, K.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kamihara, N.; Kaneta, M.; Kawall, D.; Liebing, P.; Nakagawa, I.; Nouicer, R.; Okada, K.; Saito, N.; Seidl, R.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Hashimoto, K.; Inoue, Y.; Kasai, M.; Kawashima, M.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.; Kotov, D.] St Petersburg State Polytech Univ, St Petersburg 195251, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Choi, S.; Kim, E.; Lee, K.; Lee, T.; Park, J.; Tanida, K.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151742, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Gong, X.; Holzmann, W.; Issah, M.; Jia, J.; Lacey, R.; Mitrovski, M.; Reynolds, R.; Shevel, A.; Soumya, M.; Taranenko, A.; Wei, R.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Apadula, N.; Atomssa, E. T.; Averbeck, R.; Bannier, B.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C. -H.; Citron, Z.; Connors, M.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Durham, J. M.; Egdemir, J.; Frantz, J. E.; Gal, C.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; Kaneti, S.; Kline, P.; Lee, S. H.; Lewis, B.; Manion, A.; McCumber, M.; Means, N.; Milov, A.; Nguyen, M.; Pantuev, V.; Petti, R.; Proissl, M.; Reuter, M.; Sahlmueller, B.; Sickles, A.; Sun, J.; Taneja, S.; Themann, H.; Toia, A.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Henni, A. Hadj] Univ Nantes, CNRS IN2P3, Ecole Mines Nantes, SUBATECH, Nantes, France. [Garishvili, A.; Garishvili, I.; Hamblen, J.; Hornback, D.; Kwon, Y.; Nattrass, C.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Kanou, H.; Miyachi, Y.; Miyasaka, S.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Horaguchi, T.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Nagata, Y.; Niida, T.; Oka, M.; Sakai, S.; Sano, M.; Sato, T.; Shimomura, M.; Takagi, S.; Tanabe, R.; Todoroki, T.; Tomita, Y.; Watanabe, K.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Belmont, R.; Chujo, T.; Danchev, I.; Greene, S. V.; Huang, S.; Issah, M.; Leitner, E.; Love, B.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Pal, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Kikuchi, J.; Sano, S.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Makek, M.; Milov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Csoergo, T.; Nagy, M. I.; Ster, A.; Sziklai, J.; Vertesi, R.; Zimanyi, J.] Hungarian Acad Sci Wigner RCP RMKI, Wigner Res Ctr Phys, Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. [Bok, J. S.; Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, H. J.; Kim, S. H.; Kwon, Y.; Lee, M. K.; Lim, S. H.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Makek, M.] Univ Zagreb, Fac Sci, Dept Phys, HR-10002 Zagreb, Croatia. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Semenov, Vitaliy/E-9584-2017; Tomasek, Lukas/G-6370-2014; Krizek, Filip/G-8967-2014; Blau, Dmitry/H-4523-2012; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sen, Abhisek/J-1157-2016; Nattrass, Christine/J-6752-2016; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017 OI Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sen, Abhisek/0000-0003-1192-3938; Nattrass, Christine/0000-0002-8768-6468; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315 FU Office of Nuclear Physics in the Office of Science of the Department of Energy; National Science Foundation; Renaissance Technologies LLC; Abilene Christian University Research Council; Research Foundation of SUNY; College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (Peoples Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique; Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung; Deutscher Akademischer Austausch Dienst; Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund; OTKA (Hungary); Department of Atomic Energy and Department of Science and Technology (India); Israel Science Foundation (Israel); National Research Foundation; Ministry Education Science and Technology (Korea); Ministry of Education and Science; Russian Academy of Sciences,; Federal Agency of Atomic Energy (Russia); VR and Wallenberg Foundation (Sweden); U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; US-Hungarian Fulbright Foundation for Educational Exchange; US-Israel Binational Science Foundation FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staffs of the other PHENIX participating institutions for their vital contributions. We also thank Thorsten Renk for providing unpublished calculations and for valuable discussions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (Peoples Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France), Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation. NR 30 TC 17 Z9 17 U1 8 U2 72 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 16 PY 2013 VL 111 IS 3 AR 032301 DI 10.1103/PhysRevLett.111.032301 PG 8 WC Physics, Multidisciplinary SC Physics GA 183YJ UT WOS:000321852900006 ER PT J AU Bhardwaj, V Miyabayashi, K Adachi, I Aihara, H Asner, DM Aulchenko, V Aushev, T Aziz, T Bakich, AM Bala, A Bhuyan, B Bischofberger, M Bondar, A Bonvicini, G Bozek, A Bracko, M Brodzicka, J Browder, TE Chekelian, V Chen, A Cheon, BG Chilikin, K Chistov, R Cho, K Chobanova, V Choi, SK Choi, Y Cinabro, D Dalseno, J Danilov, M Dolezal, Z Drasal, Z Drutskoy, A Dutta, D Dutta, K Eidelman, S Epifanov, D Farhat, H Fast, JE Ferber, T Frey, A Gaur, V Gabyshev, N Ganguly, S Gillard, R Goh, YM Golob, B Haba, J Hara, T Hayashii, H Horii, Y Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Inami, K Ishikawa, A Itoh, R Iwashita, T Julius, T Kah, DH Kang, JH Kato, E Kawasaki, T Kichimi, H Kiesling, C Kim, DY Kim, JB Kim, JH Kim, KT Kim, MJ Kim, YJ Kinoshita, K Klucar, J Ko, BR Kodys, P Korpar, S Krizan, P Krokovny, P Kumar, R Kumita, T Kuzmin, A Kwon, YJ Lange, JS Lee, SH Li, J Li, Y Liu, C Liu, ZQ Liventsev, D Lukin, P Matvienko, D Miyata, H Mizuk, R Mohanty, GB Moll, A Mussa, R Nakano, E Nakao, M Natkaniec, Z Nayak, M Nedelkovska, E Nisar, NK Nishida, S Nitoh, O Ogawa, S Okuno, S Olsen, SL Pakhlov, P Pakhlova, G Panzenbock, E Park, H Park, HK Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Ritter, M Rohrken, M Rostomyan, A Sahoo, H Saito, T Sakai, K Sakai, Y Sandilya, S Santel, D Santelj, L Sanuki, T Sato, Y Savinov, V Schneider, O Schnell, G Schwanda, C Seidl, R Semmler, D Senyo, K Seon, O Sevior, ME Shapkin, M Shen, CP Shibata, TA Shiu, JG Shwartz, B Simon, F Singh, JB Smerkol, P Sohn, YS Sokolov, A Solovieva, E Staric, M Steder, M Sumihama, M Sumiyoshi, T Tamponi, U Tanida, K Tatishvili, G Teramoto, Y Trabelsi, K Tsuboyama, T Uchida, M Uehara, S Uglov, T Unno, Y Urquijo, P Usov, Y Vahsen, SE Van Hulse, C Vanhoefer, P Varner, G Varvell, KE Vinokurova, A Wagner, MN Wang, CH Wang, MZ Wang, P Watanabe, M Watanabe, Y Won, E Yabsley, BD Yamaoka, J Yamashita, Y Yashchenko, S Yook, Y Yuan, CZ Zhang, CC Zhang, ZP Zhilich, V Zhulanov, V Zupanc, A AF Bhardwaj, V. Miyabayashi, K. Adachi, I. Aihara, H. Asner, D. M. Aulchenko, V. Aushev, T. Aziz, T. Bakich, A. M. Bala, A. Bhuyan, B. Bischofberger, M. Bondar, A. Bonvicini, G. Bozek, A. Bracko, M. Brodzicka, J. Browder, T. E. Chekelian, V. Chen, A. Cheon, B. G. Chilikin, K. Chistov, R. Cho, K. Chobanova, V. Choi, S. -K. Choi, Y. Cinabro, D. Dalseno, J. Danilov, M. Dolezal, Z. Drasal, Z. Drutskoy, A. Dutta, D. Dutta, K. Eidelman, S. Epifanov, D. Farhat, H. Fast, J. E. Ferber, T. Frey, A. Gaur, V. Gabyshev, N. Ganguly, S. Gillard, R. Goh, Y. M. Golob, B. Haba, J. Hara, T. Hayashii, H. Horii, Y. Hoshi, Y. Hou, W. -S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Inami, K. Ishikawa, A. Itoh, R. Iwashita, T. Julius, T. Kah, D. H. Kang, J. H. Kato, E. Kawasaki, T. Kichimi, H. Kiesling, C. Kim, D. Y. Kim, J. B. Kim, J. H. Kim, K. T. Kim, M. J. Kim, Y. J. Kinoshita, K. Klucar, J. Ko, B. R. Kodys, P. Korpar, S. Krizan, P. Krokovny, P. Kumar, R. Kumita, T. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, S. -H. Li, J. Li, Y. Liu, C. Liu, Z. Q. Liventsev, D. Lukin, P. Matvienko, D. Miyata, H. Mizuk, R. Mohanty, G. B. Moll, A. Mussa, R. Nakano, E. Nakao, M. Natkaniec, Z. Nayak, M. Nedelkovska, E. Nisar, N. K. Nishida, S. Nitoh, O. Ogawa, S. Okuno, S. Olsen, S. L. Pakhlov, P. Pakhlova, G. Panzenbock, E. Park, H. Park, H. K. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Ritter, M. Rohrken, M. Rostomyan, A. Sahoo, H. Saito, T. Sakai, K. Sakai, Y. Sandilya, S. Santel, D. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Seidl, R. Semmler, D. Senyo, K. Seon, O. Sevior, M. E. Shapkin, M. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Simon, F. Singh, J. B. Smerkol, P. Sohn, Y. -S. Sokolov, A. Solovieva, E. Staric, M. Steder, M. Sumihama, M. Sumiyoshi, T. Tamponi, U. Tanida, K. Tatishvili, G. Teramoto, Y. Trabelsi, K. Tsuboyama, T. Uchida, M. Uehara, S. Uglov, T. Unno, Y. Urquijo, P. Usov, Y. Vahsen, S. E. Van Hulse, C. Vanhoefer, P. Varner, G. Varvell, K. E. Vinokurova, A. Wagner, M. N. Wang, C. H. Wang, M. -Z. Wang, P. Watanabe, M. Watanabe, Y. Won, E. Yabsley, B. D. Yamaoka, J. Yamashita, Y. Yashchenko, S. Yook, Y. Yuan, C. Z. Zhang, C. C. Zhang, Z. P. Zhilich, V. Zhulanov, V. Zupanc, A. CA Belle Collaboration TI Evidence of a New Narrow Resonance Decaying to chi(c1)gamma in B -> chi(c1)gamma K SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHROMODYNAMICS; CHARMONIUM; QUARKONIA; MECHANISM; X(3872); MESONS; SEARCH AB We report measurements of B -> chi(c1)gamma K and chi(c2)gamma K decays using 772 x 10(6) B((B) over bar) events collected at the Y(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. Evidence of a new resonance in the chi(c1)gamma final state is found with a statistical significance of 3.8 sigma. This state has a mass of 3823.1 +/- 1.8(stat) +/- 0.7(syst) Mev/c(2), a value that is consistent with theoretical expectations for the previously unseen 1(3)D(2) c((c) over bar) meson. We find no other narrow resonance and set upper limits on the branching fractions of the X(3872) -> chi(c1)gamma and chi(c2)gamma decays. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country, UPV EHU, Bilbao 48080, Spain. [Urquijo, P.] Univ Bonn, D-53115 Bonn, Germany. [Aulchenko, V.; Bondar, A.; Eidelman, S.; Epifanov, D.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Aulchenko, V.; Bondar, A.; Eidelman, S.; Epifanov, D.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Kinoshita, K.; Santel, D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Rostomyan, A.; Steder, M.; Yashchenko, S.] DESY, D-22607 Hamburg, Germany. [Lange, J. S.; Semmler, D.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Sumihama, M.] Gifu Univ, Gifu 5011193, Japan. [Frey, A.; Panzenbock, E.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Choi, S. -K.] Gyeongsang Natl Univ, Chinju 660701, South Korea. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Sahoo, H.; Vahsen, S. E.; Varner, G.; Yamaoka, J.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Kichimi, H.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, K.; Sakai, Y.; Trabelsi, K.; Tsuboyama, T.; Uehara, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Ikerbasque, Bilbao 48011, Spain. [Bhuyan, B.; Dutta, D.; Dutta, K.] Indian Inst Technol, Gauhati 781039, Assam, India. [Nayak, M.] Indian Inst Technol, Madras 600036, Tamil Nadu, India. [Liu, Z. Q.; Wang, P.; Yuan, C. Z.; Zhang, C. C.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Mussa, R.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Chilikin, K.; Chistov, R.; Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Smerkol, P.; Staric, M.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Rohrken, M.; Zupanc, A.] Karlsruher Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Kim, K. T.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kah, D. H.; Kim, M. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, Maribor 2000, Slovenia. [Chekelian, V.; Chobanova, V.; Dalseno, J.; Kiesling, C.; Moll, A.; Nedelkovska, E.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Uglov, T.] Moscow Inst Phys & Technol, Moscow 141700, Russia. [Iijima, T.; Inami, K.; Seon, O.; Shen, C. P.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Horii, Y.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Bhardwaj, V.; Miyabayashi, K.; Bischofberger, M.; Hayashii, H.; Iwashita, T.; Panzenbock, E.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Hou, W. -S.; Hsiung, Y. B.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Brodzicka, J.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Kawasaki, T.; Miyata, H.; Watanabe, M.] Niigata Univ, Niigata 9502181, Japan. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Fast, J. E.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bala, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Kumar, R.] Punjab Agr Univ, Ludhiana 141004, Punjab, India. [Seidl, R.] RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Liu, C.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, J.; Olsen, S. L.; Tanida, K.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Varvell, K. E.; Yabsley, B. D.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Aziz, T.; Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Univ, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Kato, E.; Saito, T.; Sanuki, T.; Sato, Y.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo 1848588, Japan. [Li, Y.; Piilonen, L. E.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.; Yook, Y.] Yonsei Univ, Seoul 120749, South Korea. RP Bhardwaj, V (reprint author), Univ Basque Country, UPV EHU, Bilbao 48080, Spain. RI Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014; Solovieva, Elena/B-2449-2014; Nitoh, Osamu/C-3522-2013; Aihara, Hiroaki/F-3854-2010; Ishikawa, Akimasa/G-6916-2012; Chilikin, Kirill/B-4402-2014; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chistov, Ruslan/B-4893-2014 OI Bhardwaj, Vishal/0000-0001-8857-8621; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022; Solovieva, Elena/0000-0002-5735-4059; Aihara, Hiroaki/0000-0002-1907-5964; Chilikin, Kirill/0000-0001-7620-2053; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390 FU MEXT; JSPS; Nagoya's TLPRC (Japan); ARC; DIISR (Australia); FWF (Austria); NSFC (China); MSMT (Czechia); CZF; DFG; VS (Germany); DST (India); INFN (Italy); MEST; NRF; GSDC of KISTI; WCU (Korea); MNiSW; NCN (Poland); MES; RFAAE (Russia); ARRS (Slovenia); IKERBASQUE; UPV/EHU (Spain); SNSF (Switzerland); NSC; MOE (Taiwan); DOE; NSF (U.S.A.) FX We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS, and Nagoya's TLPRC (Japan); ARC and DIISR (Australia); FWF (Austria); NSFC (China); MSMT (Czechia); CZF, DFG, and VS (Germany); DST (India); INFN (Italy); MEST, NRF, GSDC of KISTI, and WCU (Korea); MNiSW and NCN (Poland); MES and RFAAE (Russia); ARRS (Slovenia); IKERBASQUE and UPV/EHU (Spain); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (U.S.A.). This work is partly supported by MEXT's Grant-in-Aid for Scientific Research on Innovative Areas ("Elucidation of New Hadrons with a Variety of Flavors''). NR 38 TC 27 Z9 29 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 16 PY 2013 VL 111 IS 3 AR 032001 DI 10.1103/PhysRevLett.111.032001 PG 7 WC Physics, Multidisciplinary SC Physics GA 183YJ UT WOS:000321852900005 PM 23909309 ER PT J AU Ji, XD Xiong, XN Yuan, F AF Ji, Xiangdong Xiong, Xiaonu Yuan, Feng TI Comment on "Proton Spin Structure from Measurable Parton Distributions" Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Ji, Xiangdong] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. [Ji, Xiangdong] Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200240, Peoples R China. [Ji, Xiangdong; Xiong, Xiaonu] Peking Univ, Ctr High Energy Phys, Beijing 100080, Peoples R China. [Ji, Xiangdong] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Ji, XD (reprint author), Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. RI Yuan, Feng/N-4175-2013 NR 6 TC 7 Z9 7 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 16 PY 2013 VL 111 IS 3 AR 039103 DI 10.1103/PhysRevLett.111.039103 PG 1 WC Physics, Multidisciplinary SC Physics GA 183YJ UT WOS:000321852900023 PM 23909368 ER PT J AU Maron, Y Starobinets, A Fisher, VI Kroupp, E Osin, D Fisher, A Deeney, C Coverdale, CA Lepell, PD Yu, EP Jennings, C Cuneo, ME Herrmann, MC Porter, JL Mehlhorn, TA Apruzese, JP AF Maron, Y. Starobinets, A. Fisher, V. I. Kroupp, E. Osin, D. Fisher, A. Deeney, C. Coverdale, C. A. Lepell, P. D. Yu, E. P. Jennings, C. Cuneo, M. E. Herrmann, M. C. Porter, J. L. Mehlhorn, T. A. Apruzese, J. P. TI Pressure and Energy Balance of Stagnating Plasmas in z-Pinch Experiments: Implications to Current Flow at Stagnation SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY YIELDS; CONTINUUM RADIATION; SIMULATIONS; IMPLOSIONS AB Detailed spectroscopic diagnostics of the stagnating plasma in two disparate z pinches allow, for the first time, the examination of the plasma properties within a 1D shock wave picture, demonstrating a good agreement with this picture. The conclusion is that for a wide range of imploding-plasma masses and current amplitudes, in experiments optimizing non-Planckian hard radiation yields, contrary to previous descriptions the stagnating plasma pressure is balanced by the implosion pressure, and the radiation energy is provided by the imploding-plasma kinetic energy, rather than by the magnetic-field pressure and magnetic-field-energy dissipation, respectively. C1 [Maron, Y.; Starobinets, A.; Fisher, V. I.; Kroupp, E.; Osin, D.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Fisher, A.] Technion Israel Inst Technol, Fac Phys, IL-32000 Haifa, Israel. [Deeney, C.; Coverdale, C. A.; Lepell, P. D.; Yu, E. P.; Jennings, C.; Cuneo, M. E.; Herrmann, M. C.; Porter, J. L.] Sandia Natl Labs, Albuquerque, NM USA. [Mehlhorn, T. A.; Apruzese, J. P.] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. RP Maron, Y (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. FU ISF; Sandia Laboratories; NRL (U.S.) FX We are highly grateful to A. Velikovich, Z. Zinamon, G. Falkovich, N. Zabusky, E. Nardi, E. Waisman, M. Desjarlais, J. Giuliani, W. Thornhill, A. Fruchtman, and B. Jones for valuable discussions. This work is supported in part by the ISF, Sandia Laboratories, and NRL (U.S.). NR 22 TC 8 Z9 8 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 16 PY 2013 VL 111 IS 3 AR 035001 DI 10.1103/PhysRevLett.111.035001 PG 5 WC Physics, Multidisciplinary SC Physics GA 183YJ UT WOS:000321852900010 PM 23909333 ER PT J AU Polking, MJ Jain, PK Bekenstein, Y Banin, U Millo, O Ramesh, R Alivisatos, AP AF Polking, Mark J. Jain, Prashant K. Bekenstein, Yehonadav Banin, Uri Millo, Oded Ramesh, Ramamoorthy Alivisatos, A. Paul TI Controlling Localized Surface Plasmon Resonances in GeTe Nanoparticles Using an Amorphous-to-Crystalline Phase Transition SO PHYSICAL REVIEW LETTERS LA English DT Article ID OPTICAL-PROPERTIES; SEMICONDUCTOR NANOCRYSTALS; CU2-XSE NANOCRYSTALS; FILMS; BEHAVIOR AB Infrared absorption measurements of amorphous and crystalline nanoparticles of GeTe reveal a localized surface plasmon resonance (LSPR) mode in the crystalline phase that is absent in the amorphous phase. The LSPR mode emerges upon crystallization of amorphous nanoparticles. The contrasting plasmonic properties are elucidated with scanning tunneling spectroscopy measurements indicating a Burstein-Moss shift of the band gap in the crystalline phase and a finite density of electronic states throughout the band gap in the amorphous phase that limits the effective free carrier density. C1 [Polking, Mark J.; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Jain, Prashant K.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Bekenstein, Yehonadav] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel. [Bekenstein, Yehonadav; Millo, Oded] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Ramesh, Ramamoorthy; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Millo, O (reprint author), Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. EM milode@mail.huji.ac.il; rramesh@berkeley.edu; alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015; OI Alivisatos , Paul /0000-0001-6895-9048; Banin, Uri/0000-0003-1698-2128 FU Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation (NSF); European Research Council under the European Union's Seventh Framework Programme/ERC [246841] FX The authors acknowledge Hans Bechtel for assistance with FTIR measurements. Transmission electron microscopy at the National Center for Electron Microscopy was supported by the Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. All other work was supported by the Physical Chemistry of Nanocrystals Project of the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. M. J. P. was supported by a National Science Foundation (NSF) Graduate Research Fellowship and a NSF Integrative Graduate Education and Research Traineeship fellowship. U. B. acknowledges partial funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant No. 246841. NR 28 TC 23 Z9 23 U1 3 U2 96 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 16 PY 2013 VL 111 IS 3 AR 037401 DI 10.1103/PhysRevLett.111.037401 PG 5 WC Physics, Multidisciplinary SC Physics GA 183YJ UT WOS:000321852900015 PM 23909359 ER PT J AU Jeen, H Biswas, A AF Jeen, Hyoungjeen Biswas, Amlan TI Electric field driven dynamic percolation in electronically phase separated (La0.4Pr0.6)(0.67)Ca0.33MnO3 thin films SO PHYSICAL REVIEW B LA English DT Article ID MANGANITES AB Competing ferromagnetic metallic (FMM) and insulating phases in the manganite (La1-yPry)(1-x)CaxMnO3 lead to a phase separated state in which micrometer scale FMM regions behave in a fluidlike manner over a narrow temperature range. Here we show that an electric field can realign the fluidlike FMM phases embedded in an insulating matrix, resulting in anisotropic in-plane resistance in microstructures of (La0.4Pr0.6)(0.67)Ca0.33MnO3 thin films. Time and voltage dependent resistance and magnetization measurements show that the dynamic percolation of the FMM regions leads to an insulator to metal transition due to electric-field induced realignment of the FMM regions, which is analogous to the dielectrophoresis of metallic particles suspended in fluid media. In-plane strain anisotropy plays an important role in determining the speed of dynamic percolation of the FMM regions by modifying the local electric fields in the phase separated state. C1 [Jeen, Hyoungjeen; Biswas, Amlan] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RP Jeen, H (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM amlan@phys.ufl.edu FU NSF [DMR-0804452] FX This work was supported by NSF Grant No. DMR-0804452. NR 34 TC 11 Z9 12 U1 2 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2013 VL 88 IS 2 AR 024415 DI 10.1103/PhysRevB.88.024415 PG 5 WC Physics, Condensed Matter SC Physics GA 183ZQ UT WOS:000321856400003 ER PT J AU Sanati, M Albers, RC Lookman, T Saxena, A AF Sanati, M. Albers, R. C. Lookman, T. Saxena, A. TI First-order versus second-order phase transformation in AuZn SO PHYSICAL REVIEW B LA English DT Article ID BRILLOUIN-ZONE INTEGRATIONS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MARTENSITIC-TRANSFORMATION; MOLECULAR-DYNAMICS; LANDAU THEORY; ALLOYS; TRANSITIONS; PSEUDOPOTENTIALS; COMPRESSIBILITY AB The first-order versus second-order nature of the phase transition in AuZn has been examined by first-principles calculations. The calculated elastic constants of the high-temperature B2 phase have a large anisotropy, which suggests a possible instability in this phase. The first-principles calculations were extended to finite temperature by including vibrational and electronic contributions to the free energy. A small free-energy barrier was found between the high- (B2) and low-temperature (R) phases, which indicates that this is a weak first-order phase transition. Finally, we find that the calculated theoretical transformation temperature and entropy change (small latent heat) are in excellent agreement with the experimental observations for a first-order transition. Based on the entropy calculations for both phases, the high- temperature phase is found to be stabilized by the contribution of low-energy phonon modes to the lattice entropy. C1 [Sanati, M.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Sanati, M.; Albers, R. C.; Lookman, T.; Saxena, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 89404 USA. RP Sanati, M (reprint author), Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. EM m.sanati@ttu.edu FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We also acknowledge the generous amount of computer time provided by Texas Tech University High Performance Computer Center. NR 42 TC 2 Z9 2 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2013 VL 88 IS 2 AR 024110 DI 10.1103/PhysRevB.88.024110 PG 10 WC Physics, Condensed Matter SC Physics GA 183ZQ UT WOS:000321856400001 ER PT J AU Hughes, RO Lane, GJ Dracoulis, GD Byrne, AP Nieminen, P Watanabe, H Carpenter, MP Chowdhury, P Janssens, RVF Kondev, FG Lauritsen, T Seweryniak, D Zhu, S AF Hughes, R. O. Lane, G. J. Dracoulis, G. D. Byrne, A. P. Nieminen, P. Watanabe, H. Carpenter, M. P. Chowdhury, P. Janssens, R. V. F. Kondev, F. G. Lauritsen, T. Seweryniak, D. Zhu, S. TI Multiquasiparticle states in the neutron-rich nucleus Tm-174 SO PHYSICAL REVIEW C LA English DT Article ID QUASI-PARTICLE STATES; ODD-ODD NUCLEI; RARE-EARTH NUCLEI; ROTATIONAL BANDS; COINCIDENCE DATA; DATA SHEETS; ISOTOPES; IDENTIFICATION; SPECTROSCOPY; ISOMERS AB Deep inelastic and transfer reactions with an 820-MeV, Xe-136 beam and various ytterbium and lutetium targets have been employed to study high-spin structures in the neutron-rich thulium isotopes beyond Tm-171. Results in the doubly odd nucleus, Tm-174, include the identification of numerous new two-and four-quasiparticle intrinsic states including several isomers below 1 MeV, and the observation of the K-pi = 4(-) ground state rotational band populated via direct decay from a tau = 153(10)-mu s, K-pi = 14(-) isomer at 2092 keV. The 398-keV, M1 transition linking the isomer and ground state band is abnormally fast for a highly forbidden, Delta K = 10 decay. This relative enhancement is explained in terms of mixing of the 13(-) level with the nearby 13(-) member of a K-pi = 8(-) rotational band, with an interaction strength of V approximate to 1.4 keV. Multiquasiparticle calculations are compared with the observed states. C1 [Hughes, R. O.; Lane, G. J.; Dracoulis, G. D.; Byrne, A. P.; Nieminen, P.; Watanabe, H.] Australian Natl Univ, Res Sch Phys & Engn, Dept Nucl Phys, Canberra, ACT 0200, Australia. [Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chowdhury, P.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Hughes, RO (reprint author), Univ Richmond, Dept Phys, 28 Westhampton Way, Richmond, VA 23173 USA. RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015; OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734; Byrne, Aidan/0000-0002-7096-6455 FU Australian Research Council Discovery Project [DP0345844]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH1135] FX This work was supported through the Australian Research Council Discovery Project No. DP0345844, and by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH1135. NR 43 TC 2 Z9 2 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL 16 PY 2013 VL 88 IS 1 AR 014311 DI 10.1103/PhysRevC.88.014311 PG 15 WC Physics, Nuclear SC Physics GA 184AH UT WOS:000321858200001 ER PT J AU Lin, Z Liu, ZC Fu, WJ Dudney, NJ Liang, CD AF Lin, Zhan Liu, Zengcai Fu, Wujun Dudney, Nancy J. Liang, Chengdu TI Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE batteries; ionic conductivity; lithium; sulfidophosphates; sulfur ID CATHODE MATERIALS; VIBRATIONAL-SPECTRA; PERFORMANCE; ELECTROLYTE; NANOTUBES; CELL C1 [Lin, Zhan; Dudney, Nancy J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Liu, Zengcai; Fu, Wujun; Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Liang, CD (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM liangcn@ornl.gov RI Lin, Zhan/C-6806-2011; Dudney, Nancy/I-6361-2016 OI Lin, Zhan/0000-0001-5009-8198; Dudney, Nancy/0000-0001-7729-6178 FU U.S. Department of Energy (DOE)/Energy Efficiency and Renewable Energy (EERE) through Vehicle Technologies Office; Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. DOE FX This research was sponsored by U.S. Department of Energy (DOE)/Energy Efficiency and Renewable Energy (EERE) through Vehicle Technologies Office. The investigation of the ionic conductivity of these new compounds was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). The synthesis and characterization was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. DOE. NR 34 TC 90 Z9 92 U1 29 U2 250 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD JUL 15 PY 2013 VL 52 IS 29 BP 7460 EP 7463 DI 10.1002/anie.201300680 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 275WD UT WOS:000328708300017 PM 23737078 ER PT J AU Kuvychko, IV Dubceac, C Deng, SHM Wang, XB Granovsky, AA Popov, AA Petrukhina, MA Strauss, SH Boltalina, OV AF Kuvychko, Igor V. Dubceac, Cristina Deng, Shihu H. M. Wang, Xue-Bin Granovsky, Alexander A. Popov, Alexey A. Petrukhina, Marina A. Strauss, Steven H. Boltalina, Olga V. TI C20H4(C4F8)(3): A Fluorine-Containing Annulated Corannulene that Is a Better Electron Acceptor Than C-60 SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE annulation; corannulene; electron acceptors; perfluoroalkyl iodide; radical reactions ID ORGANIC SEMICONDUCTORS; GEODESIC POLYARENES; SOLAR-CELLS; DERIVATIVES; AFFINITIES C1 [Kuvychko, Igor V.; Strauss, Steven H.; Boltalina, Olga V.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Dubceac, Cristina; Petrukhina, Marina A.] SUNY Albany, Dept Chem, Albany, NY 12222 USA. [Popov, Alexey A.] Leibniz Inst Solid State & Mat Res, Dept Electrochem & Conducting Polymers, D-01069 Dresden, Germany. [Deng, Shihu H. M.; Wang, Xue-Bin] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Granovsky, Alexander A.] Firefly Project, Moscow 117593, Russia. RP Kuvychko, IV (reprint author), Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. EM kuvychko@lamar.colostate.edu; xuebin.wang@pnnl.gov; a.popov@ifw-dresden.de; mpetrukhina@albany.edu; steven.strauss@colostate.edu; olga.boltalina@colostate.edu RI Popov, Alexey/A-9937-2011 OI Popov, Alexey/0000-0002-7596-0378 FU US NSF [CHE-1012468, CHE-1212441]; DFG [PO 1602/1-1]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy (DOE) FX We thank the US NSF (CHE-1012468 to O.V.B. and S.H.S., CHE-1212441 to M.A.P.) and DFG (PO 1602/1-1 to A.A.P.) for financial support and Prof. L. Dunsch for his continuing support. The Research Computing Center of the Moscow State University is acknowledged for time on supercomputer "SKIF-Chebyshev". The photoelectron spectra work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy (DOE), and was performed at the EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 24 TC 23 Z9 23 U1 5 U2 49 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD JUL 15 PY 2013 VL 52 IS 29 BP 7505 EP 7508 DI 10.1002/anie.201300796 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 275WD UT WOS:000328708300027 PM 23754453 ER PT J AU Durand, S Matas, J Ford, S Ricard, Y Romanowicz, B Montagner, JP AF Durand, S. Matas, J. Ford, S. Ricard, Y. Romanowicz, B. Montagner, J-P TI Insights from ScS-S measurements on deep mantle attenuation SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE seismic attenuation; body waves; instantaneous frequency; delta t*(ScS-S) ID SEISMIC-WAVE ATTENUATION; MULTIPLE-SCS; FREQUENCY-DEPENDENCE; VELOCITY DISPERSION; REFLECTIVITY METHOD; REGIONAL VARIATION; LOWERMOST MANTLE; BULK ATTENUATION; CENTRAL-AMERICA; TRAVEL-TIMES AB We apply a recently developed method based on the instantaneous frequency to analyze broadband seismic data recorded by the transportable USArray. We measure in the frequency band [0.018-0.2] Hz about 700 high-quality differential ScS-S anelastic delay times, delta t*(ScS-S), sampling the mantle below Central America and below Alaska that we compare to elastic delay times, delta t(ScS-S), obtained by cross-correlating the S and ScS signals. We confirm that the instantaneous frequency matching method is more robust than the classical spectral ratio method. By a series of careful analyses of the effects of signal-to-noise ratio, source mechanism characteristics and possible phase interferences on measurements of differential anelastic delay times, we demonstrate that in order to obtain accurate values of delta t*(ScS-S) the seismic records must be rigorously selected. In spite of the limited number of data that satisfy our quality criteria, we recover, using an additional stacking procedure, a clear dependence of delta t*(ScS-S) on the epicentral distance in delta the two regions. The absence of correlation between the obtained anelastic and elastic delay-times indicates a complex compositional-thermal origin of the attenuation structure, or effects of scattering by small scale structure, in accordance with possible presence of subducted material. The regional 1-D inversions of our measurements indicate a non-uniform lower mantle attenuation structure: a zone with high attenuation in the mid-lower mantle (Q(mu)approximate to 250) and a low attenuation layer at its base (Q(mu)approximate to 450). A comparison of our results with low-frequency normal-model Q models is consistent with frequency-dependent attenuation with Q(mu)proportional to omega(alpha) and alpha = 0.1-0.2 (i.e. less attenuation at higher frequencies), although possible effects of lateral variations in Q in the deep mantle add some uncertainty to these values. (C) 2013 Elsevier B.V. All rights reserved. C1 [Durand, S.; Matas, J.; Ricard, Y.] Univ Lyon 1, Ecole Normale Super Lyon, CNRS UMR5570, Lab Geol Lyon Terre Planete Environm, F-69364 Lyon 07, France. [Ford, S.] Lawrence Livermore Natl Lab, Ground Based Nucl Detonat Detect Programs, Livermore, CA 94550 USA. [Romanowicz, B.] Coll France, F-75231 Paris, France. [Romanowicz, B.; Montagner, J-P] Univ Paris Diderot, Inst Phys Globe Paris, F-75238 Paris 05, France. [Romanowicz, B.] Berkeley Seismol Lab, Berkeley, CA 94720 USA. RP Durand, S (reprint author), Univ Lyon 1, Ecole Normale Super Lyon, CNRS UMR5570, Lab Geol Lyon Terre Planete Environm, 46 Allee Italie, F-69364 Lyon 07, France. EM stephanie.durand@ens-lyon.fr RI ricard, yanick/C-6287-2009; Ford, Sean/F-9191-2011; Montagner, Jean-Paul/A-8733-2011; OI ricard, yanick/0000-0002-0998-4670; Ford, Sean/0000-0002-0376-5792; Montagner, Jean-Paul/0000-0001-9958-3012; romanowicz, Barbara/0000-0002-6208-6044 FU France-Berkeley Fund; ANR CMBmelt [10-BLAN-622]; ANR SISMOglob [11-BLAN-SIMI5-6-016-01]; ERC Advanced Grant WAVETOMO FX We thank the USArray that provided the data and Benoit Tauzin, Frederic Chambat, Ved Lekic and Christine Thomas for stimulating discussions. We also thank the reviewers for improving the quality of the paper. This work has been supported by the 2010 France-Berkeley Fund to JM & BR, the ANR CMBmelt 10-BLAN-622, ANR SISMOglob 11-BLAN-SIMI5-6-016-01 and ERC Advanced Grant WAVETOMO to BR. NR 55 TC 4 Z9 4 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 15 PY 2013 VL 374 BP 101 EP 110 DI 10.1016/j.epsl.2013.05.026 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 221MT UT WOS:000324663700010 ER PT J AU Zhao, JG Liu, HZ Ehm, L Dong, DW Chen, ZQ Liu, QQ Hu, WZ Wang, NL Jin, CQ AF Zhao, Jinggeng Liu, Haozhe Ehm, Lars Dong, Dawei Chen, Zhiqiang Liu, Qingqing Hu, Wanzheng Wang, Nanlin Jin, Changqing TI Pressure-Induced Phase Transitions and Correlation between Structure and Superconductivity in Iron-Based Superconductor Ce(O0.84F0.16)FeAs SO INORGANIC CHEMISTRY LA English DT Article ID LAYERED SUPERCONDUCTOR; 43 K; T-C; LIFEAS; CEFEASO1-XFX; TEMPERATURE; COMPOUND; EARTH AB High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O0.84F0.16)FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O0.84F0.16)FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T-c of this compound upon compression. The isostructural phase transition in Ce(O0.84F0.16)FeAs leads to a drastic drop in the superconducting transition temperature T-c and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer. C1 [Zhao, Jinggeng; Liu, Haozhe] Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Nat Sci Res Ctr, Harbin 150080, Peoples R China. [Zhao, Jinggeng; Ehm, Lars; Dong, Dawei] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Ehm, Lars; Chen, Zhiqiang] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Dong, Dawei] Harbin Inst Technol, Dept Phys, Harbin 150080, Peoples R China. [Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Zhao, JG (reprint author), Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Nat Sci Res Ctr, Harbin 150080, Peoples R China. EM zhaojinggeng@gmail.com; haozhe@hit.edu.cn RI Liu, Haozhe/E-6169-2011; D20, Diffractometer/O-3123-2013 OI D20, Diffractometer/0000-0002-1572-1367 FU National Natural Science Foundation of China [10904022, 10975042]; China Postdoctoral Science Foundation [200902410]; Postdoctoral Science-research Developmental Foundation of Heilongjiang Province [LBH-Q12095]; Fundamental Research Funds for the Central Universities [HIT.NSRIF.2013054]; Harbin Institute of Technology (HIT); NSF; MOST of China; COMPRES (the Consortium for Materials Properties Research in Earth Sciences); National Synchrotron Light Source, Brookhaven National Laboratory; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank the support from the National Natural Science Foundation of China (Grant Nos. 10904022, 10975042), the China Postdoctoral Science Foundation special funded project (Grant No. 200902410), the Postdoctoral Science-research Developmental Foundation of Heilongjiang Province (Grant No. LBH-Q12095), the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2013054), and the program for Basic Research Excellent Talents and Oversea Collaborative Base Project in Harbin Institute of Technology (HIT). The work at IOPCAS was supported by NSF and MOST of China through research projects. We also thank the support from COMPRES (the Consortium for Materials Properties Research in Earth Sciences) and the National Synchrotron Light Source, Brookhaven National Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 53 TC 5 Z9 5 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 15 PY 2013 VL 52 IS 14 BP 8067 EP 8073 DI 10.1021/ic400727g PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 187AG UT WOS:000322087100029 PM 23815067 ER PT J AU Chen, G Hoang, AM Bogdanov, S Haddadi, A Bijjam, PR Nguyen, BM Razeghi, M AF Chen, G. Hoang, A. M. Bogdanov, S. Haddadi, A. Bijjam, P. R. Nguyen, B. -M. Razeghi, M. TI Investigation of impurities in type-II InAs/GaSb superlattices via capacitance-voltage measurement SO APPLIED PHYSICS LETTERS LA English DT Article ID QUANTUM-WELL; GASB; PHOTODIODES; DETECTORS; MBE AB Capacitance-voltage measurement was utilized to characterize impurities in the non-intentionally doped region of Type-II InAs/GaSb superlattice p-i-n photodiodes. Ionized carrier concentration versus temperature dependence revealed the presence of a kind of defects with activation energy below 6 meV and a total concentration of low 10(15) cm(-3). Correlation between defect characteristics and superlattice designs was studied. The defects exhibited a p-type behavior with decreasing activation energy as the InAs thickness increased from 7 to 11 monolayers, while maintaining the GaSb thickness of 7 monolayers. With 13 monolayers of InAs, the superlattice became n-type and the activation energy deviated from the p-type trend. (C) 2013 AIP Publishing LLC. C1 [Chen, G.; Hoang, A. M.; Bogdanov, S.; Haddadi, A.; Bijjam, P. R.; Razeghi, M.] Northwestern Univ, Dept Elect Engn & Comp Sci, Ctr Quantum Devices, Evanston, IL 60208 USA. [Nguyen, B. -M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Chen, G (reprint author), Northwestern Univ, Dept Elect Engn & Comp Sci, Ctr Quantum Devices, Evanston, IL 60208 USA. EM razeghi@eecs.northwestern.edu RI Razeghi, Manijeh/B-7265-2009 FU U.S. Army Research Laboratory; U.S. Army Research Office [W911NF-12-2-0009] FX The authors acknowledge the support, interest, and encouragement of Dr. Meimei Tidrow, Dr. Fenner Milton, and Dr. Joseph Pellegrino from the U.S. Army Night Vision Laboratory, Dr. William Clark from U.S. Army Research Office, and Dr. Nibir Dhar from Defense Advanced Research Projects Agency. This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U.S. Army Research Office under cooperative Agreement No. W911NF-12-2-0009. NR 30 TC 7 Z9 7 U1 1 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 15 PY 2013 VL 103 IS 3 AR 033512 DI 10.1063/1.4813479 PG 4 WC Physics, Applied SC Physics GA 187UM UT WOS:000322146300114 ER PT J AU Ishimaru, M Zhang, YW Shannon, S Weber, WJ AF Ishimaru, Manabu Zhang, Yanwen Shannon, Steven Weber, William J. TI Origin of radiation tolerance in 3C-SiC with nanolayered planar defects SO APPLIED PHYSICS LETTERS LA English DT Article ID NUCLEAR-WASTE; IRRADIATION; DAMAGE; IMMOBILIZATION; AMORPHIZATION; ACCUMULATION; COMPOSITES; PLUTONIUM; FUSION; OXIDES AB We have recently found that the radiation tolerance of SiC is highly enhanced by introducing nanolayers of stacking faults and twins [Y. Zhang et al., Phys. Chem. Chem. Phys. 14, 13429 (2012)]. To reveal the origin of this radiation resistance, we used in situ transmission electron microscopy to examine structural changes induced by electron beam irradiation in 3C-SiC containing nanolayers of (111) planar defects. We found that preferential amorphization, when it does occur, takes place at grain boundaries and at ((1) over bar 11) and (1 (1) over bar1) planar defects. Radiation-induced point defects, such as interstitials and vacancies, migrate two-dimensionally between the (111) planar defects, which probably enhances the damage recovery. (C) 2013 AIP Publishing LLC. C1 [Ishimaru, Manabu] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. [Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Shannon, Steven] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. RP Ishimaru, M (reprint author), Kyushu Inst Technol, Dept Mat Sci & Engn, Fukuoka 8048550, Japan. RI Weber, William/A-4177-2008; Shannon, Steven/O-3420-2014 OI Weber, William/0000-0002-9017-7365; Shannon, Steven/0000-0001-8317-6949 FU Ministry of Education, Sports, Science, and Technology, Japan [25289249]; U.S. Department of Energy, Nuclear Energy University Programs FX This work was supported in part by Grant-in-Aid for Scientific Research (B) (Grant No. 25289249) from the Ministry of Education, Sports, Science, and Technology, Japan (MI) and by the U.S. Department of Energy, Nuclear Energy University Programs (YZ, SS, WJW). TEM observations using a JEOL JEM-3000F were performed at the Comprehensive Analysis Center of ISIR, Osaka University. NR 24 TC 17 Z9 17 U1 3 U2 72 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 15 PY 2013 VL 103 IS 3 AR 033104 DI 10.1063/1.4813593 PG 4 WC Physics, Applied SC Physics GA 187UM UT WOS:000322146300080 ER PT J AU Solovyov, VF Li, Q AF Solovyov, Vyacheslav F. Li, Qiang TI Fast high-temperature superconductor switch for high current applications SO APPLIED PHYSICS LETTERS LA English DT Article AB Reversible operation of a high current superconductor switch based on the quench of high-resistance second generation high temperature superconducting wire is demonstrated. The quench is induced by a burst of an ac field generated by an inductively coupled radio-frequency coil. The switch makes a superconducting-to-normal transition within 5 ms and also has a rapid recovery to the superconducting state. The device has potential applications as an active current limiter or as a storage switch for superconducting magnetic energy storage systems. Operation in a full flux penetration/flow regime can effectively minimize the detrimental effects of the intrinsic conductor non-uniformity. (C) 2013 AIP Publishing LLC. C1 [Solovyov, Vyacheslav F.; Li, Qiang] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Solovyov, VF (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. OI Solovyov, Vyacheslav/0000-0003-1879-9802 FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department of Energy; Advanced Research Project Agency-Energy (ARPA-E) GRIDS program [DE-AR0000141] FX This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Research at Brookhaven National Laboratory was supported by the Advanced Research Project Agency-Energy (ARPA-E) GRIDS program, managed by Mark A. Johnson, Award No. DE-AR0000141. The authors wish to thank Ivo K. Dimitrov and Arnold Moodenbaugh for valuable comments and suggestions. NR 17 TC 4 Z9 4 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 15 PY 2013 VL 103 IS 3 AR 032603 DI 10.1063/1.4813883 PG 3 WC Physics, Applied SC Physics GA 187UM UT WOS:000322146300066 ER PT J AU Zepeda-Ruiz, LA Martinez, E Caro, M Fu, EG Caro, A AF Zepeda-Ruiz, L. A. Martinez, E. Caro, M. Fu, E. G. Caro, A. TI Deformation mechanisms of irradiated metallic nanofoams SO APPLIED PHYSICS LETTERS LA English DT Article ID ULTRAHIGH-STRENGTH; GOLD NANOWIRES; COPPER AB It was recently proposed that within a particular window in the parameter space of temperature, ion energy, dose rate, and filament diameter, nanoscale metallic foams could show radiation tolerance [Bringa et al., Nano Lett. 12, 3351 (2012)]. Outside this window, damage appears in the form of vacancy-related stacking fault tetrahedra (SFT), with no effects due to interstitials [Fu et al., Appl. Phys. Lett. 101, 191607 (2012)]. These SFT could be natural sources of dislocations within the ligaments composing the foam and determine their mechanical response. We employ molecular dynamics simulations of cylindrical ligaments containing an SFT to obtain an atomic-level picture of their deformation behavior under compression. We find that plastic deformation originates at the edges of the SFT, at lower stress than needed to create dislocations at the surface. Our results predict that nanoscale foams soften under irradiation, a prediction not yet tested experimentally. (C) 2013 AIP Publishing LLC. C1 [Zepeda-Ruiz, L. A.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Martinez, E.; Caro, M.; Fu, E. G.; Caro, A.] Los Alamos Natl Lab, Div Mat Sci, Los Alamos, NM 87544 USA. RP Zepeda-Ruiz, LA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM zepedaruiz1@llnl.gov OI Martinez Saez, Enrique/0000-0002-2690-2622 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LANL's LDRD program; Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; U.S. Department of Energy, at Los Alamos National Laboratory [2008LANL1026] FX L.A.Z.-R. acknowledges work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. E. M. M. C., E. G. F., and A. C. thank the LANL's LDRD program and the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy (Award Number 2008LANL1026) at Los Alamos National Laboratory, for funding support. NR 22 TC 5 Z9 5 U1 2 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 15 PY 2013 VL 103 IS 3 AR 031909 DI 10.1063/1.4813863 PG 4 WC Physics, Applied SC Physics GA 187UM UT WOS:000322146300034 ER PT J AU Zhu, Q Ma, Q Buchholz, DB Chang, RPH Bedzyk, MJ Mason, TO AF Zhu, Q. Ma, Q. Buchholz, D. B. Chang, R. P. H. Bedzyk, M. J. Mason, T. O. TI Structural anisotropy in amorphous SnO2 film probed by X-ray absorption spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID FINE-STRUCTURE AB Polarization-dependent X-ray absorption measurements reveal the existence of structural anisotropy in amorphous (a-) SnO2 film. The anisotropy is readily seen for the second neighbor interaction whose magnitude differs along three measured directions. The differences can be well accounted for by 10%-20% variation in the Debye-Waller factor. Instead of a single Gaussian distribution found in crystalline SnO2, the Sn-O bond distribution is bimodal in a-SnO2 whose separation shows a weak angular dependence. The oxygen vacancies, existing in the a-SnO2 film in the order of 10 21 cm(-3), distribute preferentially along the film surface direction. (C) 2013 AIP Publishing LLC. C1 [Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Ma, Q.] Argonne Natl Lab, Adv Photon Source, Northwestern Synchrotron Res Ctr, DND CAT, Argonne, IL 60439 USA. RP Ma, Q (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM q-ma@northwestern.edu RI Bedzyk, Michael/K-6903-2013; Chang, R.P.H/B-7505-2009; Bedzyk, Michael/B-7503-2009; Mason, Thomas/B-7528-2009 FU NSF Materials Research Science and Engineering Center at Northwestern [DMR-1121262]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001059]; E.I. DuPont de Nemours Co.; The Dow Chemical Company; State of Illinois; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Film growth, electrical characterization, and X-ray absorption measurements were supported by the NSF Materials Research Science and Engineering Center at Northwestern under Grant No. DMR-1121262. Optical characterization and structural analysis were supported by the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences, under Award No. DE-SC0001059. X-ray absorption measurements were conducted at the DND-CAT at the Advanced Photon Source (APS). DND-CAT was supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company, and the State of Illinois. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 11 TC 3 Z9 4 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 15 PY 2013 VL 103 IS 3 AR 031913 DI 10.1063/1.4815984 PG 4 WC Physics, Applied SC Physics GA 187UM UT WOS:000322146300038 ER PT J AU Zheng, J Chen, YH Chen, ZF Wang, XG Han, P Yong, ZH Wang, Y Leung, CW Soukoulis, CM AF Zheng, Jian Chen, Yihang Chen, Zefeng Wang, Xinggang Han, Peng Yong, Zehui Wang, Yu Leung, Chi Wah Soukoulis, Costas M. TI Investigation of interface states in single-negative metamaterial layered structures based on the phase properties SO OPTICS EXPRESS LA English DT Article ID REFRACTIVE-INDEX; TRANSPARENCY; RESONANCE; WAVES; SLAB AB The physical mechanism of the interface states in layered structures consisting of single-negative metamaterials is investigated using a simple resonant cavity model. We found that the interface states and their corresponding tunneling transmission modes appeared when the resonant condition is satisfied. Such resonant condition depends on the phase changes inside the resonant cavity. Based on these results, we proposed an efficient method to precisely predict the frequencies of the tunneling interface states inside the single-negative metamaterial layers. Our method is effective for interface states corresponding to perfect or imperfect tunneling transmission. Composite right/left-handed transmission lines were used to realize the pair and sandwich metamaterial layered structures in the microwave region. Electromagnetic tunneling interface states were observed in the measurements, which agreed well with the theory. Our study offers a way for effectively designing metamaterial devices with novel electromagnetic tunneling properties. (C) 2013 Optical Society of America C1 [Zheng, Jian; Chen, Yihang; Chen, Zefeng; Wang, Xinggang; Han, Peng] S China Normal Univ, Lab Quantum Informat Technol, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China. [Chen, Zefeng; Yong, Zehui; Wang, Yu; Leung, Chi Wah] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China. [Chen, Zefeng; Yong, Zehui; Wang, Yu; Leung, Chi Wah] Hong Kong Polytech Univ, Mat Res Ctr, Hong Kong, Hong Kong, Peoples R China. [Chen, Yihang; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Chen, Yihang; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Chen, YH (reprint author), S China Normal Univ, Lab Quantum Informat Technol, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China. EM chenyh@ameslab.gov; dennis.leung@polyu.edu.hk RI Leung, Chi Wah (Dennis)/D-2085-2012; OI Leung, Chi Wah (Dennis)/0000-0003-0083-6273; Wang, Y/0000-0001-9160-3226 FU National Natural Science Foundation of China [11274126]; Natural Science Foundation of Guangdong Province of China [9151063101000040]; Hong Kong Polytechnic University [A-PM21, 1-ZV5K, 1-ZV8T, J-BB9P, J-BB9Q]; U.S. Department of Energy (Basic Energy Science, Division of Materials Science and Engineering) [DE-AC02-07CH11358] FX This work is supported by National Natural Science Foundation of China (Grant No. 11274126), the Natural Science Foundation of Guangdong Province of China (Grant No. 9151063101000040), and the Hong Kong Polytechnic University (Projects A-PM21, 1-ZV5K, 1-ZV8T, J-BB9P & J-BB9Q). This work is also partly supported by the U.S. Department of Energy (Basic Energy Science, Division of Materials Science and Engineering) under Contract No. DE-AC02-07CH11358. NR 34 TC 1 Z9 1 U1 2 U2 32 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 15 PY 2013 VL 21 IS 14 BP 16742 EP 16752 DI 10.1364/OE.21.016742 PG 11 WC Optics SC Optics GA 183MK UT WOS:000321819400054 PM 23938526 ER PT J AU Archangel, JD Tucker, E Kinzel, E Muller, EA Bechtel, HA Martin, MC Raschke, MB Boreman, G AF Archangel, Jeffrey D' Tucker, Eric Kinzel, Ed Muller, Eric A. Bechtel, Hans A. Martin, Michael C. Raschke, Markus B. Boreman, Glenn TI Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces SO OPTICS EXPRESS LA English DT Article ID PHASE DISCONTINUITIES; LIGHT-PROPAGATION; METAMATERIALS; ABSORPTION; FREQUENCY AB Optical metamaterials have unique properties which result from geometric confinement of the optical conductivity. We developed a series of infrared metasurfaces based on an array of metallic square loop antennas. The far-field absorption spectrum can be designed with resonances across the infrared by scaling the geometric dimensions. We measure the amplitude and phase of the resonant mode as standing wave patterns within the square loops using scattering-scanning near-field optical microscopy (s-SNOM). Further, using a broad-band synchrotron-based FTIR microscope and s-SNOM at the Advanced Light Source, we are able to correlate far-field spectra to near-field modes of the metasurface as the resonance is tuned between samples. The results highlight the importance of multimodal imaging for the design and characterization of optical metamaterials. (C) 2013 Optical Society of America C1 [Archangel, Jeffrey D'] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA. [Tucker, Eric; Boreman, Glenn] Univ N Carolina, Dept Phys & Opt Sci, Charlotte, NC 28223 USA. [Kinzel, Ed] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA. [Muller, Eric A.; Raschke, Markus B.] Univ Colorado, Dept Phys, Dept Chem, Boulder, CO 80309 USA. [Muller, Eric A.; Raschke, Markus B.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Bechtel, Hans A.; Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. RP Boreman, G (reprint author), Univ N Carolina, Dept Phys & Opt Sci, 9201 Univ City Blvd, Charlotte, NC 28223 USA. EM gboreman@uncc.edu RI Muller, Eric/J-2161-2012; Raschke, Markus/F-8023-2013 OI Muller, Eric/0000-0002-9629-1767; FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy [DE-AC04-94AL85000]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation (NSF) [0748226, 1204993, 1068050]; SMART Scholarship; OSD-T&E (Office of Secretary Defense-Test and Evaluation), Defense - Wide (National Defense Education Program (NDEP)) [PE0601120D8Z, BA-1] FX A portion of this research was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Funding from the National Science Foundation (NSF CAREER grant CHE 0748226, NSF grant 1204993, and NSF grant 1068050) is gratefully acknowledged. JD gratefully acknowledges support from the SMART Scholarship, funded by OSD-T&E (Office of Secretary Defense-Test and Evaluation), Defense - Wide / PE0601120D8Z National Defense Education Program (NDEP) / BA-1, Basic Research. NR 26 TC 5 Z9 5 U1 4 U2 42 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 15 PY 2013 VL 21 IS 14 BP 17150 EP 17160 DI 10.1364/OE.21.017150 PG 11 WC Optics SC Optics GA 183MK UT WOS:000321819400090 ER PT J AU Rizzi, J Mercere, P Idir, M Da Silva, P Vincent, G Primot, J AF Rizzi, J. Mercere, P. Idir, M. Da Silva, P. Vincent, G. Primot, Jerome TI X-ray phase contrast imaging and noise evaluation using a single phase grating interferometer SO OPTICS EXPRESS LA English DT Article ID LATERAL SHEARING INTERFEROMETER; WAVE-FRONT RECONSTRUCTION; FOURIER-TRANSFORM; DIFFERENCE MEASUREMENTS; TALBOT INTERFEROMETRY; SYNCHROTRON-RADIATION; ARRAY; DERIVATIVES; TOMOGRAPHY; GENERATION AB In this paper we present some quantitative measurements of X-ray phase contrast images and noise evaluation obtained with a recent grating based X-ray phase contrast interferometer. This device is built using a single phase grating and a large broadband X-ray source. It was calibrated using a reference sample and finally used to perform measurements of a biological fossil: a mosquito trapped in amber. As phase images, noise was evaluated from the measured interferograms. (C) 2013 Optical Society of America C1 [Rizzi, J.; Vincent, G.; Primot, Jerome] Off Natl Etud & Rech Aerosp, French Aerosp Lab, F-91761 Palaiseau, France. [Mercere, P.; Da Silva, P.] Synchrotron Soleil Orme Merisiers, F-91192 Gif Sur Yvette, France. [Idir, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Rizzi, J (reprint author), Off Natl Etud & Rech Aerosp, French Aerosp Lab, F-91761 Palaiseau, France. EM julien.rizzi@onera.fr FU Triangle de la Physique; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC-02-98CH10886] FX The research presented here is supported by Triangle de la Physique and by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC-02-98CH10886. NR 47 TC 8 Z9 9 U1 3 U2 33 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 15 PY 2013 VL 21 IS 14 BP 17340 EP 17351 DI 10.1364/OE.21.017340 PG 12 WC Optics SC Optics GA 183MK UT WOS:000321819400108 PM 23938580 ER PT J AU Fan, P Griffith, OL Agboke, FA Anur, P Zou, XJ McDaniel, RE Creswell, K Kim, SH Katzenellenbogen, JA Gray, JW Jordan, VC AF Fan, Ping Griffith, Obi L. Agboke, Fadeke A. Anur, Pavana Zou, Xiaojun McDaniel, Russell E. Creswell, Karen Kim, Sung Hoon Katzenellenbogen, John A. Gray, Joe W. Jordan, V. Craig TI c-Src Modulates Estrogen-Induced Stress and Apoptosis in Estrogen-Deprived Breast Cancer Cells SO CANCER RESEARCH LA English DT Article ID ESTRADIOL-INDUCED REGRESSION; POSTMENOPAUSAL WOMEN; OXIDATIVE STRESS; GENE-EXPRESSION; RECEPTOR-ALPHA; IN-VITRO; RNA-SEQ; RESISTANT; TAMOXIFEN; INHIBITOR AB The emergence of anti-estrogen resistance in breast cancer is an important clinical phenomenon affecting long-term survival in this disease. Identifying factors that convey cell survival in this setting may guide improvements in treatment. Estrogen (E-2) can induce apoptosis in breast cancer cells that have been selected for survival after E-2 deprivation for long periods (MCF-7:5C cells), but the mechanisms underlying E-2-induced stress in this setting have not been elucidated. Here, we report that the c-Src kinase functions as a key adapter protein for the estrogen receptor (ER, ESR1) in its activation of stress responses induced by E-2 in MCF-7:5C cells. E-2 elevated phosphorylation of c-Src, which was blocked by 4-hydroxytamoxifen (4-OHT), suggesting that E-2 activated c-Src through the ER. We found that E-2 activated the sensors of the unfolded protein response (UPR), IRE1a (ERN1) and PERK kinase (EIF2AK3), the latter of which phosphorylates eukaryotic translation initiation factor-2 alpha (eIF2 alpha). E-2 also dramatically increased reactive oxygen species production and upregulated expression of heme oxygenase HO-1 (HMOX1), an indicator of oxidative stress, along with the central energy sensor kinase AMPK (PRKAA2). Pharmacologic or RNA interference-mediated inhibition of c-Src abolished the phosphorylation of eIF2 alpha and AMPK, blocked E-2-induced ROS production, and inhibited E-2-induced apoptosis. Together, our results establish that c-Src kinase mediates stresses generated by E-2 in long-term E-2-deprived cells that trigger apoptosis. This work offers a mechanistic rationale for a new approach in the treatment of endocrine-resistant breast cancer. C1 [Fan, Ping; Agboke, Fadeke A.; Zou, Xiaojun; McDaniel, Russell E.; Creswell, Karen; Jordan, V. Craig] Georgetown Univ, Lombardi Comprehens Canc Ctr, Dept Oncol, Washington, DC 20057 USA. [Griffith, Obi L.; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Canc & DNA Damage Responses, Berkeley, CA 94720 USA. [Kim, Sung Hoon; Katzenellenbogen, John A.] Univ Illinois, Dept Chem, Urbana, IL USA. [Anur, Pavana; Gray, Joe W.] Oregon Hlth & Sci Univ, Biomed Engn Dept, Portland, OR 97201 USA. RP Jordan, VC (reprint author), Georgetown Univ, Lombardi Comprehens Canc Ctr, E507A Res Bldg,3970 Reservoir RD NW, Washington, DC 20057 USA. EM vcj2@georgetown.edu RI Jordan, V. Craig/H-4491-2011; OI Griffith, Obi/0000-0002-0843-4271 FU Department of Defense Breast Program [W81XWH-06-1-0590]; Center of Excellence [SU2C, SU2C-AACR-DT0409]; Susan G Komen For The Cure Foundation [SAC100009]; GHUCCTS CTSA [UL1RR031975]; Lombardi Comprehensive Cancer Center Support Grant (CCSG) [NIH P30 CA051008]; Program of the Entertainment Industry Foundation [SU2C-AACR-DT0409]; NIH [PHS 5R37DK015556]; Canadian Institutes of Health Research (CIHR) FX V.C. Jordan is supported by the Department of Defense Breast Program under Award numberW81XWH-06-1-0590 Center of Excellence; subcontract under the SU2C (AACR) Grant number SU2C-AACR-DT0409; the Susan G Komen For The Cure Foundation under Award number SAC100009; GHUCCTS CTSA (Grant #UL1RR031975); and the Lombardi Comprehensive Cancer Center Support Grant (CCSG) Core Grant NIH P30 CA051008. J.W. Gray is supported by a Stand Up to Cancer Dream Team Translational Cancer Research Grant, a Program of the Entertainment Industry Foundation (SU2C-AACR-DT0409). J. Katzenellenbogen is supported by NIH grant (PHS 5R37DK015556). O.L. Griffith was supported by a fellowship from the Canadian Institutes of Health Research (CIHR). NR 50 TC 29 Z9 30 U1 0 U2 10 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD JUL 15 PY 2013 VL 73 IS 14 BP 4510 EP 4520 DI 10.1158/0008-5472.CAN-12-4152 PG 11 WC Oncology SC Oncology GA 183NR UT WOS:000321823600032 PM 23704208 ER PT J AU Liu, P Zhang, YW Wang, XL Xiang, X Weber, WJ AF Liu, Peng Zhang, Yanwen Wang, Xuelin Xiang, Xia Weber, William J. TI Response properties of YAlO3:Ce scintillation crystal under ion irradiation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 18th International Conference on Ion Beam Modifications of Materials (IBMM) CY SEP 02-07, 2012 CL Shandong Univ, Qingdao, PEOPLES R CHINA SP Shanghai Inst Microsystem & Informat Technol, Tsinghua Univ, Natl Nat Sci Fdn China, Shandong Univ, Minist Educ, Key Lab Particle Phys & Particle Irradiat, Shandong Univ, State Key Lab Crystal Mat, High Voltage Engn Europa B V HO Shandong Univ DE Ion irradiation; Time of flight; Energy loss; Scintillation response ID INORGANIC SCINTILLATORS; INDUCED LUMINESCENCE; YAP-CE; EFFICIENCY AB A novel ion-scintillator technique used to evaluate the scintillation response is demonstrated using YAlO3:Ce crystal under H+, He+ and O3+ ions irradiation. The experiment setup, including a forward-scatter target and a time-of-flight telescope, allows quantitative measurement of each ion-scintillator interaction event over a continuous ion energy range, and the related response properties of YAlO3:Ce, including the luminescent photon yield, nonlinear response and energy resolution, have been studied by detailed analysis of the total electronic energy deposition, electronic energy loss density and the displacement damage during ion irradiation process. The measured response properties of YAlO3:Ce under ion irradiation are consistent with that from the gamma tests, which demonstrates that this technique, applicable to small crystals or thin films, can rapidly and effectively evaluate the scintillator performance and, therefore, assist accelerated discovery of radiation detection materials. (C) 2013 Elsevier B.V. All rights reserved. C1 [Liu, Peng; Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Liu, Peng; Wang, Xuelin] Shandong Univ, Sch Phys, Key Lab Particle Phys & Particle Irradiat MOE, Jinan 250100, Peoples R China. [Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Xiang, Xia] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China. RP Zhang, YW (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM Zhangy1@ORNL.gov RI Weber, William/A-4177-2008; OI Weber, William/0000-0002-9017-7365; wang, xue-lin/0000-0001-5750-6035 NR 21 TC 0 Z9 0 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUL 15 PY 2013 VL 307 BP 49 EP 54 DI 10.1016/j.nimb.2013.01.018 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 182DP UT WOS:000321722200013 ER PT J AU Jin, K Zhang, Y Xue, H Zhu, Z Weber, WJ AF Jin, K. Zhang, Y. Xue, H. Zhu, Z. Weber, W. J. TI Ion distribution and electronic stopping power for Au ions in silicon carbide SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 18th International Conference on Ion Beam Modifications of Materials (IBMM) CY SEP 02-07, 2012 CL Shandong Univ, Qingdao, PEOPLES R CHINA SP Shanghai Inst Microsystem & Informat Technol, Tsinghua Univ, Natl Nat Sci Fdn China, Shandong Univ, Minist Educ, Key Lab Particle Phys & Particle Irradiat, Shandong Univ, State Key Lab Crystal Mat, High Voltage Engn Europa B V HO Shandong Univ DE Ion distribution; Electronic stopping power; Silicon carbide; Heavy ion ID HIGH-TEMPERATURE APPLICATIONS; HEAVY-IONS; IMPLANTATION; DAMAGE; RANGE; SI; PROFILES; BEHAVIOR; DETECTOR; DEVICES AB Accurate knowledge of ion distribution and electronic stopping power for heavy ions in light targets is highly desired due to the large errors in prediction by the widely used Stopping and Range of Ions in Matter (SRIM) code. In this study, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are used as complementary techniques to determine the distribution of Au ions in SiC with energies from 700 keV to 15 MeV. In addition, a single ion technique with an improved data analysis procedure is applied to measure the electronic stopping power for Au ions in SiC with energies up to similar to 70 key/nucleon. Large overestimation of the electronic stopping power is found by SRIM prediction in the low energy regime up to similar to 50 key/nucleon. The stopping power data and the ion ranges are crosschecked with each other and a good agreement is achieved. (C) 2013 Elsevier B.V. All rights reserved. C1 [Jin, K.; Zhang, Y.; Xue, H.; Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Zhang, Y.; Weber, W. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhu, Z.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, Y (reprint author), Oak Ridge Natl Lab, 4500S A148,MS 6138, Oak Ridge, TN 37831 USA. EM Zhangy1@ornl.gov RI Zhu, Zihua/K-7652-2012; Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 NR 36 TC 12 Z9 12 U1 3 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUL 15 PY 2013 VL 307 BP 65 EP 70 DI 10.1016/j.nimb.2013.02.051 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 182DP UT WOS:000321722200016 ER PT J AU Moll, S Zhang, YW Zhu, ZH Edmondson, PD Namavar, F Weber, WJ AF Moll, Sandra Zhang, Yanwen Zhu, Zihua Edmondson, Philip D. Namavar, F. Weber, William J. TI Comparison between simulated and experimental Au-ion profiles implanted in nanocrystalline ceria SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 18th International Conference on Ion Beam Modifications of Materials (IBMM) CY SEP 02-07, 2012 CL Shandong Univ, Qingdao, PEOPLES R CHINA SP Shanghai Inst Microsystem & Informat Technol, Tsinghua Univ, Natl Nat Sci Fdn China, Shandong Univ, Minist Educ, Key Lab Particle Phys & Particle Irradiat, Shandong Univ, State Key Lab Crystal Mat, High Voltage Engn Europa B V HO Shandong Univ DE Nanocrystalline ceria; Ion distribution; Electronic stopping power; Irradiation ID MEDIUM-HEAVY IONS; RANGE PARAMETERS; LIGHT; IRRADIATION; SILICON; PHASE AB Radiation response of nanocrystalline ceria films deposited on a silicon substrate was investigated under a 3-MeV Au-ion irradiation at 300 K. A uniform grain growth cross the ceria films is observed and effective densification of the ceria thin films occurs during irradiation. The Au ion profiling was measured by secondary ion mass spectrometry (SIMS) and compared to the Au ion distribution predicted by the Stopping and Range of Ions in Solids (SRIM) code. It is observed that the Au-ion penetration depth is underestimated in comparison with the SIMS measurements. An overestimation of the electronic stopping power for heavy incident ions in the SRIM program may account for the discrepancies between the calculations and the SIMS experimental results. This work presents an approach to compensate the overestimation of the electronic stopping powers in the SRIM program by adjusting the nanocrystalline ceria target density to better predict the ion implantation profile. (C) 2013 Elsevier B.V. All rights reserved. C1 [Moll, Sandra; Zhu, Zihua] Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA. [Zhang, Yanwen; Edmondson, Philip D.; Weber, William J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Edmondson, Philip D.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Namavar, F.] Univ Nebraska Med Ctr, Omaha, NE 68198 USA. RP Moll, S (reprint author), CEA, DMN, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. EM sandra.moll@cea.fr RI Zhu, Zihua/K-7652-2012; Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 NR 20 TC 7 Z9 7 U1 0 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUL 15 PY 2013 VL 307 BP 93 EP 97 DI 10.1016/j.nimb.2012.12.119 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 182DP UT WOS:000321722200022 ER PT J AU Briscoe, JL Cho, SY Brener, I AF Briscoe, Jayson L. Cho, Sang-Yeon Brener, Igal TI Defect-assisted plasmonic crystal sensor SO OPTICS LETTERS LA English DT Article ID GLUCOSE-CONCENTRATION; NANOHOLE ARRAYS; REAL-TIME; SURFACE; RESONANCE; NANOSTRUCTURE; BIOSENSOR; BINDING; FILMS AB We demonstrate enhanced sensitivity of a nanostructured plasmonic sensor that utilizes resonance in intentional structural defects within a plasmonic crystal. The measured sensitivity of the fabricated nanosensor is similar to 500 nm/RIU showing improvement over traditional nanohole array sensors. Furthermore, the defects provide an additional design parameter to increase sensitivity by engineering plasmon lifetime. (C) 2013 Optical Society of America C1 [Briscoe, Jayson L.; Cho, Sang-Yeon] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA. [Brener, Igal] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Brener, Igal] Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Cho, SY (reprint author), New Mexico State Univ, Klipsch Sch Elect & Comp Engn, MSC 3-O,POB 30001, Las Cruces, NM 88003 USA. EM sangycho@nmsu.edu RI Cho, Sang-Yeon/C-3075-2008 OI Cho, Sang-Yeon/0000-0002-4721-4087 FU National Institute of Health [1R01ES021951-01]; National Science Foundation [1311735]; U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; Sandia National Labs/New Mexico State University Excellence in Engineering Graduate Research Fellowship FX This work was supported by the National Institute of Health under grant 1R01ES021951-01 and the National Science Foundation under grant 1311735. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). J. B. gratefully acknowledges financial support for this work provided through the Sandia National Labs/New Mexico State University Excellence in Engineering Graduate Research Fellowship. NR 27 TC 4 Z9 4 U1 1 U2 11 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 15 PY 2013 VL 38 IS 14 BP 2569 EP 2571 DI 10.1364/OL.38.002569 PG 3 WC Optics SC Optics GA 182UT UT WOS:000321770900063 PM 23939114 ER PT J AU Douguet, N Rescigno, TN Orel, AE AF Douguet, N. Rescigno, T. N. Orel, A. E. TI Carbon-K-shell molecular-frame photoelectron angular distributions in the photoisomerization of neutral ethylene SO PHYSICAL REVIEW A LA English DT Article ID CONICAL INTERSECTIONS; TIME; PHOTOIONIZATION; DYNAMICS; LASER AB Photoexcitation of neutral ethylene to its V state can initiate conformational changes of the molecule. The migration of one hydrogen atom to another carbon site occurs via a nonadiabatic passage and leads to the formation of a stable and asymmetric ethylidene isomer. We present the carbon-K-shell molecular-frame photoelectron angular distributions (MFPADs) calculated at relevant geometries in the isomerization of ethylene. The theoretical results are compared with available experimental data at the ground-state geometry of ethylene. Despite the complexity of this system and the presence of two heavy atomic centers, the main features of the photoisomerization of ethylene can be traced through the shape of the MFPADs. C1 [Douguet, N.; Orel, A. E.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Rescigno, T. N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci & Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. RP Douguet, N (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. FU USDOE by LBNL [DE-AC02-05CH11231]; US DOE Office of Basic Energy Sciences, Division of Chemical Sciences; National Science Foundation FX This work was performed under the auspices of the USDOE by LBNL under Contract No. DE-AC02-05CH11231 and was supported by the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences. A.E.O. acknowledges support by the National Science Foundation, with some of the material based on work done while serving at NSF. The authors wish to thank R. Lucchese for helpful discussions and contributions in improving the computational efficiency of the codes used in this study. NR 26 TC 2 Z9 2 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 15 PY 2013 VL 88 IS 1 AR 013412 DI 10.1103/PhysRevA.88.013412 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 183SH UT WOS:000321837000018 ER PT J AU Ticknor, C AF Ticknor, Christopher TI Excitations of a trapped two-component Bose-Einstein condensate SO PHYSICAL REVIEW A LA English DT Article ID ULTRACOLD ATOMS; TRANSITION AB We present an analysis of the excitation spectrum for a two-component quasi-two-dimensional Bose-Einstein condensate (BEC). We study how excitations change character across the miscible to immiscible phase transition. We find that the bulk excitations are typical of a single-component BEC with the addition of interface bending excitations. We study how these excitations change as a function of the interaction strength. C1 [Ticknor, Christopher] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ticknor, Christopher] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. RP Ticknor, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Ticknor, Christopher/B-8651-2014; OI Ticknor, Christopher/0000-0001-9972-4524 FU NNSA of the US DOE [DE-AC52-06NA25396]; National Science Foundation [NSF PHY11-25915]; LDRD ECR grant FX The author gratefully acknowledges support through a LDRD ECR grant, LANL which is operated by LANS, LLC for the NNSA of the US DOE under Contract No. DE-AC52-06NA25396. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915. The author also gratefully acknowledges conversations with E. Timmermans, L. A. Collins, and R. M. Wilson. NR 31 TC 8 Z9 8 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD JUL 15 PY 2013 VL 88 IS 1 AR 013623 DI 10.1103/PhysRevA.88.013623 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 183SH UT WOS:000321837000022 ER PT J AU Tong, XM Ranitovic, P Hickstein, DD Murnane, MM Kapteyn, HC Toshima, N AF Tong, Xiao-Min Ranitovic, Predrag Hickstein, Daniel D. Murnane, Margaret M. Kapteyn, Henry C. Toshima, Nobuyuki TI Enhanced multiple-scattering and intra-half-cycle interferences in the photoelectron angular distributions of atoms ionized in midinfrared laser fields SO PHYSICAL REVIEW A LA English DT Article ID ABOVE-THRESHOLD IONIZATION; HARMONIC-GENERATION; TIME; REGIME; PULSES AB We investigate the physical mechanisms responsible for fine structure in the photoelectron angular distributions from atoms subject to intense midinfrared laser fields by solving the time-dependent Schrodinger equation in the integral form. By restricting the ionization to a half cycle of the laser field and then propagating the liberated electron wave packet during the laser pulse, we show conclusively that low-energy-momenta structure in the photoelectron angular distribution originates from multiple scatterings of the tunnel-ionized electron with the ion. We also show that two conditions must be satisfied simultaneously in order to observe prominent low-energy features. First, multiple scattering of the tunnel-ionized electron wave packet is necessary. Second, tunnel ionization must dominate over multiphoton ionization. While the first condition is generally satisfied for all laser wavelengths, the second condition is satisfied only for longer laser wavelengths. C1 [Tong, Xiao-Min; Toshima, Nobuyuki] Univ Tsukuba, Fac Pure & Appl Sci, Div Mat Sci, Tsukuba, Ibaraki 3058577, Japan. [Tong, Xiao-Min] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058573, Japan. [Ranitovic, Predrag; Hickstein, Daniel D.; Murnane, Margaret M.; Kapteyn, Henry C.] Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA. [Ranitovic, Predrag; Hickstein, Daniel D.; Murnane, Margaret M.; Kapteyn, Henry C.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Ranitovic, Predrag] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Tong, XM (reprint author), Univ Tsukuba, Fac Pure & Appl Sci, Div Mat Sci, Tsukuba, Ibaraki 3058577, Japan. EM tong.xiaomin.ga@u.tsukuba.ac.jp RI Tong, Xiao-Min/A-2748-2011; Kapteyn, Henry/H-6559-2011; ranitovic, predrag/A-2282-2014 OI Tong, Xiao-Min/0000-0003-4898-3491; Kapteyn, Henry/0000-0001-8386-6317; FU Japan Society for the Promotion of Science; HA-PACS project; DOE Office of Basic Energy Sciences (AMOS program) FX This research was supported by a Grand-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and the HA-PACS project for advanced interdisciplinary computational sciences by exa-scale computing technology. D.H., M.M., and H.K. acknowledge support from the DOE Office of Basic Energy Sciences (AMOS program). NR 34 TC 12 Z9 12 U1 2 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 15 PY 2013 VL 88 IS 1 AR 013410 DI 10.1103/PhysRevA.88.013410 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 183SH UT WOS:000321837000016 ER PT J AU Arafat, HA Bakel, AJ Dilger, AK Nash, KL Rickert, PG Vandegrift, GF AF Arafat, Hassan A. Bakel, Allen J. Dilger, Andrew K. Nash, Kenneth L. Rickert, Paul G. Vandegrift, George F. TI Reclamation of contaminated groundwater using cooking oils in a novel, eco-friendly and high-efficiency solvent extraction process SO DESALINATION LA English DT Article DE Groundwater reclamation; Solvent extraction; VOC; Decontamination; Distillation; Cooking oil; Centrifugal contactor ID UNITED-STATES; WASTE-WATER; PHARMACEUTICALS; ENVIRONMENT; REMOVAL; FATE AB In this study, a new eco-friendly process was developed for the removal of volatile organic compounds (VOC) from contaminated groundwater. The new process included two steps. The first step is a solvent extraction process using a high-efficiency centrifugal contactor, in which the VOC's were extracted from the groundwater using cooking oils, acting as safe and environment-friendly solvents. In the second step, the VOC's were removed from the oil by a distillation process, after which the cooking oil can be recycled for another extraction. Using five cooking oils, distribution ratios showed high affinity of the VOC's to the oil phase, indicating efficient extraction. Hydraulic tests showed that corn oil performed best in terms of ease of mixing and separation from the water. A stage efficiency test showed that high stage efficiency, in excess of 90%, can be achieved in the centrifugal contactor. Finally, a distillation test, using a wiped-film distillation unit, showed that more than 95% of the VOC can be removed from the oil under mild operating conditions. Based on these results, a proof-of-concept for the new technology was achieved. (C) 2013 Elsevier B.V. All rights reserved. C1 [Arafat, Hassan A.] Masdar Inst Sci & Technol, Water & Environm Engn Program, Abu Dhabi, U Arab Emirates. [Bakel, Allen J.; Rickert, Paul G.; Vandegrift, George F.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Dilger, Andrew K.] Bristol Myers Squibb Co, Pennington, NJ USA. [Nash, Kenneth L.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. RP Arafat, HA (reprint author), Masdar Inst Sci & Technol, POB 54224, Abu Dhabi, U Arab Emirates. EM harafat@masdar.ac.ae FU U.S. Department of Energy [DE-AC02-06CH11357] FX The authors are grateful for the assistance of Nathan Schubring and John Knutson from Pope Scientific in the distillation tests. The authors also like to thank Dean Segal from Pope Scientific and Bret Sheldon from CINC Ind. for their help with equipment pricing. The authors also like to thank Christos Stamoudis from the Chemical Engineering Division (ANL) for his help in performing the benzene concentration analysis using the GC-MS. Argonne National Laboratory's work was supported under the U.S. Department of Energy contract DE-AC02-06CH11357. NR 27 TC 0 Z9 0 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0011-9164 EI 1873-4464 J9 DESALINATION JI Desalination PD JUL 15 PY 2013 VL 321 BP 9 EP 21 DI 10.1016/j.desa1.2013.04.029 PG 13 WC Engineering, Chemical; Water Resources SC Engineering; Water Resources GA 179QV UT WOS:000321537300003 ER PT J AU Aczel, AA Bugaris, DE Yeon, J de la Cruz, C zur Loye, HC Nagler, SE AF Aczel, A. A. Bugaris, D. E. Yeon, J. de la Cruz, C. zur Loye, H. -C. Nagler, S. E. TI Coupled Nd and B ' spin ordering in the double perovskites Nd2NaB ' O-6 (B ' = Ru, Os) SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-PROPERTIES; CRYSTAL-GROWTH; PR; LA; LN; SM; DIFFRACTION AB We present a neutron powder-diffraction study of the monoclinic double perovskite systems Nd2NaB'O-6 (B' = Ru, Os), with magnetic atoms occupying both the A and B' sites of the A(2)BB'O-6 structure. Our measurements reveal coupled spin ordering between the Nd and B' atoms with magnetic transition temperatures of 14.3(1) K for Nd2NaRuO6 and 16.2(2) K for Nd2NaOsO6. There is a type-I antiferromagnetic structure associated with the Ru and Os sublattices, with the ferromagnetic planes stacked along the c axis and [110] direction respectively, while the Nd sublattices exhibit complex, canted antiferromagnetism with different spin arrangements in each system. C1 [Aczel, A. A.; de la Cruz, C.; Nagler, S. E.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Bugaris, D. E.; Yeon, J.; zur Loye, H. -C.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Nagler, S. E.] Univ Tennessee, CIRE, Knoxville, TN 37996 USA. RP Aczel, AA (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. EM aczelaa@ornl.gov RI Nagler, Stephen/E-4908-2010; Aczel, Adam/A-6247-2016; dela Cruz, Clarina/C-2747-2013; OI Nagler, Stephen/0000-0002-7234-2339; Aczel, Adam/0000-0003-1964-1943; dela Cruz, Clarina/0000-0003-4233-2145; zur Loye, Hans-Conrad/0000-0001-7351-9098 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001061]; Scientific User Facilities Division; Heterogeneous Functional Materials for Energy Systems (HeteroFoaM) Energy Frontiers Research Center (EFRC) FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences. A.A.A., C.d.l.C., and S.E.N. were supported by the Scientific User Facilities Division. The neutron experiments were performed at the High Flux Isotope Reactor, which is sponsored by the Scientific User Facilities Division. D.E.B., J.Y., and H.z.L. would like to acknowledge financial support through the Heterogeneous Functional Materials for Energy Systems (HeteroFoaM) Energy Frontiers Research Center (EFRC), funded by the U.S. Department of Energy, Office of Basic Energy Sciences, under Award No. DE-SC0001061. NR 41 TC 8 Z9 8 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2013 VL 88 IS 1 AR 014413 DI 10.1103/PhysRevB.88.014413 PG 6 WC Physics, Condensed Matter SC Physics GA 183SR UT WOS:000321838000004 ER PT J AU Coh, S Louie, SG Cohen, ML AF Coh, Sinisa Louie, Steven G. Cohen, Marvin L. TI Theoretical study of solid iron nanocrystal movement inside a carbon nanotube SO PHYSICAL REVIEW B LA English DT Article ID MASS-TRANSPORT; ELECTROMIGRATION; SIMULATION AB We use a first-principles based kinetic Monte Carlo simulation to study the movement of a solid iron nanocrystal inside a carbon nanotube driven by the electrical current. The origin of the iron nanocrystal movement is the electromigration force. Even though the iron nanocrystal appears to be moving as a whole, we find that the core atoms of the nanocrystal are completely stationary, and only the surface atoms are moving. Movement in the contact region with the carbon nanotube is driven by electromigration forces, and the movement on the remaining surfaces is driven by diffusion. Results of our calculations also provide a simple model, which can predict the center of mass speed of the iron nanocrystal over a wide range of parameters. We find both qualitative and quantitative agreement of the iron nanocrystal center of mass speed with experimental data. C1 [Coh, Sinisa] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Coh, S (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM sinisa@civet.berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231] FX We thank David Strubbe for discussion. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 2 Z9 2 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2013 VL 88 IS 4 AR 045424 DI 10.1103/PhysRevB.88.045424 PG 10 WC Physics, Condensed Matter SC Physics GA 183SZ UT WOS:000321838800012 ER PT J AU Nica, EM Ingersent, K Zhu, JX Si, QM AF Nica, Emilian Marius Ingersent, Kevin Zhu, Jian-Xin Si, Qimiao TI Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITIONS; CRITICAL-POINT; SPATIAL CORRELATIONS; HEAVY FERMIONS; METALS; SURFACE; DIAGRAM; SYSTEM AB Recent studies of the global phase diagram of quantum-critical heavy-fermion metals prompt consideration of the interplay between the Kondo interactions and quantum fluctuations of the local moments alone. Toward this goal, we study a Bose-Fermi Kondo model (BFKM) with Ising anisotropy in the presence of a local transverse field that generates quantum fluctuations in the local-moment sector. We apply the numerical renormalization-group method to the case of a sub-Ohmic bosonic bath exponent and a constant conduction-electron density of states. Starting in the Kondo phase at zero transverse field, there is a smooth crossover with increasing transverse field from a fully screened to a fully polarized impurity spin. By contrast, if the system starts in its localized phase, then increasing the transverse field causes a continuous, Kondo-destruction transition into the partially polarized Kondo phase. The critical exponents at this quantum phase transition exhibit hyperscaling and take essentially the same values as those of the BFKM in zero transverse field. The many-body spectrum at criticality varies continuously with the bare transverse field, indicating a line of critical points. We discuss implications of these results for the global phase diagram of the Kondo lattice model. C1 [Nica, Emilian Marius; Si, Qimiao] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Ingersent, Kevin] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Nica, EM (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM en5@rice.edu OI Ingersent, Kevin/0000-0001-7071-5800; Zhu, Jianxin/0000-0001-7991-3918 FU NSF [DMR-1006985, DMR-1107814]; Robert A. Welch Foundation [C-1411]; National Nuclear Security Administration of the U.S. DOE at LANL [DE-AC52-06NA25396]; LANL LDRD Program FX We thank Stefan Kirchner, Jed Pixley, and Jianda Wu for illuminating discussions. This work has been in part supported by NSF Grants No. DMR-1006985 and No. DMR-1107814, Robert A. Welch Foundation Grant No. C-1411, and by the National Nuclear Security Administration of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396 and the LANL LDRD Program. NR 41 TC 3 Z9 3 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2013 VL 88 IS 1 AR 014414 DI 10.1103/PhysRevB.88.014414 PG 10 WC Physics, Condensed Matter SC Physics GA 183SR UT WOS:000321838000005 ER PT J AU Parker, WD Nakhmanson, SM AF Parker, William D. Nakhmanson, S. M. TI Strain-induced incommensurate distortions in epitaxial Ruddlesden-Popper-type Ba2TiO4 SO PHYSICAL REVIEW B LA English DT Article ID BARIUM ORTHOTITANATE; DIELECTRIC-PROPERTIES; STRUCTURAL-CHARACTERIZATION; ABSORPTION PROPERTIES; PHASE-TRANSFORMATION; CRYSTAL-STRUCTURE; CARBON-DIOXIDE; TI-O; NANO2; PHONONS AB With the help of first-principles-based computational techniques, we evaluate the structural, vibrational, and polar properties of a fictitious Ruddlesden-Popper-type Ba2TiO4 compound that is subjected to a range of epitaxial strains. We demonstrate that, depending on the value of the applied strain, this compound exhibits different types of incommensurate distortions, which does not happen in the similar, but better cation-size-balanced, Ca- and Sr-based structures. Furthermore, at moderate tensile strains this material develops spontaneous polarization (0.17 C/m(2) at 1.5% strain) that is directed along the perovskite planes. By virtue of having the same symmetry, planar incommensurate and polar distortions can interact with each other, which results in a variety of complicated ground-state structural arrangements whose properties could be fine tuned by epitaxial strain engineering. C1 [Parker, William D.] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Parker, William D.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Nakhmanson, S. M.] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA. [Nakhmanson, S. M.] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. RP Parker, WD (reprint author), Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Nakhmanson, Serge/A-6329-2014; Parker, William/B-4970-2012 OI Parker, William/0000-0003-2454-6094 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences; American Recovery and Reinvestment Act (ARRA) funding through the Office of Advanced Scientific Computing Research [DE-AC02-06CH11357] FX This project was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences and by American Recovery and Reinvestment Act (ARRA) funding through the Office of Advanced Scientific Computing Research under Contract No. DE-AC02-06CH11357. S.M.N. is grateful to the members of the Department of Dielectrics, Institute of Physics, the Academy of Sciences of the Czech Republic (Prague), for their hospitality during his visit to the institute in the spring of 2012. S.M.N. would also like to thank Jiri Hlinka and Jan Petzelt for illuminating discussions on the nature of incommensurate distortions in oxides, and Peter Littlewood for bringing the work of Heine and McConnell to his attention. NR 64 TC 2 Z9 2 U1 9 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2013 VL 88 IS 3 AR 035203 DI 10.1103/PhysRevB.88.035203 PG 9 WC Physics, Condensed Matter SC Physics GA 183SX UT WOS:000321838600002 ER PT J AU Adamczyk, L Adkins, JK Agakishiev, G Aggarwal, MM Ahammed, Z Alakhverdyants, AV Alekseev, I Alford, J Anson, CD Arkhipkin, D Aschenauer, E Averichev, GS Balewski, J Banerjee, A Barnovska, Z Beavis, DR Bellwied, R Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Bordyuzhin, IG Borowski, W Bouchet, J Brandin, AV Brovko, SG Bruna, E Bultmann, S Bunzarov, I Burton, TP Butterworth, J Cai, XZ Caines, H Sanchez, MCD Cebra, D Cendejas, R Cervantes, C Chaloupka, P Chang, Z Chattopadhyay, S Chen, HF Chen, JH Chen, JY Chen, L Cheng, J Cherney, M Chikanian, A Christie, W Chung, P Chwastowski, J Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Cui, X Das, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG Deng, J de Souza, RD Dhamija, S Didenko, L Ding, F Dion, A Djawotho, P Dong, X Drachenberg, JL Draper, JE Du, CM Dunkelberger, LE Dunlop, JC Efimov, LG Elnimr, M Engelage, J Eppley, G Eun, L Evdokimov, O Fatemi, R Fazio, S Fedorisin, J Fersch, RG Filip, P Finch, E Fisyak, Y Flores, E Gagliardi, CA Gangadharan, DR Garand, D Geurts, F Gibson, A Gliske, S Gorbunov, YN Grebenyuk, OG Grosnick, D Gupta, A Gupta, S Guryn, W Haag, B Hajkova, O Hamed, A Han, LX Harris, JW Hays-Wehle, JP Heppelmann, S Hirsch, A Hoffmann, GW Hofman, DJ Horvat, S Huang, B Huang, HZ Huck, P Humanic, TJ Igo, G Jacobs, WW Jena, C Judd, EG Kabana, S Kang, K Kapitan, J Kauder, K Ke, HW Keane, D Kechechyan, A Kesich, A Kikola, DP Kiryluk, J Kisel, I Kisiel, A Kizka, V Klein, SR Koetke, DD Kollegger, T Konzer, J Koralt, I Koroleva, L Korsch, W Kotchenda, L Kravtsov, P Krueger, K Kulakov, I Kumar, L Lamont, MAC Landgraf, JM Landry, KD LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, JH Leight, W LeVine, MJ Li, C Li, W Li, X Li, X Li, Y Li, ZM Lima, LM Lisa, MA Liu, F Ljubicic, T Llope, WJ Longacre, RS Lu, Y Luo, X Luszczak, A Ma, GL Ma, YG Don, DMMDM Mahapatra, DP Majka, R Margetis, S Markert, C Masui, H Matis, HS McDonald, D McShane, TS Mioduszewski, S Mitrovski, MK Mohammed, Y Mohanty, B Mondal, MM Morozov, B Munhoz, MG Mustafa, MK Naglis, M Nandi, BK Nasim, M Nayak, TK Nelson, JM Nogach, LV Novak, J Odyniec, G Ogawa, A Oh, K Ohlson, A Okorokov, V Oldag, EW Oliveira, RAN Olson, D Ostrowski, P Pachr, M Page, BS Pal, SK Pan, YX Pandit, Y Panebratsev, Y Pawlak, T Pawlik, B Pei, H Perkins, C Peryt, W Pile, P Planinic, M Pluta, J Poljak, N Porter, J Poskanzer, AM Powell, CB Pruneau, C Pruthi, NK Przybycien, M Pujahari, PR Putschke, J Qiu, H Quintero, A Ramachandran, S Raniwala, R Raniwala, S Redwine, R Riley, CK Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Ross, JF Ruan, L Rusnak, J Sahoo, NR Sahu, PK Sakrejda, I Salur, S Sandacz, A Sandweiss, J Sangaline, E Sarkar, A Schambach, J Scharenberg, RP Schmah, AM Schmidke, B Schmitz, N Schuster, TR Seele, J Seger, J Seyboth, P Shah, N Shahaliev, E Shao, M Sharma, B Sharma, M Shi, SS Shou, QY Sichtermann, EP Singaraju, RN Skoby, MJ Smirnov, D Smirnov, N Solanki, D Sorensen, P deSouza, UG Spinka, HM Srivastava, B Stanislaus, TDS Steadman, SG Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Svirida, DN Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thomas, JH Tian, J Timmins, AR Tlusty, D Tokarev, M Trentalange, S Tribble, RE Tribedy, P Trzeciak, BA Tsai, OD Turnau, J Ullrich, T Underwood, DG Van Buren, G van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Vossen, A Wada, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, YF Xiao, Z Xie, W Xin, K Xu, H Xu, N Xu, QH Xu, W Xu, Y Xu, Z Xue, L Yang, Y Yang, Y Yepes, P Yi, L Yip, K Yoo, IK Zawisza, M Zbroszczyk, H Zhang, JB Zhang, S Zhang, XP Zhang, Y Zhang, ZP Zhao, F Zhao, J Zhong, C Zhu, X Zhu, YH Zoulkarneeva, Y Zyzak, M AF Adamczyk, L. Adkins, J. K. Agakishiev, G. Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Alekseev, I. Alford, J. Anson, C. D. Arkhipkin, D. Aschenauer, E. Averichev, G. S. Balewski, J. Banerjee, A. Barnovska, Z. Beavis, D. R. Bellwied, R. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Bordyuzhin, I. G. Borowski, W. Bouchet, J. Brandin, A. V. Brovko, S. G. Bruna, E. Bueltmann, S. Bunzarov, I. Burton, T. P. Butterworth, J. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Cebra, D. Cendejas, R. Cervantes, C. Chaloupka, P. Chang, Z. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Chen, L. Cheng, J. Cherney, M. Chikanian, A. Christie, W. Chung, P. Chwastowski, J. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Cui, X. Das, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. Deng, J. Derradi de Souza, R. Dhamija, S. Didenko, L. Ding, F. Dion, A. Djawotho, P. Dong, X. Drachenberg, J. L. Draper, J. E. Du, C. M. Dunkelberger, L. E. Dunlop, J. C. Efimov, L. G. Elnimr, M. Engelage, J. Eppley, G. Eun, L. Evdokimov, O. Fatemi, R. Fazio, S. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fisyak, Y. Flores, E. Gagliardi, C. A. Gangadharan, D. R. Garand, D. Geurts, F. Gibson, A. Gliske, S. Gorbunov, Y. N. Grebenyuk, O. G. Grosnick, D. Gupta, A. Gupta, S. Guryn, W. Haag, B. Hajkova, O. Hamed, A. Han, L-X. Harris, J. W. Hays-Wehle, J. P. Heppelmann, S. Hirsch, A. Hoffmann, G. W. Hofman, D. J. Horvat, S. Huang, B. Huang, H. Z. Huck, P. Humanic, T. J. Igo, G. Jacobs, W. W. Jena, C. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kauder, K. Ke, H. W. Keane, D. Kechechyan, A. Kesich, A. Kikola, D. P. Kiryluk, J. Kisel, I. Kisiel, A. Kizka, V. Klein, S. R. Koetke, D. D. Kollegger, T. Konzer, J. Koralt, I. Koroleva, L. Korsch, W. Kotchenda, L. Kravtsov, P. Krueger, K. Kulakov, I. Kumar, L. Lamont, M. A. C. Landgraf, J. M. Landry, K. D. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, W. Li, X. Li, X. Li, Y. Li, Z. M. Lima, L. M. Lisa, M. A. Liu, F. Ljubicic, T. Llope, W. J. Longacre, R. S. Lu, Y. Luo, X. Luszczak, A. Ma, G. L. Ma, Y. G. Don, D. M. M. D. Madagodagettige Mahapatra, D. P. Majka, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. McDonald, D. McShane, T. S. Mioduszewski, S. Mitrovski, M. K. Mohammed, Y. Mohanty, B. Mondal, M. M. Morozov, B. Munhoz, M. G. Mustafa, M. K. Naglis, M. Nandi, B. K. Nasim, Md. Nayak, T. K. Nelson, J. M. Nogach, L. V. Novak, J. Odyniec, G. Ogawa, A. Oh, K. Ohlson, A. Okorokov, V. Oldag, E. W. Oliveira, R. A. N. Olson, D. Ostrowski, P. Pachr, M. Page, B. S. Pal, S. K. Pan, Y. X. Pandit, Y. Panebratsev, Y. Pawlak, T. Pawlik, B. Pei, H. Perkins, C. Peryt, W. Pile, P. Planinic, M. Pluta, J. Poljak, N. Porter, J. Poskanzer, A. M. Powell, C. B. Pruneau, C. Pruthi, N. K. Przybycien, M. Pujahari, P. R. Putschke, J. Qiu, H. Quintero, A. Ramachandran, S. Raniwala, R. Raniwala, S. Redwine, R. Riley, C. K. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Ross, J. F. Ruan, L. Rusnak, J. Sahoo, N. R. Sahu, P. K. Sakrejda, I. Salur, S. Sandacz, A. Sandweiss, J. Sangaline, E. Sarkar, A. Schambach, J. Scharenberg, R. P. Schmah, A. M. Schmidke, B. Schmitz, N. Schuster, T. R. Seele, J. Seger, J. Seyboth, P. Shah, N. Shahaliev, E. Shao, M. Sharma, B. Sharma, M. Shi, S. S. Shou, Q. Y. Sichtermann, E. P. Singaraju, R. N. Skoby, M. J. Smirnov, D. Smirnov, N. Solanki, D. Sorensen, P. deSouza, U. G. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Steadman, S. G. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Svirida, D. N. Symons, T. J. M. Szanto de Toledo, A. Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thomas, J. H. Tian, J. Timmins, A. R. Tlusty, D. Tokarev, M. Trentalange, S. Tribble, R. E. Tribedy, P. Trzeciak, B. A. Tsai, O. D. Turnau, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Vossen, A. Wada, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. F. Xiao, Z. Xie, W. Xin, K. Xu, H. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xue, L. Yang, Y. Yang, Y. Yepes, P. Yi, L. Yip, K. Yoo, I-K. Zawisza, M. Zbroszczyk, H. Zhang, J. B. Zhang, S. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, F. Zhao, J. Zhong, C. Zhu, X. Zhu, Y. H. Zoulkarneeva, Y. Zyzak, M. CA STAR Collaboration TI Third harmonic flow of charged particles in Au plus Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID TIME PROJECTION CHAMBER; MODEL; STAR AB We report measurements of the third harmonic coefficient of the azimuthal anisotropy, upsilon(3), known as triangular flow. The analysis is for charged particles in Au + Au collisions at root s(NN) = 200 GeV, based on data from the STAR experiment at the BNL Relativistic Heavy Ion Collider. Two-particle correlations as a function of their pseudorapidity separation are fit with narrow and wide Gaussians. Measurements of triangular flow are extracted from the wide Gaussian, from two-particle cumulants with a pseudorapidity gap, and also from event plane analysis methods with a large pseudorapidity gap between the particles and the event plane. These results are reported as a function of transverse momentum and centrality. A large dependence on the pseudorapidity gap is found. Results are compared with other experiments and model calculations. C1 [Adamczyk, L.; Przybycien, M.] AGH Univ Sci & Technol, Krakow, Poland. [Gliske, S.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Aschenauer, E.; Beavis, D. R.; Bland, L. C.; Burton, T. P.; Christie, W.; Debbe, R. R.; Didenko, L.; Dion, A.; Dunlop, J. C.; Fazio, S.; Fisyak, Y.; Guryn, W.; Huang, B.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Mitrovski, M. K.; Ogawa, A.; Pile, P.; Ruan, L.; Schmidke, B.; Smirnov, D.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Wang, H.; Webb, J. C.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Brovko, S. G.; Sanchez, M. Calderon de la Barca; Cebra, D.; Draper, J. E.; Flores, E.; Haag, B.; Kesich, A.; Romero, J. L.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Dunkelberger, L. E.; Huang, H. Z.; Igo, G.; Landry, K. D.; Pan, Y. X.; Shah, N.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.; Xu, W.; Zhao, F.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Derradi de Souza, R.; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Chen, J. Y.; Chen, L.; Huck, P.; Ke, H. W.; Li, Z. M.; Liu, F.; Luo, X.; Shi, S. S.; Wu, Y. F.; Yang, Y.; Zhang, J. B.] Cent China Normal Univ HZNU, Wuhan 430079, Peoples R China. [Betts, R. R.; Evdokimov, O.; Hofman, D. J.; Kauder, K.; Pandit, Y.; Pei, H.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Chwastowski, J.; Luszczak, A.] Cracow Univ Technol, Krakow, Poland. [Cherney, M.; Gorbunov, Y. N.; Don, D. M. M. D. Madagodagettige; McShane, T. S.; Ross, J. F.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Chaloupka, P.; Hajkova, O.; Pachr, M.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Barnovska, Z.; Bielcikova, J.; Chung, P.; Kapitan, J.; Rusnak, J.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Kollegger, T.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany. [Das, S.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Sarkar, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Dhamija, S.; Jacobs, W. W.; Page, B. S.; Skoby, M. J.; Stevens, J. R.; Vossen, A.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Bordyuzhin, I. G.; Koroleva, L.; Morozov, B.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [Bhasin, A.; Gupta, A.; Gupta, S.] Univ Jammu, Jammu 180001, India. [Agakishiev, G.; Alakhverdyants, A. V.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Kizka, V.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Alford, J.; Bouchet, J.; Keane, D.; Kumar, L.; Margetis, S.; Quintero, A.; Vanfossen, J. A., Jr.] Kent State Univ, Kent, OH 44242 USA. [Adkins, J. K.; Fatemi, R.; Fersch, R. G.; Korsch, W.; Ramachandran, S.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Du, C. M.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Eun, L.; Grebenyuk, O. G.; Kiryluk, J.; Kisel, I.; Klein, S. R.; Kulakov, I.; Masui, H.; Matis, H. S.; Naglis, M.; Odyniec, G.; Olson, D.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Qiu, H.; Ritter, H. G.; Sakrejda, I.; Salur, S.; Schmah, A. M.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Wieman, H.; Xu, N.; Zyzak, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Leight, W.; Redwine, R.; Seele, J.; Steadman, S. G.; van Nieuwenhuizen, G.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Novak, J.; Tarnowsky, T.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Strikhanov, M.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Jena, C.; Mohanty, B.] Natl Inst Sci Educ & Res, Bhubaneswar 751005, Orissa, India. [Anson, C. D.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.] Old Dominion Univ, Norfolk, VA 23529 USA. [Pawlik, B.; Turnau, J.] Inst Nucl Phys PAN, Krakow, Poland. [Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.; Sharma, B.] Panjab Univ, Chandigarh 160014, India. [Cendejas, R.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Nogach, L. V.] Inst High Energy Phys, Protvino, Russia. [Garand, D.; Hirsch, A.; Kikola, D. P.; Konzer, J.; Li, X.; Mustafa, M. K.; Scharenberg, R. P.; Srivastava, B.; Stringfellow, B.; Wang, F.; Wang, Q.; Xie, W.; Yi, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Oh, K.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.; Solanki, D.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Butterworth, J.; Eppley, G.; Geurts, F.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Xin, K.; Yepes, P.] Rice Univ, Houston, TX 77251 USA. [Lima, L. M.; Munhoz, M. G.; Oliveira, R. A. N.; deSouza, U. G.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Cui, X.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Deng, J.; Xu, Q. H.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Chen, J. H.; Han, L-X.; Li, W.; Ma, G. L.; Ma, Y. G.; Shou, Q. Y.; Tian, J.; Xue, L.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Borowski, W.; Kabana, S.] SUBATECH, Nantes, France. [Li, X.; Surrow, B.] Temple Univ, Philadelphia, PA 19122 USA. [Cervantes, C.; Chang, Z.; Djawotho, P.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Mohammed, Y.; Mondal, M. M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Codrington, M. J. M.; Leyva, A. Davila; Hoffmann, G. W.; Markert, C.; Oldag, E. W.; Schambach, J.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Bellwied, R.; De Silva, L. C.; Timmins, A. R.] Univ Houston, Houston, TX 77204 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, Y.; Xiao, Z.; Zhang, X. P.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Drachenberg, J. L.; Gibson, A.; Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Banerjee, A.; Chattopadhyay, S.; Nasim, Md.; Nayak, T. K.; Pal, S. K.; Sahoo, N. R.; Singaraju, R. N.; Tribedy, P.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Kisiel, A.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Sandacz, A.; Trzeciak, B. A.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.] Univ Washington, Seattle, WA 98195 USA. [Elnimr, M.; LaPointe, S.; Pruneau, C.; Putschke, J.; Sharma, M.; Tarini, L. H.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Bruna, E.; Caines, H.; Chikanian, A.; Finch, E.; Harris, J. W.; Horvat, S.; Majka, R.; Ohlson, A.; Riley, C. K.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, Krakow, Poland. RI Aparecido Negrao de Oliveira, Renato/G-9133-2015; Bruna, Elena/C-4939-2014; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Xin, Kefeng/O-9195-2016; Yi, Li/Q-1705-2016; Svirida, Dmitry/R-4909-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Voloshin, Sergei/I-4122-2013; Strikhanov, Mikhail/P-7393-2014; Pandit, Yadav/I-2170-2013; Xu, Wenqin/H-7553-2014; XIAO, Zhigang/C-3788-2015; Lednicky, Richard/K-4164-2013; Takahashi, Jun/B-2946-2012; Fazio, Salvatore /G-5156-2010; Yang, Yanyun/B-9485-2014; Rusnak, Jan/G-8462-2014; Bielcikova, Jana/G-9342-2014; Alekseev, Igor/J-8070-2014; Sumbera, Michal/O-7497-2014 OI Bruna, Elena/0000-0001-5427-1461; Huang, Bingchu/0000-0002-3253-3210; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Xin, Kefeng/0000-0003-4853-9219; Yi, Li/0000-0002-7512-2657; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Strikhanov, Mikhail/0000-0003-2586-0405; Pandit, Yadav/0000-0003-2809-7943; Xu, Wenqin/0000-0002-5976-4991; Takahashi, Jun/0000-0002-4091-1779; Yang, Yanyun/0000-0002-5982-1706; Alekseev, Igor/0000-0003-3358-9635; Sumbera, Michal/0000-0002-0639-7323 FU RHIC Operations Group at BNL; RCF at BNL; NERSC Center at LBNL; Open Science Grid consortium; Offices of NP and HEP within the US DOE Office of Science; US NSF; Sloan Foundation; CNRS/IN2P3; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC; CAS; MoST; MoE of China,; GA; MSMT of the Czech Republic; FOM; NWO of the Netherlands; DAE; DST; CSIR of India; Polish Ministry of Science and Higher Education; National Research Foundation [NRF-2012004024]; Ministry of Science, Education and Sports of the Republic of Croatia; RosAtom of Russia FX For supplying data and model calculations we thank Ante Bilandzic (ALICE), Kevin Dusling (glasma model), Fernando Gardim (NeXSPheRIO), Jiangyong Jia (ATLAS), Che-Ming Ko (AMPT), Volodya Konchakovski (PHSD), Bjoern Schenke (hydro), Raimond Snellings (ALICE), and Jun Xu (AMPT). We also benefited greatly from conversations with Jean-Yves Ollitrault, Rajeev Bhalerao, and Kevin Dusling. We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science, the US NSF, the Sloan Foundation, CNRS/IN2P3, FAPESP CNPq of Brazil, Ministry of Education and Science of the Russian Federation, NNSFC, CAS, MoST, and MoE of China, GA and MSMT of the Czech Republic, FOM and NWO of the Netherlands, DAE, DST, and CSIR of India, Polish Ministry of Science and Higher Education, National Research Foundation (NRF-2012004024), Ministry of Science, Education and Sports of the Republic of Croatia, and RosAtom of Russia. NR 54 TC 66 Z9 66 U1 1 U2 50 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUL 15 PY 2013 VL 88 IS 1 AR 014904 DI 10.1103/PhysRevC.88.014904 PG 11 WC Physics, Nuclear SC Physics GA 183TE UT WOS:000321839300002 ER PT J AU Tong, S Narayanan, M Ma, BH Liu, SS Koritala, RE Balachandran, U Shi, DL AF Tong, Sheng Narayanan, Manoj Ma, Beihai Liu, Shanshan Koritala, Rachel E. Balachandran, Uthamalingam Shi, Donglu TI Effect of lanthanum content and substrate strain on structural and electrical properties of lead lanthanum zirconate titanate thin films SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Ferroelectricity; Thin films; Sol-gel growth; Dielectric properties ID FERROELECTRIC CERAMICS; PLZT CERAMICS; GRAIN-SIZE; CAPACITORS; DEPOSITION; THICKNESS; FIELD; LAYER AB We investigated the structural, electrical properties of Pb1-xLax(Zr0.52Ti0.48)O-3 (PLZT) thin films under tensile (Pt/Si) and compressive (LaNiO3/Ni) strain-states, respectively. The lattice parameter, grain size, remanent polarization of the thin films decreased with increasing La content For identical compositions, the Curie temperature, remanent polarization, and coercive field were always higher for films on LaNiO3/Ni than Pt/Si. These suggest that the electrical properties of PLZT thin films can be tuned by altering the dopant level and substrate-induced strain levels. (C) 2013 Elsevier B.V. All rights reserved. C1 [Tong, Sheng; Shi, Donglu] Univ Cincinnati, Coll Engn & Appl Sci, Cincinnati, OH 45221 USA. [Tong, Sheng; Narayanan, Manoj; Ma, Beihai; Liu, Shanshan; Balachandran, Uthamalingam] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Koritala, Rachel E.] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA. RP Tong, S (reprint author), Univ Cincinnati, Coll Engn & Appl Sci, Cincinnati, OH 45221 USA. EM shengtg@mail.uc.edu RI Tong, Sheng/A-2129-2011; Ma, Beihai/I-1674-2013 OI Tong, Sheng/0000-0003-0355-7368; Ma, Beihai/0000-0003-3557-2773 FU U.S. Department of Energy, Vehicle Technologies Program [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Vehicle Technologies Program, under Contract DE-AC02-06CH11357. The electron microscopy was carried out at the Electron Microscopy Center for Materials Research at Argonne National Laboratory. NR 29 TC 2 Z9 2 U1 2 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD JUL 15 PY 2013 VL 140 IS 2-3 BP 427 EP 430 DI 10.1016/j.matchemphys.2013.03.067 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 170GF UT WOS:000320837700001 ER PT J AU Gu, LH AF Gu, Lianhong TI An eddy covariance theory of using O-2 to CO2 exchange ratio to constrain measurements of net ecosystem exchange of any gas species SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE O-2; CO2; Oxidation state; Eddy covariance; Net ecosystem exchange ID FLUX MEASUREMENTS; ATMOSPHERIC O-2; WATER-VAPOR; OPEN-PATH; CARBON; ANALYZERS; EQUATION; PEARMAN; STATE; HEAT AB After many decades of efforts, it remains a challenge to accurately measure mass and energy exchanges between biosphere and atmosphere. The widely used, dry air-based eddy covariance (EC) approach underestimates surface net available energy and nighttime ecosystem respiration and reports photosynthesis under conditions when none should occur. So far many explanations for these problems have been suggested but convincing evidence and reliable solutions have yet to be found. There is a need for critical thinking about the very foundation of current EC theory and for fundamentally different ways of making flux measurements. Here I propose a new EC theory that constrains measurements of net ecosystem exchange (NEE) of any atmospheric gas species with the ecosystem O-2 to CO2 exchange ratio (g), also known as oxidative ratio. The fundamental equation of the new theory is derived. I show that if O-2 + g CO2 is treated as a virtual bi-molecular gas species, denoted as gCO(4), then the fundamental equation of the new theory is identical in form to the fundamental equation of EC when the ecosystem budget of a single atmospheric constituent (e.g. N-2 or Ar) or dry air is used to constrain NEE measurements of atmospheric gas species. A convenient method for measuring g is also described. Compared with the current, dry air-based approach, the proposed gCO(4)-based approach uses less restrictive assumptions, avoids indirect calculations of multiple variables, and thus prevents losses of flux covariances. Existing O-2 measuring technologies can be improved in response time to meet the requirements of the new approach. The adoption of the gCO(4)-based approach will greatly enhance the scientific and societal values of flux sites and networks by eliminating measurement biases and by providing value-added datasets to enable understanding the oxidation state of the biosphere. (C) 2013 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Gu, LH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Bldg 2040, Oak Ridge, TN 37831 USA. EM lianhong-gu@ornl.gov RI Gu, Lianhong/H-8241-2014 OI Gu, Lianhong/0000-0001-5756-8738 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, Climate and Environmental Sciences Division; U.S. Department of Energy [DE-AC05-00OR22725] FX Many thanks to Drs. Paul Hanson, William Massman, Stephen Pallardy, Charlotte Barbier and Todd Scanlon for their constructive comments. The study was carried out in Oak Ridge National Laboratory (ORNL) with support from U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, Climate and Environmental Sciences Division. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 28 TC 1 Z9 1 U1 2 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD JUL 15 PY 2013 VL 176 BP 104 EP 110 DI 10.1016/j.agrformet.2013.03.012 PG 7 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 165IE UT WOS:000320476200010 ER PT J AU Lin, L Shao, SH Weinan, E AF Lin, Lin Shao, Sihong Weinan, E. TI Efficient iterative method for solving the Dirac-Kohn-Sham density functional theory SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Relativistic density functional theory; Dirac-Kohn-Sham equations; Spin-orbit coupling; Iterative methods; LOBPCG-F; Variational collapse; Spectral pollution ID ELECTRONIC-STRUCTURE CALCULATIONS; TOTAL-ENERGY CALCULATIONS; GAUSSIAN-BASIS SET; MOLECULAR-DYNAMICS; FOCK CALCULATIONS; KINETIC BALANCE; SYSTEMS; EQUATION; GAS; PSEUDOPOTENTIALS AB We present for the first time an efficient iterative method to directly solve the four-component Dirac-Kohn-Sham (DKS) density functional theory. Due to the existence of the negative energy continuum in the DKS operator, the existing iterative techniques for solving the Kohn-Sham systems cannot be efficiently applied to solve the DKS systems. The key component of our method is a novel filtering step (F) which acts as a preconditioner in the framework of the locally optimal block preconditioned conjugate gradient (LOBPCG) method. The resulting method, dubbed the LOBPCG-F method, is able to compute the desired eigenvalues and eigenvectors in the positive energy band without computing any state in the negative energy band. The LOBPCG-F method introduces mild extra cost compared to the standard LOBPCG method and can be easily implemented. We demonstrate our method in the pseudopotential framework with a planewave basis set which naturally satisfies the kinetic balance prescription. Numerical results for Pt-2, Au-2, TlF, and Bi2Se3 indicate that the LOBPCG-F method is a robust and efficient method for investigating the relativistic effect in systems containing heavy elements. (C) 2013 Elsevier Inc. All rights reserved. C1 [Lin, Lin] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Shao, Sihong] Peking Univ, LMAM, Beijing 100871, Peoples R China. [Shao, Sihong] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China. [Weinan, E.] Princeton Univ, Dept Math, Princeton, NJ 08544 USA. [Weinan, E.] Princeton Univ, PACM, Princeton, NJ 08544 USA. [Weinan, E.] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China. RP Shao, SH (reprint author), Peking Univ, LMAM, Beijing 100871, Peoples R China. EM linlin@lbl.gov; sihong@math.pku.edu.cn; weinan@math.princeton.edu FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the U.S. Department of Energy [DE-AC02-05CH11231]; National Natural Science Foundation of China [11101011]; Specialized Research Fund for the Doctoral Program of Higher Education [20110001120112]; National Science Foundation [DMS-1065894]; U.S. Department of Energy [DE-SC0008626]; Program in Applied and Computational Mathematics at Princeton University; Lawrence Berkeley National Laboratory FX This work is partially supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the U.S. Department of Energy contract number DE-AC02-05CH11231 (L. L.), the National Natural Science Foundation of China under the Grant No. 11101011 and the Specialized Research Fund for the Doctoral Program of Higher Education under the Grant No. 20110001120112 (S. S.), and the National Science Foundation under the Grant No. DMS-1065894 and the U.S. Department of Energy under the Grant No. DE-SC0008626 (W. E). S. S. acknowledges the support from the Program in Applied and Computational Mathematics at Princeton University and from the Lawrence Berkeley National Laboratory for his sabbatical visit in the first half of 2012, during which the work on this paper is initiated. The authors are grateful to the useful discussions with Roberto Car, Wibe De Jong, Jianfeng Lu, Emil Prodan, Chao Yang, and Yong Zhang. NR 69 TC 1 Z9 1 U1 1 U2 23 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 15 PY 2013 VL 245 BP 205 EP 217 DI 10.1016/j.jcp.2013.03.030 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 167AT UT WOS:000320603300010 ER PT J AU Banks, JW Henshaw, WD Sjogreen, B AF Banks, J. W. Henshaw, W. D. Sjoegreen, B. TI A stable FSI algorithm for light rigid bodies in compressible flow SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Fluid-structure interaction; Added mass instability; Moving overlapping grids; Compressible fluid flow; Rigid bodies ID FLUID-STRUCTURE INTERACTION; ADAPTIVE MESH REFINEMENT; NUMERICAL-SIMULATION; OVERLAPPING GRIDS; COMPUTATION AB In this article we describe a stable partitioned algorithm that overcomes the added mass instability arising in fluid-structure interactions of light rigid bodies and inviscid compressible flow. The new algorithm is stable even for bodies with zero mass and zero moments of inertia. The approach is based on a local characteristic projection of the force on the rigid body and is a natural extension of the recently developed algorithm for coupling compressible flow and deformable bodies [1-3]. The new algorithm advances the solution in the fluid domain with a standard upwind scheme and explicit time-stepping. The Newton-Euler system of ordinary differential equations governing the motion of the rigid body is augmented by added mass correction terms. This system, which is very stiff for light bodies, is solved with an A-stable diagonally implicit Runge-Kutta scheme. The implicit system (there is one independent system for each body) consists of only 3d + d(2) scalar unknowns in d = 2 or d = 3 space dimensions and is fast to solve. The overall cost of the scheme is thus dominated by the cost of the explicit fluid solver. Normal mode analysis is used to prove the stability of the approximation for a one-dimensional model problem and numerical computations confirm these results. In multiple space dimensions the approach naturally reveals the form of the added mass tensors in the equations governing the motion of the rigid body. These tensors, which depend on certain surface integrals of the fluid impedance, couple the translational and angular velocities of the body. Numerical results in two space dimensions, based on the use of moving overlapping grids and adaptive mesh refinement, demonstrate the behavior and efficacy of the new scheme. These results include the simulation of the difficult problems of shock impingement on an ellipse and a more complex body with appendages, both with zero mass. (C) 2013 Elsevier Inc. All rights reserved. C1 [Banks, J. W.; Henshaw, W. D.; Sjoegreen, B.] Ctr Appl Sci Comp, Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Banks, JW (reprint author), Ctr Appl Sci Comp, Lawrence Livermore Natl Lab, L 422, Livermore, CA 94551 USA. EM banks20@llnl.gov; henshaw1@llnl.gov; sjogreen2@llnl.gov RI Banks, Jeffrey/A-9718-2012 FU U.S. Department of Energy (DOE); Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE from the ASCR Applied Math Program FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by DOE contracts from the ASCR Applied Math Program. NR 25 TC 3 Z9 3 U1 0 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 15 PY 2013 VL 245 BP 399 EP 430 DI 10.1016/j.jcp.2013.02.050 PG 32 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 167AT UT WOS:000320603300020 ER PT J AU Lei, CH Chen, BW Li, XL Qi, W Liu, J AF Lei, Chenghong Chen, Baowei Li, Xiaolin Qi, Wen Liu, Jun TI Non-destructively shattered mesoporous silica for protein drug delivery SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE Mesoporous silica; Non-destructive shattering; Intramesoporous structure; Protein drug delivery ID SYNTHESIS TEMPERATURE; CATALYTIC ACTIVITY; PORE CONNECTIVITY; MOLECULAR-SIEVES; NANOPARTICLES; ADSORPTION; SURFACES; RELEASE; SYSTEMS; SIZE AB Mesoporous silicas have been extensively used for entrapping small chemical molecules and biomacromolecules for drug delivery. We hypothesize that the loading density of biomacromolecules such as proteins in mesoporous silicas could be limited due to disordering in the pore structure and long diffusion time in the pore channels. We shattered mesoporous silicas non-destructively resulting in improved intramesoporous structures and reduced particle sizes in aqueous solutions by a powerful sonication, where the mesoporous structures were still well maintained. The sonication-shattered mesoporous silica can increase the protein loading density to nearly 2.7 times as high as that of the non-shattered one, demonstrating that significantly more mesopore space of the silica could be accessible by the protein molecules, which may result in more sustained protein drug delivery. (C) 2013 Elsevier Inc. All rights reserved. C1 [Lei, Chenghong; Chen, Baowei; Li, Xiaolin; Qi, Wen; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lei, CH (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM chenghong.lei@pnnl.gov; jun.liu@pnnl.gov FU NIH National Institute of General Medical Sciences [R01GM080987]; U.S. Department of Energy (DOE) Office of Basic Energy Sciences [KC020105-FWP12152]; Transformational Materials Science Initiative of Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830]; China Scholarship Council FX This research is supported by the NIH National Institute of General Medical Sciences (Grant number R01GM080987), the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (Award KC020105-FWP12152), and the Transformational Materials Science Initiative of Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. Wen Qi thanks the partial financial support from the China Scholarship Council. NR 29 TC 3 Z9 3 U1 2 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD JUL 15 PY 2013 VL 175 BP 157 EP 160 DI 10.1016/j.micromeso.2013.03.022 PG 4 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 165IT UT WOS:000320477800020 PM 23687455 ER PT J AU Lorenz, M Ovchinnikova, OS Kertesz, V Van Berkel, GJ AF Lorenz, Matthias Ovchinnikova, Olga S. Kertesz, Vilmos Van Berkel, Gary J. TI Laser microdissection and atmospheric pressure chemical ionization mass spectrometry coupled for multimodal imaging SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID HIGH-RESOLUTION; SINGLE CELLS; ION FORMATION; IN-SITU; TISSUE; MATRIX; MALDI; ABLATION; MICROSCOPE; SPECIMENS AB RATIONALE Improvement in spatial resolution of atmospheric pressure molecular chemical imaging is required to resolve distinct surface features in the low micrometer and sub-micrometer scale. Laser capture microdissection systems have the capability to focus laser light to a few micrometers. This type of system, when employed for laser ablation (LA) mass spectrometry (MS)-based chemical imaging, has the potential to achieve high spatial resolution with multimodal optical and chemical imaging capability. METHODS A commercially available laser capture microdissection system was coupled to a modified ion source of a mass spectrometer. This design allowed for sampling of laser-ablated material via a transfer tube directly into the ionization region. Ionization of the ablated material was accomplished using atmospheric pressure chemical ionization (APCI). RESULTS Rhodamine 6G dye of red permanent marker ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from the mass spectral data. Employing a spot diameter of 8 mu m using the 10x microscope cutting objective and lateral oversampling resulted in a pixel size of about 3.7 mu m in the same dimension. Distinguishing between features approximately 13 mu m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion co-registering optical and mass spectral images. CONCLUSIONS A LA/APCI-MS system was developed that comprised a commercially available laser microdissection instrument for transmission geometry LA and a modestly modified ion source for secondary ionization of the ablated material. The set-up was successfully applied for multimodal imaging using the ability to co-register bright field, fluorescence and mass spectral chemical images on one platform. Published in 2013. This article is a US Government work and is in the public domain in the USA. C1 [Lorenz, Matthias; Ovchinnikova, Olga S.; Kertesz, Vilmos; Van Berkel, Gary J.] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016; Lorenz, Matthias/F-8273-2016 OI Kertesz, Vilmos/0000-0003-0186-5797; Lorenz, Matthias/0000-0003-0867-8548 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy [DE-AC05-00OR22725]; U.S. Government [DE-AC05-00OR22725] FX Susan Ballard (SE Area Sales Manager), Michael Boyce (Research Microscopy Specialist), and Robyn Schlicher (Research Applications Specialist) of Leica Microsystems are thanked for the loan of the LMD7000 and operational training. Justin Wiseman (Prosolia, Inc.) is thanked for providing the mouse brain thin tissue sections. This research was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy under Contract DE-AC05-00OR22725 with ORNL, managed and operated by UT-Battelle, LLC. This manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U.S. Government purposes. NR 42 TC 14 Z9 14 U1 2 U2 53 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD JUL 15 PY 2013 VL 27 IS 13 BP 1429 EP 1436 DI 10.1002/rcm.6593 PG 8 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 156HD UT WOS:000319811700002 PM 23722677 ER PT J AU Wickramanayake, S Hopkinson, D Myers, C Sui, L Luebke, D AF Wickramanayake, Shan Hopkinson, David Myers, Christina Sui, Lang Luebke, David TI Investigation of transport and mechanical properties of hollow fiber membranes containing ionic liquids for pre-combustion carbon dioxide capture SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Hollow fiber; Ionic liquid; Carbon dioxide; Transport properties; Mechanical properties ID GAS SEPARATION MEMBRANES; MICROFILTRATION MEMBRANES; ELECTRON-MICROGRAPHS; IMAGE-ANALYSIS; PERMEABILITY AB Polymeric hollow fiber supported ionic liquid membranes were fabricated utilizing Matrimid (R) and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]) as the selected polymeric and ionic liquid materials, respectively. The fibers were spun via a dry-wet nonsolvent-induced phase separation procedure, employing a single layer spinneret extrusion system. Four different types of membranes were fabricated using four morphologically different hollow fiber supports. These membranes take advantage of the fiber morphology combined with a supported ionic liquid to enable more efficient mass transfer than flat membranes. Initially the membranes had a low separation performance for CO2/H-2; however, upon changing the porosity and support morphology, better permeance and selectivity were achieved. Transport properties of CO2 and H-2 are reported for hollow fiber membranes containing an ionic liquid in the temperature range from 37 to 150 degrees C. The glass transition temperature, Youngs modulus, and tensile strength are also reported. The volume fractions of polymer, macro-voids, and micro-voids were determined using a combination of density measurements and an SEM image analysis technique. These quantities were then used to calculate both the bulk fiber porosity and the porosity of the micro-porous region. The surface porosity was also estimated by image analysis. It was observed that the transport and mechanical properties of the fiber were influenced by porosity. (C) 2013 Elsevier B.V. All rights reserved. C1 [Wickramanayake, Shan; Hopkinson, David; Myers, Christina; Luebke, David] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Wickramanayake, Shan] URS Energy & Construct, Pittsburgh, PA 15236 USA. [Sui, Lang] Oak Ridge Inst Sci & Educ, Pittsburgh, PA 15236 USA. RP Wickramanayake, S (reprint author), URS Energy & Construct, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM shan.wickramanayake@urs.com NR 24 TC 8 Z9 9 U1 1 U2 89 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD JUL 15 PY 2013 VL 439 BP 58 EP 67 DI 10.1016/j.memsci.2013.03.039 PG 10 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 152AI UT WOS:000319501200007 ER PT J AU Amrose, S Gadgil, A Srinivasan, V Kowolik, K Muller, M Huang, J Kostecki, R AF Amrose, Susan Gadgil, Ashok Srinivasan, Venkat Kowolik, Kristin Muller, Marc Huang, Jessica Kostecki, Robert TI Arsenic removal from groundwater using iron electrocoagulation: Effect of charge dosage rate SO JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING LA English DT Article DE Electrocoagulation; arsenic; water treatment; Bangladesh; India; Cambodia; dosage rate ID ZERO-VALENT IRON; K-EDGE EXAFS; AS(III) OXIDATION; FERRIC-CHLORIDE; WATER-TREATMENT; DRINKING-WATER; WASTE-WATER; FE; CHEMISTRY; GENERATION AB We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic below 10g/L in synthetic Bangladesh groundwater and in real groundwater from Bangladesh and Cambodia, while investigating the effect of operating parameters that are often overlooked, such as charge dosage rate. We measure arsenic removal performance over a larger range of current density than in any other single previous EC study (5000-fold: 0.02 100mA/cm2) and over a wide range of charge dosage rates (0.060 18 Coulombs/L/min). We find that charge dosage rate has significant effects on both removal capacity (g-As removed/Coulomb) and treatment time and is the appropriate parameter to maintain performance when scaling to different active areas and volumes. We estimate the operating costs of EC treatment in Bangladesh groundwater to be $0.22/m3. Waste sludge (approximate to 80 120mg/L), when tested with the Toxic Characteristic Leachate Protocol (TCLP), is characterized as non-hazardous. Although our focus is on developing a practical device, our results suggest that As[III] is mostly oxidized via a chemical pathway and does not rely on processes occurring at the anode. Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A, to view the free supplemental file. C1 [Amrose, Susan; Gadgil, Ashok; Muller, Marc; Huang, Jessica] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Amrose, Susan; Gadgil, Ashok; Srinivasan, Venkat; Kowolik, Kristin; Kostecki, Robert] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Amrose, S (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 100 Blum Hall,5570, Berkeley, CA 94720 USA. EM susan.e.addy@gmail.com OI Gadgil, Ashok/0000-0002-0357-9455 FU Richard C. Blum Center for Developing Economies; USEPA P3 (People, Prosperity, and Planet) Phase I award; UC Berkeley Bears Breaking Boundaries Contest; LDRD funds from Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge support for this work by The Richard C. Blum Center for Developing Economies, the USEPA P3 (People, Prosperity, and Planet) Phase I award, the UC Berkeley Bears Breaking Boundaries Contest and LDRD funds from Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. We are also thankful to Iqbal and Kamal Quadir and the non-profit organization RDI-Cambodia for supporting field trials, along with the students who have supported this work, including Case van Genuchten, Lei Li, Rebecca Lin, Andy Torkelson, Shreya Ramesh, Carol Soares, Michele Muller, John Wang, Debbie Cheng, Marianna Kowalczyk, Kate Ming, Scott McLaughlin, Yola Bayram, and Johanna Mathieu. Thanks also to LBNL researchers Jonathan Slack and Howdy Goudey for generous assistance and guidance in the design and fabrication of various reactors. NR 41 TC 19 Z9 19 U1 5 U2 97 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1093-4529 J9 J ENVIRON SCI HEAL A JI J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. PD JUL 15 PY 2013 VL 48 IS 9 BP 1019 EP 1030 DI 10.1080/10934529.2013.773215 PG 12 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 122TT UT WOS:000317341700004 PM 23573922 ER PT J AU Baggetto, L Ganesh, P Meisner, RP Unocic, RR Jumas, JC Bridges, CA Veith, GM AF Baggetto, Loic Ganesh, P. Meisner, Roberta P. Unocic, Raymond R. Jumas, Jean-Claude Bridges, Craig A. Veith, Gabriel M. TI Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory SO JOURNAL OF POWER SOURCES LA English DT Article DE Sodium ion reaction of Sn anodes; Na5Sn2 (R-3m) metastable phase (XRD-TEM-SAED); Phase predictions (DFT); Sn-119 Mossbauer spectroscopy; Surface chemistry (XPS) ID AUGMENTED-WAVE METHOD; BATTERIES; ELECTRODES; INSERTION; CAPACITY; KINETICS AB Tin anodes show a rich structure and reaction chemistry which we have investigated in detail. Upon discharge five plateaus are observed corresponding to beta-Sn, an unidentified phase (Na/Sn = 0.6), an amorphous phase (Na/Sn = 1.2), a hexagonal R-3m Na5Sn2, and fully sodiated I-43d Na15Sn4. With charging there are six plateaus related to the formation of Na5Sn2 followed by the formation of amorphous phases and beta-Sn. Upon cycling the formation of metastable Na5Sn2 seems to be suppressed. Theoretical voltages calculated from existing crystal structures using DFT provide a good match with constant current and quasi-equilibrium measurements (GITT). Search for additional (meta)stable phases using cluster-expansion method predicts many phases lower in energy than the convex hull obtained from known structures, including the R-3m Na5Sn2 phase. The presence of multiple phases in varying lattices with similar formation energy suggests why the reaction mechanism is non-reversible. Sn-119 Mossbauer spectroscopy results indicate a decrease of the isomer shift with increasing Na/Sn content, which is less pronounced than for Li-Sn compounds likely due to the lower electropositivity of Na. The electrode surface is terminated with an SEI layer rich in carbonates (Na2CO3 and Na CO3R) as evidenced by XPS. After charge at 2 V, strong evidence for the formation of oxidized Sn4+ is obtained. Subjecting the electrode to a rest after charge at 2 V reveals that aging in the electrolyte reduces the oxidized Sn4+ into Sn2+ and Sn-0, and concomitantly suppresses the electrolyte decomposition represented by an anomalous discharge plateau at 1.2 V. Thereby, the catalytic decomposition of the electrolyte during discharge is caused by nanosized Sn particles covered by oxidized Sn4+ and not by pure metallic Sn. (c) 2013 Elsevier B.V. All rights reserved. C1 [Baggetto, Loic; Meisner, Roberta P.; Unocic, Raymond R.; Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Ganesh, P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Meisner, Roberta P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Jumas, Jean-Claude] Univ Montpellier 2, Inst Charles Gerhardt, F-34095 Montpellier 5, France. [Bridges, Craig A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Baggetto, L (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM baggettol@ornl.gov; veithgm@ornl.gov RI Ganesh, Panchapakesan/L-5571-2013; Ganesh, Panchapakesan/E-3435-2012; Baggetto, Loic/D-5542-2017; OI Ganesh, Panchapakesan/0000-0002-7170-2902; Baggetto, Loic/0000-0002-9029-2363; Unocic, Raymond/0000-0002-1777-8228 FU U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division; ORNL's Shared Research Equipment (ShaRE) User Program (Microscopy); DOE-BES; Region Languedoc-Roussillon (France) FX This work was supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Research supported by ORNL's Shared Research Equipment (ShaRE) User Program (Microscopy) and computations performed at the Center for Nanophase Materials Sciences (CNMS) are both sponsored by DOE-BES. JCJ gratefully acknowledges Region Languedoc-Roussillon (France) for the financial support to the "X-rays and gamma-rays platform" of Universite Montpellier II in relation with Mossbauer spectroscopy experiments. NR 25 TC 69 Z9 70 U1 28 U2 393 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2013 VL 234 BP 48 EP 59 DI 10.1016/j.jpowsour.2013.01.083 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 120DO UT WOS:000317151200007 ER PT J AU Lee, SH Yoon, CS Amine, K Sun, YK AF Lee, Sang-Hyuk Yoon, Chong Seung Amine, Khalil Sun, Yang-Kook TI Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O-2 by AlF3 coating SO JOURNAL OF POWER SOURCES LA English DT Article DE Layered materials; Cathode materials; Dry coating; Lithium-ion batteries ID LITHIUM SECONDARY BATTERIES; LI-ION BATTERIES; CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; LINI0.8CO0.15AL0.05O2 CATHODES; ELEVATED-TEMPERATURE; LICOO2 CATHODE; COPRECIPITATION; CELLS AB The surface of a Li[Ni0.8Co0.15Al0.05]O-2 cathode material was coated by a 50-nm thick AlF3 layer using a simple dry coating process. Although the initial discharge capacity of pristine and AlF3-coated Li [Ni0.8Co0.15Al0.05]O-2 was nearly same, the AlF3-coating significantly improved the electrochemical performances of [Ni0.8Co0.15Al0.05]O-2 in a full cell configuration (graphite anode), especially at an elevated temperature (55 degrees C). Furthermore, the AlF3-coated [Ni0.8Co0.15Al0.05]O-2 had better thermal stability than the pristine electrode. The improved electrochemical performance likely arose from the AlF3 coating layer which may have retarded the transition metal dissolution from HF attack. Electrochemical impedance spectroscopy and transmission electron microscopy provided direct evidence that the AlF3 coating layer suppressed the increase in charge transfer resistance and cathode material pulverization during cycling. Published by Elsevier B.V. C1 [Lee, Sang-Hyuk; Sun, Yang-Kook] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. [Yoon, Chong Seung] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea. [Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Amine, K (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM amine@anl.gov; yksun@hanyang.ac.kr RI Amine, Khalil/K-9344-2013 FU National Research Foundation of Korea (NRF) grant; Korea government (MEST) [2009-0092780]; Human Resources Development program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant [20124010203290]; Korea government Ministry of Knowledge Economy FX This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-0092780) and the Human Resources Development program (No. 20124010203290) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy. NR 24 TC 51 Z9 56 U1 18 U2 325 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2013 VL 234 BP 201 EP 207 DI 10.1016/j.jpowsour.2013.01.045 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 120DO UT WOS:000317151200023 ER PT J AU Storey, JME Sluder, CS Lance, MJ Styles, DJ Simko, SJ AF Storey, John M. E. Sluder, C. Scott Lance, Michael J. Styles, Daniel J. Simko, Steven J. TI Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies of Deposit Properties and Microstructure SO HEAT TRANSFER ENGINEERING LA English DT Article AB This article reports on the results of experimental efforts aimed at improving the understanding of the mechanisms and conditions at play in the fouling of exhaust gas recirculation coolers. An experimental apparatus was constructed to utilize simplified surrogate heat exchanger tubes in lieu of full-size heat exchangers. The use of these surrogate tubes allowed removal of the tubes after exposure to engine exhaust for study of the deposit layer and its properties. The exhaust used for fouling the surrogate tubes was produced using a modern medium-duty diesel engine fueled with both ultra-low-sulfur diesel and biodiesel blends. At long exposure times, no significant difference in the fouling rate was observed between fuel types and hydrocarbons levels. Surface coatings for the tubes were also evaluated to determine their impact on deposit growth. No surface treatment or coating produced a reduction in the fouling rate or any evidence of deposit removal. In addition, microstructural analysis of the fouling layers was performed using optical and electron microscopy in order to better understand the deposition mechanism. The experimental results are consistent with thermophoretic deposition for deposit formation, and van der Waals attraction between the deposit surface and exhaust-borne particulate. C1 [Storey, John M. E.; Sluder, C. Scott; Lance, Michael J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Styles, Daniel J.; Simko, Steven J.] Ford Motor Co, Dearborn, MI 48121 USA. RP Storey, JME (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6472, Oak Ridge, TN 37831 USA. EM storeyjm@ornl.gov RI Lance, Michael/I-8417-2016; OI Lance, Michael/0000-0001-5167-5452; Sluder, Charles Scott/0000-0002-2597-1968 NR 17 TC 2 Z9 2 U1 0 U2 50 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0145-7632 J9 HEAT TRANSFER ENG JI Heat Transf. Eng. PD JUL 15 PY 2013 VL 34 IS 8-9 SI SI BP 655 EP 664 DI 10.1080/01457632.2012.738319 PG 10 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 109BZ UT WOS:000316341500002 ER PT J AU Akin, MC Chau, R AF Akin, M. C. Chau, R. TI Observations on shock induced chemistry of cyclohexane SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HIGH-PRESSURE; PHASE-TRANSITIONS; ABSORPTION-SPECTROSCOPY; RAMAN-SCATTERING; DENSE MATTER; COMPRESSION; GPA; HYDROCARBONS; EQUATION; BENZENE AB We use double pass absorption spectroscopy to examine shock induced reactions in situ in cyclohexane and benzene at pressures up to 33.1 GPa. Reactions in cyclohexane begin by 27 GPa and complete by 33.1 GPa. Reactions in benzene are observed to begin by 12 GPa and are complete by 18 GPa. Absorption spectra indicate that the first reaction in cyclohexane occurs within or near the shock front, and that a metastable local equilibrium is reached in the post-shock state. A second process may be observed upon reshock at the lower pressures, suggesting a new equilibrium is reached post-reshock as well. Absorption bands are consistent with the formation of short radicals or fragments upon decomposition; however, spectral resolution is too low to confirm this mechanism. (C) 2013 AIP Publishing LLC. C1 [Akin, M. C.; Chau, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Akin, MC (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM akin1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Our thanks to Bob Nafzinger, Elida White, and David Layne for their technical support. NR 33 TC 1 Z9 1 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2013 VL 139 IS 2 AR 024502 DI 10.1063/1.4812374 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 182RS UT WOS:000321762300034 PM 23862948 ER PT J AU Peverati, R Head-Gordon, M AF Peverati, Roberto Head-Gordon, Martin TI Orbital optimized double-hybrid density functionals SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; PLESSET PERTURBATION-THEORY; THERMOCHEMICAL KINETICS; ELECTRONIC-STRUCTURE; CORRELATION-ENERGY; BOND-DISSOCIATION; WAVE-FUNCTIONS; BASIS-SETS; EXCHANGE; ACCURATE AB This paper advocates development of a new class of double-hybrid (DH) density functionals where the energy is fully orbital optimized (OO) in presence of all correlation, rather than using a final non-iterative second order perturbative correction. The resulting OO-DH functionals resolve a number of artifacts associated with conventional DH functionals, such as first derivative discontinuities. To illustrate the possibilities, two non-empirical OO-DH functionals are obtained from existing DH functionals based on PBE: OO-PBE0-DH and OO-PBE0-2. Both functionals share the same functional form, with parameters determined on the basis of different physical considerations. The new functionals are tested on a variety of bonded, non-bonded and symmetry-breaking problems. (C) 2013 AIP Publishing LLC. C1 [Peverati, Roberto] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Peverati, R (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Peverati, Roberto/K-6062-2013; OI Peverati, Roberto/0000-0001-7774-9923 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; NSF [CHE-1048789] FX This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. We acknowledge computational resources obtained under NSF award CHE-1048789. NR 56 TC 26 Z9 26 U1 0 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2013 VL 139 IS 2 AR 024110 DI 10.1063/1.4812689 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 182RS UT WOS:000321762300018 PM 23862932 ER PT J AU Xu, Q Cheah, S Zhao, YF AF Xu, Qiang Cheah, Singfoong Zhao, Yufeng TI Initial reduction of the NiO(100) surface in hydrogen SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRANSITION-METAL MONOXIDES; STEAM REFORMING CATALYSTS; NICKEL-OXIDE REDUCTION; X-RAY-DIFFRACTION; BAND THEORY; NIO/ALPHA-AL2O3; VACANCIES; KINETICS; MODEL; NIO AB The reduction of NiO in hydrogen, a reaction with many industrial applications, has not received sufficient attention from theoretical standpoint because the complexity of the material properties and the process present considerable computational challenges. We report here the results of a systematic study on the hydrogen reduction of an ideal NiO(100) surface that produces a water molecule and an NiO(100) surface with an oxygen vacancy, using the Hubbard U corrected density functional theory method, with some of the key results verified by the hybrid density functional method. The major findings are: (1) the O vacancy in the NiO(100) surface slab is stabilized in the subsurface layer, although the vacancy is likely to remain on the outermost surface layer because the barrier for O vacancy migration from the surface to the second layer is as high as 3.02 eV; (2) regarding the energetics of hydrogen interaction with the ideal NiO(100) surface, water formation, and concomitant reduction of NiO is favored at higher H coverage even though surface hydrogenation is energetically more favorable than water formation at lower H coverage; (3) kinetically, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms play key roles in hydrogen reduction of NiO(100); and (4) a dual role of hydrogen is revealed as both a reactant and a mediator, which reduces the maximum kinetic barrier from 2.41 eV to 1.86 eV. (C) 2013 AIP Publishing LLC. C1 [Xu, Qiang; Cheah, Singfoong; Zhao, Yufeng] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhao, YF (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM yufeng.zhao@nrel.gov FU Office of the Biomass Program, U.S. Department of Energy (DOE) [DE-AC36-99GO10337]; NREL FX The Office of the Biomass Program, U.S. Department of Energy (DOE), provided funding for this research under Contract No. DE-AC36-99GO10337 with NREL. Computing time was partially provided by DOE's National Energy Research Scientific Computing (NERSC) Center. We gratefully acknowledge stimulating and fruitful discussion with Professor Jaejun Yu of Seoul National University, Dr. Suhuai Wei, and other members of the Computational Materials Science group at NREL. NR 45 TC 1 Z9 1 U1 1 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2013 VL 139 IS 2 AR 024704 DI 10.1063/1.4812824 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 182RS UT WOS:000321762300042 PM 23862956 ER PT J AU Farzbod, F AF Farzbod, Farhad TI Resonant ultrasound spectroscopy for a sample with cantilever boundary condition using Rayleigh-Ritz method SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELASTIC PROPERTIES; VIBRATION ANALYSIS; YOUNGS MODULUS; SOLIDS; CONSTANTS; BEAMS AB Resonant ultrasound spectroscopy (RUS) involves probing material properties by exciting and detecting resonant vibrational modes in a sample of interest. The desired material property is obtained by comparing theoretical and experimental results. Typically, the sample is considered to be freestanding with stress free boundary conditions. However in many situations of current interest, realizing a truly free sample is difficult. Here as an alternative, we consider a cantilever having a zero displacement boundary condition at one end of the sample. The eigenfrequencies and eigenmodes are obtained using a solution method that considers the exact equations of motion for an elastic sample. The solution is validated by comparing computed eigenfrequencies to a limiting case involving a long, thin sample. Additionally, a proof of principle experiment using laser-resonant ultrasound spectroscopy has been conducted on a copper cantilever. (C) 2013 AIP Publishing LLC. C1 [Farzbod, Farhad] Google X Lab, Mountain View, CA 94043 USA. [Farzbod, Farhad] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Farzbod, F (reprint author), Google X Lab, Mountain View, CA 94043 USA. NR 30 TC 0 Z9 0 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 14 PY 2013 VL 114 IS 2 AR 024902 DI 10.1063/1.4812758 PG 5 WC Physics, Applied SC Physics GA 182RM UT WOS:000321761600061 ER PT J AU Lee, G Lai, BK Phatak, C Katiyar, RS Auciello, O AF Lee, Geunhee Lai, Bo-Kuai Phatak, Charudatta Katiyar, Ram S. Auciello, Orlando TI Interface-controlled high dielectric constant Al2O3/TiOx nanolaminates with low loss and low leakage current density for new generation nanodevices SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT International Symposium on Integrated Functionalities (ISIF) CY JUN 17-21, 2012 CL Hong Kong Polytechn Univ, Hong Kong, PEOPLES R CHINA HO Hong Kong Polytechn Univ ID MAXWELL-WAGNER RELAXATION; CACU3TI4O12; CERAMICS; LAYER; CONDUCTIVITY; NANOSHEETS; CAPACITOR; OXIDE AB We report on the fundamentals for the synthesis of Al2O3/TiOx nanolaminates (NLs) with an Al2O3 interfacial layer at the electrode/nanolaminate interface, resulting in exceptionally high dielectric constant (k > 550 up to 0.1 MHz), very low losses (tan delta <= 0.04 up to 10 kHz), and leakage current density (<= 10(-8) A/cm(2) at 1.0 V). The high k is attributed to the Maxwell-Wagner relaxation between semiconducting TiOx and insulating Al2O3 nanolayers, while low losses and leakage current densities are due to blockage of charged carriers transport through the Al2O3 interfacial layer. Additionally, a high-capacitance capacitor based on the Al2O3/TiOx NL structure is demonstrated on 16 mu m deep Si trenches, which can be used to enable the next generation of nanoscale energy storage and memory devices. (C) 2013 AIP Publishing LLC. C1 [Lee, Geunhee; Auciello, Orlando] Univ Texas Dallas, Dept Mat Sci & Engn, Dept Bioengn, Richardson, TX 75080 USA. [Lai, Bo-Kuai; Phatak, Charudatta] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lee, Geunhee; Katiyar, Ram S.] Univ Puerto Rico, Inst Funct Nanomat, Rio Piedras, PR 00931 USA. [Lai, Bo-Kuai] Lake Shore Cryotron, Westerville, OH 43082 USA. RP Auciello, O (reprint author), Univ Texas Dallas, Dept Mat Sci & Engn, Dept Bioengn, 800 W Campbell Rd,RL10, Richardson, TX 75080 USA. EM auciello@anl.gov RI Phatak, Charudatta/A-1874-2010; Lee, Geunhee/F-6559-2010 OI Lee, Geunhee/0000-0002-3488-8963 NR 35 TC 10 Z9 10 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 14 PY 2013 VL 114 IS 2 AR 027001 DI 10.1063/1.4811810 PG 5 WC Physics, Applied SC Physics GA 182RM UT WOS:000321761600065 ER PT J AU Pasquini, G Serquis, A Moreno, AJ Serrano, G Civale, L AF Pasquini, G. Serquis, A. Moreno, A. J. Serrano, G. Civale, L. TI Carbon nanotubes effects on the relaxation properties and critical current densities of MgB2 superconductor SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; UPPER CRITICAL FIELDS; DOPED MGB2; ACTIVATION-ENERGY; COLUMNAR DEFECTS; FLUX-CREEP; ENHANCEMENT; YBA2CU3O7-X; DEPENDENCE; CRYSTALS AB Addition of nonsuperconducting phases, such as carbon nanotubes, can modify the superconducting properties of MgB2 samples, improving the critical current density and upper critical field. A full understanding of the flux creep mechanism involved is crucial to the development of superconducting magnets in persistent mode, one of the main thrusts for the development of MgB2 wires. In this paper we present a creep study in bulk MgB2 samples, pure and with different amounts of carbon nanotubes additions. We conclude that the most consistent picture at low temperatures is a single vortex pinning regime, where the correlation length is limited by the grain size. We introduce a novel analysis that allows us to identify the region where the Anderson-Kim model is valid. (C) 2013 AIP Publishing LLC. C1 [Pasquini, G.; Moreno, A. J.] Univ Buenos Aires, Dept Fis, CONICET, FCEN,IFIBA, RA-1053 Buenos Aires, DF, Argentina. [Serquis, A.; Serrano, G.] Consejo Nacl Invest Cient & Tecn, Inst Balseiro, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Civale, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pasquini, G (reprint author), Univ Buenos Aires, Dept Fis, CONICET, FCEN,IFIBA, RA-1053 Buenos Aires, DF, Argentina. EM pasquini@df.uba.ar RI Serquis, Adriana/L-6554-2015; OI Serquis, Adriana/0000-0003-1499-4782; Civale, Leonardo/0000-0003-0806-3113 FU CONICET; ANPCyT; UNCuyo; UBACyT, Argentina; U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, USA FX This work was partially supported by CONICET, ANPCyT, UNCuyo, and UBACyT, Argentina, and the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, USA. NR 36 TC 1 Z9 1 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 14 PY 2013 VL 114 IS 2 AR 023907 DI 10.1063/1.4813132 PG 7 WC Physics, Applied SC Physics GA 182RM UT WOS:000321761600038 ER PT J AU Wang, J Smith, RF Eggert, JH Braun, DG Boehly, TR Patterson, JR Celliers, PM Jeanloz, R Collins, GW Duffy, TS AF Wang, Jue Smith, Raymond F. Eggert, Jon H. Braun, Dave G. Boehly, Thomas R. Patterson, J. Reed Celliers, Peter M. Jeanloz, Raymond Collins, Gilbert W. Duffy, Thomas S. TI Ramp compression of iron to 273 GPa SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EARTHS INNER-CORE; SITU X-RAY; HIGH-PRESSURE; ISENTROPIC COMPRESSION; IN-SITU; PHASE-TRANSITION; STATE; EQUATION; EXOPLANETS; DYNAMICS AB Multiple thickness Fe foils were ramp compressed over several nanoseconds to pressure conditions relevant to the Earth's core. Using wave-profile analysis, the sound speed and the stress-density response were determined to a peak longitudinal stress of 273 GPa. The measured stress-density states lie between shock compression and 300-K static data, and are consistent with relatively low temperatures being achieved in these experiments. Phase transitions generally display time-dependent material response and generate a growing shock. We demonstrate for the first time that a low-pressure phase transformation (alpha-Fe to epsilon-Fe) can be overdriven by an initial steady shock to avoid both the time-dependent response and the growing shock that has previously limited ramp-wave-loading experiments. In addition, the initial steady shock pre-compresses the Fe and allows different thermodynamic compression paths to be explored. (C) 2013 AIP Publishing LLC. C1 [Wang, Jue; Duffy, Thomas S.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Smith, Raymond F.; Eggert, Jon H.; Braun, Dave G.; Patterson, J. Reed; Celliers, Peter M.; Collins, Gilbert W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boehly, Thomas R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Jeanloz, Raymond] Univ Calif Berkeley, Dept Earth & Planetary Sci & Astron, Berkeley, CA 94720 USA. RP Wang, J (reprint author), Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. RI Wang, Jue/I-4705-2014; Duffy, Thomas/C-9140-2017 OI Wang, Jue/0000-0001-9206-4367; Duffy, Thomas/0000-0002-5357-1259 FU NNSA/DOE through the National Laser Users' Facility Program [DE-NA0000856, DE-FG52-09NA29037] FX We thank the operations staff at the Omega Laser for their assistance. We also thank Stephanie Uhlich, Walt Unites, Kerry Bettencourt, Paul Mirkarimi. and Russell Wallace of the Target Engineering Team at LLNL for their assistance in the fabrication and metrology of the targets used in these experiments. The research was supported by NNSA/DOE through the National Laser Users' Facility Program under Contract Nos. DE-NA0000856 and DE-FG52-09NA29037. NR 70 TC 13 Z9 14 U1 2 U2 34 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 14 PY 2013 VL 114 IS 2 AR 023513 DI 10.1063/1.4813091 PG 8 WC Physics, Applied SC Physics GA 182RM UT WOS:000321761600020 ER PT J AU Zeng, FW Wang, H Lin, HT AF Zeng, Fan Wen Wang, Hong Lin, Hua-Tay TI Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PIEZOELECTRIC ACTUATORS; CERAMICS; DEPENDENCE; PROPAGATION; PERFORMANCE; DAMAGE AB Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 x 10(5) to 7 x 10(5) cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 10(8) cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks. (C) 2013 AIP Publishing LLC. C1 [Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Wang, H (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM wangh@ornl.gov RI Wang, Hong/O-1987-2016 OI Wang, Hong/0000-0002-0173-0545 FU US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, as part of the Propulsion Materials Program with UT-Battelle, LLC [DE-AC05-00OR22725] FX The authors are grateful to Dr. Hsin Wang and Dr. Fei Ren for reviewing the manuscript. The authors thank Dr. Michael Lance for his help in impedance measurement. This research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, as part of the Propulsion Materials Program under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 39 TC 5 Z9 5 U1 2 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 14 PY 2013 VL 114 IS 2 AR 024101 DI 10.1063/1.4813219 PG 9 WC Physics, Applied SC Physics GA 182RM UT WOS:000321761600042 ER PT J AU Zeng, YP Kuo, CI Kapadia, R Hsu, CY Javey, A Hu, CM AF Zeng, Yuping Kuo, Chien-I Kapadia, Rehan Hsu, Ching-Yi Javey, Ali Hu, Chenming TI Two-dimensional to three-dimensional tunneling in InAs/AlSb/GaSb quantum well heterojunctions SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FIELD-EFFECT TRANSISTORS; GATE; MV/DEC; INAS AB We examine room temperature band-to-band tunneling in 2D InAs/3D GaSb heterostructures. Specifically, multi-subband, gate-controlled negative differential resistance is observed in InAs/AlSb/GaSb junctions. Due to spatial confinement in the 10 nm-thick InAs layer, tunneling contributions from two distinct subbands are observed as sharp steps in the current-voltage characteristics. It is shown that the relative position of the steps can be controlled via external gate bias. Additionally, the extracted separation in the subband energy agrees well with the calculated values. This is the first demonstration of a gate controlled tunneling diode with multiple subband contributions. (C) 2013 AIP Publishing LLC. C1 [Zeng, Yuping; Kuo, Chien-I; Kapadia, Rehan; Hsu, Ching-Yi; Javey, Ali; Hu, Chenming] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Zeng, Yuping; Kapadia, Rehan; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zeng, YP (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu; hu@eecs.berkeley.edu RI Javey, Ali/B-4818-2013 FU Center for Energy Efficient Electronics Science (NSF) [0939514] FX This work was supported by the Center for Energy Efficient Electronics Science (NSF Award 0939514). NR 20 TC 5 Z9 5 U1 3 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 14 PY 2013 VL 114 IS 2 AR 024502 DI 10.1063/1.4812563 PG 4 WC Physics, Applied SC Physics GA 182RM UT WOS:000321761600056 ER PT J AU Dickie, DA Ulibarri-Sanchez, RP Jarman, PJ Kemp, RA AF Dickie, Diane A. Ulibarri-Sanchez, Raymond P., III Jarman, Paul J. Kemp, Richard A. TI Activation of CO2 and CS2 by (Me3Si)(i-Pr2P)NH and its zinc complex SO POLYHEDRON LA English DT Article DE Main group compounds; X-ray crystallography; NMR; Synthesis; CS2; CO2 ID FRUSTRATED LEWIS PAIRS; SMALL-MOLECULE ACTIVATION; CARBON-DIOXIDE BINDING; METAL-COMPLEXES; C-H; REACTIVITY; CRYSTAL; DISULFIDE; ALUMINUM; ADDUCT AB The reaction of (Me3Si)(i-Pr2P)NH with ZnEt2 gives the complex {[(Me3Si)(i-Pr2P)N]ZnEt}(2), which was characterized by multinuclear NMR spectroscopy and X-ray crystallography. This Zn complex reacts with CO2 to give an adduct with the proposed formula of [(Me3Si)N(i-Pr2PCO2)]ZnEt that undergoes further transformation into the crystallographically characterized di-adduct [(Me3Si)N(i-Pr2PCO2)](2)Zn, in addition to a Zn-6 cluster containing both P-CO2 adducts and fragments of the isocyanate i-Pr2P-N=C=O. These reaction pathways have been separately observed in related group 2 and group 14 complexes, but not previously within the same molecule. Reactions with the related heteroallene CS2 were also examined. The free ligand (Me3Si)(i-Pr2P)NH reacts with CS2 to form a bright red, crystalline adduct (Me-3 Si)[P(i-Pr)(2)(CS2)]NH. This adduct was treated with ZnEt2 to provide the same product that is obtained from the reaction of {[(Me3Si)(i-Pr2P)N]ZnEt}(2) with CS2, proposed to be a dithiocarbamate complex, with the CS2 bound to the N instead of the P atom. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Dickie, Diane A.; Ulibarri-Sanchez, Raymond P., III; Jarman, Paul J.; Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Ulibarri-Sanchez, Raymond P., III; Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Kemp, RA (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. EM rakemp@unm.edu RI Dickie, Diane/B-1647-2010; OI Dickie, Diane/0000-0003-0939-3309; Jarman, Paul/0000-0002-6932-341X FU National Science Foundation [CHE-0911110]; Sandia's Laboratory Directed Research and Development program [LDRD 151300]; Sandia National Laboratory; National Science Foundation CRIF:MU [CHE04-43580]; NSF [CHE08-40523, CHE09-46690]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX We thank the National Science Foundation (Grant No. CHE-0911110) and Sandia's Laboratory Directed Research and Development program (LDRD 151300) and the Sandia National Laboratory sponsored STAR Summer Fellows program for financial support. The Bruker X-ray diffractometer was purchased via a National Science Foundation CRIF:MU award to the University of New Mexico (CHE04-43580), and the NMR spectrometers were upgraded via grants from the NSF (CHE08-40523 and CHE09-46690). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. NR 52 TC 13 Z9 13 U1 1 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD JUL 13 PY 2013 VL 58 SI SI BP 92 EP 98 DI 10.1016/j.poly.2012.10.048 PG 7 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 182EM UT WOS:000321724500015 ER PT J AU Hayashi, Y Szalda, DJ Grills, DC Hanson, JC Huang, KW Muckerman, JT Fujita, E AF Hayashi, Yukiko Szalda, David J. Grills, David C. Hanson, Jonathan C. Huang, Kuo-Wei Muckerman, James T. Fujita, Etsuko TI Isolation and X-ray structures of four Rh(PCP) complexes including a Rh(I) dioxygen complex with a short O-O bond SO POLYHEDRON LA English DT Article DE Rhodium; Pincer; PCP; Rh-O-2 complex ID METAL-CARBON BONDS; MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; C-C BOND; PINCER COMPLEXES; TRANSITION-METAL; CRYSTAL-STRUCTURES; ORGANIC-MOLECULES; BASIS-SETS; LARGE-RING AB The reaction of RhCl3 center dot H2O with (Bu2P)-Bu-t(CH2)(5)(PBu2)-Bu-t afforded several complexes including [Rh-III(H)Cl{(Bu2P)-Bu-t(CH2)(2)CH(CH2)(2)(PBu2)-Bu-t}] (1). [(RhHCl2)-H-III{(Bu2P)-Bu-t(CH2)(5)(PBu2)-Bu-t}](2) (2), [(RhCl)-Cl-I{(Bu2P)-Bu-t(CH2)(2)CH=(CHCH2PBu2)-Bu-t}] (3) and [(RhCl)-Cl-I{(Bu2PCH2C)-Bu-t(O)CH=(CHCH2PBu2)-Bu-t}] (4). X-ray crystal structures of 3 and 4 showed that the C=C bond on the C-5 unit of (Bu2P)-Bu-t(CH2)(5)(PBu2)-Bu-t is bound to Rh(I) in a eta(2) configuration. In 4, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of 2 consists of two rhodium(III) centers bridged by two (Bu2P)-Bu-t(CH2)(5)(PBu2)-Bu-t ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-t-butyl-phosphinomethyl)benzene [RhO2{(Bu2PCH2)-Bu-t(C6H3)(CH2Bu2P)-Bu-t}] (5) was also investigated. In this species the O-2 is eta(2) coordinated to the Rh(l) center with asymmetric Rh-O bond lengths (2.087(7) and 1.998(8) angstrom). The O-O bond distance is short (1.337(11) angstrom) with v(o-o) of 990.5 cm(-1). DFT calculations on complex 5 yielded two eta(2)-O-2 structures that differed in energy by only 0.76 kcal/mol. The lower energy one (5a) had near C-2 symmetry, and had nearly equal Rh-O bond lengths, while the higher energy structure (5b) had near C-s symmetry and generally good agreement with the experimental structure. The calculated UV-Vis and IR spectra of complex 5 are in excellent agreement with experiment. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Hayashi, Yukiko; Szalda, David J.; Grills, David C.; Hanson, Jonathan C.; Huang, Kuo-Wei; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Szalda, DJ (reprint author), CUNY Bernard M Baruch Coll, Brookhaven Natl Lab, Dept Nat Sci, 17 Lexington Ave, New York, NY 10010 USA. EM fujita@bnl.gov RI Huang, Kuo-Wei/H-2303-2011; Hanson, jonathan/E-3517-2010; Grills, David/F-7196-2016 OI Huang, Kuo-Wei/0000-0003-1900-2658; Grills, David/0000-0001-8349-9158 FU US Department of Energy [DE-AC02-98CH10886]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences FX This work performed at Brookhaven National Laboratory was carried out under contract DE-AC02-98CH10886 with the US Department of Energy and supported by its Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences. Use of the National Synchrotron Light Source beamline X4C at Brookhaven National Laboratory was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences. NR 53 TC 1 Z9 1 U1 2 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD JUL 13 PY 2013 VL 58 SI SI BP 106 EP 114 DI 10.1016/j.poly.2012.10.006 PG 9 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 182EM UT WOS:000321724500017 ER PT J AU Kerlin, WM Poineau, F Czerwinski, KR Forster, PM Sattelberger, AP AF Kerlin, William M. Poineau, Frederic Czerwinski, Kenneth R. Forster, Paul M. Sattelberger, Alfred P. TI Hydrothermal synthesis and solid-state structure of Tc-2(mu-O2CCH3)(4)Cl-2 SO POLYHEDRON LA English DT Article DE Technetium; Potassium pertechnetate; Carboxylate-bridged dimers; Quadruple metal-metal bonds; Hydrothermal synthesis ID MOLECULAR-STRUCTURE; CL; BR; TC AB Tc-2(mu-O2CCH3)(4)Cl-2 is a key starting material for further explorations of dinuclear technetium(III) chemistry and is obtained in 70% yield from readily available starting materials via hydrothermal techniques. Its single crystal X-ray structure reveals the familiar paddle-wheel motif of four bridging acetate groups spanning a short Tc-Tc bond (2.1758(3) angstrom), augmented by axial chlorides at a Tc-Cl separation of 2.5078(4) angstrom. The Tc-Tc quadruple bond length is slightly shorter than the one found in the pivalate derivative, Tc-2(O2CCMe3)(4)Cl-2 (2.192(1) angstrom), and slightly longer than found in [Tc-2(O2CCH3)(4)](TcO4)(2) (2.149(1) angstrom), the only other structurally characterized members of the small family of Tc-2(O2CR)(4)X-2 dimers. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Kerlin, William M.; Poineau, Frederic; Czerwinski, Kenneth R.; Forster, Paul M.; Sattelberger, Alfred P.] Univ Nevada, Dept Chem, Radiochem Program, Las Vegas, NV 89154 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA. RP Forster, PM (reprint author), Argonne Natl Lab, Energy Engn & Syst Anal Directorate, 9700 S Cass Ave, Argonne, IL 60439 USA. EM paul.forster@unlv.edu; asattelberger@anl.gov FU SISGR from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [47824B] FX Funding for this research was provided by a SISGR Grant from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. 47824B. The authors thank Mr. Trevor Low and Ms. Julie Bertoia for outstanding health physics support. NR 18 TC 3 Z9 3 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD JUL 13 PY 2013 VL 58 SI SI BP 115 EP 119 DI 10.1016/j.poly.2012.09.064 PG 5 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 182EM UT WOS:000321724500018 ER PT J AU Kalashnikova, I Barone, MF Brake, MR AF Kalashnikova, I. Barone, M. F. Brake, M. R. TI A stable Galerkin reduced order model for coupled fluid-structure interaction problems SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE reduced order model (ROM); proper orthogonal decomposition (POD)/Galerkin projection; compressible Euler equations; von Karman plate equation; linear numerical stability; flutter ID PROPER ORTHOGONAL DECOMPOSITION; CHARACTERISTIC CONSTRAINT MODES; NAVIER-STOKES EQUATIONS; FINITE-ELEMENT; COHERENT STRUCTURES; REDUCTION; DYNAMICS; SYSTEMS; FLOW; FORMULATION AB A stable reduced order model (ROM) of a linear fluid-structure interaction (FSI) problem involving linearized compressible inviscid flow over a flat linear von Karman plate is developed. Separate stable ROMs for each of the fluid and the structure equations are derived. Both ROMs are built using the 'continuous' Galerkin projection approach, in which the continuous governing equations are projected onto the reduced basis modes in a continuous inner product. The mode shapes for the structure ROM are the eigenmodes of the governing (linear) plate equation. The fluid ROM basis is constructed via the proper orthogonal decomposition. For the linearized compressible Euler fluid equations, a symmetry transformation is required to obtain a stable formulation of the Galerkin projection step in the model reduction procedure. Stability of the Galerkin projection of the structure model in the standard L-2 inner product is shown. The fluid and structure ROMs are coupled through solid wall boundary conditions at the interface (plate) boundary. An a priori energy linear stability analysis of the coupled fluid/structure system is performed. It is shown that, under some physical assumptions about the flow field, the FSI ROM is linearly stable a priori if a stabilization term is added to the fluid pressure loading on the plate. The stability of the coupled ROM is studied in the context of a test problem of inviscid, supersonic flow past a thin, square, elastic rectangular panel that will undergo flutter once the non-dimensional pressure parameter exceeds a certain threshold. This a posteriori stability analysis reveals that the FSI ROM can be numerically stable even without the addition of the aforementioned stabilization term. Moreover, the ROM constructed for this problem properly predicts the maintenance of stability below the flutter boundary and gives a reasonable prediction for the instability growth rate above the flutter boundary. Copyright (C) 2013 John Wiley & Sons, Ltd. C1 [Kalashnikova, I.] Sandia Natl Labs, Numer Anal & Applicat Dept, Albuquerque, NM 87185 USA. [Barone, M. F.] Sandia Natl Labs, Aerosci Dept, Albuquerque, NM 87185 USA. [Brake, M. R.] Sandia Natl Labs, Component Sci & Mech Dept, Albuquerque, NM 87185 USA. RP Kalashnikova, I (reprint author), Sandia Natl Labs, Numer Anal & Applicat Dept, POB 5800,MS 1320, Albuquerque, NM 87185 USA. EM ikalash@sandia.gov FU Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was funded by Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors also gratefully acknowledge Thuan Lieu and Charbel Farhat of Stanford University for providing us with the AERO-F code and associated user-support. NR 49 TC 3 Z9 3 U1 0 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD JUL 13 PY 2013 VL 95 IS 2 BP 121 EP 144 DI 10.1002/nme.4499 PG 24 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 169KY UT WOS:000320780300002 ER PT J AU Zheng, CL Page, RC Das, V Nix, JC Wigren, E Misra, S Zhang, B AF Zheng, Chunlei Page, Richard C. Das, Vaijayanti Nix, Jay C. Wigren, Edvard Misra, Saurav Zhang, Bin TI Structural Characterization of Carbohydrate Binding by LMAN1 Protein Provides New Insight into the Endoplasmic Reticulum Export of Factors V (FV) and VIII (FVIII) SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID GOLGI INTERMEDIATE COMPARTMENT; TRANSPORT RECEPTOR COMPLEX; COAGULATION-FACTOR VIII; SECRETORY PATHWAY; CRYSTAL-STRUCTURE; LECTIN ERGIC-53; HELA-CELLS; COMBINED DEFICIENCY; RECOGNITION DOMAIN; MOLECULAR-BASIS AB LMAN1 (ERGIC-53) is a key mammalian cargo receptor responsible for the export of a subset of glycoproteins from the endoplasmic reticulum. Together with its soluble coreceptor MCFD2, LMAN1 transports coagulation factors V (FV) and VIII (FVIII). Mutations in LMAN1 or MCFD2 cause the genetic bleeding disorder combined deficiency of FV and FVIII (F5F8D). The LMAN1 carbohydrate recognition domain (CRD) binds to both glycoprotein cargo and MCFD2 in a Ca2+-dependent manner. To understand the biochemical basis and regulation of LMAN1 binding to glycoprotein cargo, we solved crystal structures of the LMAN1-CRD bound to Man-alpha-1,2-Man, the terminal carbohydrate moiety of high mannose glycans. Our structural data, combined with mutagenesis and in vitro binding assays, define the central mannose-binding site on LMAN1 and pinpoint histidine 178 and glycines 251/252 as critical residues for FV/FVIII binding. We also show that mannobiose binding is relatively independent of pH in the range relevant for endoplasmic reticulum-to-Golgi traffic, but is sensitive to lowered Ca2+ concentrations. The distinct LMAN1/MCFD2 interaction is maintained at these lowered Ca2+ concentrations. Our results suggest that compartmental changes in Ca2+ concentration regulate glycoprotein cargo binding and release from the LMAN1 center dot MCFD2 complex in the early secretory pathway. C1 [Zheng, Chunlei; Das, Vaijayanti; Zhang, Bin] Cleveland Clin, Lerner Res Inst, Genom Med Inst, Cleveland, OH 44195 USA. [Page, Richard C.; Misra, Saurav] Cleveland Clin, Lerner Res Inst, Dept Mol Cardiol, Cleveland, OH 44195 USA. [Nix, Jay C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biol Consortium, Berkeley, CA 94720 USA. [Wigren, Edvard] Karolinska Inst, Dept Med Biochem & Biophys, S-17177 Stockholm, Sweden. RP Zhang, B (reprint author), Cleveland Clin Lerner Res Inst, Genom Med Inst, 9500 Euclid Ave,NE50, Cleveland, OH 44195 USA. EM zhangb@ccf.org OI Misra, Saurav/0000-0002-1385-8554; Page, Richard/0000-0002-3006-3171 FU National Institutes of Health [HL094505, GM080271, T32 HL007914]; American Heart Association FX This work was supported, in whole or in part, by National Institutes of Health Grants HL094505 (to B. Z.) and GM080271 (to S. M.) and Postdoctoral Fellowship T32 HL007914 (to R. C. P.). This work was also supported by a postdoctoral fellowship from the American Heart Association (to C. Z.). NR 49 TC 9 Z9 9 U1 0 U2 8 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 12 PY 2013 VL 288 IS 28 BP 20499 EP 20509 DI 10.1074/jbc.M113.461434 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 182BI UT WOS:000321715100037 PM 23709226 ER PT J AU Chen, CY Dawson, S Sher, M AF Chen, Chien-Yi Dawson, Sally Sher, Marc TI Heavy Higgs searches and constraints on two Higgs doublet models SO PHYSICAL REVIEW D LA English DT Article AB Since the discovery of a Higgs boson at the LHC and the measurement of many of its branching ratios, there have been numerous studies exploring the restrictions these results place on the parameter space of two Higgs doublet models. We extend these results to include the full data set and study the expected sensitivity that can be obtained with 300 fb(-1) and 3000 fb(-1) integrated luminosity. We consider searches for a heavy Standard Model Higgs boson, with a mass ranging from 200 to 400 GeV, and show that the nonobservation of such a Higgs boson can substantially narrow the allowed regions of parameter space in two Higgs doublet models. C1 [Chen, Chien-Yi; Dawson, Sally] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Sher, Marc] Coll William & Mary, High Energy Theory Grp, Williamsburg, VA 23187 USA. RP Chen, CY (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU U.S. Department of Energy [DE-AC02-98CH10886]; National Science Foundation [NSF-PHY-1068008] FX We would like to thank Nathaniel Craig, Rui Santos, Scott Thomas and Gordon Watts for helpful discussions. The work of C.-Y. C. and S. D. is supported by the U.S. Department of Energy under Grant No. DE-AC02-98CH10886, and the work of M. S. is supported by the National Science Foundation under Grant No. NSF-PHY-1068008. NR 39 TC 61 Z9 61 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 12 PY 2013 VL 88 IS 1 AR 015018 DI 10.1103/PhysRevD.88.015018 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 183VH UT WOS:000321844900006 ER PT J AU Fernandez-Perea, M Descalle, MA Soufli, R Ziock, KP Alameda, J Baker, SL McCarville, TJ Honkimaki, V Ziegler, E Jakobsen, AC Christensen, FE Pivovaroff, MJ AF Fernandez-Perea, Monica Descalle, Marie-Anne Soufli, Regina Ziock, Klaus P. Alameda, Jennifer Baker, Sherry L. McCarville, Tom J. Honkimaeki, Veijo Ziegler, Eric Jakobsen, Anders C. Christensen, Finn E. Pivovaroff, Michael J. TI Physics of Reflective Optics for the Soft Gamma-Ray Photon Energy Range SO PHYSICAL REVIEW LETTERS LA English DT Article ID MULTILAYER FILMS; ATTENUATION; PERFORMANCE; TABULATION; COATINGS AB Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disagreement between experimental and theoretical optical properties of materials in the hard x-ray and gamma-ray regimes. Here, we demonstrate that multilayer reflective optics can operate efficiently and according to classical wave physics up to photon energies of at least 384 keV. We also use particle transport simulations to quantitatively determine that incoherent scattering takes place in the mirrors but it does not affect the performance at the Bragg angles of operation. Our results open up new possibilities of reflective optical designs in a spectral range where only diffractive optics (crystals and lenses) and crystal monochromators have been available until now. C1 [Fernandez-Perea, Monica; Descalle, Marie-Anne; Soufli, Regina; Alameda, Jennifer; Baker, Sherry L.; McCarville, Tom J.; Pivovaroff, Michael J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ziock, Klaus P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Honkimaeki, Veijo; Ziegler, Eric] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Jakobsen, Anders C.; Christensen, Finn E.] Danish Tech Univ DTU Space, DK-2800 Lyngby, Denmark. RP Soufli, R (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM regina.soufli@llnl.gov RI Pivovaroff, Michael/M-7998-2014; OI Pivovaroff, Michael/0000-0001-6780-6816; Clemen Jakobsen, Anders/0000-0002-0206-4855 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Oak Ridge National Laboratory [DE-AC05-00OR22725]; National Nuclear Security Administration's Office of Nonproliferation and Verification Research and Development FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and by Oak Ridge National Laboratory, managed by UT-Battelle, under Contract No. DE-AC05-00OR22725. Funding for this research was provided by the National Nuclear Security Administration's Office of Nonproliferation and Verification Research and Development. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and the MPI-Stuttgart for access to the high-energy microdiffraction apparatus at ESRF. The contributions of Cynthia Gonsalves and Harry Kawayoshi (Evans Analytical Labs, Sunnyvale, California) in the sample preparation and acquisition of the TEM images is gratefully acknowledged. NR 30 TC 16 Z9 16 U1 2 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 12 PY 2013 VL 111 IS 2 AR 027404 DI 10.1103/PhysRevLett.111.027404 PG 5 WC Physics, Multidisciplinary SC Physics GA 183ZS UT WOS:000321856600007 PM 23889443 ER PT J AU Jiang, L Mitchell, DC Dmowski, W Egami, T AF Jiang, Lu Mitchell, D. C. Dmowski, W. Egami, T. TI Local structure of NaNbO3: A neutron scattering study SO PHYSICAL REVIEW B LA English DT Article ID SODIUM NIOBATE; PHASE-TRANSITIONS; TEMPERATURE AB We report the results of a neutron diffraction study of structural evolution in sodium niobate, NaNbO3, which is the parent compound for lead-free ferroelectric materials, as a function of temperature from 15 to 930 K over six phases. The Rietveld analysis of the high-resolution powder neutron diffraction data shows the variation in the structure from cubic to rhombohedral ferroelectric structures. However, the refinements on local structure by the pair distribution function (PDF) method indicates that there are only three basic patterns of the local structure, and the ground states of NaNbO3 in the low-temperature antiferroelectric and ferroelectric phases have the R3c symmetry, even though in the long range the system shows the Pbcm symmetry or the coexistence of two phases. The origin of the complex phase behavior and its implications on the performance as lead-free ferroelectrics are discussed. C1 [Jiang, Lu; Mitchell, D. C.; Dmowski, W.; Egami, T.] Univ Tennessee, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. [Jiang, Lu; Mitchell, D. C.; Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dmowski, W.; Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Jiang, L (reprint author), Univ Tennessee, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. FU National Science Foundation [DMR-0602876]; US Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by the National Science Foundation through DMR-0602876. The work at the Manuel Lujan Neutron Science Center at Los Alamos National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 25 TC 8 Z9 8 U1 7 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 12 PY 2013 VL 88 IS 1 AR 014105 DI 10.1103/PhysRevB.88.014105 PG 7 WC Physics, Condensed Matter SC Physics GA 183RD UT WOS:000321834000001 ER PT J AU Kim, SK Torikachvili, MS Budko, SL Canfield, PC AF Kim, S. K. Torikachvili, M. S. Budko, S. L. Canfield, P. C. TI Search for pressure-induced quantum criticality in YbFe2Zn20 SO PHYSICAL REVIEW B LA English DT Article ID FERMI-LIQUID BEHAVIOR; ELECTRICAL-RESISTIVITY; KONDO-LATTICE; HYDROSTATIC LIMITS; TEMPERATURE; SYSTEMS; SUPERCONDUCTIVITY; DEPENDENCE; FLUORINERT; GPA AB Electrical transportmeasurements of the heavy-fermion compound YbFe2Zn20 were carried out under pressures up to 8.23 GPa and down to temperatures of nearly 0.3 K. The pressure dependence of the low-temperature Fermi-liquid state was assessed by fitting rho(T) = rho(0) + AT(n) with n = 2 for T < T-FL. Power-law analysis of the low-temperature resistivities indicates n = 2 over a broad temperature range for P less than or similar to 5 GPa. However, at higher pressures, the quadratic temperature dependence is only seen at the very lowest temperatures, and instead shows a wider range of n < 2 power-law behavior in the low-temperature resistivities. As pressure was increased, T-FL diminished from similar to 11 K at ambient pressure to similar to 0.6 K at 8.23 GPa. Over the same pressure range, the A parameter increased dramatically with a functional form of A proportional to (P -P-c)(-2) with P-c similar or equal to 9.8 GPa being the critical pressure for a possible quantum critical point. C1 [Kim, S. K.; Budko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kim, S. K.; Torikachvili, M. S.; Budko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. RP Kim, SK (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 FU US DOE [DE-AC02-07CH11358]; AFOSR-MURI [FA9550-09-1-0603]; National Science Foundation [DMR-0805335]; State of Iowa through Iowa State University FX The authors would like to thank S. Jia and E. Mun for growing the YbFe2Zn20 samples used in this study, and H. Hodovanets and V. Taufour for technical assistance and fruitful discussions. P.C.C. and S.L.B. would also like to thank J. Flouquet for useful comments about low-temperature measurements. This work was carried out at Ames Laboratory, US DOE, under Contract No. DE-AC02-07CH11358 (S.K.K., S.L.B., and P.C.C.). Part of this work was performed at the Iowa State University and supported by the AFOSR-MURI Grant No. FA9550-09-1-0603 and also by the National Science Foundation under Grant No. DMR-0805335 (M.S.T.). S.L.B. acknowledges partial support from the State of Iowa through Iowa State University. NR 45 TC 4 Z9 4 U1 2 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 12 PY 2013 VL 88 IS 4 AR 045116 DI 10.1103/PhysRevB.88.045116 PG 7 WC Physics, Condensed Matter SC Physics GA 183SU UT WOS:000321838300001 ER PT J AU Sidorov, VA Lu, X Park, T Lee, H Tobash, PH Baumbach, RE Ronning, F Bauer, ED Thompson, JD AF Sidorov, V. A. Lu, Xin Park, T. Lee, Hanoh Tobash, P. H. Baumbach, R. E. Ronning, F. Bauer, E. D. Thompson, J. D. TI Pressure phase diagram and quantum criticality of CePt2In7 single crystals SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY; TEMPERATURE; CERHIN5 AB We report the temperature-pressure (T - P) phase diagram of CePt2In7 single crystals, especially the pressure evolution of the antiferromagnetic order and the emergence of superconductivity, which have been studied by electrical resistivity and ac calorimetry under nearly hydrostatic environments. Compared with its polycrystalline counterpart, bulk superconductivity coexists with antiferromagnetism in a much narrower pressure region. The possible existence of textured superconductivity and local quantum criticality also are observed in CePt2In7, exhibiting a remarkable similarity with CeRhIn5. C1 [Sidorov, V. A.; Lu, Xin; Park, T.; Lee, Hanoh; Tobash, P. H.; Baumbach, R. E.; Ronning, F.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sidorov, V. A.] Russian Acad Sci, Inst High Pressure Phys, Moscow 142190, Russia. [Lu, Xin] Zhejiang Univ, Ctr Correlated Matter, Hangzhou 310058, Zhejiang, Peoples R China. [Park, T.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. RP Lu, X (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM xinluphy@gmail.com RI Lu, Xin/B-7358-2012; OI Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU US Department of Energy, Division of Materials Science and Engineering; Los Alamos LDRD program; Russian Foundation for Basic Research (RFBR) [12-02-00376]; Program of the Physics Department of RAS on Strongly Correlated Systems; NRF [2010-0026762, 2010-0029136] FX We are grateful for valuable discussions with J. X. Zhu. Work at Los Alamos was performed under the auspices of the US Department of Energy, Division of Materials Science and Engineering and supported in part by the Los Alamos LDRD program. V.A.S. acknowledges support from the Russian Foundation for Basic Research (RFBR Grant No. 12-02-00376) and the Program of the Physics Department of RAS on Strongly Correlated Systems. T.P. acknowledges support from NRF (Grants No. 2010-0026762 and No. 2010-0029136). NR 20 TC 11 Z9 11 U1 6 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 12 PY 2013 VL 88 IS 2 AR 020503 DI 10.1103/PhysRevB.88.020503 PG 4 WC Physics, Condensed Matter SC Physics GA 183SC UT WOS:000321836500001 ER PT J AU Miernik, K Rykaczewski, KP Grzywacz, R Gross, CJ Stracener, DW Batchelder, JC Brewer, NT Cartegni, L Fijalkowska, A Hamilton, JH Hwang, JK Ilyushkin, SV Jost, C Karny, M Korgul, A Krolas, W Liu, SH Madurga, M Mazzocchi, C Mendez, AJ Miller, D Padgett, SW Paulauskas, SV Ramayya, AV Surman, R Winger, JA Wolinska-Cichocka, M Zganjar, EF AF Miernik, K. Rykaczewski, K. P. Grzywacz, R. Gross, C. J. Stracener, D. W. Batchelder, J. C. Brewer, N. T. Cartegni, L. Fijalkowska, A. Hamilton, J. H. Hwang, J. K. Ilyushkin, S. V. Jost, C. Karny, M. Korgul, A. Krolas, W. Liu, S. H. Madurga, M. Mazzocchi, C. Mendez, A. J., II Miller, D. Padgett, S. W. Paulauskas, S. V. Ramayya, A. V. Surman, R. Winger, J. A. Wolinska-Cichocka, M. Zganjar, E. F. TI beta-decay study of neutron-rich bromine and krypton isotopes SO PHYSICAL REVIEW C LA English DT Article ID HALF-LIVES; GROSS THEORY; NUCLEAR-DATA; FISSION; SPECTROSCOPY; PARTICLE; SPECTRA AB Short-lived neutron-rich nuclei including Br-93, Kr-93, and Kr-94 were produced in proton-induced fission of U-238 at the Holifield Radioactive Ion Beam Facility in Oak Ridge. Their beta decay was studied by means of a high resolution online mass separator and beta-gamma spectroscopy methods. The half life of T-1/2 = 152(8) ms and beta-delayed branching ratio of P-n = 53(-8)(+11)% measured for Br-93 differs from the previously reported values of T-1/2 = 102(10) ms and P-n = 68(7)%. At the same time the half life of Kr-94 T-1/2 = 227(14) ms and both the half-life of T-1/2 = 1.298(54) s and beta-delayed branching ratio of P-n = 1.9(-0.2)(+0.6)% of Kr-93 are in very good agreement with literature values. The decay properties of Br-93 include previously unreported gamma transitions following a delayed neutron emission. C1 [Miernik, K.; Rykaczewski, K. P.; Grzywacz, R.; Gross, C. J.; Stracener, D. W.; Mendez, A. J., II; Wolinska-Cichocka, M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA. [Miernik, K.; Fijalkowska, A.; Karny, M.; Korgul, A.; Mazzocchi, C.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Grzywacz, R.; Cartegni, L.; Fijalkowska, A.; Jost, C.; Madurga, M.; Miller, D.; Paulauskas, S. V.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Batchelder, J. C.; Karny, M.; Liu, S. H.; Wolinska-Cichocka, M.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Brewer, N. T.; Hamilton, J. H.; Hwang, J. K.; Ramayya, A. V.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Ilyushkin, S. V.; Winger, J. A.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. [Krolas, W.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Surman, R.] Union Coll, Dept Phys & Astron, Schenectady, NY 12308 USA. [Wolinska-Cichocka, M.] Univ Warsaw, Heavy Ion Lab, PL-02093 Warsaw, Poland. [Zganjar, E. F.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Miernik, K (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37830 USA. EM kmiernik@fuw.edu.pl RI Krolas, Wojciech/N-9391-2013; Miller, David/B-5372-2012; OI Miller, David/0000-0002-0426-974X; Hwang, Jae-Kwang/0000-0002-4100-3473 FU U.S. Department of Energy [DE-AC05-00OR22725]; Office of Nuclear Physics, U. S. Department of Energy [DE-AC05-00OR22725, DE-FG02-96ER40983, DE-AC05-06OR23100, DE-FG02-96ER41006, DE-FG-05-88ER40407]; National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE [DE-FG52-08NA28552]; National Science Centre of the Polish Ministry of Science and Higher Education [2011/01/B/ST2/02476] FX We thank the HRIBF operations staff for the production of excellent radioactive ion beams. K. Miernik's research was performed as a Eugene P. Wigner Fellow and staff member at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research is sponsored by the Office of Nuclear Physics, U. S. Department of Energy, under Contracts No. DE-AC05-00OR22725 (ORNL), No. DE-FG02-96ER40983 (UTK), No. DE-AC05-06OR23100 (ORAU), No. DE-FG02-96ER41006 (MSU), and No. DE-FG-05-88ER40407 (Vanderbilt). This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552. The authors from the University of Warsaw acknowledge the support of the National Science Centre of the Polish Ministry of Science and Higher Education, Grant No. 2011/01/B/ST2/02476. NR 43 TC 5 Z9 5 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL 12 PY 2013 VL 88 IS 1 AR 014309 DI 10.1103/PhysRevC.88.014309 PG 9 WC Physics, Nuclear SC Physics GA 183TQ UT WOS:000321840500001 ER PT J AU Fields, L Chvojka, J Aliaga, L Altinok, O Baldin, B Baumbaugh, A Bodek, A Boehnlein, D Boyd, S Bradford, R Brooks, WK Budd, H Butkevich, A Caicedo, DAM Castromonte, CM Christy, ME Chung, H Clark, M da Motta, H Damiani, DS Danko, I Datta, M Day, M DeMaat, R Devan, J Draeger, E Dytman, SA Diaz, GA Eberly, B Edmondson, DA Felix, J Fitzpatrick, T Fiorentini, GA Gago, AM Gallagher, H George, CA Gielata, JA Gingu, C Gobbi, B Gran, R Grossman, N Hanson, J Harris, DA Heaton, J Higuera, A Howley, IJ Hurtado, K Jerkins, M Kafka, T Kaisen, J Kanter, MO Keppel, CE Kilmer, J Kordosky, M Krajeski, AH Kulagin, SA Le, T Lee, H Leister, AG Locke, G Maggi, G Maher, E Manly, S Mann, WA Marshall, CM McFarland, KS McGivern, CL McGowan, AM Mislivec, A Morfin, JG Mousseau, J Naples, D Nelson, JK Niculescu, G Niculescu, I Ochoa, N O'Connor, CD Olsen, J Osmanov, B Osta, J Palomino, JL Paolone, V Park, J Patrick, CE Perdue, GN Pena, C Rakotondravohitra, L Ransome, RD Ray, H Ren, L Rodrigues, PA Rude, C Sassin, KE Schellman, H Schmitz, DW Schneider, RM Schulte, EC Simon, C Snider, FD Snyder, MC Sobczyk, JT Salinas, CJS Tagg, N Tan, W Tice, BG Tzanakos, G Velasquez, JP Walding, J Walton, T Wolcott, J Wolthuis, BA Woodward, N Zavala, G Zeng, HB Zhang, D Zhu, LY Ziemer, BP AF Fields, L. Chvojka, J. Aliaga, L. Altinok, O. Baldin, B. Baumbaugh, A. Bodek, A. Boehnlein, D. Boyd, S. Bradford, R. Brooks, W. K. Budd, H. Butkevich, A. Martinez Caicedo, D. A. Castromonte, C. M. Christy, M. E. Chung, H. Clark, M. da Motta, H. Damiani, D. S. Danko, I. Datta, M. Day, M. DeMaat, R. Devan, J. Draeger, E. Dytman, S. A. Diaz, G. A. Eberly, B. Edmondson, D. A. Felix, J. Fitzpatrick, T. Fiorentini, G. A. Gago, A. M. Gallagher, H. George, C. A. Gielata, J. A. Gingu, C. Gobbi, B. Gran, R. Grossman, N. Hanson, J. Harris, D. A. Heaton, J. Higuera, A. Howley, I. J. Hurtado, K. Jerkins, M. Kafka, T. Kaisen, J. Kanter, M. O. Keppel, C. E. Kilmer, J. Kordosky, M. Krajeski, A. H. Kulagin, S. A. Le, T. Lee, H. Leister, A. G. Locke, G. Maggi, G. Maher, E. Manly, S. Mann, W. A. Marshall, C. M. McFarland, K. S. McGivern, C. L. McGowan, A. M. Mislivec, A. Morfin, J. G. Mousseau, J. Naples, D. Nelson, J. K. Niculescu, G. Niculescu, I. Ochoa, N. O'Connor, C. D. Olsen, J. Osmanov, B. Osta, J. Palomino, J. L. Paolone, V. Park, J. Patrick, C. E. Perdue, G. N. Pena, C. Rakotondravohitra, L. Ransome, R. D. Ray, H. Ren, L. Rodrigues, P. A. Rude, C. Sassin, K. E. Schellman, H. Schmitz, D. W. Schneider, R. M. Schulte, E. C. Simon, C. Snider, F. D. Snyder, M. C. Sobczyk, J. T. Solano Salinas, C. J. Tagg, N. Tan, W. Tice, B. G. Tzanakos, G. Velasquez, J. P. Walding, J. Walton, T. Wolcott, J. Wolthuis, B. A. Woodward, N. Zavala, G. Zeng, H. B. Zhang, D. Zhu, L. Y. Ziemer, B. P. CA MINERvA Collaboration TI Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at E-v similar to 3.5 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID INELASTIC CROSS-SECTIONS; MESON-EXCHANGE CURRENTS; NUCLEAR TARGETS; ELECTRON-SCATTERING; LEPTON SCATTERING; NEUTRINO; MODEL AB We have isolated (nu) over bar (mu) charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, d sigma/dQ(2), and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, M-A, is set to 0.99 GeV/c(2) but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at higher Q(2) favor this interpretation over an alternative in which the axial mass is increased. C1 [Fields, L.; Gobbi, B.; Patrick, C. E.; Schellman, H.] Northwestern Univ, Evanston, IL 60208 USA. [Chvojka, J.; Bodek, A.; Bradford, R.; Budd, H.; Chung, H.; Clark, M.; Day, M.; Gielata, J. A.; Hanson, J.; Kaisen, J.; Lee, H.; Manly, S.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Mislivec, A.; Park, J.; Perdue, G. N.; Rodrigues, P. A.; Wolcott, J.; Zeng, H. B.] Univ Rochester, Rochester, NY 14610 USA. [Aliaga, L.; Damiani, D. S.; Devan, J.; Edmondson, D. A.; Howley, I. J.; Kanter, M. O.; Kordosky, M.; Krajeski, A. H.; Leister, A. G.; Nelson, J. K.; O'Connor, C. D.; Sassin, K. E.; Schneider, R. M.; Snyder, M. C.; Walding, J.; Wolthuis, B. A.; Zhang, D.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Aliaga, L.; Diaz, G. A.; Gago, A. M.; Ochoa, N.; Velasquez, J. P.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Altinok, O.; Gallagher, H.; Kafka, T.; Mann, W. A.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Baldin, B.; Baumbaugh, A.; Boehnlein, D.; Martinez Caicedo, D. A.; DeMaat, R.; Fitzpatrick, T.; Gingu, C.; Grossman, N.; Harris, D. A.; Kilmer, J.; McFarland, K. S.; Morfin, J. G.; Olsen, J.; Osta, J.; Rakotondravohitra, L.; Schmitz, D. W.; Snider, F. D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Boyd, S.; Danko, I.; Dytman, S. A.; Eberly, B.; George, C. A.; McGivern, C. L.; Naples, D.; Paolone, V.; Ren, L.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Brooks, W. K.; Maggi, G.; Pena, C.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Butkevich, A.; Kulagin, S. A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Martinez Caicedo, D. A.; Castromonte, C. M.; da Motta, H.; Fiorentini, G. A.; Hurtado, K.; Palomino, J. L.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. [Christy, M. E.; Datta, M.; Keppel, C. E.; Tan, W.; Walton, T.; Zhu, L. Y.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Draeger, E.; Gran, R.; Heaton, J.; Rude, C.; Woodward, N.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Felix, J.; Higuera, A.; Zavala, G.] Univ Guanajuato, Colonia Ctr Guanajuato, Guanajuato 36000, Mexico. [Hurtado, K.; Solano Salinas, C. J.] Univ Nacl Ingn, Lima, Peru. [Jerkins, M.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Le, T.; Locke, G.; Ransome, R. D.; Schulte, E. C.; Tice, B. G.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Maher, E.] Massachusetts Coll Liberal Arts, North Adams, MA 01247 USA. [Mousseau, J.; Osmanov, B.; Ray, H.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Schmitz, D. W.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Simon, C.; Ziemer, B. P.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Sobczyk, J. T.] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland. [Tagg, N.] Otterbein Univ, Dept Phys, Westerville, OH 43081 USA. [Tzanakos, G.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Rakotondravohitra, L.] Univ Antananarivo, Dept Phys, Antananarivo, Madagascar. RP Fields, L (reprint author), Northwestern Univ, Evanston, IL 60208 USA. RI Brooks, William/C-8636-2013; Castromonte Flores, Cesar Manuel/O-6177-2014; Sobczyk, Jan/C-9761-2016 OI Brooks, William/0000-0001-6161-3570; Castromonte Flores, Cesar Manuel/0000-0002-9559-3704; FU University of Rochester; NSF (U.S.A.); DOE (U.S.A.); CAPES (Brazil); CNPq (Brazil); CoNaCyT (Mexico); CONICYT (Chile); CONCYTEC (Peru); DGI-PUCP (Peru); IDI/IGI-UNI (Peru); Latin American Center for Physics (CLAF); RAS; Russian Ministry of Education and Science (Russia); Fermi National Accelerator Laboratory under United States Department of Energy (DOE) Office of High Energy Physics [DE-AC02-07CH11359]; United States National Science Foundatation (NSF) [PHY-0619727] FX This work was supported by the Fermi National Accelerator Laboratory under United States Department of Energy (DOE) Office of High Energy Physics Contract No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support also was granted by the United States National Science Foundatation (NSF) under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (U.S.A.) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP, and IDI/IGI-UNI (Peru), by Latin American Center for Physics (CLAF), and by RAS and the Russian Ministry of Education and Science (Russia). We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line and the detector. NR 59 TC 81 Z9 81 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2013 VL 111 IS 2 AR 022501 DI 10.1103/PhysRevLett.111.022501 PG 7 WC Physics, Multidisciplinary SC Physics GA 183ZJ UT WOS:000321855600006 PM 23889388 ER PT J AU Fiorentini, GA Schmitz, DW Rodrigues, PA Aliaga, L Altinok, O Baldin, B Baumbaugh, A Bodek, A Boehnlein, D Boyd, S Bradford, R Brooks, WK Budd, H Butkevich, A Caicedo, DAM Castromonte, CM Christy, ME Chung, H Chvojka, J Clark, M da Motta, H Damiani, DS Danko, I Datta, M Day, M DeMaat, R Devan, J Draeger, E Dytman, SA Diaz, GA Eberly, B Edmondson, DA Felix, J Fields, L Fitzpatrick, T Gago, AM Gallagher, H George, CA Gielata, JA Gingu, C Gobbi, B Gran, R Grossman, N Hanson, J Harris, DA Heaton, J Higuera, A Howley, IJ Hurtado, K Jerkins, M Kafka, T Kaisen, J Kanter, MO Keppel, CE Kilmer, J Kordosky, M Krajeski, AH Kulagin, SA Le, T Lee, H Leister, AG Locke, G Maggi, G Maher, E Manly, S Mann, WA Marshall, CM McFarland, KS McGivern, CL McGowan, AM Mislivec, A Morfin, JG Mousseau, J Naples, D Nelson, JK Niculescu, G Niculescu, I Ochoa, N O'Connor, CD Olsen, J Osmanov, B Osta, J Palomino, JL Paolone, V Park, J Patrick, CE Perdue, GN Pena, C Rakotondravohitra, L Ransome, RD Ray, H Ren, L Rude, C Sassin, KE Schellman, H Schneider, RM Schulte, EC Simon, C Snider, FD Snyder, MC Sobczyk, JT Salinas, CJS Tagg, N Tan, W Tice, BG Tzanakos, G Velasquez, JP Walding, J Walton, T Wolcott, J Wolthuis, BA Woodward, N Zavala, G Zeng, HB Zhang, D Zhu, LY Ziemer, BP AF Fiorentini, G. A. Schmitz, D. W. Rodrigues, P. A. Aliaga, L. Altinok, O. Baldin, B. Baumbaugh, A. Bodek, A. Boehnlein, D. Boyd, S. Bradford, R. Brooks, W. K. Budd, H. Butkevich, A. Martinez Caicedo, D. A. Castromonte, C. M. Christy, M. E. Chung, H. Chvojka, J. Clark, M. da Motta, H. Damiani, D. S. Danko, I. Datta, M. Day, M. DeMaat, R. Devan, J. Draeger, E. Dytman, S. A. Diaz, G. A. Eberly, B. Edmondson, D. A. Felix, J. Fields, L. Fitzpatrick, T. Gago, A. M. Gallagher, H. George, C. A. Gielata, J. A. Gingu, C. Gobbi, B. Gran, R. Grossman, N. Hanson, J. Harris, D. A. Heaton, J. Higuera, A. Howley, I. J. Hurtado, K. Jerkins, M. Kafka, T. Kaisen, J. Kanter, M. O. Keppel, C. E. Kilmer, J. Kordosky, M. Krajeski, A. H. Kulagin, S. A. Le, T. Lee, H. Leister, A. G. Locke, G. Maggi, G. Maher, E. Manly, S. Mann, W. A. Marshall, C. M. McFarland, K. S. McGivern, C. L. McGowan, A. M. Mislivec, A. Morfin, J. G. Mousseau, J. Naples, D. Nelson, J. K. Niculescu, G. Niculescu, I. Ochoa, N. O'Connor, C. D. Olsen, J. Osmanov, B. Osta, J. Palomino, J. L. Paolone, V. Park, J. Patrick, C. E. Perdue, G. N. Pena, C. Rakotondravohitra, L. Ransome, R. D. Ray, H. Ren, L. Rude, C. Sassin, K. E. Schellman, H. Schneider, R. M. Schulte, E. C. Simon, C. Snider, F. D. Snyder, M. C. Sobczyk, J. T. Solano Salinas, C. J. Tagg, N. Tan, W. Tice, B. G. Tzanakos, G. Velasquez, J. P. Walding, J. Walton, T. Wolcott, J. Wolthuis, B. A. Woodward, N. Zavala, G. Zeng, H. B. Zhang, D. Zhu, L. Y. Ziemer, B. P. CA MINERvA Collaboration TI Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at E-v similar to 3.5 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEAR TARGETS AB We report a study of nu(mu) charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a mu(-) and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, d sigma/dQ(2), and study the low energy particle content of the final state. Deviations are found between the measured d sigma/dQ(2) and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state. C1 [Fiorentini, G. A.; Martinez Caicedo, D. A.; Castromonte, C. M.; da Motta, H.; Hurtado, K.; Palomino, J. L.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. [Schmitz, D. W.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Schmitz, D. W.; Baldin, B.; Baumbaugh, A.; Boehnlein, D.; Martinez Caicedo, D. A.; DeMaat, R.; Fitzpatrick, T.; Gingu, C.; Grossman, N.; Harris, D. A.; Kilmer, J.; McFarland, K. S.; Morfin, J. G.; Olsen, J.; Osta, J.; Rakotondravohitra, L.; Snider, F. D.; Sobczyk, J. T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Rodrigues, P. A.; Bodek, A.; Budd, H.; Chung, H.; Chvojka, J.; Clark, M.; Day, M.; Gielata, J. A.; Hanson, J.; Kaisen, J.; Lee, H.; Manly, S.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Mislivec, A.; Park, J.; Perdue, G. N.; Wolcott, J.; Zeng, H. B.] Univ Rochester, Rochester, NY 14610 USA. [Aliaga, L.; Damiani, D. S.; Devan, J.; Edmondson, D. A.; Howley, I. J.; Kanter, M. O.; Kordosky, M.; Krajeski, A. H.; Leister, A. G.; Nelson, J. K.; O'Connor, C. D.; Sassin, K. E.; Schneider, R. M.; Snyder, M. C.; Walding, J.; Wolthuis, B. A.; Zhang, D.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Aliaga, L.; Diaz, G. A.; Gago, A. M.; Ochoa, N.; Velasquez, J. P.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Altinok, O.; Gallagher, H.; Kafka, T.; Mann, W. A.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Boyd, S.; Danko, I.; Dytman, S. A.; Eberly, B.; George, C. A.; McGivern, C. L.; Naples, D.; Paolone, V.; Ren, L.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Brooks, W. K.; Maggi, G.; Pena, C.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Butkevich, A.; Kulagin, S. A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Christy, M. E.; Datta, M.; Keppel, C. E.; Tan, W.; Walton, T.; Zhu, L. Y.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Draeger, E.; Gran, R.; Heaton, J.; Rude, C.; Woodward, N.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Felix, J.; Higuera, A.; Zavala, G.] Univ Guanajuato, Colonia Ctr Guanajuato, Guanajuato 36000, Mexico. [Fields, L.; Gobbi, B.; Patrick, C. E.; Schellman, H.] Northwestern Univ, Evanston, IL 60208 USA. [Hurtado, K.; Solano Salinas, C. J.] Univ Nacl Ingn, Lima, Peru. [Jerkins, M.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Le, T.; Locke, G.; Ransome, R. D.; Schulte, E. C.; Tice, B. G.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Maher, E.] Massachusetts Coll Liberal Arts, North Adams, MA 01247 USA. [Mousseau, J.; Osmanov, B.; Ray, H.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Simon, C.; Ziemer, B. P.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Sobczyk, J. T.] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland. [Tagg, N.] Otterbein Univ, Dept Phys, Westerville, OH 43081 USA. [Tzanakos, G.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Rakotondravohitra, L.] Univ Antananarivo, Dept Phys, Antananarivo, Madagascar. RP Fiorentini, GA (reprint author), Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil. RI Brooks, William/C-8636-2013; Castromonte Flores, Cesar Manuel/O-6177-2014; Sobczyk, Jan/C-9761-2016 OI Brooks, William/0000-0001-6161-3570; Castromonte Flores, Cesar Manuel/0000-0002-9559-3704; FU Fermi National Accelerator Laboratory under United States Department of Energy (DOE) Office of High Energy Physics [DE-AC02-07CH11359]; United States National Science Foundation (NSF) [PHY-0619727]; University of Rochester; NSF (USA); DOE (USA); CAPES (Brazil); CNPq (Brazil); CoNaCyT (Mexico); CONICYT (Chile); CONCYTEC (Peru); DGI-PUCP (Peru); IDI/IGI-UNI (Peru); Latin American Center for Physics (CLAF); RAS; Russian Ministry of Education and Science (Russia) FX This work was supported by the Fermi National Accelerator Laboratory under United States Department of Energy (DOE) Office of High Energy Physics Contract No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support also was granted by the United States National Science Foundation (NSF) under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (USA) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP, and IDI/IGI-UNI (Peru), by Latin American Center for Physics (CLAF) and by RAS and the Russian Ministry of Education and Science (Russia). We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line and detector. NR 41 TC 92 Z9 92 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 11 PY 2013 VL 111 IS 2 AR 022502 DI 10.1103/PhysRevLett.111.022502 PG 6 WC Physics, Multidisciplinary SC Physics GA 183ZJ UT WOS:000321855600007 PM 23889389 ER PT J AU Weber, IT Waltman, MJ Mustyakimov, M Blakeley, MP Keen, DA Ghosh, AK Langan, P Kovalevsky, AY AF Weber, Irene T. Waltman, Mary Jo Mustyakimov, Marat Blakeley, Matthew P. Keen, David A. Ghosh, Arun K. Langan, Paul Kovalevsky, Andrey Y. TI Joint X-ray/Neutron Crystallographic Study of HIV-1 Protease with Clinical Inhibitor Amprenavir: Insights for Drug Design SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID NEUTRON MACROMOLECULAR CRYSTALLOGRAPHY; RESOLUTION CRYSTAL-STRUCTURES; RESISTANT MUTANTS; IONIZATION STATES; ALDOSE REDUCTASE; HYDROGEN; COMPLEX; RAY; POTENT; GENERATION AB HIV-1 protease is an important target for the development of antiviral inhibitors to treat AIDS. A room-temperature joint X-ray/neutron structure of the protease in complex with clinical drug amprenavir has been determined at 2.0 angstrom resolution. The structure provides direct determination of hydrogen en atom positions in enzyme active enzyme-drug interactions suggests that some hydrogen bond's may be weaker than deduced from the non-hydrogen interatomic distances. This information may be valuable for the design of improved protease inhibitors. C1 [Weber, Irene T.] Georgia State Univ, Dept Chem, Atlanta, GA 30303 USA. [Weber, Irene T.] Georgia State Univ, Dept Biol, Atlanta, GA 30303 USA. [Waltman, Mary Jo] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Blakeley, Matthew P.] Inst Max Von Laue Paul Langevin, Grenoble 9, France. [Keen, David A.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Ghosh, Arun K.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Ghosh, Arun K.] Purdue Univ, Dept Med Chem, W Lafayette, IN 47907 USA. [Mustyakimov, Marat; Langan, Paul; Kovalevsky, Andrey Y.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN USA. RP Kovalevsky, AY (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. EM kovalevskyay@ornl.gov RI Langan, Paul/N-5237-2015; Blakeley, Matthew/G-7984-2015; OI Langan, Paul/0000-0002-0247-3122; Blakeley, Matthew/0000-0002-6412-4358; Kovalevsky, Andrey/0000-0003-4459-9142 FU DOE-OBER; DOE-BES; NIH-NIGMS [1R01GM071939-01]; NIH [R01GM062920, GM053386] FX M.J.W. was partly supported by a DOE-OBER grant to the neutron Protein Crystallography Station at LANSCE. A.Y.K., P.L., and M.M. were partly supported by DOE-BES. P.L. was partly supported by an NIH-NIGMS-funded consortium (1R01GM071939-01) between ORNL and LBNL. I.W. was partly supported by NIH grant R01GM062920. A.G. was partly supported by NIH grant GM053386. We thank Dr. Srinivas Iyer of the Bioscience Division of Los Alamos National Laboratory for performing mass spectrometry measurements. NR 39 TC 19 Z9 19 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD JUL 11 PY 2013 VL 56 IS 13 BP 5631 EP 5635 DI 10.1021/jm400684f PG 5 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 184IV UT WOS:000321884200031 PM 23772563 ER PT J AU Luo, WF Cowgill, DF Flanagan, TB AF Luo, Weifang Cowgill, Donald F. Flanagan, Ted B. TI Separation Factors for Hydrogen Isotopes in Palladium Hydride SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID EQUILIBRIUM; EXCHANGE; DEUTERIUM AB This investigation examines how equilibrium pressures of single isotope metal-hydrogen systems can be used to determine the separation behavior of hydrogen isotopes in a mixed-isotope metal hydrogen system. The separation factor for a hydrogen-deuterium system alpha(HD), describes the equilibrium hydrogen isotope partition between the solid and gaseous phases. Very few values of alpha(HD) are reported for metals other than palladium, and the values for Pd are scattered with the origin of the scatter not understood. Wicke and Nernst and Trentin et al. have proposed models that relate alpha(HD) to the ratio of single isotope equilibrium pressures and the isotopic composition of the solid. The approaches of these models and the resulting equations appear to differ; however, as will be shown here, they are identical. It also will be shown that Raoult's law, employed by both models, is not needed. This puts the model derivation on a firmer theoretical basis. New measurements of alpha(HD) values are determined over a large temperature range and D/H ratio in beta-phase Pd hydride, and they are compared with the model predictions, validating the model. Since experimental values for alpha(HD) are often not available for other systems, while single isotope equilibrium pressures are available, the model provides a valuable tool for predicting separation factors. Moreover, the model can also be used to estimate separation factors involving the third hydrogen isotope, tritium. C1 [Luo, Weifang; Cowgill, Donald F.] Sandia Natl Labs, Livermore, CA 94551 USA. [Flanagan, Ted B.] Univ Vermont, Dept Chem, Burlington, VT 05405 USA. RP Luo, WF (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94551 USA. EM wluo@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 14 TC 6 Z9 6 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 11 PY 2013 VL 117 IS 27 BP 13861 EP 13871 DI 10.1021/jp4032332 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 184IP UT WOS:000321883600012 ER PT J AU Li, Q Xu, P Zhang, B Tsai, H Zheng, SJ Wu, G Wang, HL AF Li, Qing Xu, Ping Zhang, Bin Tsai, Hsinhan Zheng, Shijian Wu, Gang Wang, Hsing-Lin TI Structure-Dependent Electrocatalytic Properties of Cu2O Nanocrystals for Oxygen Reduction Reaction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ONE-POT SYNTHESIS; METHANOL ELECTROOXIDATION; PHOTOCATALYTIC ACTIVITY; PLATINUM NANOCRYSTALS; SOLUTION-PHASE; FUEL-CELLS; OXIDE; NANOCUBES; HOLLOW; NANOPARTICLES AB Cu2O nanocrystals with different morphologies are synthesized via a reductive solution route by controlling the reaction time and using different capping agents. Introducing poly(ethylene glycol) (PEG) leads to nearly, monodispersed Cu2O nanocubes with 40 nm size and dominant {100} crystal planes. With prolonged reaction time, the nanocubes are truncated and transformed into sphere-like nanocrystals with more {111} planes exposed. In the presence of poly(vinyl pyrrolidone) (PVP), porous Cu2O nanocrystals with both {100} and {111} planes present are produced. The structure-dependent electrocatalytic activity of Cu2O nanocrystals toward oxygen reduction reaction (ORR) has been studied in alkaline electrolyte. The electrocatalytic activity measured on Cu2O {100} is higher than that on Cu2O {111}. In addition, the Cu2O nanocubes with dominant {100} crystal planes show the highest four-electron selectivity (n = 3.7). and lowest peroxide yield (15%) during the ORR. Kinetics analysis indicates that the ORR mechanism on Cu2O nanocrystals is controlled simultaneously by charge transfer and intermediate migration. The Cu2O nanocrystals also show better methanol tolerance and durability for ORR than the commercial Pt/C materials. C1 [Li, Qing; Xu, Ping; Zhang, Bin] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. [Xu, Ping; Tsai, Hsinhan; Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Li, Qing; Zheng, Shijian; Wu, Gang] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Xu, P (reprint author), Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. EM pxu@hit.edu.cn; wugang@lanl.gov; hwang@lanl.gov RI Wu, Gang/E-8536-2010; zheng, shijian/F-2453-2012; Li, Qing/G-4502-2011; Xu, Ping/I-1910-2013 OI Wu, Gang/0000-0003-4956-5208; Li, Qing/0000-0003-4807-030X; Xu, Ping/0000-0002-1516-4986 FU China Postdoctor Fund; NSFC [21203045, 21101041, 21003029, 21071037, 91122002]; Fundamental Research Funds for the Central Universities [HIT. NSRIF. 2010065, 2011017, HIT.BRETIII. 201223]; LANL; Laboratory Directed Research and Development (LDRD) fund under the auspices of DOE; Basic Energy Science (BES), Biomaterials program, Materials Sciences and Engineering Division FX P.X. thanks the support from the China Postdoctor Fund, NSFC (No. 21203045, 21101041, 21003029, 21071037, and 91122002), Fundamental Research Funds for the Central Universities (Grant Nos. HIT. NSRIF. 2010065 and 2011017, and HIT.BRETIII. 201223), and Director's Postdoctoral Fellow from LANL. H.L.W. acknowledges the financial support from the Laboratory Directed Research and Development (LDRD) fund under the auspices of DOE. This work is partially supported by Basic Energy Science (BES), Biomaterials program, Materials Sciences and Engineering Division. NR 52 TC 35 Z9 36 U1 7 U2 143 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 11 PY 2013 VL 117 IS 27 BP 13872 EP 13878 DI 10.1021/jp403655y PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 184IP UT WOS:000321883600013 ER PT J AU Henderson, MA AF Henderson, Michael A. TI Photooxidation and Photodesorption in the Photochemistry of Isobutene on TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SINGLE-CRYSTAL SURFACES; FT-IR; OLEFINS OLIGOMERIZATION; SKELETAL ISOMERIZATION; REDUCED TIO2(110); PARTIAL OXIDATION; SULFATED TITANIA; RUTILE TIO2(110); OXIDE CATALYST; TIO2 110 AB The photochemistry of isobutene was examine TiO2(110) surface as a function of the surface pretreatment condition and irradiation temperature using temperature programmed desorption (TPD) and photon stimulated desorption (PSD). Isobutene adsorbs molecularly on the clean TiO2(110) surface without detectable thermal decomposition. Preadsorption of oxygen, either as atoms of chemisorbed molecules, did not promote thermal reactions with..isobutene, but instead blocked isobutene adsorption sites. Ultraviolet (UV) light irradiation of isobutene adsorbed on the clean surface led to depletion through photodesorption, without significant photooxidation. Isobutene PSD yields increased with increasing surface temperature suggesting that photodesorbing molecules sampled the surface during photodesorption. Preadsorption of oxygen promoted partial photooxidation of adsorbed isobutene to acetone, methacrolein, and isobutanal. However, the form of oxygen available for isobutene photoxidation had a significant impact on the reaction pathway. Acetone was only detected When molecular oxygen was present, indicating that O-2 addition occurred across the C=C bond. In contrast, results from use of isobutene-d(6) indicated that coadsorption with either O adatoms or O-2 molecules led to photochemical production of methacrolein (and likely-isobntanal) through C-H bond cleavage on a methyl group. Irradiation of a surface comprised of isobutene adsorbed on 1 ML of preadsorbed O-2 at 20 K showed the most photoConversion. Of isobutene, which suggests that photoactivation of adsorbed O-2 is a key step in partial. photooiddation of isobutene. Comparison of the isobutene PSD and photooxidation product yields as a function of surface temperature between 20 and 120 K indicates a competition between photoxidation and photodesorption that varies with temperature. "Direct" charge transfer events between isobutene and the surface, favored at higher temperature; - competed with partial ,oxidation pathways initiated by "indirect" activation of isobutene by O-2, which is favored at low temperature. Access of O-2 to the surface is critical to achieving desired isobutene photooxidation rates and products, with isobutene photodesorption providing a means : of regulating the isobutene surface. coverage. C1 Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MS K8-87, Richland, WA 99352 USA. EM ma.henderson@pnnl.gov FU U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences; Office of Biological and Environmental Research FX Work reported here was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences, and performed in the Williams R Wiley Environmental Molecular Science Laboratory (EMSL), a Department of Energy user facility funded by the Office of Biological and Environmental Research. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by Battelle. NR 64 TC 4 Z9 4 U1 5 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 11 PY 2013 VL 117 IS 27 BP 14113 EP 14124 DI 10.1021/jp404625c PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 184IP UT WOS:000321883600040 ER PT J AU Hammons, JA Muselle, T Ustarroz, J Tzedaki, M Rats, M Hubin, A Terryn, H AF Hammons, Joshua A. Muselle, Thibault Ustarroz, Jon Tzedaki, Maria Rats, Marc Hubin, Annick Terryn, Herman TI Stability, Assembly, and Particle/Solvent Interactions of Pd Nanoparticles Electrodeposited from a Deep Eutectic Solvent SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID IMIDAZOLIUM IONIC LIQUIDS; TRANSITION-METAL NANOPARTICLES; SMALL-ANGLE SCATTERING; PALLADIUM CLUSTERS; PORODS LAW; SYSTEMS; STM; IMPEDANCES; INTERFACE; CATALYSTS AB Supported nanoparticle synthesis and assembly have application in a wide range of modern day applications. Key to the manipulation of the particle assembly is an understanding of the interaction between the particles and solvent. Here, we employ a comprehensive in situ approach, together with ex situ SEM imaging, to study supported palladium nanoparticles, electrodeposited from a 2:1 urea:choline Cl- DES. Using cyclic voltammetry, we confirm the expected adsorption of electroactive species onto the deposited particles. On the basis of our experimental results, we conclude that the electrodeposited nanoparticles assemble into 2-D superstructures, rich in adsorbed species. The abundance of these adsorbed species, within the superstructure, induces an anionic layer above them, which can be observed by ultrasmall-angle X-ray scattering (USAXS) as well as electrochemical impedance spectroscopy (EIS). The surface charge of the particles is, therefore, not neutralized locally, as is the case with traditional colloidal systems. We also show that these otherwise stable nanoparticles readily aggregate when the DES is removed. Thus, the stability of these particles is contingent upon the presence of the DES. C1 [Hammons, Joshua A.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Muselle, Thibault; Ustarroz, Jon; Tzedaki, Maria; Rats, Marc; Hubin, Annick; Terryn, Herman] Vrije Univ Brussel, Dept Electrochem & Surface Engn, B-1050 Brussels, Belgium. RP Hammons, JA (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass, Argonne, IL 60439 USA. EM hammons@aps.anl.gov RI Ustarroz, Jon /A-2344-2011 OI Ustarroz, Jon /0000-0003-0166-6915 FU NWO/FWO Vlaanderen; National Science Foundation/Department of Energy [NSF/CHE-0822838]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We greatly acknowledge NWO/FWO Vlaanderen for the provision of a travel grant and help and support of Dr. Jan Ilavsky and support staff at ID-15, Advanced Photon Source, Chicago, IL. ChemMatCARS Sector IS is principally supported by the National Science Foundation/Department of Energy under Grant NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 46 TC 15 Z9 15 U1 4 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 11 PY 2013 VL 117 IS 27 BP 14381 EP 14389 DI 10.1021/jp403739y PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 184IP UT WOS:000321883600073 ER PT J AU Engle, JW Mashnik, SG Weidner, JW Wolfsberg, LE Fassbender, ME Jackman, K Couture, A Bitteker, LJ Ullmann, JL Gulley, MS Pillai, C John, KD Birnbaum, ER Nortier, FM AF Engle, Jonathan W. Mashnik, Stepan G. Weidner, John W. Wolfsberg, Laura E. Fassbender, Michael E. Jackman, Kevin Couture, Aaron Bitteker, Leo J. Ullmann, John L. Gulley, Mark S. Pillai, Chandra John, Kevin D. Birnbaum, Eva R. Nortier, Francois M. TI Cross sections from proton irradiation of thorium at 800 MeV SO PHYSICAL REVIEW C LA English DT Article ID INDUCED FISSION; SPALLATION; TARGETS; NUCLEI; AC-225 AB Nuclear formation cross sections are reported for 65 nuclides produced from 800-MeV proton irradiation of thorium foils. These data are useful as benchmarks for computational predictions in the ongoing process of theoretical code development and also in the design of spallation-based radioisotope production currently being considered for multiple radiotherapeutic pharmaceutical agents. Measured data are compared with the predictions of three MCNP6 event generators and used to evaluate the potential for 800-MeV productions of radioisotopes of interest for medical radiotherapy. In only a few instances code predictions are discrepant from measured values by more than a factor of 2, demonstrating satisfactory predictive power across a large mass range. Similarly, agreement between measurements presented here and those previously reported is good, lending credibility to predictions of target yields and radioimpurities for high-energy accelerator-produced radionuclides. C1 [Engle, Jonathan W.; Mashnik, Stepan G.; Weidner, John W.; Wolfsberg, Laura E.; Fassbender, Michael E.; Jackman, Kevin; Couture, Aaron; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Engle, JW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jwengle@lanl.gov OI John, Kevin/0000-0002-6181-9330; Nortier, Francois/0000-0002-7549-8101 FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA253996]; US DOE Office of Science from The Isotope Development and Production for Research and Applications subprogram in the Office of Nuclear Physics FX We are grateful for technical assistance from LANL CNR, C-IIAC, AOT-OPS, and LANSCE-NS group staffs. This study was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA253996 with partial funding by the US DOE Office of Science via an award from The Isotope Development and Production for Research and Applications subprogram in the Office of Nuclear Physics. NR 33 TC 8 Z9 8 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL 11 PY 2013 VL 88 IS 1 AR 014604 DI 10.1103/PhysRevC.88.014604 PG 8 WC Physics, Nuclear SC Physics GA 183TC UT WOS:000321839100002 ER PT J AU Santamaria, R Bokhimi, X Soullard, J Jellinek, J AF Santamaria, Ruben Bokhimi, Xim Soullard, Jacques Jellinek, Julius TI Pressure-Induced Metallization of Li+-Doped Hydrogen Clusters SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID EQUATION-OF-STATE; X-RAY-DIFFRACTION; MOLECULAR-HYDROGEN; SOLID HYDROGEN; MEGABAR PRESSURES; DENSE HYDROGEN; LITHIUM; GPA AB Endohedrally encapsulated hydrogen clusters doped with inert helium (H24He) and ionic lithium (H24Li+) are investigated. The confinement model is a nanoscopic analogue of the experimental compression of solid hydrogen. The structural and electronic properties of. the doped hydrogen clusters are determined under the effects of pressure. The results are compared with these of the isoelectronic (pure) hydrogen counterpart H-26 under similar physical conditions. Pressure increase rates with respect to H-26 Of approximately 1.1 are observed with, the insertion of helium or lithium.; The changes of geometrical structures and HOMO-LUMO gap energies with the pressure point out the pressure-induced metallization of the Li+-doped cluster. The computations are done using density functional theory in the form implemented for Molecules; they include zero-point energy effects and, to our best knowledge, are the first of their kind. C1 [Santamaria, Ruben; Bokhimi, Xim; Soullard, Jacques] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 20364, DF, Mexico. [Jellinek, Julius] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Santamaria, R (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 20364, DF, Mexico. EM rso@fisica.unam.mx; bolchimi@fisica.unam.mx; soullard@fisica.unam.mx; jellinek@anl.gov FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy [DE-AC02-06CH11357] FX The authors thank the IFUNAM and DGTIC computer staff for access to Khua and KanBalam CPU clusters. J.J. was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy under Contract No. DE-AC02-06CH11357. We thank Dr. J. M. Lopez-Encarnacion for help with input files for constrained normal mode calculations. NR 33 TC 2 Z9 2 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 11 PY 2013 VL 117 IS 27 BP 5642 EP 5649 DI 10.1021/jp400483z PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 184IY UT WOS:000321884500010 PM 23758642 ER PT J AU Read, BA Kegel, J Klute, MJ Kuo, A Lefebvre, SC Maumus, F Mayer, C Miller, J Monier, A Salamov, A Young, J Aguilar, M Claverie, JM Frickenhaus, S Gonzalez, K Herman, EK Lin, YC Napier, J Ogata, H Sarno, AF Shmutz, J Schroeder, D de Vargas, C Verret, F von Dassow, P Valentin, K Van de Peer, Y Wheeler, G Dacks, JB Delwiche, CF Dyhrman, ST Glockner, G John, U Richards, T Worden, AZ Zhang, XY Grigoriev, IV Allen, AE Bidle, K Borodovsky, M Bowler, C Brownlee, C Cock, JM Elias, M Gladyshev, VN Groth, M Guda, C Hadaegh, A Iglesias-Rodriguez, MD Jenkins, J Jones, BM Lawson, T Leese, F Lindquist, E Lobanov, A Lomsadze, A Malik, SB Marsh, ME Mackinder, L Mock, T Mueller-Roeber, B Pagarete, A Parker, M Probert, I Quesneville, H Raines, C Rensing, SA Riano-Pachon, DM Richier, S Rokitta, S Shiraiwa, Y Soanes, DM van der Giezen, M Wahlund, TM Williams, B Wilson, W Wolfe, G Wurch, LL AF Read, Betsy A. Kegel, Jessica Klute, Mary J. Kuo, Alan Lefebvre, Stephane C. Maumus, Florian Mayer, Christoph Miller, John Monier, Adam Salamov, Asaf Young, Jeremy Aguilar, Maria Claverie, Jean-Michel Frickenhaus, Stephan Gonzalez, Karina Herman, Emily K. Lin, Yao-Cheng Napier, Johnathan Ogata, Hiroyuki Sarno, Analissa F. Shmutz, Jeremy Schroeder, Declan de Vargas, Colomban Verret, Frederic von Dassow, Peter Valentin, Klaus Van de Peer, Yves Wheeler, Glen Dacks, Joel B. Delwiche, Charles F. Dyhrman, Sonya T. Gloeckner, Gernot John, Uwe Richards, Thomas Worden, Alexandra Z. Zhang, Xiaoyu Grigoriev, Igor V. Allen, Andrew E. Bidle, Kay Borodovsky, M. Bowler, C. Brownlee, Colin Cock, J. Mark Elias, Marek Gladyshev, Vadim N. Groth, Marco Guda, Chittibabu Hadaegh, Ahmad Iglesias-Rodriguez, Maria Debora Jenkins, J. Jones, Bethan M. Lawson, Tracy Leese, Florian Lindquist, Erika Lobanov, Alexei Lomsadze, Alexandre Malik, Shehre-Banoo Marsh, Mary E. Mackinder, Luke Mock, Thomas Mueller-Roeber, Bernd Pagarete, Antonio Parker, Micaela Probert, Ian Quesneville, Hadi Raines, Christine Rensing, Stefan A. Riano-Pachon, Diego Mauricio Richier, Sophie Rokitta, Sebastian Shiraiwa, Yoshihiro Soanes, Darren M. van der Giezen, Mark Wahlund, Thomas M. Williams, Bryony Wilson, Willie Wolfe, Gordon Wurch, Louie L. CA Emiliania Huxleyi Annotation TI Pan genome of the phytoplankton Emiliania underpins its global distribution SO NATURE LA English DT Article ID HUXLEYI PRYMNESIOPHYCEAE; GEPHYROCAPSA OCEANICA; HIGH LIGHT; CALCIFICATION; PHOSPHORUS; INDICATORS; STRESS; BLOOMS; GROWTH AB Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions. C1 [Read, Betsy A.; Sarno, Analissa F.; Wahlund, Thomas M.] Calif State Univ San Marcos, Dept Biol Sci, San Marcos, CA 92096 USA. [Kegel, Jessica; Frickenhaus, Stephan; Valentin, Klaus; John, Uwe; Rokitta, Sebastian] Helmholtz Ctr Polar & Marine Res AWI, Alfred Wegener Inst, D-27570 Bremerhaven, Germany. [Klute, Mary J.; Aguilar, Maria; Herman, Emily K.; Dacks, Joel B.] Univ Alberta, Dept Cell Biol, Edmonton, AB T6G 2H7, Canada. [Kuo, Alan; Salamov, Asaf; Shmutz, Jeremy; Grigoriev, Igor V.; Lindquist, Erika] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Lefebvre, Stephane C.; Allen, Andrew E.] J Craig Venter Inst, San Diego, CA 92121 USA. [Maumus, Florian; Quesneville, Hadi] INRA, Unite Rech Genom Info, F-78026 Versailles, France. [Mayer, Christoph] Forsch Museum, D-53113 Bonn, Germany. [Mayer, Christoph; Leese, Florian] Ruhr Univ Bochum, Dept Anim Ecol Evolut & Biodivers, D-44801 Bochum, Germany. [Miller, John; Delwiche, Charles F.] Univ Maryland, College Pk, MD 20742 USA. [Miller, John; Delwiche, Charles F.] Univ Maryland, Maryland Agr Expt Stn, College Pk, MD 20742 USA. [Monier, Adam; Worden, Alexandra Z.] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. [Young, Jeremy] UCL, Dept Earth Sci, London WC1E 6BT, England. [Claverie, Jean-Michel; Ogata, Hiroyuki] Aix Marseille Univ, Mediterranean Inst Microbiol, CNRS, Struct & Genom Informat Lab, FR-3479 Marseille, France. [Frickenhaus, Stephan] Hsch Bremerhaven, D-27568 Bremerhaven, Germany. [Gonzalez, Karina] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA. [Lin, Yao-Cheng; Van de Peer, Yves] Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Napier, Johnathan] Rothamsted Res, Dept Biol Chem, Harpenden AL5 2JQ, Herts, England. [Shmutz, Jeremy; Jenkins, J.] HudsonAlpha Genome Sequencing Ctr, Huntsville, AL 35806 USA. [Schroeder, Declan; Wheeler, Glen; Brownlee, Colin; Mackinder, Luke] Marine Biol Assoc United Kingdom Lab, Plymouth PL1 2PB, Devon, England. [de Vargas, Colomban; Probert, Ian] CNRS, UMR 7144, F-29682 Roscoff, France. [de Vargas, Colomban; Probert, Ian] Univ Paris 06, EPEP Team, Stn Biol Roscoff, F-29682 Roscoff, France. [Verret, Frederic] Univ Essex, Sch Biol Sci, Colchester CO4 3SQ, Essex, England. [von Dassow, Peter] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Ecol, Santiago, Chile. [Wheeler, Glen] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England. [Dyhrman, Sonya T.; Wurch, Louie L.] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. [Dyhrman, Sonya T.] Columbia Univ, Dept Earth & Environm Sci, Palisades, NY 10964 USA. [Dyhrman, Sonya T.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Gloeckner, Gernot] Univ Cologne, Fac Med, Inst Biochem 1, D-50931 Cologne, Germany. [Gloeckner, Gernot] Leibniz Inst Freshwater Ecol & Inland Fisheries, D-12587 Berlin, Germany. [Richards, Thomas] Nat Hist Museum, Dept Zool, London SW7 5BD, England. [Zhang, Xiaoyu; Hadaegh, Ahmad] Calif State Univ San Marcos, Dept Comp Sci & Informat Syst, San Marcos, CA 92096 USA. [Bidle, Kay] Rutgers State Univ, Inst Marine & Coastal Sci, Environm Biophys & Mol Ecol Grp, New Brunswick, NJ 08901 USA. [Borodovsky, M.; Lomsadze, Alexandre] Georgia Tech, Joint Georgia Tech & Emory Dept Biomed Engn, Sch Computat Sci & Engn, Atlanta, GA 30322 USA. [Borodovsky, M.] Moscow Inst Phys & Technol, Dept Bioinformat, Moscow 117303, Russia. [Bowler, C.] Inst Natl Sante & Rech Med U1024, Environm & Evolutionary Genom Sect, Inst Biol lEcole Normale Super, Ctr Natl Rech Sci,UMR8197, F-75230 Paris, France. [Cock, J. Mark] CNRS, UMR 7139, Lab Int Associe Dispersal & Adaptat Marin Species, Stn Biol Roscoff, F-29682 Roscoff, France. [Cock, J. Mark] UPMC Univ Paris 06, Marine Plants & Biomol Lab, UMR 7139, Stn Biol Roscoff, F-29682 Roscoff, France. [Elias, Marek] Univ Ostrava, Fac Sci, Dept Biol & Ecol, Life Sci Res Ctr, Ostrava 71000, Czech Republic. [Gladyshev, Vadim N.; Lobanov, Alexei] Brigham & Womens Hosp, Harvard Med Sch, Dept Med, Div Genet, Boston, MA 02115 USA. [Groth, Marco] Leibniz Inst Age Res, Fritz Lipmann Inst, D-07745 Jena, Germany. [Guda, Chittibabu] Univ Nebraska Med Ctr, Dept Genet, Cell Biol & Anat, Omaha, NE 68198 USA. [Iglesias-Rodriguez, Maria Debora] Univ California Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. [Iglesias-Rodriguez, Maria Debora; Jones, Bethan M.; Richier, Sophie] Univ Southampton, Ocean & Earth Sci Natl Oceanog Ctr Southampton, Southampton SO17 1BJ, Hants, England. [Jones, Bethan M.] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. [Lawson, Tracy; Raines, Christine] Univ Essex, Sch Biol Sci, Colchester CO4 3SQ, Essex, England. [Malik, Shehre-Banoo] Dalhousie Univ, Canadian Inst Adv Res, Integrated Microbial Biodivers Program, Halifax, NS B3H 4R2, Canada. [Marsh, Mary E.] Univ Texas Houston Med Sch, Houston, TX 77030 USA. [Mock, Thomas] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [Mueller-Roeber, Bernd] Univ Potsdam, Inst Biochem & Biol, D-14476 Potsdam, Germany. [Pagarete, Antonio] Univ Bergen, Dept Biol, N-5006 Bergen, Norway. [Parker, Micaela] Univ Washington, Ctr Environm Genom, PNW Ctr Human Hlth & Ocean Studies, Seattle, WA 98195 USA. [Rensing, Stefan A.] Univ Freiburg, Fac Biol, BIOSS Ctr Biol Signalling Studies, D-79098 Freiburg, Germany. [Rensing, Stefan A.] Univ Marburg, Fac Biol, D-35043 Marburg, Germany. [Riano-Pachon, Diego Mauricio] Univ Los Andes, Dept Ciencias Biol, Bogota 111711, DC, Colombia. [Richier, Sophie] CNRS, INSU, UMR 7093, Lab Oceanog Villefranche, F-06230 Villefranche Sur Mer, France. [Richier, Sophie] Univ Paris 06, Observ Oceanol Villefranche, F-06230 Villefranche Sur Mer, France. [Shiraiwa, Yoshihiro] Univ Tsukuba, Fac Life & Environm Sci, Tsukuba, Ibaraki 3058572, Japan. [Soanes, Darren M.; van der Giezen, Mark; Williams, Bryony] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4QD, Devon, England. [Wilson, Willie] Bigelow Lab Ocean Sci, Provasoli Guillard Natl Ctr, E Boothbay, ME 04544 USA. [Wolfe, Gordon] California State Univ, Dept Biol Sci, Chico, CA 95929 USA. [Wurch, Louie L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Read, BA (reprint author), Calif State Univ San Marcos, Dept Biol Sci, San Marcos, CA 92096 USA. EM bread@csusm.edu RI Lin, Yao-Cheng/B-4394-2008; Schmutz, Jeremy/N-3173-2013; Riano-Pachon, Diego/A-1755-2010; Delwiche, Charles/C-6549-2008; Maumus, Florian/O-5426-2016; Pagarete, Antonio/B-9358-2009; Mock, Thomas/A-3127-2008; john, uwe/S-3009-2016; Glockner, Gernot/A-7800-2010; Valentin, Klaus/G-5862-2014; Elias, Marek/D-6851-2014; Kegel, Jessica/L-1726-2014; Van de Peer, Yves/D-4388-2009 OI Claverie, jean-michel/0000-0003-1424-0315; Williams, Bryony/0000-0003-1123-2176; Leese, Florian/0000-0002-5465-913X; Parker, Micaela/0000-0003-1007-4612; Lin, Yao-Cheng/0000-0002-9390-795X; Monier, Adam/0000-0002-6018-5153; von Dassow, Peter/0000-0002-1858-1953; Frickenhaus, Stephan/0000-0002-0356-9791; Lawson, Tracy/0000-0002-4073-7221; Young, Jeremy/0000-0001-9320-9804; van der Giezen, Mark/0000-0002-1033-1335; Schmutz, Jeremy/0000-0001-8062-9172; Riano-Pachon, Diego/0000-0001-9803-3465; Delwiche, Charles/0000-0001-7854-8584; Maumus, Florian/0000-0001-7325-0527; Pagarete, Antonio/0000-0003-1347-0282; Mock, Thomas/0000-0001-9604-0362; john, uwe/0000-0002-1297-4086; Glockner, Gernot/0000-0002-9061-1061; Valentin, Klaus/0000-0001-7401-9423; Elias, Marek/0000-0003-0066-6542; Kegel, Jessica/0000-0002-4740-9554; Van de Peer, Yves/0000-0003-4327-3730 FU Office of Science of the US Department of Energy (DOE) [7DE-AC02-05CH11231] FX Joint Genome Institute (JGI) contributions were supported by the Office of Science of the US Department of Energy (DOE) under contract no. 7DE-AC02-05CH11231. We thank A. Gough for assistance with figures, C. Gentemann for Fig. 3 ocean colour analysis and P. Keeling for discussions. NR 28 TC 136 Z9 146 U1 20 U2 187 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUL 11 PY 2013 VL 499 IS 7457 BP 209 EP 213 DI 10.1038/nature12221 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 179YA UT WOS:000321557600062 PM 23760476 ER PT J AU Sheu, YM Trugman, SA Yan, L Chuu, CP Bi, Z Jia, QX Taylor, AJ Prasankumar, RP AF Sheu, Y. M. Trugman, S. A. Yan, L. Chuu, C.-P. Bi, Z. Jia, Q. X. Taylor, A. J. Prasankumar, R. P. TI Photoinduced stabilization and enhancement of the ferroelectric polarization in Ba0.1Sr0.9TiO3/La0.7Ca(Sr)(0.3)MnO3 thin film heterostructures SO PHYSICAL REVIEW B LA English DT Article ID OPTICAL-PROPERTIES; PHASE-TRANSITION; BATIO3; SRTIO3 AB An emerging area in condensed matter physics is the use of multilayered heterostructures to enhance ferroelectricity in complex oxides. Here we demonstrate that optically pumping carriers across the interface between thin films of a ferroelectric (FE) insulator and a ferromagnetic metal can significantly enhance the FE polarization. The photoinduced FE state remains stable at low temperatures for over one day. This occurs through screening of the internal electric field by the photoexcited carriers, leading to a larger, more stable polarization state that may be suitable for applications in areas such as data and energy storage. C1 [Sheu, Y. M.; Trugman, S. A.; Yan, L.; Bi, Z.; Jia, Q. X.; Taylor, A. J.; Prasankumar, R. P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Chuu, C.-P.] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. RP Sheu, YM (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RI Jia, Q. X./C-5194-2008; OI Trugman, Stuart/0000-0002-6688-7228 FU Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering; Los Alamos National Laboratory's Directed Research and Development Program; Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX We acknowledge primary support for this work from the Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering. Partial support was also provided by Los Alamos National Laboratory's Directed Research and Development Program. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396. NR 32 TC 6 Z9 6 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 11 PY 2013 VL 88 IS 2 AR 020101(R) DI 10.1103/PhysRevB.88.020101 PG 5 WC Physics, Condensed Matter SC Physics GA 183RY UT WOS:000321836100003 ER PT J AU Battaglia, M Da Via, C Bortoletto, D Brenner, R Campbell, M Collins, P Dalla Betta, G Demarteau, M Denes, P Graafsma, H Gregor, IM Kluge, A Manzari, V Parkes, C Re, V Riedler, P Rizzo, G Snoeys, W Wermes, N Winter, M AF Battaglia, Marco Da Via, Cinzia Bortoletto, Daniela Brenner, Richard Campbell, Michael Collins, Paula Dalla Betta, Gianfranco Demarteau, Marcel Denes, Peter Graafsma, Heinz Gregor, Ingrid M. Kluge, Alex Manzari, Vito Parkes, Chris Re, Valerio Riedler, Petra Rizzo, Giuliana Snoeys, Walter Wermes, Norbert Winter, Marc TI R&D paths of pixel detectors for vertex tracking and radiation imaging SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Review DE Semiconductor pixel sensor; Radiation hardness; Vertex trackers at future colliders ID CHARGED-PARTICLE TRACKING; STRIP MICROVERTEX DETECTOR; NM CMOS TECHNOLOGY; SILICON DETECTORS; READOUT CHIP; ELECTRON-MICROSCOPY; ATLAS DETECTOR; CMS TRACKER; SENSORS; PERFORMANCE AB This report reviews current trends in the R&D of semiconductor pixellated sensors for vertex tracking and radiation imaging. It identifies requirements of future HEP experiments at colliders, needed technological breakthroughs and highlights the relation to radiation detection and imaging applications in other fields of science. (c) 2013 Elsevier B.V. All rights reserved. C1 [Battaglia, Marco] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Battaglia, Marco; Denes, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Battaglia, Marco; Da Via, Cinzia; Campbell, Michael; Collins, Paula; Kluge, Alex; Riedler, Petra; Snoeys, Walter] CERN, CH-1211 Geneva, Switzerland. [Da Via, Cinzia; Parkes, Chris] Univ Manchester, Dept Phys, Manchester M13 9PL, Lancs, England. [Bortoletto, Daniela] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Brenner, Richard] Uppsala Univ, Dept Phys & Astron, S-75237 Uppsala, Sweden. [Dalla Betta, Gianfranco] Univ Trento, Dip Ingn, I-38123 Povo, Italy. [Demarteau, Marcel] Argonne Natl Lab, Argonne, IL 60439 USA. [Graafsma, Heinz; Gregor, Ingrid M.] DESY, D-22607 Hamburg, Germany. [Manzari, Vito] Ist Nazl Fis Nucl, Sez Bari, I-70125 Bari, Italy. [Re, Valerio] Univ Bergamo, Dip Ingn, I-24044 Dalmine, Italy. [Rizzo, Giuliana] Univ Pisa, Dip Fis, I-56100 Pisa, Italy. [Rizzo, Giuliana] Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy. [Wermes, Norbert] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Winter, Marc] Inst Pluridisciplinaire Hubert Curien, F-67037 Strasbourg, France. RP Battaglia, M (reprint author), Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. EM MBattaglia@lbl.gov RI Dalla Betta, Gian-Franco/I-1783-2012; Snoeys, Walter/K-8259-2015; Rizzo, Giuliana/A-8516-2015; OI Dalla Betta, Gian-Franco/0000-0001-5516-9282; Snoeys, Walter/0000-0003-3541-9066; graafsma, heinz/0000-0003-2304-667X; Rizzo, Giuliana/0000-0003-1788-2866; Re, Valerio/0000-0003-0697-3420 NR 162 TC 6 Z9 6 U1 0 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2013 VL 716 BP 29 EP 45 DI 10.1016/j.nima.2013.03.040 PG 17 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 148NZ UT WOS:000319253300005 ER PT J AU Arbelaez, D Wilks, T Madur, A Prestemon, S Marks, S Schlueter, R AF Arbelaez, D. Wilks, T. Madur, A. Prestemon, S. Marks, S. Schlueter, R. TI A dispersion and pulse width correction algorithm for the pulsed wire method SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Pulsed wire; Magnetic measurement; Undulator; Dispersion; Correction algorithm ID FIELD-MEASUREMENTS; WIGGLER AB The pulsed wire technique is an attractive option for the measurement of undulators where the measurement access is restricted due to, for example, narrow undulator gaps or cryogenic environments in the case of superconducting undulators. Using the pulsed wire technique, direct measurements of the first and second integrals of the magnetic field can be obtained. However, one of the main limitations of this technique is the error introduced by dispersive wave motion, due to the finite flexural rigidity of the wire. For the measurement of the first integral of the magnetic field, an error is also introduced by the use of a current pulse with finite pulse width. In this paper, a general solution is presented for dispersive wave motion in pulsed wire measurements. A method for the measurement of the dispersive wave speed is presented and demonstrated through experimental examples. An algorithm is derived which corrects the dispersion and finite pulse-width errors in the measurement of first magnetic field integrals and the dispersion error in the measurement of second magnetic field integrals. The effectiveness of the correction algorithms is demonstrated through experimental measurements, and the results are compared with Hall probe measurements on a short undulator. (c) 2013 Elsevier B.V. All rights reserved. C1 [Arbelaez, D.; Wilks, T.; Madur, A.; Prestemon, S.; Marks, S.; Schlueter, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Wilks, T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Arbelaez, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM darbelaez@lbl.gov FU Office of Science, of the US Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Zack Wolf and Yurii Levashov of the magnetic measurement group at SLAC for providing the Hall Probe measurements for the undulator comparison. This work was supported by the Director, Office of Science, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 13 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2013 VL 716 BP 62 EP 70 DI 10.1016/j.nima.2013.02.042 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 148NZ UT WOS:000319253300008 ER PT J AU Busse, B Bale, HA Zimmermann, EA Panganiban, B Barth, HD Carriero, A Vettorazzi, E Zustin, J Hahn, M Ager, JW Puschel, K Amling, M Ritchie, RO AF Busse, Bjoern Bale, Hrishikesh A. Zimmermann, Elizabeth A. Panganiban, Brian Barth, Holly D. Carriero, Alessandra Vettorazzi, Eik Zustin, Josef Hahn, Michael Ager, Joel W., III Pueschel, Klaus Amling, Michael Ritchie, Robert O. TI Vitamin D Deficiency Induces Early Signs of Aging in Human Bone, Increasing the Risk of Fracture SO SCIENCE TRANSLATIONAL MEDICINE LA English DT Article ID HUMAN CORTICAL BONE; MINERALIZATION DENSITY DISTRIBUTION; OSTEOMALACIA; TOUGHNESS; HISTOMORPHOMETRY; RICKETS; CALCIUM; HEALTH; CONSEQUENCES; SPECTROSCOPY AB Vitamin D deficiency is a widespread medical condition that plays a major role in human bone health. Fracture susceptibility in the context of low vitamin D has been primarily associated with defective mineralization of collagenous matrix (osteoid). However, bone's fracture resistance is due to toughening mechanisms at various hierarchical levels ranging from the nano-to the microstructure. Thus, we hypothesize that the increase in fracture risk with vitamin D deficiency may be triggered by numerous pathological changes and may not solely derive from the absence of mineralized bone. We found that the characteristic increase in osteoid-covered surfaces in vitamin D-deficient bone hampers remodeling of the remaining mineralized bone tissue. Using spatially resolved synchrotron bone mineral density distribution analyses and spectroscopic techniques, we observed that the bone tissue within the osteoid frame has a higher mineral content with mature collagen and mineral constituents, which are characteristic of aged tissue. In situ fracture mechanics measurements and synchrotron radiation micro-computed tomography of the crack path indicated that vitamin D deficiency increases both the initiation and propagation of cracks by 22 to 31%. Thus, vitamin D deficiency is not simply associated with diminished bone mass. Our analyses reveal the aged nature of the remaining mineralized bone and its greatly decreased fracture resistance. Through a combination of characterization techniques spanning multiple size scales, our study expands the current clinical understanding of the pathophysiology of vitamin D deficiency and helps explain why well-balanced vitamin D levels are essential to maintain bone's structural integrity. C1 [Busse, Bjoern; Zimmermann, Elizabeth A.; Hahn, Michael; Amling, Michael] Univ Med Ctr Hamburg, Dept Osteol & Biomech, D-22529 Hamburg, Germany. [Busse, Bjoern; Bale, Hrishikesh A.; Zimmermann, Elizabeth A.; Panganiban, Brian; Barth, Holly D.; Carriero, Alessandra; Ager, Joel W., III; Ritchie, Robert O.] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Zimmermann, Elizabeth A.; Barth, Holly D.; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Vettorazzi, Eik] Univ Med Ctr Hamburg, Dept Med Biometry & Epidemiol, D-20246 Hamburg, Germany. [Zustin, Josef] Univ Med Ctr Hamburg, Inst Pathol, D-20246 Hamburg, Germany. [Pueschel, Klaus] Univ Med Ctr Hamburg, Dept Forens Med, D-20246 Hamburg, Germany. RP Busse, B (reprint author), Univ Med Ctr Hamburg, Dept Osteol & Biomech, D-22529 Hamburg, Germany. EM b.busse@uke.uni-hamburg.de RI Ritchie, Robert/A-8066-2008; Zimmermann, Elizabeth/A-4010-2015; Busse, Bjorn/O-8462-2016; OI Ritchie, Robert/0000-0002-0501-6998; Busse, Bjorn/0000-0002-3099-8073; Carriero, Alessandra/0000-0001-8103-4795; Ager, Joel/0000-0001-9334-9751; Vettorazzi, Eik/0000-0002-3737-6402 FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory (LBNL); U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy; Federal Ministry of Education and Research through the consortium "Osteopath" [01 EC 1006F] FX In Berkeley, this work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory (LBNL), funded by the U.S. Department of Energy under grant no. DE-AC02-05CH11231. We acknowledge the use of the x-ray synchrotron beamline 8.3.2 (microtomography) and the FTIR beamline 1.4.3 at the ALS at LBNL, which is supported by the Office of Science of the U.S. Department of Energy under contract. In Hamburg, this work was funded by the Federal Ministry of Education and Research through the consortium "Osteopath" (01 EC 1006F). B. B. is a fellow of the Deutsche Forschungsgemeinschaft (BU 2562/2-1). NR 52 TC 23 Z9 23 U1 0 U2 31 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1946-6234 J9 SCI TRANSL MED JI Sci. Transl. Med. PD JUL 10 PY 2013 VL 5 IS 193 AR 193ra88 DI 10.1126/scitranslmed.3006286 PG 11 WC Cell Biology; Medicine, Research & Experimental SC Cell Biology; Research & Experimental Medicine GA 180SU UT WOS:000321617800004 PM 23843449 ER PT J AU Liu, B Chen, HM Liu, C Andrews, SC Hahn, C Yang, PD AF Liu, Bin Chen, Hao Ming Liu, Chong Andrews, Sean C. Hahn, Chris Yang, Peidong TI Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SENSITIZED SOLAR-CELLS; SEMICONDUCTOR NANOWIRES; RUTILE TIO2; GROWTH; ANATASE; CONVERSION; ELECTRODE; POWDER; ENERGY; MOLTEN AB Practical implementation of one-dimensional semiconductors into devices capable of exploiting their novel properties is often hindered by low product yields, poor material quality, high production cost, or overall lack of synthetic control. Here, we show that a molten-salt flux scheme can be used to synthesize large quantities of high-quality, single-crystalline TiO2 nanowires with controllable dimensions. Furthermore, in situ dopant incorporation of various transition metals allows for the tuning of optical, electrical, and catalytic properties. With this combination of control, robustness, and scalability, the molten-salt flux scheme can provide high-quality TiO2 nanowires to satisfy a broad range of application needs from photovoltaics to photocatalysis. C1 [Liu, Bin; Chen, Hao Ming; Liu, Chong; Andrews, Sean C.; Hahn, Chris; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Liu, Chong; Andrews, Sean C.; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Chen, Hao Ming/B-8851-2012; OI Chen, Hao Ming/0000-0002-7480-9940; Liu, Chong/0000-0001-5546-3852 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 33 TC 109 Z9 111 U1 18 U2 265 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 10 PY 2013 VL 135 IS 27 BP 9995 EP 9998 DI 10.1021/ja403761s PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 183JG UT WOS:000321810400009 PM 23815410 ER PT J AU Zakutayev, A Zhang, XW Nagaraja, A Yu, LP Lany, S Mason, TO Ginley, DS Zunger, A AF Zakutayev, Andriy Zhang, Xiuwen Nagaraja, Arpun Yu, Liping Lany, Stephan Mason, Thomas O. Ginley, David S. Zunger, Alex TI Theoretical Prediction and Experimental Realization of New Stable Inorganic Materials Using the Inverse Design Approach SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ELECTRONIC-STRUCTURE; HEUSLER COMPOUNDS; TERNARY COMPOUNDS; BAND-GAP; STABILITY; 1ST-PRINCIPLES; APPROXIMATION; INSULATORS; OXIDES; METAL AB Discovery of new materials is important for all fields of chemistry. Yet, existing compilations of all known ternary inorganic solids still miss many possible combinations. Here, we present an example of accelerated discovery of the missing materials using the inverse design approach, which couples predictive first-principles theoretical calculations with combinatorial and traditional experimental synthesis and characterization. The compounds in focus belong to the equiatomic (1:1:1) ABX family of ternary materials with 18 valence electrons per formula unit. Of the 45 possible V-IX-IV compounds, 29 are missing. Theoretical screening of their thermodynamic stability revealed eight new stable 1:1:1 compounds, including TaCoSn. Experimental synthesis of TaCoSn, the first ternary in the Ta-Co-Sn system, confirmed its predicted zincblende-derived crystal structure. These results demonstrate how discovery of,new materials can be accelerated by the combination of high-throughput theoretical and experimental methods. Despite being made of three metallic elements, TaCoSn is predicted and explained to be a semiconductor. The band gap of this material is difficult to measure experimentally, probably due to a high concentration of interstitial cobalt defects. C1 [Zakutayev, Andriy; Zhang, Xiuwen; Lany, Stephan; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zhang, Xiuwen] Colorado Sch Mines, Golden, CO 80401 USA. [Yu, Liping; Zunger, Alex] Univ Colorado, Boulder, CO 80309 USA. [Nagaraja, Arpun; Mason, Thomas O.] Northwestern Univ, Evanston, IL 60208 USA. RP Zunger, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM alex.zunger@gmail.com RI ZHANG, XIUWEN/K-7383-2012; Mason, Thomas/B-7528-2009; OI Lany, Stephan/0000-0002-8127-8885; Zakutayev, Andriy/0000-0002-3054-5525 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC36-08GO28308]; MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern University [DMR-1121262]; NSF, Colorado School of Mines, Golden, Colorado [DMR-0820518] FX This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under contract no. DE-AC36-08GO28308 to NREL as a part of the DOE Energy Frontier Research Center "Center for Inverse Design". TaCoSn bulk XRD patterns were collected and refined at the J. B. Cohen X-ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University. We are grateful to V. Stevanovic for important discussions. X.Z. also acknowledges the administrative support of REMRSEC under NSF grant number DMR-0820518, Colorado School of Mines, Golden, Colorado. NR 55 TC 25 Z9 25 U1 6 U2 139 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 10 PY 2013 VL 135 IS 27 BP 10048 EP 10054 DI 10.1021/ja311599g PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 183JG UT WOS:000321810400022 PM 23672376 ER PT J AU Nie, S Starodub, E Monti, M Siegel, DA Vergara, L El Gabaly, F Bartelt, NC de la Figuera, J McCarty, KF AF Nie, Shu Starodub, Elena Monti, Matteo Siegel, David A. Vergara, Lucia El Gabaly, Farid Bartelt, Norman C. de la Figuera, Juan McCarty, Kevin F. TI Insight into Magnetite's Redox Catalysis from Observing Surface Morphology during Oxidation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID WATER-GAS SHIFT; SPINEL SURFACES; CRYSTAL-GROWTH; IRON-OXIDES; OXYGEN; FE3O4(001); DIFFUSION; PHOTOOXIDATION; DISLOCATIONS; TIO2(110) AB We study how the (100) surface of magnetite undergoes oxidation by monitoring its morphology during exposure to oxygen at similar to 650 degrees C. Low-energy electron microscopy reveals that magnetite's surface steps advance continuously. This growth of Fe3O4' crystal occurs by the formation of bulk Fe vacancies. Using Raman spectroscopy, we identify the sinks for these vacancies, inclusions of alpha-Fe2O3 (hematite). Since the surface remains magnetite during oxidation, it continues to dissociate oxygen readily. At steady state, over one-quarter of impinging oxygen molecules undergo dissociative adsorption and eventual incorporation into magnetite. From the independence of growth rate on local step density, we deduce that the first step of oxidation, dissociative oxygen adsorption, occurs uniformly over magnetite's terraces, not preferentially at its surface steps. Since we directly observe new magnetite forming when it incorporates oxygen, we suggest that catalytic redox cycles on magnetite involve growing and etching crystal. C1 [Nie, Shu; Starodub, Elena; Siegel, David A.; El Gabaly, Farid; Bartelt, Norman C.; McCarty, Kevin F.] Sandia Natl Labs, Livermore, CA 94550 USA. [Monti, Matteo; Vergara, Lucia; de la Figuera, Juan] CSIC, Inst Quim Fis Rocasolano, Madrid 28006, Spain. RP McCarty, KF (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM mccarty@sandia.gov RI McCarty, Kevin/F-9368-2012; de la Figuera, Juan/E-7046-2010; OI McCarty, Kevin/0000-0002-8601-079X; de la Figuera, Juan/0000-0002-7014-4777; Monti, Matteo/0000-0003-3595-4472 FU Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, U.S. Department of Energy [DE-AC04-94AL85000]; Spanish Ministry of Science and Innovation [MAT2009-14578-C03-01] FX Our research was supported by the Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, U.S. Department of Energy under contract no. DE-AC04-94AL85000 and the Spanish Ministry of Science and Innovation through project no. MAT2009-14578-C03-01. NR 45 TC 25 Z9 25 U1 6 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 10 PY 2013 VL 135 IS 27 BP 10091 EP 10098 DI 10.1021/ja402599t PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 183JG UT WOS:000321810400027 PM 23763580 ER PT J AU Kim, J Oyola, Y Tsouris, C Hexel, CR Mayes, RT Janke, CJ Dai, S AF Kim, Jungseung Oyola, Yatsandra Tsouris, Costas Hexel, Cole R. Mayes, Richard T. Janke, Christopher J. Dai, Sheng TI Characterization of Uranium Uptake Kinetics from Seawater in Batch and Flow-Through Experiments SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID INDUCED GRAFT-POLYMERIZATION; MASS-TRANSFER COEFFICIENT; LOW-DENSITY POLYETHYLENE; METAL-IONS; INTRAPARTICLE DIFFUSIVITY; ADSORPTION PROPERTIES; AMIDOXIME ADSORBENTS; METHACRYLIC-ACID; CHELATING RESIN; RECOVERY AB A laboratory study of uranium uptake from seawater has been conducted using batch and flow-through recycling experiments. Uranium adsorption from seawater, using amidoxime-based polymeric adsorbents, has been described by transport and kinetic models under the assumption of transport-limited or reaction limited process for batch adsorption experiments Mathematical models based on liquid film mass transfer, diffusion, or reaction kinetics have been evaluated in terms of the Sherwood number and the Thiele modulus to provide insight into the limiting mechanism. The value of the Sherwood number suggests that the external mass-transfer resistance is much smaller than the intraparticle diffusion resistance. The Thiele modulus was estimated on the basis of the rate constants from independent batch tests analyzed by a reaction kinetic model, and its value suggests that the uranium binding is the rate-limiting step compared to diffusion. The uranium uptake in batch experiments reached 4 mg U/g adsorbent over a period of nine weeks, which is much higher than the uranium uptake by a leading previously developed adsorbent tested at conditions similar to those in this study. The maximum uranium uptake in the flow-through recycling experiments was approximately 3.3 mg U/g adsorbent over a period of six weeks. C1 [Kim, Jungseung; Oyola, Yatsandra; Tsouris, Costas; Hexel, Cole R.; Mayes, Richard T.; Janke, Christopher J.; Dai, Sheng] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsouris, C (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM tsourisc@ornl.gov RI Tsouris, Costas/C-2544-2016; Dai, Sheng/K-8411-2015; Hexel, Cole/N-3245-2016; Mayes, Richard/G-1499-2016; Janke, Christopher/E-1598-2017 OI Tsouris, Costas/0000-0002-0522-1027; Dai, Sheng/0000-0002-8046-3931; Hexel, Cole/0000-0001-8101-2422; Mayes, Richard/0000-0002-7457-3261; Janke, Christopher/0000-0002-6076-7188 FU U.S. DOE Office of Nuclear Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX This research was conducted at the Oak Ridge National Laboratory and supported by the U.S. DOE Office of Nuclear Energy, under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. The JAEA adsorbent was kindly donated for testing by the Japan Atomic Energy Agency. We are also thankful to Mr. Colden Battey, NOAA/NOS/NCCOS Seawater Systems Manager, for providing seawater from the Hollings Marine Laboratory, Charleston, SC. NR 44 TC 28 Z9 28 U1 9 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUL 10 PY 2013 VL 52 IS 27 BP 9433 EP 9440 DI 10.1021/ie400587f PG 8 WC Engineering, Chemical SC Engineering GA 183JD UT WOS:000321810100013 ER PT J AU Chanowitz, MS AF Chanowitz, Michael S. TI Electroweak constraints on the fourth generation at two loop order SO PHYSICAL REVIEW D LA English DT Article ID ULTRA HEAVY FERMIONS; WEAK-INTERACTIONS; HIGGS PRODUCTION; PAIR PRODUCTION; STANDARD-MODEL; ROOT-S=7 TEV; SEARCH; LONG; MASS; LHC AB If the Higgs-like particle at 125 GeV is the Standard Model (SM) Higgs boson, then SM4, the simplest four generation (4G) extension of the SM, is inconsistent with the most recent LHC data. However, 4G variations (BSM4) are possible if the new particle is not the SM Higgs boson and/or if other new quanta modify its production and decay rates. Since LHC searches have pushed 4G quarks to high mass and strong coupling where perturbation theory eventually fails, we examine the leading nondecoupling electroweak (EW) corrections at two loop order to estimate the domain of validity for perturbation theory. We find that the two loop hypercharge correction, which has not been included in previous EW fits of 4G models, makes the largest quark sector contribution to the rho parameter, much larger even than the nominally leading one loop term. Because it is large and negative, it has a big effect on the EW fits. It does not invalidate perturbation theory since it only first appears at two loop order and is large because it does not vanish for equal quark doublet masses, unlike the one loop term. We estimate that perturbation theory is useful for m(Q) similar or equal to 600 GeV but begins to become marginal for m(Q) greater than or similar to 900 GeV. The results apply directly to BSM4 models that retain the SM Higgs sector but must be reevaluated for non-SM Higgs sectors. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Chanowitz, MS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. FU Office of Science, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 56 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 10 PY 2013 VL 88 IS 1 AR 015012 DI 10.1103/PhysRevD.88.015012 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 182JJ UT WOS:000321737600006 ER PT J AU Christ, NH Izubuchi, T Sachrajda, CT Soni, A Yu, J AF Christ, N. H. Izubuchi, T. Sachrajda, C. T. Soni, A. Yu, J. CA RBC Collaboration UKQCD Collaboration TI Long distance contribution to the K-L - K-S mass difference SO PHYSICAL REVIEW D LA English DT Article ID FINITE-VOLUME; LEADING LOGARITHMS; DECAYS; LATTICE AB We develop and demonstrate techniques needed to compute the long distance contribution to the K-L - K-S mass difference, Delta M-K, in lattice QCD and carry out a first, exploratory calculation of this fundamental quantity. The calculation is performed on 2 + 1 flavor, domain wall fermion, 16(3) X 32 configurations with a 421 MeV pion mass and an inverse lattice spacing 1/a = 1.73 GeV. We include only current-current operators and drop all disconnected and double penguin diagrams. The short distance part of the mass difference in a 2 + 1 flavor calculation contains a quadratic divergence cut off by the lattice spacing. Here, this quadratic divergence is eliminated through the Glashow-Iliopoulos-Maiani mechanism by introducing a valence charm quark. The inclusion of the charm quark makes the complete calculation accessible to lattice methods provided the discretization errors associated with the charm quark can be controlled. The long distance effects are discussed for each parity channel separately. While we can see a clear signal in the parity odd channel, the signal to noise ratio in the parity even channel is exponentially decreasing as the separation between the two weak operators increases. We obtain a mass difference Delta M-K which ranges from 6.58(30) X 10(-12) MeV to 11.89(81) X 10(-12) MeV for kaon masses varying from 563 to 839 MeV. Extensions of these methods are proposed which promise accurate results for both Delta M-K and is an element of(K), including long distance effects. C1 [Christ, N. H.; Yu, J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Izubuchi, T.; Soni, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Izubuchi, T.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Sachrajda, C. T.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. RP Christ, NH (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. RI Yu, Jianglei/A-1825-2015 OI Yu, Jianglei/0000-0003-4081-7552 FU U.S. DOE [DE-FG02-92ER40699, DE-AC02-98CH10886]; STFC Grant [ST/G000557/1]; JSPS [22540301, 23105715] FX We thank Laurent Lellouch, Guido Martinelli and Steve Sharpe for very helpful discussions at the beginning of this work and our RBC and UKQCD colleagues for many valuable suggestions and encouragement. We are particularly indebted to Christoph Lehner and Christian Sturm for providing us with their results for the one-loop, four-flavor RI/MOM to (MS) over bar conversion factors before publication. These results were obtained using the DOE USQCD and RIKEN BNL Research Center QCDOC computers at the Brookhaven National Laboratory. N. H. C. and J. Y. were supported in part by the U.S. DOE Grant No. DE-FG02-92ER40699, C. T. S. by STFC Grant No. ST/G000557/1, T. I. and A. S. by U.S. DOE Contract No. DE-AC02-98CH10886 and T. I. also by JSPS Grants No. 22540301 and No. 23105715. NR 30 TC 17 Z9 17 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 10 PY 2013 VL 88 IS 1 AR 014508 DI 10.1103/PhysRevD.88.014508 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 182JJ UT WOS:000321737600004 ER PT J AU Magnotti, G Cutler, AD Danehy, PM AF Magnotti, Gaetano Cutler, Andrew D. Danehy, Paul M. TI Development of a dual-pump coherent anti-Stokes Raman spectroscopy system for measurements in supersonic combustion SO APPLIED OPTICS LA English DT Article ID NONRESONANT 3RD-ORDER SUSCEPTIBILITIES; FLAT-FLAME BURNER; CARS TEMPERATURE-MEASUREMENTS; SCATTERING MEASUREMENTS; HIGH-RESOLUTION; THERMOMETRY; GASES; PRECISION; N2; CALIBRATION AB This work describes the development of a dual-pump coherent anti-Stokes Raman spectroscopy system for simultaneous measurements of the temperature and the absolute mole fraction of N-2, O-2, and H-2 in supersonic combusting flows. Changes to the experimental setup and the data analysis to improve the quality of the measurements in this turbulent, high-temperature reacting flow are described. The accuracy and precision of the instrument have been determined using data collected in a Hencken burner flame. For temperatures above 800 K, errors in the absolute mole fraction are within 1.5%, 0.5%, and 1% of the total composition for N-2, O-2, and H-2, respectively. Standard deviations based on 500 single shots are between 10 and 65 K for the temperature, between 0.5% and 1.7% of the total composition for O-2, and between 1.5% and 3.4% for N-2. The standard deviation of H-2 is similar to 10% of the average measured mole fraction. (C) 2013 Optical Society of America C1 [Magnotti, Gaetano] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. [Cutler, Andrew D.] George Washington Univ, MAE Dept, Newport News, VA 23602 USA. [Danehy, Paul M.] NASA, Langley Res Ctr, Adv Sensing & Opt Measurements Branch, Hampton, VA 23681 USA. RP Magnotti, G (reprint author), Sandia Natl Labs, Combust Res Facil, 7011 East Ave, Livermore, CA 94550 USA. EM gaetanomagnotti@gmail.com OI Magnotti, Gaetano/0000-0002-1723-5258 FU NASA Fundamental Aeronautics Program, Hypersonics Project; NASA AFOSR [FA 9550-09-1-0611] FX This work was supported by the NASA Fundamental Aeronautics Program, Hypersonics Project, and the NASA AFOSR-sponsored National Center for Hypersonic Combined Cycle Propulsion (grant no. FA 9550-09-1-0611 with technical monitors Chiping Li, AFOSR, and Aaron Auslender and Rick Gaffney, NASA). The authors would like to thank Lloyd G. Wilson and Sarah A. Tedder for assistance in performing these experiments. NR 48 TC 4 Z9 4 U1 1 U2 33 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X J9 APPL OPTICS JI Appl. Optics PD JUL 10 PY 2013 VL 52 IS 20 BP 4779 EP 4791 DI 10.1364/AO.52.004779 PG 13 WC Optics SC Optics GA 180TH UT WOS:000321619500002 PM 23852189 ER PT J AU Feigenbaum, E Sacks, RA McCandless, KP MacGowan, BJ AF Feigenbaum, Eyal Sacks, Richard A. McCandless, Kathleen P. MacGowan, Brian J. TI Algorithm for Fourier propagation through the near-focal region SO APPLIED OPTICS LA English DT Article ID LASER; LIGHT AB A standard technique for beam propagation modeling of large and complex optical systems, such as the National Ignition Facility, is the Talanov approach. We describe a modification to the Talanov algorithm that avoids its inherent inability to treat interactions in the Rayleigh region. The algorithm has been validated with analytic and numerical calculations and is demonstrated to function as expected in the case of a NIF spatial filter. C1 [Feigenbaum, Eyal; Sacks, Richard A.; McCandless, Kathleen P.; MacGowan, Brian J.] Lawrence Livermore Natl Lab, Natl Ignit Facil & Photon Sci, Livermore, CA 94550 USA. RP Feigenbaum, E (reprint author), Lawrence Livermore Natl Lab, Natl Ignit Facil & Photon Sci, 7000 East Ave, Livermore, CA 94550 USA. EM feigenbaum1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-635206] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contracts DE-AC52-07NA27344 and LLNL-JRNL-635206. NR 11 TC 2 Z9 2 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X J9 APPL OPTICS JI Appl. Optics PD JUL 10 PY 2013 VL 52 IS 20 BP 5030 EP 5035 DI 10.1364/AO.52.005030 PG 6 WC Optics SC Optics GA 180TH UT WOS:000321619500032 PM 23852219 ER PT J AU Beresnyak, A Xu, H Li, H Schlickeiser, R AF Beresnyak, Andrey Xu, Hao Li, Hui Schlickeiser, Reinhard TI MAGNETOHYDRODYNAMIC TURBULENCE AND COSMIC-RAY REACCELERATION IN GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; galaxies: clusters: intracluster medium; turbulence ID ADAPTIVE MESH REFINEMENT; DIFFUSE RADIO-EMISSION; INTERGALACTIC MAGNETIC-FIELD; ACTIVE GALACTIC NUCLEI; COMA CLUSTER; COSMOLOGICAL SIMULATIONS; PARTICLE REACCELERATION; COMPRESSIBLE TURBULENCE; ASTROPHYSICAL IMPLICATIONS; INTERSTELLAR TURBULENCE AB Cosmological MHD simulations of galaxy cluster formation show a significant amplification of seed magnetic fields. We developed a novel method to decompose cluster magnetized turbulence into modes and showed that the fraction of the fast mode is fairly large, around one-fourth in terms of energy. This is larger than that was estimated before, which implies that cluster turbulence interacts with cosmic rays rather efficiently. We propose a framework to deal with electron and proton reacceleration in galaxy clusters that includes feedback on turbulence. In particular, we establish a new upper limit on proton and electron fluxes based on turbulence intensity. These findings, along with detailed modeling of reacceleration, will help to reconcile the observed giant radio halos and the unobserved diffuse gamma-ray emission from these clusters. C1 [Beresnyak, Andrey; Xu, Hao; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Beresnyak, Andrey; Schlickeiser, Reinhard] Ruhr Univ Bochum, D-44780 Bochum, Germany. [Xu, Hao] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Beresnyak, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Xu, Hao/B-8734-2014; OI Xu, Hao/0000-0003-4084-9925; Beresnyak, Andrey/0000-0002-2124-7024 FU Humboldt Fellowship at the Ruhr-Universitat Bochum; Los Alamos Director's Fellowship; LDRD program at LANL; IGPP program at LANL; DOE/Office of Fusion Energy Science through CMSO; Deutsche Forschungsgemeinschaft [Schl 201/25-1] FX A.B. is grateful to Gianfranco Brunetti and Julius Donnert for illuminating discussions. A.B. was supported by Humboldt Fellowship at the Ruhr-Universitat Bochum and Los Alamos Director's Fellowship. H.X. and H.L. are supported by the LDRD and IGPP programs at LANL and by DOE/Office of Fusion Energy Science through CMSO. R.S. acknowledges partial support by the Deutsche Forschungsgemeinschaft (grant Schl 201/25-1). We thank anonymous referee for meticulous comments. NR 79 TC 11 Z9 11 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2013 VL 771 IS 2 AR 131 DI 10.1088/0004-637X/771/2/131 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 176XS UT WOS:000321340700056 ER PT J AU Johnson, JL Whalen, DJ Li, H Holz, DE AF Johnson, Jarrett L. Whalen, Daniel J. Li, Hui Holz, Daniel E. TI SUPERMASSIVE SEEDS FOR SUPERMASSIVE BLACK HOLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; cosmology: theory; early universe; quasars: general; radiation mechanisms: general ID ACTIVE GALACTIC NUCLEI; III STAR-FORMATION; GRAVITATIONAL-RADIATION RECOIL; HIGH-REDSHIFT QUASARS; DARK-MATTER HALOES; DIRECT COLLAPSE; 1ST STARS; SPIN EVOLUTION; GALAXY MERGERS; HOST GALAXIES AB Recent observations of quasars powered by supermassive black holes (SMBHs) out to z greater than or similar to 7 constrain both the initial seed masses and the growth of the most massive black holes (BHs) in the early universe. Here we elucidate the implications of the radiative feedback from early generations of stars and from BH accretion for popular models for the formation and growth of seed BHs. We show that by properly accounting for (1) the limited role of mergers in growing seed BHs as inferred from cosmological simulations of early star formation and radiative feedback, (2) the sub-Eddington accretion rates of BHs expected at the earliest times, and (3) the large radiative efficiencies epsilon of the most massive BHs inferred from observations of active galactic nuclei at high redshift (epsilon greater than or similar to 0.1), we are led to the conclusion that the initial BH seeds may have been as massive as greater than or similar to 10(5) M-circle dot. This presents a strong challenge to the Population III seed model, which calls for seed masses of similar to 100 M-circle dot and, even with constant Eddington-limited accretion, requires epsilon less than or similar to 0.09 to explain the highest-z SMBHs in today's standard.CDM cosmological model. It is, however, consistent with the prediction of the direct collapse scenario of SMBH seed formation, in which a supermassive primordial star forms in a region of the universe with a high molecule-dissociating background radiation field, and collapses directly into a 10(4)-10(6) M-circle dot seed BH. These results corroborate recent cosmological simulations and observational campaigns which suggest that these massive BHs were the seeds of a large fraction of the SMBHs residing in the centers of galaxies today. C1 [Johnson, Jarrett L.; Whalen, Daniel J.; Li, Hui] Los Alamos Natl Lab, Astrophys & Cosmol Grp T 2, Los Alamos, NM 87545 USA. [Holz, Daniel E.] Univ Chicago, Dept Phys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Holz, Daniel E.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. RP Johnson, JL (reprint author), Los Alamos Natl Lab, Astrophys & Cosmol Grp T 2, POB 1663, Los Alamos, NM 87545 USA. EM jlj@lanl.gov RI Hui, Li/B-4166-2009 OI Hui, Li/0000-0002-7574-048X FU U.S. Department of Energy through the LANL/LDRD Program; LDRD Director's Postdoctoral Fellowship at Los Alamos National Laboratory; Bruce and Astrid McWilliams Center for Cosmology at Carnegie Mellon University; National Science Foundation CAREER grant [PHY-1151836] FX This work was supported by the U.S. Department of Energy through the LANL/LDRD Program, and J.L.J. acknowledges the support of a LDRD Director's Postdoctoral Fellowship at Los Alamos National Laboratory. D.J.W. acknowledges support from the Bruce and Astrid McWilliams Center for Cosmology at Carnegie Mellon University. D.E.H. acknowledges support from National Science Foundation CAREER grant PHY-1151836. The authors thank Jennifer Donley, Xiaohui Fan, Chris Fryer, and Marta Volonteri for valuable feedback on early drafts of this work, Brian O'Shea for kindly providing the code used to compute the Warren mass functions, and J. J. Cherry, Stirling Colgate, Dave Collins, George Fuller, Xiaoyue Guan, Joe Smidt, Mike Warren, and Hao Xu for helpful discussions. This work benefited from the comments of anonymous reviewers. NR 172 TC 49 Z9 49 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2013 VL 771 IS 2 AR 116 DI 10.1088/0004-637X/771/2/116 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 176XS UT WOS:000321340700041 ER PT J AU Lehmer, BD Wik, DR Hornschemeier, AE Ptak, A Antoniou, V Argo, MK Bechtol, K Boggs, S Christensen, FE Craig, WW Hailey, CJ Harrison, FA Krivonos, R Leyder, JC Maccarone, TJ Stern, D Venters, T Zezas, A Zhang, WW AF Lehmer, B. D. Wik, D. R. Hornschemeier, A. E. Ptak, A. Antoniou, V. Argo, M. K. Bechtol, K. Boggs, S. Christensen, F. E. Craig, W. W. Hailey, C. J. Harrison, F. A. Krivonos, R. Leyder, J-C Maccarone, T. J. Stern, D. Venters, T. Zezas, A. Zhang, W. W. TI NuSTAR AND CHANDRA INSIGHT INTO THE NATURE OF THE 3-40 keV NUCLEAR EMISSION IN NGC 253 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (NGC 253); galaxies: star formation; galaxies: starburst; X-rays: galaxies ID STARBURST GALAXY NGC-253; X-RAY OBSERVATIONS; XMM-NEWTON OBSERVATIONS; ACTIVE GALACTIC NUCLEI; CATALOG; COMPLEX; REGION; DISK; RESOLUTION; BINARIES AB We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 keV intensity of the inner similar to 20 arcsec (similar to 400 pc) nuclear region, as measured by NuSTAR, varied by a factor of similar to 2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L2-10 (keV) similar to few x 10(39) erg s(-1)) point source located similar to 1 arcsec from the dynamical center of the galaxy (within the 3 sigma positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies greater than or similar to 3 keV. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (N-H approximate to 1.6 x 10(23) cm(-2)) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not active galactic nuclei (AGNs). A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center (theta approximate to 0.4 arcsec); however, this source was offset from the 2012 source position by approximate to 1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is >> 99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 keV) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum indicate that the 2003 source is a better AGN candidate than any of the sources detected in our 2012 campaign; however, we were unable to rule out a ULX nature for this source. Future NuSTAR and Chandra monitoring would be well equipped to break the degeneracy between the AGN and ULX nature of the 2003 source, if again caught in a high state. C1 [Lehmer, B. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.; Wik, D. R.; Hornschemeier, A. E.; Ptak, A.; Leyder, J-C; Venters, T.; Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Antoniou, V.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Argo, M. K.] Netherlands Inst Radio Astron, ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Bechtol, K.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Boggs, S.; Craig, W. W.; Krivonos, R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94720 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Harrison, F. A.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Leyder, J-C] Univ Space Res Assoc, Columbia, MD 21044 USA. [Maccarone, T. J.] Univ Southampton, Sch Phys & Astron, Highfield SO17 1BJ, Hants, England. [Maccarone, T. J.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zezas, A.] Univ Crete, Dept Phys, Iraklion, Greece. RP Lehmer, BD (reprint author), Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. RI Boggs, Steven/E-4170-2015; Zezas, Andreas/C-7543-2011; Antoniou, Vallia/E-3837-2013; OI Boggs, Steven/0000-0001-9567-4224; Zezas, Andreas/0000-0001-8952-676X; Antoniou, Vallia/0000-0001-7539-1593; Argo, Megan/0000-0003-3594-0214 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration FX We thank the anonymous referee for helpful comments, which have improved the quality of this paper. This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR operations, software, and calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). We thank the Chandra X-ray Center staff for providing faster than usual processing of the Chandra data. NR 36 TC 11 Z9 11 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2013 VL 771 IS 2 AR 134 DI 10.1088/0004-637X/771/2/134 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 176XS UT WOS:000321340700059 ER PT J AU McComas, DJ Dayeh, MA Funsten, HO Livadiotis, G Schwadron, NA AF McComas, D. J. Dayeh, M. A. Funsten, H. O. Livadiotis, G. Schwadron, N. A. TI THE HELIOTAIL REVEALED BY THE INTERSTELLAR BOUNDARY EXPLORER SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: magnetic fields; solar wind; Sun: heliosphere ID SLOW SOLAR-WIND; TERMINATION-SHOCK; LO OBSERVATIONS; MAGNETIC-FIELD; IBEX; RIBBON; IONS; HELIOSPHERE; REGIONS; MODEL AB Recent combined observations from the first three years of Interstellar Boundary Explorer (IBEX) data allow us to examine the heliosphere's downwind region-the heliotail-for the first time. In contrast to a preliminary identification of a narrow "offset heliotail" structure, we find a broad slow solar wind plasma sheet crossing essentially the entire downwind side of the heliosphere at low to mid-latitudes, with fast wind tail regions to the north and south. The slow wind plasma sheet exhibits the steepest ENA spectra in the IBEX sky maps, appears as a two-lobed structure (lobes on the port and starboard sides), and is twisted in the sense of (but at a smaller angle than) the external magnetic field. The overall heliotail structure clearly demonstrates the intermediate nature of the heliosphere's interstellar interaction, where both the external dynamic and magnetic pressures strongly affect the heliosphere. C1 [McComas, D. J.; Dayeh, M. A.; Livadiotis, G.; Schwadron, N. A.] SW Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Funsten, H. O.] Los Alamos Natl Lab, Intelligence & Space Res Div, Los Alamos, NM 87545 USA. [Schwadron, N. A.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP McComas, DJ (reprint author), SW Res Inst, PO Drawer 28510, San Antonio, TX 78228 USA. EM dmccomas@swri.org RI Funsten, Herbert/A-5702-2015 OI Funsten, Herbert/0000-0002-6817-1039 FU NASA's Explorer Program FX We thank all of the outstanding men and women who have made the IBEX mission such a wonderful success. We also acknowledge helpful discussions with Stephen Fuselier, Jacob Heerikhuisen, Margaret Kivelson, and Eric Zirnstein. This work was carried out as a part of the IBEX project, with support from NASA's Explorer Program. NR 40 TC 40 Z9 40 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2013 VL 771 IS 2 AR 77 DI 10.1088/0004-637X/771/2/77 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 176XS UT WOS:000321340700002 ER PT J AU Hegde, ML Tsutakawa, SE Hegde, PM Holthauzen, LMF Li, J Oezguen, N Hilser, VJ Tainer, JA Mitra, S AF Hegde, Muralidhar L. Tsutakawa, Susan E. Hegde, Pavana M. Holthauzen, Luis Marcelo F. Li, Jing Oezguen, Numan Hilser, Vincent J. Tainer, John A. Mitra, Sankar TI The Disordered C-Terminal Domain of Human DNA Glycosylase NEIL1 Contributes to Its Stability via Intramolecular Interactions SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE DNA repair; intrinsically unstructured region; electrostatic interactions; protein stability; oxidative DNA damage ID BASE EXCISION-REPAIR; INTRINSICALLY UNSTRUCTURED PROTEINS; X-RAY-SCATTERING; DAMAGE RECOGNITION; OXIDIZED BASES; ENDONUCLEASE; MECHANISM; SAXS; ALLOSTERY; IDENTIFICATION AB NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; similar to 100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lysrich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Hegde, Muralidhar L.; Hegde, Pavana M.; Holthauzen, Luis Marcelo F.; Mitra, Sankar] Univ Texas Med Branch, Dept Biochem & Mol Biol, Galveston, TX 77555 USA. [Hegde, Muralidhar L.] Univ Texas Med Branch, Dept Neurol, Galveston, TX 77555 USA. [Tsutakawa, Susan E.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Life Sci, Berkeley, CA 94720 USA. [Holthauzen, Luis Marcelo F.] Univ Texas Med Branch, Sealy Ctr Struct Biol & Mol Biophys, Galveston, TX 77555 USA. [Li, Jing; Hilser, Vincent J.] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA. [Li, Jing; Hilser, Vincent J.] Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21218 USA. [Oezguen, Numan] Univ Texas Med Branch, Dept Internal Med, Galveston, TX 77555 USA. RP Tainer, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Life Sci, Berkeley, CA 94720 USA. EM jat@scripps.edu; samitra@utmb.edu OI Oezguen, Numan/0000-0002-3175-2382; Dixit, Pavana/0000-0003-0811-3942; Hegde, Muralidhar/0000-0001-7333-8123 FU U.S. Public Health Service [R01 CA81063, CA158910, P01 CA92854]; University of Texas Medical Branch National Institute of Environmental Health Sciences Center [P30 ES006676]; Alzheimer's Association [NIRG-12-242135]; [R01 GM046312]; [R01 GM 63747] FX The research was supported by U.S. Public Health Service grants R01 CA81063, CA158910 (S.M.), and P01 CA92854 (J.A.T. and S.M.); R01 GM046312 (J.A.T.) and R01 GM 63747 (V.J.H.); University of Texas Medical Branch National Institute of Environmental Health Sciences Center and pilot grants P30 ES006676 (S.M. and M.L.H.); and Alzheimer's Association grant NIRG-12-242135 (M.L.H.). SAXS data were collected at the SIBYLS beamline 12.3.1 (Advanced Light Source, IDAT, Contract DE-AC02-05CH11231). CD and fluorescence experiments were performed at the biophysical core facility at the University of Texas Medical Branch. We thank Dr. David Konkel for carefully editing the manuscript. NR 56 TC 21 Z9 21 U1 2 U2 16 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 EI 1089-8638 J9 J MOL BIOL JI J. Mol. Biol. PD JUL 10 PY 2013 VL 425 IS 13 SI SI BP 2359 EP 2371 DI 10.1016/j.jmb.2013.03.030 PN 2 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 176PV UT WOS:000321317500009 PM 23542007 ER PT J AU Aberg, D Erhart, P Lordi, V AF Aberg, Daniel Erhart, Paul Lordi, Vincenzo TI Contributions of point defects, chemical disorder, and thermal vibrations to electronic properties of Cd1-xZnxTe alloys SO PHYSICAL REVIEW B LA English DT Article ID V COMPOUND SEMICONDUCTORS; CADMIUM ZINC TELLURIDE; RADIATION DETECTORS; SOLAR-CELL; THIN-FILMS; BAND-GAP; VACANCIES; CDTE; DEPENDENCE; METALS AB We present a first-principles study based on density functional theory of thermodynamic and electronic properties of the most important intrinsic defects in the semiconductor alloy Cd1-xZnxTe with x < 0.13. The alloy is represented by a set of supercells with disorder on the Cd/Zn sublattice. Defect formation energies as well as electronic and optical transition levels are analyzed as a function of composition. We show that defect formation energies increase with Zn content with the exception of the neutral Te vacancy. This behavior is qualitatively similar to but quantitatively rather different from the effect of volumetric strain on defect properties in pure CdTe. Finally, the relative carrier scattering strengths of point defects, alloy disorder, and phonons are obtained. It is demonstrated that for realistic defect concentrations, carrier mobilities are limited by phonon scattering for temperatures above approximately 150 K. C1 [Aberg, Daniel; Erhart, Paul; Lordi, Vincenzo] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Erhart, Paul] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. RP Aberg, D (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM aberg2@llnl.gov RI Erhart, Paul/G-6260-2011; OI Erhart, Paul/0000-0002-2516-6061; Aberg, Daniel/0000-0003-4364-9419; Lordi, Vincenzo/0000-0003-2415-4656 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development [NA-22] FX Dr. Sadigh and Dr. Oppelstrup are acknowledged for fruitful discussions on phonon scattering. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development (NA-22). NR 59 TC 6 Z9 6 U1 3 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL 10 PY 2013 VL 88 IS 4 AR 045201 DI 10.1103/PhysRevB.88.045201 PG 9 WC Physics, Condensed Matter SC Physics GA 182IY UT WOS:000321736300001 ER PT J AU McLeod, JA Kurmaev, EZ Perez, I Anand, VK Perera, PK Johnston, DC Moewes, A AF McLeod, J. A. Kurmaev, E. Z. Perez, I. Anand, V. K. Perera, P. Kanchana Johnston, D. C. Moewes, A. TI Electronic structure of copper pnictides: Influence of different cations and pnictogens SO PHYSICAL REVIEW B LA English DT Article ID RAY-EMISSION-SPECTRA; LIGHT-SOURCE; IRON; CUO; CU2O; SUPERCONDUCTORS; PRESSURE; BEAMLINE AB We present calculated electronic structures and x-ray emission and absorption spectroscopy measurements of five copper pnictides. The x-ray emission and absorption spectra, which probe the occupied and unoccupied states, respectively, provide an empirical justification of the calculated electronic structure. We therefore verify the prediction that the copper 3d states are fully occupied and buried deep in the valence band, and the Fermi surface of these materials is characterized by s, p states. We show that generally the calculated electronic structure is in excellent agreement with our measurements. We finally examine the Fermi surfaces of these pnictides, and suggest that copper antimonides may exhibit efficient Fermi surface nesting similar to iron pnictides. C1 [McLeod, J. A.; Perez, I.; Moewes, A.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. [Kurmaev, E. Z.] Russian Acad Sci, Inst Met Phys, Ural Div, Ekaterinburg 620990, Russia. [Anand, V. K.; Perera, P. Kanchana; Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Anand, V. K.; Perera, P. Kanchana; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP McLeod, JA (reprint author), Univ Saskatchewan, Dept Phys & Engn Phys, 116 Sci Pl, Saskatoon, SK S7N 5E2, Canada. EM john.mcleod@usask.ca RI Anand, Vivek Kumar/J-3381-2013; Kurmaev, Ernst/J-4254-2013; Perez, Israel/M-9496-2014 OI Anand, Vivek Kumar/0000-0003-2023-7040; Kurmaev, Ernst/0000-0003-4625-4930; Perez, Israel/0000-0002-8294-9759 FU Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Research Chair program; Ural Division of the Russian Academy of Sciences [12-I-2-2040]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Iowa State University [DE-AC02-07CH11358] FX We gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Research Chair program. This work was done with partial support of the Ural Division of the Russian Academy of Sciences (Project No. 12-I-2-2040). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The Canadian Light Source is supported by NSERC, the National Research Council (NSC) Canada, the Canadian Institute of Health Research (CIHR), the Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. The computational part of this research was enabled by the use of computing resources provided by WestGrid and Compute/Calcul Canada. The work at Ames Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 57 TC 3 Z9 3 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 10 PY 2013 VL 88 IS 1 AR 014508 DI 10.1103/PhysRevB.88.014508 PG 10 WC Physics, Condensed Matter SC Physics GA 182CE UT WOS:000321717300003 ER PT J AU Radulov, D Chiara, CJ Darby, IG De Witte, H Diriken, J Fedorov, DV Fedosseev, VN Fraile, LM Huyse, M Koster, U Marsh, BA Pauwels, D Popescu, L Seliverstov, MD Sjodin, AM Van den Bergh, P Van Duppen, P Venhart, M Walters, WB Wimmer, K AF Radulov, D. Chiara, C. J. Darby, I. G. De Witte, H. Diriken, J. Fedorov, D. V. Fedosseev, V. N. Fraile, L. M. Huyse, M. Koester, U. Marsh, B. A. Pauwels, D. Popescu, L. Seliverstov, M. D. Sjodin, A. M. Van den Bergh, P. Van Duppen, P. Venhart, M. Walters, W. B. Wimmer, K. TI beta decay of Mn-61 to levels in Fe-61 SO PHYSICAL REVIEW C LA English DT Article ID FUSION-EVAPORATION REACTIONS; HEAVY-ION; MODEL; ISOTOPES; NUCLEI; FE-59; SCHEMES; CR-54; NI-68; MN AB A detailed beta-decay study of Mn-61 is presented, yielding extended information on the level structure of Fe-61. Pure beams were obtained at ISOLDE, CERN, after selective laser ionization and mass separation of fission products from the bombardment of a UCx target by 1.4-GeV protons. The beta and gamma information was detected by two MiniBall clusters and three Delta E plastic scintillators. The new Mn-61 decay scheme reveals 48 gamma transitions, distributed over 20 excited states. A comparison to the decay scheme of Mn-59 and excited states in Fe-59 is made. Shell-model calculations with two different interactions are performed in order to compare the nuclear structure of the two neighboring odd-A iron isotopes. Tentative spin and parities of several excited states in Fe-61 are assigned on the basis of beta-decay feeding patterns in both Fe-59,Fe-61 and of results from the theoretical shell-model calculations. C1 [Radulov, D.; Darby, I. G.; De Witte, H.; Diriken, J.; Huyse, M.; Pauwels, D.; Seliverstov, M. D.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.] Katholieke Univ Leuven, Inst Kern & Stralingsfys, B-3001 Heverlee, Belgium. [Chiara, C. J.; Walters, W. B.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chiara, C. J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Diriken, J.; Pauwels, D.; Popescu, L.] Belgian Nucl Res Ctr SCK CEN, B-2400 Mol, Belgium. [Fedorov, D. V.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Fedosseev, V. N.; Marsh, B. A.] CERN, ISOLDE, CH-1211 Geneva 23, Switzerland. [Fraile, L. M.] Univ Complutense, Grp Fis Nucl, E-28040 Madrid, Spain. [Koester, U.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Sjodin, A. M.] KTH Royal Inst Technol, SE-10044 Stockholm, Sweden. [Venhart, M.] Slovak Acad Sci, SK-84511 Bratislava, Slovakia. [Wimmer, K.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Wimmer, K.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. RP Radulov, D (reprint author), Katholieke Univ Leuven, Inst Kern & Stralingsfys, Celestijnenlaan 200D, B-3001 Heverlee, Belgium. RI Fraile, Luis/B-8668-2011; Fedorov, Dmitry/C-9508-2014; Popescu, Lucia/F-9964-2011; Fedosseev, Valentin/A-6240-2010 OI Fraile, Luis/0000-0002-6281-3635; Fedorov, Dmitry/0000-0002-8572-896X; Popescu, Lucia/0000-0003-1678-4260; Fedosseev, Valentin/0000-0001-8767-1445 FU European Commission [RII3-CT-2004-506065]; FWO-Vlaanderen (Belgium); BOF-KU Leuven [GOA/2004/03]; "Interuniversity Attraction Poles Program, Belgian State, Belgian Science Policy"; U.S. Department of Energy, Office of Nuclear Physics [DEFG02-94-ER40834]; Spanish MINECO [FPA2010-17142]; [P7/12] FX This work was supported by the European Commission within the Sixth Framework Program through I3-EURONS (Contract No. RII3-CT-2004-506065), by FWO-Vlaanderen (Belgium), by GOA/2004/03 (BOF-KU Leuven), the "Interuniversity Attraction Poles Program, Belgian State, Belgian Science Policy" (BriX network P7/12), the U.S. Department of Energy, Office of Nuclear Physics, under Grant No. DEFG02-94-ER40834, and the Spanish MINECO under Grant No. FPA2010-17142. NR 49 TC 4 Z9 4 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 10 PY 2013 VL 88 IS 1 AR 014307 DI 10.1103/PhysRevC.88.014307 PG 11 WC Physics, Nuclear SC Physics GA 182JC UT WOS:000321736800002 ER PT J AU Santos, B Loginova, E Mascaraque, A Schmid, AK McCarty, KF de la Figuera, J AF Santos, B. Loginova, E. Mascaraque, A. Schmid, A. K. McCarty, K. F. de la Figuera, J. TI Structure and magnetism in ultrathin iron oxides characterized by low energy electron microscopy (vol 21, 314011, 2009) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Correction C1 [Santos, B.; de la Figuera, J.] Univ Autonoma Madrid, E-28049 Madrid, Spain. [Santos, B.; de la Figuera, J.] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain. [Loginova, E.; McCarty, K. F.] Sandia Natl Labs, Livermore, CA 94550 USA. [Mascaraque, A.] Univ Complutense Madrid, E-28040 Madrid, Spain. [Schmid, A. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Santos, B (reprint author), Univ Autonoma Madrid, E-28049 Madrid, Spain. EM juan.delafiguera@iqfr.csic.es RI McCarty, Kevin/F-9368-2012; Mascaraque, Arantzazu/D-9504-2012 OI McCarty, Kevin/0000-0002-8601-079X; Mascaraque, Arantzazu/0000-0002-2614-2862 NR 1 TC 0 Z9 0 U1 1 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 10 PY 2013 VL 25 IS 27 AR 279501 DI 10.1088/0953-8984/25/27/279501 PG 1 WC Physics, Condensed Matter SC Physics GA 168LL UT WOS:000320707200012 ER PT J AU Sambasivan, SK Shashkov, MJ Burton, DE AF Sambasivan, Shiv Kumar Shashkov, Mikhail J. Burton, Donald E. TI A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE Lagrangian; hydrodynamics; compatible formulation; cell-centered; Godunov; elasto-plastic; hypo-elastic model; second-order; predictor-corrector algorithm; GCL; tensor viscosity; Verney shell collapse ID TENSOR ARTIFICIAL VISCOSITY; COMPATIBLE FORMULATION; POLYGONAL GRIDS; EULERIAN METHOD; GODUNOV METHOD; SCHEME; ALGORITHM; DISCRETIZATION; CONSISTENCY; SIMULATION AB A finite volume cell-centered Lagrangian hydrodynamics approach, formulated in Cartesian frame, is presented for solving elasto-plastic response of solids in general unstructured grids. Because solid materials can sustain significant shear deformation, evolution equations for stress and strain fields are solved in addition to mass, momentum, and energy conservation laws. The total stress is split into deviatoric shear stress and dilatational components. The dilatational response of the material is modeled using the Mie-Gruneisen equation of state. A predicted trial elastic deviatoric stress state is evolved assuming a pure elastic deformation in accordance with the hypo-elastic stress-strain relation. The evolution equations are advanced in time by constructing vertex velocity and corner traction force vectors using multi-dimensional Riemann solutions erected at mesh vertices. Conservation of momentum and total energy along with the increase in entropy principle are invoked for computing these quantities at the vertices. Final state of deviatoric stress is effected via radial return algorithm based on the J-2 von Mises yield condition. The scheme presented in this work is second-order accurate both in space and time. The suitability of the scheme is evinced by solving one- and two-dimensional benchmark problems both in structured grids and in unstructured grids with polygonal cells. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Sambasivan, Shiv Kumar] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Computat Phys Grp CCS 2, Los Alamos, NM 87545 USA. [Shashkov, Mikhail J.; Burton, Donald E.] Los Alamos Natl Lab, Computat Phys Grp XCP4 X, Los Alamos, NM 87545 USA. RP Sambasivan, SK (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Computat Phys Grp CCS 2, POB 1663, Los Alamos, NM 87545 USA. EM shiv@lanl.gov FU US Department of Energy's National Nuclear Security Administration by Los Alamos National Security, LLC, at Los Alamos National Laboratory [DE-AC52-06NA25396]; US DOE NNSA's Advanced Simulation and Computing (ASC) Program; US DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research; US Department of Energy through the LANL LDRD Program FX This work was performed under the auspices of the US Department of Energy's National Nuclear Security Administration by Los Alamos National Security, LLC, at Los Alamos National Laboratory, under contract DE-AC52-06NA25396. The authors gratefully acknowledge the partial support of the US DOE NNSA's Advanced Simulation and Computing (ASC) Program and the partial support of the US DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research. One of the authors (Burton) gratefully acknowledges the support of the US Department of Energy through the LANL LDRD Program for this work. The authors wish to extend their special thanks to T. C. Carney for performing FLAG calculations presented in this work. The authors also wish to express their gratitude to M. A. Christon, R. Garimella, R. Loubere, P.-H. Maire, S. R. Runnels and N. R. Morgan for numerous stimulating discussions on these topics. NR 74 TC 15 Z9 15 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 EI 1097-0363 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD JUL 10 PY 2013 VL 72 IS 7 BP 770 EP 810 DI 10.1002/fld.3770 PG 41 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 156OR UT WOS:000319832500004 ER PT J AU Erhart, P Sadigh, B AF Erhart, Paul Sadigh, Babak TI Low-Temperature Criticality of Martensitic Transformations of Cu Nanoprecipitates in alpha-Fe SO PHYSICAL REVIEW LETTERS LA English DT Article ID SIZE DEPENDENCE; SEMICONDUCTOR NANOCRYSTALS; COMPUTER-SIMULATION; ELECTRON-MICROSCOPE; MELTING TEMPERATURE; PHASE-TRANSITIONS; CDSE NANOCRYSTALS; GOLD PARTICLES; PRESSURE; WURTZITE AB Nanoprecipitates form during nucleation of multiphase equilibria in phase segregating multicomponent systems. In spite of their ubiquity, their size-dependent physical chemistry, in particular, at the boundary between phases with incompatible topologies, is still rather arcane. Here, we use extensive atomistic simulations to map out the size-temperature phase diagram of Cu nanoprecipitates in alpha-Fe. The growing precipitates undergo martensitic transformations from the body-centered cubic (bcc) phase to multiply twinned 9R structures. At high temperatures, the transitions exhibit strong first-order character and prominent hysteresis. Upon cooling, the discontinuities become less pronounced and the transitions occur at ever smaller cluster sizes. Below 300 K, the hysteresis vanishes while the transition remains discontinuous with a finite but diminishing latent heat. This unusual size-temperature phase diagram results from the entropy generated by the soft modes of the bcc-Cu phase, which are stabilized through confinement by the alpha-Fe lattice. C1 [Erhart, Paul] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. [Erhart, Paul; Sadigh, Babak] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94551 USA. RP Erhart, P (reprint author), Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. EM erhart@chalmers.se; sadigh1@llnl.gov RI Erhart, Paul/G-6260-2011 OI Erhart, Paul/0000-0002-2516-6061 FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]; Swedish Research Council; European Research Council; DOE-NE NEAMS Program FX Parts of this work were performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. P.E. acknowledges funding from the Swedish Research Council in the form of a Young Researcher Grant and the Area of Advance-Materials Science at Chalmers, and the European Research Council in the form of a Marie-Curie Career Integration Grant. B.S. acknowledges funding from the DOE-NE NEAMS Program. Computer time allocations by the Swedish National Infrastructure for Computing at C3SE (Gothenburg) and PDC (Stockholm) are gratefully acknowledged. NR 38 TC 4 Z9 4 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2013 VL 111 IS 2 AR 025701 DI 10.1103/PhysRevLett.111.025701 PG 5 WC Physics, Multidisciplinary SC Physics GA 182OE UT WOS:000321752400026 PM 23889419 ER PT J AU Hardy, F Bohmer, AE Aoki, D Burger, P Wolf, T Schweiss, P Heid, R Adelmann, P Yao, YX Kotliar, G Schmalian, J Meingast, C AF Hardy, F. Boehmer, A. E. Aoki, D. Burger, P. Wolf, T. Schweiss, P. Heid, R. Adelmann, P. Yao, Y. X. Kotliar, G. Schmalian, J. Meingast, C. TI Evidence of Strong Correlations and Coherence-Incoherence Crossover in the Iron Pnictide Superconductor KFe2As2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSITION; CHALCOGENIDES; HEAT AB Using resistivity, heat-capacity, thermal-expansion, and susceptibility measurements we study the normal-state behavior of KFe2As2. Both the Sommerfeld coefficient (gamma approximate to 103 mJ mol(-1) K-2) and the Pauli susceptibility (chi approximate to 4 x 10(-4)) are strongly enhanced, which confirm the existence of heavy quasiparticles inferred from previous de Haas-van Alphen and angle-resolved photoemission spectroscopy experiments. We discuss this large enhancement using a Gutzwiller slave-boson mean-field calculation, which shows the proximity of KFe2As2 to an orbital-selective Mott transition. The temperature dependence of the magnetic susceptibility and the thermal expansion provide strong experimental evidence for the existence of a coherence-incoherence crossover, similar to what is found in heavy fermion and ruthenate compounds, due to Hund's coupling between orbitals. C1 [Hardy, F.; Boehmer, A. E.; Burger, P.; Wolf, T.; Schweiss, P.; Heid, R.; Adelmann, P.; Meingast, C.] Karlsruher Inst Technol, Inst Festkorperphys, D-76021 Karlsruhe, Germany. [Aoki, D.] CEA Grenoble, INAC SPSMS, F-38054 Grenoble, France. [Aoki, D.] Tohoku Univ, IMR, Oarai, Ibaraki 3111313, Japan. [Yao, Y. X.] US DOE, Ames Lab, Ames, IA 50011 USA. [Kotliar, G.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Schmalian, J.] Karlsruher Inst Technol, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany. RP Hardy, F (reprint author), Karlsruher Inst Technol, Inst Festkorperphys, D-76021 Karlsruhe, Germany. EM Frederic.Hardy@kit.edu RI Schmalian, Joerg/H-2313-2011; Aoki, Dai/K-3673-2012 OI Aoki, Dai/0000-0003-2334-8360 FU Deutsche Forschungsgemeinschaft [DFG-SPP 1458]; U.S. Department of Energy through the Computational Materials and Chemical Sciences Network; ERC FX We thank J. Flouquet, K.-M. Ho, and X. Z. Wang for stimulating and enlightening discussions. This work was supported by the Deutsche Forschungsgemeinschaft through DFG-SPP 1458 "Hochtemperatursupraleitung in Eisenpniktiden." Y. X. Yao gratefully acknowledges the support of U.S. Department of Energy through the Computational Materials and Chemical Sciences Network. The work in Grenoble was supported by the ERC starting grant "NewHeavyFermion." NR 43 TC 61 Z9 62 U1 7 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2013 VL 111 IS 2 AR 027002 DI 10.1103/PhysRevLett.111.027002 PG 5 WC Physics, Multidisciplinary SC Physics GA 182OE UT WOS:000321752400034 PM 23889432 ER PT J AU Moody, JD Strozzi, DJ Divol, L Michel, P Robey, HF LePape, S Ralph, J Ross, JS Glenzer, SH Kirkwood, RK Landen, OL MacGowan, BJ Nikroo, A Williams, EA AF Moody, J. D. Strozzi, D. J. Divol, L. Michel, P. Robey, H. F. LePape, S. Ralph, J. Ross, J. S. Glenzer, S. H. Kirkwood, R. K. Landen, O. L. MacGowan, B. J. Nikroo, A. Williams, E. A. TI Raman Backscatter as a Remote Laser Power Sensor in High-Energy-Density Plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL-IGNITION-FACILITY; PERFORMANCE AB Stimulated Raman backscatter is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching stimulated Raman backscatter between a shot reducing outer versus a shot reducing inner power we infer that about half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. This is the first instantaneous nondisruptive measure of power transfer in an indirect drive NIF experiment using optical measurements. C1 [Moody, J. D.; Strozzi, D. J.; Divol, L.; Michel, P.; Robey, H. F.; LePape, S.; Ralph, J.; Ross, J. S.; Kirkwood, R. K.; Landen, O. L.; MacGowan, B. J.; Williams, E. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Glenzer, S. H.] LCLS, Stanford, CA 94025 USA. [Nikroo, A.] Gen Atom Co, San Diego, CA 92121 USA. RP Moody, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM moody4@llnl.gov RI Michel, Pierre/J-9947-2012; lepape, sebastien/J-3010-2015; OI Strozzi, David/0000-0001-8814-3791 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We acknowledge the help of Dr. R. L. Berger. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 26 TC 9 Z9 10 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2013 VL 111 IS 2 AR 025001 DI 10.1103/PhysRevLett.111.025001 PG 4 WC Physics, Multidisciplinary SC Physics GA 182OE UT WOS:000321752400021 PM 23889410 ER PT J AU Watanabe, H Brauner, T Murayama, H AF Watanabe, Haruki Brauner, Tomas Murayama, Hitoshi TI Massive Nambu-Goldstone Bosons SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; PHENOMENOLOGICAL LAGRANGIANS; SYMMETRY-BREAKING; QCD; DENSITY AB Nicolis and Piazza have recently pointed out the existence of Nambu-Goldstone-like excitations in relativistic systems at finite density, whose gap is exactly determined by the chemical potential and the symmetry algebra. We show that the phenomenon is much more general than anticipated and demonstrate the presence of such modes in a number of systems from (anti) ferromagnets in a magnetic field to superfluid phases of quantum chromodynamics. Furthermore, we prove a counting rule for these massive Nambu-Goldstone bosons and construct a low-energy effective Lagrangian that captures their dynamics. C1 [Watanabe, Haruki; Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Brauner, Tomas] Univ Bielefeld, Fac Phys, D-33615 Bielefeld, Germany. [Brauner, Tomas] Nucl Phys Inst ASCR, Dept Theoret Phys, Rez 25068, Czech Republic. [Murayama, Hitoshi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Murayama, Hitoshi] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. RP Watanabe, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM hwatanabe@berkeley.edu; tbrauner@physik.uni-bielefeld.de; hitoshi@berkeley.edu RI Brauner, Tomas/G-9307-2014 FU Alexander von Humboldt Foundation; U.S. DOE [DE-AC03-76SF00098]; NSF [PHY-1002399]; JSPS [23540289]; WPI, MEXT, Japan; Honjo International Scholarship Foundation FX We would like to thank Giorgio Torrieri for pointing the paper [7] out to us, Siddharth A. Parameswaran for informing us about Kohn's theorem [4], and Masaki Oshikawa for telling us about the electron spin resonance [14]. The fact that ca(pi) can in some theories such as the model of Eq. (8) be expressed in terms of the Maurer-Cartan form was first pointed out to us by Huan-Hang Chi. We are grateful to Toru Kojo for inspiring discussions. The work of T. B. was supported by the Sofja Kovalevskaja program of the Alexander von Humboldt Foundation. He further acknowledges the hospitality of the Institute for the Physics and Mathematics of the Universe, where the presented work was initiated. The work of H. M. was supported in part by the U.S. DOE under Contract No. DE-AC03-76SF00098, in part by the NSF under Grant No. PHY-1002399, the JSPS Grant No. (C) 23540289, and in part by WPI, MEXT, Japan. H. W. appreciates financial support from the Honjo International Scholarship Foundation. NR 33 TC 20 Z9 20 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2013 VL 111 IS 2 AR 021601 DI 10.1103/PhysRevLett.111.021601 PG 5 WC Physics, Multidisciplinary SC Physics GA 182OE UT WOS:000321752400008 PM 23889384 ER PT J AU Brown, BC Adamson, P Capista, D Chou, WR Kourbanis, I Morris, DK Seiya, K Wu, GH Yang, MJ AF Brown, Bruce C. Adamson, Philip Capista, David Chou, Weiren Kourbanis, Ioanis Morris, Denton K. Seiya, Kiyomi Wu, Guan Hong Yang, Ming-Jen TI Fermilab main injector: High intensity operation and beam loss control SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector. C1 [Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen] Fermilab Natl Accelerator Lab, Accelerator Div, Batavia, IL 60510 USA. RP Brown, BC (reprint author), Fermilab Natl Accelerator Lab, Accelerator Div, POB 500, Batavia, IL 60510 USA. EM bcbrown@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359] FX The high intensity operation of the Main Injector was accomplished by the efforts of the entire Fermilab Accelerator Division. We thank the many helpful people in the other machine departments and support departments and the Operations Department for their ongoing commissioning and tuning efforts. The Fermilab Technical Division created many devices and provided support for maintenance and upgrade activities. We thank the Fermilab experimenters for their support and encouragement. The Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 35 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 9 PY 2013 VL 16 IS 7 AR 071001 DI 10.1103/PhysRevSTAB.16.071001 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 182CH UT WOS:000321717600001 ER PT J AU Carroll, KM Giordano, AJ Wang, DB Kodali, VK Scrimgeour, J King, WP Marder, SR Riedo, E Curtis, JE AF Carroll, Keith M. Giordano, Anthony J. Wang, Debin Kodali, Vamsi K. Scrimgeour, Jan King, William P. Marder, Seth R. Riedo, Elisa Curtis, Jennifer E. TI Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography SO LANGMUIR LA English DT Article ID DIP-PEN NANOLITHOGRAPHY; FORCE MICROSCOPY; LITHOGRAPHY; GENERATION; COMPLEX; POLYMERS; SURFACES AB Production of chemical concentration gradients on the submicrometer scale remains a formidable challenge, despite the broad range of potential applications and their ubiquity throughout nature. We present a strategy to quantitatively prescribe spatial variations in functional group concentration using ThermoChemical NanoLithography (TCNL). The approach uses a heated cantilever to drive a localized nanoscale chemical reaction at an interface, where a reactant is transformed into a product. We show using friction, force microscopy that localized gradients in the product concentration have a spatial resolution of similar to 20 nm where the entire concentration profile is confined to sub-180 nm. To gain quantitative control over the concentration, we introduce a chemical kinetics model of the thermally driven nanoreaction that shows excellent agreement with experiments. The comparison provides a calibration of the nonlinear dependence of product concentration versus temperature, which we use to design two-dimensional temperature maps encoding the prescription for linear and nonlinear gradients. The resultant chemical nanopatterns show high fidelity to the user-defined patterns, including the ability to realize complex chemical patterns with arbitrary variations in peak concentration with a spatial resolution of 180 nm or better. While this work focuses on producing chemical gradients of amine groups, other functionalities are a straightforward modification. We envision that using the basic scheme introduced here, quantitative TCNL will be capable of patterning gradients of other exploitable physical or chemical properties such as fluorescence in conjugated polymers and conductivity in graphene. The access to submicrometer chemical concentration and gradient patterning provides a new dimension of control for nanolithography. C1 [Carroll, Keith M.; Scrimgeour, Jan; Riedo, Elisa; Curtis, Jennifer E.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Carroll, Keith M.; Scrimgeour, Jan; Curtis, Jennifer E.] Georgia Inst Technol, Parker H Petit Inst Bioengn & Biosci, Atlanta, GA 30332 USA. [Giordano, Anthony J.; Marder, Seth R.; Riedo, Elisa] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Wang, Debin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kodali, Vamsi K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [King, William P.] Univ Illinois Urbana Champagne, Dept Mech Sci & Engn, Urbana, IL 61801 USA. RP Curtis, JE (reprint author), Georgia Inst Technol, Sch Phys, 837 State St, Atlanta, GA 30332 USA. EM jennifer.curtis@physics.gatech.edu RI Wang, Debin/H-2713-2012; Scrimgeour, Jan/B-9310-2014; Kodali, Vamsi/D-2497-2009; OI Wang, Debin/0000-0001-8052-731X; Scrimgeour, Jan/0000-0002-0261-225X; Kodali, Vamsi/0000-0001-6177-0568 FU National Science Foundation CMDITR program [DMR 0120967]; MRSEC program [DMR 0820382, CMMI 1100290, PHYS 0848797]; Office of Basic Energy Sciences DOE [DE-FG02-06ER46293]; National Defense Science and Engineering Graduate Fellowship; NSF [DGE-0644493]; COPE fellowship FX Thanks to Yadong Zhang for materials synthesis. This work has been supported by the National Science Foundation CMDITR program DMR 0120967 (S.R.M., K.M.C., J.E.C., E.R.), MRSEC program DMR 0820382 (E.R.), CMMI 1100290 (E.R.), PHYS 0848797 (J.E.C.), the Office of Basic Energy Sciences DOE DE-FG02-06ER46293 (E.R.), a National Defense Science and Engineering Graduate Fellowship (A.J.G.), a NSF graduate research fellowship DGE-0644493 (A.J.G.), and a COPE fellowship (K.M.C., D.W.). NR 31 TC 7 Z9 7 U1 5 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 9 PY 2013 VL 29 IS 27 BP 8675 EP 8682 DI 10.1021/la400996w PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 183DE UT WOS:000321793400026 PM 23751047 ER PT J AU Bolintineanu, DS Stevens, MJ Frischknecht, AL AF Bolintineanu, Dan S. Stevens, Mark J. Frischknecht, Amalie L. TI Influence of Cation Type on Ionic Aggregates in Precise Ionomers SO MACROMOLECULES LA English DT Article ID SULFONATED POLYSTYRENE IONOMERS; RAY-SCATTERING DATA; MOLECULAR-DYNAMICS; ACID) IONOMERS; FORCE-FIELD; COPOLYMERS; ARCHITECTURES; MORPHOLOGY; MELTS AB We report atomistic molecular dynamics (MD) simulations of model ionomers with precise spacing between charged groups (polyethylene-co-acrylic acid). We explore different counterion types, neutralization levels, and spacer lengths between acid groups and provide a thorough analysis of the resulting ionic aggregate morphologies. Structure factors computed from the simulations are in good agreement with previous experimental Xray scattering data, which provides strong validation of the simulation methods. Aggregate morphologies range from small spherical aggregates to string-like shapes and large percolated networks. The unexpected morphologies of the ionic aggregates suggest the need for a novel interpretation of scattering data for these materials. We quantify cation-anion and oxygen-hydrogen association, the two interactions primarily responsible for aggregate formation, and report detailed information pertaining to local structures around cations. This information is difficult to obtain experimentally and may have important consequences for ion transport. C1 [Bolintineanu, Dan S.; Stevens, Mark J.; Frischknecht, Amalie L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Bolintineanu, DS (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM dsbolin@sandia.gov; alfrisc@sandia.gov RI Frischknecht, Amalie/N-1020-2014 OI Frischknecht, Amalie/0000-0003-2112-2587 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy [DE-AC04-94AL85000] FX We thank Prof. Karen Winey and Francisco Buitrago for many useful discussions and comments on the manuscript. We also thank Dr. Lisa Hall and Dr. Chris Lueth for useful discussions regarding the simulation setup and analysis. Simulations were performed at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Funding for this work was provided through the Laboratory Directed Research and Development program at Sandia National Laboratories. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 28 TC 23 Z9 24 U1 4 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUL 9 PY 2013 VL 46 IS 13 BP 5381 EP 5392 DI 10.1021/ma400848m PG 12 WC Polymer Science SC Polymer Science GA 183DD UT WOS:000321793300030 ER PT J AU Franden, MA Pilath, HM Mohagheghi, A Pienkos, PT Zhang, M AF Franden, Mary Ann Pilath, Heidi M. Mohagheghi, Ali Pienkos, Philip T. Zhang, Min TI Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Zymomonas mobilis; High-throughput screening; Cell growth assay; Bioscreen C; Inhibitor; Hydrolysate; Lignocellulosic biomass; Ethanol ID ETHANOLOGENIC ESCHERICHIA-COLI; CORN STOVER HYDROLYSATE; SACCHAROMYCES-CEREVISIAE; DEGRADATION-PRODUCTS; ACETIC-ACID; XYLOSE FERMENTATION; BATCH FERMENTATION; GLUCOSE; TOXICITY; PRETREATMENT AB Background: During the pretreatment of biomass feedstocks and subsequent conditioning prior to saccharification, many toxic compounds are produced or introduced which inhibit microbial growth and in many cases, production of ethanol. An understanding of the toxic effects of compounds found in hydrolysate is critical to improving sugar utilization and ethanol yields in the fermentation process. In this study, we established a useful tool for surveying hydrolysate toxicity by measuring growth rates in the presence of toxic compounds, and examined the effects of selected model inhibitors of aldehydes, organic and inorganic acids (along with various cations), and alcohols on growth of Zymomonas mobilis 8b (a ZM4 derivative) using glucose or xylose as the carbon source. Results: Toxicity strongly correlated to hydrophobicity in Z. mobilis, which has been observed in Escherichia coli and Saccharomyces cerevisiae for aldehydes and with some exceptions, organic acids. We observed Z. mobilis 8b to be more tolerant to organic acids than previously reported, although the carbon source and growth conditions play a role in tolerance. Growth in xylose was profoundly inhibited by monocarboxylic organic acids compared to growth in glucose, whereas dicarboxylic acids demonstrated little or no effects on growth rate in either substrate. Furthermore, cations can be ranked in order of their toxicity, Ca++ > > Na+ > NH4(+) > K+. HMF (5-hydroxymethylfurfural), furfural and acetate, which were observed to contribute to inhibition of Z. mobilis growth in dilute acid pretreated corn stover hydrolysate, do not interact in a synergistic manner in combination. We provide further evidence that Z. mobilis 8b is capable of converting the aldehydes furfural, vanillin, 4-hydroxybenzaldehyde and to some extent syringaldehyde to their alcohol forms (furfuryl, vanillyl, 4-hydroxybenzyl and syringyl alcohol) during fermentation. Conclusions: Several key findings in this report provide a mechanism for predicting toxic contributions of inhibitory components of hydrolysate and provide guidance for potential process development, along with potential future strain improvement and tolerance strategies. C1 [Franden, Mary Ann; Pilath, Heidi M.; Mohagheghi, Ali; Pienkos, Philip T.; Zhang, Min] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Franden, MA (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM mary.ann.franden@nrel.gov FU BioEnergy Technologies Office (BETO), a program in DOE EERE FX We would like to acknowledge the funding support from the BioEnergy Technologies Office (BETO), a program in DOE EERE. We also would like to thank Bill Michener from the National Bioenergy Center at the National Renewable Energy Laboratory for GC-MS analysis of aldehydes and their conversion products. NR 42 TC 43 Z9 43 U1 5 U2 68 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD JUL 9 PY 2013 VL 6 AR 99 DI 10.1186/1754-6834-6-99 PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 184UF UT WOS:000321918300002 PM 23837621 ER PT J AU Sava, DF Chapman, KW Rodriguez, MA Greathouse, JA Crozier, PS Zhao, HY Chupas, PJ Nenoff, TM AF Sava, Dorina F. Chapman, Karena W. Rodriguez, Mark A. Greathouse, Jeffery A. Crozier, Paul S. Zhao, Haiyan Chupas, Peter J. Nenoff, Tina M. TI Competitive I-2 Sorption by Cu-BTC from Humid Gas Streams SO CHEMISTRY OF MATERIALS LA English DT Article DE metal-organic frameworks; gas sorption; iodine; modeling; nuclear energy; synchrotron; pair distribution function ID METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE CAPTURE; NEUTRON-DIFFRACTION; IODINE; MECHANISM; STORAGE; SITES AB Competitive sorption of molecular iodine gas from a mixed stream containing iodine and water vapor is identified and characterized for the hydrophilic Cu-BTC metal organic framework. By combining simulation (Grand Canonical Monte Carlo and molecular dynamics simulations) with crystallography (high-energy synchrotron-based powder X-ray diffraction data and pair distribution function analyses), we show that I-2 substantially adsorbs, in preference to water vapor, into two principal areas. First, it adsorbs in the smallest cage close to the copper paddle wheel. Second, it adsorbs within the main pore with close interactions with the benzene tricarboxylate organic linker. Analysis suggests that I-2 forms an effective hydrophobic barrier to minimize water sorption. The finding is relevant to mixed gas streams in nuclear energy industrial processes and accident remediation. This also represents the highest reported I-2 sorption by a metal organic framework (175 wt % I-2 or 3 I/Cu). C1 [Sava, Dorina F.; Nenoff, Tina M.] Sandia Natl Labs, Nanoscale Sci Dept, Albuquerque, NM 87185 USA. [Chapman, Karena W.; Zhao, Haiyan; Chupas, Peter J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Rodriguez, Mark A.] Sandia Natl Labs, Mat Characterizat & Performance Dept, Albuquerque, NM 87185 USA. [Greathouse, Jeffery A.] Sandia Natl Labs, Geochem Dept, Albuquerque, NM 87185 USA. [Crozier, Paul S.] Sandia Natl Labs, Scalable Algorithms Dept, Albuquerque, NM 87185 USA. RP Nenoff, TM (reprint author), Sandia Natl Labs, Nanoscale Sci Dept, POB 5800, Albuquerque, NM 87185 USA. EM tmnenof@sandia.gov RI Sava Gallis, Dorina/D-2827-2015 FU U.S. DOE/NE/FCRD-SWG; U.S. DOE's NNSA [DE-AC04-94AL85000]; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by the U.S. DOE/NE/FCRD-SWG. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. DOE's NNSA, under Contract No. DE-AC04-94AL85000. Work done at Argonne and use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. DOE/Office of Science by Argonne National Laboratory, was supported by the U.S. DOE, Contract No. DE-AC02-06CH11357. NR 36 TC 56 Z9 57 U1 5 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 9 PY 2013 VL 25 IS 13 BP 2591 EP 2596 DI 10.1021/cm401762g PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 183IZ UT WOS:000321809700004 ER PT J AU Omenya, F Chernova, NA Wang, Q Zhang, RB Whittingham, MS AF Omenya, Fredrick Chernova, Natasha A. Wang, Qi Zhang, Ruibo Whittingham, M. Stanley TI The Structural and Electrochemical Impact of Li and Fe Site Substitution in LiFePO4 SO CHEMISTRY OF MATERIALS LA English DT Article DE olivine; site substitution; Li electrochemistry; sarcopside ID VANADIUM-MODIFIED LIFEPO4; LITHIUM-ION BATTERIES; CATHODE; PERFORMANCES; OLIVINES; IRON AB The crystal structure and delithiation mechanism of Li-site substituted LiFePO4 have been revealed by investigation of supervalent V3+ substitution. The combined X-ray and neutron powder diffraction data analysis surprisingly shows that the substituting aliovalent vanadium ions occupy the Fe site while some of the Fe resides at the Li site, probably as sarcopside, which leads to an increase in the unit cell volume. Such substitution reduces the miscibility gap at room temperature and also significantly lowers the solid solution formation temperature in the two-phase region. The effect of the phase diagram modification results in improved kinetics, leading to better rate performance. Such substitution, however, significantly lowers the LiFePO4 capacity at moderate current densities. C1 [Omenya, Fredrick; Whittingham, M. Stanley] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. [Chernova, Natasha A.; Wang, Qi; Zhang, Ruibo; Whittingham, M. Stanley] SUNY Binghamton, Inst Mat Res, Binghamton, NY 13902 USA. [Wang, Qi] Brookhaven Natl Lab, Upton, NY 11973 USA. [Whittingham, M. Stanley] SUNY Stony Brook, Dept Chem, Northeastern Ctr Chem Energy Storage, Stony Brook, NY 11794 USA. RP Whittingham, MS (reprint author), SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. RI Zhang, Ruibo/B-4659-2015 FU Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001294, DE-AC02-06CH11357, DE-AC02-98CH10886]; Oak Ridge National Laboratory's Spallation Neutron Source; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Institute of Standards and Technology, U.S. Department of Commerce FX We thank Shirley Meng for the initial suggestion of iron clustering in LiFePO4. This research is supported as part of the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award Number DE-SC0001294. Use of the Advanced Photon Source at Argonne National Laboratory and the National Synchrotron Light Source at Brookhaven National Laboratory is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract Nos. DE-AC02-06CH11357 and DE-AC02-98CH10886, respectively. We also acknowledge support from Oak Ridge National Laboratory's Spallation Neutron Source sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, and the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities. NR 23 TC 28 Z9 29 U1 6 U2 114 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 9 PY 2013 VL 25 IS 13 BP 2691 EP 2699 DI 10.1021/cm401293r PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 183IZ UT WOS:000321809700017 ER PT J AU Ham, B Junkaew, A Arroyave, R Chen, J Wang, H Wang, P Majewski, J Park, J Zhou, HC Arvapally, RK Kaipa, U Omary, MA Zhang, XY Ren, Y Zhang, X AF Ham, B. Junkaew, A. Arroyave, R. Chen, J. Wang, H. Wang, P. Majewski, J. Park, J. Zhou, H. -C. Arvapally, Ravi K. Kaipa, Ushasree Omary, Mohammad A. Zhang, X. Y. Ren, Y. Zhang, X. TI Hydrogen sorption in orthorhombic Mg hydride at ultra-low temperature SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Orthorhombic Mg hydride; Hydrogen sorption; Stress; Interface ID ROOM-TEMPERATURE; STORAGE PROPERTIES; MAGNESIUM HYDRIDE; ENERGY-STORAGE; THIN-FILMS; SYSTEM; ALLOYS; METALS; MICROSTRUCTURE; DECOMPOSITION AB Mg can store up to similar to 7 wt.% hydrogen and has great potential as light-weight and low cost hydrogen storage materials. However hydrogen sorption in Mg typically requires similar to 573 K, whereas the target operation temperature of fuel cells in automobiles is similar to 373 K or less. Here we demonstrate that stress-induced orthorhombic Mg hydride (O-MgH2) is thermodynamically destabilized at similar to 373 K or lower. Such drastic destabilization arises from large tensile stress in single layer O-MgH2 bonded to rigid substrate, or compressive stress due to large volume change incompatibility in Mg/Nb multilayers. Hydrogen (H-2) desorption occurred at room temperature in O-MgH2 10 nm/O-NbH 10 nm multilayers. Ab initio calculations show that constraints imposed by the thin-film environment can significantly reduce hydride formation enthalpy, verifying the experimental observations. These studies provide key insight on the mechanisms that can significantly destabilize Mg hydride and other type of metal hydrides. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Ham, B.; Junkaew, A.; Arroyave, R.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Ham, B.; Junkaew, A.; Arroyave, R.; Zhang, X.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Chen, J.] Liaoning Shihua Univ, Dept Mech Engn, Fushun 113001, Peoples R China. [Wang, H.] Texas A&M Univ, Dept Elect Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Wang, P.; Majewski, J.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87585 USA. [Park, J.; Zhou, H. -C.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Arvapally, Ravi K.; Kaipa, Ushasree; Omary, Mohammad A.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Zhang, X. Y.; Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Zhou, Hong-Cai/A-3009-2011; Zhang, Xinghang/H-6764-2013; Wang, Haiyan/P-3550-2014 OI Zhou, Hong-Cai/0000-0002-9029-3788; Zhang, Xinghang/0000-0002-8380-8667; Wang, Haiyan/0000-0002-7397-1209 FU NSF-CBET, Energy for Sustainability program [0932249]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [CHE-0911690, CMMI-0963509, CHE-0840518]; Robert A. Welch Foundation [B-1542]; University of North Texas FX We acknowledge financial support by NSF-CBET, Energy for Sustainability program, under grant no. 0932249. We also acknowledge the Texas A&M supercomputing facility and the Texas Advanced Computing Center for the computational resources. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. M.A.O. acknowledges support of his group's contributions by the National Science Foundation (CHE-0911690; CMMI-0963509; CHE-0840518), the Robert A. Welch Foundation (Grant B-1542), and a University of North Texas research infrastructure grant used to purchase the TA/VTI adsorption analyzer. NR 71 TC 12 Z9 13 U1 2 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL 9 PY 2013 VL 38 IS 20 BP 8328 EP 8341 DI 10.1016/j.ijhydene.2013.04.098 PG 14 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 182FV UT WOS:000321728000011 ER PT J AU Hemmes, K Cooper, JF Selman, JR AF Hemmes, K. Cooper, J. F. Selman, J. R. TI Recent insights concerning DCFC development: 1998-2012 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Direct carbon fuel cell; Boudouard reaction; CO2 capture; CO production ID FUEL-CELLS; CARBON; CONVERSION; ANODE; CO2 AB We present an overview of recent developments of the Direct Carbon Fuel Cell (DCFC) cell and system technology which we believe are key to the worldwide renewal of interest in the DCFC during the last ten years. The importance of understanding and exploiting the co-production of CO and CO2 are examined. A distinction must be made between, on the one hand, the tendency toward chemical and electrochemical equilibrium and on the other hand the complex effects of chemical and electrochemical inhibition. The tendency toward equilibrium may be very active in the DCFC anode, resulting in high CO/CO2 ratios at high temperature and/or at low current density, consistent with the Boudouard equilibrium. The complex inhibitive effects tend to produce predominantly CO2 at moderate temperature and moderate current density. If the DCFC anode is allowed to come close to equilibrium, electrochemical production of CO may result. It is accompanied by a large increase in entropy compensated by absorption of thermal energy. This approach to equilibrium may be desirable, for example, in energy conversion systems where the absorption of thermal energy can be ensured via solar collectors. In that case, the product CO may be electrochemically converted or used for chemical or heating value. Such systems can reach an efficiency of greater than 80%. On the other hand, by inhibiting the Boudouard equilibrium either within the reaction mechanism or in the gas product in contact with carbon, it is possible to promote, even at relatively high temperature (700-750 degrees C), the 4-electron conversion of carbon to CO2, resulting in very high conversion efficiency (70-80%). Recent work has pinpointed the conditions under which a DCFC operating at high Coulombic efficiency can be realized. Such a power source of very high energy density, provided it also has sufficient power density, may compete with commercially available batteries and fuel cells in electrical storage and conversion applications. The molecular structure characteristics and Idnetics yielding favorable conditions for this type of operation are discussed in detail, together with the optimal operating conditions for this mode of DCFC application. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Hemmes, K.] Delft Univ Technol, Dept Technol Policy & Management, NL-2628 BX Delft, Netherlands. [Cooper, J. F.] John F Cooper Consulting LLC, Oakland, CA 94611 USA. [Selman, J. R.] IIT, Dept Chem & Biol Eng, Chicago, IL 60616 USA. [Cooper, J. F.] Lawrence Livermore Lab, Livermore, CA USA. RP Hemmes, K (reprint author), Delft Univ Technol, Dept Technol Policy & Management, Jaffalaan 5, NL-2628 BX Delft, Netherlands. EM k.hemmes@tudelft.nl OI Hemmes, Kas/0000-0003-4936-8597 FU Energy Delta Gas Research (EDGaR) program; Northern Netherlands Provinces; European Fund for Regional Development; Ministry of Economic Affairs, Agriculture and Innovation FX The authors acknowledge their co-workers not only for contributing to the referenced research but also for their enthusiasm and spontaneous interest in DCFC research. They gratefully acknowledge the University of Sfax, Tunisia, for its partial support of attendance and participation in the IWH-2012 Workshop in Sousse Tunisia (March 2012). This research has been partly supported by the Energy Delta Gas Research (EDGaR) program. EDGaR is co-financed by the Northern Netherlands Provinces, the European Fund for Regional Development and the Ministry of Economic Affairs, Agriculture and Innovation. NR 22 TC 17 Z9 17 U1 1 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL 9 PY 2013 VL 38 IS 20 BP 8503 EP 8513 DI 10.1016/j.ijhydene.2013.02.117 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 182FV UT WOS:000321728000031 ER PT J AU Freitas, A Gainer, JS AF Freitas, A. Gainer, J. S. TI High energy WW scattering at the LHC with the matrix element method SO PHYSICAL REVIEW D LA English DT Article ID GOLD-PLATED MODES; TOP-QUARK; LIKELIHOOD METHOD; MISSING MOMENTUM; CERN LHC; BOSON; MASS; RECONSTRUCTION; SIGNALS; EVENTS AB Perhaps the most important question in particle physics today is whether the boson with mass near 125 GeV discovered at the Large Hadron Collider (LHC) is the Higgs Boson of the Standard Model. Since a particularly important property of the Standard Model Higgs is its role in unitarizing WLWL scattering, we study the ability of the LHC to probe this process in the case of same-sign W pair production. We find that the use of the matrix element method increases the significance with which the Higgs sector can be probed in this channel. In particular, it allows one to distinguish between a light and heavy Standard Model Higgs in this channel alone with a high degree of significance, as well as to set important limits in the parameter space of the two-Higgs doublet model and the strongly interacting light Higgs model with less than 200 fb(-1) at the 14 TeV LHC, thus providing crucial information about the putative Higgs boson's role in electroweak symmetry breaking. C1 [Freitas, A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, Pittsburgh, PA 15260 USA. [Gainer, J. S.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Gainer, J. S.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Gainer, J. S.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RP Freitas, A (reprint author), Univ Pittsburgh, Dept Phys & Astron, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, Pittsburgh, PA 15260 USA. OI Gainer, James/0000-0002-8872-0664 FU NSF [1066293]; National Science Foundation [PHY-1212635]; Department of Energy [DE-AC02-06CH11357, DE-FG02-91ER40684, DE-FG02-97ER41029] FX The authors would like to thank J. Alwall for helpful communications. A. F. gratefully acknowledges the warm hospitality at the Michigan Center for Theoretical Physics during part of this project. J. S. G. likewise thanks the Aspen Center for Physics (funded by NSF Grant No. #1066293) for their hospitality and the SLAC National Accelerator Laboratory for the use of computing resources. This work was partially supported by the National Science Foundation under Grant No. PHY-1212635 and by the Department of Energy under Grants No. DE-AC02-06CH11357, DE-FG02-91ER40684, and No. DE-FG02-97ER41029. NR 51 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 9 PY 2013 VL 88 IS 1 AR 017302 DI 10.1103/PhysRevD.88.017302 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 182BL UT WOS:000321715400007 ER PT J AU Hooper, D Kelso, C Sandick, P Xue, W AF Hooper, Dan Kelso, Chris Sandick, Pearl Xue, Wei TI Closing supersymmetric resonance regions with direct detection experiments SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER; LHC AB In order for neutralino dark matter to avoid being overproduced in the early Universe, these particles must annihilate (or coannihilate) rather efficiently. Neutralinos with sufficiently large couplings to annihilate at such high a rate (such as those resulting from gaugino-Higgsino mixing, as in "well-tempered'' or "focus point" scenarios), however, have become increasingly disfavored by the null results of XENON100 and other direct detection experiments. One of the few remaining ways that neutralinos could potentially evade such constraints is if they annihilate through a resonance, as can occur if 2m(chi 0) falls within about similar to 10% of either m(A/H), m(h), or m(Z). If no signal is observed from upcoming direct detection experiments, the degree to which such a resonance must be tuned will increase significantly. In this paper, we quantify the degree to which such a resonance must be tuned in order to evade current and projected constraints from direct detection experiments. Assuming a future rate of progress among direct detection experiments that is similar to that obtained over the past decade, we project that within 7 years the light Higgs and Z pole regions will be entirely closed, while the remaining parameter space near the A/H resonance will require that 2m(chi 0) be matched to the central value (near m(A)) to within less than 4%. At this rate of progress, it will be a little over a decade before multiton direct detection experiments will be able to close the remaining, highly tuned, regions of the A/H resonance parameter space. C1 [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kelso, Chris; Sandick, Pearl] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Xue, Wei] SISSA, Sez Trieste, INFN, I-34136 Trieste, Italy. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. OI Xue, Wei/0000-0003-1568-4946 FU U.S. Department of Energy; Center For High Performance Computing at the University of Utah FX This work has been supported in part by the U.S. Department of Energy. Support and resources from the Center For High Performance Computing at the University of Utah are gratefully acknowledged. The authors would also like to thank David Sanford for pointing out that cancellations can lead to a large suppression of the cross section for negative mu. NR 33 TC 13 Z9 13 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL 9 PY 2013 VL 88 IS 1 AR 015010 DI 10.1103/PhysRevD.88.015010 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 182BL UT WOS:000321715400006 ER PT J AU Liu, YP Xu, N Zhuang, PF AF Liu, Yunpeng Xu, Nu Zhuang, Pengfei TI Velocity dependence of charmonium dissociation temperature in high-energy nuclear collisions SO PHYSICS LETTERS B LA English DT Article DE Quark-gluon plasma; Heavy flavor; QCD ID QUARK-GLUON PLASMA; J/PSI; SUPPRESSION AB In high-energy nuclear collisions, heavy quark potential at finite temperature controls the quarkonium suppression. Including the relaxation of the medium induced by the relative velocity between quarkonia and the deconfined expanding matter, the Debye screening is reduced and the quarkonium dissociation takes place at a higher temperature. As a consequence of the velocity-dependent dissociation temperature, the quarkonium suppression at high transverse momentum is significantly weakened in high-energy nuclear collisions at RHIC and LHC. (C) 2013 Elsevier B.V. All rights reserved. C1 [Liu, Yunpeng; Zhuang, Pengfei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Liu, Yunpeng] Goethe Univ Frankfurt, Inst Theoret Phys, Frankfurt, Germany. [Xu, Nu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Xu, Nu] Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan, Peoples R China. RP Liu, YP (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM liujp06@mails.tsinghua.edu.cn FU NSFC [11079024]; MOST [2013CB922000]; Helmholtz International Center FAIR within the framework of the LOEWE program FX The work is supported by the NSFC under grant No. 11079024, the MOST under grant No. 2013CB922000, and the Helmholtz International Center for FAIR within the framework of the LOEWE program launched by the State of Hesse. NR 40 TC 6 Z9 6 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 9 PY 2013 VL 724 IS 1-3 BP 73 EP 76 DI 10.1016/j.physletb.2013.05.068 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 179RF UT WOS:000321538300013 ER PT J AU Herklotz, A Guo, EJ Biegalski, MD Christen, HM Schultz, L Dorr, K AF Herklotz, A. Guo, E-J Biegalski, M. D. Christen, H-M Schultz, L. Doerr, K. TI Strain-controlled switching kinetics of epitaxial PbZr0.52Ti0.48O3 films SO NEW JOURNAL OF PHYSICS LA English DT Article ID THIN-FILMS AB We investigate the effect of biaxial strain on the switching of ferroelectric thin films. The strain state of epitaxial PbZr0.52Ti0.48O3 films is controlled directly and reversibly by the use of piezoelectric Pb(Mg1/3Nb2/3)(0.72)Ti0.28O3 (001) substrates. At small external electric fields, the films show switching characteristics consistent with a creep-like domain wall motion. In this regime, we find a huge decrease of the switching time under compressive strain. For larger external electric fields, the domain wall motion is in a depinning regime. The effect of compressive strain is more moderate in this region and shows a reduction in the switching kinetics. C1 [Herklotz, A.; Guo, E-J; Doerr, K.] Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany. [Herklotz, A.; Guo, E-J; Schultz, L.; Doerr, K.] IFW Dresden, Inst Metall Mat, D-01069 Dresden, Germany. [Biegalski, M. D.; Christen, H-M] ORNL, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Herklotz, A (reprint author), Univ Halle Wittenberg, Inst Phys, Von Danckelmann Pl 3, D-06099 Halle, Germany. EM andreas.herklotz@physik.uni-halle.de RI Guo, Er-Jia/F-5229-2012; Schultz, Ludwig/B-3383-2010; Christen, Hans/H-6551-2013 OI Guo, Er-Jia/0000-0001-5702-225X; Christen, Hans/0000-0001-8187-7469 FU DFG [FOR520]; Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE FX We acknowledge support from DFG FOR520 and the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE. NR 19 TC 5 Z9 5 U1 1 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 9 PY 2013 VL 15 AR 073021 DI 10.1088/1367-2630/15/7/073021 PG 7 WC Physics, Multidisciplinary SC Physics GA 179UD UT WOS:000321545900002 ER PT J AU Dean, MPM Dellea, G Minola, M Wilkins, SB Konik, RM Gu, GD Le Tacon, M Brookes, NB Yakhou-Harris, F Kummer, K Hill, JP Braicovich, L Ghiringhelli, G AF Dean, M. P. M. Dellea, G. Minola, M. Wilkins, S. B. Konik, R. M. Gu, G. D. Le Tacon, M. Brookes, N. B. Yakhou-Harris, F. Kummer, K. Hill, J. P. Braicovich, L. Ghiringhelli, G. TI Magnetic excitations in stripe-ordered La1.875Ba0.125CuO4 studied using resonant inelastic x-ray scattering SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; COPPER-OXIDE SUPERCONDUCTORS; CUPRATE; LA2-XBAXCUO4; PROXIMITY AB The charge and spin correlations in La1.875Ba0.125CuO4 (LBCO 1/8) are studied using Cu L-3 edge resonant inelastic x-ray scattering (RIXS). The static charge order (CO) is observed at a wave vector of (0.24,0) and its charge nature confirmed by measuring the dependence of this peak on the incident x-ray polarization. The damped spin excitation or "paramagnon" in LBCO 1/8 is then measured as it disperses through the CO wave vector. Within the experimental uncertainty no changes are observed in the paramagnon at that wave vector and the paramagnon seems to be similar to that measured in other cuprates, which have no static CO. Given that the stripe correlation modulates both the charge and spin degrees of freedom, it is likely that subtle changes do occur in the paramagnon due to CO. Consequently, we propose that future RIXS measurements, realized with higher-energy resolution and sensitivity, should be performed to test for these effects. C1 [Dean, M. P. M.; Wilkins, S. B.; Konik, R. M.; Gu, G. D.; Hill, J. P.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Dellea, G.; Minola, M.; Braicovich, L.; Ghiringhelli, G.] CNISM, CNR SPIN, I-20133 Milan, Italy. [Dellea, G.; Minola, M.; Braicovich, L.; Ghiringhelli, G.] Politecn Milan, Dipartimento Fis, I-20133 Milan, Italy. [Le Tacon, M.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Brookes, N. B.; Yakhou-Harris, F.; Kummer, K.] ESRF, F-38043 Grenoble, France. RP Dean, MPM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM mdean@bnl.gov; giacomo.ghiringhelli@polimi.it RI Dean, Mark/B-4541-2011; Le Tacon, Mathieu/D-8023-2011; Ghiringhelli, Giacomo/D-1159-2014; Konik, Robert/L-8076-2016 OI Dean, Mark/0000-0001-5139-3543; Le Tacon, Mathieu/0000-0002-5838-3724; Ghiringhelli, Giacomo/0000-0003-0867-7748; Konik, Robert/0000-0003-1209-6890 FU Center for Emergent Superconductivity, an Energy Frontier Research Center; US DOE, Office of Basic Energy Sciences; Office of Basic Energy Sciences, Division of Materials Science and Engineering, US Department of Energy [DEAC02-98CH10886]; Italian Ministry of Research MIUR [PRIN-20094W2LAY] FX We thank Jose Lorenzana for important discussions and sharing some unpublished results. M. P. M. D., R. M. K., and J.P.H. are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Basic Energy Sciences. Work at Brookhaven National Laboratory was financially supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, US Department of Energy under Award No. DEAC02-98CH10886. Work by G. G., G. D., and M. M. was partially supported by the Italian Ministry of Research MIUR (Grant No. PRIN-20094W2LAY). These experiments were performed on the ID08 beamline at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. NR 46 TC 17 Z9 17 U1 4 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 9 PY 2013 VL 88 IS 2 AR 020403 DI 10.1103/PhysRevB.88.020403 PG 5 WC Physics, Condensed Matter SC Physics GA 182AZ UT WOS:000321713900001 ER PT J AU Ozer, MM Weitering, HH AF Oezer, Mustafa M. Weitering, Hanno H. TI Formation of atomically smooth epitaxial metal films on a chemically reactive interface: Mg on Si(111) SO PHYSICAL REVIEW B LA English DT Article ID SUPERLATTICES AB Deposition of Mg on Si(111) 7 x 7 produces an epitaxial magnesium silicide layer. Under identical annealing conditions, the thickness of this Mg2Si(111) layer increases with deposition amount, reaching a maximum of 4 monolayer (ML) and decreasing to similar to 3 ML at higher Mg coverage. Excess Mg coalesces into atomically flat, crystalline Mg(0001) films. This surprising growth mode can be attributed to the accidental commensurability of the Mg(0001), Si(111), and Mg2Si(111) interlayer spacing and the concurrent minimization of in-plane Si mass transfer and domain-wall energies. The commensurability of the interlayer spacing defines a highly unique solid-phase epitaxial growth process capable of producing trilayer structures with atomically abrupt interfaces and atomically smooth surface morphologies. C1 [Oezer, Mustafa M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ozer, MM (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM mmozer@gmail.com FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, United States Department of Energy FX This work was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, United States Department of Energy. NR 16 TC 1 Z9 1 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 9 PY 2013 VL 88 IS 4 AR 045415 DI 10.1103/PhysRevB.88.045415 PG 9 WC Physics, Condensed Matter SC Physics GA 182BF UT WOS:000321714600003 ER PT J AU Thampy, V Blanco-Canosa, S Garcia-Fernandez, M Dean, MPM Gu, GD Forst, M Loew, T Keimer, B Le Tacon, M Wilkins, SB Hill, JP AF Thampy, V. Blanco-Canosa, S. Garcia-Fernandez, M. Dean, M. P. M. Gu, G. D. Foerst, M. Loew, T. Keimer, B. Le Tacon, M. Wilkins, S. B. Hill, J. P. TI Comparison of charge modulations in La1.875Ba0.125CuO4 and YBa2Cu3O6.6 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; DENSITY; ORDER AB A charge modulation has recently been reported in (Y,Nd)Ba2Cu3O6+x [G. Ghiringhelli et al., Science 337, 821 (2012)]. Here we report Cu L-3 edge soft x-ray scattering studies comparing the lattice modulation associated with the charge modulation in YBa2Cu3O6.6 with that associated with the well-known charge and spin stripe order in La1.875Ba0.125CuO4. We find that the correlation length in the CuO2 plane is isotropic in both cases, and is 259 +/- 9 angstrom for La1.875Ba0.125CuO4 and 55 +/- 15 angstrom for YBa2Cu3O6.6. Assuming weak interplanar correlations of the charge ordering in both compounds, we conclude that the order parameters of the lattice modulations in La1.875Ba0.125CuO4 and YBa2Cu3O6.6 are of the same order of magnitude. C1 [Thampy, V.; Garcia-Fernandez, M.; Dean, M. P. M.; Gu, G. D.; Wilkins, S. B.; Hill, J. P.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Blanco-Canosa, S.; Loew, T.; Keimer, B.; Le Tacon, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Foerst, M.] Max Planck Inst Struct & Dynam Matter, D Hamburg, Germany. RP Thampy, V (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Dean, Mark/B-4541-2011; Forst, Michael/D-8924-2012; Le Tacon, Mathieu/D-8023-2011; Blanco-Canosa, Santiago/A-2928-2015 OI Dean, Mark/0000-0001-5139-3543; Le Tacon, Mathieu/0000-0002-5838-3724; Blanco-Canosa, Santiago/0000-0002-4437-5846 FU US Department of Energy, Division of Materials Science [DE- AC02-98CH10886] FX Work performed at Brookhaven National Laboratory was supported by the US Department of Energy, Division of Materials Science, under Contract No. DE- AC02-98CH10886. NR 32 TC 22 Z9 22 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 9 PY 2013 VL 88 IS 2 AR 024505 DI 10.1103/PhysRevB.88.024505 PG 4 WC Physics, Condensed Matter SC Physics GA 182AZ UT WOS:000321713900002 ER PT J AU Schwans, JP Sunden, F Lassila, JK Gonzalez, A Tsai, Y Herschlag, D AF Schwans, Jason P. Sunden, Fanny Lassila, Jonathan K. Gonzalez, Ana Tsai, Yingssu Herschlag, Daniel TI Use of anion-aromatic interactions to position the general base in the ketosteroid isomerase active site SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE enzyme catalysis; general-base catalysis; noncovalent interactions ID CATION-PI INTERACTIONS; KNOWLEDGE-BASED POTENTIALS; 3-OXO-DELTA(5)-STEROID ISOMERASE; DELTA(5)-3-KETOSTEROID ISOMERASE; BIOLOGICAL RECOGNITION; REACTION ENERGETICS; CATALYTIC RESIDUES; RINGS; CRYSTALLOGRAPHY; SPECIFICITY AB Although the cation-pi pair, formed between a side chain or substrate cation and the negative electrostatic potential of a pi system on the face of an aromatic ring, has been widely discussed and has been shown to be important in protein structure and protein-ligand interactions, there has been little discussion of the potential structural and functional importance in proteins of the related anion-aromatic pair (i.e., interaction of a negatively charged group with the positive electrostatic potential on the ring edge of an aromatic group). We posited, based on prior structural information, that anion-aromatic interactions between the anionic Asp general base and Phe54 and Phe116 might be used instead of a hydrogen-bond network to position the general base in the active site of ketosteroid isomerase from Comamonas testosteroni as there are no neighboring hydrogen-bonding groups. We have tested the role of the Phe residues using site-directed mutagenesis, double-mutant cycles, and high-resolution X-ray crystallography. These results indicate a catalytic role of these Phe residues. Extensive analysis of the Protein Data Bank provides strong support for a catalytic role of these and other Phe residues in providing anion-aromatic interactions that position anionic general bases within enzyme active sites. Our results further reveal a potential selective advantage of Phe in certain situations, relative to more traditional hydrogen-bonding groups, because it can simultaneously aid in the binding of hydrophobic substrates and positioning of a neighboring general base. C1 [Schwans, Jason P.; Sunden, Fanny; Lassila, Jonathan K.; Herschlag, Daniel] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. [Tsai, Yingssu; Herschlag, Daniel] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Gonzalez, Ana; Tsai, Yingssu] Natl Accelerator Lab, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Herschlag, D (reprint author), Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. EM herschla@stanford.edu FU National Science Foundation [MCB-1121778]; National Institutes of Health (NIH); Department of Energy, Office of Biological and Environmental Research; NIH, National Center for Research Resources (NCRR), Biomedical Technology Program; National Institute of General Medical Sciences; NCRR, a component of the NIH [5 P41 RR001209] FX We thank members of the laboratory of D.H. for comments on the manuscript. This work was funded by National Science Foundation Grant MCB-1121778 (to D.H.). J.P.S. and J.K.L. were supported in part by National Institutes of Health (NIH) Postdoctoral Fellowships. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The Stanford Synchrotron Radiation Lightsource Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the NIH, National Center for Research Resources (NCRR), Biomedical Technology Program, and the National Institute of General Medical Sciences. The project described was partially supported by Grant 5 P41 RR001209 from the NCRR, a component of the NIH. NR 47 TC 22 Z9 22 U1 2 U2 32 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 9 PY 2013 VL 110 IS 28 BP 11308 EP 11313 DI 10.1073/pnas.1206710110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 183OT UT WOS:000321827000037 PM 23798413 ER PT J AU Swan, BK Tupper, B Sczyrba, A Lauro, FM Martinez-Garcia, M Gonzalez, JM Luo, HW Wright, JJ Landry, ZC Hanson, NW Thompson, BP Poulton, NJ Schwientek, P Acinas, SG Giovannoni, SJ Moran, MA Hallam, SJ Cavicchioli, R Woyke, T Stepanauskas, R AF Swan, Brandon K. Tupper, Ben Sczyrba, Alexander Lauro, Federico M. Martinez-Garcia, Manuel Gonzalez, Jose M. Luo, Haiwei Wright, Jody J. Landry, Zachary C. Hanson, Niels W. Thompson, Brian P. Poulton, Nicole J. Schwientek, Patrick Acinas, Silvia G. Giovannoni, Stephen J. Moran, Mary Ann Hallam, Steven J. Cavicchioli, Ricardo Woyke, Tanja Stepanauskas, Ramunas TI Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE comparative genomics; marine microbiology; microbial ecology; microbial; microevolution; operational taxonomic unit ID SAR11 MARINE-BACTERIA; MOLECULAR EVOLUTION; ONE-CELL; BACTERIOPLANKTON; PROKARYOTES; DIVERSITY; ADAPTATION; TIME; PHYTOPLANKTON; AMPLIFICATION AB Planktonic bacteria dominate surface ocean biomass and influence global biogeochemical processes, but remain poorly characterized owing to difficulties in cultivation. Using large-scale single cell genomics, we obtained insight into the genome content and biogeography of many bacterial lineages inhabiting the surface ocean. We found that, compared with existing cultures, natural bacterioplankton have smaller genomes, fewer gene duplications, and are depleted in guanine and cytosine, noncoding nucleotides, and genes encoding transcription, signal transduction, and noncytoplasmic proteins. These findings provide strong evidence that genome streamlining and oligotrophy are prevalent features among diverse, free-living bacterioplankton, whereas existing laboratory cultures consist primarily of copiotrophs. The apparent ubiquity of metabolic specialization and mixotrophy, as predicted from single cell genomes, also may contribute to the difficulty in bacterioplankton cultivation. Using metagenome fragment recruitment against single cell genomes, we show that the global distribution of surface ocean bacterioplankton correlates with temperature and latitude and is not limited by dispersal at the time scales required for nucleotide substitution to exceed the current operational definition of bacterial species. Single cell genomes with highly similar small subunit rRNA gene sequences exhibited significant genomic and biogeographic variability, highlighting challenges in the interpretation of individual gene surveys and metagenome assemblies in environmental microbiology. Our study demonstrates the utility of single cell genomics for gaining an improved understanding of the composition and dynamics of natural microbial assemblages. C1 [Swan, Brandon K.; Tupper, Ben; Thompson, Brian P.; Poulton, Nicole J.; Stepanauskas, Ramunas] Bigelow Lab Ocean Sci, East Boothbay, ME 04544 USA. [Sczyrba, Alexander] Univ Bielefeld, Ctr Biotechnol, D-33615 Bielefeld, Germany. [Lauro, Federico M.; Cavicchioli, Ricardo] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia. [Martinez-Garcia, Manuel] Univ Alicante, Dept Physiol Genet & Microbiol, E-03080 Alicante, Spain. [Gonzalez, Jose M.] Univ La Laguna, Dept Microbiol, ES-38206 Tenerife, Spain. [Luo, Haiwei; Moran, Mary Ann] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. [Wright, Jody J.; Hallam, Steven J.] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada. [Landry, Zachary C.; Giovannoni, Stephen J.] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. [Hanson, Niels W.; Hallam, Steven J.] Univ British Columbia, Grad Program Bioinformat, Vancouver, BC V6T 1Z4, Canada. [Schwientek, Patrick; Woyke, Tanja] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Acinas, Silvia G.] CSIC, Inst Marine Sci, Dept Marine Biol & Oceanog, ES-08003 Barcelona, Spain. RP Stepanauskas, R (reprint author), Bigelow Lab Ocean Sci, East Boothbay, ME 04544 USA. EM rstepanauskas@bigelow.org RI Acinas, Silvia/F-7462-2016; Gonzalez, Jose/C-3333-2013; OI Acinas, Silvia/0000-0002-3439-0428; Gonzalez, Jose/0000-0002-9926-3323; Lauro, Federico/0000-0002-8373-1014; Stepanauskas, Ramunas/0000-0003-4458-3108; Moran, Mary Ann/0000-0002-0702-8167 FU National Science Foundation [EF-826924, OCE-821374, OCE-1232982]; US Department of Energy (DOE) [CSP 387]; Gordon and Betty Moore Foundation; Spanish Ministry of Science and Innovation [CGL2011-26848/BOS]; CONSOLIDER-INGENIO Program [CSD2008-00077]; Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Foundation for Innovation; Canadian Institute for Advanced Research (CIFAR); Australian Research Council; Australian Antarctic Science program; DOE's Office of Science [DE-AC02-05CH11231] FX We thank David Emerson, William Hanage, Siv Anderson, and Jessica Labonte for valuable comments; Edward F. DeLong for metagenomes from Hawaii ocean time (HOT) station ALOHA; the officers and crew of the RV Ka'imikai-O-Kanaloa and the HOT team for sample collection at station ALOHA; and Jane Heywood and Michael Sieracki for South Atlantic field sample collection. This work was supported by National Science Foundation Grants EF-826924 (to R.S.), OCE-821374 (to R.S.), and OCE-1232982 (to R.S. and B.K.S.); US Department of Energy (DOE) JGI 2011 Microbes Program Grant CSP 387 (to R.S., B.K. S., S.G., M.A.M., F.M.L., R.C. and S.G.A.); the Gordon and Betty Moore Foundation (M. A. M.); Spanish Ministry of Science and Innovation Grant CGL2011-26848/BOS (to S.G.A) and CONSOLIDER-INGENIO2010 Program Grant CSD2008-00077 (to S.G.A. and J.M.G.); the Natural Sciences and Engineering Research Council of Canada (NSERC); the Canada Foundation for Innovation, and the Canadian Institute for Advanced Research (CIFAR; S.J.H.). J.J.W. was supported by NSERC. Research activities of R.C. and F.M.L. are supported by the Australian Research Council, and research activities of R.C. are supported by the Australian Antarctic Science program. Work conducted by the DOE Joint Genome Institute is supported by the DOE's Office of Science under Contract DE-AC02-05CH11231. This is contribution no. 006 of the Tara Oceans Expedition 2009-2012. NR 50 TC 104 Z9 104 U1 9 U2 117 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 9 PY 2013 VL 110 IS 28 BP 11463 EP 11468 DI 10.1073/pnas.1304246110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 183OT UT WOS:000321827000063 PM 23801761 ER PT J AU Lehmann, M Madison, CM Ghosh, PM Seeley, WW Mormino, E Greicius, MD Gorno-Tempini, ML Kramer, JH Miller, BL Jagust, WJ Rabinovici, GD AF Lehmann, Manja Madison, Cindee M. Ghosh, Pia M. Seeley, William W. Mormino, Elizabeth Greicius, Michael D. Gorno-Tempini, Maria Luisa Kramer, Joel H. Miller, Bruce L. Jagust, William J. Rabinovici, Gil D. TI Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer's disease SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID POSTERIOR CORTICAL ATROPHY; PRIMARY PROGRESSIVE APHASIA; DEFAULT-MODE NETWORK; FUNCTIONAL CONNECTIVITY; HUMAN BRAIN; AMYLOID DEPOSITION; AEROBIC GLYCOLYSIS; BETA DEPOSITION; TAU PATHOLOGY; IN-VIVO AB Although previous studies have emphasized the vulnerability of the default mode network (DMN) in Alzheimer's disease (AD), little is known about the involvement of other functional networks and their relationship to clinical phenotype. To test whether clinicoanatomic heterogeneity in AD is driven by the involvement of specific networks, network connectivity was assessed in healthy subjects by seeding regions commonly and specifically atrophied in three clinical AD variants: early-onset AD (age at onset, < 65 y; memory and executive deficits), logopenic variant primary progressive aphasia (language deficits), and posterior cortical atrophy (visuo-spatial deficits). Four-millimeter seed regions of interest were used to obtain intrinsic connectivity maps in 131 healthy controls (age, 65.5 +/- 3.5 y). Atrophy patterns in independent cohorts of AD variant patients and their correspondence to connectivity networks in controls were also assessed. The connectivity maps of commonly atrophied regions of interest support posterior DMN and precuneus network involvement across AD variants, whereas seeding regions specifically atrophied in each AD variant revealed distinct, syndrome-specific connectivity patterns. Goodness-of-fit analysis of each connectivity map with network templates showed the highest correspondence between the early-onset AD seed connectivity map and anterior salience and right executive-control networks, the logopenic aphasia seed connectivity map and the language network, and the posterior cortical atrophy seed connectivity map and the higher visual network. Connectivity maps derived from controls matched regions commonly and specifically atrophied in the patients. Our findings indicate that the posterior DMN and precuneus network are commonly affected in AD variants, whereas syndrome-specific neurodegenerative patterns are driven by the involvement of specific networks outside the DMN. C1 [Lehmann, Manja; Ghosh, Pia M.; Seeley, William W.; Gorno-Tempini, Maria Luisa; Kramer, Joel H.; Miller, Bruce L.; Jagust, William J.; Rabinovici, Gil D.] Univ Calif San Francisco, Dept Neurol, Memory & Aging Ctr, San Francisco, CA 94158 USA. [Lehmann, Manja; Madison, Cindee M.; Ghosh, Pia M.; Mormino, Elizabeth; Jagust, William J.; Rabinovici, Gil D.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Lehmann, Manja] UCL, Inst Neurol, Dementia Res Ctr, London WC1N 3BG, England. [Greicius, Michael D.] Stanford Univ, Sch Med, Dept Neurol & Neurol Sci, Funct Imaging Neuropsychiat Disorders Lab, Stanford, CA 94305 USA. [Jagust, William J.; Rabinovici, Gil D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Lehmann, M (reprint author), Univ Calif San Francisco, Dept Neurol, Memory & Aging Ctr, San Francisco, CA 94158 USA. EM mlehmann@memory.ucsf.edu RI Gorno-Tempini, Maria Luisa/E-7203-2012; Lehmann, Manja/B-9717-2014 FU Alzheimer's Research UK; National Institute on Aging [K23-AG031861, R01AG034570, P01-AG1972403, P50-AG023501]; John Douglas French Alzheimer's Foundation; State of California Department of Health Services Alzheimer's Disease Research Center of California Grant [04-33516]; Hellman Family Foundation; Hilblom Grant FX This work was supported by a grant from Alzheimer's Research UK (to M.L.); National Institute on Aging Grants K23-AG031861 (to G.D.R.), R01AG034570 (to W.J.J.), and P01-AG1972403 and P50-AG023501 (to B.L.M.); the John Douglas French Alzheimer's Foundation (G.D.R.); State of California Department of Health Services Alzheimer's Disease Research Center of California Grant 04-33516 (to B.L.M.); the Hellman Family Foundation (to G.D.R.); and a Hilblom Grant (to B.L.M.), which supports normal aging research at the Memory and Aging Center. NR 70 TC 33 Z9 34 U1 0 U2 17 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 9 PY 2013 VL 110 IS 28 BP 11606 EP 11611 DI 10.1073/pnas.1221536110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 183OT UT WOS:000321827000086 PM 23798398 ER PT J AU Chen, BW Qi, W Li, XL Lei, CH Liu, J AF Chen, Baowei Qi, Wen Li, Xiaolin Lei, Chenghong Liu, Jun TI Heated Proteins are Still Active in a Functionalized Nanoporous Support SO SMALL LA English DT Article DE mesoporous silica; protein denaturation; protein release; glucose oxidase ID IMMOBILIZED GLUCOSE-OXIDASE; MESOPOROUS SILICA; HORSERADISH-PEROXIDASE; ENZYME IMMOBILIZATION; THERMAL INACTIVATION; CATALYTIC ACTIVITY; STABILITY; STABILIZATION; CONFINEMENT; NANOPARTICLES C1 [Chen, Baowei; Qi, Wen; Li, Xiaolin; Lei, Chenghong; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lei, CH (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM chenghong.lei@pnnl.gov FU NIH National Institute of General Medical Sciences [R01GM080987]; U.S. Department of Energy (DOE) Office of Basic Energy Sciences [KC020105-FWP12152]; DOE by Battelle [DE-AC05-76RL01830]; China Scholarship Council FX This research is supported by the NIH National Institute of General Medical Sciences (grant number R01GM080987) and the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (Award KC020105-FWP12152). Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. Wen Qi thanks the partially financial support from the China Scholarship Council. NR 41 TC 5 Z9 5 U1 0 U2 50 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1613-6810 EI 1613-6829 J9 SMALL JI Small PD JUL 8 PY 2013 VL 9 IS 13 BP 2228 EP 2232 DI 10.1002/smll.201202409 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 193NO UT WOS:000322566700003 PM 23401249 ER PT J AU Barabash, RI Kirchlechner, C Robach, O Ulrich, O Micha, JS Sozinov, A Barabash, OM AF Barabash, Rozaliya I. Kirchlechner, Christoph Robach, Odile Ulrich, Olivier Micha, Jean-Sebastien Sozinov, Alexei Barabash, Oleg M. TI In-situ observation of stress-induced stochastic twin boundary motion in off stoichiometric NiMnGa single crystals SO APPLIED PHYSICS LETTERS LA English DT Article ID SHAPE-MEMORY ALLOYS; MN-GA MARTENSITE; NEUTRON-DIFFRACTION; MICRODIFFRACTION; NI2MNGA; TRANSFORMATION; DISLOCATIONS; GRADIENTS AB In-situ X-ray microdiffraction is used to illuminate the physics of non-uniform stochastic motion of type II twin boundaries in NiMnGa twinned crystals during external stress field loading. Asymmetry between tensile and compressive loading and a large hysteresis loop were found. The formation of local strained regions precedes each boundary movement. The location of strained regions adjusts to the position of the twin boundary. Abrupt motion of the boundary correlates with corresponding spikes at the load/displacement curve. (C) 2013 AIP Publishing LLC. C1 [Barabash, Rozaliya I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kirchlechner, Christoph] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany. [Robach, Odile; Ulrich, Olivier] CEA Grenoble, INAC NRS SP2M, F-38054 Grenoble 9, France. [Micha, Jean-Sebastien] UMR SPrAM CNRS CEA UJF, F-38054 Grenoble 9, France. [Sozinov, Alexei] Adaptamat Ltd, FIN-00390 Helsinki, Finland. [Barabash, Oleg M.] Univ Tennessee, Knoxville, TN 37996 USA. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Micha, Jean-Sebastien/K-2817-2015; BM32, CRG IF/I-7017-2015; OI Kirchlechner, Christoph/0000-0003-2418-9664 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; ANR FX Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. We thank the ESRF for providing the x-ray beam, and Olivier Geaymond for technical assistance. The Laue microdiffraction setup benefited from support of the ANR through the MidiFabl, AMOS, and MicroStress projects. The straining device was provided by the University of Leoben (Leoben, Austria). The authors thank Dr. J. Vitek (ORNL) for carefully reading the manuscript. NR 31 TC 6 Z9 6 U1 3 U2 53 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 8 PY 2013 VL 103 IS 2 AR 021909 DI 10.1063/1.4813440 PG 5 WC Physics, Applied SC Physics GA 182RH UT WOS:000321761000032 ER PT J AU Benseman, TM Gray, KE Koshelev, AE Kwok, WK Welp, U Minami, H Kadowaki, K Yamamoto, T AF Benseman, T. M. Gray, K. E. Koshelev, A. E. Kwok, W-K. Welp, U. Minami, H. Kadowaki, K. Yamamoto, T. TI Powerful terahertz emission from Bi2Sr2CaCu2O8+delta mesa arrays SO APPLIED PHYSICS LETTERS LA English DT Article ID QUANTUM-CASCADE LASERS; JOSEPHSON; SUPERCONDUCTORS; TECHNOLOGY AB Stacks of intrinsic Josephson junctions in high-temperature superconductors enable the fabrication of compact sources of coherent terahertz radiation. Here, we demonstrate that multiple stacks patterned on the same Bi2Sr2CaCu2O8+delta crystal can-under optimized conditions-be synchronized to emit high-power THz-radiation. For three synchronized stacks, we achieved 610 mu W of continuous-wave coherent radiation power at 0.51 THz. We suggest that synchronization is promoted by THz-waves in the base crystal. We note that synchronization cannot be achieved in all samples. However even in these cases, powers on the 100-mu W scale can be generated. (C) 2013 AIP Publishing LLC. C1 [Benseman, T. M.; Gray, K. E.; Koshelev, A. E.; Kwok, W-K.; Welp, U.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Minami, H.; Kadowaki, K.] Univ Tsukuba, Inst Mat Sci, Ibaraki 3058753, Japan. [Yamamoto, T.] Natl Inst Mat Sci, Environm & Energy Mat Div, Wide Bandgap Mat Grp, Tsukuba, Ibaraki 3050044, Japan. RP Benseman, TM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Koshelev, Alexei/K-3971-2013 OI Koshelev, Alexei/0000-0002-1167-5906 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Work at Argonne National Laboratory was funded by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357, which also funds Argonne's Center for Nanoscale Materials (CNM) where the patterning of the BSCCO mesas was performed. We thank R. Divan and L. Ocola for their help with sample fabrication. NR 35 TC 36 Z9 37 U1 3 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 8 PY 2013 VL 103 IS 2 AR 022602 DI 10.1063/1.4813536 PG 4 WC Physics, Applied SC Physics GA 182RH UT WOS:000321761000055 ER PT J AU Li, JV Kuciauskas, D Young, MR Repins, IL AF Li, Jian V. Kuciauskas, Darius Young, Matthew R. Repins, Ingrid L. TI Effects of sodium incorporation in Co- evaporated Cu2ZnSnSe4 thin-film solar cells (vol 102, 163905, 2013) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Li, Jian V.; Kuciauskas, Darius; Young, Matthew R.; Repins, Ingrid L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Li, JV (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM jian.li@nrel.gov RI Li, Jian/B-1627-2016 NR 1 TC 1 Z9 1 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 8 PY 2013 VL 103 IS 2 AR 029901 DI 10.1063/1.4813746 PG 1 WC Physics, Applied SC Physics GA 182RH UT WOS:000321761000101 ER PT J AU Liu, X Thadesar, PA Taylor, CL Kunz, M Tamura, N Bakir, MS Sitaraman, SK AF Liu, X. Thadesar, P. A. Taylor, C. L. Kunz, M. Tamura, N. Bakir, M. S. Sitaraman, S. K. TI Thermomechanical strain measurements by synchrotron x-ray diffraction and data interpretation for through-silicon vias SO APPLIED PHYSICS LETTERS LA English DT Article ID MICRODIFFRACTION; CU AB To study thermomechanical strain induced by the mismatch of coefficients of thermal expansion in through-silicon vias (TSVs) and thus provide fundamental understanding of TSV reliability, strain measurements have been performed with synchrotron x-ray diffraction (XRD). The measured strains are available as two-dimensional (2D) distribution maps, whereas the strain distributions in TSVs are three-dimensional (3D) in nature. To understand this 3D to 2D data projection process, a data interpretation method based on beam intensity averaging is proposed and validated with measurements. The proposed method is applicable to XRD strain measurements on thin as well as thick samples. (C) 2013 AIP Publishing LLC. C1 [Liu, X.; Taylor, C. L.; Sitaraman, S. K.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Thadesar, P. A.; Bakir, M. S.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Kunz, M.; Tamura, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Liu, X (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM suresh.sitaraman@me.gatech.edu RI Liu, Xi/E-4425-2012 FU Semiconductor Research Corporation [2012-KJ-2255]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231] FX This work is supported by the Semiconductor Research Corporation under Contract No. 2012-KJ-2255. The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory (LBNL). NR 14 TC 17 Z9 17 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 8 PY 2013 VL 103 IS 2 AR 022107 DI 10.1063/1.4813742 PG 5 WC Physics, Applied SC Physics GA 182RH UT WOS:000321761000039 ER PT J AU Yoo, H Bae, C Kim, M Hong, S No, K Kim, Y Shin, H AF Yoo, Hyunjun Bae, Changdeuck Kim, Myungjun Hong, Seungbum No, Kwangsoo Kim, Yunseok Shin, Hyunjung TI Visualization of three dimensional domain structures in ferroelectric PbTiO3 nanotubes SO APPLIED PHYSICS LETTERS LA English DT Article ID PIEZORESPONSE FORCE MICROSCOPY; BARIUM-TITANATE; OXIDE NANOTUBES; FABRICATION; RECONSTRUCTION; POLARIZATION; INFILTRATION AB We report visualization of three-dimensional domain structures in ferroelectric PbTiO3 (PTO) nanotubes (NTs) using piezoresponse force microscopy (PFM). The domain distributions of the x, y, and z-axes in PTO NTs were separately measured out-of and in-planes at angles of 0 degrees and 90 degrees by vertical and lateral PFM. The separately obtained PFM images were combined to reconstruct the complex domain structures based on some basic assumptions and finite element modeling. The cross-sectional domain configurations of the PTO NTs were visualized by the proposed approach. The results can provide insight into complex domain configurations of ferroelectric nanostructures. (C) 2013 AIP Publishing LLC. C1 [Yoo, Hyunjun] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. [Bae, Changdeuck] Univ Hamburg, Inst Appl Phys, D-20355 Hamburg, Germany. [Kim, Myungjun; Shin, Hyunjung] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea. [Hong, Seungbum] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA. [Hong, Seungbum; No, Kwangsoo] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Kim, Yunseok] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea. RP Yoo, H (reprint author), Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. EM yunseokkim@skku.edu; hshin@skku.edu RI Bae, Changdeuck/A-6791-2010; Shin, Hyunjung/D-5107-2009; No, Kwangsoo/C-1983-2011; Hong, Seungbum/B-7708-2009; Yoo, Hyunjun/C-7914-2012 OI Bae, Changdeuck/0000-0001-5013-2288; Shin, Hyunjung/0000-0003-1284-9098; Hong, Seungbum/0000-0002-2667-1983; Yoo, Hyunjun/0000-0003-3419-5910 FU National Research Foundation of Korea; Korean Government (MSIP) [NRF-C1AAA001-0028972]; CMPS [2005-0049407]; Agency for Defense Development (ADD) of Republic of Korea; Human Resources Development program of KETEP [20124010203270]; Korean Government Ministry of Knowledge Economy FX The authors acknowledge financial supports from the National Research Foundation of Korea Grant funded by the Korean Government (MSIP) (NRF-C1AAA001-0028972) and CMPS (2005-0049407). This work was supported in part by the Agency for Defense Development (ADD) of Republic of Korea and the Human Resources Development program (No. 20124010203270) of KETEP grant funded by the Korean Government Ministry of Knowledge Economy. NR 32 TC 6 Z9 6 U1 0 U2 39 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 8 PY 2013 VL 103 IS 2 AR 022902 DI 10.1063/1.4813239 PG 4 WC Physics, Applied SC Physics GA 182RH UT WOS:000321761000058 ER PT J AU Barton, PT Seshadri, R Llobet, A Suchomel, MR AF Barton, Phillip T. Seshadri, Ram Llobet, Anna Suchomel, Matthew R. TI Magnetostructural transition, metamagnetism, and magnetic phase coexistence in Co10Ge3O16 SO PHYSICAL REVIEW B LA English DT Article ID AERUGITE; BEHAVIOR; NUCLEAR; COBALT AB Co10Ge3O16 crystallizes in an intergrowth structure featuring alternating layers of spinel and rock salt. Variable-temperature powder synchrotron x-ray and neutron diffraction, magnetometry, and heat capacity experiments reveal a magnetostructural transition at T-N = 203 K. This rhombohedral-to-monoclinic transition involves a slight elongation of the CoO6 octahedra along the apical axis. Below TN, the application of a large magnetic field causes a reorientation of the Co2+ Ising spins. This metamagnetic transition is first order as evidenced by a latent heat observed in temperature-dependent measurements. This transition is initially seen at T = 180 K as a broad upturn in the M-H near H-C = 3.9 T. The upturn sharpens into a kink at T = 120 K and a "butterfly" shape emerges, with the transition causing hysteresis at high fields while linear and reversible behavior persists at low fields. H-C decreases as temperature is lowered and the loops at positive and negative fields merge beneath T = 20 K. The antiferromagnetism is described by k(M) = (001/2) and below T = 20 K a small uncompensated component with k(M) = (000) spontaneously emerges. Despite the Curie-Weiss analysis and ionic radius indicating the Co2+ is in its high-spin state, the low-temperature M-H trends toward saturation at M-S = 1.0 mu(B)/Co. We conclude that the field-induced state is a ferrimagnet, rather than a S = 1/2 ferromagnet. The unusual H-T phase diagram is discussed with reference to other metamagnets and Co(II) systems. C1 [Barton, Phillip T.; Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Barton, Phillip T.; Seshadri, Ram] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Llobet, Anna] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Suchomel, Matthew R.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Barton, PT (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM pbarton@mrl.ucsb.edu RI Seshadri, Ram/C-4205-2013; Barton, Phillip/H-3847-2011; Suchomel, Matthew/C-5491-2015; Llobet, Anna/B-1672-2010; OI Seshadri, Ram/0000-0001-5858-4027; SUCHOMEL, Matthew/0000-0002-9500-5079 FU NSF Graduate Research Fellowship Program; NSF through DMR [1105301]; MRSEC Program of the NSF [DMR 1121053]; NSF; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX P.T.B. is supported by the NSF Graduate Research Fellowship Program. R.S. and P.T.B. acknowledge the support of the NSF through DMR 1105301. We acknowledge the use of MRL Central Facilities which are supported by the MRSEC Program of the NSF under Award No. DMR 1121053; a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org). Use of data from the 11-BM beamline at the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work has benefited from the use of HIPD at the Lujan Center at the Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 25 TC 3 Z9 3 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2013 VL 88 IS 2 AR 024403 DI 10.1103/PhysRevB.88.024403 PG 7 WC Physics, Condensed Matter SC Physics GA 181LO UT WOS:000321669300008 ER PT J AU Ke, LQ Belashchenko, KD van Schilfgaarde, M Kotani, T Antropov, VP AF Ke, Liqin Belashchenko, Kirill D. van Schilfgaarde, Mark Kotani, Takao Antropov, Vladimir P. TI Effects of alloying and strain on the magnetic properties of Fe16N2 SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-CRYSTAL FILMS; EXCHANGE INTERACTIONS; SATURATION MAGNETIZATION; ANISOTROPY; MOMENT; CO; APPROXIMATION; ALPHA-FE16N2; NITRIDE; ORIGIN AB The electronic structure and magnetic properties of pure and doped Fe16N2 systems have been studied in the local-density (LDA) and quasiparticle self-consistent GW approximations. The GW magnetic moment of pure Fe16N2 is somewhat larger compared to LDA but not anomalously large. The effects of doping on magnetic moment and exchange coupling were analyzed using the coherent potential approximation. Our lowest estimate of the Curie temperature in pure Fe16N2 is significantly higher than the measured value, which we mainly attribute to the quality of available samples and the interpretation of experimental results. We found that different Fe sites contribute very differently to the magnetocrystalline anisotropy energy (MAE), which offers a way to increase the MAE by small site-specific doping of Co or Ti for Fe. The MAE also increases under tetragonal strain. C1 [Ke, Liqin; Antropov, Vladimir P.] US DOE, Ames Lab, Ames, IA 50011 USA. [Belashchenko, Kirill D.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Belashchenko, Kirill D.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [van Schilfgaarde, Mark] Kings Coll London, Dept Phys, Strand, London WC2R 2LS, England. [Kotani, Takao] Tottori Univ, Dept Appl Math & Phys, Tottori 6808551, Japan. RP Ke, LQ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI kotani, takao/G-4355-2011; Belashchenko, Kirill/A-9744-2008 OI kotani, takao/0000-0003-1693-7052; Belashchenko, Kirill/0000-0002-8518-1490 FU US Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under its Vehicle Technologies Program, through the Ames Laboratory; Iowa State University [DE-AC02-07CH11358]; NSF [DMR-1005642, EPS-1010674, DMR-0820521] FX This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under its Vehicle Technologies Program, through the Ames Laboratory. Ames Laboratory is operated by Iowa State University under contract DE-AC02-07CH11358. K.D.B. acknowledges support from NSF through Grant Nos. DMR-1005642, EPS-1010674 (Nebraska EPSCoR), and DMR-0820521 (Nebraska MRSEC). NR 41 TC 28 Z9 28 U1 6 U2 71 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2013 VL 88 IS 2 AR 024404 DI 10.1103/PhysRevB.88.024404 PG 9 WC Physics, Condensed Matter SC Physics GA 181LO UT WOS:000321669300009 ER PT J AU Kogan, VG Prozorov, R AF Kogan, V. G. Prozorov, R. TI Orbital upper critical field of type-II superconductors with pair breaking SO PHYSICAL REVIEW B LA English DT Article ID CRITICAL-TEMPERATURE; COHERENCE LENGTH; IMPURITIES; DEPENDENCE AB The orbital upper critical field H-c2 is evaluated for isotropic materials with arbitrary transport and pair-breaking scattering rates. It is shown that unlike transport scattering which enhances H-c2, the pair breaking suppresses the upper critical field and reduces the dimensionless ratio h*(0) = H-c2(0)/T-c (dH(c2)/dT)(Tc) from the Helfand-Werthamer value of approximate to 0.7 to 0.5 for a strong pair breaking. h*(T) is evaluated for arbitrary transport and pair-breaking scattering. A phenomenological model for the pair-breaking suppression by magnetic fields is introduced. It shows qualitative features such as a positive curvature of H-c2(T) and the low temperature upturn usually associated with multiband superconductivity. C1 [Kogan, V. G.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Kogan, VG (reprint author), Ames Lab, Ames, IA 50011 USA. EM kogan@ameslab.gov; prozorov@ameslab.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358] FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. NR 22 TC 5 Z9 5 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2013 VL 88 IS 2 AR 024503 DI 10.1103/PhysRevB.88.024503 PG 7 WC Physics, Condensed Matter SC Physics GA 181LO UT WOS:000321669300013 ER PT J AU Roy, D Bondyopadhaya, N Tewari, S AF Roy, Dibyendu Bondyopadhaya, Nilanjan Tewari, Sumanta TI Topologically trivial zero-bias conductance peak in semiconductor Majorana wires from boundary effects SO PHYSICAL REVIEW B LA English DT Article ID FERMIONS; SUPERCONDUCTOR AB We show that a topologically trivial zero-bias conductance peak is produced in semiconductor-superconductor hybrid structures due to a suppressed superconducting pair potential and/or an excess Zeeman field at the ends of the heterostructure, both of which can occur in experiments. The zero-bias peak (ZBP) (a) appears above a threshold parallel bulk Zeeman field, (b) is stable for a range of bulk field before splitting, (c) disappears with rotation of the bulk Zeeman field, and (d) is robust to weak disorder fluctuations. The topologically trivial ZBPs are also expected to produce splitting oscillations with the applied field similar to those from Majorana fermions. Because of such strong similarity with the phenomenology expected from Majorana fermions, we find that the only unambiguous way to distinguish these trivial ZBPs (of height 4e(2)/h) from those arising from Majorana fermions (of height 2e(2)/h) is by comparing the (zero-temperature) peak height and/or through an interference experiment. C1 [Roy, Dibyendu] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roy, Dibyendu] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Bondyopadhaya, Nilanjan] Visva Bharati Univ, Integrated Sci Educ & Res Ctr, Santini Ketan 731235, W Bengal, India. [Tewari, Sumanta] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. RP Roy, D (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Roy, Dibyendu/D-3286-2013; Dibyendu, Roy /E-6903-2017 OI Roy, Dibyendu/0000-0002-8966-8677; FU US Department of Energy through the LANL/LDRD Program; DARPA-MTO [FA9550-10-1-0497]; NSF [PHY-1104527] FX D.R. acknowledges support of the US Department of Energy through the LANL/LDRD Program and S.T. acknowledges DARPA-MTO (Grant No. FA9550-10-1-0497) and NSF (Grant No. PHY-1104527) for support. NR 41 TC 20 Z9 20 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2013 VL 88 IS 2 AR 020502 DI 10.1103/PhysRevB.88.020502 PG 5 WC Physics, Condensed Matter SC Physics GA 181LO UT WOS:000321669300002 ER PT J AU Vasudevan, RK Okatan, MB Liu, YY Jesse, S Yang, JC Liang, WI Chu, YH Li, JY Kalinin, SV Nagarajan, V AF Vasudevan, R. K. Okatan, M. B. Liu, Y. Y. Jesse, S. Yang, J. -C. Liang, W. -I. Chu, Y. -H. Li, J. Y. Kalinin, S. V. Nagarajan, V. TI Unraveling the origins of electromechanical response in mixed-phase bismuth ferrite SO PHYSICAL REVIEW B LA English DT Article ID BIFEO3 THIN-FILMS; STRAIN; CERAMICS; BOUNDARY; ELECTROSTRICTION; TRANSFORMATION; MULTIFERROICS; BEHAVIOR AB The origin of giant electromechanical response in a mixed-phase rhombohedral-tetragonal BiFeO3 thin film is probed using subcoercive scanning probe microscopy based multiple-harmonic measurements. Significant contributions to the strain arise from a second-order harmonic response localized at the phase boundaries. Strain and dissipation data, backed by thermodynamic calculations, suggest that the source of the enhanced electromechanical response is the motion of phase boundaries. These findings elucidate the key role of labile phase boundaries, both natural and artificial, in achieving thin films with giant electromechanical properties. C1 [Vasudevan, R. K.; Okatan, M. B.; Nagarajan, V.] Univ New S Wales, Sch Mat Sci & Engn, Kensington, NSW 2052, Australia. [Liu, Y. Y.] Xiangtan Univ, Minist Educ, Fac Mat Optoelect & Phys, Xiangtan 411105, Hunan, Peoples R China. [Liu, Y. Y.] Xiangtan Univ, Minist Educ, Key Lab Low Dimens Mat & Applicat Technol, Xiangtan 411105, Hunan, Peoples R China. [Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Yang, J. -C.; Liang, W. -I.; Chu, Y. -H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Li, J. Y.] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA. RP Vasudevan, RK (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov; nagarajan@unsw.edu.au RI Ying-Hao, Chu/A-4204-2008; Li, Jiangyu/B-3191-2008; valanoor, nagarajan/B-4159-2012; Vasudevan, Rama/Q-2530-2015; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Okatan, M. Baris/E-1913-2016 OI Ying-Hao, Chu/0000-0002-3435-9084; Li, Jiangyu/0000-0003-0533-1397; Vasudevan, Rama/0000-0003-4692-8579; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Okatan, M. Baris/0000-0002-9421-7846 FU Australian Nanotechnology Network; Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy; National Science Council, Taiwan [NSC-101-2119-M-009-003-MY2]; Ministry of Education [MOE-ATU 101W961]; Center for Interdisciplinary Science of National Chiao Tung University; ARC Discovery Project scheme; NSFC [11102175, 11090331]; ARO [W911NF-07-1-0410] FX R.K.V., M.B.O., and V.N. acknowledge support from the ARC Discovery Project scheme. R.K.V. and V.N. acknowledge financial support from the Australian Nanotechnology Network. The research at ORNL (S.J. and S.V.K.) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy. The work at NCTU is supported by National Science Council, Taiwan (under Contract No. NSC-101-2119-M-009-003-MY2), Ministry of Education (under Grant No. MOE-ATU 101W961), and Center for Interdisciplinary Science of National Chiao Tung University. Y. Y. L. acknowledges the support of NSFC (11102175 and 11090331), and J. Y. L. acknowledges the support of ARO (W911NF-07-1-0410). NR 47 TC 15 Z9 15 U1 6 U2 69 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2013 VL 88 IS 2 AR 020402 DI 10.1103/PhysRevB.88.020402 PG 7 WC Physics, Condensed Matter SC Physics GA 181LO UT WOS:000321669300001 ER PT J AU Bao, N Harrison, S Kachru, S Sachdev, S AF Bao, Ning Harrison, Sarah Kachru, Shamit Sachdev, Subir TI Vortex lattices and crystalline geometries SO PHYSICAL REVIEW D LA English DT Article AB We consider AdS(2) x R-2 solutions supported by a magnetic field, such as those which arise in the near-horizon limit of magnetically charged AdS(4) Reissner-Nordstrom black branes. In the presence of an electrically charged scalar field, such magnetic solutions can be unstable to spontaneous formation of a vortex lattice. We solve the coupled partial differential equations that govern the charged scalar, gauge field, and metric degrees of freedom to lowest nontrivial order in an expansion around the critical point and discuss the corrections to the free energy and thermodynamic functions arising from the formation of the lattice. We describe how such solutions can also be interpreted, via S-duality, as characterizing infrared crystalline phases of conformal field theories doped by a chemical potential, but in zero magnetic field; the doped conformal field theories are dual to geometries that exhibit dynamical scaling and hyperscaling violation. C1 [Bao, Ning; Harrison, Sarah; Kachru, Shamit] Stanford Univ, Stanford Inst Theoret Phys, Dept Phys, Stanford, CA 94305 USA. [Bao, Ning; Harrison, Sarah; Kachru, Shamit] Stanford Univ, SLAC, Theory Grp, Stanford, CA 94305 USA. [Sachdev, Subir] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Bao, N (reprint author), Stanford Univ, Stanford Inst Theoret Phys, Dept Phys, Stanford, CA 94305 USA. EM ningbao@stanford.edu; sarharr@stanford.edu; skachru@stanford.edu; sachdev@g.harvard.edu RI Sachdev, Subir/A-8781-2013 OI Sachdev, Subir/0000-0002-2432-7070 FU U.S. National Science Foundation [PHY-0756174]; Department of Energy [DE-AC02-76SF00515]; John Templeton Foundation; NSF [DMR-1103860]; U.S. Army Research Office [W911NF-12-1-0227] FX We would like to thank G. Horowitz and A. Karch for helpful discussions. S. K. also thanks S. Yaida for enjoyable discussions about crystalline horizons in the summer of 2010. This project was initiated when S. K. and S. S. were hosted by the Simons Foundation in New York. S. K. and S. S. would also like to acknowledge the hospitality of the Simons Symposium, Quantum Entanglement: From Quantum Matter to String Theory, and thank the participants for stimulating discussions. S. K. is supported by the U.S. National Science Foundation Grant No. PHY-0756174, the Department of Energy under Contract No. DE-AC02-76SF00515, and the John Templeton Foundation. S. S. is supported by the NSF under Grant No. DMR-1103860, by the U.S. Army Research Office Award No. W911NF-12-1-0227, and by the John Templeton Foundation. NR 48 TC 23 Z9 23 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 8 PY 2013 VL 88 IS 2 AR 026002 DI 10.1103/PhysRevD.88.026002 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 181MS UT WOS:000321672300016 ER PT J AU Rescigno, TN Orel, AE AF Rescigno, T. N. Orel, A. E. TI Theoretical study of excitation of the low-lying electronic states of water by electron impact SO PHYSICAL REVIEW A LA English DT Article ID DISSOCIATIVE EXCITATION; CROSS-SECTIONS; AB-INITIO; H2O; COLLISIONS; MOLECULE AB We report the results of ab initio calculations for excitation of the (a) over tilde B-3(1), (A) over tilde B-1(1), (b) over tilde (3)A(1), (B) over tilde (1)A(1), 1 (3)A(2), and 1 (1)A(2) states of water by low energy electron impact. The calculations are carried out in an eight-channel close-coupling approximation using the complex Kohn variational method. Particular attention is paid to the elimination of pseudoresonances that can occur when correlated target states are employed. Differential and integral cross sections are reported and compared with the most recent experimental and theoretical results. C1 [Rescigno, T. N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Orel, A. E.] Univ Calif Davis, Dept Chem & Mat Sci, Davis, CA 95616 USA. RP Rescigno, TN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU US Department of Energy by the University of California Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; US DOE Office of Basic Energy Sciences, Division of Chemical Sciences; National Science Foundation FX This work was performed under the auspices of the US Department of Energy by the University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and was supported by the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences. A.E.O. acknowledges support by the National Science Foundation, with some of this material based on work while serving at NSF. NR 31 TC 7 Z9 7 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 8 PY 2013 VL 88 IS 1 AR 012703 DI 10.1103/PhysRevA.88.012703 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 181LF UT WOS:000321668400014 ER PT J AU Simbeck, AJ Gu, DY Kharche, N Satyam, PV Avouris, P Nayak, SK AF Simbeck, Adam J. Gu, Deyang Kharche, Neerav Satyam, Parlapalli Venkata Avouris, Phaedon Nayak, Saroj K. TI Electronic structure of oxygen-functionalized armchair graphene nanoribbons SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ULTRASOFT PSEUDOPOTENTIALS; SUSPENDED GRAPHENE; GRAPHITE OXIDE; BASIS-SET; SEMICONDUCTORS; TRANSITION; STABILITY AB The electronic and magnetic properties of varying width, oxygen-functionalized armchair graphene nanoribbons (AGNRs) are investigated using first-principles density functional theory (DFT). Our study shows that O-passivation results in a rich geometrical environment which in turn determines the electronic and magnetic properties of the AGNR. For planar systems, a degenerate magnetic ground state, arising from emptying of O lone-pair electrons, is reported. DFT predicts ribbons with ferromagnetic coupling to be metallic, whereas antiferromagnetically coupled ribbons present three band gap families: one metallic and two semiconducting. Unlike hydrogen-functionalized AGNRs, the oxygen-functionalized ribbons can attain a lower energy configuration by adopting a nonplanar geometry. The nonplanar structures are nonmagnetic and show three semiconducting families of band gap behavior. Quasiparticle corrections to the DFT results predict a widening of the band gaps for all planar and nonplanar semiconducting systems. This suggests that oxygen functionalization could be used to manipulate the electronic structures of AGNRs. C1 [Simbeck, Adam J.; Gu, Deyang; Kharche, Neerav; Nayak, Saroj K.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Gu, Deyang] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA. [Kharche, Neerav] Rensselaer Polytech Inst, Computat Ctr Nanotechnol Innovat, Troy, NY 12180 USA. [Kharche, Neerav] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Satyam, Parlapalli Venkata] Inst Phys, Bhubaneswar 751005, Orissa, India. [Avouris, Phaedon] IBM Corp, Div Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Nayak, Saroj K.] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 751013, Orissa, India. RP Simbeck, AJ (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM simbea@rpi.edu RI Kharche, Neerav/F-4331-2015 OI Kharche, Neerav/0000-0003-1014-6022 FU Interconnect Focus Center (MARCO program), State of New York; National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) program [0333314]; NSF Petascale Simulations and Analysis (PetaApps) program [0749140]; Army Research Laboratory [W911NF-12-2-0023]; State of New York FX This work is supported by the Interconnect Focus Center (MARCO program), State of New York; the National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) program, Grant No. 0333314; the NSF Petascale Simulations and Analysis (PetaApps) program, Grant No. 0749140; the Army Research Laboratory under coopertive agreement number W911NF-12-2-0023; and an anonymous gift from Rensselaer. Computing resources of the Computational Center for Nanotechnology Innovations (CCNI) at Rensselaer, partly funded by the State of New York, have been used for this work. Finally, the authors thank Claus due Sinding for efforts related to this work, and S.K.N. thanks Professor Mike Payne and Cavendish Laboratory for their hospitality. NR 52 TC 13 Z9 13 U1 5 U2 64 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2013 VL 88 IS 3 AR 035413 DI 10.1103/PhysRevB.88.035413 PG 10 WC Physics, Condensed Matter SC Physics GA 181LT UT WOS:000321669800010 ER PT J AU Wray, LA Li, J Qiu, ZQ Wen, JS Xu, ZJ Gu, G Huang, SW Arenholz, E Yang, WL Hussain, Z Chuang, YD AF Wray, L. Andrew Li, J. Qiu, Z. Q. Wen, Jinsheng Xu, Zhijun Gu, Genda Huang, Shih-Wen Arenholz, Elke Yang, Wanli Hussain, Zahid Chuang, Yi-De TI Measurement of the spectral line shapes for orbital excitations in the Mott insulator CoO using high-resolution resonant inelastic x-ray scattering SO PHYSICAL REVIEW B LA English DT Article AB We establish the spectral line shape of orbital excitations created by resonant inelastic x-ray scattering for the model Mott insulator CoO. Improved experimental energy resolution reveals that the line shapes are strikingly different from expectations in a first-principles-based atomic multiplet model. Extended theoretical simulations are performed to identify the underlying physical origins, which include a pronounced thermal tail reminiscent of anti-Stokes scattering on the energy gain side of excitations, and an essential contribution from interatomic many-body dynamics on the energy loss side of excitations. C1 [Wray, L. Andrew; Huang, Shih-Wen; Arenholz, Elke; Yang, Wanli; Hussain, Zahid; Chuang, Yi-De] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Li, J.; Qiu, Z. Q.; Wen, Jinsheng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wen, Jinsheng; Xu, Zhijun; Gu, Genda] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Wray, LA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RI Wen, Jinsheng/F-4209-2010; xu, zhijun/A-3264-2013; Yang, Wanli/D-7183-2011 OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015; Yang, Wanli/0000-0003-0666-8063 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy [DE-AC02-98CH10886] FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work at Brookhaven National Laboratory was supported by the US Department of Energy under Contract No. DE-AC02-98CH10886. NR 28 TC 5 Z9 5 U1 0 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2013 VL 88 IS 3 AR 035105 DI 10.1103/PhysRevB.88.035105 PG 7 WC Physics, Condensed Matter SC Physics GA 181LT UT WOS:000321669800001 ER PT J AU Aalseth, CE Barbeau, PS Colaresi, J Collar, JI Leon, JD Fast, JE Fields, NE Hossbach, TW Knecht, A Kos, MS Marino, MG Miley, HS Miller, ML Orrell, JL Yocum, KM AF Aalseth, C. E. Barbeau, P. S. Colaresi, J. Collar, J. I. Leon, J. Diaz Fast, J. E. Fields, N. E. Hossbach, T. W. Knecht, A. Kos, M. S. Marino, M. G. Miley, H. S. Miller, M. L. Orrell, J. L. Yocum, K. M. CA CoGeNT Collaboration TI CoGeNT: A search for low-mass dark matter using p-type point contact germanium detectors SO PHYSICAL REVIEW D LA English DT Article ID NEUTRINOS; SIGNALS; DESIGN; COPPER; CODE AB CoGeNT employs p-type point-contact (PPC) germanium detectors to search for weakly interacting massive particles (WIMPs). By virtue of its low-energy threshold and ability to reject surface backgrounds, this type of device allows an emphasis on low-mass dark matter candidates (m(chi) similar to 10 GeV/c(2)). We report on the characteristics of the PPC detector presently taking data at the Soudan Underground Laboratory, elaborating on aspects of shielding, data acquisition, instrumental stability, data analysis, and background estimation. A detailed background model is used to investigate the low-energy excess of events previously reported and to assess the possibility of temporal modulations in the low-energy event rate. Extensive simulations of all presently known backgrounds do not provide a viable background explanation for the excess of low-energy events in the CoGeNT data or the previously observed temporal variation in the event rate. Also reported for the first time is a determination of the surface (slow pulse rise time) event contamination in the data as a function of energy. We conclude that the CoGeNT detector technology is well suited to search for the annual modulation signature expected from dark matter particle interactions in the region of WIMP mass and coupling favored by the DAMA/LIBRA results. C1 [Aalseth, C. E.; Fast, J. E.; Hossbach, T. W.; Kos, M. S.; Miley, H. S.; Orrell, J. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Barbeau, P. S.; Collar, J. I.; Fields, N. E.; Hossbach, T. W.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Barbeau, P. S.; Collar, J. I.; Fields, N. E.; Hossbach, T. W.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Colaresi, J.; Yocum, K. M.] CANBERRA Ind, Meriden, CT 06450 USA. [Leon, J. Diaz; Knecht, A.; Marino, M. G.; Miller, M. L.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Leon, J. Diaz; Knecht, A.; Marino, M. G.; Miller, M. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Aalseth, CE (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM collar@uchicago.edu; marek.kos@pnnl.gov RI Orrell, John/E-9313-2015; OI Orrell, John/0000-0001-7968-4051; Marino, Michael/0000-0003-1226-6036 FU NSF [PHY-0653605, PHY-1003940]; Kavli Foundation; PNNL Ultra-Sensitive Nuclear Measurement Initiative LDRD program [PNNL-SA-90298]; DOE/NNSA Stewardship Science Graduate Fellowship program [DE-FC52-08NA28752]; Intelligence Community (IC) Postdoctoral Research Fellowship Program FX We are indebted to Jeffrey de Jong and Alec Habig (MINOS Collaboration) for sharing with us information on radon and muon rates at SUL, and to all SUL personnel for their constant support in operating the CoGeNT detector. This work was sponsored by NSF Grants No. PHY-0653605 and No. PHY-1003940, The Kavli Foundation, and the PNNL Ultra-Sensitive Nuclear Measurement Initiative LDRD program (Information Release No. PNNL-SA-90298). N.E.F. and T.W.H. are supported by the DOE/NNSA Stewardship Science Graduate Fellowship program (Grant No. DE-FC52-08NA28752) and the Intelligence Community (IC) Postdoctoral Research Fellowship Program, respectively. NR 67 TC 174 Z9 177 U1 2 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 8 PY 2013 VL 88 IS 1 AR 012002 DI 10.1103/PhysRevD.88.012002 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 181MM UT WOS:000321671700001 ER PT J AU Guo, P AF Guo, Peng TI Coupled-channel scattering in 1+1 dimensional lattice model SO PHYSICAL REVIEW D LA English DT Article ID FINITE-VOLUME; HADRON INTERACTIONS; PHASE-SHIFTS; RESONANCE; MATRIX AB Based on the Lippmann-Schwinger equation approach, a generalized Luscher's formula in 1 + 1 dimensions for two particles scattering in both the elastic and coupled-channel cases in moving frames is derived. A two-dimensional coupled-channel scattering lattice model is presented, which represents a two-coupled-channel resonant scattering scalars system. The Monte Carlo simulation is performed on finite lattices and in various moving frames. The two-dimensional generalized Luscher's formula is used to extract the scattering amplitudes for the coupled-channel system from the discrete finite-volume spectrum. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Guo, P (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM pguo@jlab.org FU U.S. Department of Energy under Jefferson Science Associates, LLC [DE-AC05-06OR23177] FX We thank Dru B. Renner, Robert G. Edwards, and Han-Qing Zheng for useful discussions, and special thanks go to Dru B. Renner for inspiring this work and providing encouragement. We also thank David J. Wilson for carefully reading through this manuscript. P.G. acknowledges support from the U.S. Department of Energy Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates the Jefferson Laboratory. NR 32 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 8 PY 2013 VL 88 IS 1 AR 014507 DI 10.1103/PhysRevD.88.014507 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 181MM UT WOS:000321671700005 ER PT J AU Martin, SP AF Martin, Stephen P. TI Interference of Higgs diphoton signal and background in production with a jet at the LHC SO PHYSICAL REVIEW D LA English DT Article ID TO-LEADING ORDER; HADRON-HADRON COLLISIONS; PHOTON PAIR PRODUCTION; PLUS 2 JETS; BOSON PRODUCTION; QCD CORRECTIONS; GLUON FUSION; TRANSVERSE-MOMENTUM; STANDARD MODEL; COLLIDERS AB The Higgs mass determination from diphoton events at the LHC can be affected by interference between the Higgs resonant and continuum background amplitudes with the same initial and final states. For the leading order gluon fusion process, this shift was previously found to exceed 100 MeV, with some dependence on the diphoton mass resolution and the methods used to extract and fit the peak from data. In this paper, I consider the mass shift for the process pp -> j gamma gamma that includes an additional central jet in the final state. For cuts on the transverse momentum of the jet of 25 GeV or more, the diphoton Higgs peak mass shift due to interference is found to be very small, due in part to less interference for the gluon-gluon initiated subprocess, and in part to a cancellation between it and the quark-gluon initiated subprocess. C1 [Martin, Stephen P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Martin, Stephen P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Martin, SP (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU National Science Foundation [PHY-1068369] FX I am indebted to Daniel de Florian, Lance Dixon, and David Kosower for helpful discussions. This work was supported in part by the National Science Foundation Grant No. PHY-1068369. NR 73 TC 16 Z9 16 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 8 PY 2013 VL 88 IS 1 AR 013004 DI 10.1103/PhysRevD.88.013004 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 181MM UT WOS:000321671700002 ER PT J AU Vasilyev, OA Klumov, BA Tkachenko, AV AF Vasilyev, Oleg A. Klumov, Boris A. Tkachenko, Alexei V. TI Precursors of order in aggregates of patchy particles SO PHYSICAL REVIEW E LA English DT Article ID CRYSTALLIZATION; NANOPARTICLES; FLUID AB We study computationally the local structure of aggregated systems of patchy particles. By calculating the probability distribution functions of various rotational invariants we can identify the precursors of orientation order in amorphous phase. Surprisingly, the strongest signature of local order is observed for four-patch particles with tetrahedral symmetry, not for six-patch particles with the cubic one. This trend is exactly opposite to their known ability to crystallize. We relate this anomaly to the observation that a generic aggregate of patchy systems has a coordination number close to 4. Our results also suggest a significant correlation between rotational order in the studied liquids with the corresponding crystalline phases, making this approach potentially useful for a broader range of patchy systems. C1 [Vasilyev, Oleg A.] Max Planck Inst Intelligente Syst, Stuttgart, Germany. [Vasilyev, Oleg A.] Univ Stuttgart, Inst Theoret Phys 4, D-70174 Stuttgart, Germany. [Klumov, Boris A.] Joint Inst High Temp, Moscow, Russia. [Klumov, Boris A.] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia. [Tkachenko, Alexei V.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Vasilyev, OA (reprint author), Max Planck Inst Intelligente Syst, Stuttgart, Germany. RI Tkachenko, Alexei/I-9040-2012 OI Tkachenko, Alexei/0000-0003-1291-243X FU Marie-Curie Grants [PIRSES-GA-2010-269139, PIRSES-GA-2010-269181]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Presidium and Division of Physical Sciences of the Russian Academy of Sciences; Ministry of Education and Science of the Russian Federation; Russian Foundation for Basic Research [13-02-00913, 13-02-01099] FX Research is supported by Marie-Curie Grants No. PIRSES-GA-2010-269139 and No. PIRSES-GA-2010-269181. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This study was also partly supported by the Presidium and Division of Physical Sciences of the Russian Academy of Sciences; the Ministry of Education and Science of the Russian Federation; and the Russian Foundation for Basic Research, Projects No. 13-02-00913 and 13-02-01099. NR 22 TC 17 Z9 17 U1 0 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 8 PY 2013 VL 88 IS 1 AR 012302 DI 10.1103/PhysRevE.88.012302 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 181NE UT WOS:000321673500012 PM 23944458 ER PT J AU Aartsen, MG Abbasi, R Abdou, Y Ackermann, M Adams, J Aguilar, JA Ahlers, M Altmann, D Auffenberg, J Bai, X Baker, M Barwick, SW Baum, V Bay, R Beatty, JJ Bechet, S Tjus, JB Becker, KH Bell, M Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bernhard, A Bertrand, D Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohaichuk, S Bohm, C Bose, D Boeser, S Botner, O Brayeur, L Bretz, HP Brown, AM Bruijn, R Brunner, J Carson, M Casey, J Casier, M Chirkin, D Christov, A Christy, B Clark, K Clevermann, F Coenders, S Cohen, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC De Clercq, C De Ridder, S Desiati, P De With, M DeYoung, T Diaz-Velez, JC Dunkman, M Eagan, R Eberhardt, B Eisch, J Ellsworth, RW Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Franke, R Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Gluesenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Goodman, JA Gora, D Grant, D Gross, A Gurtner, M Ha, C Ismail, AH Hallen, P Hallgren, A Halzen, F Hanson, K Heereman, D Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Jagielski, K Japaridze, GS Jero, K Jlelati, O Kaminsky, B Kappes, A Karg, T Karle, A Kelley, JL Kiryluk, J Kislat, F Klaes, J Klein, SR Koehne, JH Kohnen, G Kolanoski, H Koepke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krasberg, M Krings, K Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Landsman, H Larson, MJ Lesiak-Bzdak, M Leuermann, M Leute, J Luenemann, J Madsen, J Maruyama, R Mase, K Matis, HS McNally, F Meagher, K Merck, M Meszaros, P Meures, T Miarecki, S Middell, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygren, DR Obertacke, A Odrowski, S Olivas, A Olivo, M O'Murchadha, A Paul, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Pirk, N Posselt, J Price, PB Przybylski, GT Raedel, L Rameez, M Rawlins, K Redl, P Reimann, R Resconi, E Rhode, W Ribordy, M Richman, M Riedel, B Rodrigues, JP Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Salameh, T Sander, HG Santander, M Sarkar, S Schatto, K Scheel, M Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoeneberg, S Schoenwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Sestayo, Y Seunarine, S Sheremata, C Smith, MWE Soiron, M Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stasik, A Stezelberger, T Stokstad, RG Stoessl, A Strahler, EA Strom, R Sullivan, GW Taavola, H Taboada, I Tamburro, A Ter-Antonyan, S Tesic, G Tilav, S Toale, PA Toscano, S Usner, M van der Drift, D van Eijndhoven, N Van Overloop, A van Santen, J Vehring, M Voge, M Vraeghe, M Walck, C Waldenmaier, T Wallraff, M Wasserman, R Weaver, C Wellons, M Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zierke, S Zilles, A Zoll, M AF Aartsen, M. G. Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Altmann, D. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Bechet, S. Tjus, J. Becker Becker, K. -H. Bell, M. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Bertrand, D. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohaichuk, S. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Bretz, H. -P. Brown, A. M. Bruijn, R. Brunner, J. Carson, M. Casey, J. Casier, M. Chirkin, D. Christov, A. Christy, B. Clark, K. Clevermann, F. Coenders, S. Cohen, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. De Ridder, S. Desiati, P. De With, M. DeYoung, T. Diaz-Velez, J. C. Dunkman, M. Eagan, R. Eberhardt, B. Eisch, J. Ellsworth, R. W. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Franke, R. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Goodman, J. A. Gora, D. Grant, D. Gross, A. Gurtner, M. Ha, C. Ismail, A. Haj Hallen, P. Hallgren, A. Halzen, F. Hanson, K. Heereman, D. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Jagielski, K. Japaridze, G. S. Jero, K. Jlelati, O. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kiryluk, J. Kislat, F. Klaes, J. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krasberg, M. Krings, K. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Landsman, H. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leute, J. Luenemann, J. Madsen, J. Maruyama, R. Mase, K. Matis, H. S. McNally, F. Meagher, K. Merck, M. Meszaros, P. Meures, T. Miarecki, S. Middell, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Obertacke, A. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Paul, L. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Pirk, N. Posselt, J. Price, P. B. Przybylski, G. T. Raedel, L. Rameez, M. Rawlins, K. Redl, P. Reimann, R. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Riedel, B. Rodrigues, J. P. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Salameh, T. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Scheel, M. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Sestayo, Y. Seunarine, S. Sheremata, C. Smith, M. W. E. Soiron, M. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Strom, R. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Ter-Antonyan, S. Tesic, G. Tilav, S. Toale, P. A. Toscano, S. Usner, M. van der Drift, D. van Eijndhoven, N. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Waldenmaier, T. Wallraff, M. Wasserman, R. Weaver, Ch Wellons, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zierke, S. Zilles, A. Zoll, M. CA IceCube Collaboration TI First Observation of PeV-Energy Neutrinos with IceCube SO PHYSICAL REVIEW LETTERS LA English DT Article ID ATMOSPHERIC MUON; PERFORMANCE; SCATTERING; SELECTION; SPECTRUM; SYSTEM; CHARM; ICE AB We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 +/- 0.16 and 1.14 +/- 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current nu(e,mu,tau) ((nu) over bar (e,mu,tau)) or charged-current nu(e) ((nu) over bar (e)) interactions within the IceCube detector. The events were discovered in a search for ultrahigh energy neutrinos using data corresponding to 615.9 days effective live time. The expected number of atmospheric background is 0.082 +/- 0.004(stat)(-0.057)(+0.041)(syst). The probability of observing two or more candidate events under the atmospheric background-only hypothesis is 2.9 x 10(-3) (2.8 sigma) taking into account the uncertainty on the expected number of background events. These two events could be a first indication of an astrophysical neutrino flux; the moderate significance, however, does not permit a definitive conclusion at this time. C1 [Bissok, M.; Blumenthal, J.; Coenders, S.; Euler, S.; Hallen, P.; Heinen, D.; Jagielski, K.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Scheel, M.; Schoenen, S.; Schukraft, A.; Soiron, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zierke, S.; Zilles, A.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; van der Drift, D.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; van der Drift, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Altmann, D.; De With, M.; Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Fedynitch, A.; Olivo, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Schulte, L.; Stasik, A.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Bechet, S.; Bertrand, D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Bose, D.; Brayeur, L.; Casier, M.; De Clercq, C.; Golup, G.; Kunnen, J.; Labare, M.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Bohaichuk, S.; Grant, D.; Nowicki, S. C.; Sheremata, C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Aguilar, J. A.; Christov, A.; Montaruli, T.; Rameez, M.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Abdou, Y.; Carson, M.; De Ridder, S.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Ryckbosch, D.; Van Overloop, A.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bruijn, R.; Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kelley, J. L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kelley, J. L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bernhard, A.; Gross, A.; Leute, J.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Larson, M. J.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.; Meszaros, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bell, M.; Clark, K.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Koskinen, D. J.; Meszaros, P.; Salameh, T.; Smith, M. W. E.; Tesic, G.; Wasserman, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Huelsnitz, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ishihara, A (reprint author), Chiba Univ, Dept Phys, Chiba 2638522, Japan. EM aya@hepburn.s.chiba-u.ac.jp RI Taavola, Henric/B-4497-2011; Tjus, Julia/G-8145-2012; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Brunner, Juergen/G-3540-2015; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013 OI Taavola, Henric/0000-0002-2604-2810; Carson, Michael/0000-0003-0400-7819; Perez de los Heros, Carlos/0000-0002-2084-5866; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Brunner, Juergen/0000-0002-5052-7236; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; Compute Canada; Compute West High Performance Computing; Swedish Research Council, Sweden; Swedish Polar Research Secretariat, Sweden; Swedish National Infrastructure for Computing (SNIC), Sweden; Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Helmholtz Alliance for Astroparticle Physics (HAP), Germany; Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, Compute Canada, and Compute West High Performance Computing; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland. NR 25 TC 243 Z9 244 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 8 PY 2013 VL 111 IS 2 AR 021103 DI 10.1103/PhysRevLett.111.021103 PG 7 WC Physics, Multidisciplinary SC Physics GA 181NN UT WOS:000321674500001 PM 23889381 ER PT J AU Zhong, ZX Howe, JY Reneker, DH AF Zhong, Zhenxin Howe, Jane Y. Reneker, Darrell H. TI Molecular scale imaging and observation of electron beam-induced changes of polyvinylidene fluoride molecules in electrospun nanofibers SO POLYMER LA English DT Article DE Polyvinylidene fluoride; Nanofiber; Electron microscopy ID RADIATION-DAMAGE; POLY(VINYLIDENE FLUORIDE); ORGANIC-MOLECULES; CARBON NANOTUBES; CHAIN TWIST; MICROSCOPY; POLYMERS; CRYSTALS; FIBERS; IRRADIATION AB Transmission electron micrograph images, made at high magnification, of electrospun nanofibers of polyvinylidene fluoride showed rows of dark dots, separated by about 0.24 nm, along segments of molecules. The thin fibers supported themselves across tiny holes, so there was no support material in the field of view. The dots were seen because the electron density of the CF2 groups is three times that of the intervening CH2 groups. The polymer nanofibers contained crystals with the polymer chains aligned predominately along the axis of the fiber. A significant degree of long-range translational symmetry, associated with the planar zigzag of backbone carbon atoms and the average lateral separation of the molecules, was maintained as the radiation gradually modified the polymer molecules. These high magnification images showed surprising persistence of the chain-like morphology and segmental motion. Primary radiation damage events were dominant. Many more numerous and damaging secondary radiation events that are encountered in thicker samples, or in support films were almost completely avoided, since the only nearby material where secondary radiation could be generated was in the very thin fiber. The nanofibers contained from 50 to a few hundred molecules in a typical cross section. Irradiation severed the molecules at slow rates until only two or three molecules remained in the fiber, and finally the fiber broke. Evidence was noted that irradiation with electrons also caused loss of fluorine atoms, cross-linking, and chain scission. The entire observed segments of the nanofibers were small enough for detailed comparison of images with calculated molecular models. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Zhong, Zhenxin; Reneker, Darrell H.] Univ Akron, Dept Polymer Sci, Akron, OH 44313 USA. [Howe, Jane Y.] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Reneker, DH (reprint author), Univ Akron, Dept Polymer Sci, Akron, OH 44313 USA. EM reneker@uakron.edu RI Howe, Jane/G-2890-2011 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX Part of this research through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. NR 32 TC 3 Z9 3 U1 3 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD JUL 8 PY 2013 VL 54 IS 15 BP 3745 EP 3756 DI 10.1016/j.polymer.2013.03.056 PG 12 WC Polymer Science SC Polymer Science GA 179RC UT WOS:000321538000001 ER PT J AU Bauer, A Thunga, M Obusek, K Akinc, M Kessler, MR AF Bauer, Amy Thunga, Mahendra Obusek, Kristine Akinc, Mufit Kessler, Michael R. TI Bisphenol E cyanate ester as a novel resin for repairing BMI/carbon fiber composites: Influence of cure temperature on adhesive bond strength SO POLYMER LA English DT Article DE Bisphenol E cyanate ester; Polymer matrix composites; Injection repair ID GLASS-TRANSITION TEMPERATURE; MECHANICAL-PROPERTIES; POLYMERS; NANOCOMPOSITES; CONVERSION; KINETICS AB The increasing use of polymer matrix composites (PMCs) in structural applications created demand for advanced repair techniques to fix internal delaminations in PMCs. One of a variety of repair techniques is injection repair, which involves injecting a low viscosity resin directly into the damaged area and subsequently curing the resin to heal the damage. In this study, bisphenol E cyanate ester (BECy) was investigated as a potential resin for injection repair of bismaleimide-carbon fiber based composite panels for aircraft. Temperature sensitive repair applications required a technique that avoided the high temperature post-cure of the injection repair resin. Modulated differential scanning calorimetry (MDSC) experiments were used to examine the degree of cross-linking and the glass transition temperature (T-g) of under-cured injection repair resin. The chemistry of cross-linking in under-cured BECy was studied by Fourier transform infrared spectroscopy (FTIR). Lap shear tests of the under-cured injection repair resin on composite substrates revealed the influence of change in isothermal under-cure temperature on the bond strength. Temperature dependent dynamic mechanical analysis disclosed the significance of sub-T-g relaxations on the adhesive properties of the under-cured resin. Post-fracture surface analysis of the lap shear specimens, performed using Scanning Electron Microscope (SEM) micrographs, indicated a mixed mode of fracture in the form of a combination of resin and resin-composite interface failure. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Bauer, Amy; Thunga, Mahendra; Akinc, Mufit; Kessler, Michael R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Kessler, Michael R.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Thunga, Mahendra; Akinc, Mufit; Kessler, Michael R.] Ames Lab, Dept Energy, Ames, IA 50011 USA. [Obusek, Kristine] Fleet Readiness Ctr East, Mat Engn Div, Cherry Point, NC 28533 USA. RP Kessler, MR (reprint author), Iowa State Univ, Dept Mat Sci & Engn, 2220 Hoover Hall, Ames, IA 50011 USA. EM mkessler@iastate.edu RI Kessler, Michael/C-3153-2008 OI Kessler, Michael/0000-0001-8436-3447 FU ESTCP Program Office [WP - 201108] FX The authors would like to acknowledge the support of the ESTCP Program Office for funding this development/validation effort under WP - 201108. Special thanks to Ray Meilunas from NAVAIR Patuxent River for manufacturing the composite panels. NR 31 TC 15 Z9 16 U1 5 U2 56 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD JUL 8 PY 2013 VL 54 IS 15 BP 3994 EP 4002 DI 10.1016/j.polymer.2013.05.030 PG 9 WC Polymer Science SC Polymer Science GA 179RC UT WOS:000321538000026 ER PT J AU Liu, JP Wang, YD Hao, YL Wang, YZ Nie, ZH Wang, D Ren, Y Lu, ZP Wang, JG Wang, HL Hui, XD Lu, N Kim, MJ Yang, R AF Liu, Jia-Peng Wang, Yan-Dong Hao, Yu-Lin Wang, Yunzhi Nie, Zhi-Hua Wang, Dong Ren, Yang Lu, Zhao-Ping Wang, Jinguo Wang, Haoliang Hui, Xidong Lu, Ning Kim, Moon J. Yang, Rui TI New intrinsic mechanism on gum-like superelasticity of multifunctional alloys SO SCIENTIFIC REPORTS LA English DT Article ID ALPHA'' MARTENSITE; METAL; TRANSFORMATIONS; OXYGEN AB Ti-Nb-based Gum Metals exhibit extraordinary superelasticity with ultralow elastic modulus, superior strength and ductility, and a peculiar dislocation-free deformation behavior, most of which challenge existing theories of crystal strength. Additionally, this kind of alloys actually displays even more anomalous mechanical properties, such as the non-linear superelastic behavior, accompanied by a pronounced tension-to-compression asymmetry, and large ductility with a low Poisson's ratio. Two main contradictory arguments exist concerning the deformation mechanisms of those alloys, i.e., formation of reversible nanodisturbance and reversible martensitic transformation. Herein we used the in-situ synchrotron high-energy X-ray scattering technique to reveal the novel intrinsic physical origin of all anomalous mechanical properties of the Ti-24Nb-4Zr-8Sn-0.10O alloy, a typical gum-like metal. Our experiments provide direct evidence on two different kinds of interesting, stress-induced, reversible nanoscale martensitic transitions, i.e., the austenitic regions with B2 structure transform to alpha '' martensite and those with BCC structure transform to delta martensite. C1 [Liu, Jia-Peng; Wang, Yan-Dong; Lu, Zhao-Ping; Hui, Xidong] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Liu, Jia-Peng; Nie, Zhi-Hua] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Hao, Yu-Lin; Wang, Haoliang] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. [Wang, Yunzhi; Wang, Dong] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Wang, Yunzhi; Wang, Dong] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Wang, Jinguo; Lu, Ning; Kim, Moon J.] Univ Texas Dallas, Dept Mat Sci & Engn, Dallas, TX 75080 USA. RP Wang, YD (reprint author), Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. EM ydwang@mail.neu.edu.cn; ylhao@imr.ac.cn; wang.363@osu.edu; ryang@imr.ac.cn RI Lu, Zhao-Ping/A-2718-2009; Nie, Zhihua/G-9459-2013; wang, yandong/G-9404-2013; Lu, Ning/H-2351-2012; Wang, Dong/G-2677-2010; Hui, Xidong/A-1741-2010; Kim, Moon/A-2297-2010; Wang, Yunzhi/B-2557-2010 OI Nie, Zhihua/0000-0002-2533-933X; FU National Basic Research Program of China (973 Program) [2012CB619405, 2012CB933901, 2012CB619103]; National Natural Science Foundation of China [51231002, 51071152, 51271180, 51201125]; Fundamental Research Funds for the Central Universities [06111020]; U.S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357]; U.S. Natural Science Foundation [DMR-1008349]; National Basic Research Program of China [2012CB619402, 2010CB631003] FX This study was supported by the National Basic Research Program of China (973 Program) (Grant No.s 2012CB619405, 2012CB933901 and 2012CB619103), the National Natural Science Foundation of China (Grant No.s 51231002, 51071152 and 51271180), and the Fundamental Research Funds for the Central Universities (Grant No. 06111020). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. YW and DW thank the support of the U.S. Natural Science Foundation Grant No. DMR-1008349, National Basic Research Program of China (Grants No. 2012CB619402 and No. 2010CB631003) and National Natural Science Foundation of China (Grants No. 51201125). NR 24 TC 22 Z9 22 U1 6 U2 110 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 8 PY 2013 VL 3 AR 2156 DI 10.1038/srep02156 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 178EA UT WOS:000321425700004 PM 23831664 ER PT J AU Saparov, B Singh, DJ Garlea, VO Sefat, AS AF Saparov, Bayrammurad Singh, David J. Garlea, Vasile O. Sefat, Athena S. TI Crystal, magnetic, and electronic structures, and properties of new BaMnPnF (Pn = As, Sb, Bi) SO SCIENTIFIC REPORTS LA English DT Article ID PHYSICAL-PROPERTIES; SUPERCONDUCTIVITY; DESIGN; CU AB New BaMnPnF (Pn = As, Sb, Bi) are synthesized by stoichiometric reaction of elements with BaF2. They crystallize in the P4/nmm space group, with the ZrCuSiAs-type structure, as indicated by X-ray crystallography. Electrical resistivity results indicate that Pn = As, Sb, and Bi are semiconductors with band gaps of 0.73 eV, 0.48 eV and 0.003 eV (extrinsic value), respectively. Powder neutron diffraction reveals a G-type antiferromagnetic order below T-N = 338(1) K for Pn = As, and below T-N = 272(1) K for Pn = Sb. Magnetic susceptibility increases with temperature above 100 K for all the materials. Density functional calculations find semiconducting antiferromagnetic compounds with strong in-plane and weaker out-of-plane exchange coupling that may result in non-Curie Weiss behavior above T-N. The ordered magnetic moments are 3.65(5) mu(B)/Mn for Pn = As, and 3.66(3) mu(B)/Mn for Pn = Sb at 4 K, as refined from neutron diffraction experiments. C1 [Saparov, Bayrammurad; Singh, David J.; Sefat, Athena S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Garlea, Vasile O.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Saparov, B (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM saparovbi@ornl.gov RI Garlea, Vasile/A-4994-2016; Sefat, Athena/R-5457-2016 OI Garlea, Vasile/0000-0002-5322-7271; Sefat, Athena/0000-0002-5596-3504 FU Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Work at the High Flux Isotope Reactor, Oak Ridge National Laboratory, was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We thank R. Custelcean for his help with the single crystal X-ray diffraction measurements. NR 54 TC 9 Z9 9 U1 2 U2 39 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 8 PY 2013 VL 3 AR 2154 DI 10.1038/srep02154 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 178EA UT WOS:000321425700002 PM 23831607 ER PT J AU Dabney, MS van Hest, MFAM Mahan, AH Ginley, DS AF Dabney, M. S. van Hest, M. F. A. M. Mahan, A. H. Ginley, D. S. TI Nucleation rate reduction through stress relief of thermally annealed hydrogenated amorphous silicon films (vol 113, 173509, 2013) SO JOURNAL OF APPLIED PHYSICS LA English DT Correction C1 [Dabney, M. S.; van Hest, M. F. A. M.; Mahan, A. H.; Ginley, D. S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dabney, MS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 1 TC 0 Z9 0 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 7 PY 2013 VL 114 IS 1 AR 019902 DI 10.1063/1.4811548 PG 1 WC Physics, Applied SC Physics GA 182BR UT WOS:000321716000055 ER PT J AU Mariella, R Rubenchik, A Norton, M Donohue, G AF Mariella, R., Jr. Rubenchik, A. Norton, M. Donohue, G. TI Laser comminution of submerged samples SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SOLID-LIQUID INTERFACE; PROCESSING APPLICATIONS; NUMERICAL-SIMULATION; KINETIC AGGREGATION; CO2-LASER RADIATION; SUPERCRITICAL WATER; CAVITATION EROSION; SIZE DISTRIBUTION; AQUEOUS-SOLUTION; PULSED CO AB With the long-term goal in mind of investigating possible designs for a "universal, solid-sample comminution technique" for elemental analysis of debris and rubble, we have studied pulsed-laser ablation of solid samples that were submerged in water. Using 351-nm, 15-ns laser pulses with energy between 1 J and 0.35 J, intensities between 500 MW/cm(2) and 30 MW/cm(2), and samples of broken rock [quartzite] and concrete debris, we have observed conditions in which the laser-driven process can remove material from the solid target substrate, dissolving it and/or converting it into ultrafine particles in a controlled manner. Our study used impure, non-metallic substrates and investigated both the rate of material removal as well as the size distribution of particles that were ablated from the process. We studied ablation at lower regimes of intensity and fluence [below 100 MW/cm(2) and 0.4 J/cm(2), respectively] than has previously attracted attention and discovered that there appears to be a new regime for energy-efficient material removal [Q* < 4000 J/g, for quartzite and < 2000 J/g for concrete] and for the generation of ultrafine particles. (C) 2013 AIP Publishing LLC. C1 [Mariella, R., Jr.; Rubenchik, A.; Norton, M.; Donohue, G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Mariella, R (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to thank valuable discussions with Dr. Joseph Farmer and Jim Ferreira for collecting the data shown in Figures 10 and 11. The authors also wish to thank Dr. Ken Jackson for identifying the sample of broken rock as quartzite. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 88 TC 1 Z9 1 U1 2 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 7 PY 2013 VL 114 IS 1 AR 014904 DI 10.1063/1.4808333 PG 13 WC Physics, Applied SC Physics GA 182BR UT WOS:000321716000051 ER PT J AU Steel, FM Tuttle, BR Shen, X Pantelides, ST AF Steel, Fiona M. Tuttle, Blair R. Shen, Xiao Pantelides, Sokrates T. TI Effects of strain on the electrical properties of silicon carbide SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; NITRIC-OXIDE; BASIS-SET; 4H; MOBILITY; MOSFETS; GAS AB We use density functional calculations to elucidate the effects of strain on the electronic properties of 4H-SiC. Both compressive and tensile uniaxial strain result in a smaller energy gap and splitting of the conduction band valleys. Compared to compressive strain, tensile strain results in larger valley splitting and larger changes to the electron effective masses. For strain larger than 1.5%, in one hexagonal direction, the important conductivity mass can be reduced by more than 50%. For biaxial tensile strain, we also observe effective mass changes similar to the uniaxial results. (C) 2013 AIP Publishing LLC. C1 [Steel, Fiona M.; Tuttle, Blair R.; Shen, Xiao; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Steel, Fiona M.; Tuttle, Blair R.] Penn State Behrend, Dept Phys, Erie, PA 16563 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tuttle, BR (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM brt10@psu.edu FU Behrend Research grant; Research Experiences for Undergraduates (REU) National Science Foundation (NSF) program at Vanderbilt University; NSF [DMR-0907385]; McMinn Endowment at Vanderbilt University FX F.M.S. would like to thank funding from a Behrend Research grant and from the 2012 Research Experiences for Undergraduates (REU) National Science Foundation (NSF) program at Vanderbilt University. This research was also supported by NSF Grant DMR-0907385 and by the McMinn Endowment at Vanderbilt University. Calculations were performed on the LION-XL super-computers at Penn State University. NR 30 TC 1 Z9 1 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 7 PY 2013 VL 114 IS 1 AR 013702 DI 10.1063/1.4812574 PG 4 WC Physics, Applied SC Physics GA 182BR UT WOS:000321716000012 ER PT J AU Turner-Evans, DB Chen, CT Emmer, H McMahon, WE Atwater, HA AF Turner-Evans, Daniel B. Chen, Christopher T. Emmer, Hal McMahon, William E. Atwater, Harry A. TI Optoelectronic analysis of multijunction wire array solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EFFICIENCY; GROWTH AB Wire arrays have demonstrated promising photovoltaic performance as single junction solar cells and are well suited to defect mitigation in heteroepitaxy. These attributes can combine in tandem wire array solar cells, potentially leading to high efficiencies. Here, we demonstrate initial growths of GaAs on Si0.9Ge0.1 structures and investigate III-V on Si1-xGex device design with an analytical model and optoelectronic simulations. We consider Si0.1Ge0.9 wires coated with a GaAs0.9P0.1 shell in three different geometries: conformal, hemispherical, and spherical. The analytical model indicates that efficiencies approaching 34% are achievable with high quality materials. Full field electromagnetic simulations serve to elucidate the optical loss mechanisms and demonstrate light guiding into the wire core. Simulated current-voltage curves under solar illumination reveal the impact of a varying GaAs0.9P0.1 minority carrier lifetime. Finally, defective regions at the hetero-interface are shown to have a negligible effect on device performance if highly doped so as to serve as a back surface field. Overall, the growths and the model demonstrate the feasibility of the proposed geometries and can be used to guide tandem wire array solar cell designs. (C) 2013 AIP Publishing LLC. C1 [Turner-Evans, Daniel B.; Chen, Christopher T.; Emmer, Hal; Atwater, Harry A.] CALTECH, Thomas J Watson Labs Appl Phys, Pasadena, CA 91125 USA. [McMahon, William E.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Turner-Evans, DB (reprint author), CALTECH, Thomas J Watson Labs Appl Phys, Pasadena, CA 91125 USA. EM dt@caltech.edu RI Turner-Evans, Daniel/J-4488-2016 OI Turner-Evans, Daniel/0000-0002-8020-0170 FU United States Department of Energy [DE-EE0005311]; NSF FX We are grateful to Emily Warmann for assistance in detailed balance calculations, to Dr. Mike Kelzenberg and Dr. Mike Deceglie for their aid with Sentaurus, to Dr. Nick Strandwitz for helpful discussion, and to all of our teachers and family for their help and support through the years. Support for this work was provided by the United States Department of Energy under Grant No. DE-EE0005311. D. B. T-E. acknowledges the NSF for fellowship support. NR 26 TC 7 Z9 7 U1 1 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 7 PY 2013 VL 114 IS 1 AR 014501 DI 10.1063/1.4812397 PG 8 WC Physics, Applied SC Physics GA 182BR UT WOS:000321716000040 ER PT J AU Eidenbenz, S Marathe, M Sen, A AF Eidenbenz, Stephan Marathe, Madhav Sen, Arunabha TI Special issue on "Towards a Science of Cyber Security" SO COMPUTER NETWORKS LA English DT Editorial Material C1 [Eidenbenz, Stephan] Los Alamos Natl Lab, Informat Sci Grp, Los Alamos, NM 87545 USA. [Marathe, Madhav] Virginia Tech, Virginia Bioinformat Inst, Network Dynam & Simulat Sci Lab, Blacksburg, VA USA. [Sen, Arunabha] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85287 USA. RP Eidenbenz, S (reprint author), Los Alamos Natl Lab, Informat Sci Grp, Los Alamos, NM 87545 USA. OI Eidenbenz, Stephan/0000-0002-2628-1854 NR 7 TC 0 Z9 0 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1389-1286 J9 COMPUT NETW JI Comput. Netw. PD JUL 5 PY 2013 VL 57 IS 10 SI SI BP 2119 EP 2120 DI 10.1016/j.comnet.2013.05.005 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA 182FK UT WOS:000321726900001 ER PT J AU Nguyen, NP Yan, GH Thai, MT AF Nguyen, Nam P. Yan, Guanhua Thai, My T. TI Analysis of misinformation containment in online social networks SO COMPUTER NETWORKS LA English DT Article DE Misinformation containment; Community detection; Information propagation AB With their blistering expansion in recent years, popular online social sites such as Twitter, Facebook and Bebo, have become not only one of the most effective channels for viral marketing but also the major news sources for many people nowadays. Alongside these promising features, however, comes the threat of misinformation propagation which can lead to undesirable effects. Due to the sheer number of online social network (OSN) users and the highly clustered structures commonly shared by these kinds of networks, there is a substantial challenge to efficiently contain viral spread of misinformation in large-scale social networks. In this paper, we focus on how to limit viral propagation of misinformation in OSNs. Particularly, we study a set of problems, namely the beta(')(T)-Node Protectors problems, which aim to find the smallest set of highly influential nodes from which disseminating good information helps to contain the viral spread of misinformation, initiated from a set of nodes I, within a desired fraction (1 - beta) of the nodes in the entire network in T time steps. For this family of problems, we analyze and present solutions including their inaproximability results, greedy algorithms that provide better lower bounds on the number of selected nodes, and a community-based method for solving these problems. We further conduct a number of experiments on real-world traces, and the empirical results show that our proposed methods outperform existing alternative approaches in finding those important nodes that can help to contain the spread of misinformation effectively. Published by Elsevier B.V. C1 [Nguyen, Nam P.; Thai, My T.] Univ Florida, CISE Dept, Gainesville, FL 32610 USA. [Nguyen, Nam P.; Yan, Guanhua] Los Alamos Natl Lab, Informat Sci CCS 3, Los Alamos, NM 87545 USA. RP Nguyen, NP (reprint author), Univ Florida, CISE Dept, Gainesville, FL 32610 USA. EM nanguyen@cise.ufl.edu; ghyan@lanl.gov; mythai@cise.ufl.edu FU DTRA YIP Grant [HDTRA1-09-1-0061]; Los Alamos National Laboratory Directed Research and Development Program [20110093DR] FX This work) is partially supported by the DTRA YIP Grant No. HDTRA1-09-1-0061, and the Los Alamos National Laboratory Directed Research and Development Program, project number 20110093DR. NR 28 TC 7 Z9 7 U1 1 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1389-1286 J9 COMPUT NETW JI Comput. Netw. PD JUL 5 PY 2013 VL 57 IS 10 SI SI BP 2133 EP 2146 DI 10.1016/j.comnet.2013.04.002 PG 14 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA 182FK UT WOS:000321726900003 ER PT J AU Caskurlu, B Gehani, A Bilgin, CC Subramani, K AF Caskurlu, Bugra Gehani, Ashish Bilgin, Cemal Cagatay Subramani, K. TI Analytical models for risk-based intrusion response SO COMPUTER NETWORKS LA English DT Article DE Risk analysis; Intrusion response; Partial vertex cover; Approximation algorithms ID PARTIAL VERTEX COVER; APPROXIMATION AB Risk analysis has been used to manage the security of systems for several decades. However, its use has been limited to offline risk computation and manual response. In contrast, we use risk computation to drive changes in an operating system's security configuration. This allows risk management to occur in real time and reduces the window of exposure to attack. We posit that it is possible to protect a system by reducing its functionality temporarily when it is under siege. Our goal is to minimize the tension between security and usability by trading them dynamically. Instead of statically configuring a system, we aim to monitor the risk level, using it to drive the tradeoff between security and utility. The advantage of this approach is that it provides users with the maximum possible functionality for any predefined level of risk tolerance. Risk management can be framed as an exercise in managing the constraints on edge and vertex weights of a tripartite graph, with the partitions corresponding to the threats, vulnerabilities, and assets in the system. If a threat requires a specific permission and affects a particular asset, an edge is added between the threat and the permission that mediates access to the vulnerable resource. Another edge is added between the permission and the asset. The presence of a path from a threat, through a permission check, to an asset contributes an element of risk. Risk can be reduced by denying access to a resource that contains a vulnerability or activating data protection measures. We first show that algorithmic underpinnings of optimal risk management can be formulated as the Partial Vertex Cover (PVC) problem in bipartite graphs. We then experimentally compare several heuristics and a (1 + root 2/2 + epsilon)-approximation algorithm we designed for the problem. (C) 2013 Elsevier B.V. All rights reserved. C1 [Caskurlu, Bugra; Subramani, K.] W Virginia Univ, LDCSEE, Morgantown, WV 26506 USA. [Gehani, Ashish] SRI, Comp Sci Lab, Menlo Pk, CA USA. [Bilgin, Cemal Cagatay] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. RP Caskurlu, B (reprint author), W Virginia Univ, LDCSEE, Morgantown, WV 26506 USA. EM caskurlu@gmail.com; ashish.gehani@sri.com; ccbilgin@lbl.gov; ksmani@csee.wvu.edu FU National Science Foundation [CNS-0849735, CCF-0827397]; Air Force Office of Scientific Research [FA9550-12-1-0199] FX This research has been supported in part by the National Science Foundation through Award CNS-0849735.; This research was supported in part by the Air Force Office of Scientific Research through Award FA9550-12-1-0199.; This research was supported in part by the National Science Foundation through Awards CCF-0827397 and CNS-0849735, and Air Force Office of Scientific Research through Award FA9550-12-1-0199. NR 24 TC 2 Z9 2 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1389-1286 J9 COMPUT NETW JI Comput. Netw. PD JUL 5 PY 2013 VL 57 IS 10 SI SI BP 2181 EP 2192 DI 10.1016/j.comnet.2013.03.012 PG 12 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA 182FK UT WOS:000321726900006 ER PT J AU Daniilidis, N Gorman, DJ Tian, L Haffner, H AF Daniilidis, Nikos Gorman, Dylan J. Tian, Lin Haeffner, Hartmut TI Quantum information processing with trapped electrons and superconducting electronics SO NEW JOURNAL OF PHYSICS LA English DT Article ID IONS AB We describe a parametric frequency conversion scheme for trapped charged particles, which enables a coherent interface between atomic and solid-state quantum systems. The scheme uses geometric nonlinearities of the potential of coupling electrodes near a trapped particle, and can be implemented using standard charged-particle traps. Our scheme does not rely on actively driven solid-state devices, and is hence largely immune to noise in such devices. We present a toolbox which can be used to build electron-based quantum information processing platforms, as well as quantum hybrid platforms using trapped electrons and superconducting electronics. C1 [Daniilidis, Nikos; Gorman, Dylan J.; Haeffner, Hartmut] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Tian, Lin] Univ Calif Merced, Sch Nat Sci, Merced, CA 95343 USA. [Haeffner, Hartmut] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Daniilidis, N (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM nikos.daniilidis@gmail.com RI Tian, Lin/I-3314-2013; Haeffner, Hartmut/D-8046-2012 OI Tian, Lin/0000-0001-6281-1034; Haeffner, Hartmut/0000-0002-5113-9622 FU Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through Army Research Office grant [W911NF-10-1-0284]; AFOSR through the ARO grant [FA9550-11-1-0318]; NSF [NSF-DMR-0956064, NSF-CCF-0916303]; Agilent [ACT-UR 2827] FX We acknowledge useful discussions with I Siddiqi, K Murch and with P K Day. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office grant W911NF-10-1-0284, by AFOSR through the ARO grant FA9550-11-1-0318, by NSF under NSF-DMR-0956064, NSF-CCF-0916303 and by Agilent under ACT-UR 2827. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, AFOSR, the ODNI, or the US Government. NR 51 TC 7 Z9 7 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 5 PY 2013 VL 15 AR 073017 DI 10.1088/1367-2630/15/7/073017 PG 19 WC Physics, Multidisciplinary SC Physics GA 179UA UT WOS:000321545600005 ER PT J AU Clark, JN Beitra, L Xiong, G Higginbotham, A Fritz, DM Lemke, HT Zhu, D Chollet, M Williams, GJ Messerschmidt, M Abbey, B Harder, RJ Korsunsky, AM Wark, JS Robinson, IK AF Clark, J. N. Beitra, L. Xiong, G. Higginbotham, A. Fritz, D. M. Lemke, H. T. Zhu, D. Chollet, M. Williams, G. J. Messerschmidt, M. Abbey, B. Harder, R. J. Korsunsky, A. M. Wark, J. S. Robinson, I. K. TI Ultrafast Three-Dimensional Imaging of Lattice Dynamics in Individual Gold Nanocrystals SO SCIENCE LA English DT Article ID X-RAY-DIFFRACTION; TIME; LASER; NANOPARTICLES; VIBRATIONS; PARTICLES; MOTION; FIELD AB Key insights into the behavior of materials can be gained by observing their structure as they undergo lattice distortion. Laser pulses on the femtosecond time scale can be used to induce disorder in a "pump-probe" experiment with the ensuing transients being probed stroboscopically with femtosecond pulses of visible light, x-rays, or electrons. Here we report three-dimensional imaging of the generation and subsequent evolution of coherent acoustic phonons on the picosecond time scale within a single gold nanocrystal by means of an x-ray free-electron laser, providing insights into the physics of this phenomenon. Our results allow comparison and confirmation of predictive models based on continuum elasticity theory and molecular dynamics simulations. C1 [Clark, J. N.; Beitra, L.; Xiong, G.; Robinson, I. K.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Higginbotham, A.; Wark, J. S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Fritz, D. M.; Lemke, H. T.; Zhu, D.; Chollet, M.; Williams, G. J.; Messerschmidt, M.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Abbey, B.] La Trobe Univ, Dept Phys, ARC Ctr Excellence Coherent Xray Sci, Bundoora, Vic 3086, Australia. [Harder, R. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Korsunsky, A. M.] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England. [Korsunsky, A. M.; Robinson, I. K.] Res Complex Harwell, Didcot OX11 0DE, Oxon, England. RP Clark, JN (reprint author), UCL, London Ctr Nanotechnol, Mortimer St, London WC1E 6BT, England. EM jesse.clark@ucl.ac.uk RI Korsunsky, Alexander/E-2030-2012; Zhu, Diling/D-1302-2013; Messerschmidt, Marc/F-3796-2010; Abbey, Brian/D-3274-2011; Lemke, Henrik Till/N-7419-2016 OI Korsunsky, Alexander/0000-0002-3558-5198; Messerschmidt, Marc/0000-0002-8641-3302; Abbey, Brian/0000-0001-6504-0503; Lemke, Henrik Till/0000-0003-1577-8643 FU European Research Council; Engineering and Physical Sciences Research Council (EPSRC) [EP/I022562/1]; Biotechnology and Biological Sciences Research Council (BBSRC) [BB/H022597/1]; Atomic Weapons Establishment; UK EPSRC [EP/H035877/1]; EPSRC [EP/I020691/1]; Australian Research Council Centre of Excellence for Coherent X-ray Science FX This work was supported by FP7 advanced grant from the European Research Council. I. K. R is appreciative of support from the Engineering and Physical Sciences Research Council (EPSRC) under grant EP/I022562/1 and from the Biotechnology and Biological Sciences Research Council (BBSRC) under grant BB/H022597/1. A. H. was supported by Atomic Weapons Establishment. J.S.W. is grateful for support from the UK EPSRC under grant EP/H035877/1. A. M. K. is grateful for support from the EPSRC under grant EP/I020691/1. B. A. acknowledges the support of the Australian Research Council Centre of Excellence for Coherent X-ray Science. The experimental work was carried out at the Linac Coherent Light Source, a National User Facility operated by Stanford University on behalf of the U. S. Department of Energy, Office of Basic Energy Sciences. We acknowledge S. Boutet for insightful discussion. NR 27 TC 79 Z9 79 U1 10 U2 201 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 5 PY 2013 VL 341 IS 6141 BP 56 EP 59 DI 10.1126/science.1236034 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 176GL UT WOS:000321291700045 PM 23704372 ER PT J AU Sekhar, PK Mukundan, R Brosha, E Garzon, F AF Sekhar, Praveen Kumar Mukundan, Rangachary Brosha, Eric Garzon, Fernando TI Effect of perovskite electrode composition on mixed potential sensor response SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Perovskite electrode; Mixed potential; Gas sensor; Lanthanum Chromite ID EARTH METAL (MG; STABILIZED ZIRCONIA; OXIDE ELECTRODES; GAS SENSORS; YSZ ELECTROLYTE; PERFORMANCE; CO; COMBUSTION; CA AB In this article, the influence of perovskite electrode composition on an electrochemical based mixed potential sensor response is reported. Specifically, various stoichiometry of Strontium doped Lanthanum Chromite materials were used as the sensing electrode. Yttria-Stabilized Zirconia was used as the solid electrolyte and Pt as the counter electrode. The effect of varying doping levels of Strontium on the sensor response was studied. NO, NO2, C3H6, and C4H10 were used as test gases. The sensor response was studied under open-circuit and current biased conditions. Based on sensitivity and selectivity evaluations, the device configuration 'La0.9Sr0.1CrO3/YSZ/Pt' was found to behave as a selective total hydrocarbon sensor at 500 degrees C when operated under open-circuit conditions. On the other hand, 'La0.7Sr0.3CrO3/YSZ/Pt' exhibited minimal cross-sensitivity to hydrocarbons facilitating its use as a selective NOx sensor when operated under a current bias. The variation in the sensor response and selectivity for different electrode materials indicate that it might be possible to develop multi-electrode sensor platform for identifying a suite of analytes with improved selectivity and sensitivity. (c) 2013 Elsevier B.V. All rights reserved. C1 [Sekhar, Praveen Kumar] Washington State Univ, Sch Engn & Comp Sci, Nanomat & Sensor Lab, Vancouver, WA 98686 USA. [Mukundan, Rangachary; Brosha, Eric; Garzon, Fernando] Los Alamos Natl Lab, Sensors & Electrochem Devices Grp, Los Alamos, NM 87545 USA. RP Sekhar, PK (reprint author), Washington State Univ, Sch Engn & Comp Sci, Nanomat & Sensor Lab, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA. EM praveen.sekhar@vancouver.wsu.edu OI Mukundan, Rangachary/0000-0002-5679-3930 FU DOE Office of Vehicle Technologies FX The authors wish to thank Roland Gravel of the DOE Office of Vehicle Technologies for providing the funds to enable prototyping of mixed potential sensors. NR 23 TC 7 Z9 7 U1 0 U2 48 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JUL 5 PY 2013 VL 183 BP 20 EP 24 DI 10.1016/j.snb.2013.03.110 PG 5 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 157AU UT WOS:000319868400003 ER PT J AU Koyanaka, H Ueda, Y Takeuchi, K Kolesnikov, AI AF Koyanaka, Hideki Ueda, Yoshikatsu Takeuchi, Ken Kolesnikov, Alexander I. TI Effect of crystal structure of manganese dioxide on response for electrolyte of a hydrogen sensor operative at room temperature SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Hydrogen sensor; Proton conduction; Surface proton; Manganese dioxide; Weak covalent bond; Inelastic neutron scattering ID POWDER NEUTRON-DIFFRACTION; STABILIZED ZIRCONIA; SOLID-ELECTROLYTE; PROTON CONDUCTOR; GAS SENSOR; LAMBDA-MNO2; ADSORBENT; LIMN2O4; SYSTEM AB Sensoring properties of a hydrogen sensor that used electrolytes made of different crystal type manganese dioxides were compared. An electrolyte made of a manganese dioxide, which has a high purity of ramsdellite-type crystal structure, provided the best characteristics for the hydrogen sensor. To explain the sensor property, network model of oxygen-pairs to store protons with a weak covalent bond and to conduct protons along the network in the ideal crystal structure of ramsdellite manganese dioxide was proposed. The inter-atomic distance of those oxygen-pairs in the high purity of ramsdellite manganese dioxide was estimated between 2.57 and 2.60 angstrom using inelastic neutron scattering measurements. The property of the hydrogen sensor supported the unique proton conduction based on the network model. (C) 2013 Elsevier B. V. All rights reserved. C1 [Koyanaka, Hideki] Forward Sci Lab Ltd, Oita 8701124, Japan. [Ueda, Yoshikatsu] Kyoto Univ, Res Inst Sustainable Humanosphere, Kyoto 6110011, Japan. [Takeuchi, Ken] Tokyo Univ Sci, Yamakoshi, Hokkaido 0493514, Japan. [Kolesnikov, Alexander I.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Koyanaka, H (reprint author), Forward Sci Lab Ltd, Oita 8701124, Japan. EM koyanaka@fslabo.com; ueda.yoshikatsu.4e@kyoto-u.ac.jp; ken@rs.kagu.tus.ac.jp; kolesnikovai@ornl.gov RI Kolesnikov, Alexander/I-9015-2012 OI Kolesnikov, Alexander/0000-0003-1940-4649 FU Kurita Water & Environment Foundation; MEXT/JSPS KAKENHI [21560800]; DOE-BES; DOE [DE-AC05-00OR22725] FX We thank Y. Koyanaka for providing the lambda-MnO2 sample. S. Shamoto and M. Tsujimoto gave helpful advices for the crystal analysis. The assistance in sample characterization from L. Jirik with HRMECS at IPNS in ANL is gratefully acknowledged. This work was partly supported by the Kurita Water & Environment Foundation, and MEXT/JSPS KAKENHI Grant No. 21560800. Work at ORNL was supported by the DOE-BES and was managed by UT-Battelle, LLC, for DOE under Contract DE-AC05-00OR22725. NR 33 TC 5 Z9 5 U1 2 U2 30 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JUL 5 PY 2013 VL 183 BP 641 EP 647 DI 10.1016/j.snb.2013.03.074 PG 7 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 157AU UT WOS:000319868400081 ER PT J AU Chen, SY Huang, X Yan, XQ Liang, Y Wang, YZ Li, XF Peng, XJ Ma, XY Zhang, LX Cai, YY Ma, T Cheng, LQ Qi, DM Zheng, HJ Yang, XH Li, XX Liu, GS AF Chen, Shuangyan Huang, Xin Yan, Xueqing Liang, Ye Wang, Yuezhu Li, Xiaofeng Peng, Xianjun Ma, Xingyong Zhang, Lexin Cai, Yueyue Ma, Tian Cheng, Liqin Qi, Dongmei Zheng, Huajun Yang, Xiaohan Li, Xiaoxia Liu, Gongshe TI Transcriptome Analysis in Sheepgrass (Leymus chinensis): A Dominant Perennial Grass of the Eurasian Steppe SO PLOS ONE LA English DT Article ID FUSARIUM HEAD BLIGHT; FREEZING TOLERANCE; SSR-MARKERS; ARABIDOPSIS-THALIANA; GENOME ANNOTATION; COLD-ACCLIMATION; SACCHAROMYCES-CEREVISIAE; BRACHYPODIUM-DISTACHYON; MICROSATELLITE MARKERS; PHYLOGENETIC ANALYSIS AB Background: Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. Results: The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. Conclusions: This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species. C1 [Chen, Shuangyan; Huang, Xin; Yan, Xueqing; Liang, Ye; Li, Xiaofeng; Peng, Xianjun; Ma, Xingyong; Zhang, Lexin; Cai, Yueyue; Ma, Tian; Cheng, Liqin; Qi, Dongmei; Li, Xiaoxia; Liu, Gongshe] Chinese Acad Sci, Inst Bot, Key Lab Plant Resources, Beijing, Peoples R China. [Huang, Xin; Yan, Xueqing; Liang, Ye; Ma, Xingyong; Zhang, Lexin; Cai, Yueyue; Li, Xiaoxia] Chinese Acad Sci, Grad Schoo1, Beijing, Peoples R China. [Wang, Yuezhu; Zheng, Huajun] Chinese Natl Human Genome Ctr Shanghai, Shanghai MOST Key Lab Hlth & Dis Genom, Shanghai, Peoples R China. [Yang, Xiaohan] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. RP Chen, SY (reprint author), Chinese Acad Sci, Inst Bot, Key Lab Plant Resources, Beijing, Peoples R China. EM sychen@ibcas.ac.cn; lixx258258@163.com; liugs@ibcas.ac.cn RI Yang, Xiaohan/A-6975-2011 OI Yang, Xiaohan/0000-0001-5207-4210 FU National High Technology Research and Development Program of China ("863") [2011AA100209]; National Natural Science Foundation of China [30970291, 31170316]; Key Project of the Chinese Academy of Sciences [KSCX2-EW-J-1]; Project of Ningxia Agricultural Comprehensive Development Office [NNTK-11-04, NTKJ-2012-03] FX This work was supported by the National High Technology Research and Development Program of China ("863", 2011AA100209), the National Natural Science Foundation of China (30970291; 31170316), the Key Project of the Chinese Academy of Sciences (KSCX2-EW-J-1), and the Project of Ningxia Agricultural Comprehensive Development Office (NNTK-11-04; NTKJ-2012-03). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 88 TC 4 Z9 8 U1 3 U2 46 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 4 PY 2013 VL 8 IS 7 AR e67974 DI 10.1371/journal.pone.0067974 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 204FO UT WOS:000323350700067 PM 23861841 ER PT J AU Plain, J Wiederrecht, GP Gray, SK Royer, P Bachelot, R AF Plain, J. Wiederrecht, G. P. Gray, S. K. Royer, P. Bachelot, R. TI Multiscale Optical Imaging of Complex Fields Based on the Use of Azobenzene Nanomotors SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID AZO-POLYMER-FILMS; PHOTOINDUCED MASS-TRANSPORT; INDUCED MOLECULAR-MOTION; NEAR-FIELD; ELECTROMAGNETIC HOT; SURFACE-PLASMONS; NANOSTRUCTURES; MODEL; BEAM; NANOLITHOGRAPHY AB Imaging approaches that enable visualization of electromagnetic fields over length scales ranging from micrometers to nanometers are increasingly important as optical technologies and scientific studies continue to push to smaller lengths scales to reveal new light-matter interactions. In this Perspective, we review work on the use of azobenzene moieties that are covalently attached to a polymeric backbone and function as optically driven nanomotors. The light-induced molecular movement has proven to be a very valuable approach for a wide range of opportunities in subwavelength imaging and nano- to microscale control of mass transport. This approach is distinguished from other types of optical exposure processes for imaging through vectorial transport. This feature opens new avenues for truly understanding the governing processes of field formation and dynamic evolution in three dimensions in the condensed phase. A review of modeling results is also provided in order to understand the mass-transport process beginning with light molecule interactions. C1 [Plain, J.; Royer, P.; Bachelot, R.] Univ Technol Troyes, CNRS, Lab Nanotechnol & Instrumentat Opt LINO, UMR 6279, Troyes, France. [Wiederrecht, G. P.; Gray, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Bachelot, R (reprint author), Univ Technol Troyes, CNRS, Lab Nanotechnol & Instrumentat Opt LINO, UMR 6279, Troyes, France. EM renaud.bachelot@utt.fr RI Arumugam, Thirumagal/C-3408-2014; Bachelot, Renaud/M-6888-2015; Plain, Jerome/A-2888-2009 FU Partner University Funds program (PUF); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; European community FEDER fund; Region Champagne-Ardenne; Labex ACTION program [ANR-11-LABX-01-01] FX This work was supported by the Partner University Funds program (PUF2010). Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was also supported by the European community FEDER fund and the Region Champagne-Ardenne, Grants HYNNOV and NANO'MAT (www.nanomat.eu). This work has been performed in cooperation with the Labex ACTION program (Contract ANR-11-LABX-01-01). NR 48 TC 10 Z9 10 U1 2 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 4 PY 2013 VL 4 IS 13 BP 2124 EP 2132 DI 10.1021/jz400586y PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 183IX UT WOS:000321809500005 ER PT J AU Atta-Fynn, R Bylaska, EJ de Jong, WA AF Atta-Fynn, Raymond Bylaska, Eric J. de Jong, Wibe A. TI Importance of Counteranions on the Hydration Structure of the Curium Ion SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID HYDROGEN-BOND DYNAMICS; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTION; LIQUID WATER; SIMULATIONS; COORDINATION; LANTHANIDE; CHEMISTRY; ACTINIDE AB Using density functional theory based ab initio molecular dynamics and metadynamics, we show that counterions can trigger noticeable changes in the hydration shell structure of the curium ion. On the basis of the free energies of curium-water coordination, the eight-fold coordination state is dominant by at least 98% in the absence of counteranions and in the presence of chloride and bromide counteranions. In addition, the solvent hydrogen bond (HB) lifetimes are relatively longer. In contrast, the solvent hydrogen bond (HB) lifetimes are relatively shorter in the presence of perchlorate counteranions, with the nine-fold and eight-fold states existing in an 8/2 ratio, which is in good agreement with the reported ratio measured by X-ray scattering experiments. To our knowledge, this is the first time that molecular simulations have shown that counteranions can directly affect the first hydration shell structure of a cation. C1 [Atta-Fynn, Raymond; Bylaska, Eric J.; de Jong, Wibe A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP de Jong, WA (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM attafynn@uta.edu; bert.dejong@pnnl.gov RI DE JONG, WIBE/A-5443-2008; Atta-Fynn, Raymond/G-1526-2016 OI DE JONG, WIBE/0000-0002-7114-8315; Atta-Fynn, Raymond/0000-0002-1389-9540 FU BES Heavy Element Chemistry program in the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy's Office of Biological and Environmental Research FX This work was supported by the BES Heavy Element Chemistry program in the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. This research was performed using the Molecular Science Computing Capability in the William R Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, operated for the Department of Energy by Battelle. NR 28 TC 13 Z9 13 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 4 PY 2013 VL 4 IS 13 BP 2166 EP 2170 DI 10.1021/jz400887a PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 183IX UT WOS:000321809500011 ER PT J AU Sharifzadeh, S Darancet, P Kronik, L Neaton, JB AF Sharifzadeh, Sahar Darancet, Pierre Kronik, Leeor Neaton, Jeffrey B. TI Low-Energy Charge-Transfer Excitons in Organic Solids from First-Principles: The Case of Pentacene SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SINGLET FISSION; TETRACENE; FILMS AB The nature of low energy optical excitations, or excitons, in organic solids is of central relevance to many optoelectronic applications, including solar energy conversion. Excitons in solid pentacene, a prototypical organic semiconductor, have been the subject of many experimental and theoretical studies, with differing conclusions as to the degree of their charge-transfer character. Using first-principles calculations based on density functional theory and many-body perturbation theory, we compute the average electron-hole distance and quantify the degree of charge-transfer character within optical excitations in solid-state pentacene. We show that several low-energy singlet excitations are characterized by a weak overlap between electron and hole and an average electron-hole distance greater than 6 angstrom. Additionally, we show that the character of the lowest-lying singlet and triplet excitons is well-described with a simple analytic envelope function of the electron-hole distance. C1 [Sharifzadeh, Sahar; Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Darancet, Pierre; Kronik, Leeor] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. [Darancet, Pierre] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Sharifzadeh, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM ssharifzadeh@lbl.gov; jbneaton@lbl.gov RI Sharifzadeh, Sahar/L-9367-2013; Neaton, Jeffrey/F-8578-2015; Foundry, Molecular/G-9968-2014; Sharifzadeh, Sahar/P-4881-2016 OI Neaton, Jeffrey/0000-0001-7585-6135; Sharifzadeh, Sahar/0000-0003-4215-4668 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Helios Solar Energy Research Center; Scientific Discovery through Advanced Computing (SciDAC) Partnership program; U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences; Israel Science Foundation; Lise Meitner Minerva Center for Computational Chemistry; United States-Israel Binational Science Foundation (BSF); Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. P.D. was funded by the Helios Solar Energy Research Center. Partial support for this work was also provided through Scientific Discovery through Advanced Computing (SciDAC) Partnership program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Work at the Weizmann Institute of Science was additionally supported by the Israel Science Foundation and the Lise Meitner Minerva Center for Computational Chemistry. We also acknowledge funding from the United States-Israel Binational Science Foundation (BSF). We thank the National Energy Research Scientific Computing (NERSC) center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, for computational resources. NR 37 TC 62 Z9 62 U1 6 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 4 PY 2013 VL 4 IS 13 BP 2197 EP 2201 DI 10.1021/jz401069f PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 183IX UT WOS:000321809500016 ER PT J AU Wilson, EJH Mcneill, JS Zhai, ZQ Krarti, M AF Wilson, Eric J. H. Mcneill, James S. Zhai, Zhiqiang (John) Krarti, Moncef TI A parametric study of energy savings from cleaning coils and filters in constant air volume HVAC systems SO HVAC&R RESEARCH LA English DT Article ID FILTRATION AB This study evaluates the energy savings resulting from the remediation of coil and filter fouling in constant air volume HVAC systems in residential and small commercial buildings. A computer model was developed to simulate the behavior of buildings and their duct systems under various levels of fouling. The model was verified through laboratory and field testing. Parametric simulation and sensitivity analysis results suggest that although fouling can have an impact on both air conditioner and furnace energy use, for the levels of fouling found in the literature, energy savings will be negligible for residential buildings and negative for small commercial buildings. C1 [Wilson, Eric J. H.] Natl Renewable Energy Lab, Golden, CO USA. [Mcneill, James S.] Affiliated Engn Inc, Madison, WI USA. [Krarti, Moncef] Univ Colorado, Civil Environm & Architectural Engn Dept, Boulder, CO 80309 USA. RP Zhai, ZQ (reprint author), UCB 428,ECOT 441, Boulder, CO 80309 USA. EM john.zhai@colorado.edu OI Krarti, Moncef/0000-0002-8758-9123; KRARTI, MONCEF/0000-0001-6748-698X FU National Air Duct Cleaners Association (NADCA) FX The authors would like to thank: the National Air Duct Cleaners Association (NADCA) for providing the funding for this research; Bill Lundquist, the NADCA member in charge of the project, for his guidance and feedback; and Monster Vac Inc., for their HVAC system cleaning services as part of field testing. NR 29 TC 3 Z9 3 U1 1 U2 10 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1078-9669 J9 HVAC&R RES JI HVAC&R Res. PD JUL 4 PY 2013 VL 19 IS 5 BP 616 EP 626 DI 10.1080/10789669.2013.803431 PG 11 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 187GH UT WOS:000322104400014 ER PT J AU Wang, YY Lane, NA Sun, CN Fan, F Zawodzinski, TA Sokolov, AP AF Wang, Yangyang Lane, Nathan A. Sun, Che-Nan Fan, Fei Zawodzinski, Thomas A. Sokolov, Alexei P. TI Ionic Conductivity and Glass Transition of Phosphoric Acids SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ELECTRICAL CONDUCTIVITY; PROTON; VISCOSITY; MECHANISM; LIQUIDS; ELECTROLYTES; SIMULATIONS; CONDUCTORS; GROTTHUSS; POLYMERS AB Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5-5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition. C1 [Wang, Yangyang; Sokolov, Alexei P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Sun, Che-Nan; Zawodzinski, Thomas A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Lane, Nathan A.; Zawodzinski, Thomas A.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Fan, Fei; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Wang, YY (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM wangy@ornl.gov RI Sun, Che-Nan/I-3871-2013; Wang, Yangyang/A-5925-2010 OI Wang, Yangyang/0000-0001-7042-9804 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; NSF [DMR-1104824]; DOE BES Materials Science and Engineering Division FX This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. F.F. thanks the NSF Polymer Program (DMR-1104824) for funding. A.P.S. acknowledges the financial support from the DOE BES Materials Science and Engineering Division. NR 42 TC 15 Z9 15 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 4 PY 2013 VL 117 IS 26 BP 8003 EP 8009 DI 10.1021/jp403867a PG 7 WC Chemistry, Physical SC Chemistry GA 179SS UT WOS:000321542200017 PM 23763586 ER EF